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ABSTRACT 

Recent work by Johnson, Moore and Ylvisaker (1990) establishes equivalence of the 

maximin distance design criterion and an entropy criterion motivated by function prediction 

in a Bayesian setting. The latter criterion has been used by Currin, Mitchell, Morris, and 

Mvisaker (1991) to design experiments €or which the motivating application is approximation 

of a complex deterministic computer model. Because computer experiments often have a 

large number of controlled variables (inputs), maximin designs of moderate size are often 

concentrated in the corners of the cuboidal design region, i. e. each input is represented at 

only two levels. Here we will examine some maximin distance designs constructed within the 

class of Latin hypercube arrangements. The goal of this is to find designs which offer a 

compromise between the entropy/maximin criterion, and goad projective properties in each 

dimension (as guaranteed by Latin hypercubes). A simulated annealing search algorithm is 

presented for constructing these designs, and patterns apparent in the optimal designs are 

discussed. 





1. INTRODUCI'ION 

The setting for this paper is that of deterministic function approximation, a subject which 

has attracted increasing attention in the statistical community in recent years. We shall 

denote the function of interest by y, and say that it has arguments dl), d2), d3), ... , 
written collectively as the k-vector x The eventual aim is that of constructing an 

approximation or prediction of y(x) for any XET where T is a defined domain or region of 

interest. In this paper we will limit consideration to T = [0, l]', that is, we will suppose that 

the range of each function argument has been scaled to the unit interval, and that the joint 

region of interest is the k-dimensional unit cube. 

In the kind of application that we consider here, y is often expressed as a computer 

model, hence the phrase computer euperiment. In this context, y may be thought of as a scalar 

output (or some chosen scalar function of vector outputs) of the deterministic model which 

results from specified values of inputs x. When y is difficult to evaluate, e.g. requires 

considerable machine time on an advanced computer system, we may for practical purposes 

consider y to be an "unknown" function of the inputs, since classical analysis of the function 

is often impossibly complicated. 

In this paper, we are interested in the design of a computer experiment, comprised of n 

evaluations of y at selected values of x, to serve as the basis for constructing an 

approximation of y which can be easily evaluated at input values for which the computer 

model has not been evaluated. Such a "cheap" surrogate for y is useful in computational 

activities which require many hnction evaluations, e-g. maximization or Monte Carlo 

simulation. Applied research in statistical approaches to the design and analysis of computer 

experiments for this purpose has been discussed by Sacks et  al. (1989) and Currin et  al. 

(1991). 

The basis of our work is described in the latter reference, and follows in the spirit of 

fundamental work in Bayesian function prediction by, for example, Kimeldorf and Wahba 

(1970) and Micchelli and Wahba (1981). Basically, a "spatial" stochastic process or random 

function Y is defined over T as an initial expression of our uncertainty about y. Here, Y will 

be a stationary Gaussian process for which 



2 

i.e. correlation between two input values (or "sites", borrowing an intuitive term from 

geostatistics) is a function of some distance d defined between those two values. In this 

paper, we shall specifically consider rectangular and Euclidean distance, i.e. 

k 

I=1 
d (x,, xJ = C 1 x:' -x? I and 

r 

respectively. Once a design of n runs has been specified, and the corresponding evaluations 

of y made, completion of a prediction of y at any x is straightforward: Bayes' Theorem leads 

to a posterior process, which is also Gaussian, and squared error loss leads to the use of the 

posterior mean function (of x) as the prediction or approximation, 9 (x). In addition, the 

variance or standard deviation of the posterior process at a particular site can be thought of 

as a measure of "predictive uncertainty" at that site. 

The remainder of this paper is concerned with the construction of experimental designs 

for constructing function predictions, loosely motivated by the general prediction methodology 

just described. 

2 ANOPTIWWTYCXITEFUON 

Given a definition of distance, the following notation is useful in discussing our criterion 

for ranking designs. For a given design D, define a distance list d = (dl, d,, .-, d,) in which 

the elements are the distinct values of inter-site distances, sorted from the smallest to the 

largest. Hence m can be as large as or as small as 1. Also, define an index list 13 
J = (J1, Jz, .-, J,), in which J j  is the number of pairs of sites in the design separated by 

distance dj .  Hence the sum of elements of J must be 

Johnson, Moore, and Ylvisaker (1990) explored several connections between certain 

statistical and geometric properties of designs; in our context, one of their results can be 
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stated as €allows. Let Ye,  8 = 1, 2, 3, -, be a sequence of stationary Gaussian stochastic 

process over T, which differ only in that the correlation function for 

Ye is Ro(xs-xJ = [R (d(x,, %))le. Here R is a fured correlation function which must be 

decreasing in d. The result may then be briefly stated as follows: As 8 tends to infinity, the 

designs that minimize the generalized variance of the posterior process at any finite collection 

of sites not observed are necessarily those for which (l)d, is maximized, and among the 

designs for which this is true, (2)J, is minimized. The authors referred to designs which have 

this property as maximin (Mm) designs of minimum index. The result then establishes a 

connection between the geometric Mm criterion, and what might be called a "D-optimal" 

prediction criterion in a limit as local correlations become weak. 

Here, we shall extend the definition of a maximin design in a somewhat arbitrary but 

intuitively appealing manner as follows. Call D a maximin design if among available designs, 

maximizes d,, and among designs for which this is true, 

minimizes J1, and among designs for which this is true, 

maximizes d,, and among designs for which this is true, 

minimizes J2, and among designs €or which this is true, 

... 

maximizes d,, and among designs €or which this is true, 

minimizes J,. 

