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ABSTRACT 

When a vehicle with two or more steerable drive wheels is traveling in a circle, 
the motion of the wheels is constrained. The wheel translational velocity divided 
by the radius to the center of rotation must be the same for all wheels. When 
the drive wheels are controlled independently using position control, the motion 
of the wheels may violate the constraints and the wheels may slip. Consequently, 
substantial errors can occur in the orientation of the vehicle. A vehicle with N drive 
wheels has ( N  - 1) constraints and one degree of freedom. We have developed a 
new approach to the control of a vehicle with N steerable drive wheels. The novel 
aspect of our approach is the use of force control. To control the vehicle, we have 
one degree of freedom for the position on the circle and ( N  - 1) forces that can 
be used to reduce errors. Recently, Kankaanranta and Koivo developed a control 
architecture that allows the force and position degrees of freedom to be decoupled. 
In the work of Kankaanranta and Koivo the force is an exogenous input. We have 
made the force endogenous by defining the force in terms of the errors in satisfying 
the rigid body kinematic constraints. We have applied the control architecture to 
the HERMIES-111 robot and have measured a dramatic reduction in error (more 
than a factor of 20) compared to motions without force control. 

V 





1. INTRODUCTION 

A wheel is the classic textbook example of a system that must satisfy a 
nonholonomic constraint. At each instant, a wheel rolling on a horizontal plane 
without slipping can move in only one direction. Motion in the orthogonal direction 
requires maneuvering. The most familiar example of the maneuvering required by 
a nonholonomic vehicle is parallel parking of a car. The goal is to move the car two 
meters in the direction orthogonal to the wheels. The optimum path is arc-line-arc 
and is accomplished by: turning the wheels to one limit, backing, straightening the 
wheels, backing, turning the wheels to the other limit, backing, and straightening 
the wheels (several iterations may be required by an unskillful driver). 

A vehicle with steerable wheels can use the steering degrees of freedom to reduce 
the maneuvering. For example, a car with four steerable wheels can parallel park 
by turning the four wheels sideways and moving directly into the parking space. 
In addition to moving in a line in any direction, a vehicle with steerable wheels 
can move in a circle about any center of rotation. Circular motion is useful for the 
working around circular objects like storage drums or tanks. 

Cars are 
available with four wheel drive, four wheel steering, and anti-lock braking systems. 
A team from Nippondenso and the University of California at Berkeley has 
developed an experimental control system for a laboratory vehicle with four 
steerable drive wheels. 

However, when a vehicle with two or more steerable drive wheels is traveling in 
a circle, the motion of the wheels is constrained. The wheel translational velocity 
divided by the radius to the center of rotation must be the same for all wheels. 
When the drive wheels are controlled independently, errors occur and the wheels 
will slip. Our objective is to develop a method to control constrained wheels as 
a unit rather than independently. The motivation for our interest in this problem 
was provided by the development of a wheel control system for the HERMIES-I11 
robot .6 

HERMIES-111 is a large (800 kg) robot designed for human scale experiments. 
The chassis (1.6m x 1.3m x 1.9m) has two steerable drive wheels and four 
corner caster wheels. The current wheel control system for HERMIES-I11 provides 
independent velocity control of the rotation of the two drive wheels. During 
constrained circular motion, substantial errors can occur. For example, the goal 
might be a rotation of 10 degrees about the point (2,2) and the actual rotation can 
be 8 degrees (an error of -20%). 

A vehicle with N steerable drive wheels has N degrees of control for translation 
and N degrees of control for steering. When the vehicle is moving in a circle, it 
has one degree of freedom. The instantaneous center of rotation determines the 
steering angles for the N wheels. To control the vehicle motion, we introduce N 
new variables: one variable for motion on the circle (the pseudovelocity) and N - 1 
variables for the errors in satisfying the rigid body constraints. To control the N 
new variables, we introduce N new control variables: one for the pseudovelocity 

Cars are becoming more like computer controlled mobile robots. 
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2 INTRODUCTION 

and N - 1 forces to reduce the errors. We must define a mapping from the N new 
control variables to the N original control variables for translation. 

