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ABSTRACT 

A new program package, Symbolic Manipulator Laboratory (SML), for the 
automatic generation of both kinematic and static manipulator models in symbolic form is 
presented. Critical design parameters may bc identified and optimized using symbolic 
models as shown in the sample application presented for the Future Armor Rearm System 
(FARS) arm. 

The computer-aided development of the symbolic models yields equations with 
reduced numerical complexity. Important considerations have been placed on the closed 
form solutions simplification and on the user friendly operation. 

The main emphasis of this research is the development of a methodology which is 
implemented in a computer program capable of generating symbolic kinematic and static 
forces models of manipulators. The fact that the models are obtained trigonometrically 
reduced is among the most significant results of this work and the most difficult to 
implement. 

Mathematica (Wolfram 1988), a commercial program that allows symbolic 
manipulation, is used to implement the program package. SML is writtcn such that the user 
can change any of the subroutines or create new ones easily. To assist the user, an on-line 
help has been written to make of SML a user friendly package. 

Some sample applications are presented. The design and optimization of the 
5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the 
kinematic and static models of two different 7-DOF manipulators are calculated 
symbolically. 

ix  
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manipulation of cxprcssions and the trigonometric reductions can take advantage of the 
geometrical configuration of the manipulator, arid considerably reduce the complexity of 
the output. By thc author's experience, the symbolic expressions generated by SML 
appear to bc suitable for real time execution. Numerous examples confimcd the 
expressions k i n g  close to minimum executable time. As an illustration, a comparison 
between the results for the Jacobian of the Jumbo drilling manipulator obtained with the 
package of Ho and Stiwattanathamma (1989) and with SME showed a reduction of 
calculation burden, in some expressions, of one and a half to eight times. 

1.2 MOTIVATION AND OBJECTIVES 

hi currently available computer-aided modeling programs of manipulators, only 
program tasks for a few well-stipulated outputs can be perfornaed. In fact, most previous 
programs gave only the Jacobian written with respect to the base coordinate frame and the 
four-by-four ~ Q K I O ~ ~ ~ ~ O U S  transformation bctween the hand arid base frames. Bcause  
robotics is a fast-growing field, more flexible modeling software is required. For 
cxmple, to apply force fcedback control in klerobotic operations, the Jacohiaii of the 
manipulator, written with respect to the coordinate frame where the force/torque sensor is 
situated, is  necessary. 

Each year, a multitude of papers are pirblished with new and better robotics 
modeling and control algorithms. Furthermore, a program for computer-aided generation 
of manipulator models should improve as robotics technology develops. The program 
should offcr not only specified and well-defined outputs but also accessihility to its 
subroutines. Moreover, inkrestcd researchers should be able to me or change them for 
specific purposcs. 

Thc umdvation of this research is to create a program package for the generation of 
symbolic models of manipulators. The program package should be easy to use, 
changeable, and extendable. These capabilities will guarantee the utility of the package for 
both the expert and the novice. The expert will be able to avoid long, complicated 
calcmlations; verify prcvious results; and create ncw algorithms. The novice will be able to 
ob~ailm solutions without bcing a robotics expr t  or fluent in Mathematica (Wolfram 1988). 
The specific 01-~jectivcs of the program package presented in this work are detailed in 
Sectioiis 1.2 1 through 1.2 8. 

Onc ot>jcctivc is to dcvelop a program package h a t  can generate, with minimum 
input, the kinematic and static symbolic models of a general serial link manipulator and the 
inverse kincmatic model for any 6-DOF manipulator with the last thrce axes intersecting, 

1.2-2 Easy-to-Rcad Input-Output 

Another objective is to crcatl: simple and urnderstandablc output expressions from 
standard input. The inputs arc the pxaneters from the Deriavit-Hartcnberg (D-H) Table 
(Asada and Slotine 1986; Craig 11986; Paul 198 1) and, potentially, the mass parameters 
tablc of the manipulator. 'To take adv'antage of the geometrical configuration of the 
manipulator, thcsc parameters can be iiunieric or symbolic. Finally, the user can choose 
the c q n t  to be written in FORlRAW, C ,  or Text or can create another output fom.  



