AK RIDGE
NATIONAL
LABORATORY

REY

W

3 445L 0369142 3

CRNL/TM-12267
Dist, Category UC-830

=4

 © O S E U4
Generalized Object-Oriented
Simulation Environment

User's Manual

D. J. Nypaver
M. A. Abdalla
L. Guimaraes

$

s2n reproduced directly from the best avaiable copy.

rom the Odfice of Scientific and Techni-
. TN 37831, piices svailable from (315)

etk Information Service, U.S.
ont Floyal Hd., Springfisld, VA 22161,

8 fepoit was prepared as a
the United S

sweas, miskas any weairanly, SX
ar responginilivy e 2oCurasy, cormr

of, nor any of thsf' k
'.‘, Of assumns any legal

o any specific commer
frademark, manufactiser,

tulﬁ or imipty its © dorsni rant, reoom

7

i‘ﬁe:’ l..c views and
iiy a'n or reflsat those

ar
~f
i

ORNL/TM-12267
Dist. Category UC-530

INSTRUMENTATION AND CONTROLS DIVISION "

G © © S E 14

Generalized Object-Oriented
Simulation Environment

USER'S MANUAL

D. J. Nypaver
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831-6285

M. A. Abdalla

Oak Ridge Associated Universities*
Post Office Box 117

Oak Ridge, Tennessee 37831-0117

L. Guimaraes
Centro Tecnico Aerospacial
Instituto de Estudios Avanzados/ENU
Caixa Postal 60444
Sao Jose Campos, SP 12231, Brazil

Date Published—November 1992

‘ Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for [hc MARTIN MAﬁilET(A ENERGY SYSTENS LIBRARIES
R e IR
under contract DE-AC05-840R21400 RN AN
3 4456 03L9182 3

*This research was supported in part by an appointment to the U.S. Department of Energy Laboratory Cooperative
Postgraduate Research Training Program administered by the Oak Ridge Institute for Science and Education.

PREFACE

ABOUT THIS MANUAL

This manual describes the Generalized Object-Oriented Simulation Environment
(GOOSE) and some of its basic concepts. The three basic tools of GOOSE and the various
commands available in each tool are explained. This manual also describes how to model
dynamic systems in GOOSE and presents a model of a Westinghouse pressurized water
reactor as an example.

SUMMARY OF CONTENTS

This manual introduces GOOSE as a new and innovative simulation tool. A brief
introduction is given about object-oriented programming and Objective-C, the language in
which GOOSE is written. Some tips are given on how to approach modeling in GOOSE.
The basic tools of GOOSE (Class Developer, Environment Builder, and Runtime
Environment) are described. An explanation on how to access the simulation environment
on the Advanced Controls Program’s SUN network is discussed, as well as the installation
of GOOSE on a personal computer. All commands available in each GOOSE tool are
explained in detail, and, finally, an example of a Westinghouse pressurized water reactor
model is given. A glossary with a summary of GOOSE-related terms is given in Appendix
C.

HOW TO USE THIS MANUAL

It is advisable that the user read Chaps. 1 and 2 before starting to develop models in
GOOSE. Chapter 1, Introduction, introduces GOOSE and its fundamental concepts.
Chapter 2, Basic Steps for Creating a Model with GOOSE, gives pointers that will simplify
the process of modeling in GOOSE. Chapters 3 to 6 (Class Developer Commands,
Environment Builder Commands, Runtime Simulation Environment Commands, and
Global Variables) should familiarize the user with commands that are available, many of
which are used in the example program given in Chap. 8. Chapter 7, Additional Features
Found in GOOSE, gives a detailed explanation of some advanced features of GOOSE.

EXAMPLE PROGRAM

The example program presented in Chap. 8 is a model of the Westinghouse
pressurized water reactor. This example and an example using the Volterra equations are
available to users in both the PC and SUN versions of GOOSE. Their class definiton and
command files can be found in the GOOSE home directory under the examples
subdirectory.

SYNTAX

The syntax used in Chaps. 3 to 5 (Class Developer Commands, Environment
Builder Commands, and Runtime Simulation Environment Commands) and the various
options associated with each command are explained in Appendix A.

ii

ASSUMPTIONS

Readers are assumed to be proficient in the C programming language. The syntax
of commands unique to Objective-C used in GOOSE are explained in this manual. An
understanding of X Windows concepts would also be helpful when accessing the plotting
and graphics objects provided with the SUN version of GOOSE.

SOFTWARE USED IN GOOSE

GOOSE requires the installation of Version 4.3 of Stepstone’s Objective-C compiler
and ICpak 101 on both the DOS and UNIX platforms. The Microsoft C and FORTRAN
compilers are required for the PC version of GOOSE, and SUN FORTRAN is required for
the SUN version.

If the graphics provided in the SUN version of GOOSE are to be used, X Windows
must be installed. Some of the dynamic graphics use VI Corporation’s DataViews, but
neither of these packages is required to run GOOSE. They are only necessary if you use
some of the graphics objects described in Chap. 7.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Advanced Controls Program, Office of
Reactor Technologies Development, U.S. Department of Energy, under contract DE-ACOS5-
840R21400 with Martin Marietta Energy Systems, Inc., for funding this endeavor.

The authors would also like to acknowledge C. E. Ford for developing the GOOSE

methodology and for his initial program development and C. March-Leuba for contributing
his simulation expertise and other development efforts to GOOSE.

1v

CONTENTS

LIST OF FIGURES it ittt e e e et e e e e e e e ix
ABS T RACT . e e e e e X
1. INTRODUCTION ... i i e et e et e e e e et et i 1
1.1 WHAT IS GOOSE? . .. it e e et e i e e e e i 1
1.2 THEGOOSEDIFFERENCE i iiinn.. 1
1.3 BRIEF INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING .. 2
1.4 BUILDING CLASSDEFINITIONS it 3
1.5 BUILDING A SIMULATION ENVIRONMENT 4
1.6 CREATINGASIMULATIONMODELc..0u... 7
1.7 GOOSE LIBRARY ... it ittt et ettt e e i 7
1.8 ACCESSING THE GOOSE SOFTWARE ON THE ACP SUN NETWORK 7
1.9 INSTALLING AND USING THE GOOSE SOFTWAREONAPC 8
2. BASIC STEPS FOR CREATING A MODEL WITHGOOSE 9
2.1 STEP1— DEFINE THE COMPONENTSOFTHEMODE 9
2.2 STEP 2 — DEFINE THE NECESSARY CLASSES FOR THE
COMPONENTS .. e e s e e e e e e 10
2.3 STEP3— COMPILE THE CLASSDEFINITIONS 10
2.4 STEP 4 — CREATE THE SIMULATION ENVIRONMENT 10
2.5 STEP5 — WRITE A COMMAND FILE TO GENERATE THE MODEL .. 10
3. CLASS DEVELOPER COMMANDS ... ittt i it e e i i 11
31 Chdir ... e e e e e 11
3.2 CLASS o e e e 11
33 comment(H#) e e e e e e e 12
34 compile ... e e e e e 12
3.5 DERIVMETHOD ittt ittt it i it e e 12
3.6 DESCRIBEt e e e e 14
37 DIGIMETHOD ...ttt ittt e e e e e 14
3.8 DYNAMETHOD ittt e e e e e 16
3.9 edit ... e e 18
300 Xt . . e e e e e 18
K O S -2 18
3.12 HEADER e 19
313 helD . e e e e e 19
3.14 INITMETHOD e e et e et et e e i 20
3,15 METHOD i e e e e 21
316 read ... e 21
K A - QO 21
3.18 REFERENCES i e e i d 22
310 SAVE . i e e e e e 22
3.20 shell(D) ..ot e e e 22
32l oW . e e e e e 23
3.22 showewd i e e e e e e 23
323 ShOWES L. e e e e e 23

3.25 VALIDATE e 24
3.26 WHENDO 25
ENVIRONMENT BUILDER COMMANDS 27
d0obuild L e 27
2o bulldsm L 27
3 chdir e e 28
4 comment(H) ... 28
5 describe ... e 28
O EXEL e e 29
T 1agS e e 29
8 help ... 29
O Include e 30
d0 read L e 30
B 1 1. A 30
12 shell()) .. e 31
13 ShOW .. e 31
14 showewd e 31
15 ShOWES .. . e 32
UNTIME SIMULATION ENVIRONMENT COMMANDS 33
dassign(=) Lo e 33
2 Al L e e e 33
3 chdir .. e 34
A commMEnt(HE) . e e e e 34
S connect L e e 34
B CONMIMUE . ..ttt e e e e e e e e e e 35
B A o - | 35
8 create Tl .. e e 35
O DEFINE ... e e 36
JO delete L. e e 36
A1 describe .. 37
12 et . e e e e e e 37
3 X L e 37
14 flags e 38
15 help .. e 38
16 hold e e e 39
17 imidalize e e 39
A8 Joad ... e 39
A9 output L e 40
20 panelobjs 40
21 plot L e 41
22 TANEE . . e e e e 41
23 read . 42
S 11 42
002 T 5)+ Y 42
26 SAVE . . e e 42
2T send e e 43
28 shell(l) .. e 43
20 ShOW . e e 43

530 showewd e 44

531 SYMIAX .. e 44
5.32 validate 44
5.33 waterp [<machine-name>] 45
534 WIHMEIOot 45
6. GLOBAL VARIABLES i 46
6.1 abstol 46
6.2 derivrtFlg 46
63 dynaSrtFlg 46
64 circulatFIg L. 46
6.5 At L e e 46
6.6 euler, 46
6.7 hO . e 47
6.8 hour ... e e 47
6.9 hmax 47
6.10 hmin 47
6.11 hu ... 47
6.12 IMXET 47
6.13 ImitSHtFlg 47
6.14 0Pt e 47
6.15 IState 48
6.16 qtask e 49
6.17 Ol .. 49
6. 018 IXPr .. 49
6.19 mMCUr 50
6.20 mf ... e 50
6.21 mused e 50
6.22 MXOTAN 50
6.23 MXOMASt 50
6.24 MXSIED 50
6,25 MegMS ... 50
6.26 mfe 51
6.27 nhold 51
6.28 mje ... 51
6.29 MOUIPUL 51
6.30 mperiods 51
6.31 MPlOt ... 51
6.32 ngour ... e 51
6.33 NQU .. 51
6.34 NSt . 51
6.35 OTgSOIt ... 52
6.36 plotmax 52
6.37 P PCPU . ot e 52
6.38 reltOl ... 52
6.39 ShOWOD 52
6.40 U ... 52
6.41 1CUT 52
642 tend ... 53
6.43 oIS L. 53
6.44 ACE 53

6.40 1SW . L 53
6.47 0 ... e 53
7. ADDITIONAL FEATURES FOUNDINGOOSE 54
7.1 DIFFERENTIAL EQUATION SOLVERS 54
7.2 DYNAMICPLOTS ... i 54
7.3 REAL-TIME SIMULATOR oo, 56
7.4 EIGENVALUE CALCULATIONS 56
7.5 INTERACTIVEEDITING 57
7.6 VECTORS 57
8. GOOSESAMPLEPROGRAM 60
8.1 THEPROBLEM 60
8.2 THECLASSDEFINITION 60
8.3 THECLASSDEVELOPER 64
8.4 THE ENVIRONMENT BUILDER 64
8.5 THERUNTIME ENVIRONMENT 65
REFERENCES e 70
APPENDIX A. COMMAND SYNTAX i, 71
APPENDIX B. ERRORMESSAGES 72
APPENDIX C. GLOSSARY i 77

LIST OF FIGURES

Figure 1. Relationship between the three GOOSEtools. 2
Figure 2. Relationships between a class, an object, methods, messages, and slots. . 4
Figure 3. Dynamic plots created in the SUN versionof GOOSE. 5
Figure 4. Nondynamic plots created in the SUN versionof GOOSE. 6
Figure 5. Nondynamic plots created in the PC versionof GOOSE. 6

Figure 6. A diagram of a low-order model of a Westinghouse pressurized water
1 o (o R 9

Figure 7. An example of a graphical user interface created to interact with a GOOSE
simulatonmodel. L 17

Figure 8. The Plot Manager Window is used for setting up dynamic plots in the
SUN versionof GOOSE. 55

Figure 9. Interactive edit panels created in the SUN version of GOOSE. 58

ABSTRACT

The Generalized Object-Oriented Simulation Environment (GOOSE) is a new and
innovative simulation tool that is being developed by the Simulation Group of the
Advanced Controls Program at Oak Ridge National Laboratory. GOOSE is a fully
interactive prototype software package that provides users with the capability of creating
sophisticated mathematical models of physical systems. GOOSE uses an object-oriented
approach to modeling and combines the concept of modularity (building a complex model
easily from a collection of previously written components) with the additional features of
allowing precompilation, optimization, and testing and validation of individual modules.
Once a library of components has been defined and compiled, models can be built and
modified without recompilation. This user’s manual provides detailed descriptions of the
structure and component features of GOOSE, along with a comprehensive example using a
simplified model of a pressurized water reactor.

1. INTRODUCTION

1.1 WHAT IS GOOSE?

The Generalized Object-Oriented Simulation Environment (GOOSE)1.2 is a fully
interactive prototype software package that is being developed by the Simulation Group of
the Advanced Controls Program at Oak Ridge National Laboratory. GOOSE is a software
package that provides users with the capability of creating sophisticated mathematical
models of physical systems. These models may involve discrete-time behavior as well as
behavior governed by ordinary differential equations. GOOSE provides access to powerful
tools such as numerical integration packages, eigenvalue and Jacobian matrix calculations,
graphical displays, and on-line help. In GOOSE, portability has been achieved by creating
the environment in Objective-C,3 which is supported by a variety of platforms, including
UNIX and DOS. GOOSE Version 1.4 is primarily command-line driven.