Kankaanranta and Koivo4 have developed a general model for the dynamics 
of constrained mechanical systems and have proposed a control architecture that 
allows the force and position degrees of freedom to be decoupled. Their focus was 
on the constrained motion of manipulators and several recent have applied 
their results (or related results) to the constrained manipulator problem. We will 
apply their architecture to the constrained motion of a vehicle. 

The next section will present a kinematic model of a vehicle with four steerable 
drive wheels. The third section will define the pseudovelocity for a vehicle with N 
drive wheels and one degree of freedom. The fourth section will apply the control 
architecture of Kankaanranta and Koivo to a vehicle with N drive wheels and one 
degree of freedom. The fifth section will discuss how to implement the control 
architecture (we have defined the force in terms of the error) and the sixth section 
will present experimental results using the HERMIES-I11 robot. The final section 
presents our conclusions. 



2. KINEMATIC MODEL OF VEHICLE 

In this section, we will discuss the equations that comprise the kinematic model 
of the vehicle. The vehicle has four drive wheels that can be steered. The motion 
of each wheel is described by two variables: w,, and 8j. The variable w, is the 
cumulative displacement of the wheel as it rotates about its axis. The variable 8; 
is the steering angle of the wheel in the vehicle coordinates. The units for wi are 
meters, while the units for 8, are radians. 

Let r; be the radius from the instantaneous center of rotation (P) to a wheel 
and let 'ui(tb;) be the translational velocity of the wheel. If Cl is the rotation rate 
for the vehicle, then each wheel satisfies: 

vi/?-, = s1 (1) 
The radii ( r ; )  are determined by the center of rotation [P = (Pz,Py)] and by 

the location of each wheel [ 'p  = ( i p z ,  * p a r ) ] .  Let (xi ,yi)  be the 2 and y components 
of the vector from wheel i to the center of rotation in the vehicle coordinates: 

i Yi = py - Py 
Then, the radii and wheel steering angles satisfy: 

(3) 

yi = Ti COS 0, (6 )  

We assume that the wheels are numbered as in Fig. 1. Furthermore, we assume 
that the vectors from wheel 1 to wheel 3 and from wheel 2 to wheel 4 are parallel to 
the x axis. Similarly, the vectors from wheel 1 to wheel 2 and from wheel 3 to wheel 
4 are parallel to the y axis. We assume that the origin of the vehicle coordinate 
system is at the midpoint of the four wheels. Thus, the coordinates of each wheel 
are: 

In Fig. 1, a vehicle with four wheels rotates about a point. During rotation 
the motion of the wheels must be synchronized. Using Eq. (l), the velocity of each 
wheel must be proportional to the radius from the wheel to the center of rotation. 
The four wheel velocities have one degree of freedom and must satisfy three rigid 
body constraints. We will now derive the rigid body constraints. 

3 



4 KINEMATIC MODEL OF VEHICLE 

Fig. 1. A vehicle rotating about the Point P. 

Given the center of rotation, we can calculate the four radii and the four steering 
angles using Eqs. (4) to (6). Alternatively, given steering angles for a pair of wheels 
and the distance between the wheels, we can calculate the distances from each wheel 
to P. We will consider four pairs of wheels (see Fig. 1): [2, 41, [l, 31, [l, 21, and 
[3, 41 and calculate four pairs of radii. For the wheels parallel to the 2 axis ([2, 41 
and [l, 31): 

rl = 2c cos &/sin (0, - 0,) (9) 
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7-3 = 2c cos &/sin (4 - 83) 
For the wheels parallel to the g axis ([3, 41 and [I) 21): 

1'3 = 2d sin 8q/sin (e, - 8 3 )  (11) 

(12) r4 = 2d sin &/sin (8, - 8 3 )  

rl = 2d sin 192/  sin (82 - 8,) (13) 

1'2 = 2d sin 8,/ sin (82 - 61) (14) 
Using Eq. (1) and Eqs. (7) to (14)) we can derive the following rigid body constraints: 

03 cos 0 3  = VI cos 81 

The physical significance of the rigid body constraints is that the velocity 
components dong the line connecting the centers of each pair of wheels must be 
equal. Thus, the distance between wheels cannot change. 

