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Abstract 

In quark model calculations of the meson spectrum, fully coxxi- 

ant two-body Dirac equations dictated by Dirac’s relativistic constraint 

mechanics gave a good fit to the entire meson mass spectrum for light 

quark mesons as well as heavy quark mesons (excluding flavor mixing) 

with constituent world scalar and vector potentiah depending on just one 

or two parameters. In this paper, we investigate the properties of these 

equations that made them work so well by solving them numerically for 

quantum electrodynamics (QED) and related field theories. The con- 

straint formalism generates a relativistic quantum mechanics defined by 

two coupled Dirac equations on a sixteen component wave function which 

contain Lorentz covariant constituent potentials that are initially unde- 

termined. An exact Pauli reduction leads to a second order relativistic 

Schrodinger-like equation for a reduced eight component wave function 

detennined by an effective interaction - the quasipotentid. We first de- 

termine perturbatively to lowest order the relativistic quasipotential for 

the Schrodinger-Like equation by comparing that form with one derived 

from the Bethe-Sdpeter equation. Insertion of this perturbative infor- 

mation into the minirnd interaction structures of the two-body Dirac 

equations then completely determines their interaction structures. Then 

we give a procedure for constructing the €ull sixteen component solution 

to our coupled first-order Dirac equations from a solution of the sec- 

ond order equation for the reduced wave function. Next, w e  show that a 

perturbative treatment of these equations yields the standard spectral re- 

sults for $ED and related interactions. The relativistic potentials in our 
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exact SchrGdinger-like equations incorporate detailed minimal int erac- 

tion and dynamical recoil effects characteristic of field theory yet, unlike 

the approximate Fermi-Breit forms, do not lead to singular wave func- 

tions for any angular momentum states. Hence, we are able to solve them 

numerically and compare the resultant nonperturbative energy eigenval- 

ues to their perturbative counterparts and hence to standard field the- 

oretic results. We find that, unlike what occurs in the solution of the 

Breit equation, nonperturbative solution of our equation produces en- 

ergy levels that agree with the perturbative spectrum through order cy4. 

Surprisingly, this agreement depends crucially on inclusion of coupling 

between upper-upper and lower-lower components of our 16-component 

Dirac wave functions and on the short distance behavior of the rela- 

tivistic quasipotentid in the associated Schrodinger-like equation. To 

examine speculations that the effective potentials (including the mgu- 

lax momentum barrier) for some states in the e+e- system may become 

attractive for small separations, we study whether our equations predict 

pure QED resonances in the e+e- system which might correspond to the 

anomalous positron peaks in the yield of e+e- pairs seen in heavy-ion 

collisions. For the 3Po state we find that, even though the quasipoten- 

tid becomes attractive at separations ne= 10 fm and overwhelms the 

centrifugal barrier, the attraction is not strong enough to hold a reso- 

nance. This result contradicts recent predictions of such states by other 

authors based on numerical solutions of three dimensional truncations 

of the Bethe-Salpeter equation for which the QED bound state wave 

equation has only been treated successfully by perturbation theory. 



3 

I Introduction 

Recent quark model calculations of the meson spectrum1-2 using 

fully covariant two-body Dirac  equation^^-^ derived by Crater and Van 
Alstine from Dirac’s relativistic constraint dynamics6-10 gave a good 

description of the light quark as well as the heavy quark meson masses 

resulting from world scalar and vector potentials. Although static poten- 

tials that have a close connection with quantum chromodynamics (QCD) 

such as the Adler-Piran potentialll, or the cruder Richardson potential12, 

were responsible for the quality of the fit to the heavy mesons, the good 

quality of the simultaneous fit to the lighter mesons ( with the same one 

or two potential parameters used for the entire spectrum ) was due to 

exact two-body relativistic kinematics combined with the minimal inter- 

action structure of these equations for vector and scalar potentials. In 

particular the structure of the vector potentials in these equations was 

originally abstracted from the classical electrodynamics of Wheeler and 

Feynman by two of us13. We shall show in this paper that this structure 

may be obtained from QED by first deriving the Todorov quasipotential 

equation13-14 from the Bethe-Sdpeter equation and then comparing it 

to the two-body Dirac equations. One may formulate these quantum me- 

chanical equations for semi-phenomenological meson studies with inter- 

actions taken from QCD or for electrodynamic bound state calculations 

with interactions dictated by QED. Since the abelian vector structure15 

of electrodynamics carries over to the short distance structure of QCD, 

in order that the equations be appropriate for QCD bound state calcula- 

tions, they must give correct answers to the appropriate order in the fine 

structure constant cy when applied to QED bound states. In previous 
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work, Crater and Van Alstine have been able to solve andytically the 

full sixteen component coupled Dirac equations for the electrodynamic 

case to obtain a family of exact solutions for parapositronium'6, with en- 

ergy spectrum in agreement with standard approaches to QED through 

order a4. Does the agreement with QED extend to unequal masses and 

to all angular momentum states? If so, this agreement would constitute 

the first successful test of the strong potential structure of two-body 

relativistic wave equations for QED for states of arbitrary angular mo- 

mentum. It is imperative that such a test be done in order to discover 

whether a nonperturbative treatment of these or any other candidate 

equations faithfully represents the field theoretic dynamics obtained rig- 

orously from perturbation theory as in QED or semi-phenomenologically 

from QCD. In order to carry out this check, we first treat our "xninimal 

interact ion constraint equat ions9' pert urbat ively for the electromagnetic 

interaction. We show that they yield the correct two-body spectrum 

through order a4 when one treats as perturbations to the static Coulomb 

potential the various corrections of order 5 generated by the spin struc- 

ture of the Dirac equations alone. Unlike the equations produced by 

other approaches, the Schrodinger-like form of our two-body Dirac equa- 

tions possess local spin-dependent and Darwin terms that are quantum 

mechanically well defined. Since our equations are devoid of highly- 

singular effective potential terms that appear in most three dimensional 

truncations of the Bethe-Salpeter equation and in the Breit equation17, 

we can go on to solve our equations nonperturbatively. 

We shall demonstrate in this paper that a numerical solution of 

the two-body Dirac equations of constraint dynamics yields energies for 
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the n = I, 2,3  levels of fermion-anti-fermion systems in QED that agree 

through order cy4 with those produced by a perturbative treatment of 

these equations asd with those produced by standard perturbative ap- 

proaches to QED. Rtrthermore, as a check on the scalar and time-like 

vector interactions for our equations, we shall demonstrate nonpertur- 

batively that our equations yield no hyperfine splitting for those interac- 

tions, in agreement with a perturbative treatment. In each case we shall 

treat the general unequal mass system, including only the potentials that 

arise from the single exchange diagram and ignoring the contribution of 

the virtual annihilation diagram to the equal mass case. 

Crater and Van Alstine originally abstracted the electrodynamic 

vector interaction in these equations from classical electrodynamics in 

order to describe the semi-phenomenological short range interactions of 

QCD1'2 Because numerical solution of our equations reproduces the 

standard perturbative bound state spectrum of $ED, we have a set of 

two-body reIativistic wave equations for electrodynamics whose nonper- 

turbative predictions for other phenomena in QED ought to be taken as 

seriously if not more seriously than those of other field theoretic equa- 

tions that have not been similmly checked. Just such a situation presents 

itself in the interpretation of recent results in heavy ion physics. Wong 

and Beckerl' have speculated that the unexplained anomalous peaks in 

the yield of e+e- pairs in heavy ion c o l l i ~ i o n s ~ ~ - ~ ~  might result from 

purely $ED  resonance^^^-*^ in the e+e' system produced by strong 

potential electrodynamic structures in the appropriate two-body wave 

equation. If there is such a resonance, fist one must study it using a 

wave equation27 and second this wave equation must be treated nonper- 
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turbatively and covariantly, not by perturbative, semirelativistic means. 

In this paper we investigate what the two-body Dirac equations have to 

say about such states. The fact that in our equations (in Schrodinger-like 

form) each term of the quasipotential is quantum mechanically well de- 

h e d  all the way into the origin is critical to our investigation. We make 

a numerical search for resonances in the 3P0 continuum states of positro- 

nium. We show that numerical calculation of the phase shift for energies 

of 1.4 - 1.8 Mev agree with perturbatively computed phase shifts. Thus, 

we find theoretical evidence that no such resonances exist in our electro- 

dynamic constraint equations. We find that even though the local QED 

quasipotential for the 3P0 state becomes attractive at s m d  distances 

and overwhelms the centrifugal barrier as in the model of Wong and 

Beckerl*, the QED quasipotential is not deep or wide enough to hold a 

resonance. This result directly contradicts the results obtained by Vary 

and Spence2* from standard non-local truncations of the Bethe-Salpeter 

equation. 

As we shall see in this paper, when we solve the two-body Dirac 

equations numerically, we find that relativistic potential structures that 

do not contribute in the usual perturbation theory play a significant role. 

What is the origin of these structures in two-body Dirac equations? The 

basic relativistic interaction in our equations is determined by the Bethe- 

Salpeter equation via the Feynman scattering amplitudes of the relevant 

quantum field theory. The resulting two-body Dirac equations then as- 

sume different forms depending in part OB the Lorentz character of the 

chosen field-theoretic interaction and in part on the spin structure dic- 

tated by the mathematical compatibility of the two coupled wave equa- 
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tions. Together these nonperturbative requirements completely specify 

spin dependence. Our equations inherit the basic potential structure of 

the single particle Dirac equation corrected by recoil terms dictated by 

compatibility (a relativistic version of Newton’s third law5). The re- 

quirement of compatibility also automatically controls the relative time 

by forcing its elimination from the invariaat potential in the center of 

momentum (c.m.) frame. 

Later in this paper, we shall recast the two-body Dirac equations 

for electrodynamics into the Schrodinger-like form: 

in which @,(A) is a sixteen by sixteen component c.m. energy ( w )  

dependent, relativistic quasipotential matrix, dependent on an invari- 

ant function d derived from field theory at the lowest order. Those 

terms in Eq.(l.l) in Gw beyond the collective minimal (Todorov) formz9 

2~,d - d2 (see section I1 for a definition of m, and EJ we will call 

“strong potential” terms. The role played by these terms can be fully 

investigated only by nonperturbative means (for example, through nu- 

merical solution of the resultant eigenvalue equation). In past work1-2 

on two-body Dirac equations, we had tacitly assumed (dong with au- 

thors of all other treatments of the Bethe-Salpeter equation of which we 

are aware) that a full nonperturbative, numerical treatment of the equa- 

tions would yield standard spectral results since the “weak-potential’’ 

form of the equations (including the usual $ and delta function poten- 

tials) reduced to a f0rm14930 known to generate the standard spectral 

results. But, in view of the failure of another two-body equation - the 

Breit equation - to generate its own perturbative results when some of 
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the Breit terms are included nonpert~rbat ivelp ' -~~,  can we trust this 

assumption? If it were not true for a particular equation when applied 

to the vector interaction of perturbative QED, how could we trust re- 

sults produced by that particular equation in a purely nonperturbative 

application (dominated by a related vector interaction) such as to the 

quark-antiquark bound states of QCD. Any candidate two-body wave 

equation, applied to QCD with such an interadion, must reproduce, 

if applied to QED, the perturbative QED spectrum when that equa- 

tion is treated nonperturbatively regardless of the agreement of its semi- 

phenomenological spectrum with the meson spectrum. 

The ordinary one-body Dirac equation with external Coulomb po- 

tential certainly yields agreement between nonperturbative solution and 

perturbative evaluation. In that case, the exact solution produces a 

spectrum that agrees through order a4 with that given by perturbative 

treatment of the Darwin and spin-orbit terms obtained from the usual 

Pauli reduction of the Dirac equation. As two of us found in a previous 

paper16, the two-body Dirac equations of constraint dynamics for the 

e+e- system in the ' JJ states also possess a family of exact solutions 

with total cam. energy w given by a Sommerfeld formula 

ma2 ma4 11 ma4 + -- + 0(a6). (1.2) = 2 m - - -  
4n2 2n3(2Z + 1) 64 n4 

These energies are in agreement through. order a4 with those of the per- 

turbative solution of the same equation and also with those of standard 
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approaches to QED. As we shall see the two-body Dirac equations of 

QED extend this agreement to the n = 1,2,3 levels for all allowable j and 

unequal masses. This agreement has not been demonstrated for the tra- 

ditional three dimensional truncations of the Bethe-Salpeter equation17. 

Such truncations do yield the correct QED spectrum for fermion-anti- 

fermion systems through order a4 (from single photon exchange ) when 

treated perturbatively. In all of these traditional treatments, one starts 

with a bound state Coulomb wave function ( whether non-relativistic 

or relativistic) and uses first order perturbation theory to compute Breit 

corrections corresponding to Darwin, spin-orbit , spin-spin, and tensor in- 

teractions. However, these three dimensional truncations have not been 

solved analytically or numerically for QED33 with enough accuracy to 

demonstrate agreement with a perturbative treatment of these equations 

through order a4. 

Our paper is organized as follows. In section I1 we review the con- 

straint formalism for the two-body Dirac equations containing mutua3 

world scalar and vector potentials. Then in section I11 we show how we 

obtain the relativistic interactions of our equations from the appropriate 

perturbative quantum field theory in concert with the minimal interac- 

tion structures of the two-body Dirac equations in both their constituent 

Dirac and collective Schrijdinger forms. This procedure determines the 

quasipotential aW of Eq.(1.1). 

In section IV, from the coupled Dirac equations, we derive an eight 

component Schrodinger-like form of the equations, that we later solve 

numerically. In the process we show how to use the solutions of the 

Schrodinger-like equations to construct the full sixteen component solu- 
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tions of the two original Dirac equations. In section V we give a pertur- 

bative treatment of the weak potential form of these equations for later 

comparison with nonperturbative solution. In section VI we arrive at the 

first nonperturbative numerical result of this paper. There, we examine 

the eigenvalues obtained from numerical solution of the Schrodinger-like 

forms derived in section IV and compare these with the corresponding 

perturbative results of section V. In each case, we find that the non- 

perturbative bound state spectrum produced by solution of the fully 

coupled system of equations equals the perturbative results within an 

error of order cy6, We find that the coupling between upper-upper and 

lower-lower parts of the sixteen component wave functions in our equa- 

tions is crucial to this agreement. This dependence is unexpected since 

that coupling does not contribute through order cy4 in the perturbative 

evaluation of these equations. Moreover, we find that the parts of the 

quasipotential essential for agreement with the perturbative results be- 

come significant only at separations on the order of a few fermis. Thus, 

insofar as the order cy4 spectral results are concerned, these two-body 

Dirac equations give correct results when used well below the Compton 

wavelength. This agreement allows us to test with confidence the hy- 

pothesis of possible e+e-  resonances in the 3Po state. In section VI1 

we use a further decoupling of the equations, derived in the appendix, 

to compute phase shifts using both perturbative and nonperturbative 

treatments. We find no evidence for a pure QED resonance in the e+e- 

system, in direct contradiction to the results of Spence and Vary28. 

Finally in section VI11 we compare various properties of our two-body 

Dirac approach with those of other relativistic two-body wave equations. 
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I1 Review of Two-Body Dirac Equations for Two Spin- 

One-Half Particles For World Scalar and Four-Vector Inter- 

act ions 

A. “External Potential” or “Minimal Interaction” Forms of the 

Two-Body Dirac Equations 

We begin by examining explicit covariant forms of the two-body 

Dirac  equation^^-^ that two of us have developed for use in semiphe- 

nomenological meson-spectroscopy and for investigations 

of the electromagnetic positronium system16. For two relativistic spin- 

one-half particles interacting through scalar and vector potentials, the 

two compatible, 16-component (or 4x4 matrix) Dirac eq~a t ions l -~  of 

constraint dynamics are 

Sl@ EE 751 (71 - (PI - AI) + rnl + Sl)$ = 0 (2.14 

s 2 +  = 752 (Yz - (B - A2) + m2 + s,)$ = 0. ( 2 3 )  

The subscript i = 1 , 2  stands for the ith particle so that ml, and m2 are 

the masses of the interacting fermions. In Eqs.(2.la-b) the potentials 

A: and S; introduce the interactions that the ith particle experiences 

due to the presence of the other particle. (Thus we will refer to these 

forms of the two-body Dirac equations either as the “external poten- 

tial forms” or the “minimal interaction forms” .) In meson calculations 

motivated by QCD the Lorentz invariant scalar potentials S; are semi- 

phenomenological while the vector potentials A: are composed of two in- 

dependent covariant parts, one semi-phenomenological (long range and 

- 

confining) like the scalar interactions, and the other (short range) closely 
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tied to perturbative 

long range time-like 

quantum field theory. The first part contains only 

pieces (parallel to the total four-momentum of the 

two particles), while the second is electromagnetic-like (short range), 

containing field theoretically specified portions of time-like and space- 

like pieces (transverse to the total four-momentum of the two particles). 

The specific forms of the covariant spin-dependent terms in the interac- 

tions are consequences of the necessary compatibility of the two Dirac 

equations 

[&, s,]$ = 0. 

In detai12y5J6 the vector potentials A: are given in terms of three irr- 

variant functions G,El  and E2 by (with d, s d / d d 4 )  

A; = ( ( €1 - El ) - i - y2 - ( - + dln G )  y2 - P )  pp + ( 1 - G)p/” - .! dG - y2 7; 

(2.34 

G 9El 
2 E2 2 

(2 .3b)  

while the scalar potentials S; are functions of G and two additional 

invariant functions A41 and it42 

(2 -415) 

In the case of lowest order QED, Si = 0, and the space-like and time-like 

vectors are not independent but combine into the electromagnetic-like 

four-vectors 
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In Eqs.(2.3a-b) and Eqs.(2.5a-b) the variable 

is the total four-momentum. In our metric -P2 = w2 is the c.m. energy 

squared so that P2 = -1 where P EZ P/w.  The variables ~i are the 

conserved c.m. energies of the constituent particles given by 

2 el = (w2 + rn; - m;)/2w, €2 = (w2 + m2 - rnt)/2w (2.7) 

so that €1 + €2 = w. In terms of these energies the usual relative mo- 

mentum defined by pl = €1 P + p ,  p;! = E ~ P  - p becomes 
1 A 

In order that equations (2.la) and (2.lb) be compatible ( i.e. satisfy 

(2.2)) it is necessary that the inmiant functions El,  Ea, G, MI and M2 

depend on the relative separation, x = 2 1  - $2, only through the space- 

like coordinate four vector 7-9 

which is perpendicular to the total four-momentum, P. 

El, E2, G, M I ,  and M2 may depend on 

In general 

xt 5 r2 ,  Z2 = ZPP, and p L  2 (2.10) 

where I ,  = E ~ ~ ~ x P  Y K  zLpi. Note that the invariant r is the interparticle 

separation in the c.m. system. In this paper we s h d  assume that the 

invariant functions depend only on r .  In general El,  E2 and G are related 
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to each 0 ther l~9~ and for QCD applications are functions of only two 

invariant functions, Y ( r )  and A(r), whose forms we take to be 

E; (A, Y )  = G2 ((€1 - - ~ E , V  + V2), (2.11a) 

and 
1 

(1 - 2 d / w )  ‘ 
G2 = (2.1 IC) 

From the expressions (2.3a-b and 2.5a-b) of the vector potentials we 

see that the invariant function d ( r )  is responsible for the covariant 

electromagnetic-like parts of A: while V is responsible for the addi- 

tional independent covariant time-like parts of A?. Even though the 

dependences of El,  E2, and G on d and Y are not unique, they are con- 

strained by the requirement that they yield the correct non-relativistic 

and semirelativistic limits. Demanding that the Schrodinger form of the 

two-body Dirac equations incorporate the collective minimal (Todorov) 

interaction structures29 of Eq.(l.l), we find the simple form given in 

Eqs.( 2.11a-c) satisfy these requirements. (The details of this argument 

are given in Refs.(5,13,34)). In general MI and M2 are related to each 

~ t h e r ~ - ~  and for QCD applications are functions of the two invariant 

functions d(r)  and S(T) :  

N,2(d, S)  = m: + G2(2m,S + S’) (2.12a) 

MZ(A, S )  = m$ + G2(2m,S + S2). (2.12b) 

The invariant function S ( r )  is primarily responsible for the scalar poten- 

tials since §i = 0 if S ( r )  = 0 while A(r) contributes to the Si (if S ( r )  # 0) 
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as well as to the vector potentials A:. Demanding that the Schrodinger 

form of the two-body Dirac equations incorporate the collective minimal 

(Todorov) interaction structures we find that the simple forms given in 

Eqs.(2.12a-b) give the correct non-relativistic and semirelativistic lim- 

its. (The details of this argument are likewise given in Refs.(4-5,34)). 