The GOOSE software package consists of three basic tools: a Class Developer, an
Environment Builder, and a Runtime Environment. These tools are independent of each
other and are to be used in sequence. Figure 1 illustrates the relationship between the three
GOOSE 1ools. The Class Developer allows the user to create classes that model the system
components. The Environment Builder creates an executable simulation environment that
includes the classes specified by the user that are needed for the simulation. The Runtime
Environment allows the user to build, modify, execute, and test the model through the
dynamic creation, connection, modification, and deletion of model objects from the classes
included in the environment. On-line help is available in all three GOOSE tools.

1.2 THE GOOSE DIFFERENCE

GOOSE uses an object-oriented approach to modeling. GOOSE combines the concept
of modularity (building a complex model easily from a collection of previously written
components) with the additional features of allowing precompilation, optimization, and
testing and validation of individual modules. Once a library of components has been
defined and compiled, models can be built and modified without recompilation. Dynamic
models are easily constructed and tested. The fully interactive capabilities of GOOSE allow
the user to alter model parameters and complexity without recompilation. Currently, two
differential equation solvers, the complex Livermore solver for ordinary differential
equations with root-finding (Isodar) and the simpler Euler method, are available in
GOOSE.

Source
Files

User-Specified
Parameters,
Connection of

Components

'

User-Defined
Class Structure
and Behavior

Fig. 1. Relationship between the three GOOSE tools.

-

Class
Developer

—->

Environment
Builder

Runtime
Environment

—» Simulation

Help
Files

Additional

Class
Definitions

Tools (Plotting,
Numerical

Analysis, ...)

1.3 BRIEF INTRODUCTION TO OBJECT-ORIENTED
PROGRAMMING

To use GOOSE one needs a brief introduction to object-oriented programming
terminology.® In object-oriented programming systems, the processing of information is
done through objects. An object is a particular instance of a class. All objects within a
class share a common definition, which is the data structure and behavior of the class.
Objects are manipulated by sending them messages. The class definition is a generic
description of the object and how it behaves. In the class definition, the functions that
implement the behavior of the various messages are called methods, and the variables that
implement the structure of the class are called slots. All classes belong to a hierarchy.
Through the mechanism of inheritance, objects belonging to subclasses may automatically
inherit the data structures, messages, and methods of their superclass, or parent class.
GOOSE allows a user to create a model, which is just a combination of defined objects. A
user can dynamically create, delete, edit, and connect objects in the model without
recompilation.

Any C language syntax is valid in Objective-C. A different construct in the Objective-
C language that a user may notice in GOOSE is the [object message] syntax. This is the
code for sending messages to objects. For example, the code [valvel trip] sends the object
valvel the message trip. This executes the method, trip, defined for that object.

In the equation, flow_rate = Cv * [valvel valve_pos] * sqrt(delta_P), the [valvel
valve _pos] value is produced by sending the object, valvel, the message, valve_pos,
which returns the value of the slot valve pos in the object valvel. This syntax construct is
used to communicate between objects. Figure 2 illustrates the relationship between a class,
an object, methods, messages, and slots.

Another Objective-C syntax used in GOOSE commands is object.slot, where the object
name is followed by a period and then a defined slot name for that object. This is a naming
convention for the slot.

1.4 BUILDING CLASS DEFINITIONS

GOOSE provides a Class Developer to ease the task of developing class definitions in
an object-oriented language. The Class Developer enables the user to specify only a
minimal description of the model components, their structure and behavior. The Class
Developer automatically produces the necessary class definition files, source code files, and
on-line help files for each class definition it reads and saves. These files are available to the
user and to other GOOSE tools. The purpose of the class definition is to define the
structure and behavior of objects that belong to the class.

The user may create the class definition in a text file, using a text editor, or through a
series of commands entered on the command line while inside the Class Developer. If a
class is defined in a file using a text editor, it must be read into the Class Developer using
the read command. Once a class has been defined in the Class Developer, the save
command saves the class definition in the Objective-C files needed by the other GOOSE
tools. The class is then compiled using the compile command, after which the user can
create a customized simulation environment using the GOOSE Environment Builder.

Recompilation of a class is necessary only if its class definition is changed. Once a class
definition is compiled, it can be used to build any model. Inside the Runtime Environment,
objects can be dynamically added and deleted, and parameter values can interactively be
changed without recompilation.

CLASS Valve
SLOTS
valve_pos real rw “Valve Position”
init_valve_pos real rw “Initial Valve Position”
kp_constant real rw “Constant” OBJECT valvel
measure real r
valve_pos
demand real Tw init_valve_pos
) kp_constant
valve_pos=(). demand
trip .
METHOD set_valve_position set_valve_position
valve_pos = init_valve_pos + kp_constant *
(measure - demand)

Fig. 2. Relationships between a class, an object, methods, messages,
and slots.

1.5 BUILDING A SIMULATION ENVIRONMENT

The Environment Builder is used to create a customized simulation environment to
build models from the classes defined with the Class Developer. The include command
specifies the class definitions that need to be available in the simulation environment. All
other necessary files and class definitions will be loaded automatically by GOOSE.

In the SUN version, the build or buildsm (build small model) commands create the
environment in the executable file specified. The build command includes all the plotting
libraries required for the dynamic (on-line) DataViews plots. The dynamic or real-time
plotting features of GOOSE enable users to observe plots of selected model parameters as
the simulation runs. The executable files made with the build command must run on
machines with DataViews, X Windows, and Objective-C installed. The buildsm command
does not include the DataViews plotting package, but nondynamic (off-line) plots can still
be done using the plotting package TempleGraph. Nondynamic plots are displayed only
after the simulation is paused or finished. The executables made with the buildsm
command only require the installation of Objective-C, but in order to have the nondynamic
plotting capabilities, the installation of TempleGraph is also required. Figure 3 illustrates
the dynamic plots available in the SUN version of GOOSE. Figures 4 and 5 depict the
nondynamic plots available in the SUN and PC versions of GOOSE, respectively.

4

. AN
1 ey R e e A RARAS Raas
. “ [] S0 1w 10 mwe s
Tuse (»)
- ‘ %rrscca.-d ‘
5 IRRRRRAREAL TR AERLE ARERES paeee : ! ‘ . !
290 e Ty L RaEa s o e aRA
[} 4 1 158 ;0 A [] S8 100 154 200 €
Tinw (3) Tise (9}
P : urmcn wl : . w0 - ' wscca' we
L U gy RS T o o SO ”.3
200 3
190 3] Faneen
3 . . N
AR RERSS S s L e e 8 ST T Yy ¢ e
¢ 5 10 10 M0 250 ¢ s 1w 14 0 58 & S0 100 150 80 4
Tiow (9) Tine (3) Time (9)
cool? tl P UTSECA we UTPRIA t)
; o
3
180 3
T [T L T
[] 50 M 130 00 1B [} @ 10 1S4 0 0

Tise (2)

Tine (8)

Pause) Copy) Return)

Fig. 3. Dynamic plots created in the SUN version of GOOSE.

Simulation Data

MO T T T T T T
3200 -
£ 3100]\
G
L 3000 - -
% 2900 - COOL1I U ~
& UTSECA U 1
E 280.0 - -
]]
L 700 |- -
260.0 ———— -
250.0 [| ; I Lol 1]]
00 200 400 600 800 1000 1200 1400 1600 1800
Time (sec)

Fig. 4. Nondynamic plots created in the SUN version of GOOSE.

POPULATION

109

r—
9.9 e.3 1.9
TINE
POPULATION
100
30
P
1
s
o
-3 _
2.0 @.3 1.8

TIME

Fig. 5. Nondynamic plots created in the PC version of GOOSE.

Since dynamic plots are currently not available in the PC version, the PC build and buildsm
commands perform the same function.

1.6 CREATING A SIMULATION MODEL

In GOOSE, a model is a combination of defined objects. These objects are created
from the classes included in the environment. For example, if you have a class Valve (Fig.
2) included in the environment, one could create as many different valve objects from that
class as are needed in the simulation. A user can create, delete, edit, and connect objects
and can save, load, and reset the model in the Runtime Environment. The Runtime
Environment can read commands from the command line or from a command file.

1.7 GOOSE LIBRARY

GOOSE provides the user with a library of classes that are accessible in the Runtime
Environment. The classes that are currently available in the GOOSE library are listed
below.

Class N Descriptio

1. DspPanel Interactive Edit Panel available in the SUN version of
GOOSE

2. LinearA Enables Jacobian matrix and eigenvalue calculafions

3. PlotDV Dynamic plots available in the SUN version of GOOSE

4. RealTime Real-time simulator '

The graphical classes, DspPanel and PlotDV, are only available if the user builds his
Runtime Environment with the build command in the SUN version of GOOSE. The
LinearA and RealTime classes are always available to the user in the Runtime Environment
in both the SUN and PC versions of GOOSE. For more information on these classes,
refer to Chap. 7.

1.8 ACCESSING THE GOOSE SOFTWARE ON THE ACP SUN
NETWORK

To have access to the GOOSE software on the ORNL Advanced Controls Program’s
(ACP’s) SUN network, add the following lines to your .cshrc file:

setenv GOOSEHOME /usr6/users/ACP/goose
set path=($GOOSEHOME/bin $path)

To use the build command in the Environment Builder, add
setenv DVHOME /usr/local/dvhome

to your .cshrc file.

In order to enable these changes, either log off and back on or type
source .cshrc

from your home directory.

1.9 INSTALLING AND USING THE GOOSE SOFTWARE ON
A PC

To install the GOOSE software on a PC, create a GOOSE home directory on a hard
drive. Then copy the files from the GOOSE floppies into the home GOOSE directory.

To have access to the GOOSE software, include the bin directory under the GOOSE
home directory in your path. Make sure that your path is set up for the Objective-C,
Microsoft C, and FORTRAN compilers and libranes.

In order for the GOOSE software to run, you must set the environment variable
GOOSEHOME to the appropriate directory in your autoexec.bat file. In our case, we have

set GOOSEHOME=d:\goose

A GOOSE PC version that uses Pharl.ap’s DOS extender software is also available.
This version enables the user to compile and run large models. To run this version of
GOQSE, set the environment variable DOSXTNDR to run286 in your autoexec.bat file as
follows,

set DOSXTNDR=run286

2. BASIC STEPS FOR CREATING A MODEL
WITH GOOSE

2.1 STEP 1 — DEFINE THE COMPONENTS OF THE MODEL

The first step in creating a simulation is to clearly define the model components and
their interconnections. Constructing a flow diagram is a good way to plan the arrangements
and connections of all of the objects in the model. As mentioned in Sect. 1.3, each object
belongs to a “class.” All objects within a class share a common “data structure” and
“behavior.” In the definition of a class, the data structure includes the variables on which
the class depends; these variables are called “slots.”

Figure 6 illustrates a diagram of a low-order model of a Westinghouse pressurized
water reactor. Each box in the figure represents an object in the model and belongs to one
of the five classes described in Sect. 8.1. The arrows represent the connections between
the objects. The objects in the diagram are created and connected in the Runtime
Environment.

pirod

m3

core{—m2l __ !l fhcore — >

m1 f— Ipin

Fig. 6. A diagram of a low-order model of
a Westinghouse pressurized water reactor.

2.2 STEP 2 — DEFINE THE NECESSARY CLASSES FOR
THE COMPONENTS

Write class definitions for each of the different types of components needed in the
model. The class definition is used to describe the structure and behavior of a component.
The interdependence between components should be kept in mind when identifying those
objects that need information to be “received from™ and/or “sent to” other objects in the
model. For more information on the class definition, see Sect. 8.2.

2.3 STEP 3 — COMPILE THE CLASS DEFINITIONS

Use the Class Developer to read the class definition files, save them into their
corresponding Objective-C files, and compile the definitions so that they may be used in
any Runtime Environment. Section 8.3 explains how to use the Class Developer and gives
an example.

2.4 STEP 4 — CREATE THE SIMULATION ENVIRONMENT

Use the Environment Builder to build an executable simulation environment from the
classes defined and compiled with the Class Developer. Section 8.4 explains how to use
the Environment Builder.

2.5 STEP 5§ — WRITE A COMMAND FILE TO GENERATE
THE MODEL

After an executable simulation environment is created, a command file is written for the
Runtime Environment. This file is used to create, initialize, and connect objects into a
model. Section 8.5 contains an example of a Runtime Environment command file.

10

3. CLASS DEVELOPER COMMANDS

The Class Developer allows a user to define Objective-C classes by entering a set of
Class Developer commands. These commands can be entered on the command line or read
from a command file. The Class Developer informs a user of any syntax errors that may
occur. To help locate syntax errors inside a command file, the flag echo has to be turned
on before reading the file. For best results, after the errors have been located and
corrected, reset the Class Developer before reading the command file again. Then the user
can save the newly defined class into its corresponding Objective-C and GOOSE files and
can compile the class for use in a Runtime Environment. It is advisable to use a command
file when defining a class. An example of a Class Developer command file can be found in
Sect. 8.2. Appendix A explains the syntax used in the command descriptions that follow.
Note that all the commands are case sensitive; the way the commands appear in the manual
(upper or lower case) is the only way that they are recognizable to GOOSE.

3.1 chdir

Function: Changes the working directory.

Syntax: [chdir [cd] <dir-spec>

To change the current working directory while in the Class Developer, type
chdir <a directory name or path>

or

cd <a directory name or path>

3.2 CLASS
Function: Begins a new class definition.
Syntax: CLASS <name> [OF <superclass>]
To start a-new class definition, type
CLASS <the new class name>
To create a new class and associate it with a superclass, type

CLASS <the new class name> OF <the name of the superclass>

11

3.3 comment(#)
Function: Allows documentation inside the Class Developer.
Syntax: #
To use the comment indicator, type
comment

The comment indicator is the first character on each comment line.