When a vehicle with four wheels is rotating about a point, the wheel velocities 
have one degree of freedom and must satisfy three rigid body constraints. Although 
Eqs. (15) to (18) provide four rigid body constraints, at most three of them can be 
independent. Which three of the four should we use? The answer depends on the 
steering angles. When the four wheels aze pointed forward (8; = 0), Eqs. (15) and 
(17) do not constrain the velocities. When the four wheels are pointed at ninety 
degrees, Eqs. (16) and (18) do not constrain the velocities. If we steer the front 
wheels (1 and 2) and the rear wheels are fixed in the forward position (the normal 
configuration for a cm), Eq. (17) does not constrain the velocities. If we steer the 
rear wheels and the front wheels are fixed in the forward position (an appropriate 
choice when the vehicle moves backward), Eq. (15) does not constrain the velocities. 

In the special cases when the four wheels are pointed forward or at ninety 
degrees, the wheel velocities have two degrees of freedom. The wheels are paired 
into two groups that must have the same speed. For forward wheels) wheels 1 and 3 
have the same speed and wheels 2 and 4 have the same speed. Furthermore, wheels 
1 and 2 can have different speeds. For wheels at 90 degrees, wheels 1 and 2 have 
the same speed and wheels 3 and 4 have the same speed. For these special cases, we 

(18) 
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have two sets of two wheels that each must satisfy a rigid body constraint. Thus, 
we can have two wheels with one constraint or four wheels with three constraints. 
In all cases, we have N wheels and one degree of freedom. 



3. DEFINITION OF THE PSEUDOVELOCITY 

s= 

In the last section, we developed a kinematic model for a vehicle with four 
wheels. In this section, we will consider a vehicle with N wheels and assume that it 
has one degree of freedom and K degrees of constraint ( K  + 1 = N ) .  The general 
nonholonomic constraint may be written: 

- a l l  a12 * . -  a l N  .. 
a21 a22 * * .  a 2 N  

. 
a K 1  a K 2  - - a K N  

- b l  b2 ... b N  - 

A q = O  (19) 
where the q are the generalized coordinates. We assume that the K x IV matrix 
A has full rank K .  For the vehicle, we will let the q be the rotation of the four 
wheels (q = w) and we assume that the steering angles are exogenous functions of 
time. Naturally, the steering angles are not independent; the center of rotation ( P )  
determines all of the steering angles. Since the matrix A is function of the steering 
angles, it is a known function of time. 

Following Kankaanranta and Koivo, we introduce a scalar pseudovelocity (v): 

v = BQ (20) 
where B is a 1 x N matrix, chosen to make [AT BTIT nonsingular. The vehicle has 
N wheels and one degree of freedom. The pseudovelocity has one degree of freedom 
and determines the motion of the vehicle. The velocities of all N wheels (4) will be 
proportional to the pseudovelocity. 

Kanbnran ta  and Koivo do not specify a method for choosing B. Many choices 
axe possible. Some authors have chosen the pseudovelocity to be a physical velocity 
(for example, the velocity of one of the wheels). One of our major contributions 
to this problem is that we have developed a general method for choosing B. We 
choose B to be orthogonal to all of the rows of A. 

Let S be the composite matrix with its first K rows from A and its last row 
from B: 

a= 1 

where the ANi are the cofactors of S. Since the cofactors depend on the elements 
of A, they are €unctions of the steering angles (6';). 

7 



8 DEFINITION OF T H E  PSEUDOVELOCITY 

The inverse of S is partitioned into two matrices ( E  and F ) :  

s-’ = [E F ]  (23) 

where E is an ( N  x K )  matrix and F is an ( N )  vector. The matrices A,  B ,  E ,  and 
F satisfy: 

A E  = I ,  A F  = 0, B E  = 0, B F = 1, and E A  + F B  = I 

The vector F is the orthogonal complement of A and is given by: 

Equation (24) is a general expression for F that is valid for any choice for the B 
vector. The cofactors are functions of the elements of A. The elements of the vector 
B are in the determinant of S .  