Because requirements l a  and l b  alone specify Johnson, Moore, and Ylvisaker's definition of 

a Mrn design, our more elaborate definition for Mm optimality essentially only breaks ties 

among multiple designs which would be Mm (and of minimum index) by their definition. 

Although this extended definition of Mm is intuitively appealing, we have not established 

connections between it and asymptotic statistical optimality of higher order. 

In the following, it will be necessary to have a scalar-valued design criterion function 

which can be used to rank competing designs in such a way that the Mm design receives the 
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highest ranking. For this, we introduce a family of functions 

wherep is a positive integer, and 4 and dj characterize the design D. Note that for large 

enoughp, each term in the sum in (2.1) dominates all subsequent terms, and so from any 

design class, the designs that minimize 4 are the Mm designs in that class. The issue of 

selecting a value ofp lor a given numerical search will be discussed later. 

3. A CLASS OF DESIGNS 

Although the Mm criterion has much intuitive appeal, and the work of Johnson, Moore, 

and Mvisaker provide a sound theoretical justification €or its use, there are certain 

characteristics of many unconstrained Mm designs which may not be desirable for 

computational experiments in practice. Consider, for example, the case in which n = k+l , and 

n is a multiple of 4. For these problems, it can be shown that orthogonal arrays such as 

Plackett-Burman designs are Mm for T = [ O ,  ilk, with respect either to rectangular or 

Euclidean distance. However, it is often the case that only one or a few input variables have 

nonnegligible influence on y, and that the effects of these inputs can be nonlinear. In such 

circumstances, a two-level design ”collapses” to yield only a few data points, with no response 

information at intermediate values of any input variable. Of course, the same can be said of 

many physical experiments; Box and Meyer (1986) use the phrase “effect sparsity” to describe 

physical experiments in which a relative few controlled factors are important. However, in 

physical experiments, y generally includes a random noise component, and a collapsed two- 

level design provides replication which is useful from the standpoint of estimation. Since (by 

our definition) computational experiments involve no random noise, even this benefit is lost 

in this context. 

The work reported here is a first step toward developing computational experiment 

designs which are good both in situations of “effect sparsity“ and in situations where all or 

most inputs are important. Here, we shall attempt to accomplish such a “compromise” by 

applying the Mm criterion within a class of designs for which each one-dimensional projection 

(i.e. “collapsed” image) is Mm, as follows. For each of the k design variables, the n scaled 
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values to be used in the experiment are elements of the set I/ = (0, l/(n-1), 2/(n-l), .-, 1)). 
The designs in the class to be investigated assign some ordering of these values to each input 

variable for the n runs in the experiment, i.e. each column of the n-by-k design matrix 

contains some permutation of these values. Where these permutations are selected randomly, 

the result is what Patterson (1954) called a lattice sample, and is a special case of what 

McKay, Conover, and Beckman (1979) called a Latin hypercube sample. Here, we will not 

discuss randomized design, but will use this structure as a class from which we hope to identify 

(fixed) Mm designs; we shall refer to these as maximin Latin hypercube (MmLh) designs. 

(Park (1991) also considered the class of Latin hypercube arrangements in an optimal design 

setting using a different selection criterion.) 

4. A DESIGN CONSTRUCI'ION ALGORITHM 

The algorithm described in Figure 1 is a version of the Metropolis algorithm, or 

"simulated annealing". (A discussion and example of the use of optimization by simulated 

annealing in statistical design problems is given by Bohachevsky, Johnson, and Stein (19&6).) 

Briefly, a search begins with a randomly chosen Lh design, and proceeds through examination 

of a sequence of designs, each generated as aperturbation of the preceding one. In this case, 

a perturbation D, of a "current" design D is formed by interchanging two randomly chosen 

elements within a randomly chosen column of the corresponding design matrix. (For 

simplicity, we shall use the notation D to denote both a design and its associated design 

matrix.) In the course of the search, any time a perturbation of the current design leads to 

an improvement, i.e. has a lower value of 4 then the current design, it is adopted as the new 

current design from which the next perturbation is generated. If a perturbation of the current 

design leads to a worse design, a random decision is made either to discard the perturbation 

and retain the current design, or to replace D with D,. In this case, replacement occurs with 

probability 

= exp I-[+ (Ow) - cb (Ql/O. 

where t is an algorithm parameter known as the "temperature", a term which comes from the 

original physical motivation for annealing as an optimization process. Hence perturbations 

which lead to slightly worse designs (as measured by 4) are more likely to replace the current 
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Figure 1: Search Algorithm 

2.) Initializations. 
Randomly select design D from the class. 
Set D h  to D. 
Set t tote 

3.) Temperature loop. 
Set FLAG to 0. 
Set I to 1. 

4.) Perturbation loop. 
Set D ,  to D , 
Exchange two randomly selected elements in a randomly selected 

column of D,. 

5.) If 4p (D ,) < @p (D), or With probability e -t4p co H, (D g)Y, , 
SetD toD,. 
Set FLAG to 1. 

7.) If I e fmlx, 
Branch to step 4. 

8.) If FLAG = 1, 
Multiply t by FAC, . 
Branch to step 3. 

9.) Stop and report Dh. 
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design than perturbations which lead to significantly worse designs. Also, a given increase in@ 

(decrement in design preference) is more likely to be accepted early in the search, when the 

temperature has a relatively high value, than it is later in the search as the temperature is 

"cooled. This randomized behavior is intended to provide a means by which the search may 

escape from designs which are only locally optimal, i s .  cannot be improved with respect to 4 
by any single perturbation. Throughout the search, the algorithm keeps track of the "best" 

design encountered to date, D,. After a given number of perturbations have been tried at 

a given temperature without improving the best design, the temperature is lowered by a 

standard factor and the search continues. When, after a large fmed number of tries, no 

exchange of the current design for a perturbed design results in an improvement (lower value 

of 4) at a given temperature, the search is ended and Dbt is reported. 