1. INTRODUCTION 

The symbolic generation of equations has been used extensively by researchers to 
evaluate control algorilhms for robot manipulators. A symbolic expression has advantages 
over a numerical algorithm in tliat it permits qualitative relationship and parameter 
sensitivity algorithm improvement. From the design view point, symbolic models can be 
studied to identify critical design parameters. Further, the reduced-order model can be 
generated and studied. For real-time computing, the symbolic equations have the potential 
of demanding less computer time. Only symbolic formulations can take full advantage of 
all possible reductions that arise from the geometrical configuration of the manipulator. 

Many algorithms have k e n  presented to generate the kinematic and dynamic 
equations of motion of a manipulator. Some try to automatically produce the equations in 
symbolic form. It is well known that the development of the symbolic model of a 
manipulator is an error-prone process. With the recent introduction of 14-degrees-of- 
freedom (DOF) manipulators, the computation demands are ever increasing. Moreover, 
automatic computer-aided programs to produce the models ~IE beginning to be necessary 
and even indispensable for researchers and people in industry. 

Currenlly, most symbolic program packages generate the dynamic models 
symbolically. Few provide the kinematic model as output, but none provide the static 
forces at arbitrary locations on the manipulator. The package pre.sented in this work, 
Symbolic Manipulator Laboratory (SML), can create the kinematic and static models of any 
general serial link manipulator in symbolic form. 

1.1 SYMBOLIC MANIPULATOR LABORATORY 

In robot manipulator design, a symbolic manipulator modeling program must be 
capable of generating complete manipulator models from minimal manipulator descriptions 
entered by the user. In contrast with classical numerical programming, symbolic programs 
can deal with algebraic expressions. An internal algebraic representation enables the 
symbolic program to encode uniquely algebraic terms facilitating the implementation of 
mathematical operations. To implement the computer-aided gcneration of manipulator 
models presented in this report, Mathematica (Wolfram 1988), a high-level symbolic 
package, was used. 

Mathernatica allows not only symbolic but also numeric manipulation of equations 
and matrices. Numeric-symbolic handling of qualions takes advantage of reductions due 
to common terms and multiplication of algebraic terms by numbers. In classical numerical 
methodologies, a quantity can be calculated along all thc modcling process to be finally 
multiplied, by a zero; or it can be multiplied by series of sines and cosines that could be 
trigonometrically reduced if the quantity were takcn as a common tcm. All this contributes 
to a considerable waste of time in the real-time processing of the model. Howevcr, a 
numeric-symbolic methodology accounts for thcsc reductions before the model is 
implemented in the nurneric coprocessor, requiring less control time and improving the 
behavior of the manipulator. 

Another capability of Mathcmatica is that the uscr can create new routines with 
eithcr numeric or symbolic inpu t-output, providing a useful environment for generating 
numeric-symbolic models. 

The program package presented in this work called SML takes advantage of the 
potential that Mathematica oflers. The trigonometric reduction routines play a central role 
in this program and represent the main contribution of this report. The numeric-symbolic 

1 
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1.2.3 Trigonometric Reductions 

An efficient output is desired for a numerical program with a near-minimum 
computational time constraint in the output model. To accomplish this goal, trigonometric 
reductions subroutines have bcen implemented. They are bascd on two differcnt kinds of 
algorithms: pattern matching and exponential rcductions, 

1.2.4 Kinematics 

Production of a complete kinematic model is needed, including: (1) spatial 
transformations (i.e., homogeneous transformations, rotational matrices, and positional 
vectors with rcspect to any manipulator coordinate framc); (2) direct kinematic equations 
representing the homogeneous transformation and the positional vector; and ( 3 )  the Euler 
angles between the hand and base frames. 

1.2.5 Inverse Kinematics 

Another objective is to formulate the invcrw kinematics of a general 6-DOF 
manipulator with thc three last axes intersecting in a point. Thc algorithm is based on 
Pieper's solution (Pieper 1968) as presented by Craig (1986, p- 112). 