How shall we define the B vector? Our goal is to make the matrix S nonsingular 
(to make the determinant of S nonzero). If we choose the bi to be proportional to 
 AN^, the determinant of S cannot be zero unless all of the cofactors are equal to 
zero. Furthermore, the B vector will be parallel to the F vector. Thus, the B vector 
will be orthogonal to all of the rows of A. We choose the bi to be proportional to AN, 
and we introduce a normalization factor to make IS1 = 1. Define the normalization 
factor ( p )  by: 

N 

i = l  

Thus, our choices for the elements of the B vector are: 

ba = A& 

The vector B and the wheel velocities ( i )  define the pseudovelocity. In 
general, the pseudovelocity will not be the velocity of any particular point on the 
vehicle. However, the pseudovelocity determines the motion of the vehicle (the 
wheel velocities are proportional to the pseudovelocity). The pseudovelocity can 
be controlled to follow a reference trajectory. Given planned trajectories for the 
wheel velocities and steering angles, the reference trajectory for the pseudovelocity 
is determined by Eq. (20). 

To illustrate our method for choosing the B vector, we will consider the example 
of a vehicle that has both front and rear wheel steering. We assume that most of 
the steering is with the front wheels and that the reapwheels are normally in the 
forward position, where Eq. (17) does not constrain the velocities. If we exclude 
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Eq. (17) and define the rows of the A matrix by Eqs. (15), (16), and (18), the S 
matrix is: 

where sj  = sin@; and ci = cos@;. Whenever the rear wheels are in the forward 
position, the S matrix will not be singular unless the front wheels are also in the 
forward position. 

For this example, the cofactors of S are: 

A44 = s1 c2 c3 

Given the cofactors, the elements of the B vector are determined by Eqs. (25) and 

For the case of two constrained wheels, we will introduce a normalization factor 
( p )  for the elements of the A matrix. The rigid body constraint for a vehicle with 
two wheels is Eq. (15). Using the normalization factor: 

(31) 

(26). 

A = [Pl - P 2 1  

where pi = sJp and 

The rank of A is one unless both of the steering angles are zero (the vehicle is not 
constrained). For this example, the cofactors are: A21 = ,& and A22 = ,&. Since 
( p ~ ) ~  + (p2)2 = 1, the normalization constant ( p )  is unity and bi = Azi. Thus, the 
S matrix is: 

P 2  P1 
S =  P1 -B21 (34) 

For this case, the S matrix is orthogonal. 





4. POSITION AND FORCE 
CONTROL ARCHITECTURE 

A vehicle with N steerable drive wheels has N degrees of control for translation 
and N degrees of control for steering. When the vehicle is moving in a circle, it has 
one degree of freedom. The instantaneous center of rotation determines the steering 
angles for the N wheels. In our previous work,6 we planned reference trajectories for 
the 2N state variables that satisfied the rigid body constraint [Eq. (19)] and had 
independent control for each wheel. However, we found significant errors during 
constrained motion. In this section, we make the novel proposal that force control 
must be added to position control when a vehicle is moving in a circle. 

We will use a kinematic model of the vehicle rather than a dynamic model. Since 
most of the theory of constrained mechanical systems is based on dynamics, we will 
briefly justify our choice. We have two basic lines of argument: a kinematic model is 
less complex than a dynamic model and our goal is to control the kinematic variables 
(position, velocity, and acceleration). A realistic dynamic model of a vehicle 
would be very complex and would require a detailed map of the mass distribution. 
Furthermore, the mass distribution can change with time (HERMIES-I11 carries 
a manipulator that weighs 160 kg). We start with simple models and move to 
complex models when the simple models fail. For our vehicle, a kinematic model is 
sufficient. A system that has significant changes in mass distribution or moment of 
inertia might require a dynamic model. 

The sensors on our vehicle measure position (wheel translation and steering 
angle). We do not have any sensors that measure forces or torques on the wheels. 
Thus, the appropriate variables for feedback control are the measured variables. 
And the appropriate model is a kinematic model. 