In order to implement the annealing algorithm, the values of certain algorithm parameters 

must be set. As in most applications of annealing €or optimization, we do this by a 

combination of experience and heuristic rules which seem to work well. Below, we list some 

brief guidelines which we currently use in setting these values. 

Choice of to: This is the initial value oft ,  the temperature parameter. For rectangular 

distance, fo is chosen through a heuristic argument applied to a hypothetical design with 

a distribution of inter-site distances which is uniform between 50% and 150% of the 

average inter-site distance. This range can be determined before the search since average 

inter-site distance for this class of designs is completely determined by the values of n and 

k. The value of to is then set so that a perturbation of this hypothetical design which 

decreases one of the currently smallest intersite distances by a small value b would be 

accepted with high probability; we currently use b = l/(n -1) , the smallest possible inter- 

site distance along any one coordinate axis. Specifically, we determine the value o f t  for 

which such a perturbation would be accepted with probability x = 0.99. A similar 

procedure is used for determining to for a search involving Euclidean distance, except that 

in this case, we actually perform the search using the square of distance. The 

hypothetical design has a uniform distribution of squared Euclidean inter-site distances 

for which the average is determined by n and k, and we use b = l / ( ~ l ) ~  in selecting a 
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value for to.  As mentioned above, these rules are heuristic, but seem to work fairly well 

in practice; other rules might be more effective. The goal is to begin with a temperature 

high enough so that the algorithm performs a nearly unbiased random walk among 

candidate designs early in the search, but not so high that it wastes too much time doing 

this. 

Choice of FAC,: This is the factor by which the temperature is modified, i.e. a value of 

0.95 results in a 5% reduction in temperature. Values slightly less than one yield 

relatively slow decreases in temperature (relatively slow, relatively successful searches), 

while smaller values yield more rapid decreases (relatively fast, relatively less successful 

searches). We have not attempted to develop a reasonable rule-of-thumb for such values, 

but have used 0.90 and 0.95 with generally good results. 

Choice of Imm: This parameter is the number of design perturbations the algorithm will 

try before going on to the next temperature, provided no new best design is found. 

Whenever a new best design is identified, the counter is reset so that I,,, additional 

perturbations are tried at that temperature. It seems reasonable that Imax should be 

larger for larger problems, i.e. those for which the number of possible perturbatbns, 

x k, is relatively large. We have used about 10 times this number for the value of ("2) 
Imax in many optimizations. 

5. CHOICE OF A SPECIFIC CRITERION FUNCJTON @) 

The algorithm as outlined above is used to search for a design which is $,-optimal, for 

a specified value of p . Recall that the argument for use of $, as a criterion function is based 

on the fact that, for large enough p, it ranks designs for a given problem in the same way that 

the more cumbersome maximin criterion (statements l a  through mb) does. A practical issue 

is then how large p must be. Figure 2 displays the ranking of designs for the problem in 

which n = 5, k = 3, and rectangular distance is used, based both upon 4p for three values of 

p, and +-, is. the true maximin ranking. (A small problem is used here so that all 142 
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Figure 2 Comparison of Design Rankings by @p and 
Mm; Rectangular Distance, n=5, k=3 
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unique designs could be represented on the graphs.) In this case, when p = 1 the best design 

by the I# criterion does not coincide with the Mm design. For p = 2, although there is some 

difference between how designs are ranked, the two criteria rank the same design as best. 

Finally, it seems clear that p as small as 5 is sufficient for purposes of searching for an 

optimal design in this problem. This varies greatly with the specific problem, however. Often, 

but not always, larger problems (those defined by larger values of n and k) require values of 

p as large as 20 to 50 before the best design found ranks best with respect to both the Mm 

and I$ criteria. 

There is, however, another consideration regarding choice of y. The algorithm described 

above tends to more reliably find a design which minimizes 4p whenp is set to a relatively 

small value. Figure 3 contains a histogram showing the fraction of searches (out of 100 tries) 

which found the Qb-optimal design when n = 8 and k = 4 ,  for several values of p. Clearly, 

smaller values of p lead to greater success rates in this problem (and others). In this case, 

designs which minimized 4p for each value ofp examined also minimized Qb, i.e. even the 

+l-optimal design is a Mm design. 

These two observations imply that the best value ofp would be the smallest one for which +p 

and the Mm criterion agree at least on which design is best. In practice, this seems 

impossible to predict in advance. One can envision relatively straightforward heuristic 

sequential strategies which might "hone in" on a good value of p in a sequence of several 

optimizations; to date we have not tried this. Our current approach is to simply use the 

annealing algorithm to perform several searches at each of several values ofp;  we currently 

use p = 1, 2, 5, 10, 20, 50, and 100. The optimized design which is best with respect to the 

maximin criterion is selected as the single product of the exercise. 

6. SOMERESULTS 

The algorithm described above has been used to generate the catalog of MmLh designs 

listed in Appendices A and B, for Euclidean and rectangular distance, respectively. A 

catalogue of computed MmLh designs for each distance measure is listed in Appendices A 
and B for each combination of n between 3 and 12 and k between 2 and 5. Additional 
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designs are listed for k = 2 (n through 20), k = n (n through 9), and k = n/2 (n through 14). 

The algorithm described above was used in generating most of these designs. However, in 

some cases for which it was computationally practical, the design listed was found by complete 

search over all Latin hypercube arrangements; this was done for k = 2  with 

n < 11, k = 3  with n s 6, and k = 4  with n i 5. 