1.2.6 Jacobian 

An important objective is to form the manipulator Jacobian matrix written with 
respect to any coordinate frame. Two different algorithms are uscd for the calculations. 
The first one, discussed by Asada and Slotine (1986, p. 58), is uscd in SML to calculate 
the Jacobian written with respect to the base coordinate frame. The second algorithm is 
based on the relation between the end-effector force and joint torque (force) which is 
presented by Craig (1986, p. 152). The last one is implemented in SML to calculatc thc 
Jacobian written with rcspcct to the last coordinatc frame. Further, a subroutine is written 
to transform the Jacobian with rcspcct to any frame. First, SML checks which coordinate 
frame (the base or the last) is closer to thc frame asked for, and it automatically calculatcs 
the Jacobian by one of the two algorithms (whichever is faskr). Then, SML transforms 
the Jacobian written with rcspcct to the specified coordinatc framc and reduces it 
trigonometrically. 

1.2.7 Payload and Gravitational Compensation 

It is dcsircd to establish an algorithm to find the effect of payload and gravititional 
forccs on thc mmipulator. The static forccs can be written for application against any 
coordinate frame of the manipulator. An objcctivc is to make it possible to study the effect 
of external forces at different locations over all the manipulator joints. The gravitational 
force can be specified in any direction (not only the classical "-Z" axis) so as to be useful in 
space or mobile vehicle applications. Ilik force can be applied in all or only some 01 the 
links for the casc of a simplified modcl. 
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SML will provide to the user the readon forces due to external static and 

gravitational forces over each joint presenting: (1) the three forcc components, (2) the thee 
torque components along the tlnrce Cartesian vectors that constitute each coordinate frame, 
and (3) die reaction over the manipulator joints. 

Outputs I arid 2 will allow the researcher to know in advance the internal forces 
produccd inside tlae manipulator. These reactions provoke de;tlection and torsion of the 
links of thc manipulator and strcss of its joints. Further, they can be used in the joint and 
link stras design. Knowing in advance the value and direction of maximum deflections 
and torsions on the manipulator, links can be reduced in weight and size. In this way, not 
only the joints but also the links can bc more accurately designed. 

1.23 On-kine Help 

in learning how to use all the available subroutines. This help feature will be one of the 
basts for future improvement of this package because the user wi!l bc able to extend the 
h d p  for specific subroutines. 

The f ind  objectivc is to develop an on-line help package that will aid the resezcker 



2. BACKGROUND AN ORIGINAL CONTRIBUTIONS 

Many algorithms for computer-aided generation of the motion equations of robot 
manipulators have been presented. DiPferent techniques to gcneratc these equations have 
been illustrated by several researchers (Asada and Slotine 1986; Craig 1986; Paul 1981). 
The kinematic equations in them are based on the notation presented in a report by Denavit 
and Hartenberg (1955), compactness of which offers the ability to create algorithms to 
obtain automatically the analytical exprcssions for the manipulator equations of motion. 
Furthermore, numerous algorithms for computer-aidcd generation of equations of motion 
of manipulators in symbolic form have been studied. The most interesting methods 
presented previously will be discussed in this chapter. 

2.1 LITERATURE REVIEW 

Symbolic computer packages for modeling manipulators are relatively easy to 
implement in languages such as LISP (Malm 1984) or PROLOG (2kwari and Zuguel 1986; 
Borland 1986). But it is bcttcr to use a more complete symbolic package like MACSYMA 
(Symbolics 1985) or Mathcmatica (Wolfram 1988). The latter is the package used to 
implement SML. These software packages are easier to work with, so the researcher can 
dedicate more time to the development of algorithms and output forms rather than to the 
exccution of the symbolic program. In addition, Mathematica offers 2- and 3-dimensional 
graphic abilities that can be used to plot the manipulator, its performance or work space. 