3.4 compile

Function: Compiles the (most recently saved) class definition.
Syntax: compile

To compile the most recently saved class definition, type

compile

3.5 DERIVMETHOD

Functon: Defines the source code for derivatives of the state variables.

Syntax: DERIVMETHOD <name>
<Objective-C code>
INTEGRATE
<> <dv> <>

INPUTS
<il><i2> ...

OUTPUTS

 <02> ...

END
The DERIVMETHOD section is used to define the model equations, the state variables to
be integrated, and the input and output variables. Each DERIVMETHOD requires the

user to identify it with a unique name. A class definition can have more than one
DERIVMETHOD.

12

To define a derivative method, type
DERIVMETHOD <name>

The name of the derivative method is followed by the Objective-C code that needs to be
executed at each integration step.

The optionai INTEGRATE subsection provides information to the differential equation
solver. To define an INTEGRATE subsection, type

INTEGRATE
v dv v0

where v, dv, and v0 are the scalar or array variable, its derivative, and its initial condition,
respectively. To add another equation to be integrated in a DERIVMETHOD, insert a
line containing the variable name, derivative, and initial condition in the INTEGRATE
subsection.

To define inputs, type

INPUTS
objectl.x object2.z

where x and z are input variables from object! and object2, respectively. The INPUTS
subsection is optional.

To define outputs, type
OUTPUTS

wl w2

where wl and w2 are variables that are output to other objects in the Runtime Environment.
The OUTPUTS subsection is optional.

The INPUTS and OUTPUTS subsections are used when sorting the derivative list.
GOOSE cannot sort the derivative list when output variables are referenced before they are
defined as inputs. In this case, a warning message indicating a circularity error is
displayed. The circularity check is by default turned on; therefore, all the methods that are
defined with inputs and outputs will be checked for circularity. To tumn the circularity
check off, set the global variable circularFig=0 in the Runtime Environment.

To end the derivative method definition, type
END
Section 8.2 gives two illustrations of DERIVMETHOD definitions.

13

3.6 DESCRIBE

Function: Creates descriptive text for the current class.

Syntax: DESCE BE
<Descriptive Texr>
END

The DESCRIBE section is where general information about the current class is provided.
This information is displayed in the simulation environment when a user asks for a
description of the class.

To use the DESCRIBE command, type
DESCRIBE

followed by any number of text lines describing the current class. To end the description
type

END

This DESCRIBE text is included in the on-line help file automatically generated for the
class by the Class Developer.

3.7 DIGIMETHOD
Function: Defines a digital method to be executed at a specified sampling time.

Syntax: DIGIMETHOD <name>
<Objective-C code>
SAMPLING
<sI>
DTIME
<dtimel>
INPUTS
<il><i2> ..

OUTPUTS

 <02> ...

END
Digital methods are commonly used as a communication device that needs responses at a
given sampling time, not necessarily each computation step. Each DIGIMETHOD

requires the user to identify it with a unique name. A class definition can have more than
one DIGIMETHOD.

14

To define a digital method for a class, type
DIGIMETHOD <name>

The name of the digital method is followed by the Objective-C code that needs to be
executed at each sampling time.

To define the SAMPLING variable, type

SAMPLING
sl

where s/ is the sampling time variable. The sampling time variable is initialized in either
the INITMETHOD of the current class or with the edir command in the Runtime
Environment. The Runtime Environment needs to associate a variable with each
DIGIMETHOD to keep track of the last sampling time. This variable is defined in the
DTIME subsection. To do this, type

DTIME
dtimel

where dtimel is the variable that contains the digital method’s last sampling time.
To define inputs, type

INPUTS
objectl.x object2.z

where x and z are the names of the input variables for the digital method from object! and
object2, respectively. The INPUTS subsection is optional.

To define outputs, type
OUTPUTS

wl w2

where wl and w2 are the names of the variables needed by other objects in the simulation
environment. The OUTPUTS subsection is optional.

To end the digital method definition, type
END
Section 8.2 gives an illustration of a DIGIMETHOD definition.

15

3.8 DYNAMETHOD

Function: Defines a dynamic method to be executed after each time step, dt, which is
specified by the user.

Syntax: DYNAMETHOD <name>
<Objective-C code>
INPUTS
<il><i2> ...

OUTPUTS
 <02> ...

END
Dynamic methods are commonly used as a communication device that needs responses at
each time step, such as graphical user interfaces. Figure 7 presents a graphical user
interface created to interact with a GOOSE simulation model. Each DYNAMETHOD

requires the user to identify it with a unique name. A class definition can have more than
one DYNAMETHOD.

To define a dynamic method, type
DYNAMETHOD <name>

The name of the dynamic method is followed by the Objective-C code to be executed after
each time step.

To define inputs, type

INPUTS
objectl.x object2.z

where x and z are the names of the input variables for the dynamic method. The INPUTS
subsection is optional.

. To define outputs, type
OUTPUTS

wl w2

where wl and w2 are the names of the variables needed by other objects in the simulation
environment. The OQUTPUTS subsection is optional.

To end the dynamic method definition, type
END
Section 8.2 gives an illustration of a DYNAMETHOD definition.

16

(k3] CANDUE REACTOR

Fig. 7. An example of a graphical user interface created to interact with a
GOOSE simulation model.

17

3.9 edit
Function: Edits [a file] (currently uses the EMACS Editor).
Syntax: edit [<file>]
To edit a file while in the Class Developer, type
edit <a filename>
The EMACS editor (ed editor on the PC) will be invoked to edit the file. If a filename is

not specified on the command line, the editor will be invoked, but a file will not be included
for editing. GNU EMACS is a public domain editor, which can be ported to SUNs.

3.10 exit

Function: Exits the Class Developer.

Syntax: [exit/ halt | quit | stop |

To leave the Class Developer, type
exit

The commands halt, quit, and stop also exit the Class Developer and all are equivalent to
the exir command.

3.11 flags
Function: Sets the debug or echo flag.
Syntax: [debug /echo] [on /| off] -
To set the debug flag on, type
debug on
To turn the debug flag off, type
debug off

18

Use the same syntax to tumn the echo flag on or off. These verbose flags are off by default.
If the debug flag is on, GOOSE prints out messages informing the user what routine is
being executed and the current values of some variables. This flag is used to help the user
debug their class definition. If the echo flag is on, each line of the command file is echoed.

3.12 HEADER
Function: Provides comments, whether Objective-C or C include files, and other header
information for the class definition. This information will be included in all the
files the Class Developer creates for the current class.
Syntax: HEADER
<Header information text>
END
To use the HEADER command, type
HEADER

followed by Objective-C comment code containing the needed header information. To end
the HEADER section, type

END

3.13 help

Function: Gets on-line help for one or more commands in the Class Developer.
Syntax: [help/?] { <command> }+

To get the available help, type

help

or
?

To get help on specific commands, type help or ? followed by the command name. For
example,

help validate read

gives help on the commands validate and read.

19

3.14 INITMETHOD

Function: Defines a method to initialize variables for the current class.

Syntax: INITMETHOD <name>
<Objective-C code>
INPUTS
<il><i2> ..

OUTPUTS
 <o02> ...

END
To define an initialization method, type
INITMETHOD <name>

The name of the initial method is followed by the Objective-C code that needs to be
executed initially for the class being defined.

To define inputs, type

INPUTS
objectl.x object2.z

where x and z are the names of the input variables for the initial method. The INPUTS
subsection is optional.

To define outputs, type
OUTPUTS

wl w2

where w/ and w2 are the names of the variables needed by other objects in the simulaton
environment. The OUTPUTS subsection is optional.

To end the initial method definition, type

END
More than one INITMETHOD may be defined for a class. The INPUTS and
OUTPUTS are used by the Runtime Environment to determine the order of execution of

the INITMETHODs 1n a model. In most cases, all INPUTS should be defined before
they are referenced as QUTPUTS.

20

3.15 METHOD

Function: Defines a2 method or function for the current class.
Syntax: METHOD <name>
<Objective-C code>
END
To define a method for the current class, type
METHOD <name>

The name of the method is followed by the Objective-C code that needs to be executed. To
end the method definition, type

END

These methods are executed when the object for which the method was defined is sent a
message that represents the METHOD’s name. For example, send valvel trip (Fig. 2),
would execute the predefined method #rip for the object valvel.

3.16 read

Function: Reads a file containing Class Developer commands.
Syntax: read <command file>

To read a command file into the Class Developer, type

read <a filename>

3.17 reset
Function: Clears all the previous commands issued in the Class Developer.
Syntax: reset
To clear the Class Developer, type
reset

The Class Developer needs to be reset before a new class definition is read.

21

3.18 REFERENCES

Function: Lists other classes referred to by the current class.

Syntax: REFERENCES
<classl> <class2> ...

END
To reference other classes, type
REFERENCES

followed by the names of the referred classes. As many classes as necessary can be
referenced.

To end the REFERENCES section, type
END

3.19 save

Functdon: Creates the help and the Objective-C source files (.h, .m, and .def) for the
current class.

Syntax: save
To save the currently defined class in Objective-C source files, type

save

3.20 shell(!)
Function: Executes a system shell command and returns to the Class Developer.
Syntax: ! <shell command>

To execute a UNIX or DOS shell command while in the Class Developer, pre cede the
shell command string with the character !. For example, to get a listing of the current
UNIX directory, type

!s

22

3.21 show

Function: Displays Class Developer information.

Syntax: show [class | deriviist | describe | flags | initlist | dynamiclist | header |
integrate | methods | references [digitallist | slots [whenlist [validate]+

To see current information in the Class Developer, use the show command. For example,
to see the class and integrate list, type

show class integrate

3.22 showcewd
Function: Displays the current working directory.
Syntax: [showcwd | pwd]
Type
showcwd
or
pwd

to see the current working directory.

3.23 showfs

Function: Displays the suffixes of Class Developer files. -

Syntax: showfs [def/des | int [imp]+

To see the suffixes on the definition file (def), description file (des), implementation file
(imp), and/or interface file (int), use the showfs command. For example, to see the suffix

of the implementation file, type

showfs imp

23

3.24 SLOTS

Function: Provides the class structure, which is a definition of all the variables on which
the current class depends.

Syntax: SLOTS
<name> <data type> <access> [<prompt> [<units> [<comment>]] |

EXTERNAL
<name> <data type>

iNTERNAL <name>
<code>
END

To define the slots for a class, type
SLOTS

followed by the variable name; data type (object, real, int, char, bool, string, or vector);
access (*, rw, 1, or w) and three optional fields: the prompt, the variable’s units, and a
comment. Note that the access character, *, means that no object has access to the slot; the
slot is local to the class definition. If an optional field contains a string with blanks, the
string must be enclosed in quotes. To skip one optional field, use *” to indicate nothing
goes in the skipped field. For example, if the units are needed, but a prompt is not, put a
“” in the prompt field. This ensures that the proper information is put in the proper field;
otherwise, the needed unit information will be given to the prompt field. For more
information on vector types, see Sect. 7.6, Vectors.

The optional EXTERNAL section is used to reference slots and their data types that are
declared in other objects but needed by this class. To define an external slot reference, type

EXTERNAL
followed by the external slot’s name and type.

The optional INTERNAL subsection declares Objective-C code to be used by this class
only. To declare internal portions of code, type

INTERNAL <name>
followed by lines of Objective-C or C code.
To end the slot definition section, type
END

Section 8.2 gives an example of a SLOTS section.

24

3.25 VALIDATE

Function: Defines the list of validation rules for the current class.

Syntax: VALIDATE
<slot> { nonil | [{ respondsto | class | subclass } <arg>] }

END
To define a list of validation rules for a class, type
VALIDATE

followed by a slot name and the rule. The rules are notnil, respondsto <slot name>, class
<name>, or subclass <name>. Multiple validation rules can be defined for a class.

To end the VALIDATE section, type
END

The optional VALIDATE section specifies a list of validation rules that applies to objects
of the defined class during runtime. The validation rules ensure that objects in the model
are connected properly. The subclass rule (object-name subclass class-name) specifies that
the named object must be connected to another object that belongs to the specified subclass.
The rule notnil (object-name notnil) means that the object must be connected. The class
(object-name class class-name) rule indicates that the connected object must be a member of
the named class. The rule respondsto (object-name respondsto slot-or-method-name)
means that the connected object must be able to respond to or return a value for the given
slot or method. :

Section 8.2 gives an example of a VALIDATE section.

3.26 WHENDO

Function: Defines a method that tells the differential equation solver what code to execute
to find a root of a constraint equation (when code) and what code to execute
when the root is found (do code).

Syntax: WHENDO <name>
WHEN
<Objective-C code>
DO
<Objective-C code>
END

25

To define an optional WHENDO method for the current class, type
WHENDO <name>

Then, to define the Objective-C code that needs to be executed to find the root of a
constraint equation, type

WHEN
<Objective-C code>

To define the code to be executed when a root is found, type

DO
<Objective-C code>

To define inputs, type

INPUTS
objectl.x object2.z

where x and z are the names of the input variables for the whendo method. The INPUTS
subsection is optional.

To define outputs, type

OUTPUTS
wl w2

where wl and w2 are the names of the variables needed by other objects in the simulation
environment. The OUTPUTS subsection is optional.

To end the WHENDO method definition, type
END

More than one WHENDO method may be defined for a class. The INPUTS and
OUTPUTS are used by the Runtime Environment to determine the order of execution of
the list of WHENDO methods for all the objects in a model. In most cases, all INPUTS
should be defined before they are referenced as OUTPUTS. A class definition can have
more than one WHENDO method.