Thus the five invariant functions M I ,  M2, El ,  E2, and G are constrained 

to depend on three independent invariant functions S,A, and V .  (In 

QED applications, Y = 0 and in lowest order S = 0). The kinematical 

variables 

rn, = mlm2/w (2.134 

(2.13 b)  ew = (w2 - m: - m;)/2w 

are the relativistic reduced mass and energy of a fictitious particle of 

relative motion. The corresponding value of the on-mass-shell relative 

momentum squared then takes the form 

b 2 ( W )  EE (w4 - 2w2(m’4 + m;) + (m: - mz)2)/4w2 = E,  2 - m,. (2.14) 

For the electromagnetic-like vector interactions the minimal inter- 

action form of the two-body Dirac equations (2.la-b) is a consequence 

of gauge invariance. In any one-body wave equation, gauge invariance 

exhibits itself in two related ways. For the system of particle and field, 

(Abelian) gauge invariance manifests itself as invariance under change of 

the vector field by the addition of the gradient of a.n arbitrag scalar com- 

bined with local phase variation of the wave function. This is achieved 

through the derivative structure of the field equations in concert with the 

minimal coupling of the potential to particle. However, once one elimi- 

nates the vector potentials in terms of source motions in a fixed gauge, 
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the minimal structures persist as dynamid  structures of the resulting 

particle equations. For example, in the case of a single charged particle 

interacting with an infinitely heavy massive charge, the resulting Klein- 

Gordon or Dirac equation, with Coulomb potential obtained from the full 

particle plus field problem by elimination of the field potential in a fixed 

gauge, contains the dynamical potential as a minimal subtraction from 

the energy and retains the phase change with a compensating addition 

of the gradient of a scalar to the vector potential minimally subtracted 

from the momentum. Thus, “gauge invariance” of the resulting particle 

equations is a dynamicd symmetry inherited from the original system 

of particle and field through the elimination of the vector field in a fixed 

gauge. 

Similarly, the two-body Dirac equations (2. la-b) contain vector po- 

tentials (one for each particle) obtained from quantum field theory from 

the Bethe-Salpeter equation in the Feynman gauge35 (see section I11 

below) or from classical field theory in the Lorentz gauge. Thus, the 

two-body Dirac equations are two-body counterparts of the one-body 

particle equations with eliminated field and should possess an analogous 

inherited dynamical “gauge invariance” if they retain any invariance at 

all. In fact, we find that since our equations are two simultaneous wave 

equations on one wave function with two (albeit related) four-potentials, 

Eqs.(2.la-b) turn out to be invariant under any gauge transformation 

of the form A: + A: + arx(z1) with x the phase change of the single 

wave function. The origin of the two dynamical potentials A: and A; as 

solutions for vector fields in the Lorentz gauge shows up as the property 

(2.15) 
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which is a consequence of the fact that A: + A; c( P p f  

This property of the potentials is forced upon us by 

(2.2) of the constraints. 

where f = f ( x l ) .  

the compatibility 

B. Hyperbolic Forms of the Two-Body Dirac Equations 

The expansions (2.10) and (2.11) for the five invariant functions in 

terms of the three invariants A(z l ) ,  V ( z l ) ,  S(z1) are important for semi- 

phenomenological and other applications that emphasize the relationship 

of the interactions in our equations to external potentials of the two 

associated one-body problems. However, for applications in which the 

identification of these five invariants in terms of either a perturbative or 

semi-phenomenological field theoretic scattering amplitude is desirable, 

two of us have found a hyperbolic re~resenta t ion~~ of these five invariants 

in terms of three other invariants, L,  J ,  and G. This representation is 

(ch EE cosh, sh E sinh) 

M I  = ml chL + m2shL 

M2 = m2 chL + ml shL 

(2.16a) 

(2.16b) 

E2 = €2  chJ +e1 shJ (2.16d) 

G = e .  9 (2.16e) 

L ( z l ) ,  J ( x l ) ,  and ~ ( z L )  generate scalar, time-like vector and space-like 

vector interactions respectively. As shown in the next section, this repre- 

sentation puts the two-body equations in a form whose interactions are 



(12'2) 

(02'2) 

(VL I: z 

87: 
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where 0 3  = 2 4 , ~  821. For convenience we define 

A = AJ + A L  -t A0 

(2.22) 
1 
2 

= - ( 0 2 J ( Q )  - 6 1 q x . l )  + o3(?(21))* 

In terms of these matrix functions, the compatible two-body Dirac equa- 

tions become 

+m1ch(2A~)& + rn2sh(2A~)& + exp(G)iB2 aA)$ = 0 (2.23~) 

S2$ = ( - exp(G)& . p +  c ~ ( ~ A J ) E ~ &  - + s h ( 2 A ~ ) ~ l e l  . 
+ T T ~ ~ c ~ ( ~ A L ) & , ~  + m l ~ h ( 2 A ~ ) 8 5 1  - exp(G)i81 an)$ = 0. (2.23b) 

Remarkably, the linear combinations 

S i $  = (ch(A)& - sh(A)S2)$ = 0 (2.24~) 

S22[1= (ch(A)Sz - sh(A)S i )$  = 0 (2.24b) 

of the constraint equations given in (2.23a-b) have very simple forms. 

Since 0; = 0; = i ( 0 1 0 2  - 0 3 ) 2  = 1 we itre able to use-various hy- 

perbolic identities to simplify (2.24a-b). In particular, by bringing the 

matrices on the left of each S; to the right we find that36 

S,$ = (S~och(A) + &osh(A))1C, = 0. (2.25b) 

(One can even start from free Dirac equations in the form of Eqs.(2.25a- 

b) with constant A and introduce interactions by “gauging”, i.e. letting 
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A become point dependent3%) In Eqs.(2.25a-b) &O and &O are the free 

Dirac operat o ~ s ~ ~  

A 

S20 = O2 p2 + m2e52 = -e2 p + e2O2 P + m2852 (2.26b) 

In (2.la-b) (or (2.18a-b)) the relativistic potentials are two-body 

analogs of, and in the limit rnl 4 00 (or 7722 -+ 00) go over to, the or- 

dinary external potentials of the one-body Dirac equation. The Lorentz 

character of these interactions is apparent from the “external potential” 

or minimal interaction form of the equations. On the other hand, the 

hyperbolic forms (2.25a-b) display the Lorentz character of the interac- 

tion through the gamma matrix structures of the scalar Am These matrix 

structures of its Lorentz invariant terms are dictated either by the per- 

turbative agreement of the hyperbolic interactions with the correspond- 

ing interactions of the Bethe-Salpeter equation or by phenomenological 

considerations. Eqs.(2.25a-b) are closely related to mother form of the 

two-body Dirac equations introduced by S a ~ d j i a n ~ ~ .  In the notation used 

here his equations are - 

(&o + S2OA)$ = 0 (2.27a) 

( S z o  + &,A)$ = 0. (2.2 7b)  

The Sazdjian equations are equivalent to ours in the weak-potential 

iimit39. 

We use the forms (2.25a-b) to relate the matrix potentials A to a 

given field theoretic or semi-phenomenological 16 by 16 matrix Feyn- 

man amplitude. For example, a matrix mplitude proportional to 
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corresponding to an electromagnet ic-like interaction would according to 

(2.20) and (2.21) dictate that J = -G (see section I11 below). Matrix 

amplitudes proportional to either I1 12 or 71 .Py, - p  would correspond to 

semi-phenomenological scalar or time-like vector interactions. The hy- 

perbolic forms (2.25a-b) of the two-body Dirac equations lead to a par- 

ticularly simple version36 for the norm of the sixteen component Dirac 

spinor. On the other hand the minimal interaction or “external poten- 

t id” forms (2.la-b) (or (2.1Sa-b)) of the two-body Dirac equations are 

simpler to reduce to the Schrodinger-like forms most useful for numerical 

calculations of bound and scattering states. 
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XI1 Field Theoretic Identification of the Quasipotential 

In the quark model calculations for meson spectroscopy described 

in Refs.(l-Z) the identifications of the invariant forms Y , S ,  and A or 

L,  J, and were taken from static potentials obtained from an educated 

guess, (Richardson’s potential’*) or from as effective nonlinear classical 

field theory based on mean field approximations to QCD (the Adler- 

Piran potential”). In contrast, for QED we obtain the invariant form 

of the quasipotential CP, directly from field theory. In this section we 

show how the invariant function d contained within a, is obtained from 

lowest order QED. Before doing this for the Dirac equations we review 

the constraint equations for spinless bosons to guide our effort 

In recent work2 two of us used Saadjian’s “quantum mechanical 

t r a n ~ f o m ~ ’ ~ *  of the Bethe-Salpeter wave function to derive the 4 6 q ~ ~ i p ~ -  

tentid equation” of Todorov14 from a field theory for spinless particles. 

The Todorov quasipotential equation is a;n inhomogeneous integral equa- 

tion which relates the quasipotential QW appearing in a Schrodinger-like, 

three-dimensional equation 

to certain matrix elements of the off-mass-shell, field theoretic, relativis- 

tic scattering amplitude. It is closely connected to the present work 

through Eq. (3.1) which it shares with constraint dynamics. 

A. The Quasipotential Equation for Spinless Particles 

7-1 0,5,13 The two, coupled, Klein-Gordon equations of constraint dynamics 



23  

can be written as 

with 

P2+w = -w2$Jw. (3-3) 

Thus, even though gW is off mass-shell it does satisfy (p:+rn;)&, = (p;+ 

m$)&,.8713. The right hand side of (3.4) implies that in the c.m. system 

the wave function is independent of the relative time (21 = (0,q). A 

second independent combination of the constraints R1 and 312, 

determines this off-shell behavior through the quasipotentid aW. For 

scattering states in an arbitraxy Lorentz frame 

with 
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with 421 = b2((w) and Vw = 2w@,. The corresponding momentum space 

wave function is given by the four dimensional Fourier transform 

where ~ w , q , -  -(+> ( k l )  is itself given in terms of the position space wave func- 

tion by the covariant three dimensional transform 

whose inverse transform is 

(3.11) 

Eq. (3 .7)  then yields 

in which 

and 

d 3 k 1  d4k'6(P - k') 

(3 .13~)  

(3.1 3 b) 

with V related to the Fourier transform of Vw(xl,pl) by 

Vw(kL,kl) = Vw(lC1- k ; , k ; ) .  (3.14) 

Note that the momentum space constraint wave function is not $w,q,- (+> (kl) 

but rather 6(P 0 k)$w,qL - (+I  ( k l ) .  
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If we define the scattering amplitude Tw (PI  gL) in the usual way 

multiply Eq.(3.12) by -Vw, and integrate we are led to a Lippmann- 

Schwinger equation for this amplitude in terms of the quasipotential Vw 

Symbolically this equation is of the form 

in which GI stands for 

(3.16’) 

(3.17) 

The scattering amplitude then automatically satisfies the elastic two- 

body unitarity condition41 

xi d 3 k l  
T w ( P L ,  qL)--T;(qL, P I )  = w J ~ T ~ ( k ~ , P ~ ) s ( k : - b 2 ) T w ( k . L ,  4L). 

(3.18) 

The Lippmann-Schwinger equation (3.16) gives the relativistic quantum 

mechanical scattering amplitude T ,  in terms of a prescribed quasipoten- 

t i d  Vw . Eq.(3.16) is Todorov’s inhomogeneous quasipotential equation. 

However, that equation is usually solved for Vw in terms of a Tw which 

is identified with the field theoretic scattering amplitude T,(p*, QA). In 

Appendix A we present an explicit momentum space derivation of the 
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Todorov inhomogeneous quasipotential from the inhomogeneous 

Bethe-Salpeter equation (pl = E @  + k , p 2  = e 2 P  - k )  

T , ( p ; 4 )  = K d P X )  

-i / d 4 k K , ( p ;  k)Gi+)(elp + k)G!$)(e2P - k)T,,:(k; q )  (3.19) 

(relating the Bethe-Salpeter kernel ICw@, 4)  that plays the role of the 

potential in the homogeneous Bethe Salpeter equation to  Tw ( P I ,  41)). 

Like the formal operator derivation given earlier2 by two of us, it uses 

Sazdjian’s quantum mechanical transform of the Bethe-Salpeter wave 

function. However, the new derivation shows the connection with earlier 

three dimensional approaches41 -42 and emphasizes the role of elastic 

two- body unit ari ty. 

(W4 

To summarize, the two constraint equations (3.4) and (3 .5 )  play two 

different roles. Eq.(3.4) forces the relative energy (in the c.m. system) 

to vanish while the Schrodinger-like equation (3.5) describes the effect 

of the dynamics and puts the system on a collective mass-shell (of total 

energy w in the c.m.). Other than the requirement that the constraint 

potential a,,: depend on x only through XI, the constraint equations 

give no further restriction on the dynamical content of the constraint 

potential (for spinless particles). When constraint dynamics is being 

used in conjunction with quantum field theory, the potential a[>, can be 

determined from an appropriate quantum field theory by way of (3.16) 

(Ey.(A.lS) in Appendix ,4 or in terms of Eqs(A.17-18)). When the field 

theoretic starting point is the Bethe-Salpeter equation, the connection 

must be made through an object - the Sazdjian projection - in which 

the relative time (about which nothing is said in the Bethe-Salpeter 

equation) is eliminated as in (3.4) or (A.12). Thus, one starts from the 

- 
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Bethe-Sdpeter equation (3.19) and ends with the constraint equation 

(3.1) with the constraint potential QW determined from (3.16), or (A.18) 

and (A.19). 

Transformations from the two-time four dimensional Bethe-Salpeter 

equation to one-time three dimensional quasipotentid equations have a 

long history dating back to early work of Logunov and Tavkhe l id~e~~  and 

Blankenbecler and Sugar43. In subsequent papers Yaesf7 and Gross17 

pointed out that there are in fact an infinite number of such three di- 

mensional reductions of the Bethe-Salpeter equation. The equations pre- 

sented here and that of Sazdjian are particular cases, motivated by con- 

straint dynamics, that lead to simple Schrodinger-like wave equations. 

B. The Quasipotential Equation for Two Spin -;- Particles 

1. Constraint Dynamics 

When spin is included we describe the quantum system in terms of 

two compatible Dirac equations (2.25a-b). At this stage we are only in- 

terested in first order field theoretic amplitudes. For these, our equations 

are approximately the weak potential forms 

which are Sazdjian's forms of the two-body Dirac equations38. 

Now we obtain from these two equations form analogous to those 

we used in the spinless case. First, because [S~O, 5201 = 0, we find that 

(S&I - SzoSp)$ = -P * p $  = 0. (3.21) 
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Now since P pic) = 0,we have 

-2S,2,$ = -2SzO@ = ( p t  - b2)$. (3.22) 

As a result, we find that 

-2S1oS1$ = -2S2&$ = ( p i  - b2 + a:))$ = 0 (3.23) 

(3.24) 

which relates Sazdjian's A(') to the quasipotential of our relativistic 

Schrodinger equation. 

2. Field Theory 

In order to determine and from it the corresponding A('), from 

field theory, we consider the inhomogeneous Bethe-Salpeter equation for 

two spin-one-half particles 

T = IC + q (YlP1 + m1)(72p2 + w)) -lT 

= Ii' + ICSG1SG1051052T. 

We remove the y-matrices from the denominator. We let 

7 = 4SlOS20651652T) 

and 

Thus we have 

(3.25) 

(3.26) 

(3.27) 
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= K: +- K G ~ G ~ T ,  (3.28) 

where (2: (p: + rn? - i~)-’ is the Feynman propagator for the spinless 

case. Because of the similarity between the spinless equations (3.1) and 

(3.19) and the second order form of the spin-one-half equations (3.23) 

and (3.28), we can use the derivation of the Todorov inhomogeneous 

quasipotential equation for the spinless case given in Appendix A to 

prove that the (lowest order) Sazdjian transform of the Bethe-Sdpeter 

wave function for the spin-one-half, spin-one-half case is 

( p i  + @p)!P = b2(w)q ,  (3.29) 

but with an 21 and spin dependent quasipotential 

(3.30) 

Comparison of this with (3.24) identifies A(1) as 

We have shown how, in lowest order, the four dimensional Bethe- 

Salpeter equation can be transformed into the three dimensional Eq.(3.29). 

This equation is identical to the one obtained from the we&-potentid 

constraint equations (3.20a-b). However, if we regard the field-theoretic 

connection not as a rigid one to the weak-potential Sazdjian form (3.20a- 

b) but instead to the strong-potential constraint form (2.25a-b), (related 

to the “external potential” or “minimal interaction” constraint form 

by way of (2.24a-b)) those equations (Eqs.(2.25a-b)) clothe the (per- 

turbative) field theoretic interactions in their own peculiar quantum- 

mechanical structures. These “strong-pot ential” structures appear in 
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the dynamics of our wave equations (2.25a-b) through two-body poten- 

tials that treat each particle as though it were minimdy coupled to an 

external potential ( or potentials) generated by the other particle and 

in the hyperbolic structure of our equation through the occurrence of 

simple forms for the corresponding quantum mechanical of the 

wave function. These strong-potential structures (2.25a-b) induce two 

different sorts of terms beyond those that appeas: in Sazdjian's (3.20a- 

b). First, the nonlinear A terms in chA and shA produce additional 

spin dependences. Second, the quantity A, through its dependence on 

the invariant potentials L ,  J7 and G7 differs from A(1) calculated in first 

order perturbation theory using (3.31). The invariants that appear in 

A(') are perturbative approximations of those that appear in A. When 

one attempts to extrapolate the perturbative invariants above the or- 

der of approximation justified through comparison with the perturbative 

Bethe-Salpeter equation, those extrapolations are merely provisional - 
subject to change when higher order field theoretic corrections in A are 

included (see (A.23) in Appendix A). However, nonperturbative princi- 

ples like gauge invariance and our related demands of both constituent 

and collective forms of minimal interaction will constrain the forms of A 
that can appear in (2.25a-b). We shall show this for QED below. 

C. The Case of Quantum Electrodynamics 

For the electromagnetic interaction, the T matrix in momentum 

space in the Feynman gauge is 

(3.32) 

where p and q are relative momenta. The simple form of the result- 
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ing constraint equations eliminates the practical necessity in other ap- 

proaches (for example the formalism of Caswell and L e ~ a g e ~ ~ )  of working 

in the Coulomb gauge. Because of the constraint (3.21), the coordinate 

space form of (3.29) becomes 

(3.33) 

Direct comparison of this form of the Bethe-Salpeter equation with the 

Schriidinger-like constraint form given in (3.23-24) yields 

Comparison of (3.34) with the definition of A in (2.22) shows: 1) L ( ' ) ( Z ~ )  = 

0 as expected, since a vector field theory cannot generate scalar poten- 

tials in lowest order, 2) J ( ' )  = -@l) , which just tells us how the space- 

and time-like vector portions are related for electromagnetic interactions, 

and finally, 3) 

(3.35) 

Eqs.(2.llc) and (2.16e) of Sec. I1 imply that d(l) = W E ( ' )  so that 

(3.36) 

The nonperturbative extension of 13, or equivalently of the invariant 

function 

(3.37) 
20 

A = ~ ( 1 -  exp(-2G)) ,  

(see (2 .11~)  and (2.16e)) is not determined by this comparison at or- 

ders beyond Eq.(3.35) or (3.36). However, is restricted through gauge 
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invariance as realized through the introduction of interactions through 

minimal substitution as done in the two-body Dirac equations Eqs.(2.la- 

b) of Sec. 11. When restricted to electromagnetic-like interactions (V = 
S = 0), these equations become the electromagnetic two-body Dirac 

equations 

SlG = (T1 * 61 + nzle,l)$ = 0 (3.38~) 

s2+ = (T2 e 6 2  + m2052)G = 0. (3.38b) 

previously derived by two of us5@ and solved analytically for the equal 

mass singlet case of positronium. In these equations the constituent 

vector potentials appear through the minimal substitutions 

(see Eqs.(2.3a-b) and Eqs.(2.10a-c)) so that the squared forms of the 

constraints take the simple one-body electromagnetic-like form 

where Fapw = T[xpa, 1 xWu] .  The difference of these two equations is (XI - 
X2)$  = 2P .p+b = 0, just as in the spinless case. If we identify 

1 
i U’L -aps, (3.41) 

we find (see details in Sect. and write out only the spinless part of 

IV) that the weighted sum Et,b = (2x1 + 2312)1c, = 0 yields 

( - (Ew-d)2+(p-U)2+m~+spin-dependent  + Darwin corrections)$ = 0.  

(3.42) 
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The spin-independent terms at the first paxt of the equation display 

Todorov’s interpretation of system potentials as minimal extensions of 

the four momentum of relative motion (e,,$). In fact, if we define44 

then the first part can be compactly written in the collective minimal 

(Todorov) interaction form (Pp for the effective particle of relative 

mot ion. 

What are the additional restrictions on or A that arise from this 

collective minimal interaction form? The first restriction follows from the 

fact that the portion 2E,d - d2 of the quasipotential must be quantum 

mechanically well defined for a Schriidinger-like equation. This restricts 

d so that -A2 must not be singular (< -&) as r --$ 0. For example, 

the simple choice G = G(l) = ele2/wr (corresponding to A = (w/2)(1 - 
exp( -2elealwr)) would produce a -d2 term that grows exponentially 

as T + 0 for e1e2 < 0 yielding an unacceptable singular behavior in the 

effective Schrtidinger equation. The second restriction is that 

2 ~ , d  - A2 = - (d‘”)* + O(d(1’)3. - (3.44) 

must be satisfied when A is expanded in powers of Classically this 

restriction implies that when one carries out an expansion through order 

1/c2 by solving the minimal Todorov equation p2 - (ew - +m: = 0 

for w, then one obtains an expansion that includes not only the stan- 

dard relativistic corrections to the non-relativistic kinetic energy but 

also relativistic corrections 13334 to the non-relativistic potential that are 

canonically equivalent to the Darwin interaction. Thus this collective 
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minimal interaction structure incorporates in a covariant way the Dar- 
win interaction corrections to the non-relativistic potential - a / r  without 

a complicated momentum dependence. These simple structures occur in 

Todorov's closely related quasipotential equation14 and in quantum con- 

straint dynamics for spinless particles under vector  interaction^'^. Using 

a scale transformation developed by S ~ h w i n g e r ~ ~ ,  two of us have shown 

that5,l3 this collective minimal structure yields ag O( 1/2) expansion 

that is canonically equivalent to the standard O(l/.") momentum de- 

pendent Darwin interaction 

One solution to these two perturbative conditions on d is the naive 

identification A = This particular d provides a considerable sim- 

plification of the calculation of the semirelativistic (order a4) corrections 

to the QED bound state ~ p e c t r u m l ~ - ' ~  for spinless particles over the 

standard Breit related approaches. For this A, Todorov et d30 have 

also shown how the -d2 terms correspond to higher order ladder, cross- 

ladder, and iterated exchange contributions to @, (corresponding to 

segments of G(2) in the notation of this paper). These constituent and 

collective minimal interaction requirements are nonperturbative ones be- 

yond the strictly perturbative field theoretic restriction of (3.35) on G. 