2.1.1 Dynamics Programming Review 

Most of the computer automatic generation algorithms implemented previously wcre 
written for only h d i n g  the dynamic models of manipulators. Qne of the first programs 
was Dynamical Models of Industrial Robots (DYMIR) (Vecchio et al. 1980). For DYMIR, 
the REDUCE symbolic language was uscd to implement the Lagrangian dynamic 
formulation. Later, Ccsareo, Nicolo, and Nicosia (1984) uscd DYMIR; and Matsuoka and 
Citron (1985) and T~es, Yurkovich, and Langer (1988) used MACSYMA to apply their 
programs for modeling light, flexible manipulators. 

Modeler (ARM). ARM generates symbolically the closed-form dynamic equations by four 
different methodologies: Newton-Eulsr, Lagrange, and two different Lagrange-Christoffel 
formulations. Neuman and Mumy (1984; 1985; 1987) and Murray and Neumm (IY84h) 
also presented good efficiency comparisons hctwmn different dynamic modeling 
formulations. 

Vukobratovic and Kircanski (1984; 1085; 1986), Kircanski and Vukohratovic 
(1988), and Kircanski et al. (1988) contributed to the symbolic manipulator dynamics 
modeling programs. For example, Vukohratovic and Kircanski (1984; 1985) introduced a 
methodology that yields a numcric-symbolic model. Kircanski et al. (1988) prc,scntd a 
program package for both kinematic and dynamic manipulator models. The package 
produces the homogeneous transformation matrix between the hand and thc base coordinate 
frames, the Jacobian with respect to the hand and basc frame of the manipulator, and its 
dynamic model. The samc authors dcvelopcd the Symbolic Optimizer-Program (SYO), but 
the output of thcir program was not completely reduced, kcausc it used the symbolic 

Murray and Neuman (1984a) unveiled thc computer program Algebraic Robot 
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exprcssions as if they were numerical, not taking full advantage of possible trigonometric 
simplifications. 

(1 984) have compared the computational requirements of manipulator dynamics 
formulation for symbolic processing, and others have created their own symbolic 
algorithms. For example, C'heng, Weng, arid Chen (1988) presented their symbolic 
dcrivatialm of dynamic equations of motion using the P I O G M  symbolic method 
(Piogmm 1964; 1965). Gupta (1987) contributed with the Symbolic Polynomial 
Technique. This techniqrx was expanded upon by Townsend and Gupta (1989). This 
n-iethod takes advantage of the latest techniques using parallel computing. Different central 
procasing units (CPUs) can calculate diffcrcnt parameters of the dynamic equations of 
motion at the same time, reducing the total amount of time necessary to calculate the 
complete model. It uses a combination of the symbolic and numerical approaches, zr, SML 
docs, trcating the valiablcs of the system ar, symbols hut using the numencal values of the 
constant parameters of the manipulator. 

Somc researchers such as Neunian and Murray (1985) and Aldon and Liegeois 

2.1.2 Kinematics Programming Review 

'T'here arc not 3s many references for modeling programs of manipulators that 
provide kincmatic information as for the dynamic one. Only a few computer automatic 
generation algorithms implemented previously have been written to find the kinematic 
models of manipulators. Most of the algorithms calculatcd only the homogeneous 
transfornation between the base and the hand coordinate frames (Malm 1984) and the 
Jacobian of the manipulator with respect to the basc or the hand frames (Vukobratovic and 
Kircanski 1986; 1987; Kircanski et al. 1988). Even though some researchers tried to solve 
the problem of thc Ilpigonometric seductions, a good solution was not found, because the 
models presented by the outputs of these programs were not completely drigonornstrkall y 
reduccd. 

Vukobratovic and Kircanski (1986; 1987) and Kircanski et al. (1988) contributed to 
thc  study of kinematics niodeling of manipulators. Vukobratovic and Kircanski (1986) 
reported an interesting study about the minimum amount of computational time necessary to 
compuk the kinematic model. The Jacobian of the manipulator, written with respect to the 
hand and basc frames, was calculated by using the elerncnts of the homogcnevus 
transfornation matrices. Moreover, some typical redundancy was reduced in the 
calculation of the manipulator motion equations. 