26

4. ENVIRONMENT BUILDER COMMANDS

The Environment Builder aides the user in bringing the classes compiled with the Class
Developer into a simulation environment. Commands can be entered on the command line
or read from a command file. Appendix A explains the syntax used in the command
descriptions that follow. Note that all the commands are case sensitive; the way the
commands appear in the manual (upper or lower case) is the only way that they are
recognizable to GOOSE.

4.1 build

Function: Builds (creates) a runtime simulation environment on the specified file. This
environment will include the DataViews and X Windows libraries, as well as
the real-time simulator class and the interactive edit display class. This

environment must be built on machines with DataViews, X Windows, and
Objective-C installed.

Syntax: build <env-name>
To build a runtime simulation environment on a specified file, type

build <a filename>

4.2 buildsm

Function: Builds (creates) a small runtime simulation environment on the specified file.
This environment will not include the DataViews libraries, the real-time
simulator class, or the interactive edit display class. This environment can be
built on any machine with the Objective-C compiler installed. To include any
class that the buildsm command leaves out, just reference it with the include
command.

Syntax: buildsm <env-name>
To build a small runtime simulation environment on a specified file, type

buildsm <a filename>

27

4.3 chdir

Function: Changes the working directory.

Syntax: [chdir | cd] <dir-spec>

To change the current working directory while in the Environment Builder, type
chdir <a directory name or path>

or

cd <a directory name or path>

4.4 comment(#)
Function: Allows documentation inside the Environment Builder.
Syntax: #
To use the comment indicator, type
comment

The comment indicator is the first character on each comment line.

4.5 describe

Functon: Accesses on-line help for classes.
Syntax: describe [<class> |+

To get a description of two classes, type

describe <a class name> <another class name>

28

4.6 exit
Function: Exits from the Environment Builder.
Syntax: [exit/ halt [quit | stop]
To leave the Environment Builder, type
exit

The commands halt, quit, and stop will also exit the Environment Builder, and all are
equivalent to the exir command.

4.7 flags
Function: Sets the debug or echo flag.
Syntax: [debug [echo | [on [off]
To set the debug flag on, type
debug on
To tumn the debug flag off, type
debug off
Use the same syntax to turn the echo flag on or off. These verbose flags are off by default.
If the debug flag is on, GOOSE prints out messages informing the user what routine is
being executed and the current values of some variables. This flag is used to help the user

debug while building his Runtime Environment. If the echo flag is on, each line of the
command file is echoed.

4.8 help

Function: Gets on-line help for one or more commands in the Environment Builder.
Syntax: [help/?] { <command> }+

To get the available help, type

help

or
?

29

To get help on specific commands, type help or ? followed by the command name, for
example

help include read
gives help on the commands include and read.

4.9 include

Function: Specifies class(es) that have been compiled with the Class Developer to be
loaded into the simulation environment.

Syntax: include [<class>]+
To include or load compiled class(es) into the simulation environment, type

include <one or more class names>

4.10 read

Function: Reads a file containing Environment Builder commands.
Syntax: read <command file>

To read a command file into the Environment Builder, type

read <a filename>

4.11 reset -
Function: Clears all the previous commands issued in the Environment Builder.
Syntax: reset
To clear the Environment Builder, type

reset

The Environment Builder needs to be reset every time a new simulation environment is
built.

30

4.12 shell(!)
Function: Executes a system shell command and returns to the Environment Builder.
Syntax: ! <shell command>

To execute a UNIX or DOS shell command while in the Environment Builder, precede the
shell command string with the character !. For example, to get a listing of the current
UNIX directory, type

s

4.13 show
Function: Displays Environment Builder informaton.
Syntax: show { classes [flags } +

To view the current information on classes and/or system flags in the Environment Builder,
use the show command. For example, to see the classes and system flags, type

show classes flags

4.14 showcwd
Function: Displays the current working directory
Syntax: [showcwd [pwd]
Type
showcwd
or
pwd

to see the current working directory.

31

4.15 showfs

Function: Displays the suffix of the Objective-C definition files.
Syntax: showfs

To see the suffix of the Objective-C definition files, type

showfs

32

5. RUNTIME SIMULATION ENVIRONMENT
COMMANDS

The Runtime Simulation Environment is the executable file created with the
Environment Builder which includes those classes specified by the user. These classes
were previously compiled with the Class Developer. The Runtime Simulation Environment
is used to build, test, modify, and execute models. The following commands can be
entered on the command line or read from a command file. An example of a Runtime
Environment command file can be found in Sect. 8.5. Appendix A explains the syntax
used in the command descriptions that follow. Note that all the commands are case
sensitive; the way the commands appear in the manual (upper or lower case) is the only
way that they are recognizable to GOOSE.

5.1 assign(=)

Function: Assigns a value to a global variable.

Syntax: <variable> = <value>

To assign a value to a global variable, use the = sign. For example, to change dt, type

dt =2

5.2 call

Function: Calls a macro.
Syntax: call <name> [<pl> <p2> ...]
Macros are commonly defined to prevent repetitive typing of commands or series of
commands. See the DEFINE command, Sect. 5.9, for information on defining macros.
To call a previously defined macro, type

call <macro name>

If the defined macro has optional parameters, the values to be substituted in the macro for
the parameters are included on the command line. For example, typing

call macrol pl b

would invoke the macro macrol and substitute p/ for all the references to the first
parameter in the macro and b for all the references to the second parameter in the macro.

33

5.3 chdir

Function: Changes the current working directory.

Syntax: [chdir/ cd] <dir-spec>

To change the current working directory while in the Runtime Environment, type
chdir <a directory name or path>

or

cd <a directory name or path>

5.4 comment(#)
Function: Allows documentation inside the Runtime Environment.
Syntax: #
To use the comment indicator, type
comment

The comment indicator is the first character on each comment line.

5.5 connect

Function: Connects a slot of one object to another object.

Syntax: connect <namel> <slot> = <name2>

Assuming objectl has a slot other, connecting objectl to object2 requires typing

connect object] other=object2

34

5.6 continue

Function: Continues running the paused simulation.
Syntax: continue

To continue running a paused simulation, type

continue

5.7 create

Function: Creates an object and adds it to the current model.

Syntax: create <name> <Class> { <slot> = <dvalue> }+

For example, to create an object valvel of the class Valve in Fig. 2, type
create valvel Valve

Any number of slot values can be initialized on the create command line. Since the Valve
class has a slot valve_pos, valve_pos could be initialized by typing

create valvel Valve valve_pos=.001

5.8 createTl
Function: Creates an interpolation table object and adds it to the current model.
Syntax: createTl <name> Tablel <n> <xl>..<xn> <yl>..<yn>

For example, to create an interpolation table of size 2 x 2 with x values S and 6 and y
values 3 and 4, type

createT]1 intabl Tablel 2563 4

Note that the table must be a square matrix, nxn, where # is the dimension of the x and y
arrays.

35

5.9 DEFINE

Function: Defines a macro.

Syntax: DEFINE <name> [<pl> <p2> ...]
<code>
END

Macros are commonly defined to prevent repetitive typing of commands or series of
commands. For example, the following macro creates a pipe and connects it to a pump.

DEFINE mymacro
create pipe2 Pipe
connect pipe2 ce=pump]
END

Macro parameters can be any character set separated by blanks. To include parameters in
the macro, add them to the first line of the definition as in the following example.

DEFINE mymacro $1 P2
create pipe$1 Pipe

connect pipe$1 ce=pumpP2
END

To mimic the first example, call the above macro with parameters of 2 and 1. See the call
command, Sect. 5.2, for more information on calling macros.

5.10 delete

Function: Deletes one or more objects from the model.
Syntax: delete { <name> } +

For example, to delete the object pipel, type

delete pipel

36

5.11 describe

Function: Accesses on-line help for available classes.
Syntax: describe { <class> } +

To get a description of two classes, type

describe <a class name> <another class name>

5.12 edit

Function: Assigns a value to a slot of an existing object.

Syntax: edit <name> { <slot> = <dvalue> J+

For example, to edit the slot rho of the object pipel, type
edit pipel rho = .01 |

More than one slot of the same object can be edited with the same edir command.

5.13 exit
Function: Exits the Runtime Environment.

Syntax: [exit/ halt | quit | stop |

To leave the Runtime Environment, type
exit

The commands halt, quit, and stop will also exit the Runtime Environment, and all are
equivalent to the exir command.

37

5.14 flags
Functon: Sets the debug, echo, or extraderiv flag.
Syntax: [debug | echo | extraderiv] [on | off]
To set the debug flag on, type

debug on
To tumn the debug flag off, type

debug off
Use the same syntax to turn the echo or extraderiv flags on or off. These verbose flags are
off by default. If the debug flag is on, GOOSE prints out messages informing the user
what routine is being executed and the current values of some variables. This flag is used
to help the user debug his Runtime Environment. If the echo flag is on, each line of the

command file is echoed. The extraderiv flag is used to force the differential equation
solver, Isodar, to recheck the need to resolve the derivative at the current time step.

5.15 help
Funcdon: Provides on-line help for one or more commands in the Runtime Environment.
Syntax: [help/?] { <topic> }+
To get the available help, type
help

or

To get help on a specific topic, type help or ? followed by the topic help is needed on, for
example,

help Pipe

gives information on the class Pipe.

38

S5.16 hold

Function: 'Adds slot(s) to the list of slots held (for plots, etc.). The list can also be cleared
and displayed with the hold command.

Syntax: hold [clear | list [{ from <name> <slot> ... <sloin>}+ |
To clear the hold list, type
hold clear
To view the hold list, type
hold list
To add the slot rho from the object pipel to the hold list, type
hold from pipel rho

5.17 initialize

Function: Initializes objects of the model by performing the INITMETHOD:s defined for
each class.

Syntax: initialize [<name>]+ [model
To initialize the model, type
initialize model
To initialize the objects pipel and pipe2, type
initialize pipel pipe2

5.18 load
\ Function: Loads a previously saved model from a disk file.
Syntax: load <model ﬁie>
To load a model file, type
load <model file>

39

5.19 output

Funcdon: Adds slot(s) to the list of slots output at each time step of the simulation. The
list can also be cleared and displayed with the output command.

Syntax: output [clear | list | { from <name> <slot> }+]
To clear the output list, type
output clear
To view the output list, type
output list
To add the slots rho and w from the object pipel to the output list, type

output from pipel rho w

5.20 panelobjs

Function: Adds slot(s) to the list of objects that are to be displayed in the interactive edit
panel. The list can also be cleared and displayed with the panelobjs command.

Syntax: panelobjs [clear | list | { <name> }+ |

To clear the edit panel list, type
panelobjs clear

To view the edit panel list, type
panelobjs list

To add the objects pipe! and pump 10 the edit panel list, type -
panelobjs pipel pump

Note that this command is available only in the SUN version.

40

5.21 plot

Function: Specifies one or more slots (or ime 7) to be plotted after the simulation run or
while the simulation is paused. The first value is plotted on the horizontal axis.
The plot command can also show or set the current value of the plot title.
Syntax: plot { from <name> <slot> }+ or plot title [<title>]
To plot the slots rho and w from the object pipel, type
plot from pipel rho w
To set the plot title, type
plot title <title name>

To plot time 7 and the slot rho from the object pipel, type

plot from t from pipel rho

5.22 range
Function: Adds slot(s) to the range list and specifies the minimum and/or maximum of one
or more slots to be plotted. The list can also be cleared and displayed with the
range command.
Syntax: ‘range { [clear | list [{ from <name> <slot> [min x] [max y] } +
To clear the range list, type
range clear
To view the range list, type
range list

To specify the range of the slots rho and w from the object pipel, type

range from pipel rho min 0.0001 max 1.0 w min 0.0

41

5.23 read

Function: Reads a file containing Runtime Environment commands.
Syntax: read <command file>
To read a command file into the Runtime Environment, type

read <a filename>

5.24 reset

Function: Clears all the previous commands issued in the Runtime Environment.
Syntax: reset
To clear the Runtime Environment, type

reset

5.25 run

Function: Runs the current model from r=zstart to t=tend in steps of dt.
Syntax: run

To begin the simulation run, type

run

5.26 save

Function: Saves the current model on a disk file.
Syntax: save <model file>

To save the current model to a disk file, type

save

42

5.27 send

Function: Sends a message to an existing named object.

Syntax: send <object-name> <message>

The command send is used to execute a defined operation in a class definition. For
example, in the class LinearA, there is a method roots that computes the eigenvalues.
Assuming there is a defined object jac of the class LinearA, to execute the method roots,
send the object jac the message roots as follows

send jac roots

5.28 shell(!)

Function: Executes a system shell command and returns to the Runtime Environment.
Syntax: ! <shell command>

To execute a UNIX or DOS shell command while in the Runtime Environment, precede the
shell command string with the character !. For example, to get a listing of the current

UNIX directory, type

s

5.29 show

Function: Displays Runtime Environment information.

Syntax: show { classes [connections [deriviist | flags | dynamiclist [initlist | dzgztallzst
| model | whenlist | definelist [<obj name> [{from <name> <slot> ..
< slotn>}+ [<variable_name> [variables } +

To see current information in the Runtime Environment, use the show command. For
example, to see the object jac and the derivative list, type

show jac derivlist

43

5.30 showcwd
Function: Displays the current working directory.
Syntax: [showcwd [pwd]
Type
showewd
or
pwd

to see the current working directory.

5.31 syntax

Function: Shows the syntax of the Runtime Environment commands.
Syntax: syntax { <command> }+

For example, to see the syntax of the show command, type

syntax show

5.32 validate

Function: Validates object connections by executing the rules defined in the class
definition’s VALIDATE section.