With the naive choice, 

A = A(1) (3.45) 

the nonpesturbative extension of implied by Eq(3.37) i s  

1 2e2e2 
2 wr 

G = --ln(I - -). (3.46) 

(Note again that the naive choice 

order 

a singular quasipotentid.) 

= G(l)  gives the correct lowest 

but would lead through Eq.(3.37) to an d that would produce 



35 

In summary we have found three restrictions that A must satisfy. 

First, it must generate the correct lowest order interaction G(l). Second 

it must generate the minimal Todorov form Eq.(3.44) in order to give the 

correct O( 1/c2) dynamics. Third, it must satisfy the nonperturbative re- 

striction that A2 must not be too singular at T = 0. As we anticipate, 

(see Sec. V) the above restrictions will guarantee that these nonper- 

turbative potential forms will yield the correct results if the equations 

are treated perturbatively. A more crucial test of these nonperturbative 

or strong potential structures will be to determine if a nonperturbative 

(numerical) treatment of these equations will yield the correct spectrum 

to the appropriate order (see section V I ) .  

D. Phenomenological Scalar and Vector Interactions. 

To carry out semi-phenomenological applications of the constraint 

equations such as to the quark models of mesons, one does not pertur- 

bativeIy determine A from field theory as we did in (3.32-34). Two of 

us in Ref. 2 divided up the nonrelativistic static quark potential U ( r )  

in terms of the three invariants d ( r ) , V ( r ) ,  and S ( r )  of Eqs.(2.10-2.11) 

chosen so that 
1 

A@) + i ( V ( r )  + S(T)) = U ( r ) .  
L 

(3.47) 

This division of U(  r )  was arbitrary, guided primarily by phenomenologi- 

cal considerations. However, this choice has consequences far beyond its 

nonrelativistic roots since the matrix structure to which it is attached 

dictates different relativistic Darwin and spin-dependent corrections de- 

pending on the corresponding matrix Lorentz invariant structures that 
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appear in A. In Ref. 2 we used 

in which from (2.16) 

7 
(El + E2) J = J ( A , V )  = In 

€1 + €2 

(2.22’) 

(3 .48~)  

(3.48 b)  

= G(d) = Zn(G). (3.48~) 

(We remind the reader that the ‘‘minimal interaction” form (2.18a-b) 

(depending on A, V ,  and S )  of the two-body Dirac equations is equivalent 

to the hyperbolic form (2.25a-b) (depending on L ,  J,  and G), related by 

(2.24a-b).) Note that for models with Y = 0, our vector interaction 

is that used for the abelian interactions of lowest order QED. In the 

quark model applications, we used directly the “external potential” form 

(2.18a-b) with A,V, and S identified as in Eq.(3.47). In contrast, for 

QED the form of d was dictated by the match between the A of the weak 

potential form Eq.(3.2Qa-b) on the one hand and the field theoretically 

derived quasipotential equation on the other. 
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IV Reduction of Two-Body Dirac Equations to Second- 

Order Relativistic Schrodinger-like Equations 

We wish to determine the total energy eigenvalues for the station- 

ary states of two interacting spin - one half particles using the “exter- 

nal potential” or “minimal interaction” form of the two coupled Dirac 

equations Eqs.(2.18a-b). For this purpose, we have at our disposal the 

analogs of all of the decoupling procedures and simplifications resulting 

from special choices of Dirac matrix representations that one uses to 

solve the one-body Dirac equation. For example two of us16 used the 

fact that opv is diagonal in the chiral representation to obtain exact 

solutions for bound electromagnetic equal-mass singlet states. In meson 

work2, two of us decomposed the second-order equations corresponding 

to Eqs.(2.18a-b) (with gamma matrices in the Dirac representation) into 

four decoupled four-component second-order equations. Subsequently, 

Sazdjian pointed to us that our reduction in the Dirac represen- 

tation could only be carried out for singlet and j = 1 triplet states, not 

for j = I zk 1 triplet states (we review this development in appendix D 

of Ref(46.)). Since the validity of that reduction turned out to be state- 

dependent, we replace it in this paper by a generally valid reduction 

of the coupled 16-component first order Eqs.(2.18a,b) to two decoupled 

eight-component second order Schrlidinger-like equations 

Since we shall work in a general frame, for convenience we define 

the covariant versions of the standard Dirac G and /? and 2 matrices for 

the two particles: 

,4?; -7; P = 285;0i * IF‘ (4-1) 
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and 

cp qi  (4.3) 

in which the subscript i is the particle label. In the c.m. system, a and 

C have no time component. In a general kame their components parallel 

to the total four-momentum P are zero. Using these, we obtain 

c 

The two-body Dirac equations Eqs. (2.18a-b) then take the form 

in which 

Thus, S;t,b = 0 becomes 

(4.10) 
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Now we substitute the Dirac equations (4.7a-b) in the forms 

into the respective singly odd parts of (4.10) (those parts that contain 

only one 75; factor) and evaluate the commutator appearing in one of 

the singly odd terms. This yields a single second order Schrodinger-like 

equat ion4-5 

1 
((G& .P2)2 - ET + M: + G2-(d(J 4 - L))2  

The sixteen component Dirac spinor in (4.12) we write as 

or simply 

+=[[I 
(4 .13~)  

(4.13b) 

where $i are four-component spinors (see Appendix B for the convention 

we use in defining the 16x16 gamma matrices for the product space). 
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Note that since there are no terms in Eq.(4.12) that contain an odd 

number of 75 matrices, the upper-upper components couple only to the 

lower-lower components. Eq. (4.12) also couples the lower-upper to the 

upper-lower components but we will not need the resulting equations 

since Eqs.(4.lla-b) determine these components in terms of the upper- 

upper and lower-lower components. 

Even though in principle the squaring procedure used to construct 

these Schrodinger-like equations could introduce spurious solutions, it 

turns out that the equations we obtain by this procedure are identical to 

those Schrodinger-like equations obtained by simply manipulating the 

Dirac equations without squaring them47. Consider as aa illustration 

the case of a single particle under combined scalar and time-like vector 

interactions. The one-body Dirac equation can be written in the form 

s.Ic, = ( - P2 ++ EPy5 + My&b = 0, (4.14) 

in which E = E - Y ,  M = rn + S. In the Dirac representation, in which 

2 and ,B are block diagonal, 75 = ( y  :), and 

Eq.(4.14) becomes 

and 

(a * p3.Ic,2 - ( E  - M)$1 = 0. 

(4.15) 

(4- 16a) 

(4.16 b)  
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By substituting $2 = ( E  + M)-'(Z p3)$1 into the first equation one 

obtains 

(4.17a) 

and similarly 

When one solves Eq.(4.17a) for $1 and uses Eq.(4.16a) to determine the 

corresponding t,b2, one obtains the same four-component wave function 

that arises from direct solution of Eqs.(4.16a-b). Of course to complete 

the solution we must start from the solution $9 of Eq.(4.17b) and use 

Eq.(4.16b) to determine the corresponding $1. An alternative derivation 

of (4.17a-b) that is analogous to that which we gave for our two-body 

Dirac equations starts with S2$ = 0, i.e. 

By using the Dirac equation 

Y5$ = 

(4.14) in the form 

(4.19) 

we can substitute for the Dirac wave function in the 75 term in (4.18). 

Evaluation of the commutator leads to 

In the Dirac representation, this procedure does lead to the two uncou- 

pled, two-component equations (4.17a-b). Thus, in spite of the squaring 
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of the Dirac operator, this procedure leads to the same set of equations 

as obtained through decoupling the two component Dirac equations by 

substituting one into the other. It is gratifying that the two approaches 

lead to same equations. If they were not equivalent, then the difference 

between the equations produced by the two approaches would lead to a 

new constraint not appearing in the original one-body Dirac equation. 

In appendix B, where we perform similar manipulations for the two- 

body Dirac equations, we obtain (without squaring) the upper-upper 

component of (4.12) (the other components could be obtained by an anal- 

ogous procedure), thus showing the equivalence of the two approaches 

(not demonstrated in Refs.(4-5)). Comparison of the two procedures 

leads to no further constraints beyond the original two-body Dirac equa- 

tions. Just as the solutions of the one-body equation Eq.(4.14) are ob- 

tained from the (or $2) of Eq.(4.17) and $2 (or +I )  of Eq.(4.19), so 

one could construct the full sixteen component solutions of Eqs.(4.?a- 

b) by solving the upper-upper and lower-lower portions of Eq.(4.12) for 

$1 and $4 and then using Eq.(4.lla-b) to obtain $2 and $3. Having 

constructed the full solutions to the coupled sixteen component Dirac 

equations we could in principle use them in conjunction with the inner 

product36 derived from these Dirac equations for the sixteen component 

wave functions and apply them to the computation of decay and other 

current matrix elements. 

In appendix B we also perform simplifying Pauli matrix algebra on 

the coupled upper-upper and lower-lower components of Eq.(4.12). We 

find that the upper-upper component of (4.12) becomes 
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(p2 + 2mwS + S2 + 2 e W d  - d2 + 2eWV - V 2  

1 1 3 1 +,(aJ - 3L)2 + i2nf2122? ‘ p -  -a2G + + - - l n ’ ~ l ~ 2 ~ ’ )  2 

Zn’X1 Zn‘x2 

r r 
-- L . 0 1 -  - L . Q  

+ [ , a 2 ~  - - ( G ‘ ) ~  - - ~ n ’ ~ l ~ 2 ~ ~ 1 o ~  .02 
1 1 1 

2 3 

1 G I  1 
[-&G” - -) r + p t X 1 z 2 G ‘ ] S T ) t ) 4  

+( [+gln1R1Z2(J-L)’+  1 z”I(J-L) ’ -  1 g a 2 ( J -  1 L)]al 

1 1 (J - L)’ [+ gin' zl z2 ( J  - L)’ - - ( ( J  - L)” -   ST)^ = b2(w)+4 (4.21b) 

in which x j  = (Ei - M;)/G. Eqs.(4.21a-b) are the two coupled eight- 

component Schrodiager-like equations that we shall use in Secs. V and 

6 r 
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VI for our bound state calculations. The same two equations would 

have been obtained if we had started with Si instead of S: since their 

difference is - P - p$ = 0. Although not given here, the corresponding 

equations that couple the upper-lower and lower-upper components can 

be combined with Eqs.(4.21a-b) into the general form 

= (p2 -k aS.1. + @Dm + QS.0. + @S.S. + @hT. + @0.0.?51?52)'$ = b2(w)$ 

(4.22) 

in which + is the full sixteen component wave function. The form 

of the parts of the quasipotential are given as in Eq.(4.21a) but with 

x; = Ej+pjMj. @ps. i .  is the spin-independent minimal (Todorov) portion 

of the quasipotential, @D. denotes the Darwin interactions (the second 

line of Eq.(4.21a-b)), Qs.0. the spin-orbit, 9es.s. the spin-spin, and @T. 

the tensor portions of the quasipotential. @D.o.  is the doubly odd part 

which couples the upper-upper and lower-lower, or the upper-lower and 

lower-upper portions of the wave function48. As discussed in appendix 

D a further decoupling of these equations can occur for special angular 

momentum states. 
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V Perturbative Treatment of the Two-Body Dirac Equa- 

t ions 

Here we examine the bound state energies produced by our con- 

straint equations (4.21a-b) in the weak-potential limit in order to ob- 

tain the energy spectra of our relativistic two-body system analytically 

through order cy4 by means of perturbation theory . For the case of the 

purely electromagnetic interaction ( A  = -cy/r, Y = S = 0), we compare 

the spectra with those obtained in perturbative QED from the Fermi- 

Breit reduction of the Bethe-Sdpeter equation3'. Since scalar and purely 

time-like interactions were also important in the meson spectroscopy 

work of Refs.1-2, we will also compute the energy spectra analytically by 

using perturbation theory for the scalar and time-like four vector interac- 

tions (S = -a / r ,  Y = 0 = d €or the scalar and Y = -cy/r, S = 0 = A for 

the time-like four vector interaction) through order cy4 . In section VI we 

compare the perturbative eigenvalues with those obtained from a nonper- 

turbative numerical solution of the unapproximated constraint equations, 

Eqs.(4.21a-b). The comparison with the standard spectral results from 

the Bethe-Salpeter equation €or the case of the purely electromagnetic- - 
like interactions will provide a critical test at both the perturbative and 

nonperturbative levels of the capability of the two-body Dirac equations 

of constraint dynamics to generate accurate spin-dependent as well as 

spin- independent relativistic recoil corrections for QED , from a static 

input potential A(r) .  The comparisons between the perturbative and 

nonperturbative solutions of the two body Dirac equations for the scalar 

and time-like vector interactions are also important since they will reveal 

whether or not the unapproxirnated equations yield the perturbative rel- 
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ativistic (primarily short-distance) corrections of lowest order for those 

interactions. For example, in the case of a purely scalar interaction, 

there should be no hyperfine splitting through order cy4. A glance at 

Eqs. (4.21a-b) shows that these equations contain terms (e.g. d2Lcr1 - 0 2 )  

that could contribute to such a splitting. If a numerical treatment of the 

unapproximated equations with these interactions showed a larger hy- 

perfine splitting than that predicted from a perturbative treatment of 

the equations, then these equations would not be trustworthy relativis- 

tic equations for meson spectroscopy calculations in which more general 

effective scala and time-like four vector interactions are used. 

A. General Equations 

In order to perturbatively evaluate the energy eigenvalues we first 

obtain the we&-potential form that we will use from Eq.(4.21a) for the 

upper-upper component $1 of the wave function, coupled to $4- In 

the weak-potentid limit we ignore the coupling to the lower-lower wave 

function tj4.  Furthermore in the we& potential limit, in terms of the 

total mass M = ml +m2 we make the replacements (see Eqs.(2*10-2.11) 

and (3.48)) 
d 

G a p  

s Lss:-  
M ’  

d + V  
M ’  

J S Z -  

d s - A - v  
M ’  M XI 2mi(1- -) + m2 

(5.3) 

(5.4) 
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and 
A s - A - v  
M M x2 = 2m2(l- -) + ml (5 .5)  

In this approximation Eq.(4.21a) simplifies to 

{p2 + 2m,S + S2 + 2 e w d  - d2 + 2€,V - V2 

1 (A" - $) 
6 M  ]ST)?h 

1 a p  
0 1  - 0 2  + [-- +-- 

3 M  

in which p = mlmz/M. 

We now specialize to three cases. 

(1.) V = S = 0 leads to the we&-potential form of the equation con- 

taining only an electromagnetic interaction generated by the invariant 

A. 
1 A d'(-1 - M / 2 p )  
2 M  

i ; * p  
M {p2  + 2 E w d  - d2 - -8;- + i  

1m2 L.01 At 1 ml L-02  
+-(l+--)- - +-(1+ --)- Ar 

N 2ml r M 2m2 r 

1 a p  1 (AI' - 4) 
+------a1 e t 7 2  - - ST)$'l 3 M  6 M  

For lowest order electrodynamics we found in section I11 that the quasipo- 

tential reduction of $ED led to 



48 

This corresponds to G(l) = -J(l) = -- a and L(l) = 0 where a = 

-ele2/47. To the order we are considering, we can set w = N so 

that, (3.48~) implies d = -a / r .  In terms of the dimensionless Coulomb 

variable Z = E,&, Eq.(5.7) becomes4' 

w r  7 

1dL z 2  2 1 p l l d  P 4 x+ 7 - --)+a2{ - - - (-+ -> - -+nb3 (5) -(-2+ -z1 *c2) -E--- x2  M 2 x2dx M 3 xdx2 x x 

m2 - ml 1 -  I . 1 1  1 -  
X 2M 4 23 4M ++*(0'1+Z*)(- + -)+ -L*(a'1 4 2 )  

sT}2cI1= -X2+1, 
+ 2 ~ ~ 3  

P 

in which X2 = - b 2 ( ~ ) / ( ~ w ~ ) 2 .  

(2.) 34 = 1.' = 0 leads to the weak-potential form of the equation, 

containing only a scalar interaction generated by the invariant S 

i: ' p  S'( - 1 + M / 2 p )  
M ( p 2  + 2 m , ~  + s2 -t 

For our model scalar interaction, the analog for 

quasipotential reduction of section I11 leads to 

91 92 a(l) = eS1es2 
47rW1XL I 

(5.10) 

scala field theory of the 

(5.11) 

This corresponds to @l) = J(') = 0, and L(l) = -- a where a = 
g1g2/477-. To the order we are considering we can set w = M ,  so that 

Eq.(3.4Sa) implies S = - -Q/r .  In terms of the dimensionless variable 

Z =  mw&, Eq.(5.10) becomes 

wr 9 

t 2  2 1 p l l d  
2 2  2 

x+ - - -) + a 2 { 2  - (z - 1 d 2  I(--- x dx2  
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)$l = --A2& (5.12) 
1 1 -  m2 - ml 

4M 
---i - (81 + a,) - -L (a, - 3 2 )  
4x3 2 3  

in which X2 = -~(w)/(mwcr)2. 

3. d = S = 0 leads to the weak-potential form of the equation 

containing only time-like vector interactions generated by the inwiant  

V 

f * p  V f ( - 1  + M f 2 p )  
(p2  + 2€,V - v2 - i 

r 

(5.13) 

If we had separated the time-like and space-like parts of the electromag- 

netic interaction Eq.(5.8) and retained only the time-like part we would 

have obtained 

(5.14) 

This choice for our model time-like vector interaction corresponds to 

where CY = - e l ez /4~ .  Again we 

can set w = M so that Eq.(3.48b) implies V = -a i r .  In terms of the 

dimensionless Coulomb variable 5 = cwaF, Eq.( 5.13) becomes 

G(1) = L(1) = 0 and $1) = -- Q 
wr 9 

e2 2 1 p l l d  
2 2  x x2  M 2 x 2 d x  

x + - ---) + a2{-- + (- - -)-- 1 8  u--- x dx2 

in which X2 = -b2(w)/(E,a)2.  

In all three cases we have, to the lowest order, -A2 = -l/n2 with 

the unperturbed wave function given by 



SO 

in which 

and Y,,,, is the total angular momentum eigenfunction. The quantum 

numbers j l s m  given here refer to those of the upper-upper component 

of the wave function. In general, j ,  m, and parity are the only good 

quantum numbers for the wave function as a whole. (For the equal 

mass case, charge parity is also a valid quantum number). The cy2 terms 

will be treated as first order perturbations; they eliminate some of the 

2n2 fold degeneracy of the unperturbed state. For the n = 1 states, 

the twofold degeneracy between the 'So and 3S1 states is removed only 

by the electromagnetic interaction since the scalar and time-like vector 

interactions do not have any spin-spin terms to this order. We note 

also that the tensor term does not produce any first-order shift between 

singlet and triplet ground states, since I = 0. 

For the n = 2 level, every cy2 term contributes to the removal of the 

degeneracy between the I = 0 and I = 1 states 

Again, only the spin-spin term in the electromagnetic interaction can re- 

move the spin degeneracy in the I = 0 states to this order. For the I = 1 

states, the spin-orbit interaction (Z - (51 + 3 2 ) )  and also the tensor term 

split them into four levels, Furthermore, for unequal masses the spin 

degeneracy is removed between the 'PI and 3P1 states by a diagonaliza- 

tion of the spin-orbit difference term ( L  - (51 - Z2)). This spin-mixing 

term is crucial in merging the four P states into two P states in the 

limit that one of the particles becomes very heavy (see spectral results 

below). The tensor term does not mix spin, but mixes the I = 0 and 

S1,l  PI,^ PI ,3 P2) 
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the I = 2 states. However, as in the case of the ground state, this mix- 

ing will not produce any f is t  order perturbative shifts in the spectrum, 

since the lowest 1 = 2 state has n = 3 and is not degenerate with the 

n = 2 (or l), I = 0 state. The same comment applies to the I = 1 and 

I = 3 mixing. 

For the levels with n 2 3 one might expect that the tensor force 

would provide an additional first order splitting beyond that appearing 

for the n = 2 level. However, there is no such additional splitting from 

the Z-mixing since the radial matrix element < nl I3lnZ’ > vanishes €or 

IZ - 2’1 = 2 (see Appendix C) .  

B. General Spectra 

The results of the perturbative calculations are summarized below. 

We present details in Appendix C. 