Following Goldstein,2 the equations of motion for the constrained system are: 

where T is a vector of acceleration inputs and X is a vector Lagrange multiplier with 
K components. In the unconstrained case ( A  = 0), each wheel has an independent 
acceleration that is controlled by 7. In the constrained case, the accelerations are 
coupled. If the acceleration is zero for all wheels but one, all of the wheels will feel 
the acceleration through the last term (ATA). Goldstein and Kankaanranta and 
Koivo both say that the term (ATX) may be identified with the generalized force 
of constraint acting on the system. We will refer to the elements of X as forces 
(although they are really accelerations). In our previous work, we neglected the 
forces and controlled the wheels independently. 

Building on the seminal work of Hemami and Weime~-,~ Kankaanranta and Koivo 
define the control architecture by: 

7 = + F~~ - (E A + F  B )  F~ (36) 

11 



12 POSITION A N D  FORCE CONTROL ARCHITECTURE 

where u1 is a vector with K components and 112 is a scalar. For this architecture, 
the force and position degrees of freedom are decoupled: 

-A = u1 v = u 2 .  (37) 

u1 controls the force while u2 controls the position. 
The vehicle has N acceleration inputs ( T )  that control translation. We have 

introduced N new control variables (u1 and 212). Equation (36 )  provides a mapping 
from the new control variables to the original control variables. One of the new 
variables controls the pseudovelocity, while the remaining variables control the 
forces. In the next section, we will relate the forces to errors. 

While Eq. (36 )  is correct, the third term on the right can be simplified. 
Combining Eqs. (19) and (20): 

Using Eq. (23) to solve for 4: 

= FV 

If we differentiate Eq. (39): 

(39) 

q = Fi, + Fv (40) 
Kankaanranta and Koivo’s expression for is: 

ij = FG - (EA + F B ) F ~  (41) 
Comparing Eqs. (40) and (41), we find: 

Pv = -(EA + FB)Fv  

Using Eq. (42), Eq. (36 )  may be simplified: 

T = ATul +- Fu2 f F v  (43) 

For some choices of the B matrix, calculation of the right side of Eq. (42) 
might be easier than the calculation of the left side. However for our choice for 
the B matrix, the derivative of F is less complex than the derivative of B and 
Eq. (43) requires fewer calculations than Eq. (36). To demonstrate the advantages 
of Eq. (43), we will derive expressions for b and E. Equation (26) may be written: 

B = F T / p  

The derivative of Eq. (44) is: 

(44) 
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Since E A  + F B  = I ,  

EAAT + FBAT = AT (46) 
Since BAT = 0, the second term on the left side is zero. Since AAT is positive 
definite, it is nonsingular and Eq. (46) can be solved for E:  

E = A ~ ( A A ~ ) - ~  (47) 





5. POSITION AND FORCE 
CONTROL - IMPLEMENTATION 

Kankaanranta and Koivo define a control architecture that decouples the force 
and position degrees of freedom. However, they did not specify the force. In this 
section, we will define an error vector (e) and define the force in terms of the error. 

The feedbacks from the vehicle are the encoder readings for wheel rotation and 
steering angle (wi and 8i) .  Given two measurements of wheel rotation for a wheel 
and the time between the measurements, we can calculate a measured average 
velocity (4) for each wheel. Using Eq. (20), we can calculate the pseudovelocity (v). 
Either the measured values or the target values of the steering angles can be used 
to calculate the matrices A, B, and F (we do not need to calculate the E matrix). 
In the experimental results (reported in the next section), we have used the target 
values. 

The kinematic model of the vehicle has a system of general nonholonomic 
constraints [Eq. (19)]. However, the measured average velocities may not satisfy 
the constraints. We will define an error vector with li' components by: 

i = A i  (48) 
where the initial condition is e;(O) = 0. We will use the force vector (u1) to drive 
the error to zero: 

ulj = ICl i i i  + k2;ei for i = 1 to K (49) 
In Eq. (49), we have defined the force vector using measurements from the wheel 

encoders. We have not needed to use force sensors to provide force feedback. Thus, 
we have not needed to add expensive force sensors to implement force control of the 
vehicle. 