Syntax: validate { <name>]+ [model
To validate the model, type

validate model
To validate the objects jac and pipe, type

validate jac pipe

5.33 waterp [<machine-name>]

Function: Calculates water properties.

Syntax: waterp

To calculate the water properties, type
waterp

A screen is displayed to allow the user to input pressure, temperature, and enthalpy values
for water properties calculations. Water properties for subcooled, saturated, and
superheated conditions are available.

The default display is on the machine currently logged into. To display the water properties
screen on another machine, include the name of the machine to be used for the display on

the waterp command line.

5.34 writeto
Function: Writes specified values in the output list to a file.
Syntax: writeto [<data-file> { all | { from <name> <slot> ... < slotn>}+]]
To write all of the output values to a file, type
writeto all

For example, to write the values of the slots valve_pos and init_valve_pos (Fig. 2) to the
output file dara.dat, type

writeto data.dat from valvel valve_pos init_valve_pos

If slots are not requested, all data are assumed by default. If a filename is not specified, the
default file is writeto.dat.

45

6. GLOBAL VARIABLES

Global variables are variables that can be changed interactively in the Runtime
Simulation Environment with the assignment command (=). Note that all the commands
are case sensitive; the way the commands appear in the manual (upper or lower case) is the
only way that they are recognizable to GOOSE. Section 8.5 contains many examples on
how to use global variables in the Runtime Environment.

Variables denoted by an asterick (*) are used by the differential equation solver, 1sodar.

6.1 abstol
*Purpose: Sets the absolute error tolerance for the differential equation solver. The default
is .0001.

6.2 derivSrtFlg

Purpose: Whether or not the derivative list is sorted. 1 = sorted, O = not sorted.

6.3 dynaSrtFlg

Purpose: Whether or not the dynamic list is sorted. 1 = sorted, O = not sorted.

6.4 circularFlg
Purpose: Whether or not to check for circularity in the sorted lists. 1 = check for

circularity, 0 =do not check for circularity. The default is to check for
circularity (1).

6.5 dt

Purpose: Time step variable.

6.6 euler
Purpose: Whether or not to use the Euler method to solve the differential equatons. 1 =

use the Euler method, O = do not use the Euler method (use Isodar). The
default is not to use the Euler method (0).

46

6.7 ho

*Purpose: Step size to be attempted on the first step of solving the differential equation.
The default value is determined by Isodar.

6.8 hcur
*Purpose: Step size to be attempted in the next step.

6.9 hmax
*Purpose: Maximum absolute step size allowed. The default value is infinity.

6.10 hmin
*Purpose: Minimum absolute step size allowed. The default value is 0. This lower bound

is not enforced on the final step before reaching time critical (tcrit) when itask =
4 or 5 (see Sect. 6.16 for more information on itask).

6.11 hu
*Purpose: Last time step size used successfully.

6.12 imxer
*Purpose: Index of the component of largest magnitude in the weighted local error vector

[e(i)/ewt(i)], on an error return with istate = -4 or -5 (see Sect. 6.15 for more
information on istate).

6.13 initSrtFlg
Purpose: Whether or not the list of INITMETHOD:s is sorted. 1 = sorted, O = not sorted.

6.14 iopt
*Purpose: Whether or not any optional inputs are being used on this call to Isodar. 0 =no

optional inputs are being used, default values will be used in all cases; 1 = one
or more optional inputs are being used.

47

6.15 istate

*Purpose: Index used for input and output to specify the state of the lsodar calculation.

On input :

This is the first call for the problem (initializations will be
done).

This is not the first call, and the calculation is to continue
normally with no change in any input parameters except
possibly zout and itask (if itol, rtol, and/or atol are changed
between calls with istate = 2, the new values will be used but
not tested for legality).

This is not the first call, and the calculation is to continue
normally but with a change in input parameters other than
tour and itask.

Nothing was done.

The integration was performed successfully and no roots
were found.

The integration was successful, and one or more roots were
found before satisfying the stop condition specified by itask.

An excessive amount of work (more than mixstep steps) was
done on this call before completing the requested task, but
the integration was otherwise successful as far as ¢ (to
continue reset istate to a value >1 and reset mxszep to avoid
the error again).

Too much accuracy was requested for the precision of the
machine being used. This was detected before completing
the requested task, but the integration was successful as far
as ¢ (to continue, reset the tolerance parameters and set istate
to 3).

llegal input was detected before taking any integration steps.

There were repeated error test failures on one attempted step

before completing the requested task, but the integration was
successful as far as ¢ (the problem may have a singularity or

the input may be inappropriate).

There were repeated convergence test failures on one
attempted step before completing the requested task, but the
integration was successful as far as ¢ (this may be caused by
an inaccurate Jacobian matrix, if one is being used).

48

-6 = ewt(i) became O for some i during the integration. Pure
relative error control [atol(i)=0.0] was requested ona
variable which has now vanished; the mtegranon was
successful as far as .

1= The length of rwork and/or iwork was too small to proceed,
but the integration was successful as far as 7 (this happens
when Isodar chooses to switch methods but /rw and/or liw is
too small for the new method).

6.16 itask
*Purpose: Index spccifying’the task to be performed.
1= Normal computation of output values of y(t) at r=tout (by
overshooting and interpolating).
2= Take one step only and return.
3= Stop at the first internal mesh point at or beyond #=tout and
return.
4= Normal computation of output values of y(t) at r=tour but

without overshooting t=tcrit; tcrit may be = or beyond tout
but not behind in the direction of integration (this option is
useful if the problem has a singularity at or beyond t=tcrir).

5= Take one step without passing rcrit and return.
6.17 itol
*Purpose: Indicator for the type of error control
itol ol atol
1 scalar scalar rtol*abs(y(i))+atol
2 scalar array rtol*abs(y(i))+atol(i)
3 array scalar rtol(i)*abs(y(i))+atol
4 array array rtol(i)*abs(y(i))+atol(i)
6.18 ixpr

*Purpose: Flag to generate extra printing at method switches. 0 = no extra print (the
default), 1 = print data on each switch.

49

6.19 mcur
*Purpose: Current method indicator. 1 = Adams (nonstiff), 2 = bdf (stiff). This is the

method to be attempted on the next step; thus, it differs from mused (Sect.
6.21) only if a method switch has just been made.

6.20 mf

*Purpose: Jacobian type indicator (jz in Isodar). Specifies how the Jacobian matrix df/dy
will be treated, if and when lsodar requires this matrix. 1 = user-supplied full
(negns by negns) Jacobian, 2 = an internally generated (difference quotient) full
Jacobian, 4 = a user-supplied banded Jacobian, 5 = an internally generated
banded Jacobian.

6.21 mused

*Purpose: Method indicator for the last successful step. 1 = Adams (nonstiff), 2 = bdf
(stiff).

.6.22 mxordn
*Purpose: Maximum order to be allowed for the nonstiff (Adams) method. The default

value is 12. If nxordn exceeds 12, it will be reduced to 12. mxordn is held
constant during the problem.

6.23 mxords
*Purpose: Maximum order to be allowed for the stiff (bdf) method. The default value is 5.

If mxords exceeds 5, it will be reduced to 5. mxords is held constant during the
problem.

6.24 mxstep

*Purpose: Maximum number of steps (internally defined) allowed during one call to
Isodar. The default value is 500.

6.25 neqns

*Purpose: Size of the ode system (number of first-order ordinary differential equations).
negns may be decreased, but not increased, during the problem.

50

6.26 nfe

*Purpose: Number of times the user-supplied function f has been evaluated for the
problem so far.

6.27 nhold
Purpose: Number of elements in the hold list.

6.28 nje

*Purpose: Number of Jacobian evaluations (and of matrix lu decompositions) for the
problem so far.

6.29 noutput

Purpose: Number of elements in the output list.

6.30 nperiods

Purpose: Number of steps executed in the last simulation run.

6.31 nplot
Purpose: Number of points to plot.

6.32 nqcur
*Purpose: Order to be attempted on the next step.

6.33 nqu
*Purpose: Method order last used successfully.

6.34 nst

*Purpose: Number of steps taken for the problem so far.

51

6.35 orgSort

Purpose: Whether to use the sequential or heap sort. 1 = sequential sort, 0 = heap sort.
It depends on how the user defines his inputs and outputs as to which sort is
better to use. In the worst-case scenario (reverse order), the heap sort is better

to use, but, in general, the user will notice little difference between the sorts.
The default is the sequential sort (1).

6.36 plotmax

Purpose: Maximum number of points to plot.

6.37 ppcpu

Purpose: CPU name on which to display the TempleGraph plot (used only in the SUN
version).

6.38 reltol

*Purpose: Set the relative error tolerance for the differential equation solver. The default is
.0001.

6.39 showop

Purpose: Whether or not to print the simulation run output to the screen. 1 = print output
to the screen, 0 = do not print output. The default is to print output to the
screen (1).

6.40 t

Purpose: Independent variable. On the first call, ¢ is the initial point of the integration.
After each call, ¢ is the value at which a computed solution y is evaluated. If a
root was found, ¢ is the computed location of the root reached first. On error, ¢
1s the farthest point reached.

6.41 tcur

*Purpose: Current value of the independent variable which the solver has actually reached,
that is the current internal mesh point in z. If interpolation was done, rcur may
be farther than .

52

6.42 tend

Purpose: Time for the simulation run to end.

6.43 tolsf

*Purbose: Tolerance scale factor, >1.0, computed when a request for too much accuracy
was detected. If ifol is left unaltered but rtol and atol are uniformly scaled up by
a factor of tolsf for the next call, then the solver is deemed likely to succeed.

6.44 trace

Purpose: 'Whether or not to turn the verbose trace flag on (usually used for debugging).
1 =on, 0 = off. The default is off.

6.45 tstart

Purpose: Start time for the simulation run to begin execution.

6.46 tsw
*Purpose: Value of ¢ at the time of the last method switch, if any.

6.47 t0

Purpose: Time for the simulation run to start execution. The same as zszarr.

53

7. ADDITIONAL FEATURES FOUND IN GOOSE

7.1 DIFFERENTIAL EQUATION SOLVERS

Two differential equation solvers, the complex Livermore solver for ordinary
differential equations with root-finding (Isodar) and the simpler Euler method, are available
in GOOSE. Lsodar provides automatic method switching for stiff and nonstiff problems.
GOOSE uses Isodar by default. The user can choose between lsodar and the Euler method
by changing the value of the flag, euler, in the Runtime Environment. The flag is off by
default; to tumn it on, type

euler=1
to go back to Isodar, type

euler=0

7.2 DYNAMIC PLOTS

Dynamic plots are available in the SUN version of GOOSE and require the installation
of the software packages DataViews and X Windows. To have access to dynamic plots,
create the Runtime Environment with the build command inside the Environment Builder
(Sect. 8.4).

The variables specified in the owput command of the Runtime Environment are
available for dynamic plotting. To create a dynamic plot object, use the create command to
create an object of the class PlotDV as follows

create plot PlotDV pltdsply=mname tplot=300 tscroll=60 vgrid=1 hgrid=1

where mname is the name of the machine on which the plots are to be displayed. If no
machine name is given, the plots will be displayed on the machine the user is logged into.
If the plots cannot be displayed, an error message is printed, and the Runtime Environment
is exited. The slot tplot sets the number of data points to plot in each graph; the default is
100 points. The slot tscroll sets the number of points to scroll; the default is no scrolling.
The vgrid and hgrid slots turn the vertical and horizontal grids on (=1) and"off (=0),
respectively; the default is off.

The dynamic plot object is initialized when the model is initialized (initialize model) or
the object itself is initialized (initialize plot or send plot inir). While the object is being
initialized, a Plot Manager window is displayed (Fig. 8) containing all of the variables in
the output list from which the variables to be plotted against ime can be chosen. Three
buttons are associated with the Plot Manager window; the Plot button plots the selected
variables, the Reset button unselects all the choices on the list, and the Cancel button
cancels the dynamic plot and deletes the object from the model. The Runtime Environment
prompt will not be displayed until either the Plot or Cancel button is pressed.

54

4 T Plot Manager
Belect variables to be plotted:

COREPI sp
CORE poor
cooLl tl

¢o0L1 wl

cooL2 t1

COOL2 wl

UTSECA tl
UTSECA wl
UTSECA te
UTSECA we
UTSECE t1
UTESECB wl
UTEECR te
UTSECE we
UTPRIA t1

T

Plot) Reset) Cancel)

Fig. 8. The Plot Manager
Window is used for setting up
dynamic plots in the SUN version of
GOOSE.

Once the initialization process is complete and the run command is executed, the
plots will be displayed. If the total number of data points (number of graphs and number
of points in each graph) is too large for the screen to accommodate, DataViews errors will
be displayed. To resolve this problem, reducc the number of graphs or decrease the
number of points on each graph.

Once the plots are active (Fig. 3), three buttons are displayed; the Pause button
pauses the simulation, the Copy button prints the displayed plots, and the Return button
returns control back to the Plot Manager window.

To prevent variables in the output list and their values from being displayed on the
screen after each time step, turn the showop flag off by typing

showop=0
The output will be displayed again when you type

showop=1

55

7.3 REAL-TIME SIMULATOR

To have access to the real-time simulator, create a Runtime Environment with the build
command inside the Environment Builder (Sect. 8.4). To create a real time simulator object
of the class RealTime, use the create command as shown below

create RealTime RT scale=1

where scale is the slot that determines the speed of the simulation. When scale is equal to
1, the simulator runs in real time (this assumes that time is in units of seconds and the
machine the simulation is running on is fast enough). When scale is set to 0, the speed of
the simulation is maximum, determined by the machine it is running on. The slot scale can
be set to any number between and including 0.0 and 1.0 and can be changed with the edit
command in the Runtime Environment.