(1 .) For the electromagnetic interactions, the binding energy through 

order a4 is 

in which 

8P 3 
+----6ro[8(s 3M + 1) - 51, j # 12 1, 

with 

(5.19) 

(5.20) 
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for all states except j = E 2 1. For the j = I 2 1 states, the spin mixing 

term produces the split spectrum 

with 
2 

a = -  
21+1' 

m2 - ml 1 
b =  9 

(21+ 1)J- M 
and 

1 - 2 
21 + 1 c = -  

(21 + l ) Z ( Z +  1) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

These are the standard results50 of Ref.(31). 

(2.) For the scalar interaction, the binding energy through order a4 

is 

(5.26) 

in which 

( j ( j  + 1) - E(E + 1) - 2)( 5 - ') 
(21 + 1)1(E i- 1) 

(1 - 6 o ) ( l -  b s o ) ,  j # I2 1, (5.27) 4- 

for all states except the j = E 2 1. For the j = I 2 1 states, the spin 

mixing term produces the split spectrum 
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in which 

and 
2 1 2P 

C =  21 + 1 + (21 + 1)1(2 + 1) (1- GI- 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

This is the spectrum that would come from the Breit equation if the 

exchanged photon had spin zero5'. 

(3.) For the time-like vector interaction, the binding energy through 

order CY' is 

in which 

(-Z(Z + 1) - 2 ) ( 5  - $, 
(21 + 1)1(1 + 1) 

(1 - 6 1 0 ) ( 1  - 6 s o ) , j  # 2 2 1, (5.34) 
+ 

for dl states except the j = 1 2 1. For the j = 1 2 1 states, the spin 

mixing term produces the split spectrum 

in which 

vlt = a + ck J(a - c y  + 4b2, 

2 
214- 1' 

a = -  

(5.35) 

(5.36) 

(5.37) 
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and 
1 2P 

-)e 21 + 1 (21 + l ) Z ( Z  + - M - 2 
c =  - 

(5.38) 

(5.39) 

These spectral results agree with those of QED to lowest order if the 

effects of the transverse photon are omitted. 

C. One-Body Limit 

In the limit m2 -+ 00, a l l  these results should reduce to  the corre- 

sponding one-body Dirac spectra. In that limit, the electromagnetic and 

time-like vector results reduce to the common form 

in which 

2 
21 + 1 + 6fo + 

q = -  (5.41) ( j ( j  + 1) - Z(Z+ 1) - 2 )  
2(21+ 1)qz + 1) (1 - h o ) ,  

for j = 0 and j = I f 1 states. The binding energies of the j = Z 2 1 

states, split by the spin mixing term, reduce as m2 + 00 to 
- 

(5.42) 
ma2 ma4 
2n2 2n3 

, for j=Z>l,  
8n4 EB = -- + -vi+ 

in which 

q* = ( a  + c =t d(a - c)’ + 4b9, 

2 a = -  
21+1’ 
1 

(21 + 1 ) J r n ’  
b =  

(5.43) 

(5.44) 

(5.45) 
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and 
1 - 2 

21 + 1 
c =  - 

(21 + 1)1(1+ 1)’ 

For the singlet and triplet I = 0 states, the binding 

single expression given by 

ma2 ma4 1 3 
2n2 n3 ( 2  8n 

E B = - - - -  - - -), for I = 0. 

(5.46) 

energies go into a 

(5.47) 

The binding energies of the I = j =t 1 2 1 states become 

= --- for I = j + 1, (5.48) 
2n2 

and 

ma’ ma4 1 3 
EB = -- - - - -), for I = j - 1, 

2n2 n3 ( 2 1 + 2  8n 
(5.49) 

respectively, and coincide with the spin mixed 1 = j 2 1 energies. 

The exact one-body Dirac spectrum €or hydrogen with an infinitely 

heavy pointlike proton, when expanded out through terms of order cy4, 

is 

(5.50) 

in which IC = I + 1 for j = I + $ and IC = -1 for j = I - $, with 1 the 

angular momentum of the large component wave function. In this case 

Eqs.(5.40)-(5.49), which are the two-body constraint results in the limit 

m2 --+ 00, produce exactly this one-body result. 

For scalar interactions in the static limit, our perturbative treat- 

ment gives 
ma2 ma4 ma4 
2n2 2n 

Eg = -- + y 7 - s 7  (5.51) 
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in which 

(1 - 4 0 ) ,  (5.52) (j(j + 1) - 1(1+ 1) - 2) 
2(21+ 1)1(2 + 1) 

2 - 610 - q = 2 z + 1  

for j = 0 and j = 1 f: 1 states. The binding energies of the j = I 2 1 

states, which are split by the spin mixing term, are 

(5.53) 
ma2 ma4 ma4 , f o r j = Z z l ,  

v* - - q j  = --+ - 
2n2 2n3 8n4 

in which 

q* = u + e rt J(u - c)2 +4b2) (5.54) 
2 

21 + 1’ 
a =  

1 

and 
2 1 

21 + a + (21 + 1)1(1 + 1) e =  

(5.55) 

(5.56) 

(5.57) 

In this case, the binding energies for the singlet and triplet 2 = 0 states 

become 

(5.58) 
ma2 ma4 1 1 
2n2 n3 2 8n 

E g  = -- - -(-- + -)) for Z = 0, 

while the binding energies for the I = j sf: 1 1 1 states become 

CB = --- for I = j + I, (5.59) 
2n2 

(5.60) 
1 

7 ( - 2 1 + 2  8n 
+-), f o r Z = j - l ? l .  

ma2 ma4 1 
2n2 

EB = --- 

These expressions coincide with those for the spin-mixed 2 = j 2 1 

states. The exact one body Dirac spectrum for “hydrogen” with an 
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infinitely heavy point "proton" bound by only a scdarr interaction, when 

expanded out through terms of order cy4, is 

ma2 ma4 1 1 
2n2 n3 21kl 8n E B  = -- - -(-- + -), (5.61) 

1 in which IC = I +  1 for j = I +  2 and k = - I  for j = I  - 1, In the case of 

scatax interaction, in the limit 7722 + 00, the two-body constraint results 

(5.52)-(5.60) produce exactly this one-body result. 

2 '  

D. Sununary 

In this section we have used a perturbative treatment of the Schrodinger 

form of the two-body Dirac equations to derive the energy spectra through 

order cy4 for relativistic two-body fennion-antifermion bound states in 

which the two masses are not necessarily the same, for electromagnetic, 

scala, or time-like interactions arising from the corresponding Born am- 

plitudes. Historically, the electromagnetic result was first derived with 

the use of the Breit equation. We have seen in this section that our per- 

turbative treatment of the weak potential form of our Eq.(4.21a) yields 

results for QED at this order that agree with the standard results given 

in Ref.(31). In the next section we show that a nonperturbative treat- 

ment of the general (unapproximated) equations leads to the same per- 

turbative spectral results within an error on the order of p10-4v-5 a or, 

roughly, of order pa6. Thus, the results of section V in combination with 

those of VI will show the agreement of our nonperturbative treatment of 

Eq.(4.21a-b) with the standard field theoretic results through this order. 
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VI Nonperturbative Numerical Solution of the Tvvo-Body 

Dirac Equations 

We obtain the radid forms of the coupled constraint equations 

(4.21a-b) needed for OUT numericd solution for the general fermion- 

antifermion system by using the matrix elements of the spin-dependent 

operators given in Appendix C. We take the general wave function to be 

of the form 

1 9 5  

in which Rilsj = is the associated radid wave function and Y,,j, is 

the total angular momentum eigenfunction. The resultant Schriidinger- 

like equation (4.21a) for the singlet states (j  = 1,s = 0) U l j o j  which 

couples this upper-upper component to uljlj and ~ 4 j o j  is given by 

1' 

(6.2a) 

The Corresponding equation (4.21b) for the lower-lower component 214 joj  

which couples it to ~ ~ 4 j l j  and uljoj takes the form 
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(6.2b) 
For S states or equal mass systems, these equations decouple from those 

for uljlj u4jlj since 4 i j z n ( x l / x 2 )  = d + ? ~ n ( n l / z 2 )  = 0. 
However, for the general unequal mass case, these equations are coupled 

to those for the j = I ,  s = 1 components uljlj and ~ 4 j l j .  For those 

triplet states the coupled SchrGdinger-like equations are 

d2 + '('+'I + 2mwS+ S2 + 2ewd-  A2 + 2eWV - V 2  {-p- r2 

(6 .2~)  

and 
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(6.2d) 

Next we write out the four coupled equations for the two triplet states 

j = l k l .  Eq.(4.14a) for the triplet states (s = 1, I = j-1) ulj-llj, which 

couples this upper-upper component wave function to ulj+ll j ,  u4j+llj, 

and u4j - 11j, becomes 

d a% 1 G’lnIx1x2 1 lnlx1 x2 + -( J’ - L’)’ - 
-i-ln1x1x2 -& - 2 ( 2 j  + 1) 2 ( 2 j +  1) 4 r 

1 
2 j  + 1 r [ ( J  - L ) ’ ( ~ ~ ’ x I x ~  + -) - ( J  - L)l’]}Wj+llj = b2(W)Ulj-llj 

(6.3a) 

The corresponding equation (4.14b) for the lower-lower component be- 

d- 4- 

comes 

+ ’(’ - d2 
{-p r2  

+ 2m,S + S2 -+ 2 ~ , d  - d2 + ~E,V - V 2  

G ’ l n l ~ l ~ 2  1 In’% x 2  -+- ;( J1 - L1)’ - 1 
+,(G’)”+ 2 ( 2 j  + 1) r 

I -  d 
+In XlX2$ - + 1) 
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(6.3b) 

Eqs.(6.3a-b) are coupled to the corresponding two equations for the 

triplet s = 1, I = j + 1 states given by 

+ 2m,S + S2 + 26,d - d2 + 26,V - V 2  
d2 ( j  + l)(j + 2) {-s + r2 

+ 2m,S + S2 + 2 ~ , d  - A2 + 2eWV - Y2 
d2 ( j  + l)(j + 2) 

r2 
(-2 + 
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( J - L ) ’  d 2 ( J -  L )  ( j + 2 )  ( J - L ) ’  
}u1 j+ll j 

- W ? l X 2  + 
2 ( 2 j +  1) ( 2 j + 1 )  r 

+{(- ( 2 j  + 1) 2 

(6.3d) 
For the 3P0 states there are only two coupled equations: 

d2 2 d  2 
{-s-,d, + - r 2  + 2m,S + S2 + 2 ~ , d  - d2 + 26,V - V 2  

1 1 1 ( J  - L)‘ 
- { p ’ X 1 X 2 ( J  - L)’ + $Y(J - L)’ 4- -a2 (J  2 - L )  - 2 r }u4101 

and 

d2 2 d  2 
r dr  r2 

{--p - -- + - + 2m,S + S2 + 2 ~ , d  - d2 + k,V - V 2  

1 1 1 ( J  - L)’ 
- { 2 1 n ’ ~ 1 ~ 2 ( J  - L)’ + -G’(J 2 - L)’ + - d 2 ( ~  2 - L )  - 2 r l u l l 0 1  

= b2 (W)U4101. (6.4b) 
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Note that in each of the equations (6.2-6.4), the quasipotential couples 

the upper-upper component to the lower-lower component. 

These sets of coupled equations, for the 3Po case and the equal 

mass (or 2 = 0) j = I case, al l  take the general € o m  of two coupled 

SchrGdinger-like equations: 

(6.5b) 
d2 d 

[-;i;z + e ( r ) z  + s(r)]v(r) + a(r)  u(r)  = b2u(r), 

Likewise the four coupled equations for all other cases take the general 

form 

( 6 . 6 ~ )  

(6.6d) 

In the final version of the equations that we will use in the numerical 

work we transform the independent variable to x = Zn(r/ro) in which ro 

is a numericd constant times the Compton wave length. As a result our 

general set of equations takes the form 

3 
4r2 

+ q - -]u(x) + g v(x)  = b2u(x),  ( 6 . 7 ~ )  2 f d  f +(-p -)-- - 1 8  
[ - p z  r dx 2r 
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2 e d  e 3 + s - - ]v(r)  + a u(x) = b2v(x).  (6.7b) 
4r2 

+ ( p 2  + -)- - - 18 
1-7s r dx 2r 

for the case of two coupled equations, and 

(6.84 

(6.8b) 

(6.84 
3 

+t----]z(x)+m u(z)+n v(x)+o y(x) = b2%(5). 
1 8  2 e d  e 

[-,,S+(F+;)&-g 4r2 
(6.8d) 

for the case of four coupled equations. To obtain this form of these equa- 

tions we have also scaled the dependent variables. In order to determine 

the eigenvalue we use a numerical technique that employs an adapta- 

tion of the central difference approximations2 combined with the inverse 

power method. Although its application to uncoupled Schrodinger-like 

equations requires the inversion of a lafge banded matrix, the procedure 

is straightf~rward~~. Extension of this technique to two and four coupled 

SchrGdinger-like equations requires the inversion of a large blocked ma- 

trix with banded diagonal blocks and diagonal off diagonal blocks. The 

details of that procedure will be presented in a separate publication. 

In the tables below we give the numerical results for electromagnetic 

interactions (&ED) obtained from (6.2-4) with A = - a / r ,  and S = Y = 
0 so that = - J  = Zn(l+a/(urr)), L = 0 where a is 1/137.0359895(61). 

We present results for numerical calculations for muonium ( e - p + )  and 

positronium (e-e+). We do not, however, include the effects of the 
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annihilation diagram for the e-e+ system in the tests presented below. 

A Fierz transformation of the annihilation diagram to quasipotential 

form would include pseudoscalar and pseudovector couplings in addition 

to scalar and vector couplings which would require a generalization of 

the interactions contained in the two-body Dirac equations considered 

in this papers4. 

In table I we present the binding energies in electron volts for the 

n=1,2,3 levels for the e+e- system55. The quantum numbers are those 

of the upper-upper component of the system wave function +;jm. In the 

first four columns are the d u e s  of the quantum numbers I ,  s, j ,  n. In 

the fifth column is the number of coupled equations Nc that are included 

in the numerical test. When Nc = 1, we use just one equation, the one 

for the upper-upper component, with the couplings to the lower-lower 

component and Z-mixing neglected. The case Nc = 2 corresponds to the 

fully coupled system (upper-upper and lower-lower) of equations for the 

singlet states, the 3Po states and the triplet j = I states. For the other 

triplet states in the Nc = 2 case we neglect either the coupling due to 

angular momentum mixing or that due to the coupling between $1 and 

qb4. To distinguish between these Nc = 2 cases for the nonperturbative 

(numerical) test, we let M stand €or the neglect of the I = j + l ,j - 1 
coupling while C stands for the neglect of the coupling between the 

upper-upper and lower-lower components. The Nc = 4 case corresponds 

to the fully coupled triplet states fox I = j + 1, j - 1,j # 0 in which 

couplings between the upper-upper and lower-lower component as well 

as the E mixing are not neglected. In the next column are the energy 

levels obtained from the perturbative expansions given in section V by 
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Eqs~(5.18-25) (which involve only a single, uncoupled equation (5.9)). In 

the next to last colrlmn are the nonperturbative numer id  results from 

Eq~(6.2-4), the most important results of the paper. The last column 

gives the differences between the perturbative and numerical calculations 

divided by p(r4/n3. Since we are not including radiative corrections, 

these differences should be on the order of pa6 (as opposed to radiative 

corrections OR the order of pas or p a s h a )  when aJl of the couplings 

in Eqs.(6.2-4) are included. Thus the entries in this difference column 

for the full coupled equations (two or four depending on the quantum 

numbers) should be on the order of or2 or 10-49”5. 

Table I1 gives the binding energies in electron volts for n=1,2,3 levels 

for muonium ( e - p + ) .  The columns are labeled as before except that M 

stands for the neglect of I mixing ( for I = j + 1, j - 1) or s mixing 

( I  = j 2 1) in the triplet Nc = 2 cases Note that for muonium the 

Nc = 2 case corresponds to the fully coupled system only for the j = 0 

states (singlet or triplet). For all other states the fully coupled constraint 

equations correspond to Nc = 4 with the combined coupling for upper- 

upper and lower-lower components, and for 2 mixing ( for I = j + 1, j - 1) 

or s mixing (I = j). 

For the cases of scdar and purely tirne-like interactions, we present 

just the ground state results for equal masses. In Table I11 we give 

the numerical results for sca.la,r interactions obtained from (6.2-4) with 

S = -a /r ,  and V = A = 0 so that = -J  = 0 with L given by (3.48a). 

The results in the perturbative column are the energy levels obtained 

from the perturbative expansions given in section V by Eqs.(5.26-32) 

(which employ only a single, uncoupled equation (5.12)). 



67 

. In table Tv we give the numerical results for tirne-like interactions 

obtained from (6.2-4) with Y = -a /r ,  and S = A = 0 so that S; = L = 0 

with J given by (3.48b). The results in the perturbative column are the 

energy levels obtained from the perturbative expansions given in section 

V by Eqs.(5.33-39) (which employ only a single, uncoupled equation 

(5.15)). 

Let us examine these results more closely. Note that in all cases for 

given values of I, s, j, and n, the agreement between the nonperturba- 

tive numerical result for the fully coupled system of equations (highest 

value of N,)  and the perturbative result is excellent. Typically, the dif- 
ferences are on the order of pa6. As we neglect couplings in the strong 

potential form of the equations, EQs.(6.2-4), this agreement is spoiled 

to one degree or another, except in cases when the agreement between 

the single uncoupled equation and the perturbative result is already ex- 

cellent. Thus, when effects due to these couplings are significant, they 

conspire in a complex fashion to produce agreement with the perturba- 

tive result. In the case of the electromagnetic interaction for the 'So 
positronium states, the coupling between the upper-upper and lower- 

lower wave functions is crucial in order to obtain agreement through 

order a4 with the perturbatively computed spectral results (or for that 

matter with the exact solution obtained by other rnethodsl6). Without 

them, the error is on the order of 5% of pa*, much larger than the order 

pa6 error expected. The same phenomenon occurs for the 3S1 states in 

positronium except that in this case the (off-diagond) tensor coupling is 

needed in conjunction with the coupling between the upper-upper and 

lower-lower components. (Note that in the perturbative treatment of the 
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equation, the latter coupling to the lower-lower component played no role 

whatsoever). Neither coupling by itself is suflicient to produce a result 

accurate enough so that the errors are on the order of cy6. For the equal 

mass I > 0 states however, it is not necessary to include the effects of 

either the (off diagonal) tensor coupling or that between the upper-upper 

and lower-lower components to obtain good agreement. The uncoupled 

upper-upper equation by itself is sdicient. 

For muonium, the coupling between the upper-upper and lower- 

lower components is crucial for the I = 0 states just as it was in the 

equal mass case. Again the agreement improves by two or three or- 

ders of magnitude when the coupling to the lower-lower component is 

included. This improvement might at fist not seem significant since the 

relative error starts at an already respectable lo-' - cy2 so that further 

improvement to - IO-' may appear meaningless. However, a glance at 

the perturbative spectrum reveals that the smallest corrections are the 

recoil corrections N p2cu4/M. Relative to these the correction due to the 

coupling to the lower-lower component becomes as significant as in the 

equal mass case. Note dso  that the spin-mixing coupling between the 

lL1 and 3L1 states is crucial to obtain agreement between the nonper- 

turbative and perturbative treatments of our equations. This coupling 

was also important to obtain agreement between our perturbative results 

and standard treatments. Further, in both the equal and unequal mass 

cases, we have ignored the coupling to the lower-lower component in the 

perturbative calculations. Its nonperturbative importance for S states 

thus comes as a surprise. We find that couplings to different components 

of the wave equation that are numerically important for the nonpertur- 
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bative calculation are not important for the perturbative calculations6. 

The perturbative treatment of our equations for the scaSar and 

purely time-like interactions generates no hyperfine splitting through or- 

der a4. The nonperturbative numerical results are consistent with this 

but again only if alJ couplings are included. (The lack of hyperfine split- 

ting holds as well for the nonpertubative treatment of the unequal mass 

cases.) 

Besides the coupling, what other relativistic strong-potential struc- 

tures are crucial for the excellent agreement we have obtained? We have 

referred earlier to  strong potential terms as those in Eqs.(4.21a-b) beyond 

the collective minimal (Todorov) part (e.g.+Zc,d - A2 for electromag- 

netic interaction). “Relativistic strong-potentid structures” refers col- 

lectively to these terms, in particular to the potential energy dependences 

in denominators appearing in those terms of the form &?;+Mi, G2. In the 

weak-potential limit (Eqs.(5.1-5.6)), for d = -cx/r, these terms become 

singular potentials (ones more attractive than -1/4r2 near the origin) 

but are themselves non-singular in the constraint equation Eq.(4.21a- 

b). Singular potentials appear in our formalism only as a result of 

perturbative approximation, when the strong-potentia3 terms such as -e, In’X& -a26 that appear in (4.21a-b) are treated as weak. 