To control the pseudovelocity (v), we assume that v is tracking a target (vG) .  
We will define the velocity error ( E )  by: 

: = v G - v  (50)  

where the initial condition is ~ ( 0 )  = 0. We will use the pseudovelocity (u2) control 
to drive the velocity error to zero: 

The target for the pseudovelocity is determined by the targets for the wheels: 

vG = BqG (52) 

At the end of an experiment, the vehicle stops moving but the forces will not 
be zero unless the cumulative errors (e) are zero. To avoid jerk when power is 
removed from the vehicle, the forces should gracefully decay to zero at the end of 
an experiment. To implement this policy, the cumulative errors exponentially decay 

15 



16 POSITION A N D  FORCE CONTROL - IMPLEMENTATION 

whenever the pseudovelocity target is zero. Thus, when v G  = 0, an extra term is 
added to Eq. (48): 

i = A q - c r e  (53) 
where cu is a positive constant (for our experiniental results, 01 = 10). 



6: EXPERIMENTAL RESULTS 

To perform experiments, we modified the existing wheel control system for the 
HERMIES-I11 robot.6 The modifications were to two modules: Wheel Driver and 
Motor Driver. The Wheel Driver reads a Wheel Target and a Wheel Control from 
shared memory and sends a Setpoint and a Rate to the Motor Driver. The Motor 
Driver sends the torque signals to the motors and returns encoder readings to the 
Wheel Driver. The Wheel Target values are the translational velocities and steering 
angles of the two wheels (v; and 6;) .  The Wheel Control values are the rotational 
accelerations and steering velocities. 

The Wheel Driver performs calculations at about 20 Hertz. The Wheel Driver 
calculations can use floating point numbers and physical units (meters, radians, and 
seconds). The Motor Driver is guaranteed to perform calculations at 100 Hertz; it 
cannot use floating point numbers but must use integers (the floating point registers 
are not saved by the interrupt service routine). The units for the Motor Driver are 
encoder clicks and clock ticks (0.01 second). 

The modified inputs to the Motor Driver are three two dimensional arrays of 
data: sp, sp-dot, and sine. The setpoint ( s p )  is the next target for the variable. 
The units for sp are encoder clicks per tick for wheel rotation and clicks for wheel 
steering. The array sp-dot is the rate of change in the setpoint allowed in a tick. 
The array sine is the only new variable that we have introduced to control two 
constrained wheels. When the wheels me unconstrained, sine[i] = 0. When the 
wheels are constrained, sine[;] = 8192 * pi [where pi is defined after Eq. (32)]. 

What is the reason for the factor 8192? Since ,6i is a floating point number 
that is less than (or equal to) 1.0 and sine is an integer, a scale factor is required. 
Integers have 32 bits. To prevent overflow during multiplication of two integers, each 
integer should have less than 16 bits. If we reserve one bit for sign, the maximum 
scale factor would be (2" - 1) = 32,767. How accurately can we measure the 
steering angles? Do we need such a large scale factor? The maximum steering 
angle (90 degrees) corresponds to 16,384 encoder clicks. However, the increment in 
encoder readings is 16. Thus, the accuracy is limited to 1024 distinct values. The 
value 8192 is eight times the accuracy. The value 8192 requires 14 bits. Thus, the 
scale figure provides sufficient accuracy and is a factor of four below the maximum 
scale factor. 

To demonstrate the benefits of the new control system for constrained wheels, 
we performed two sets of experiments. The first experiment was a rotation of 
120 degrees about the point (2,2) in the vehicle coordinate system. Figure 1 shows 
the vehicle coordinate system for a vehicle with four wheels. The experiments use 
a vehicle with two wheels and the origin of the vehicle coordinate system is midway 
between the two wheels. The second experiment was a straight movement of ten 
feet with the wheels at a 30 degree angle in the vehicle coordinate system. For both 
experiments, the steering angles were constant during the motion. 

To perform an experiment, we use a program that reads a data set and writes 
a sequence of Wheel Targets and Wheel Controls to shared memory where they 

17 



18 EXPERIMENTAL RESULTS 

are read by the Wheel Driver and used to calculate the input arrays for the Motor 
Driver. 