'The Scst symbolicidly automated direct kinematic equation solver offered previously 
was written by Ho and Sljwattanathamma (1989). In their package, Turbo Prolog 
(Borlaid 1986) is used to implement a mled-based program. The input that is entered into 
the knowledge base of this rulc-bascd program is composed by the D-H Table (Denavit and 
I-Ianmdxrg 1955; Asnda arid Slotine 1986; Craig 1986; Paul 1981) of the pamete r s  of the 
mrmipulator, bot it has to be specified whether a joint i s  revolute or prismatic. The outputs 
of the program are (1) the direct kinematic equations, (2) the homogcncous transformation 
hetwccn the hand mid the base frame of the manipulator, and (3) the Jacobian written with 
rcspect to only the end-effcctor attached coordinate framc. Trigonometric reductions are 
achjcved by pattern matching. This solution has potential problems with long expressions 
hccause of the large computational demand, a id  it has been proven not to work with all the 
different. possible trigonometric combinations. In fact, the output of the nile-based 
program packngc (IIo and SiiwatBanathamma 1989) is not completely tiigonometrically 
reduced. 
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Currently, few program packages are capable of generating the bverse kinematic 

solution in symbolic form. In general, they can deal with only manipulators which have a 
spherical wrist or hat are reducible to this condition. Not all the cases have been proven to 
be solved. One such package is SRAST (Herrera-Bendezu, Nu,  and Cain 1988). The 
SRAST program gives the solution for the direct and inverse kinematics, and it is 
implemented in two levels: the C and the LISP levels. The processor generates the 
symbolic equations at the C level and executes them at the LISP level. SIiAST is 
composed of two parts: SAST, which solves for the dircct kinematic equalions (Herrera- 
Bendezu 1985); and INKAS, which gives the solutions, if they exist, of the inverse 
kinematics (Mu 1987). Another package is based on rescarch reported by Coldenberg, 
Benhabib, and Fenton (1985). 

In parallel to the development of INKAS, the Symbolic Kincmatics Inversion 
Program (SKIP) was developed at the Institute for Robotics and Computer Control 
(Rieseler and Wahl 1990). Similar to INKAS, SKIP computes the closed-form solution 
for a given kinematics by using a set of prototype equations with known a priori solutions. 

Some publications exist in the area of symbolic programming or dynamic mod& 
and only a few for kinematic modck; the author was unable to find any refercnces about 
studies of external forces and gravitational effcct on manipulator programming models. 

2.2 ORIGINAL CONTRIBUTIONS 

The original contributions of this research to the tkld of computer-aided symbolic 
modeling of robot manipulators arc described in Sections 2.2.1 through 2.2.6. 

2.2.1 Trigonometric Reductions 

Trigonomctric reductions play an important role in robotics modeling, but they have 
not been solved completely in an automatic fashion. Wo and Sriwattanathamma (1989) 
presented a symbolically automakd solver that was able to reduce trigonometrically its 
output. Their program package does not give the output completely trigonometrically 
reduced. On the cxamplcs prescnted in their paper not only the Jacobian, but dso the direct 
kinematic equations for the Standford (Paul 198l), the Jumbo Drilling (Ho and 
Sriwattanathamma 1989), and the Puma (Craig 1986) robots can be furlher reduced 
trigonometrically. 

This report presents an important study and solution for this problem because all the 
possible trigonometric combinations in robotics are taken into account. Thus, the output is 
reliable to be complctely trigonometrically reduced. In SML, two methods to reduce 
trigonometric exprcssions are presented. 

1. A classical pattern matching is the first mcthod, wherc expressions are compared 
and reduced according to the some patterns. This is one of the fastest and most 
cfficient ways to diminish trigonometrically a short exprcssion. The pattern 
recognition algorithm is used to check all possible combinations inside the 
expression. However, if an expression is long, the numbcr of combinations is so 
large that the reduction of an expression can take so much timc that the outcome 
would be worthless or too cxpcnsive. 

2. An exponential reduction method, based on changing trigonomctric expressions to 
their conesponding pseudo-exponential expressions, is develolxd on SML. 
The second method has proved to work well with long, complicated expressions 

that the classical method cannot dcal with. Instead of checking fur any possible 
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combination that matchcs one of the patterns, this method transforms every sine, cosine, 
and tangcnt in its pseudo-cxponciitial expression. The operations defined for the pseudo- 
exponcntial expressions are faster than patkrn matching for producing the desired 
trigonometric reduction, and they give exprcssions, based on experience, that are close to 
minimum time solution. 