In such 8 perturbative approximation, attractive potential energy terms 

with a radid dependence of the form f ,  7~ and S ( 7 )  arise as typi- 

cal relativistic weak-potential limits of the relativistic strong potential 

terms. Those limits can only be treated perturbatively, using well be- 

haved unperturbed wave functions. Otherwise a nonperturbative treat- 

ment of these singular potentids would lead to nonnormalizable singular 

I d  
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wave functions. However, the mapproximated strong-potential terms 

-9, in'X,A d r  9 -@G, etc. in our equation, from which the singular 

potentials originate, are well behaved for small r ,  since the logarithmic 

derivatives generate denominators that moderate the small distance be- 

havior. Thus the unapproximated terms do not lead to singular wave 

functions. For example in the case of &ED, consider terms with a radial 
dependence of the form 

For A = - a / r  and G2 defined in (2.10c), this becomes l / r 2  for small 

r instead of a / (2 rn l r3 )  as it does in the weak-potential approximation 

in which the potential dependence in the denominator is left out. The 

l /r2 behavior gives acceptable nonperturbative numerical solutions when 

combined with the centrifugal barrier term, whether the sign of this term 

is positive or negative. On the other hand the l/r3 dependence would 

not give any convergent nonperturbative numerical solution when the co- 

efficient is negative, as can happen for QED interactions in the 3Po case. 

So the nonsingular short distance behavior57 is crucial for every term in 

the quasipotential that appears in Eqs.(4.21a-b) since using the weak po- 

tential approximation in any one of the terms could render the equation 

as a whole ill defined quantum mechanically. Those terms, which include 

Darwin and spin-dependent and relativistic recoil terms (ones that vas- 
ish when one of the masses + oo), yield important contributions to the 

cdculat ed spectra. 

Just what are the distance scales at which the potentials in the var- 

ious denominator terms become important? For the equal mass case the 
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invariant d becomes comparable to the electron mass and the energy 

terms in the denominator at distance d e s  of the order of the clas- 

sical electron radius, well inside the Compton wavelength. Such short 

distance behavior of the quasipotentid is important since without this 

radial dependence in the denominator the correct spectral results could 

not be reproduced in a nonperturbative treatment. For example, if one 

artificially replaces A by a constant in the non-coulombic part of the 

quasipotential at a distance T less than a Compton wavelength, then the 

S state nonperturbative spectral results will no longer agree with their 

perturbative counterparts to the required accuracy, even though the P 

state results will. Thus the minimal interaction constraint equations 

provide a natural cutoff mechanism that is essential for a nonperturbative 

treatment of the equation. 

Before proceeding to the next section on the 3Po scattering states 

we discuss further the fact that different parts of the two-body wave 

equation appear to be important for the nonperturbative calculation that 

are not important for the perturbative calculation. Even though this is 

an unexpected feature, something analogous does occur in the case of 

the one-body Dirac equation. For vector interactions done (generated 

by either A or V ) ,  the Pauli-form of the Dirac equation for the upper 

component is (Eq.(4.21a) with rn2 -+ 00) 

where x1 = €1 - A + ml.  If we make a scde change to eliminate the 

i? - p  term and specialize to Y = -ZCY/T (corresponding to hydrogen-like 
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systems without hyperfine structure) Eq. (6.10) becomes 

(6.11) 

The term involving ti3(?) gives no contribution when the Z a / r  term 

in the denominator is kept. This equation can be solved exactly. The 

resulting spectrum yields the standard fine structure effects in hydrogen- 

like atoms through order cy4 . The weak-potential approximation of this 

equation, obtained by setting €1 +ml+ Z a / r  equal to 2ml and neglecting 
the term proportional to 2 2 2  cy / T  4 , is 

Eq.(6.12) dso  reproduces the standard fine-structure effects in hydrogen- 

like atoms, but only when the three terms after the Coulomb term are 

treated (in fact the second and third terms can only be treated) perturba- 

tive3y. Note that the weak-potential delta function term is sufEcient for 

perturbative bound state calculations but is not adequate for nonpertur- 

bative (e.g. numerical) calculations. In particular, note that a compar- 

ison of (6.12) with (6.11) shows that, for S states, where the spin-orbit 

term wishes,  the perturbative effect of the delta function term in (6.12) 

is reproduced nonperturbatively by the 3Z2a2/(4r4(e1 + ml + Za/r)2)  

term in (6.11). This term cannot be approximated by r6m,r, 3Z2f and then 

treated as a perturbation because the perturbative contribution of r-4 

is undefined for S-states. It must be treated nonperturbatively. So even 

for the ordinary one-body Dirac equation we have an instance for which 
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terms that do not contribute to the spectrum in a perturbative treatment 

are crucial for producing the same results when the equation is treated 

n~nperturbatively~~. 
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VI1 Theoretical Predictions for the 3Po Scattering States 

A few years ago, several  group^^^-*^ observed anomalous positron 

peaks at positron kinetic energies of 250-400 keV in heavy-ion colli- 

sions with a united-atom charge 2 > 163 for collision energies near 

the Coulomb barrier. The energies of the peaks seem to be nearly inde- 
pendent of the projectile and target combinations. Electrons were found 

in coincidence with the positrons with about the same energy as the 

positrons at the anomalous peaklg. These observations were interpreted 

as resulting from the formation of a neutral particle or composite with 

subsequent decay into a positron and an e l e c t r ~ n ~ ~ * ~ ~ - ~ ~ .  Such an inter- 

mediate state could either be the product of new (non-electromagnetic) 

forces or hidden features of old (electromagnetic) forces. The authors of 

Refs. (59-61) attributed the anomaly to the nonelectromagnetic produc- 

tion and decay of a pseudoscala.r axion. Other  author^^*-^^ proposed 

the participation of new phases of QED with a larger coupling constant. 

Not wishing to invoke new forces, Wong and Becker'* speculated that 

short distance, strong potential, relativistic effects in QED might gen- 

erate a resonant composite state of the e+e- system and investigated 

the possible origin of such resonances using an assumed electromagnetic 

mechanism. 

Recently, measurements of Bhabha scattering26 have failed to show 

the presence of such resonances with lifetimes in the range from - 
-lO-gsec. That is, the Bhabha scattering results so far are consistent 

with the results of perturbative QED. To reconcile the electromagnetic 

part of these results theoretically what is needed, then, is a relativistic 

calculation of the phase shift at c.m. energies in the neighborhood of 
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peaks seen in the heavy ion collisions. Recently, Spence and V&* have 

carried out just such a calculation using several truncated versions of 

the Bethe-Salpeter equation. They find a f d y  of resonances “of zero 

width” in the region between 1.4 and 2.2 MeV. On the other hasd we 

s h d  show that OUT relativistic two-body Dirac equations, despite al l  of 

their short distance, strong-potential, relativistic structures, predict no 

resonances in the 3Po state in the relevant energy range - no deviation 

from ordinary Bhabha scattering. 

We must now decide on the form of the equations that will best 

display the origins of the physics in the relativistic quasipotentid. In 

principle we codd use Eqs.(6.4a-b) (as they stand) for the 3 P ~  state in 

order to compute the phase shift. However, further manipulation of these 

equations using the first order form of the two-body Dirac equations 

(see Appendix D) leads to an equation for the j = I states, as well 

as the 3P0 states in which the upper-upper components are completely 

decoupled from the lower-lower c~ rnponen t s~~ .  This allows us to see 

graphically whether the effective potential develops a pocket or other 

structure that could produce a resonance. The equation for the 3Po 

upper-upper component wave function found in appendix D is 

(Note that the delta function term will not contribute because its coeffi- 

cient vanishes at r = 0.) This is the equation from which we will obtain 

our numerical results. We remind the reader that this equation is dic- 

tated by the combination of two-body relativistic quantum mechanics of 
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the constraint forma,l.ism with a field theoretic A of the Bethe-Salpeter 

equation. This equation has the following special features. First, this co- 

variant Schriidinger-like form displays exact relativistic kinematics. Sec- 

ond, the local potential structure of Eq.(7.1) generated by A = - a / r  is 

determined by perturbative QED in concert with the minimal interaction 

form that follows from quantum mechanical gauge invariance. Third, we 

have shown that the short distance strong-potential structure of these 

equations (albeit in an equivalent form) was crucial for the accurate nu- 

merical determination of the bound state spectrum demonstrating the 

validity of the equations down to distances of the order of a/m. Fourth, 

because the kinetic and Darwin terms in Eq.(7.1) are local (unlike the 

three-dimensional Salpeter equation or its O( l/cZ) Fermi-Breit reduc- 

tion), our approach provides a graphical as well as covariant way of ex- 

amining the short distance behavior directly. Fifth, the effective poten- 

tial (including the centrifugal potential barrier) in Eq(7.1) is attractive 

and nonsingular near the origin, having the limiting behavior- -Cy/? as 

'I" -+ 0, in contrast to the more singular terms appearing in the standard 

O( l/c2) Fermi-Breit reduction of the Salpeter equation. 

The corresponding decoupled equation (see appendix D) for the 

upper-upper component for the ' J j  states of the e+e- system is 

(')>2)ujoj = 8 j(j+l)  2€-,Cy --- 
r2 r r 

I-,,, 4- 

In both Eqs.(7.1) and (7.2), the effective potentid 

the origin. 

b2(w)ujoj. (7.2) 

is non-singular near 

In order to determine whether or not there are m y  purely electro- 

magnetic resonances or other nonperturbative effects in the 3P0 states as 
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described by our equation (7.1) for the e+e' system, we need to compute 

the phase shifts as a function of energy and compare them with the per- 

turbatively computed phase shifts. In sections V and VI we performed a 

successfuf test of our f o d s m  which found agreement between the 3P0 

bound state spectral results computed perturbatively and numerically. 

Do we obtain agreement here between the two types of computations of 

the phase shifts? The general form of our equation (7.1) is 

where A@ consists of the short range parts of the effective potential. 

Due to the long range nature of the effective potential in Eq.(7.3), the 

asymptotic form of its wave function is 

u(r --+ 00) -+ wnst x sin(br - vln2br + A) (7.4) 

in which 

while 01 = argI'(Z+ 1 + iv) is the Coulomb phase shift (with q = --). b 

For the 3Po state, the phase shift 61 is due to A@ for the 'Po state: 

Before computing this nonperturbatively, we evaluate 6l in perturbation 

theory for a few representative values of the c.m. energy w .  In analogy 
to the perturbative expression for the phase shift for short range (a = 0) 

potentials 

Sl = - b l  $(br)A@(r)r2dr ( 7 . 7 ~ )  
00 
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when we treat A@ as a perturbation we find 

(7.7b) 

when Q # 0. In this distorted Born approximation, Fl(q, p) is the radial 

Coulomb wave function. For perturbative purposes we use the unper- 

turbed solution which can be expanded as 

where 

2 k + 1  ( k  - l)(k - 2) - Z(Z + 1) 
2k - 3 bk-219 bk = ( 2 V b k - 1  .-. k(k + 1) - Z(2 + 1) 

(7.10) 
i r , ( p )  is a spherical Bessel function, and 

(7.11) 

In our case, we approximate A@ as the weak potential form A@o given 

hv 
-J 

(7.12) 

Substitution into Eq.( 7.7b) followed by the indicated integration yields 

00 n-1 

(7.13) 
b k b n - k  S i n ( 2 k :  - n -t €1: 
a + l  2 k - n + €  

61 = cY2[(2Z+ l)!!]*[C1(77)]* c c 
n=21 k=l 
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in which e is a positive infinitesimal. 

For our nonperturbative calculations ( with mapproximated A@), 

we use the variable phase method6' generalized here to include long range 

interactions. Consider the two differential equations 

ZL" + (b2 - W - W)U = 0 

and 

iiy + (b2 - W ) G ;  = 0, i = 1,2 

in which u(0) = Gl(0) = 0. Choose 

W ( r )  = Z(Z+ 1)/r2 + A@ 

(7.14) 

(7.15) 

(7.16) 

(7.17) 

so that 

G 2 ( r  + CQ) + wnst  x cos(br - qln2br + a) (7.19) 

in which 

(7.20) 

and 

u(r + 00) --$ wnst x sin& - $n2br + A) (7.21) 

A = 61 + 01 - h / 2 .  (7.22) 

In the variable phase method, one obtains a nonlinear first order differ- 

ential equation for the phase shift function 6i(r) such that 

(7.23) 
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and &(O) = 0. This is done by rewriting u(r)  as 

u(r)  = a ( r ) [ c c ~ s r ( r ) a ~ ( r )  + sinr(r)fiz(r)] (7.24) 

so that 

A = A + 7 ( w ) .  (7.25) 

Since we have written u(r )  in terms of two arbitrary functions we axe 

free to impose a condition relating them: 

Combination of these two equations leads to 

1 u(r)ii i(r)  - t l’(r)nl(r) 
u(r)ii;(r) - d(r)iiZ(r) 

7 ( r )  = -tan-’[ (7.27) 

in which y(0) = 0. In our case 

From Eqs.(7.27-28), and the Wronskian FOG; - FLGo = b we obtain by 

simple differentiation the differential equation 

Note that for W ( r  + 0) --$ A(A + 1)/r2 (since &(q, br --.+ 0) -+ Cobr and 
Go(7,br + 0) --+ l/Co), we obtain the relation 

y’(0) = -C,’bX/(A + I). (7.30) 
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Note that if we were to exclude the angular momentum basfier term 

Z(Z + 1)/r2 from W ( r )  and include it in W ( r )  instead, X would become 

complex in the case of Eq.(?.3,?.6). With our division however, we must 

integrate the wave function to very large distances because of the long 

tail of the barrier term. However, we can overcome this dirsculty by 

with p ( r )  defined SO that 

p ' ( T )  = -!(!+ ~ ) / T * , X S ~ ( ~ ) & ( ~ )  + Sin/ 

This equation has the exact solution 

r 

(7.31) 

12/b. (7.32) 

with p(0)  = 0 and p'(0) = -Cibl/(l+ 1) and 

P(m) = ( I 1  - ln/2 - 60. 

Combining (7.20,7.22,7.25 ,7.31,7.34) then leads to 

61 = €(oo). 

(7.33) 

(7.34) 

(7.35) 

Thus, if we solve 



82 

subject to the boundary condition ~(0) = 0 and the condition Q.(7.30), 

transcribed to the form ~'(0) = -CibX/(X + 1) + GbZ/(l+ l), we obtain 

the additiond phase shift (above the Coulomb phase shift) by integration 

to E(OO). 

As a first application of Eq.(7.36) we compute 61 for the spin singlet 

equation in which 
n 

(7.37) 

This provides a particularly strong test of our procedure since 6 can be 
computed analytically by incorporating the term $ with 4, 1(1+1 into 

r 

x(x+I) r2 and using 

ol-h/2 = a r g r ( l + l + i q ) - l n / 2  + cr~-Xn/2 = argI'(X+1+iq)-An/2 

where X(X + 1) = l(1 + 1) - cy2. We are interested in the phase shift 61 

produced by A@ beyond the Coulomb phase shift crl which in this case 

is given by 

61 = OA - 01. 

(7.38) 

(7.39) 

Hence, with q = -? we find 

(7.40) 

For I = 0 , l  and w = 1.6 MeV we obtain 61 = 8.391 2.794 IOe5. 

Using the first term in the perturbative expression (7.13) for comparison 

we obtain 61 = 8.431 lOW5,2.797 loB5. The corresponding numerical 

results are 61 = 8.396-1OW5, 2.770.10-5. Thus we find agreement between 

the pesturbative and numerically calculated values of the phase shifts for 

the singlet states. 
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We are now ready to perform the same calculations and compar- 

isons for the 3Po states in order to test our Eq.(7.1) and to see whether 

it predicts any resonant states. We compute the results for the 3Po states 

at several energies. At w = 1.4,1.6.1.8,2.0MeV we find that the pertur- 

batively computed values using the full Eq(7.13) axe 2.556 - loo3, 2.876 

3.075 and 3.210 - These agree well with the nonpertur- 

batively computed numerid values 2.529 2.847 = lom3, 3.038 loe3 

and 3.175 - lom3. Thus our two-body Dirac equations predict no reso- 

nances in the 3Po states in the above energy range, and no significant 

deviation from ordinary Bhabba scattering. 

Let us examine now how the various pasts of the quasipotential in 

Eq.(7.1) conspire to produce the turnover of the total effective potential 

(including the angular momentum barrier) for the 3Po state while keep- 

ing the potential narrow and shallow enough to forbid a resonance (see 

Figs. la-b). At very long distances the Coulomb term dominates. As 

the interparticle separation goes to zero, the angular momentum barrier 
l( l+l)  .T(= 5) becomes dominant at about an Angstrom. At this distance 

the spin-orbit and tensor terms (combining to give the next to last term 

in the first h e )  have aa attractive f behavior, whereas the spin-spin 

and Darwin terms (combining to give the last term in the first line) yield 

a repulsive $ behavior. The attractive $ tenns counteract the angular 

momentum barrier reducing that barrier by about a factor of one-half 

for r - 0.5 fm66, eventually causing the potential to turn over at around 

0.06fm. But by this distance, the G2 factor ~~+aalwr approaches E so 

that it moderates the attractive 5 spin-orbit part, leading to = - 5. At 

about the same distance, the spin-spin and Darwin terms of the poten- 
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wa r2 tid have their repulsive $ behavior modified by the factor G4(4 -=) 
to the form 7. The net result is the -5 behavior given by (7.1) for 

the 3Po state. This behavior and the attendant phase shift are a direct 

consequence of the matrix A we obtained from QED and the minimal 
interaction structure for incorporating QED into our twwbody Dirac 

equat ions6 ' . 
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VI11 Conclusions and Relationships to Other Approaches 

In this paper, we have solved a system of coupled Dirac equa- 

tions previously formulated by two of us for electrodynamic and re- 

lated two-body systems5J6. These equations, which are spin-dependent 

strong-potential versions of an equation originally developed for QED 

by Todorov14, contain local but non-singular potentials and so may be 

solved nonperturbatively for bona-fide relativistic wave functions. Yet, 

they contain effects in their wave functions that are traditionally ob- 

tained from perturbation theory. Two of us had previously found six- 

teen component exact analytic solutions for singlet states of positronium 

with energies agreeing with the field theoretic spectrum through order 

a4. In this paper, we have shown for a representative set of radial, or- 

bital and spin states that nonperturbative numerical solutions for the 

wave function yield the correct field theoretic spectrum through order 

a4. As far as we know, this sort of spectral agreement has never been 

obtained before from numerical solution of a relativistic wave equation. 

Even though we had originally applied these equations (with appropri- 

ate potentials A, V and S) to calculations of the meson spectrum, their 

suitability for electrodynamics is not a total surprise since two of us had 

originally abstracted the form of the vector interactions appearing in 

them from (the field theoretic ) Wheeler-Feynman  electrodynamic^'^. 

Comparison of the structures of our equations with those of selected 

traditional approaches to &ED and with those of recent alternatives 

and applications will help to clear up the origins and possible physical 

significance of our results. All of the equations that we will consider 

share the property that when treated perturbatively they reproduce the 
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correct QED spectral results through order cy4 that arise from the field 

theoretic Born diagram alone. 

Relativistic wave equations have been used in electrodynamics pri- 

marily in three ways. First, such equations have been solved both nu- 

merically and analytically as wave equations when absence of singulari- 

ties and non-local terms permitted leading to “nonperturbative” spectra 

(Balmer formulae). (However, such solutions are not guaranteed to agree 

with the results of quantum field theory - witness the erroneous results 

for parapositronium produced by nonperturbative treatment of the 10ca.l 

Breit e q ~ a t i o n ~ ” ~ ~ . )  Second, such equations, as they stand, have been 

used as perturbative forms that are divided into a nonrelativistic wave 

equation with well behaved solutions and a singular remainder to be used 

only in low order perturbation theory. Third, such equations have been 

used purely as spring boards for field theoretic perturbative treatments. 

Typically, one selects a relativistic wave equation with simple wave func- 

tions that generate the correct lowest order (cy2 and parts of the order 

a4 and higher order) spectrum directly through the wave function and 

then systematically treats the remaining order cy4 and higher effects dic- 

tated by the Bethe-Salpeter equation as field theoretic perturbations 

built around the analytic solutions of the wave equation. 

A. “Nonperturbative” Features of Wave Equations aad Solution Where 

Possible. 

Properly our numerical wave functions and spectra ought to be 

compared directly with their counterparts from numerical solution of 

the Bethe-Sdpeter equation. However, as fair as we know there have 

been no numerical tests (nonperturbative solutions ) of any of the tradi- 
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tional three-dimensional rearangements of the four-dimensiond Bethe- 

Salpeter equation of QED. (This situation has occurred because pertur- 

bative treatment of the weak potential forms of those equations (see B. 

below) are sdlicient for QED and because treatment of non-local bound 

state equations has been technically difEcult.) To see why this is so con- 

sider the most widely used rearrangement: the Salpeter equation17. That 

equation for single photon exchange in the instantaneous approxhation 

is 

where HI(p3 = mlP1 +p'-&, Hz(p3 = r n 2 h  -p'& A = [h$(p3h$(p3 - 
A L ( ~ ~ A E ( ~ ~ I ,  ~ i ( 3  = [ ~ i ( f i  * H ~ ( P " ) ] / ~ E ~ M ,  w d  Ei(P3 = Jw- 
in which the three dimensional Salpeter wave function cf) is given in terms 

of the four-dimensional Bethe-Salpeter wave function x by #12(p3 = 
J ~ P 0 X 1 2 ( P 0 , P 3  =d 4:;(P3 = 4T$(P3 = 0 where 4;; = A:A2,#1*, for 

K , X  = A. The particular (but ad hoc) elimination of the relative time 

and the relative energyss in the derivation of &.(9.1) forces on the user 

non-local (in coordinate space) freeparticle energies Ei(8.  In contrast, 

the corresponding role is played in our equations by the locd but c.m. en- 

ergy dependent ei of Todorov. Furthermore, the compatibility of our two 

sixteen component Dirac equations automatically restricts their depen- 

dence on the relative time in such a way as to permit an exact reduction 

(with no truncations) to two coupled (and in some angular momentum 

cases, one), Schrijdinger-like equations with a total c.m. energy depen- 

dent (but not necessarily) momentum-dependent effective potential, each 

involving two four-component wave functions (see Eqs.(4.21a-b)). Not 
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only are our local minimal interaction constraint equations much easier 

to handle numerically, but also, (for momentum-independent interac- 

tions), they permit a direct covariant examination of the short distance 

behavior (see Figs. la-b). Such an examination cannot be performed as 

directly on the momentum space form or on the necessarily non-local co- 

ordinate space form of the three-dimensional Salpeter equation without 

an O(l/t?) expansion (which we shall examine below). 