The real-time simulator is initialized as mentioned in Sect. 7.2.

7.4 EIGENVALUE CALCULATIONS

Jacobian matrix and eigenvalue calculations are available in GOOSE. These linear
computations are made available when the Runtime Environment is created. The
eigenvalues are computed using the public domain subroutine rg. This subroutine calls the
recommended sequence of subroutines from the eigensystem subroutine package (eispack)
to find the eigenvalues and eigenvectors (if desired) of a real general matrix.

To have access to the Jacobian matrix and eigenvalue solver, an object of the class
LinearA has to be created by typing

create LinearA jac

The LinearA class has two methods; the Jacobian method computes the Jacobian matrix for
the model equations, whereas the roots method computes the Jacobian matrix and the
model eigenvalues. To activate these methods, type

send jac jacobian
or
send jac roots

GOOQOSE prints the eigenvalues to the screen and to a file called roots.dat. The Jacobian
matrix is printed to the file jac.dar. If either of these files exist, GOOSE informs the user of
their existence and asks if they are to be overwritten. If the files are not overwritten, the
computation is canceled.

The class LinearA contains the slot epsmch, which defines the precision of the machine
being used. The default value of epsmch is 1.E-7 and can be changed when the jac object
is created or with the edit command in the Runtime Environment.

56

7.5 INTERACTIVE EDITING

Interactive editing is available in the SUN version of GOOSE and requires the
installation of X Windows. To have access to interactive editing, create a Runtime
Environment with the build command inside the Environment Builder (Sect. 8.4).

To create an edit panel object, use the create command to create an object of the class
DspPanel, as follows:

create dpanel DspPanel fdsply=mymachine flabel=“Demo Label”
panelobjs objectl object2 object3

where mymachine is the name of the machine on which the edit panel will be displayed. If
no machine name is given, the edit panel will be displayed on the machine the user is
logged into. If the panel cannot be displayed, an error message is printed and the Runtime
Environment is exited. The slot flabel is displayed at the top of the interactive edit panel.

Figure 9 presents an interactive edit panel. This panel is initialized as mentioned in
Sect. 7.2. panelobjs is a list of objects to be displayed on the interactive edit panel. All the
slots of these objects with read and write access are displayed in the panel. During
initialization, GOOSE waits for the user to press the Resume button on the edit panel before
continuing. At this time the user can enter and modify initial slot values before pressing the
Resume button. Once the simulation is running, the user can press the Pause button at any
time to pause the simulation and edit any slot value displayed on the panel. The Quit button
kills the interactive edit panel and deletes the object, dpanel, from the model.

7.6 VECTORS

In this section a description of how to access and manipulate vectors in GOOSE is
presented.

When defining a vector slot in the class definition (for more information on creating
slots, see Sect. 3.4), there is an extra field that contains the dimension of the vector. An
example slot definition section that contains vectors is as follows:

watt(real rw “Core Power Initial” w
c vector 7 rw “Normalized Precursor”_ nondim
c0 vector 7 rw “Normalized Precursor Initial” nondim
de vector 7 rw “Normalized Precursor Deriv” 1/s

Currently, the only available vector data type is real. GOOSE requires that vectors
nvolved in the same integration have the same dimension. For example,

INTEGRATE
c dc cl

¢, dc, and c0, defined in the slot definition section above, each have seven elements, and
each of the seven elements will be integrated.

57

() CANDU
PI Module with Anti-Nindup tep b] intagral 0.861584
proport fonal -0.000639972 rate 0.0000313 inteqral int value 0.7
integra) 0.700676 Righ Pressucre Turbine proportional gain -1
integral int value 0.7 saale .15 intagral time oonat 10
proportjosal gain -0.02 pe 4.54036 windup time const 10
[$9 -1.63873e-07 be 2.7812a+06 fet Point In
intagral time const 10 e valve demand 0.700482
integral tims conat 3 e dai ~0.00766564
St Point In n ta Simuylation Parameters
valve sel point 0.7100036 pl Tims, t (1]
Moderator Pump-Valve Model hl End Time, tand 10000
tamp out 10.968 wl Tiwe Interval, dt 3
flow out 652,192 pthio
flow in 652.192 pthlo
100% flow 931.4 kttth
valwe position 0.700229 oatoth
init ealwve pos ¢.? otith
dyvly ~1.914840-05 | yt»
valve tims const 10 kwryth
pusp flow $31.4 vax
mmber of pumpe Tuning 2 ovith
mmber of pumps 2 cvwth 126
e [powd 6.5650%e+07
pusp time comstant 10 powl §. 415330407
Pl Module with Anti-Windup pover “6.700
proportional 0.0172404 hthi 2.680060+08
integral 0.0446913 bex
integral int walue [] tehi
proportional qain 0.5 [4° 31 22.47%1
df 0.00172404 tih? 219.92%
integral time const 10 cth? 12.3918
set Point In 1 P Q4
rod reactivity 0.0619317 pta2 2.214%4
dsp [hpth 5000
spo 1 71 Wodule with Aati-Nindup
» 1 proport fooal -0.109644 CANCEL) PAUSE)

Interactive

58

edit panels created in the SUN version of GOOSE.

GOOSE provides several functions for manipulating vectors. These functions can be
accessed in method definitions. For example, to get the current value of a vector element,
use the function getV().

watt0=getV(c,2);

This assigns the value of the third element of the ¢ vector to the slot wart0. Note vector
indices start at 0, not 1.

To change the value of a vector element, use the edirV() function.
editV(c,0,.1);
This statement assigns .1 to the first element of the ¢ vector.

GOOSE also provides users the ability to access the address of vector elements. For
example,

aptr=[dc getA:S];

where apir is a pointer to a real number (declared as real *aprr) and is assigned the address
of the sixth element of the dc vector.

59

8. GOOSE SAMPLE PROGRAM

8.1 THE PROBLEM

In this section, an illustration is presented that uses GOOSE to produce a simple model
of a Westinghouse pressurized water reactor (PWR). This model consists of the point
kinetics equations with an averaged delayed neutron group. Reactivity changes in this
mode] are due to external input from control rod motion and to internal effects caused by
changes in the temperature of both the fuel and the moderator/coolant. The primary system
is represented by state equations describing the dynamics of the fuel and moderator
temperatures. The fuel and the moderator are each modeled in three nodes. The heat
capacity of the clad is neglected, and an average heat transfer coefficient between the fuel
and moderator is used. This model does not include the pressurizer, steam generator, or
primary pumps effects.

The GOOSE model consists of five classes:

1. ReactCore represents the point kinetics equations.

2. ReactFeedBack represents the reactivity feedback due to changes in the fuel and
moderator temperatures.

3. ReactMode represents one node for the fuel and one node for the moderator
temperatures.

4. HPRTW represents the moderator (coolant) inlet parameters.

5. ReactPi represents a proportional-integral (PI) controller.

A diagram of the PWR model explained above can be found in Sect. 2.1. As
explained in Sect. 2.1, each box in the figure represents an object in the model and belongs
to one of the five classes described above. Three objects of the ReactMode class represent
the fuel and moderator nodes. The arrows represent the connections between the objects.
The objects in the diagram are created and connected in the Runtime Environment.

8.2 THE CLASS DEFINITION

The following is the class definition file for the class ReactCore.

HEADER

// ---- ReactCore ACP LIBRARY -

// ---- M. A. Abdalla, L. Guimaraes, D.J. Nypaver --

// ---- ORNL P.O.Box 2008 MS 6010 Oak Ridge TN 37831-6010 -------

END

DESCRIBE
Reactor Core Model. Point Kinetics with one Delay Group.
END

60

CLASS ReactCore
SLOTS

dgggggggapaggg

=
%®
a
B,

:
R A FRA S

urho object
urod object

EXTERNAL
rod real
tho real
END

INITMETHOD init

™w

“Delay Neutron fract 1”7
“Delay Neutron fract 2”
“Delay Neutron fract 3”
“Delay Neutron fract 4”
“Delay Neutron fract 57
“Delay Neutron fract 6
“Delay Neutron fract T
“Delay Neutron Decay 17
“Delay Neutron Decay 2”
“Delay Neutron Decay 3
“Delay Neutron Decay 4”
“Delay Neutron Decay 5
“Delay Neutron Decay 6”
“Delay Neutron Decay T”
“Neutron Generation Time”
“Normalized Power”
“Percentage of Power”
“Pcor Initial”

“Pcor Deriv”

“Core Power”

“Core Power Initial”
“Normalized Precursor”
“Nommalized Precursor Initial”
“Nommalized Precursor Deriv”

“Rod Reactivity”
“ReactiVi[y”

betal = .000209,beta2 = .001414,beta3 =.001309;
betad = .002727,betas = .000925,betaé =.000314;
betat = betal+beta2+beta3+betad+betaS+betad;
lamdal = .0125,lamda2 = .0308,lamda3 = .114;
lamda4 = .307 ,lamda5S = 1.19 ,Jamdaé6 = 3.19;
lamda = betat/(betal/lamdal + beta2/lamda2 + beta3/lamda3
+ betad/lamdad + beta5/lamda5 + beta6/lamda6b);

ngt = 17.9¢-6;

peor(=1.,watt0=3436.¢6;
c0 = betat*pcor0/(ngt*lamda);

END
VALIDATE

urho respondsto rho
urod respondsto rod

END

61

nondim
nondim
nondim
nondim
nondim
nondim
nondim
1/s
1/s
1/s
1/s
/s
1/s
1/s
sec
nondim
nondim
nondim
1/s

nondim
nondim
1/s

nondim
nondim

DERIVMETHOD derivl
watt = wattQ*pcor;
OUTPUTS

watt
END

DERIVMETHOD deriv2
dpcor = ([urho rho] + [urod rod] - betat)*pcor/ngt + lamda*c ;
dc = betat*pcor/ngt - lamda*c ;

INTEGRATE
pcor dpcor pcorQ
c dc c0
INPUTS
urho.rho urod.rod
END
DYNAMETHOD dynal
ppcor=pcor*100.;
D
DIGIMETHOD digil
printf(“‘executing digimethod\n);
SAMPLING
sl
DTIME
dtimel
END
save

The optional HEADER section consists of text to be included at the beginning of the
Objective-C source files created by the Class Developer.

The optional DESCRIBE section consists of one or more lines of text describing the
class being defined. This text is included in the on-line help file automatically generated for
the class by the Class Developer.

The CLASS statement identifies the name of the class being defined.

The structure of a class is established through slot definitions found in the SLOTS
section. Each slot definition includes a slot or variable name, a data type specification
(integer, real, string or object), user accessibility (“rw” = read and write, “r’= read, “w”=
write, “*”=none), and two optional fields: a prompt or description field and a units
specification field for use in the runtime user interface. The optional EXTERNAL
subsection declares the data types of slots to be referenced in other objects not (necessarily)

in the class being defined. The optional INTERNAL subsection provides the user with

62

the ability to write Objective-C code that declares variables, includes statements, etc.,
referenced by only the class being defined.

The INITMETHOD section defines the source code for initializing objects of the
current class. In between the section header and END is Objective-C code. More than one
INITMETHOD can be defined. Optional INPUTS and QUTPUTS sections for the
initial method can also be specified. The INPUTS and QOUTPUTS are used by the
GOOSE Runtime Environment to determine the order of execution of the list of
INITMETHOD:s for all the objects in a model.

The optional VALIDATE section specifies a list of validation rules that apply to
objects of the defined class during runtime. The validation rules ensure that objects in the
model are interconnected properly. The subclass rule specifies that the named object must
be connected to another object that belongs to the specified subclass. Other available
validation rules include nonil, which means that object must be connected to something;
class, which indicates that the connected object must be a member of the named class; and
respondsto, which specifies that the connected object must be able to respond to or return a
value for the given slot or method. There can be as many validation rules as necessary for
a class.

The DERIVMETHOD section defines the source code for derivatives of the state
variables. The GOOSE Runtime Environment will execute the derivative method section
whenever the time derivatives of the components of a model are required. The optional
INPUTS subsection specifies a list of object slots used as inputs by the method being
defined. A list of OUTPUTS may also be similarly specified. Any derivative method
defined in a model that has slots that are QUTPUTS will be executed before the derivative
methods in the model that use those slots as INPUTS. If GOOSE cannot sort the inputs
and outputs so that the inputs are defined before they are referenced by the outputs,
GOOSE informs the user that a circularity error exists. The optional
INTEGRATE subsection provides information for the differential equation solver. It
requires the slots that the differential equation solver will integrate, the slots that represent
the time derivative, and the slots (or constants) that contain the initial values.

The DYNAMETHOD section includes statements that are to be executed at each
communication interval and can have optional INPUTS and OUTPUTS sections. This
method is commonly used for interfacing with dynamic plots and graphical user interfaces.

The DIGIMETHOD section includes statements that are 1o be executed at each
specified sampling interval and can have optional INPUTS and OUTPUTS sections.
The DIGIMETHOD has a required SAMPLING and DTIME section. The code
defined in the DIGIMETHOD will be executed at each time interval that the sampling
variable is set to. The DTIME variable is used by the method to keep track of the last
sampling time. A digital method could be used as a communication device that needs
responses at a given sampling time, not necessarily each computation step. This method
can be used for interprocess communication, scheduling, and interrupting the simulation
for other communication needs.

63

8.3 THE CLASS DEVELOPER

To invoke the Class Developer, cldev9 is entered at the monitor prompt. The read
command directs the Class Developer to read commands from the file ReactCore.cd,
shown above. The save command saves the class in Objective-C and GOOSE files. The
compile command compiles the class so that it can be built into a simulation environment.
The exit command leaves the Class Developer. Following are the results shown on the
computer monitor (boldface type indicates user input) of the Class Developer creating the
class ReactCore using the commands discussed above.