2-2-2 Homogeneous Transformations and Inverses 

Most of the symbolic modeling programs prcsentcd until now (Ho and 
Sriwattanathamma 1989; Kircanski et al. 1988) gave only the homogeneous 
transformations between the base and the end-effector frarnes of the manipulator. h 
contrast, SML, can give in symbolic foim any transformation between coordinate frames 
attachcd to any two links of the manipulator. Currently, this is the only package that also 
gives the invcrscs of any of these transformations and is possible because of the 
trigonometric reduction simplification subroutines. Thcse invcrses are useful for 
constnicting the invcrse kinematic models and sometimes for control algorithms. 

2-23 Jacohian Written with Respect to Any Frame 

To the knowledge of thc author, the package presented in this work is the only one 
tliat has the capability to find automatically in symbolic form the Jacobian written with 
respcct eo any coordinate framc of the manipulator. The Jacobian can he significantly 
simylificd (Dul-icy et al. 1988; 1989) and bc more powcrful when written with respect e~ a 
different frame rathcr than to the base or to the end effector. Further, the Jacobian matrix 
can be uscd to iind the reaction of the joints due to an arbitrary end-point applied force. 
This force can be dcfincd with respect to any coordinate frame, where the sensor of the 
manipulator is located [sec Craig (1986, p. 152) and Asada and Slotinc (1986, p. 7731. 

LE,$ Payload and Gravi tatiormal Compensation 

Most of the industrial manipulators in the market have simple Proporlional-integra-al- 
derivative (PIP>) controllers of the form 

wlaere X and x d  are the actual and the desired positions respectively, K,, Ki and Kv are 
constants a id  f is the force exerted on the manipulator joint. Corrcctions to robot controls 
dlnc to static forces and grmitatioiinl effects are the most computational-ef~cient kxhniqur: 
that can be applied with actual microcomputers (see Critchlow 1985, p. 197). 

calculations; usually, just a couple of lines of codc is enough. A PID control works well 
only as long as thc manipulator is moving in free space. When the manipulator touches the 
environi-nent and is still not in the dcsired position, the integral part of the control builds up 
to a large force or torque to he applied to the joint actuator (i.e,, integral windup effect). 
‘ i h k  hi-iildup niakes the manipulator unstable and even dangcrous hccanse it can break i t s d f  
or Lhc surfaw that i t  is touching. ‘I‘he inkgration effect is even more pronounced in 

PI19 controls can do these corrections automatically without requiring all tliese 



9 

telerobotic systems, wherr: the master that directs the slaw manipulator may be far from the 
actual manipulator position. The differencc in actual position (slave) and desired position 
(master) causes the inkgml term in Quation (2.1) to increase in magnitude with time. 'Plme 
rcsuft can be a large and potentially dangerous fozdtorque. Furthermore, it is important to 
have the modcl of the reactions at any joint due to extemd forces and gravitational effect. 
SML is the only known package capable of creating this model. 

calculated directly from Newton-Eulcr formulation. In addition, the function gives the 
internal forcedtorques applied to each link. This information is useful for studying 
compression, torsion, deflection, and stress of manipulator links m d  joints. SML could 
help mearchers to h o w  in advance the location an the direction of these effects in static 
conditions. 

The exmnal forces correction and the gravitational ef€wt on the manipulator are 

The input of most conaputcr-aided modeling programs is the D-W Table (lo%), and 
joint description (k, revolute or prismatic). In this way, only one variable is possible for 
each row of the D-E-I Table. This is not the c w  of the input for SML, whcrc the symbolic 
subroutincs account for this dircctly from the D-W Table, making possible to be all the 
parameters of a row variables. 

row of the D-H Table. This table has four parameters in a row for each joint: qi, ai, ai, and 
di. If a joint is revolute, then ai, ai, and di are constants and qi is the variablc. But if a 
joint is prismatic, then qi, a,, and ai are constants and d, isthe variable. To have a revolute- 
prismatic (cylindrical) joint, the variables are qi and di. Because the input for SML can be 
independently numeric or symbolic, the user can choose to give either a number or a 
symbol to any of the constants or variables. Further, thc user can choose the numbcr of 
DOFs of each joint. 