Recently, Mandelzweig and WallaceGg have presented a new covari- 

ant approach to the two-body problem. Instead of the two two-body 

Dirac equations of (2.la-b) or (3.38a-b) they employ a single sixteen 

component “sun” Dirac equation of the form 

(in our metric) in which 

accompanied by a spin-independent constraint 

on the relative energy. (In our approach Eq.(9.4) is a consequence of our 

two Dirac equations (see (3.21) and also Refs.(4-5)).) 

Like our equations, the Mandelzweig-Wallace equations yield the 

correct single particle Dirac equation with an external potential when one 

particle becomes infinitely heavy. However, each set of equations achieves 

this result in different way. Mandelzweig and Wallace noted that in the 

Bethe-Salpeter formalism both the single particle Dirac limit and the 
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high energy Eikond limit depend on cancellations between crossed and 

uncrossed Feynman graphs when the kernel in the Bethe-Salpeter equa- 

tion is truncated. Consequently, in deriving their equation, they included 

crossed graphs using a form of the Eikond approximation in such a way 

that the high energy limit and the heavy particle limits are preserved de- 

spite truncation of the kernel. In contrast our spin-dependent equations 

and the closely related spinless Todorov quasipotentid equation (in the 

form (3.1)) achieve the heavy particle limits automatically through their 

classical relativistic kinetic and potential structures without further ma- 

nipulation of the potential. (In fact starting from only the Born term, 

the Todorov equation sums up all cross ladder and ladder diagrams in 

the limit of small exchanged mass and momentum tran~ferl~*~’.)  

The two-body Dirac equations Eqs.(B.la-b) and the Mandelzweig- 

Wallace equation differ substantially in their spin-dependent structures 

through the full 16x16 matrix potentials. Just like the free particle 

sub-energies Ei(p3 of the Salpeter equation, the Mandelzweig-Wallace 

equation contains the free particle Dirac projectors X i  (which contain 

the E&?)) as coefficients in the ‘‘sum” form Eq.(9.2). These render the 

Mandelzweig-Wdace equation non-local in the Born approximation, for 

which the coupled Dirac equations (Eqs.(2.la-b) or Eqs.(4.21a-b)) are 

local. Nonetheless Wallace and Thayydlathil (Ref.33) have been able 

to solve the Mandelzweig-Wallace equations numerically for the ground 

state hyperfine splittings in QED. Thus, some results given by both sets 

of equations are available for comparison. These results show that one 

consequence of the difference in spin-dependent structures in the two 

approaches is their different dependences on and sensitivities to the four 
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four-component pieces of the sixteen component wave function. For ex- 

ample, for the hyperfine splitting of muonium, the Mandelzweig-Wallace 

results with the lower-lower parts of the wave fundion excluded are com- 

parable to our results through order cy4 when our equations are fully cou- 

pled. However, inclusion of the lower-lower portion of the wave function 

in the Mandelzweig-Wallace equation produces large deviations from the 

field theoretic d u e s  through order cy4. This contrasts sharply with our 

results of section VI for which inclusion of the coupling to the lower- 

lower portion of the wave function was crucial for agreement with the 

field theoretic values through order cy4. A complete comparison of the 

two approaiches awaits calculations in the Mandelzweig-Wallace approach 

of the counterpaxts to the fine-structure splitting and radial excitations 

given by our equations in section VI. 

B.) Weak-Potentid Perturbative Form. 

Daditionally relativistic wave equations which cannot be or have 

not been solved numerically or analytically have been rearranged as cor- 

rections to the non-relativistic Schrodinger equation with Coulomb po- 

tential. For example the O( 1/2) Fermi-Breit expansion7' of the Salpeter 

equation, yields 

Hllf = wllf (9.5a) 

in which w is the total c.m. energy and 
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This equation (to which our equation is canonically equivalent in or- 

der of O(l/c?) for weak potentials72) contains terms after the Coulomb 

term that are too singular at the origin to be treated non-perturbatively. 

On the other hand, the unapproximated counterparts of these terms in 

the covariant, Schrodinger-like form Eqs.(4.21a-b) of the two-body Dirac 

equations are quantum mechanicdy well defined for all tested angu- 

lar momentum states. This means that in contrast to the Fenni-Breit 

equation (and Eq.(5.9)), the wave functions for al l  angultw: momentum 

states are affected by all terms. Despite this fact, our solution of the un- 

approximated covariant minimal interaction constraint form, (4.21a-b), 

reproduces the correct perturbative spectral results for fine and hyperfine 

splittings. Because we are able to solve our unapproximated equation 

numericdy, we are able to carry out a double cross check of its nonper- 

turbative spectral results with its own perturbative spectral results (fiom 

Eq.(5.9)) and with the corresponding results of perturbative quantum 

field theory (from Eq.(9.5a-b)). The fact that they all agree shows that: 

i.) The weak potential form Eq.(5.9) yields an accurate perturbative eval- 

uation of the exact equation Eqs.(4.21a-b) (mathematical property). ii.) 

The unusual (though local) short distance structure of the exact equation 

Eqs.(4.21a-b) (and hence of the wave function) does not disrupt the per- 

turbative spectrum (mathematical property). %.) The unapproximated 

coupled two-body Dirac equations Eqs.(Z.la-b) and their Schrodinger- 

like rearrangement Eqs.(4.21a-b) yield a spectrum fiom single photon 
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exchange in agreement with that of perturbative QED for all tested 

angular momentum states through order cy4 (physical property). Al- 

though this agreement exists in the one-body Dirac equation, as far as we 

know because of difficulty of nonperturbative solution, such agreement 

has never been demonstrated for any other two-body equation with 

spin.73-74 

C. Relativistic Wave Equations as Anchors for Field Theoretic Per- 

turbation Theory 

In order to carry out any perturbative solution of the Bethe-Sdpeter 

equation of QED, one must first specify a lowest order equation. As 

noted by Barbieri and R e m i d ~ i i ~ ~ ,  any such equation must contain a ki- 
netic term, a Coulomb-like interaction term, be able to produce bound 

states, and contain the largest part of the full Bethe-Sdpeter kernel. It 

must reproduce the correct nonrelativistic dynamics with corrections of 

second order in momenta so that the usual Balmer formula appears in 

lowest order (a2) with no corrections of order a3. In addition, it must 

yield the relativistic propagator of two free fermions when the interaction 

vanishes (at high momentum). Finally, for purposes of perturbative cal- 

culation, its wave functions must be known analytically or numerically. 

By carrying out the numerical solution of the two-body Dirac equations 

Eqs”(2.1a-b) in this paper, we have completed the demonstration that 

they possess all these properties. 

In the work of Barbieri and Remiddi” and in the work of Caswell 

and L e ~ a g e ~ ~  (for fermions of comparable mass), the fact that “no equa- 

tion for two fermions is known that can be solved exactly and which gives 

the correct cy4 structure” forced those authors to confine the dynasnical 

contributions of their lowest order equations to the relativistic Coulomb 
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potential alone. This restriction does not destroy the perturbative pro- 

cedure, however, as long as "the correct CY* terms, BS well as all higher 

order corrections to the energy levels, are obtained in the systematic per- 

turbative expansion to be built starting from the lowest order equation 

in question." 

Why then would anyone propose to replace the basic relativistic 

wave equation with Coulomb potential by an equation with additional 

dynamical structures? The advantages are twofold. First, in most math- 

ematical structures, increase in accuracy of the unperturbed piece pays 

dividends in the form of increased rate of convergence and the ability 

to dispense with the treatment of terms whose only function is to build 

up some basic structure of the unperturbed tenn. If one includes a 

basic nonperturbative structure, one gets all of the higher order per- 

turbative terms corresponding to it as a bonus. For example, Barbi- 

eri and Remiddi, and CasweU and Lepage pass from the nonrelativistic 

Schr6dinger equation with nonrelativistic Coulomb potential to a rela- 

tivistic wave equation with relativistic potential to reap the benefit of 

inclusion of some of the a4 terms in their lowest order equation and to 

ensure correct relativistic kinematical contributions in higher order. In 

addition, CasweIl and Lepage, in their first work on systems with one 

heavy particle, one light particle took as their lowest order equation the 

one-body Dirac equation with second pazticle on the mass shell in order 

to  include fine-structure (i.e. Dirac spin structure) in their unperturbed 

solutions. Second, the lowest order equation of perturbative QED with 

its particular structures is abstracted by many authors €or use elsewhere 

in QED, nuclear, and particle physics as a wave equation for bound state 
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calculations. In those applications structures of little consequence in 

perturbative QED (e.g. short distance or strong potential behaviors) 

may play a significant role. Thus, accurate knowledge of QED structures 

of this sort serves as a check on the uses and abuses of such equations. 

As we have mentioned, as first shown by Yaes and Grosd7, there is 

an infinite set of “equivalent” three-dimensional reductions of the Bethe- 

Salpeter equation, differing in form - therefore in ease of application 

and interpret ation. The electromagnetic constraint equation employed 

in this paper, with its characteristic energy-dependences and potential 

structures permits nonperturbative solution to higher-order in cy than 

has yet been possible for others in the set. To illustrate this point, we 

consider in some detail the work of Caswell and L e ~ a g e ~ ~ .  Caswell and 

Lepage reformulated the Bethe-Salpeter equation in two different ways - 

the first in terms of a one-body Dirac equation with the second particle 

on the mass-shell, - the second in terms of an effective Schrodinger equa- 

tion (in c.m. frame). In the first approach Caswell and Lepage were able 

to incorporate “fine-structure of levels with differing angular momenta” 

in the unperturbed QED solutions. However, the unsymmetric nature 

of this solution restricted its application to cases in which the binding 

was weak or the mass-ratio large. To remedy this defect, Caswd and 

Lepage developed an effective Schrodinger equation to treat the case of 

comparable masses. The price they had to pay was loss of unperturbed 

solutions containing fine-structure of levels with differing angular mo- 

menta, They were able only to retain their version of arelativistic 

Coulomb potential in their unperturbed Schrodinger equation. They at- 
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tributed the different structures of their treatments to the physical fact 

that ”the fine-structure of atoms with constituents of equal mass is quite 

different in character from that of atoms with a large mass-ratio.” They 

observed that “it is difficult to create a formnlisrn which naturally ac- 

commodates both cases and still admits analytic solutions comparable 

in simplicity to those presented” (in their second paper). 

However, the electromagnetic two-body Dirac equations Eqs.(4.21a- 

b) are a solution to the problem posed by Caswell and Lepage. Since 

these describe the system symmetrically through two coupled Dirac equa- 

tions whose potentid structures do not change discontinuously from high 

mass-ratio to comparable masses, they cas be solved nonperturbatively 

in both regimes using the same numerical techniques. Furthermore, for 

comparable masses, they can be solved numerically without truncation 

to the simple Coulomb potential of Caswell and Lepage. Thus, their 

solutions contain the fine-structure lost by Caswell and Lepage. 

We may see this explicitly by making use of the fact that in one 

case - the equal-mass singlet - our equations possess an exact analytic 

solution (see Ref.16 and appendix D). In €act, in that case, the second- 

order form of our equations reduces to the minimal Todorov equation76 

on a singlet wave function: - 

[p” + 2 ~ ~ d  - d2 - E2, + m2,]$ = 0 

in which cw and mw are Todorov’s reduced energy and mass of a rela- 

tivistic particle of relative motion introduced so that the second order 

two-body equation takes the mass-shell form. On the other hand, Caswell 

and Lepage write their second order equation in the form of an effective 
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non-relativistic Schrodinger equation: 

in which e' and rsZ are as. effective binding energy and mass given by 

(9.8) 
w2 - (ml - rnz)2 , tTz.= 2w 2w 

w2 - (m1+ m*)* 
€ =  

In fact, we see that Z is simply the difference 

€ = €w - mu, 

while & is the average 

?ii = - (Ew 1 + n z w )  2 

(9.9) 

(9.10) 

Using these facts, we may rewrite the Caswell-Lepage equation in the 

Todorov form: 

(9.11) 

We see that for the singlet state, the unperturbed equation that we solve 

shares its relativistic kinetic structure with that of Caswell and Lepage. 

On the other haad, the two equations differ in their dependence on the 

relativistic Coulomb potential and on the energy-dependent ew and m,. 

Despite its more elaborate structure, the minimal Todorov equation still 

permits exact solution16. In each case, the unperturbed eigenvalue may 

be found by mapping the relativistic equation to the non-relativistic 

Schrodinger equation with Coulomb potential ( A  = - a / r ) .  Rewritten in 
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the Todorov variables, the Caswell-Lepage “relativistic Baher formula” 

takes the form: 

fi2 
2 2 2 

e,  -m, = -- 
n2 

(9.12) 

whereas the minimal Todorov equation’s “relativistic Balmer formula” 

is: 

€* 
2 2 a‘ 

E ,  - m, = - 
(n - 61)2 (9.13) 

in which 61 is the relativistic shift of the angular momentum given by: 

61 = 1 4 -  112 - [(Z + 11212 - a2y2. (9.14) 

Solution of each of these for the total energy w followed by expansion in 

Q leads to 

(9.15) 
a2m 3 a4m 

w - 2m- -+ -- 
4n2 64 n4 

for the Caswell-Lepage equation and 

(9.16) 
a2m a4m 11 a4m 

w - 2 m - - -  + -- 4 4  2n3(21+ 1) 64 n4 

for the minimal Todorov equation, respectively. Note that the sin- 

glet eigenvalue for our equation (the minimal Todorov equation) al- 
ready contains the correct angular-momentum-dependent fine-structure 

as well as the correct angulaf-momentum-indepeRdent he-structure cor- 

rect through order a4. On the other hand, Caswell and Lepage’s unper- 

turbed fine-structure must be perturbatively corrected by “relativistic 

corrections to single Coulomb exchange” and “single transverse photon 

exchange” in the Coulomb gauge to yield the singlet spectrum correct to 

order (cy4. 
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Now that we have a new lowest order equation, how are we to go 
on to higher order perturbation theory? One could use that equation for 

a new approach to perturbative QED cdculations for bound states. We 

have shown in Ref.2, appendix A and in section I11 how one may use the 

projection of Sazdjian to obtain Todorov’s inhomogeneous quasipotential 

equation from the Bethe-Salpeter equation. One could use that equation 

to correct the interactions that appear in the two-body Dirac equations 

perturbatively, and then one could solve the resulting corrected wave 

equation nonperturbatively just as we solved the lowest order equation 

in this paper. (This would avoid the necessity of using higher order 

quant urn mechanical perturbation t hesry.) 

D. Nonperturbative Application of Relativistic Wave Equations to 

e+e- and qij Composites. 

In the past, many authors have transported the relativistic wave 

equations and relativistic correction structures of perturbative electro- 

dynamics far from their origins in perturbation theory. In the process, 

strong potential structures of these equations which were of no conse- 

quence (to a given order) in perturbation theory may come to play an 

important role. This has severd consequences. First, equations whose 

agreement with quantum field theory has been checked perturbatively 

but not when solved as wave equations may be used in the (sometimes 

mistaken) belief that solution works. The danger of this is illustrated by 

the local Brei t equation whose nonperturbative treatment produces er- 

roneous results for parrapositronium and which, as has been pointed out 

by Childers, leads to singular potentials for other e+e- states7’. The 
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agreement must be checked, as we have done for two-body Dirac equa- 

tions Eqs.(4.21a-b) in section VI. Second, different wave equations that 

gave equivalent results when treated perturbatively (to a given order) 

may yield inequivalent results when solved nonperturbatively- 

As we have shown, the twebody Dirac equations Eqs.(2.la-b) and 

Eqs.(4.21a-b) provide a31 alternative treatment of the two fermion bound 

state problem. These equations use their own chaxacteristic local poten- 

tial structures to produce the same spectra for perturbative QED that 

are produced by more complicated momentum structures in standard 

equations. Thus, when such equations axe extended to other problems, 

we may find disagreements of the first or second types. For their part, 

the two-body Dirac equations yield straightforward numerical solutions 

for (eventual) comparison with the other methods. 

Recently, motivated by the work1’ of two of us, Spence and Vary2* 

have nonperturbatively solved three different t h e e  dimensional trunca- 

tions of the Bethe-Salpeter equation with single photon exchange and in 

each instance obtained ‘‘zero width e+e- resonances” (continuum bound 

states) at 1.351,1.498,1.659,1.830,2.009, and 2.195 MeV in direct contra- 

diction to our results of section VII. The reader should note that Spence 

and Vary restrict themselves to the same field theoretic dynamics (single 

photon exchange) that we do. They use the Tamm-Dancoff equation, 

the no-pair form of the Breit equation (the Salpeter equation), and the 

Bldenbeder-Sugar equation along with a nonperturbative treatment of 

the corresponding Lippmm-Schwinger equations. All of the equations 

that they employ are nonlocal; they claim that this feature is crucial 

for generating their continuum bound state solutions. They point out 
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that one of these equations, - the no pair form of the Breit equation - 
is known to produce a good description of the ordinary bound states of 

positronium. However, the bound state calculation that they refer to is 

actually a perturbative calculation and thus lends no support to their 

nonperturbative solution of that equation. Thus, if one were to trust 

their results, one would first have to rule out a disagreement of the first 

type by canying out a nonperturbative treatment of each of these trun- 

cations to obtain the standard QED energy levels through order a4 (just 

as we have done for Eqs.(4.21a-b) in section VI). Interestingly, we were 

originally motivated to study the nonperturbative treatment of the QED 

bound state spectra in our equation by the possibility that the potential 

structures responsible for disagreements of the second type could lead to 

highly relativistic resonant e+e- states. 

Thus fax there is no direct evidence for e+e” resonances in Bhabha 

scattering experiments. Recent searches for both short lived and long 

lived low mass couplings in the e+e- system have found no evidence for 

deviations from the nonresonant Bhabha scattering background within 

statistical uncertainties of 0.2%(0) in the invariant energy range from 

1500 to 1850 keV. Of course if the authors of Ref.(28) calculate correc- 

tions to their zero width predictions, they may find lifetimes outside the 

range looked for in the experiments. On the other hand, if our treatment 

of this problem resembles the full Bethe-Salpeter solution, such states do 

not exist, so that one must look beyond the two particle sector of pure 

QED to explain the relativistic resonances seen in heavy ion collisions. 

In yet another area of relativistic two-body physics, various authors 

have borrowed (sometimes innocently and sometimes with additional 
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interactions from nonrelativistic and relativistic electrodynam- 

ics €or use in models of quark-antiquark bound systems. In previous 

papers1-*, two of us have applied two-body Dirac equations with poten- 

tial structures motivated by QCD to callcubte the mass spectra of mesons 

composed of light quarks along with those composed of heavy quarks. 