The input data set for a positive (counterclockwise) rotation of 120 degrees 
about the point (2 meters, 2 meters) is displayed in Table 1. The first three rows 
of Table 1 contain five values: time (measured in seconds), targets for the wheel 
velocities ( V I  and v2), and targets for the steering angles (81 and 02). The units 
of the wheel velocities are meters/second and the units of the steering angles are 
radians . 

Table 1. Input data for a positive rotation of 120 degrees 
about (2 meters, 2 meters) 

The distance between the two wheels is 0.7632 meters (to avoid roundoff error, 
we will display results to four figures). The steering angles are given by: 

tan 81 = -2/(2 + 0.3816) (54) 

tan62 = -2/(2 - 0.3816) . (55) 

( ~ 1 ) ~  = 22 + (2 + 0.3816)2 (56) 

The radii to the center of rotation (rl and 7-2) are determined by: 

( ~ 2 ) ~  = 22 + (2 - 0.3816)2 (57) 
Thus, 

r-2 = 2.5728 

The ratios of the wheel velocities are given by Eq. (15): 

(vl / v 2 )  = sin e,/ sin = 1.2088 
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Time v2 

3.00 0.0 

6.77 0.45 

5.14 0.0 

The velocity target for the right wheel is 0.45 meters per second. The velocity target 
for the left wheel (0.3723 meters per second) is determined by dividing 0.45 by the 
velocity ratio. The acceleration rate for the left wheel (0.1735 meters per second2) 
is determined by dividing the acceleration rate for the right wheel (0.2097 meters 
per second2) by the velocity ratio. 

During the first segment of the experiment, the wheels are steered while the 
vehicle is at rest. At the steering velocities for the vehicle (1.0546 radians per 
second), the steering motion should take less than one second. However, the length 
of the first segment is 2.5 seconds. The extra time allows the steering motion to be 
completed before the wheels begin to rotate. 

During the second segment of the experiment , the wheels accelerate to maximum 
velocity. During the rotation motion, the right wheel will travel 6.51 meters. The 
time required to reach maximum speed is 2.15 seconds. During that time, the right 
wheel will travel 0.48 meters. The right wheel will ramp up for 0.48 meters, travel 
at full speed for 5.55 meters, and ramp down for 0.48 meters. The right wheel 
requires 12.32 seconds to travel 5.55 meters. Thus, the velocity target for the right 
wheel should be 0.45 meters/second for 14.47 seconds (the sum of 2.15 and 12.32) 
and should be 0.0 for 2.15 seconds. We have added 3 seconds to the final segment 
to allow the force to decay. 

The input data set for a forward movement of 10 feet at a 30 degree angle 
is displayed in Table 2. The steering angles for the two wheels are the same 
(30 degrees = 0.5236 radians). The rampup time and distance are the same as 
in the first experiment. Each wheel will travel 3.05 meters (10 feet). Each wheel 
will ramp up for 0.48 meters, travel at full speed for 2.08 meters, and ramp down 
for 0.48 meters. Each wheel requires 4.62 seconds to travel 2.08 meters. Thus, 
the velocity target for the wheels should be 0.45 meters/second for 6.77 seconds 
(the sum of 2.15 and 4.62). The initial and final segments are similar to the first 
experiment. 

V1 02 $1 

0.0 0.5236 0.5236 

0.45 0.5236 0.5236 

0.0 0.5236 0.5236 

Table 2. Input data for a forward movement 
of 10 feet at 30 degrees 
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When the experiments are performed, detailed records of the values of the key 
variables are stored in data sets. Both experiments were performed four times. The 
results of the two experiments are summarized in Table 3. 

Table 3. Summary of the results for two experiments 

Exp . Case Direction Force Ratio Error (%) 

1 1 Positive NO 1.1424 -5.49 

1 2 Negative No 1.1409 -5.61 

1 3 Positive Yes 1.2064 -0.20 

Table 3. Summary of the results for two experiments 

The four cases for the first experiment are numbered: Case 1 to Case 4. The 
direction of the rotation alternates between positive and negative. For Cases 1 and 
2, the force control was turned off by setting the gain parameters to zero. For 
Cases 3 and 4, the force control was active. The ratio of the total movement of the 
right wheel to the total movement of the left wheel ( W I / W ~ )  should be equal to the 
ratio of the velocities (vI/v2 = 1.2088). Without force control, the errors are about 
5.5%. With force control, the error is reduced by more than a factor of 20 to about 
0.2%. 