[icacpl9 pwr] cldev9
(Type 'help' for help)
<cldev9> read ReactCore.cd
Class ReactCore saved (.h, .m, .1 and .def files)

<cldev9> compile

objcc -DSUN -postLink -I/usr6/users/ACP/simul/verl.4 -I${DVHOME}/include
-Ifusr/openwin/include -g -c ReactCore.m

Objective-C Version 4.3

Copyright 1988,1989,1990 The Stepstone Corporation. All rights reserved.

<cldev9> exit

8.4 THE ENVIRONMENT BUILDER

The Environment Builder is used to generate an executable Runtime Environment. To
use the Environment Builder, type bldenv2 at the monitor prompt, as shown in the
following example. The include command includes the user-specified classes needed for
the PWR miodel. The build command builds the simulation environment with all the
classes specified with the include command. The exir command leaves the Environment
Builder. Below are the results of invoking the Environment Builder at the monitor prompt
(boldface type indicates user input) and issuing the commands mentioned above which
build the Runtime Environment, pwr, containing the included classes.

{icacp19 pwr] bldenv2
(Type 'help' for help)
<bldenv2> include HPRTW ReactFeedBack ReactPi ReactCore ReactMode
<bldenv2> build pwr
Building GOOSE Environment on file '‘pwr’ ...

{usr6/users/ACP/simul/ver1.4/buildenv -o pwr HPRTW.0 ReactFeedBack.o ReactPi.o
ReactCore.o ReactMode.o

The attempt to build the GOOSE Environment 'pwr’ is complete.

<bldenv2> exit

8.5 THE RUNTIME ENVIRONMENT

Following is the command file, pwr. cmd which will be read into the Runtime
EnvxronmenL

echo on
model of the Westinghouse Pressurized Water Reactor

#
create core ReactCore
create pirod ReactPi

create fbcore ReactFeedBack

create ml ReactMode tf0= 809.31 tm0= 286.35 tmout0= 291.73 root=3.¢9
create m2 ReactMode tf0= 819.09 tm0= 296.62 tmoutO= 301.52 root=2.6e9
create m3 ReactMode tf0= 8§28.87 tm0O= 306.39 moutO= 311.39 root=2.2e9
create Ipln HPRTW tl=281.94 wi= 19852.1 rl=761.57 hl=1241.5¢3 pl=15.51
connect core urho=fbcore

connect core urod=pirod

connect pirod core=core
connect fbcore modl=ml
connect fbcore mod2=m2
connect fbcore mod3=m3

connect ml uwatt=core
connect ml ce=lpln
connect m2 uwatt=core
connect m2 ce=ml
connect m3 uwatt=core
connect m3 ce=m2
initialize model

65

edit pirod kc=.01 i0=0. spoint=.9
edit core s1=.5

tstart = 0.

tend = 300.

dt =1.

output from core ppcor
hold from core ppcor
show core

The create command creates new objects to be included in the model. The connect
command establishes a one-way connection between two objects. This command enables
one object to be “aware” of another object.

The initialize model command causes all the INTTMETHOD:s for all the objects in the
model to be executed and sets the state variables to their initial values. Note that if
validation rules have been defined for any of the classes of any of the objects in the model,
the validation rules are automatically checked before any initialization takes place. If any
validation rule fails, an error message is produced, and the initialization process is
terminated. Individual initial methods can be executed by sending an object its initialize
message, which is the name of its INITMETHOD. For example, send core init would
send the object core the message inir and cause the INITTMETHOD to be executed. One
could also type initialize core. More than one object can be initialized with the inirialize
command.

The edit command modifies the values of the named slots. The ourpur command
establishes a list of values that can be displayed after each time step. Similarly, the
command hold establishes a list of values to be saved or held after each time step. Values
are plotted with the plot command, but they cannot be plotted if they have not been put in
the hold list with the hold command. The global variables, zszart, tend, and dt set the
values of the starting time, the ending time, and the computation interval. The show
command displays the values of the requested slots. The run command initiates the
simulation run. Then for each time step, the underlying system of differential equations is
integrated, and values of the slots specified with the ourput command are displayed. Also,
values of slots to be held are stored in the hold list.

Tuming echo on tells the Runtime Environment to echo the command file (the
numbered lines being printed). This verbose flag is off by default.

In the simulation environment, pwr commands are read from the file pwr.cmd. The

run command starts the simulation run. Following are the GOOSE printouts when
demoenv is invoked at the monitor prompt and the command file is read.

66

[icacpl9 pwr] pwr

(Type 'help’ for help)

<pwr> read pwr.cmd

Echo is On.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16.
17.
18
19
20
21
22
23
24
25
26

model of the Westinghouse Pressurized Water Reactor

#
create core

RéactCorc

create pirod ReactPi
create fbcore ReactFeedBack

create ml
create m2
create m3
create lpin

connect core
connect core

connect pirod

connect fbcore
connect fbcore
connect fbcore

connect m1
connect ml
connect m2
connect m2
connect m3
connect m3

initialize model
Validating ...

HPRTW

ReactMode tf0= 809.31 0= 286.35 tmout0= 291.73 root
ReactMode tf0= 819.09 tm0O= 296.62 tmoutO= 301.52 root=2.
ReactMode tf0= 828.87 tm0O= 306.39 tmoutO= 311.39 root=2.
tl=281.94 wl= 19852.1 r1=761.57 hi=1241.5¢3

urho=fbcore
urod=pirod
core=core
modl=m1l
mod2=m2
mod3=m3
uwatt=core
ce=lpln
uwatt=core
ce=ml
uwatt=core
ce=m2

Done

Sorting ...

Done.

Initializing ...

Done.

edit pirod kc=.01 10=0. spoint=.9

edit core s1=.5

tstart = Q.
tend = 300.
dt =1.

output from core ppcor

67

35. hold from core ppcor
36. show core

* core

betal = 0.000209
betad = 0.002727
betat = 0.006898
lamda3 =0.114
lamda6 = 3.19

core: CILASS = ReactCore
beta3 = 0.001309
beta6 = 0.000314
lamda2 = 0.0308
lamda5 = 1.19
ngt = 1.79¢-05 pcor =0
ppcor =0 dpcor =0
wattQ = 3.436e+09 c=0
dc=0 urho = fbcore
rod=0 tho=0
dtimel =0

<pwr> rum
Sorting ...
Dz)ne,
Sorting ...
D:t;ne:°
Press <RETURN> to pause ...

executing digimethod
. T:0 CORE ppcor: 100
executing digimethod
executing digimethod
2. T:1 CORE ppcor: 92.77
executing digimethod
executing digimethod

.....

300. T:299 CORE ppcor: 90.00
executing digimethod

executing digimethod
301. T:300 CORE ppcor: 90.00

68

beta2 = 0.001414
beta5 = 0.000925
lamdal = 0.0125
lamda4 = 0.307
lamda = 0.0822463
pcor(=1

watt=0

c0 = 4685.48

urod = pirod
s1=0.5

<pwr> plot from t from core ppcor
plotTG: Attempting TempleGraph connection ...
plotTG: Sending new data ...
plotTG: 1 of 1 curves successfully sent.
plotTG: Defining axis labels and sitle ...
plotTG: Resetting autoupdate ...
plotTG: TempleGraph connection closed.

<pwr> exit

69

REFERENCES

D. J. Nypaver, C. E. Ford, C. March-Leuba, M. A. Abdalla, and L. Guimaraes,
“GOOSE Version 1.4, A Powerful Object-Oriented Stmulation Environment for
Developing Reactor Models,” pp. 12.01-12.11 in 8th Power Plant Dynamics, Control
& Testing Symposium, May 27-29, 1992, Vol. I, Knoxville, TN.

C. E. Ford, C. March-Leuba, L. Guimaraes, and D. Ugolini, “GOOSE, A
Generalized Object-Oriented Simulation Environment for Developing and Testing
Reactor Models and Control Strategies,” pp. 694-703 in Proceedings of AI91, Sept.
15-18, 1991, Vol. II, Jackson Lake, WY.

Objective-C Compiler Version 4.3 User Reference Manual, The Stepstone
Corporation, Sandy Hook, CT, 1990.

B. J. Cox, Object Oriented Programming, An Evolutionary Approach, Addison-
Wesley Publishing Company, Inc., MA, 1990.

70

1.

APPENDIX A. COMMAND SYNTAX

This appendix describes the various options associated with each command explained
in Chaps. 3 to 5 (Class Developer Commands, Environment Builder Commands, and
Runtime Simulation Environment Commands).

CLASS

<>

(1

{}

The bold-faced words are GOOSE keywords required in the command
syntax. i

This logical “or” symbol represents an optional command or command
argument choices.

The words between arrow head symbols represent required syntax for
a command.

The square brackets represent optional command arguments. If these
brackets are embedded, it means that any combination of these options
is valid. ‘

Three sequential dots represent continuation of the same option either
on the same line or next line, according to the location of the dots.

The braces represent a grouping mechanism for commands or
arguments. They associate the group with the preceding or following
option. ‘

The plus symbol means that any number of the preceding options can
be specified.

71

APPENDIX B. ERROR MESSAGES

This appendix lists the error messages generated by the GOOSE tools.

ERROR: Argument mismatch. ‘<macro name>’ needs # arguments.
where # is the number of arguments the macro requires. A call was made to a macro
that had an incorrect argument list.

ERROR: Attempted connection not valid.

This error occurs if a connection is made that results in a validation error. The error is
followed by a description of the validation rule that was violated.

ERROR: Cannot create file <filename>.

Failure in creating the file, <filename>.

ERROR: Cannot create new <object name>.

Unable to create the requested object.

ERROR: CanNOT create new Tablel object.

Unable to create the requested interpolation table.

ERROR: Cannot open file <filename>. writeto Request canceled.

The writeto command was unable to open a data file.

ERROR: Class <class name> has no <slot name> message.
This error occurs if an object is being created and an attempt is made to assign a value
to a slot that is not defined for the given object.

ERROR: Class definition not saved yet.

An attempt was made to compile a class definition in the Class Developer without first
saving the definition.

72

10.

11.

12.

13.

14.

15.

16.

ERROR: CmdLoop encountered EndOfFile.

An end-of-file error was encountered while reading a command file.

ERROR: CmdLoop input error #.

where # is followed by the error number returned from the C function ferror(). This

error occurs if there is a problem reading a command file.

ERROR: create syntax ... <syntax used>.

A syntax error occurred when creating an object. This error is followed by the invalid

syntax. Usually a problem with a misplaced equal sign.

ERROR: create table SYNTAX; <syntax used>.

A syntax error occurred when creating an interpolation table. This error is followed

by the invalid syntax. Usually a problem with a misplaced equal sign.

ERROR: dt (=#) must be greater than 0.

where # is the current value of dt. The simulation cannot run because the simulation

communication time interval, df, is less than or equal to 0.

ERROR: edit syntax ... <syntax used>.

A syntax error occurred when editing an object. This error is followed by the invalid

syntax. Usually a problem with a misplaced equal sign.

ERROR: Failed to read Class Definition file.

The describe command was unable to find the files needed to perform its task.

ERROR: Hold list is EMPTY. Specify ‘hold’ BEFORE ‘run’ and
‘writeto’.

There are two reasons for this error to occur. An attempt is made to run the simulation

without specifying anything to be held in the hold list, or the command writeto is used
with an empty hold list.

73

17.

18.

19.

20.

21.

22.

23.

24.

25.

ERROR: Invalid argument for the ‘show’ command.

An invalid argument was given with the show command inside the Environment
Builder.

ERROR: Isodar returned istate=#.

where # is the value istate returns. The differential equation solver, lsodar, has an
error. See Chap. 6, Global Variables, for an explanation of istate values.

ERROR: Macro not defined.

A call was made to an undefined macro.

ERROR: Model is EMPTY.

The save command is used on a nil or empty model.

ERROR: Model NOT successfully set up.

The setup procedure for the differential equation solver failed.

ERROR: Model NOT validated.

This error occurs duriné initialization if validation rules failed. The validation rules
that were violated are printed out.

ERROR: <name > is not numeric.

An argument was given to the range command that is not numeric.

ERROR: No hold list variables specified. writeto Request canceled.

No objects were specified in the writeto command, so the request is canceled.

ERROR: No object named.

An object was not specified.

74

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

ERROR: No such class as <class name>.

Unable to create the requested object because the class name was invalid.

ERROR: No WRITE permission for file <filename>.

The writeto command does not have permission to create its data file.

ERROR: <object name> not in hold list.

The object requested in the writeto command is not in the hold list.

ERROR: Object <object name> already exists.

An attempt was made to create an object that already exists.

ERROR: Object <object name> has no <method name> method.

This error occurs if an action is attempted on a method that is not defined for the given
object. '

ERROR: Object <object name> is not defined.

Specified object is undefined.

ERROR: Object <object name> is not recognized in the Hold List.

This error occurs if an attempt is made to plota vanablc with the plot command, that
is not in the hold list.

ERROR: PLOT request canceled. No Plot Function loaded.

This error occurs if an attempt is made to use the nondynamic plotting package, but
the software needed to perform the plot was not linked when the model was built.

ERROR: Slot <slot name> must belong to class <class name>.

The class validation rule was violated.

ERROR: Slot <slot name> must belong to subclass <class name>.

The subclass validation rule was violated.

75

36.

37.

38.

39.

40.

41.

42.

43.

44.

ERROR: Slot <slot name> must not be nil.

The not nil validation rule was violated.

ERROR: Slot <slot name> must obey <validation rule> Rule.

The specified validation rule was violated.

ERROR: Slot <slot name> must respond to <message name> message.

The respondsto validation rule was violated.