The goodness of the resulting fit to the full meson spectrum was due in no 

small p& (especially for the “hyperfine” and “he-structure” splittings), 

to the peculiar short distance vector interaction structure of our equa- 

tions inherited from both the constituent and collective (Todorov) min- 

imal interaction structures contained within them. As we have shown, 

this structure, when applied to electrodynamics itself, reproduces the 

two-body spectrum of QED. These results, taken together, argue that 

any competing approach to QCD which solves wave equations in which 

short distance dynamics is dominated by effective abeliaa replacements 

for the Coulomb potential inserted into elaborations of the Darwin in- 

teraction (or equivalently the Breit interaction) or which are based on 

truncations of the Bethe-Sdpeter equation of QED should be judged on 

their ability to reproduce the spectra of QED when treated numerically 

or analytically before being applied to QCD. Measures to avoid singular- 

ities in the interactions borrowed from certain approaches to QED, such 

as the use of cutoffs, may indida te  the equations for QED applications, 

introducing spurious dynamics. 
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Appendices 

A- Derivation of Todorov’s Inhomogeneous Quasipotential Equa- 

tion for Spinless Particles from The Bethe Salpeter Equation 

Written in terms of the constituent c.m. energies Q,Q, the inho- 

mogeneous Bethe-Salpeter equation in an arbitrary Lorentz frame takes 

the form 

Tw(p; q )  = K,(p; 4 ) - i  J d 4 k K W ( p ;  k )G‘ ,+ ’ (e#+k)G~+) (~P-k)T~(k;  q )  

or symbolically, 

(W4 
( A 4  

Eq.(A.l) relates the off mass-shell scattering amplitude Tw(p; q)  to the 

two-particle-irreducible kernel K ,  (p;  q ) .  (cf ” is the Feynman propaga- 

tor.) For an incident free (on mass-shell) plane wave, given in relative 

momentum space by 

-(+I we construct the Bethe-Salpeter “wave function” xw,qL 
1 L 

(A.4) 
in which q = -P(P q) + q L .  Then (A . l )  is reproduced for P q = 0, if 



(A.5) 

IR this equation Kw plays the role of the potential (the role played by 

Vw in (3.12)). We now write the two-particle, oE-mass shell, Feynman 

propagator as a sum, 

of a “minimally off the mass shell” Green function 

and a residual, R. Like the Todorov Green function, GL:J satisfies elastic 

unitarity provided that f(pi, w) = 1 on mass shell. GZj  reduces to 

the Todorov Green function when f = 1. For equal masses we obtain 

the Logunov-Tavkhelidze Green function when f = w(2&-+ 

w)/ (S(p;  + m2)) and Blankenbecler and Sugar Green function when 

f = ec./2dm.. Following the work of Blankenbecler and Sugar43 we 

write T in terms of the Green function g!$) and an effective interaction 

W defined by 

Then (A.2), (A.6), and (A.7) imply that 

(1 - KR)T = K + KGgjT, (A-9) 

which is satisfied, according to (A.8b), when 

(A.lO) 
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Eq. (A.8a) does not restrict elements of W to the mass shell. We wish 

to determine the quasipotential V(= 2w@) in terms of W. We begin by 
performing a general Sazdjian projection 40,2 

function %(+I 

of the Bethe-Sdpeter wave 

J 

(A.ll)  

so that 

(p) = 0. Then, 

This removes the c.m. relative energy dependence of xu),&), -(+ 

like the constraint wave function, (p satisfies P p#L+i 

we define the wave function @ such that 
9 * P I  

(A.12) 

We can eliminate the general factor f by multiplying Eq.(A.11) by f-l  

and using the fact that f -1 xw,qL -@I ( p )  = gw,qL ( 0 )  (p). This produces the 

Todorov wave function 

Hence we see that all the Sazdjian wave functions 4;'; (p) (and asso- 

ciated Green functions) are related to the Todorov choice (pi:!&) by a 

scale transformation. Todorov's choice, the simplest one (f = I), yields 

the Schrodinger-like equation of constraint dynamics; hence we use it in 

this paper. We use (A.5) and (A.6) to rewrite the transform as 

9 4s 

- -  

4 g ; , ( P >  = Jkk[s@ - k )  - Rw ('1 (PI Kw (Pi k)lzL::L(k) (-4.14) 

Fkom (A.8b) and (A.14) we obtain, without employing formal inverses, 
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(A.15) 

so that (A.11) can be written as 

q ; , ( P )  = 6 3 ( P l  - QL) + GL++’(Pd 1 $3hww(PL; k l ) @ w , q l  ( I C )  
(A.16) 

Eq.(A.l6) has the same form as the quantum mechanical momentum 

space integral equation (3.12) for the constraint wave function. If we 

rewrite Eq.(A.8a) in terms of 

then 

%&I, kl) + K w ( P L ;  kl) + /d4k’K,,(lPI; k’)RW(k’)ww(kr; kJJ = 0 

(A.18) 

so that (A.10) implies the Todorov quasipotential equation 

The difference between this field-theoretic equation and the formally 

equivalent quantum mechanical Lippmann-Schwinger Eq. (3.16) is that 

Eq.(A.19) gives vw in terms of Tw whereas (3.16) gives T, in terms of 

VW. Since the homogeneous form of Eq.(A.19) would be identical in 

form to the constraint equation Eq.(3.1) (with il, = V / 2 w )  we use the 

field theoretic v, as the V, in our quantum constraint equation. 

As a simple example, consider a scalar Yukawa field theory with a 

momentum space Born amplitude 
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Hence, the corresponding momentum form of our constraint potential is 

so that the coordinate space form of aW, the quasipotential to be used 

in our constraint equation (3.1), would be 

m m  in which 9192 = 16nrnlrn2ct. and m, = -;t.;;L. In order to determine 

the constraint potential to a higher order (say V2)) we would first have 

to evaluate the corresponding single loop diagrams Ti2) (appropriately 

renormalized). In that case (A.19) leads to 

Vtf’(k;, k ~ ) .  (A.23) 
1 

W 
2w(k i2  - P ( W )  - k )  
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B Direct Derivation of Eq.(4.12) from First Order Form of 

the Two-Body Dirac Equations and Derivation of Eq.(4.21a-b) 

We write the sixteen component Dirac spinor as 

‘L 

in which the I); are four component spinors. All the matrices that operate 

on this spinor are sixteen by sixteen. In the standard Dirac representa- 

tion (the subscripts on the identity 1 gives the dimensionality of the unit 

matrix.) 

Thus Eqs. (2.18a-b) become the 8 coupled equations: 
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in which 

(B.16) 

Without the effect of recoil, the terms at the end disappear, G is replaced 

by 1 (so that P 3 p )  so that these equations take the same form as the 

ordinary one-body Dirac equations. Accordingly we perform a standard 

reduction usually applied to the one-body Dirac equation. We rewrite 

Eq.(B.S) as 

We rewrite Eq.(B.12) as 

Substitution of Eqs.(B.17,B.18) into EQ.(B.10) then yields 
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We combine terms to obtain 

1 
(Gal 'P2) - (El - Ml) 

(El + Ml) 
((Go1 P2) 

Since BAB-l = A+ [B, AIB-l, multiplication of Eq.(B.20) by (El + M I )  

yields 

{(Gal p Z ) 2  + iG2dln(El + MI)  0101 - P 2  

iG 1 
2 2 

+ { - - 0 1 . P 2 G o z . d ( J - L ) +  -G2dEn(E1+M1)-o la24(J -L)  

We simplify this equation by finding another equation that relates +1 

and $4 but which involves only first order appearances of 01 772 and 

0 2  PI. We first multiply Eq.(B.11) by ya(J - L )  - 0 2  to obtain 
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Note that Y a ( J  - L )  - 0 2  has no nontrivial eigenvector with a zero 

eigenvalue so that when multiplying by it we do not introduce m y  extra 

solutions to our Dirw equations. If we multiply Eq.(B.12) by 

iG (El - Ml) 
2 (E2 + M2) 

-d( J - L) 0 2  (B.23) 

(which d s o  has no nontrivial eigenvector with a zero eigenvalue) we 

obtain 

(B.24) 
(El -Mi) iG 

-01 9 ( d J  - dL)+4 = 0. iG 
---d(J - L )  - 0 2  

2 (E2+M2) 2 

Addition of this to Eq(B.22) then yields 

G2 
(E2 + M2) 4 - M1) (Go2 PI)  + -(aJ - dL)2}$1 

iG { y a ( J  - L )  0 2  

Now, note that 

(El +Ml)d( J+L) i- (El -Mi )a( J-L)  = 2 (E1 dJ+M1 dL) = 2a( E2 + M2). 

We then add Eq.(B.21) to Eq.(B.24) and use the previous equation to 

obtain 
G2 

{(Gal * P2)2 - (E; - M;)  + q ( b J  - dL)2 

+iG2dZn(E1 -t M I )  0101 P2 f iG’dln(E2 + M2) 0 2 0 2  9  PI}+^ . 
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iG 
2 

--[01 7 7 2 ,  Ga2 d ( J  - L)]}+4 = 0. (B .26a) 

In the Dirac representation of the Dirac gamma matrices, Eq.(4.12) has 

an upper-upper component that is equivalent to Eq.(B.26a). In a similar 

way one could obtain the upper-lower, lower-upper, and lower-lower com- 

ponents of Eq.(4.12) without squaring and substituting. Thus the result 

Eq.(4.12) obtained by squaring and substituting (as done in Eqs.(4.10- 

11) in section N) is equivalent to that obtained here. 

Eq.(B.26a) is coupled to  the lower-lower component of Eq.(4.12) 

below 
G2 

{(Gal * P2)2 - (E; - M:) + T ( ~ J  dL)2 

+iG2aln(El - MI) u101 P2 + iG2dZn(& - Mz) u202 P1}+4 

(B.26b) 

We now perform the indicated Pauli matrix multiplication in Eq.(B.26a) 

and Eq.(B.26b) to obtain 

(Go1 Pz)2 G2p2 - 2iGdG p + GdG x p (01 + ~ 2 )  (B.27) 

1 1 

1 'I 

Then Eq.(B.12), Eq.(B.13), and E: - mf = b2(2u) lead to 

(3.28) 

(B.29) 

E t -  M; = G2(-b2(w)+2m,S+S2+2E,d-A2+2E,V-V2). (B.30) 
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Since Pi is as defined in Eq.(B.16) and since 

i o * a ( ) u * p = i a ( ) * p - a ( )  x p - a  

A -0102 - Bo1 02 = A *  B(1- 01 0 0 2 )  + A * o l B  ' 0 2  

+iA x B (02 - G I ) ,  

we find 

(B.31) 

(B.32) 

+ iG2 dln (E1 +MI ) -01 01 -P2 = iG2 dln (El +MI ) .p-G2 dln ( E 1  + M I )  x p o l  

(We perform a similar reduction of a corresponding term in (B.26b)).) 

The commutator term in Eq.(B.26a) becomes 

We 

MY€! 

1 

(B.34) 

perform a similar manipulation on the commutator in Eq.(B.26b). 

then combine the terms, divide by G2, and use 

(B.35) 
1 
-ddG = ddlnG + (i31nG)2 G 

a() = + ( ) I  (B.36) 

En'G II Zn'G 
-Q -do2 .dG = O~ -02-+ol -?a2 *?(In G- -) +a1 4 7 2  +(ln'G)2 
G r r 

(B.38) 
1 
3 

In this way we obtain Eq.(4.21a-b) in section IV from Eq.(B.26a-b) with- 

out squaring. 

(B.37) 

r̂  - air  ̂- 0 2  = -(ST + ' 0 2 ) .  
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C- Derivation of the Perturbative Spectrum fiom the Con- 

st raint Equations 

We use the general wave function 

to diagonalize the perturbation for the j = I 2 1 states or the general 

wave function 

for the j = I k 1 states. The corresponding identifications for the j = 0 

For these wave functions, the relevent matrix elements become 

2 
Inlsjm >= -6&- 

I d  < nlsjmI-- 
x2 dx n3 
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bj1-1)(1- 680) 
(C.10) 

21 2(1+ 1) 
21 + 3 bjl+l + 2bjl - (21 - 1 )  

< nlsjmISTlnlsjm >= (- 

and 

For the j = 0 states Eq.(5.9),Eq.(5.12), and Eq.(5.15) yield the dimen- 

sionless eigenvalue (defined in Sec. V) 

(C.13) 

in which 

(C.14) 
3 8P 

+ - - ~ l O [ S ( S  3M + 1) - '2-1 
for electromagnetic interactions, 

( - Z ( 1 +  1) - 2)(* - 3) 
(21 + 1)1(1 + 1) (1 - h O ) (  1 - 680) + 

for scalar interactions and 

(C.15) 
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( - I ( I +  1) - 2)(# - $) 
(22 + 1)qz + 1) (1 - 610)(1 - 6*0)  + (C.16) 

for time-like vector interactions. We then use the definition of X given 

in Sec. V for electromagnetic and time-like interactions to obtain 

which leads to the binding energies 

(C.17) 

(C.18) 

For the case of scalar dynamics the definition of A (in Sec. V) is different 

and yields 

which results in the binding energies 

(C.19) 

(C.20) 

For the case j = I 2 1, the expectation d u e s  of each of Eqs.(5.9,5.12,5.15) 

with the wave function Eq.(C.l) lead to 

1 a* Q2 
f-2 + 7 4 c 2  + --bq n3 = -Xc*. 

(C.2 1 a)  

((7.2 1 b) 

Solution of the determinantal condition for these equations yields two 

roots corresponding to the mixed spin states: 
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We term the upper root the “singlet root” and the lower one the “triplet 

root”, since as b 3 0 Eq.(C.22) degenerate to those roots. For the 

electromagnetic-like interactions, we find 

2 a = -  
21 + 1’ 

while 
2 1 - c = -  

21 + 1 (21 + 1)1(1+ 1) 
For the case of scalar interactions 

2 
21+1’ a =  

while 
2 1 2P 

-1. 21 + 1 + (21 + 1)1(1 + 1 p -  M 
C =  

For the case of time-like vector interactions, 

2 a = -  
21 + 1’ 

1 m2 - m1 - 
t b =  (21+1),,/- M - 

while 
1 2P 

(1 - & - 2 
21 + 1 c = -  

(21 + 1)1(1+ 1) 

(C.234 

(C.23b) 

(C.23~) 

( C . 2 4 ~ )  

(C.24 b) 

(C. 24c) 

( C . 2 5 ~ )  

(C.2 5b) 

( C . 2 5 ~ )  
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Using the definitions of X (in Sec.V) we’find the two binding energies for 

the split spin-mixed states for electromagnetic-like or timelike vector 

interactions: 

(C.26) 

Similarly, for scalar interactions 

(C.27) p a 2  pa4 w4 P = w - M = -- + X V f  + -(-1- -)* 
2n2 2n 8n4 M 

The values of qk 2 (a + crt= J(u - c)* + 4l.P) then depend on the form 

of interaction through the relevant a,b, and c given above. 

Next we consider the j = I & 1 2 1 spectral equations. Taking 
expectation values with the wave functions Eq.(C.2), we obtain 

(C.28a) 

(C.28b) 

Solution of the determinantal condition for these equations yields two 

roots corresponding to the mixed orbital states 

Note that b = 0 for the n = 1,2 levels since there are no I = j + 1 2 2 

states. b also vanishes for scala and time-like interactions since these 

interactions have no tensor terms through order cy4. So for a l l  of these 

states 

((7.30) 



118 

For the electromagnetic-like interactions (with n = 1,2) 

3 @ 
3M +-ho(s (s  + 1) - 5). (C.31) 

For scalar interactions (aU n) 

((7.32) ( j ( j  + 1) - l(1 i- 1) - 2 ) ( 6  - ') 
(21 + 1)1(1+ 1) 

(1 - 40)(1 - &o) ,  + 
while for time-like vector interactions (for all n) 

(C.33) 
( - Z ( 1  + 1) - 2)( fj - ') 

(1 - &o)( l  - 680) .  
+ (21 + 1)1(1+ 1) 

Just as for the j = 0 states, for the case of electromagnetic- and time-like 

interactions the binding energies are given by 

whereas for scalar interactions the binding energies are 

(C.35) 

In all cases, j = I 1 2 1. 

For the electromagnetic interactions with n 2 3 the (split) energy 

spectrum turns out to be 

(C.36) 



in which 

v* = ( u + c f  J ( u - c ) * + 4 € 9 )  (C.37) 

where 

8 P  3 
3M +---&o[s(s + 1) - 51 (C.38) 

((2.39) 

2 (-21 - 2)($ + $) + Kll-1$ 

(2E + 1)qZ + 1) ( 1 - 4 0 )  ( 1 - 680) .  (C. 40) 21 + 1 +&O+ 
e = -  

In Eq.(C.39), c n j  is the overlap radial integral < nj + 1I$Inj - 1 > 
between the n, j = E i 1 states. Surprisingly, this integrd vanishes. We 

omit the details here other than to point out that use of the contour 

integral representation of the Laguerre polynomials leads to a simple 

demonstration that the overlap integral vanishes. As a result the spectral 

results for n 2 3 have the same form as those for n = 1,2 for the 

electromagnetic interaction. We summarize the results in the text. 
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D Derivation of the Decoupled Schrijdinger-like Forms of 

Eqs.(4.21a-b) for the j = I and 3Po States 

In Refs.(4-5), we attempted to decouple the upper-upper from the 

lower-lower components in (4.21a-b) by obtaining a purely algebraic 

equation relating t)q to $1 aad substituting this into the equivalent of 

Eq.(4.21a). In the attempt, we obtained a result which was true for the 

j = I states but not true for the j = I & 1 states. Consequently, in order 

to give a UR~~OMII  treatment to all the bound-state solutions of Sec. VI, 

we used the coupled equations (4.21a-b) directly. Here we present an d- 
ternative derivation of the decoupling for the j = I states and encounter 

an error made in Refs.(4-5) in which we attempted to extend this result 

to obtain a similar algebraic equation for the j = I f :  I states. We shall 

also obtain a decoupled form of Eqs.(4.21a-b) for the 3Po state. 

As in Refs.(4-5) we begin by multiplying Eq.(B-8) by F d ( J - L ) q  

to obtain 

If we also multiply Eq.(B-15) by 

iG (El + Ml) 
2 (E2 - M2) 

-d( J - L) 02 

we obtain 
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We add this to Eq.(D.l) to obtain 

We then use the expression for PI (Eq(4.8)) and the identity 

to simplify Eq.(D.4) to 

G2 L - 0 1  {+7 - L)'[ii. ' p  - -1 
T 

(E2 - M2) G2 
(El +Ml) 4 

+ -( J - L)/G'(l - 0 1  0 2  + 0 1  - TIC72 f )  + 
(E2 - M2) iG2 (E2 - M2) G2 
( E l + M l )  2 (El +Ml) 4 +{ 

-(DJ - a L ) 2 } ~ 4  
G2 
4 

- ( J  - L)'? 01(02 - p )  + -( J - L) 'o~  - o ~ G '  

(D.6) 
G2 
4 + - ( ( J  - . L ) ' ) 2 ~ i  io2 ?}+l = 0 

in which 5; = ZnG. When the particle lables are interchanged we obtain 

the counterpart equation 

G2 L 0 2  { -# - L)'[ii. ' p  - -1 
r 

(El - Ml) G2 
(E2+M2) 4 

(El - M,) G2 
(EZ+M2) 2 (E2 +M2) 4 

-(aJ - aL)2}Q4 
G2 

+ p ( J  - L)G'(l- 0 1  - 6 2  + 6 1  - ?o2 * F) + 
-( J - L)'o~ 6 2 G t  

(El - Mi) iG2 -( J - L)'? 02(01 p )  + +{ 



1 2 2  

G2 
+,((J - L)' )*o~ r^02 - +}$I = 0. 

We difference Eq.(D.6) and Eq.(D.7) to obtain 

G2 -( J - L)' 2 r 
L (01 - "2)$4 

For the j = I states we extract an algebraic relation between $4 and 

$1 from (D.8) by using Dirac's trick of multiplying by 01 - i .02 i. This 

converts (D.8) into something more manageable, namely 

iG2 L - (01 - -( J - L)' r O2)1Cll = 0. (D.10) 
B2 

(El + W ( E 2  + M2) - 
2 

In order to turn these equations aad the ones below into radial equations 

we need the following angular momentum identities 

) < rZsjmI, < rZsjmlp2 = (--- 1 d2 Z(Z+ 1) 
r dr2" r2 

(D.11) 

(0.12) 

(0.13) 

d 
dr 

< rlsjmli? p = - < rlsjml, 

< rlOjrnJL 0 ( 0 3  + 02)  = 0, 



(D.18) 1 < rZ1 j = ZmlL (a1 - 0 2 )  =< rZOj = Zrn12[Z(Z + 1)]1, 
< rIIj = E =f= IrnlL. (01 - 0 2 )  = 0, (D.19) 

< rzOjmlST = 0, (0.20) 

< jl jmlST = 2 < j j lml ,  (0 .2  1) 

< j - I l jml ,  

(0.22) 

d- 
2 j +  1) 

< j + 11 j m f  + 6 ( 2 j  + 4) 
2 j  + 1 < j +  IIjrnlST = (- 

and 

< j - I I j m l a l ~ i o 2 ~ ?  = ( 1 < j-IIjrn1+2 VaXJ c j+lljm, 
2 j  + 1 2 j +  1) 

(0.25) 

Thus the singlet component of Eq.(D.lO) yields 



1 2 4  

or 
R2 

(0.27) 

(An independent evaluation of this for I = 0 (see (D.47)) shows that this 

is also true for I = 0). The triplet ( j  = I )  component of (D.lO) yields 

(0.28) 

These simple algebraic relations between the upper-upper and lower- 

lower components of the wave function allow us to decouple the radial 

part of (4.21b) from that of (4.21a). Eqs.(D.27,28) then take the form 

$74 = .F(r)(=-1)‘$1, s = 0,1. (0.29) 

In Refs.(4-5) we assumed that this result would dso hold for s = 1, j = Z& 
1. However, this assumption was erroneous since the operator L-(al-02) 

vanishes on j = I k 1 states, that is 

< zs = l j  = z =t lmlL (a1 - 0 2 )  = 0. (0.30) 

Since our earlier derivation of (D.27,D.28) turned out to be limited to 

j = I states, we present a new derivation based on the sum of Eq.(D.6) 

and Eq.(D.7) rather than the difference79. In addition to confirming our 

earlier result (D.27,28) this derivation leads to decoupling for the 3Po 

state (although not for any other j = Z = t  1 states). The sum of Eqs.(D.G) 

and (D.7) is 

1 L (01 + 0 2 )  G2 { 2(J  - L)I[2i+ p - 
r 
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Notice that this equation is not an algebraic equation because of the i F p  

term. Again we use Dirac's trick and multiply this by 01 -?a* s i :  leading 

to 

1 L (01 + 02)  G2 
{ G I  ?a2 ?-( J - L)'[2i+ p - 2 r 

G2 G2 -( J-L)'( 1 - 0 1  *02+01 .+a2 +'+ -( (J-L)')2}$1 = 0.  
B2 

(E1 + Ml)(E2 + M2) 2 2 + 
(0.32) 

We combine Darwin and spin-orbit terms and cancel common factors to 

obtain 

= 0. (0.33) 

Before doing an angular momentum decomposition on this equation, 

based on the form of this equation, we rewrite $4 as 

(0.34) 
B2 

(El + Ml)(E2 + M2) 
?)a = - 0 1  r  ̂ $1 + 448 
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.To simplify Eq.(D.33) we use [it p ,  01 021 = 0 and Eq(D.34) to write 

+f p44. (0 .35)  

This form plus the three identities 

? b 1 =  0. 
- [2ST + 201 +O2 ' f L  * (a1 + u2)] B2 

r (El + W ( E 2  + M2) 
(D.39) 

This equation is coupled to our main Schrlidinger equation (4.21a-b). 