Tables l .A and l .B show the smallest value ofp for which the apparently optimal design 

was found, and the fraction of tries at that value ofp which resulted in that or an equivalent 

design. As can be seen from these tables, there are many cases in which the best design 

found was produced in only a small number of optimizations. In some of these cases, it may 

very well be that better designs exist. 

Tables 2.A and 2.B contain values of the minimum distance between pairs of sites in each 

design, and the index J1, i.e. the number of pairs of separation d , .  It is useful to remember 

that the largest possible distance between two sites is k for rectangular distance and klR for 

Euclidean distance. 

Selected designs with k = 2  are graphed in Figures 4.A and 4.B for Euclidean and 

rectangular distances, respectively. The sites for these designs, particularly for larger values 

of n, are generally equally spaced along parallel lines; the Latin hypercube structure implies 

that these lines cannot be parallel with either axis. The designs displayed for n = 1'7 are 

identical for the two distance measures, and similar for n = 9, while the definition of distance 

seems to be more important for the designs of n = 5 and 13 points. 

An interesting property shared by some of the designs is the tendency of design sites to 

be approximately or exactly equidistant from the center of T. For the designs computed here, 

this property holds primarily among those designs for which n = k or It = 2k. Tables 3.A and 

3.B give the minimum and maximum distances between a design site and the center of T for 

each design. 

The designs for which n =2k have other interesting properties. In particular, all such 

designs tabulated, except in the case of n = 14 based on rectangular distance, are foldover 

designs. By this, we mean that the design can be partitioned into pairs of sites, each with the 

property that one site is the reflection through the center of T of the other site. Another 

interesting geometric property holds' for several of these designs. If one site from each 
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Table 1A Smallest value of p for which the apparently optimal design was found, and 
the fraction of tries at that vdue of p which resulted in that or an equivalent design; 

Euclidean distance. 

n 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 

a 
a 

a 
a 
a 
a 
a 
a 

U 

a 

a 
a 

a 
a 

a 
a 
a 
a 

1 
8/10 

5 
1/10 

1 
7/10 

5 
4/10 

5 
1/10 

1 
8/10 

5 
1/10 

20 
2/10 

100 
1/10 

3 

a 
a 

a 
a 

a 
a 

a 
a 

5 
10/10 

50 
1/100 

20 
6/25 

5 
1/25 

50 
8/100 

-1 
55/100 

4 
a 
a 

a 
a 

a 
a 

2 
1/10 

20 
1/10 

1 
5/10 

100 
2/25 

5 
1/50 

50 
1/100 

50 
1/100 

k 

5 

1 
50150 

1 
25/25 

z 
21/25 

1 
44/50 

1 
3/50 

20 
2/50 

20 
1/25 
1 

1/15 

100 
moo 

20 
1/100 

6 7 8 9 

2 
2/25 

2 
1/100 

10 
1/25 

1 
1/25 

5 
li25 

20 
1/100 

a: Designs found by complete search. 
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Table 1.B Smallest value ofp  for which the apparently optimal design was found, and 
the fraction of tries at that value o fp  which resulted in that or an equivalent design; 

Rectangular distance. 

k 

n 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 

a 
a 

a 
a 

a 
a 

a 
a 

a 
a 

a 
a 

a 
a 

U 

a 

a 
a 

1 
10/10 

5 
5/10 

2 
9/10 

1 
10/10 

10 
5/10 

2 
9/10 

20 
5/10 

10 
1/10 

1 
5/10 

3 

a 
a 

a 
a 

a 
a 

a 
a 

1 
10/10 

1 
10/10 

10 
18/25 

20 
3/25 

20 
5/100 

10 
4/100 

4 

a 
a 

a 
a 

a 
a 

1 
10/10 

1 
6/10 

1 
5/10 

20 
1/25 

10 
3/50 

20 
1/100 

10 
2/100 

5 

1 
50/50 

1 
25/25 

1 
50/50 

6 7 

1 1 
47/50 6/25 

1 
37/50 

10 
1/50 

5 
1/25 

5 
1/15 

100 
1/100 

1 5 
11/100 6/500 

8 9 

1 
1/25 

5 
2/25 

1 
1/25 

20 
1/100 

a: Designs found by complete search. 
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Table 2 A  Smallest intersite distancz and number o€ pairs separated by that distance; 
Euclidean distance. 

n 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

1s 

19 

20 

2 

.707 1 
1 

-7454 
4 

.ssw 
4 

4 7 2  
3 

.4714 
4 

.4041 
4 

.3953 
12 

-3514 
7 

-3162 
6 

-3278 
16 

-3005 
17 

-3172 
20 

.2945 
18 

-2749 
14 

.2652 
12 

-24% 
12 

-2357 
9 

-2233 
5 

3 

1.2247 
3 

-8165 
1 

.a92  
4 

-7483 
4 

.6872 
3 

.6547 
12 

s863 
4 

-5774 
3 

S385 
1 

.5455 
6 

4 

1.3329 
2 

1.1547 
2 

.9682 
1 

.9381 
2 

-8819 
4 

.9258 
24 

.8101 
6 

-7857 
12 

.7416 
2 

-7216 
2 

k 
5 

1.4142 
1 

1.2472 
1 

1.2247 
5 

1.1314 
4 

1.0541 
10 

1.0102 
4 

-9763 
5 

1.0062 
20 

3944 
2 

3672 
1 

6 7 8 9 

1.2649 
6 

1.3017 
2 

1.3628 
1 

1.403 1 
1 

1.0679 
4 

1.1384 
4 
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Table 2B Smallest intersite distance and numbcr of pairs separated by that distance; 
Rectangular distance. 