ERROR: tstart (=#) must be less than tend (=#).
where # is the current value of zstarr and tend, respectively. The simulation cannot run
because the simulation start time, tstart, is greater than the simulation end time, tend.
ERROR: <variable name> not found.

An attempt was made to assign (=) a value to an unknown global variable.

An invalid command syntax was entered on the command line or inside a command
file. If a command file is being used, turn the flag debug on to pinpoint the error.
SYS_ERR #: <system error message>.

where # is followed by a system error number and then by the error message. This
error occurs if there is a problem in changing directories. The current directory is
printed following the error message.

WARNING: derivmethod with no code.

This warning is printed if a DERIVMETHOD is defined without any code.

WARNING: Invalid integrate data ignored.

This warning is printed when an invalid INTEGRATE statement is given inside a
DERIVMETHOD.

76

APPENDIX C. GLOSSARY

This appendix defines GOOSE terms used throughout this manual.

circularity
Methods are sorted so that if the outputs of one method are needed as inputs for

another, the method doing the outputting is evaluated first. If inputs and outputs are
defined in such a way that the methods cannot be sorted, a circularity error occurs.

class

A general description of characteristics of a prototype to be used for creating objects.
These objects have the same structure and behavior but can have different uses and/or
values in the model.

class definition

A description of the structure and behavior of an object, through slot and method
definitions, respectively.

definelist

A list of the macros defined in the current Runtime Environment.

derivlist

A list of the derivative methods defined in the current Runtime Environment.
DERIVMETHOD

The section of the class definition in which the derivatives are defined.
DIGIMETHOD

The section of the class definition in which code is defined to be executed at the
specified time sampling.

digitallist
A list of the digital methods defined in the current Runtime Environment.
DTIME

A variable needed by the system to perform digital methods. It contains the latest
sampling time.

77

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

DYNAMETHOD

The section of the class definition in which code is defined to be executed each time
step.

dynamiclist
A list of the dynamic methods defined in the current Runtime Environment.
inherit

The process of a subclass acquiring the same structure and behavior of its parent class
(superclass).

initlist
A list of the initial methods defined in the current Runtime Environment.
INITMETHOD

A section of the class definition in which code is defined to be executed when objects
of the associated class are initialized.

INPUTS

The slots or variables needed as input in the method being defined.

list

A record of entries of a specified type in the current Runtime Environment.
macro

User-defined set of commands that are called with or without parameters. Macros are
commonly defined to prevent repetitive typing of commands or series of commands.

message

A character string sent to an object to execute a method. The message is the name of
the method.

method

The section of the class definition in which code is defined to be executed upon
request or at certain times during the simulation.

model

The complete set of objects created and connected in the Runtime Environment for the
simulation.

78

21. object

22.

23.

24.

25.

26.

27.

28.

29.

30.

An image of the object’s affiliated class.

OUTPUTS

The slots or variables output by a method for use by other methods.
respondsto

A validation rule that verifies that a connecting object contains (or respondsto) the
specified slot in its definition.

slotlist

A list of the slots defined in the current Runtime Environment.

SAMPLING

A variable specifying the sampling time in digital methods.

slots

The components or variables in a class definition.

subclass

A child class of its parent class. A subclass inherits the behavior and structure of its
parent class (superclass). Usually occurs used when a class has the characteristics of
its parent class, plus more.

validate

A procedure that verifies the connections made in the Runtime Environment.
WHENDO

The section of the class definition in which code is defined to be executed when the
roots of a constraint equation are found. -

whenlist

A list of the whendo methods defined in the current Runtime Environment.

79

INDEX

Objective-C 13, 15-16

1 22,31,43

12, 28, 34, 65, 67

13, 33, 35, 37, 42, 46, 54-57, 59,

61-62, 65-68, 73-74, 76

7 19, 29-30, 38

(1 3,59, 62

abstol 46

Adams 50

assign 33, 37, 46, 59, 72, 76

atol 48-49, 53

bdf 50

bldenv2 64-65

build 4, 7-8, 27, 54, 56-57, 64-65

buildsm 4, 7, 27

call 33, 36,72, 74,78

cd 11,28, 34

chdir 11, 28, 34

circularFlg 13, 46

circularity 13, 46, 63, 77

CLASS 11, 61-62, 68

class definition 3-4, 10-12, 14, 16, 19,
21, 24, 26, 43-44, 57, 60,
72-73, 77-79

Class Developer 1, 3-4, 10-11, 27, 30,
33,62,64,71-72

class 1, 3-4,7,9-11, 14-15, 19-28,
30-31, 33, 35, 37-39, 43, 54,
56-57, 60, 62-64, 66, 72, 75,
77-79

cldev9 64

clear 39-41

command file 7, 10-11, 19, 21, 27,
29-30, 33, 38, 42, 65-66, 73

command line 1, 3,7, 11, 18, 27, 33,
35, 45, 76

comments 12, 19, 24, 28, 34

compile 1, 3-4, 10-12, 27, 30, 33, 64,
72

connection 1, 9, 43-44, 60, 66, 72, 79

connect 3, 7, 10, 25, 34, 36, 60, 63,
65-67, 78-79

continue 35

create 1, 3-4,7,9-11, 35-36, 54,
56-57, 60, 65-67, 72-73, 75,
78

createT1 35, 72-73

i %

~

80

data type 24, 57, 62

DataViews 4, 27, 54-55

debug 18-19, 29, 38, 76

DEFINE 33, 36

definelist 43, 77

delete 3-4, 7, 36, 54, 57

derivlist 23, 43, 77

DERIVMETHOD 12-13, 62-63, 76-77

derivSrtFlg 46

DESCRIBE 14, 60, 62

describe 23, 28, 37,73

differential equation solver 1, 13, 25,
38, 46, 52-54, 63, 74

DIGIMETHOD 14-15, 62-63, 77

digitallist 23, 43,77

DOSXTNDR 8

DO 25-26

DTIME 14-15, 62-63, 77

dt 33, 42, 46, 66-67, 73

DYNAMETHOD 16, 62-63, 78

dynamiclist 23, 43, 78

dynaSrtFlg 46

echo 11, 18-19, 29, 38, 65-67

edit 3,7, 15, 18, 37, 40, 56-57, 59,
66-67, 73

eigenvalue 1, 7, 43, 56

EMACS 18

END 12-16, 19-22, 24-26, 36, 60-63

Environment Builder 1, 3-4, 8, 10, 27,
33, 54, 56-57, 64, 71, 74

error tolerance 46, 52

culer 1, 46, 54

exit 18,29, 37, 54, 57, 64-65, 69

EXTERNAL 24, 61, 62

extraderiv 38

flags 18-19, 23, 29, 31, 38, 43

GOOSEHOME 7-8

hO 47

halt 18, 29, 37

hcur 47

HEADER 19, 23, 60, 62

help 1, 3, 14, 19, 22, 28-30, 37-38, 62

hmax 47

hmin 47

hold 39, 51, 66, 68, 73-75

hu 47

imxer 47

include 1, 4, 7, 27, 30, 33, 64-65

inherit 3, 78-79

initialize 10, 15, 20, 35, 39, 54, 56-57,
65-67, 78

initlist 23, 43, 78

INITMETHOD 15, 20, 39, 47, 61, 63,
66, 78

initSrtFlg 47

INPUTS 12-16, 20, 26, 62-63, 78

INTEGRATE 12-13, 23, 57, 62-63, 76

INTERNAL 24, 62

iopt 47

istate 47-48, 74

itask 47-49

_itol 48-49, 53

ixpr 49

Jacobian matrix 1, 7, 48, 50, 56

list 39-41, 78

load 7, 39

Isodar 1, 38, 46-50, 53-54, 74

macro 33, 36, 72, 74, 77-78

max 41

mcur 50

messages 3-4, 21, 43, 66, 72, 76, 78

METHOD 21

method 3-4, 13-14, 16, 20-21, 23,
25-26, 43, 56, 59, 63, 66, 75,
77-79

mf 50

min 41

model 1, 3-4,7, 9-10, 12, 16, 20,
25-26, 33, 35-36, 39, 42-44,
54, 56-57, 60, 63-67, 74-75,
77-78

mused 50

mxordn 50

mxords 50

mxstep 48, 50

negns 50

nfe 51

nhold 51

nje 51

nonstiff 50, 54

notnil 25, 63

noutput 51

nperiods 51

nplot 51

ngcur 51

nqu 51

nst 51

object-oriented 1, 3,70

81

Objective-C 1, 3-4, 8, 10-11, 19-22, 24,
26-27, 32, 62-64, 70

object 1, 3-4, 7, 9-10, 13, 15-16, 20-21,
24-26, 34-37, 39-41, 43-44,
54, 56-57, 60-63, 66,
72-75, 77-79

orgSort 52

OUTPUTS 12-16, 20, 26, 62-63, 79

output 40, 45, 51-52, 54-55, 66-67

panelobjs 40, 57

path 7-8

plot 4,7, 39, 41, 51-52, 54-55, 63, 66,
69, 75

plotmax 52

ppcpu 52

prompt 24, 62

pwd 23, 31,44

quit 18, 29, 37

range 41,74

read 3,7, 10-11, 21, 27, 30, 33, 42,
64-67,73

REFERENCES 22-23

reltol 52

reset 7, 11, 21, 30, 42

respondsto 25, 61, 63, 76, 79

root 1, 25-26, 48, 52, 54, 56, 79

rtol 48-49, 53

Runtime Environment 1, 3,7, 9-11, 13,
15, 20, 26-27, 29, 33, 46,
54, 56-57, 60, 63-66, 77-79

run 41-42, 51-53, 55-57, 66, 68, 73, 76

SAMPLING 14-15, 62-63, 79

save 3,7, 10-12, 22, 39, 42, 62, 64,
72,74

send 3, 21, 43, 54, 56, 66

shell 22, 31, 43

show 23, 31, 43, 66, 68, 74

showcwd 23, 31, 44

showfs 23, 32

showop 52, 55

slotlist 79

SLOTS 24, 61-62

slots 3-4, 9, 23-25, 34-35, 37, 39-41,
43, 45, 54, 56-57, 62-63,
66, 72, 75-79

sort 13, 46-47, 52, 63, 67-68, 77

stff 50, 54

stop 18, 29, 37

subclass 3, 25, 63, 75, 78-79

superclass 3, 11, 78-79

syntax 3,11, 27, 33, 44,71, 73, 76

t 42,52, 68

t0 53

Tablel 35,72

tcrit 47, 49

tcur 52

TempleGraph 4, 52, 69

tend 42, 53, 66-67, 76

title 41

tolsf 53

trace 53

tstart 42, 53, 66-67, 76

tsw 53

units 24, 62

VALIDATE 25, 44, 61, 63

validate 23, 44, 74,79

validation rules 23, 63,.66, 72, 74-76,
79

vectors 24, 57, 59

waterp 45

WHENDO 25-26, 79

whenlist 23, 43, 79

writeto 45, 72-75

X Windows 4, 27, 54, 57

82

54.
ss.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
67-69.

. A. Abdalla
. L. Anderson
. J. Ball

. E. Battle

. D. Blakeman
. R. Brittain

. E. Clapp, Jr.
. G. Eads

. N. Fry

. E. Knee
E Jones, Jr.
. March-Leuba
. Mattingly

. Nypaver
. Perez
Powell

. Schryver

Omwu?ﬁm

. Munro, Jr.

ORNL/TM-12267
Dist. Category UC-530

INTERNAL DISTRIBUTION

. Smith
. Stiegler
. Swail
. Upadhyaya

W E WO
Ppmmwor

B Chcxal Advisor

V. Radeka, Advisor

R. M. Taylor, Advisor

Central Research Library

Y-12 Technical Reference Section
Laboratory Records

Laboratory Records-RC

ORNL Patent Section

I&C Division Publications Office

EXTERNAL DISTRIBUTION

Assistant Manager for Energy Research and Development, DOE-OR, P.O. Box
2001, Oak Ridge, TN 37831-8600
R. J. Neuhold, Director, Division of Advanced Technology Development, NE-462,
DOE, Washington, DC 20585
B. J. Rock, Director, Office of Technology Support Programs, NE-46, DOE,
Washington, DC 20585
H. Alter, Office of Technology Support Programs, NE-46, DOE, Washington, DC

20585

D. G. Carroll, GE Nuclear Energy, Program Manager, Control Technology
Programs, 6835 Via Del Oro, San Jose, CA 95119-1315
Y. Dayal, GE Nuclear Energy, Advanced Nuclear Technology, 6835 Via Del Oro,

San Jose, CA 95119

W. K. Wagner, GE Nuclear Energy, Nuclear Systems Technology Operation, P.O.
Box 530954, San Jose, CA 95153-5354
H. P. Planchon, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,

IL 60439

J. 1. Sackett, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL

60439

J. W. Cooke, Energy Programs Division, DOE-OR, P.O. Box 2001, Oak Ridge,

TN 37831-8600

C. E. Ford, Liberty Umversxty, School of Lifelong Learning, P.O. Box 2000,
Lynchburg, VA 24506
D. Ugolini, Via Pacinotti 29, Cesena (FO) 47023, Italy

L. A. Rovere, Centro Atomico Bariloche, 8400 S. C. de Bariloche, Argentina
T. W. Kerlin, The University of Tennessee, Nuclear Engineering Department,
Knoxville, TN 37996-2300

g3

70-71. L. Guimaraes, Centro Tecnico Aerospacial, Instituto de Estudios Avanzados/ENU,
Caixa Postal 60444, Sao Jose Campos, SP 12231, Brazil
72. C. March-Leuba, INITEC, Padilla 17, Madrid 28006, Spain
73-128. Given distribution as shown in DOE/OSTI-4500 under Category UC-530, Liquid
Metal Fast Breeder Reactors

84