To simplify the form of the coupling that comes from insertion of (D.34) 

into Eq. (4.2 1 a) we need 



1 2 7  

Then Eq.(4.21a) becomes 

1 
(p2 + 2mwS + S2 + 2ewd - d2 + 2ewV - V2 + ,(aJ - OL)2 

1 1 1 ( J  - L)'] B2 - ( 2 1 " ' ~ ~  x2(  J - L ) ' + ~ E ' (  J-L)'- f2( J -  L)+ 
r (El + &)(E2 + M2) 

B2 
(El +M1)(E2 + M2) 

fST}d-'l 11 1 1 ( J  - L)' 
-[$J - L)' - - 

6 r  

1 1 1 
6 +{[+glntx1x2(J - L)' + - L)' - -a2(J - L ) ] q  0 2  

Since d of the energy denominators in Eq.(D.42) are of form Ei +Mi > 
0, we can eliminate the non-hermitian term i? p without producing 

any squared denominators that vanish by making the scale change t/~ = 
4-Q. Then our equation (D.42) becomes 

1 
{p2  + 2mwS + S2 + 2ewA - A2 + 2eWV - V 2  + ;i(dJ - aL)2 



1 2 8  

1 1 1 

+[[;a% - L(G')2 2 - 3n'x1x2G) 3 

1 1 ( J  - L)' B2 
1 0 1  ' 0 2  

(El + W ( E 2  + M2) 
+p - L)' - - 

3 r  

1 G' 1 [I-$'' - -) r + gIn'x1xzG'l 

B2 
(El + W ( E 2  + M2) 

]sT}*l 11 
1 1 ( J  - L)' 

- [ g E ' ( J  - L)' - - 
6 r  

1 1 1 
6 +([+T;Zn'xlx2(J - L)' + sG'(J - t)' - -d2(J - L)]ai 0 2  

and is coupled to  

B2 
( J  - L)'}@4 

(El + W ( E 2  + M2) + 
9 1  =0, [2ST + 201 +a2 f l ;  (a1 + as)] B2 

(El + W ( E 2  + M2) 
- 

r 
(0 .44)  

in which 

454 = J E E - @ 4 ,  (0.45) 
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(D.46) 

We now examine the angular momentum decomposition of our set 

of coupled equations. Let ujls(r) be the radial wave function associated 

with and let ujls(r) be the radial wave function associated with @4. 

Taking the < rlsjmf component of (D.44) first for 8 = 0,I = j, we find 

that since < rjOjrnla1 i'02 i: = - < r jojrnl,  Eq.(D.44) becomes 

( J - L ) ' } ~ j o j  = 0. (0.47) 
d B2  

dr (El + Ml)(E2 + M2) 
-{ 2- + l n ' ~ i  ~2 +3Gt+ 

The only solution to this and Eq.(D.10) is ujoj = 0. Note that this 

solution of Eq.(D.34) corresponds to our earlier solution Eq.(D.27). Our 
main equation Eq.(D.43) then becomes 

in which the effect of the coupling to the lower-lower component is ac- 

counted for by the terms in square brackets. Next we consider the case 

of s = l,j = I for which Eq.(D.44) becomes 

( J  -. t)'}vjl j = 0 9  

d 2  B2 
(El + M)(E2 + M2) 

2{2-& + - + Zn'x1x2 + 2G' + r 
(0.49) 
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which again has the simple solution vjlj = 0, in agreement with our 

earlier solution Eq.(D.28). Our main equation Eq.(D.43) then becomes 

1 1 1 ( J  - L)'] B2 
r (El + W(E2 + M2) 

- [ - E  n'x1 x2 ( J-L)'+ -GI( J-L)'- -a2 ( J - L )  + 
2 2 2 

Note that these two Schrodinger equations (Eqs.(D.48) and (D.50)) de- 
couple completely for equd mass systems and that in both cases the 

effects of the coupling to the lower-lower component is accounted for by 

the terms in square brackets. 

Next we examine the s = l,Z = j k 1 equations. Our auxiliary 

equation Eq. (D.44) becomes the two coupled equations 

B2 
(0.51) - 4 m  (El + MI)(& + M2)uj-11j = *, 

and 

1 d j-1 B2 
2 j +  1 12- dr +In'x1 x2 - 2 -+( r 2j+l)E14- ( J-L)' }] j - 1 1 j (El + Ml)(E2 + M2) 
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Notice that for j = 0 the v wave functions again vanish so that we obtain 

decoupling €or the 3Po states. For the general j = I 1 > 0 case the 

above two equations are first order differentid equations coupled to the 

two coupled Schrodinger equations 

B2 
1 
(El 9. Ml)(E2 + M2) 

1 1 1 4( J - L)' - [ 2Zn'x1 x2 ( J-L)'+ $( J-L)'- sa2 ( J - L )  - 
3r 

2 j + 4  1 G' 1 - 2 j  + 1 [[-,(G" - -1 r + px1x*G'] 

B2 
(El + Ml)(E2 + M2) 1 hj+ll  j 11 1 1 (J - L)' 

-[$'(J - L)' - - 
6 r  

B2 
(El + MI)(E~ + Mz)  l b j - 1 1  j 11 1 1 ( J  - L)' 

-[gG'(J - L)' - - 
6 r  

2 j + 4  1 1 ( J  - L)' 
2 j + 1  [+glntx1x2(J - L)' - g ( ( J  - L)" - T > 1 b j + 1 1  j 

- 

I 

(0.53) 
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and 

] } ~ j - 1 1  j 
1 1 ( J  - L)' B2 

) ] (El  + M l ) ( E 2  + M2) 
-[zG'( J - L)' - - 

6 r  

We would need to solve these four simultaneous equations in the general 

case. Note that they would provide an alternative to the set of equations 

(6.3a-d) used in the text. For the 3Po our main equation Eq.(D.43) 

simplifies to 

1 d2 2 + - + 2mWS + S2 + 2ewA - A* + ~ E , V  - V2 + , (aJ - aL)2 1 - s  7-2 
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2( J - L)' B2 
3r ](El  + W)(& +M2) + 

( 0 . 5 5 )  

For QED ( L  = 0 , J  = -Q and S = 0 = V), our j = I (Eqs.(D.48) 

and (D.50)) equations become 

(D.56) 

and 

Note that for equal masses after extensive cancellations Eq.(D.56) sim- 
plifies to 
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which can be solved exactly2 for A = --Q/r in agreement with the &hall 
version presented in Ref.(l6). We will not use the four coupled I = j If 1 

equations €or j > 0 . For the 3Po state for QED Eq.(D.55) simplifies to 

For equal masses this becomes 

8 2  {--p + - + 2 ~ , A - d '  r2 

1 d' 1 + S( -)2 
A' -8- 
TW 1 - 2A/w w (1 - 2 d / ~ ) ~  

1 
}uno = b2(W)Ull0. 

d2 A 
+4- 

w 1 - 2A/w 

(0.58) 

(0.59) 

When A = -a/r this becomes Eq.(7.1) in the text. Eq.(7.2) for the 

j = 2,s = 0 states for equal masses follows from our Eq.(D.56). 
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TABLE I. Comparison between perturbatively and numerically cd- 
dated energy levels for positronium. 

The first four columns list the quantum numbers 1, 5 ,  j, n. In the fifth 

column is the number of coupled equations Nc that were used to perform 

the numerical test. In the next column are the energy levels obtained 

from the perturbative expansions given in section V. The last column 

gives the difference between the perturbative and numerical calculations 

divided by pa4/n3.  

I s j n N ,  p er t ur bat ive numerical diff/$ 

0 0 0 1  1 
0 0 0 1  2 
0 1 1 1  1 

0 1 1 1  2 M  
0 1 1 1  2 c 
0 1 1 1  4 

0 0 0 2  1 

0 0 0 2  2 

0 1 1 2  1 

0 1 1 2  2 M 
0 1 1 2  2 c 
0 1 1 2  4 

3 . 0 1 2  1 

1 0 1 2  2 
1 1 0 2  1 

1 1 0 2  2 

-6.8033256279 
-6.8033256279 
-6 3028426132 

-6.8028426132 

-6.8028426132 

-6.8028426132 

- 1.7007875394 
-1.7007875394 

-1.7007271626 
-1.7007271626 

-1.7007271626 

-1.7007271626 
-1.7007271626 

-1.7007271626 
-1.7007573510 

-1.70075?35lO 

-6.8032861579 
-6.8033256719 

-6.8028074990 

-6.8028082195 

-6.8028239499 

-6.8028426636 

-1.7007826068 

-1.7007875467 

- 1.7007227741 
-1.7007228642 

-1.7007248306 

- 1.70072 7 1 700 
-1.7007271630 

-1.7007271630 
-1.7007573538 

-1.7007573563 

5.45E02 
-6.08E05 

4.843-02 

4.753-02 

2.58E02 

-6.973-05 

5.453-02 

-8.04E05 

4.853-02 

4.75E.02 

2.57E02 

-8.09E-05 
-5.023-06 
-5.02E06 

-3.08E-05 

-5.82E05 
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1 1 1 2  1 

1 1 1 2  2 

1 1 2 2  1 

1 1 2 2  2 M 
1 1 2 2  2 c 
1 1 2 2  4 

0 0 0 3  1 

0 0 0 3  2 

0 1 1 3  1 
0 1 1 3  2 M 
0 1 1 3  2 c 
0 1 1 3  4 

1 0 1 3  1 

1 0 1 3  2 

1 1 0 3  1 

1 1 0 3  2 

1 1 1 3  1 

1 1 1 3  2 

1 1 2 3  3. 

1 1 2 3  2 M 

1 1 2 3  2 c 
1 1 2 3  4 
2 0 2 3  1 
2 0 2 3  2 
2 1 1 3  1 

2 1 1 3  2 M 

-1.7007347097 

-1.7007347097 

-1.7007165966 

- 1.7007165966 
-1 -7007165966 

-1.7007165966 

-0.7558959994 

-0.7558959994 

-0.7558781 100 

-0.7558781100 

-0.7558781100 

-0.7558781108 

-0.7558781 100 

-0.7558781100 

-0.7558870547 

-0.7558870547 

-0.7558803462 

-0.7558803462 

-0.7558749793 

-0.7558749793 

-0.7558749793 

-0.7558749793 
-0.7558745321 
-0.755874532 1 

-0.7558767683 

-0.7558767683 

-1.7007347102 

-1.7007347103 

-1.7007165969 

- 1.70071 65969 
-1.7007165969 

- 1.7007165969 
-0.7558945397 
-0.7558960034 

-0.7558768116 

-0.7558768383 

-0.7558774209 

-0.7558781 140 

-0.7558781 115 

-0.7558781115 

-0.7558870569 
-0.7558870577 

-0.7558803477 

-0.7558803478 

-0.7558749808 

-0.7558749808 

-0.7558749808 

-0.7558749808 
-0.7538745324 
-0.7558745324 
-0.7558767686 

-6.7558767686 

-3.26E-06 

-6.833-06 

-3.00E06 

-3 .O 1 E06 
-3.11E06 

-3.273-06 

5.44E02 

-1.473-04 

4.84E02 

4.743-02 

2.57E02 

- 1.5 1E04 
-5.713-05 

-5.71E05 

-8.263-05 
-1.1 2E04 

-5.71’3-05 

-6.02E-05 

-5.47E-05 

-5.473-05 

-5.48E05 

-5.50E05 
- 1 1 6E-05 
-1 e l6E05 
-1 .29E05 

-1-293-05 
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2 1 1 3  2 c -0.7558767683 

2 1 1 3  4 -0.7558767683 

2 1 2 3  1 -0.7558749793 

2 1 2 3  2 -0.7558749793 

2 1 3 3  1 -0.7558732543 

2 1 3 3 2 M -0.7558732543 

2 1 3 3  2 c -0.7558732543 

2 1 3 3  4 -0.7558732543 

-0.7558767686 

-0.7558767686 

-0.7558749797 

-0.7558749797 

-0.7558732546 

-0.7558732546 

-0.7558732546 

-0.7558732546 

-1.29EOS 

-1.293-05 

-1.17E05 

-1.17E-05 

-1.13E05 

-1.13E-OS 

-1.13E05 
-1.14E05 
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TABLE 11. Comparison between perturbatively and numerically cal- 

culated energy levels for muonium. 

The first four columns list the quantum numbers I ,  s, j ,  n. In the fifth 

column is the number of coupled equations Nc that were used to perform 

the numerical test. In the next column are the energy levels obtained 

from the perturbative expansions given in section V. The last colllmn 

gives the difference between the perturbative and numerical calculations 

divided by p 4 / n 3 .  

l s j n N ,  pert urbat ive numerical diff/$ 

0 0 0 1  1 
0 0 0 1  2 

0 1 1 1  1 

0 1 1 1  2 M  

0 1 1 1  2 C 

0 1 1 1  4 

0 0 0 2  1 

0 0 0 2  2 

0 1 1 2  1 

0 1 1 2  2 M 

-13.5404101578 

-13.5404101578 

-13.540391 7381 

- 13.540391 7381 
-13.540391 7381 

-13.5403917381 

-3.3851119169 

-3.3851 119169 

-3.3851096144 

-3.385 1096144 

-13.540410298 

-13.5404101 581 

-13.540391 5568 

-13.5403915646 

-13.5403916417 

-13.5403917373 

-3.3851 119037 
-3.3851 119197 

-3.3851095945 

-3.3851095954 

8.873-05 
-2.44E07 

1.263-04 

I.. 20E-04 

6.69345 

5.523-07 

7.323-05 

-1.593-05 

1.1 1E04 

1.05E-04 

0 1 1 2  2 c -3.3851096144 -3.3851096051 5.18E-05 

0 1 1 2  4 -3.3851096144 -3.3851096170 -1.45’3-05 

l Q 1 2  1 -3.3850653181 -3.385080 1475 -8.23E02 

1 0 1 2  2 M -3.3850653181 -3.3850801475 -8.23E-02 

1 0 1 2  2 c -3.3850653181 -3.38506531 87 -3.35E.06 

1 0 1 2  4 -3.3850653 181 -3.3850653187 -3.353-06 
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1 1 0 2  1 

1 1 0 2  2 
1 1 1 2  1 
1 1 1 2  2 M 
1 1 1 2  2 c 
1 1 1 2  4 

1 1 2 2  1 
1 1 2 2  2 M 
1 1 2 2  2 c 
1 1 2 2  4 
0 0 0 3  1 
0 0 0 3  2 
0 1 1 3  1 

0 1 1 3  2 M 
0 1 1 3  2 c 
0 1 1 3  4 

1 0 1 3  1 
1 0 1 3  2 M 
1 0 1 3  2 c 
1 0 1 3  4 

1 1 0 3  1 

1 1 0 3  2 

1 1 1 3  1 
1 1 1 3  2 M 
1 1 1 3  2 c 
1 1 1 3  4 

-3.3851107657 

-3.3851 107657 

-3.3851099973 

-3.3851099973 

-3.3851099973 

-3.3851099973 

-3.3850650 102 
-3.3850650102 

-3.3850650102 

-3.3850650102 

-1.5044889089 
-1.5044889089 
-1.5044882267 

-1.5044882267 

-1.5044882267 

-1 3044882267 

-1.5044751019 

-1.5044751019 

-1.5044751019 

-1.5044751019 

-1.5044885678 

-1.5044885678 

- 1.5044883402 
-1.5044883402 
-1.5044883402 
-1.5044883402 

-3.3851 107678 

-3.3851 107678 

-3.385095 1694 
-3.3850951694 

-3.385 1099994 

-3.383 1099994 
-3.3850650108 

-3.3850650108 
-3.3850650108 

-3.3850650 108 
-1 .SO44889088 

-1.5044889135 

-1.5044882246 

-1.5044882248 

-1.5044882277 

-1.5044882312 

-1.5044794986 

-1.5044794986 

- 1.5044751048 
-1.504475 1048 

-1.5044885713 

-1.5044885713 

-1.5044839495 
-1.5044839495 

-1 SO44883436 
-1.3044883436 

- 

-1.20E05 
-1.22E05 

8.23&02 

8.23E-0 2 

-1.15E05 

-1.16E05 
-3.32E06 

-3.32E06 

-3.32EO6 
-3.32E06 

3.43l3-06 
-8.57E05 

4.083-05 

3.54E05 

-1.80E05 

-8.433-05 

-8.233-02 

-8.23E02 

-5.51E05 

-5.47E05 
-6.42E05 

-6.44E05 

8.22E02 
8.223-02 
-6.37E05 
-6.37E05 
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1 1 2 3  1 

1 1 2 3  2 M 
1 1 2 3  2 c 
1 1 2 3  4 

2 0 2 3  1 

2 0 2 3  2 M 
2 0 2 3  2 c 
2 0 2 3  4 

2 1 1 3  1 

2 1 1 3  2 M 
2 1 1 3  2 c 
2 1 1 3  4 

2 1 2 3  1 

2 1 2 3  2 M 
2 1 2 3  2 c 
2 1 2 3  4 

2 1 3 3  1 

2 1 3 3  2 M 
2 1 3 3  2 c 
2 1 3 3  4 

-1.5044750107 

- 1.5044750107 
-1.5044750107 

-1.5044750107 

-1.5044706145 

-1.50447061 45 

-1.5044706145 

-1,5044706145 

-1.5044750789 

-1,5044750789 

-1.5044750789 

-1.5044’750789 

-1 5044750242 

-1.5044750242 

-1.5044750242 

-1.5044750242 

-1.5044705793 

-1.5044705793 

-1.5044705793 

-1.5044705793 

-1.5044750136 

-1.5044750136 

- 1.5044750 136 
-1.5044750136 
-1.5044723749 

-1.5044723749 

-1.5044706151 

-1 .SO44706151 

-1.5044750795 

-1.5044750795 

-1.5044750795 

-1.5044750795 

-1.5044732651 

-1.5044732651 

-1.5044750249 
-1.5044750249 

-1.5044705799 

-1.5044705799 

-1.5044705799 

-1.5044705799 

-3.52E05 

-5.52E05 

-5.52E-05 

-5.52E05 

-3.30E02 

-3.30E02 

-1.13E05 

-1.13E05 

-1.223-05 

-1.22E05 

-1.223-05 

-1.223-05 
3.29E02 

3.293-02 

-1.21E05 

-1.21E05 

-1.14E05 

-1.14E05 

-1.14E-05 

-1.14E05 
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TABLE 111. Comparison between perturbatively and numerically 

calculated energy levels for scalar interactions 

The first four columns list the quantum numbers I ,  8 ,  j ,  n. In the fifth 

column is the number of coupled equations Nc that were used to perform 

the numerical test. In the next column are the energy levels obtained 

from the perturbative expansions given in section V. The last column 
gives the difference between the perturbative and numerical calculations 

divided by por4/n3. 

I s j n N .  per turbat ive numerical diff/$ 

0 0 0 1  1 -6.8024199753 -6.8023461 124 0.10E00 

0 0 0 1  2 -6.8024 199753 -6.8024197886 2.58E-04 
0 1 1 1  1 -6.8024199753 -6.8023461 124 0.1 lEOO 
0 1 1 1  2 M -6.8024199753 -6.8023530264 9.24E02 

0 1 1 1  2 c -6.8024199753 -6.8023461124 O.llE00 

0 1 1 1  4 -6.8024 199753 -6.8024 197446 3.18E04 
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TABLE IV. Comparison between perturbatively and numerically 

calculated energy levels for time-like interactions 

The first four columns list the quantum numbers I ,  8 ,  j, n. In the fifth 

column is the number of coupled equations Nc that were used to  perform 

the numerical test. In the next column are the energy levels obtained 

from the perturbative expansions given in section V. The last column 

gives the difference between the perturbative and numerical d a d a t i o n s  

divided by pcu4/n3. 

I s j n N ,  perturbative numerical diff/$ 

0 0 0 1  1 -6.8031 444973 -6.8030849884 8.2 1 E02 

0 0 0 1  2 -6.8031444973 -6.8031443059 2.64&04 

0 1 1 1  1 -6.8031 444973 -6.8030849884 8.21EO2 
0 1 1 1  2 M  -6.8031444973 -6.8030907008 7.433-02 

0 1 1 1  2 c -6.803 1444973 -6.8030849884 8.24l3-02 
0 1 1 1  4 -6.8031444973 -6.8031442880 2.89E-04 
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Figure Captions 

Fig. la  The effective potentials @(lPl)++ (upper line) md 

3 (lower line) in uni ts  of MeV2 as functions of r in fermis. 

Fig. lb The effective potential + 3 in Units of MeV2 versus 

r in fermis. 
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