n 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 
1.oooO 

1 
1 .m 

4 
.7500 

4 
.m 

3 

.6667 
12 

-5714 
12 

.5000 
8 

.4444 
6 

.4000 
3 

.4545 
16 

.4167 
16 

.3846 
13 

.3571 
10 

.3333 
5 

.3750 
36 

-3529 
37 

-3333 
29 

.3158 
15 

3 
2 . m  

3 
1.3333 

1 
1.2500 

3 

1.2000 
6 

1.oooO 
2 

1 .oooo 
6 

1 .oooo 
19 

-8889 
8 

.8000 
2 

.8182 
9 

4 
2.5000 

2 
2.oooo 

2 
1.7500 

2 
1 .m 

2 
1.6667 

16 

1.5714 
16 

1.3750 
3 

1.3333 
5 

1.3000 
8 

1.2727 
12 

k 
5 

3 . m  
1 

2.6667 
5 

2.5000 
10 

2.2000 
5 

2.oooO 
3 

2.oooo 
17 

1.8750 
11 

1.8889 
20 

1.8000 
31 

1.7273 
10 

6 7 8 9 

2.8000 
15 

3.oooo 
8 

3.2857 
6 

2.4615 
9 

2.1818 
12 

2.4615 
4 



17 

4 -  

3 -  

Figure 4A: MmLh designs for k=2 and n=5, 9, 13 
and 1% Euclidean distance 
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Figure 4B: MinLh designs for k=2 and n=5, 9, 13, 
and 17; Rectangular distance 
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Table 3 A  Smallest and largest distances from the center of T to a design site; 
Euclidean distance. 

n 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 

so00 
-707 1 

-5270 
S270 

.oooo 
-5590 
.1414 
.583 1 

.oooo 
S270 

.lo10 

.5440 

.m 
s590 
.1757 
S720 

.1414 

.583 1 

.2318 

.5 183 

-1667 
.707 1 
.1632 
S679 

.lo10 
-5759 

.047 1 
-5676 

.oooo 
-5590 
-1500 
-6294 
.1111 
.6334 

.1342 

.5966 

3 

.707 1 

.7071 

-5528 
.7265 

s590 
.7071 

.51% 
-6557 

.4082 
-7071 

s487 
-6186 

.4677 

.7071 

.4811 
S958 

.m 

.6481 

.5359 
S511 

4 

.7071 

.8660 

.7454 

.7454 

. 6 1 4  

.7500 

.m 
-721 1 

.m 
-7265 

.6547 

.6547 

-5303 
.7071 

-5556 
-71 15 

-5385 
-7141 

-5677 
.6863 

k 
5 

-8660 
10000 

.7638 

.8975 

.7% 

.7906 

.7280 

.7810 

.7454 
-7454 

.m 

.7457 

.6960 

.7603 

.7136 

.7136 

6403 
-7483 

-6.508 
-756.5 

6 

.8367 

.8367 

.7687 

.7687 

7 8 9 

,8660 
-8975 

-9035 
-9476 

.9520 

.9843 

.5059 
3276 
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Table 3.B: Smallest and largest distanws from the center of T to a dcsign site; 
Rectangular distance. 

n 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 
-5000 
1 .m 
-6667 
. a 7  
.5000 
.7500 

.2000 

.8OOo 

.m 

.6667 

.1429 

.7143 

.oooo 

.6250 
-2222 
.7778 
. 2 m  
.8000 
.2727 
.7273 
.oooo 
-8333 
.2308 
-7692 
.2143 
.7143 
.0667 
.8000 
.m 
.7500 
.1176 
.94 12 
,1667 
-8333 
-1579 
.7895 

3 
1.oooO 
1 .oooo 
3333 
1.1667 
.7500 
1.2500 
.m 
.go 

.6667 
1.1667 
.7857 
1.0714 
.7500 
1 .oooo 
-2778 
1.1667 
.3OOo 
1.1Ooo 
.1364 
1.0455 

4 
1 .oooo 
1.5000 
1.3333 
1.3333 
1 .m 
1.2500 
1.2000 
1 .ZOO0 
1.oooO 
1.3333 
1.1429 
1.1429 
.8750 
1.3750 
1 .m 
1.3333 
1.oooO 
1.2000 
.8182 
1.3636 

k 
5 

1.5000 
2 . m  
1.5000 
1.8333 
1 S000 
1.5000 
1.3000 
1.7000 
1.1667 
1.6667 
1.2143 
1.5000 
1.2500 
1.5000 
1.3889 
1.3889 
1.2000 
1 .m 
1.3182 
1 s909 

6 7 8 9 

1 .m 
1.8000 

1 S000 
2.1667 

2 . m  
2.5714 

2.1250 
2.6250 

1.5455 
1.7273 

1.6538 
2.1154 
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foldover pair is eliminated, leaving an k-by-k design matrix, and each element of this 

reduced matrix is replaced by the absolute difference between the element and 1/2 (Le. 

distance to the center of the region in onedimensional projections), then the elements of the 

resulting matrix each take one of k unique values. Each of these values appears once in each 

row and once in each column of the matrix; that is, the design matrix reduced in this way 

contains k "symbols" in the pattern of a Latin square. 

A similar pattern holds for the designs generated with n = k = 3 through 6, for either 

definition of distance. In these cases, if each element in the entire n-by-n design matrix 

is replaced by the absolute difference between the element and 1/2, the resulting matrix 

contains each unique value twice in each row and column for even n. For odd n, the result 

is the same except that the zeros (corresponding to elements which were 1/2 in the original 

design matrix) appear only once in each row and column. 

We have not undertaken a thorough investigation of the geometric properties of these 

designs. However, we frnd the observations noted above to be interesting, and believe that 

further study might reveal "recipes" for maximin or near-maximin Latin hypercube designs 

which do not require extensive numerical search&. 