The four cases for the second experiment are numbered: Case 5 to Case 8. The 
force control was off for Cases 5 and 6 and on for Cases 7 and 8. For this experiment, 
the rotation ratio should be 1.0. Without force control, the errors are more than 
8%. With force control, the error is reduced by more than a factor of 40 to less 
than 0.2%. 

The rotation ratios for the two experiments are displayed in Figs. 2 and 3. After 
the initial transient, the rotation ratio rapidly approaches a constant value for all 
eight cases. 
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Fig. 2. The rotation ratio for the first experiment (the goal is 1.2068). 
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Fig. 3. The rotation ratio for the second experiment (the goal is 1.0). 
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The control signals (u1 and u2) are displayed in Fig. 4 for Case 3. The control 
signals in the figure are dimensionless integers that have been divided by 10,000. 
The control signal for position and pseudovelocity (u2) is large and positive during 
the initial startup and large and negative during the final rampdown. During the 
constant velocity phase of the motion, u2 is much smaller. The control signal for 
force and error reduction (211) becomes large during the startup phase, remains at 
a high level during the middle phase, and becomes very large during the rampdown 
phase. At the end of the experiment, the control signals (and resultant forces) 
exponentially decay to zero [the decay is the result of Eq. (53)]. 

-1 

u2 

I 

Fig. 4. The control signals (u1 and un) for Case 3. 
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The output torque values are displayed in Fig. 5 for Case 3. In the notation of 
Fig. 5: 71 = t R and 72 = t L. The torque values in the figure are dimensionless 
integers that have been divided by 10,000. To prevent damage to the motors, the 
magnitude of the torque values is required to be less than 32,768. For a short initial 
period, both torque values are positive. Soon, the right values are positive and the 
left values are negative. Thus, during most of the motion the two wheels are pulling 
against each other. 
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0 6 12 1 8  24 

time 

Fig. 5.  The output torque values (q = t R  and Q = t L )  for Case 3. 



7. CONCLUSIONS 

When a vehicle with two or more steerable drive wheels is traveling in a circle, 
the motion of the wheels is constrained. When the drive wheels are controlled 
independently, errors may occur and the wheels may slip. A vehicle with N drive 
wheels has ( N  - 1) rigid body constraints and one degree of freedom. To control 
the vehicle, we have one degree of freedom for the position on the circle and ( N  - 1) 
forces that can be used to reduce errors. Kankaanranta and Koivo have developed 
a control architecture that allows the force and position degrees of freedom to be 
decoupled. 

Kmkaanranta and Koivo did not define a method for choosing the B matrix that 
determines the pseudovelocity. We have developed a general method for choosing B 
for a system with N velocities and N - 1 constraints. We choose B to be orthogonal 
to all of the rows of the Constraint matrix (A). Furthermore, our choice produces a 
simple analytical expression for the orthogonal complement of A. 

In addition to defining the B matrix, we have made several modifications to the 
work of Kankaanranta a d  Koivo. We have used a kinematic model of the vehicle 
rather than a dynamic model. We have simplified the expression for the control 
architecture. We have used the constraint matrix to define an error vector and have 
defined the forces in terms of the errors. At  the end of an experiment, the vehicle 
stops moving but the forces will not be zero unless the cumulative errors are zero. 
To have the forces gracefully decay to zero, the cumulative errors exponentially 
decay whenever the pseudovelocity target is zero. 

We have implemented the control architecture on the HERMIES-I11 robot and 
have performed two sets of experiments. The implementation of force control is 
based on measurements from wheel encoders and does not require force sensors. 
The first experiment was a rotation of 120 degrees about the point (2 meters, 
2 meters). The second experiment was a movement of ten feet at a 30 degree angle. 
For both experiments, the reference values for the steering angles were constant 
during the motion. We have measured a dramatic reduction in error (more than 
a factor of 20 for the first experiment and more than a factor of 40 for the second 
experiment) compared to motions without force control. 
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