7. SUMMARY 

We have suggested the use of maximin Latin hypercube designs for computational 

experiments in which the general goal is the construction of an approximation or prediction 

of the deterministic scalar-valued output variable as a function of the input variables. Use 

of the maximin distance criterion is motivated by a result of Johnson, Moore and Ylvjsaker 

(1990), who established an equivalence between the Mm property and a kind of D-optimality 

for Bayesian prediction, in a limit as local correlations are weakened. Since all Latin 

hypercube designs (unlike many unconstrained Mm distance designs) are evenly distributed 

in each one-dimensional projection, they are intuitively appealing for situations in which only 

one or few inputs have an important impact on the output variable. Since many computer 

models display this sort of effect sparsity, the "compromise" achieved by using the Mm 

criterion within the class of Latin hypercube arrangements may yield designs which are 

effective for predicting the output both when few or many inputs are important. 

A criterion function, 4=, and a numerical optimization procedure based on simulated 
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annealing have been presented for generating MmLh designs. A catalogue of designs 

produced by this algorithm is presented in the appendices to this report. Obsemations were 

made concerning some of the geometric properties of the MmLh designs generated, 

particularly in the cases of k = 2, n = k, and n = 2. 
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Appendix A: 
Listing of Designs Generated Using 

Euclidean Distance 
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41-3. k=3 ~ 1 . 3 ,  k-4 n-3. k=5 

0 0  1 
1 2 0 
2 1 2 

0 0 0  1 
1 1 2 0  
2 2 1 2 

0 2 0  1 0  
1 2 2  1 0 

2 1 2 0 1  

n -4, k-3 41-4. k-5 

0 0  1 
1 2  3 
2 3  0 
3 1 2 

0 1 0 2 3  
1 1  1 0 3  

2 3 2 3 0  
3 2 1 0 2  

0 0  1 1 
1 2 3 3  
2 3 0 2  
3 1 2 0  

n-5, k=3 n d ,  k=4 

0 2 4  1 3  
1 4 0 3 2  
2 1 3 4 0  
3 0  1 2 4  
4 3  2 0 1  

0 0  1 2 
1 3 3  0 
2 4 2 4  
3 1 4 3 
4 2 0  1 

0 0  3 
1 3  0 
2 4  3 
3 1 4 
4 2  1 

0 I 1 
1 3 5 
2 5 2 
3 0  3 
4 2 0 
5 4  4 

0 3 3  5 
1 4 1 1 
2 0 5  2 
3 1 0 4  
4 5 4 3  
5 2 2 0  

0 1 1 1 1  
1 5  5 2 3  
2 4 0  4 4  
3 0 4  3 5  
4 2 3  5 0  
5 3 2 0 2  

n=7. kn.3 n=7. It-4 n=7, Am5 

0 2  3 6 2  
1 1 5  15 
2 6 2 3 6  
3 4 4 0 0  
4 0 0 2 3  
5 5  1 5 1  
6 3 6  4 4  

0 3  2 
1 5 6 
2 1 5 
3 6  1 
4 2 0  
S 4 4 
6 0  3 

0 3 6 2  
1 2 2 6  
2 1 1 1 
3 6 0 3  
4 5 5 5  
5 4 4 0 
6 0 3 4  

ne4 k-5 n=& k=3 

0 3  5 
1 1 1 
2 7  4 
3 5  0 
4 2  7 
5 0  3 
6 6  6 
7 4  2 

0 6 4  5 
1 0 2 4  
2 3 6 0  
3 5 0  1 
4 2 7 6  
5 4 1 7 
6 7 5 3 
7 1 3 2  

0 3 5  7 4  
1 1 1 2 2  
2 7 4  3 0  
3 5  7 1 6  
4 6 0 6 5  
5 0 3  4 7  
6 2 6  5 1  
1 4 2 0 3  
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n-9. k-3 

0 0 4  
1 5 6  
2 4 0  
3 8 3  
4 2 8  
5 1  2 
6 7  7 
7 6  1 
8 3  5 

0 6 5  
1 1  4 
2 3 9  
3 4 0  
4 8 8  
5 9 3  
6 0 2  
7 2  7 
8 5  1 
9 7  6 

0 6  3 
1 8  8 
2 1  2 
3 3 10 
4 9 0  
5 5  5 
6 10 7 
7 0 6  
8 2  1 
9 4 9  
10 7 4 

n=l2  k 4  

0 3  5 
1 9 4  
2 7 10 
3 5  0 
4 1  9 
s o 3  
6 11 8 
7 10 2 
8 6 11 
9 4  1 
10 2 7 
11 8 6 

n-9. k-4 

0 3  7 6 
1 6 3 2 
2 5  1 8 
3 0  6 1 
4 1 0 3 
5 7  8 4 
6 2  5 7 
7 8  2 5 
8 4  4 0 

n=la k-4 

0 5  4 0 
1 8 6  6 
2 2 2  7 
3 1 8 3 
4 9  0 4 
5 4  9 9 
6 3  1 1 
7 7 7 2 
8 6  3 8 
9 0  5 

n=ll ,  it-4 

0 6  5 2 
1 3  4 10 
2 0  9 4 
3 10 3 8 
4 7 1 0 6  
5 1 2 3 
6 8  1 1 
7 4  8 0 
8 5 0  9 
9 2  7 7 
10 9 6 5 

n=ll, its4 

0 5  1 7 
1 3 8 2 
2 4  9 10 
3 10 4 1 
4 11 5 9 
5 9 1 1 4  
6 1 2 3 
7 2  3 11 
8 0 1 0 6  
9 8  0 5 
10 6 6 0 
11 7 7 8 

?I-9. k=S 

0 3  3 7 2  
1 2 6  0 4  
2 7  1 3 7  
3 4  8 6 3  
4 8 4  2 0  
5 0 0 4 5  
6 1  7 5 1  
7 6  2 8 3  
8 5  1 6  

n= 10. A-5 

0 - 7  1 6 5  
1 3  7 4 0  

3 0  5 8 7  
4 8  9 7 6  
5 1 0 2 3  
6 9  4 1 2  
7 5  3 9 1  
8 6  2 5 9  
9 2 8  3 4  

2 4  6 0 8  

ttm11, k-5 

0 4  6 0 3  
1 5 0  7 2  
2 9 7  4 9  
3 3  9 9 4  
4 2  2 8 10 
5 10 5 3 0  
6 0 8  2 8  
7 6  1 1 7  
8 8 3 1 0 s  
9 1  4 6 1  
10 7 10 5 6 

0 7  5 0 5  
1 5  2 7 11 
2 8  7 11 4 
3 2 0  6 2  
4 4 11 4 10 
5 1  9 3 1  
6 11 1 5 6  
7 0 6 1 0 7  
8 10 10 2 3 
9 3 3  1 8  
10 9 8 9 9  
11 6 4 8 0  
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n=6. k=6 

0 3 4 2 5 4  
1 2 1 5 3 0  
2 4 0 0 1 3  
3 1 3 4 0 5  
4 5 5 3 2 1  
5 0 2 1 4 2  

n=7. k=7 I 
0 4 0 4 1 2 5  
1 3 6 6 5 4 4  
2 0 1 2 4 5 0  
3 5 3 1 6 0 2  
4 1 5 0 2 3 6  
5 2 4 5 0 1 1  
6 6 2 3 3 6 3  

n=B k-8 I 
0 4 7 s 3 3 4 7  
1 3 0 7 1 4 3 1  
2 6 2 0 5 0 1 3  
3 1 1 1 6 6 6 6  
4 0 6 3 4 1 5 0  
5 5 5 6 7 7 2 2  
6 2 4 2 0 5 0 5  
7 7 3 4 2 2 7 4  

n=9. k=9 
1 

0 2 8 5 3 4 6 4 0  
1 8 2 6 6 3 2 8 4  
2 0 1 4 2 6 0 2 5  
3 6 7 0 8 5 3 1 6  
4 1 4 3 4 0 7 7 8  
5 7 6 7 0 7 5  3 7 
6 4 0 2 5 8 8 5 2  
7 3 3 8 7 1 4 0 3  
8 5 5 1 1 2 1 6 1  

n=12, k=6 

0 1 8 9 6 4  
1 1 1 9 3 4 5  
2 7 1 6  11 8 
3 5 0 4 2 1  
4 2 5 1 3 1 1  
5 8 4 1 1 1 9  
6 3 7 0 1 0 2  
7 9 6 1 0 8 0  

9 4 1 0 5 0 3  
1 0 0 2 8 7 6  
1 1 1 0 3  2 5 7 

a 6 11 7 9 1 0  

n=14, k37 

0 4 2 10 s 11 4 
1 7  4 4 12 3 12 
2 8 1 2 1 1 7 1 3  
3 10 5 0 0 5 5 
4 1 1 3  5 4 9 11 
5 U 10 6 10 13 6 
6 2 8 1 1 1 7 0  
7 11 5 12 2 6 13 
8 0 3 7 3 0 7  
9 12 0 8 9 4 2 

11 5 1 2 6 12 10 
12 6 9 9 1 1 0  1 
U 9 1 1 3 8 2 9  

io 3 7 13 13 8 . 8  
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Appendix B: 
Listing Of Designs Generated Using 

Rectangular Distance 
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n=3. k-2 n=3, k=3 

2 2 2 2 1 2 

0 0  
1 2  
2 1  

0 2 0 1 0  
1 0 1 2 2  
2 1 2 0 1 

n=s4.k=3 I n-4. k=4 n=4, k-2 

0 1  
1 3  
2 0  
3 2  

n d .  k=2 
_I__ 

n54, k=5 

0 2  2 3 3  
1 1 3 1 0  
2 3  0 2 1  
3 0  1 0 2  

0 0  1 
1 2 3 
2 3 0  
3 1 2 

0 0 1 1 
1 1 3 3 
2 3  0 2  
3 2 2 0  

n d .  k=4 n=5. k=S nc5, k=3 

0 0  1 
1 2 4 
2 3  0 
3 4  3 
4 1 2 

0 1  
1 3  
2 0  
3 4  
4 2  

0 0  1 2 
1 2 4  0 
2 4 2 4 
3 3 0 1 
4 1 3 3 

0 3 2 4 3  
1 2 3 0 0  
2 1 0 1 4  
3 0  4 3 2  
4 4 1 2 1  

n 4 ,  k=2 

0 1  
1 4 
2 2  
3 s  
4 0  
5 3  

n=6, k=3 

0 1 2 
1 3 5 
2 4 0 
3 0  4 
4 s 3  
5 2 1 

n=6, k=4 

0 4 3 4 
1 1 2 0 
2 0 5 3 
3 5 0 2 
4 2 1 5 
5 3 4 1 

0 3  4 5 2  
1 0  2 0 3  
2 s  1 2 0  
3 2  0 4 5  
4 4 5 1 4  
5 1 3 3 1 

~ 

n=7. k=3 n d ,  k d  

0 6  4 3 3  
1 1 2 4 0  
2 3 0 1 5 
3 2 6 5 6  
4 4  5 0 1  
5 5 1 6 2  
6 0  3 2 4  

nr7. k-4 n=7, k=2 

0 2  
1 5 
2 0  
3 3  
4 6  
5 1  
6 4  

0 1 5 
1 3 0 
2 6  3 
3 0  2 
4 4  6 
5 5 1 
6 2  4 

0 4  0 2 
1 3 6 4 
2 1 3 0 
3 6 2 5 
4 0  4 6 
5 5 S 1 
6 2 1 3 

n=8,k=3 1 n=8, k-4 n=8. k=5 ~ = 8 ,  k4.2 

0 2  
1 5  
2 0  
3 7  
4 4  
5 I 
6 6  
7 3  

0 5  4 
1 1 1 
2 3  7 
3 7  2 
4 0  5 
5 4 0 
6 6  6 
1 2  3 

0 2 6 4 
1 4 2 0 
2 7 3 6 
3 1 0 5 
4 6 7 2 
5 0 4 1 
6 3 5 7 
7 5 1 3 

0 3  6 3 2  
1 6 2 6 5  
2 1 3 0 6  
3 5  0 2 0  
4 0  4 7 1  
5 4 7 5 7  
6 7  9 1 3  
7 2 1 4 4  
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6 3  6 4  5 6 1 9 5 6 1 0 5 2  
7 8  7 1 1 7 9 6 4 7 9 3  1 4  
8 1 8 2 9 8 3 5 9 8 2 5 3 9  
9 5  9 7 3 9 5 3 1 9 5  8 7 3  

n = l l ,  k=2 

0 2  
1 9  
2 5  
3 0  
4 7  
5 3  
6 10 
7 6  
8 1 
9 8  
10 4 

n = l l ,  k=3 

0 5 2 
1 2 7 
2 9 5 
3 6 10 
4 0 3 
5 7 0 
6 4  6 
7 10 8 
8 1 9 
9 3  1 
10 8 4 

n = l l ,  k=4 

0 5 10 5 
1 2 4 1 
2 6 2 8 
3 10 6 3 
4 0 7 7 
5 7 1 0 
6 8 9 9 
7 1 0 4 
8 4 8 2 
9 3 5 10 
10 9 3 6 

n = l l ,  k=S 

0 3  0 4 6  
1 7 3 8 0  
2 4 7 0 2  
3 8 6 6 10 
4 1 1 0 7 5  
5 10 2 2 4  
6 0  5 1 9 
7 9 8 1 0 3  
8 5  1 9 8  
9 2 4 5 1 
10 6 9 3 7  

n = 1 5 k = 2  I n=12,&=3 I n= 12, k=4 I n=12, k=5 

2 11 8 
3 0 1 0 4 6  

3 11 3 8 1 1 7 1  
4 10 10 9 
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n = 14, k=2 

0 4 
1 9 
2 1 
3 12 
4 7 
5 3 
6 10 
7 0 
8 S 
9 13 
10 8 
11 2 
12 11 
13 6 

n=18 k=2 

0 6 
1 17 
2 10 
3 3 
4 14 
5 7 
6 0 
7 11 
8 4 
9 15 
10 8 
11 1 
12 12 
13 5 
14 16 
1s 9 
16 2 
17 13 - 

n=15, k=2 

0 6 
1 11 
2 2 
3 8 
4 13 
5 5 
6 0 
7 10 
8 3 
9 14 
10 7 
11 1 
12 12 
13 4 
14 9 

n = 19, k=2 

0 4 
1 11 
2 17 
3 0 
4 7 
5 14 
6 3 
7 10 
8 18 
9 6 
10 13 
11 2 
12 9 
13 16 
14 5 
15 12 
16 1 
17 8 
18 15 

n=ld k=2 

0 12 
1 7 
2 2 
3 15 
4 10 
5 5 
6 0 
7 13 
8 8 
9 3 

11 6 
12 1 
13 14 
14 9 
15 4 

10 . 11 

n==20. R=2 

0 7 
1 15 
2 2 
3 10 
4 18 
5 5 
6 13 
9 0 
8 8 
9 16 
10 3 
11 11 
12 19 
13 6 
14 14 
15 1 
16 9 
17 17 
18 4 
19 12 
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3 2 4 0 5 1  3 5 1 0 2  6 1 1  
4 5 2 1 2 5  4 0 5 3 9 1  
5 0 1 4 3 2  5 8 9 1 0 1 1 5  

6 3 2 1 0 6  
7 11 6 8 2 1 0  
8 6 1 9 5 0  
9 1 1 1 7 3 4  
1 0 9 . 7  0 7 3 

2 5 6 2 5 4 0  2 0 9 11 2 9 9 
3 6 1 6 4 1 4  3 10 2 9 0 1 6  
4 3 0 0 1 2 1  4 13 13 5 7 6 11 
5 4 5 4 0 5 5  5 11 7 12 9 13 3 
6 0 3 3 6 3 3  6 5 4 10 13 5 13 

7 8 1 0 2 1 8 0  
8 3 6 0 4 0 10 
9 1 0 8 6 7 2  
10 2 11 4 12 12 7 

0 7 4 4 2 3 3 0  
1 1 7 5 6 4 1 5  
2 2 0 0 3 7 4 3  
3 3 6 2 1 0 5 7  
4 0 2 7 4 2 6 1  
5 6 5 3 7 6 7 4  
6 5 1 6 0 5 2 6  

2 6 3 3 0 0 1  
3 2 8 6 3 7 5 8 7  
4 8 1 7 5 5 7 6 1  
5 4 2 1 7 6 0 4 8  
6 7 6 2 1 8 4 1 2  
7 0 7 4 6 2 2 5 0  
8 3 0 5 2 1 6 2 6  
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