For most of the subroutjnes of SML, the only neccssary input is the D-€I Table. 
But for the functions that give the static and gravitational forces modcl, SML needs also 
what is called the Mass Table by SML. This table is composed of four parameters for each 
link: (1) the first one is the link mass and ( 2 )  the next three paramcters define the location 
of the link center of mass with respcct to the x-, y-, and z-axes of the coordinate frame 
attached to that link. 

standard ones arc (1) FORTRAN form; (2) C form; ( 3 )  Text form; and (4) Mathcmatica 
intcrnal form, which can be used as an input lor future calls to other functions. The user 
can choose the form or cvcn create a new, preferred output forni. 

Furthermore, it is also possible to have 2 revolute and 2 prismalic joints in just one 

The packsge offers diffcrcnt ways of displaying the output expressions. The 

2.2.6 Interactive Mode Programming with an On-Line Help 

SML is the only package lhat can be used in both interactive and hatch mndcs. All 
the packages presented till now worked only in batch modc. In this mode, the input m d  
options arc enkred into the program Lo obtain a specific output. When using a batch mode, 
the input has to bc entercd each time the program runs. Because SML presents so many 
options, it was neccssaiy to includc the interactive mode. In this mode, each function of 
hc  package can be callcd separately. Then, each outpuE can be analyzed and used as input 
for the following caIIs to functions. 
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To facilitate the user's work, an on-line help was written bascd on Mathenatica's 
own help. It allows the user to know, at any moment in a session, how to use and call any 
suhroueine or what is the actual numeric-symbolic value for a variable, a vector, or a 
niatrix. 

All thcsc new contributions promise to make this package not only a better solution 
for the problcm of manipulator modeling but also a research tool useful for robotic control 
algorithms. 



3. SYMBOLIC SOLVER BNTRO 

A new program package, SML, for the automatic generation of both kinematic and 
static manipulator models in symbolic form is presented. ?he computer-aided development 
of these symbolic models yields equations with reduced niimcrical complexity. Important 
considerations have k e n  placed on the closed-form-solutions simplification and on the 
user-friendly operation. The main emphasis of this research is the dcvciopmeni of a 
methodology, which is implcmentcd in a computer program, capable of generating 
symbolic lunematic and static forces models of manipulators. 

The trigonometric reduction is an important result of this work and the most 
difficult to implement. Previously, only pattern matching has k e n  used. In addition to 
pattern matching, another method, based in exponential functions, has ken implemented in 
SML. This method drastically reduces the amount of time necessary to produce the model 
and to pei-f~m its numerical computation, 

3.1 INTRODUCTKON TO MATHEMATICA AN 

Mathcmatica (Wolfram 1988), a new program that allows symbolic manipulation, is 
used to implement SML. Versions of Mathcmatica are available for the Apple Computer, 
Inc., Macintosh Plus and larger computcrs, as well as the Macintosh SW30 and the 
Macintosh 11, Ilx, Ikx ,  and IIci; 386-based MS-DOS systems; Apollo DN 3000 and 4ooo 
systems; Digital Equipment Corporation VAX VMS and ULTRJX, and DECstation; 
Hewlett-Packard 90()0/300 and 800 systems; International Busincss Machines AWRT 
systems; MIPS systems; NeXT; Silicon Graphics TRTS systems; Sony NEWS systems; 
and Sun 3,4 and 386i systems. Furthermore, SML can be used in any of thcsc computers, 
as long as Mathematica is loaded, with the s m e  format and input-output This ensures not 
only compatibility but also the ability to be used in a personal computer (K). In fact, all 
the work presented in this report was performed on a Macintosh 11 PC. 

SML, the package presented in this work, is written in a way that allows the user to 
easily cliange any of the subroutines or to create ncw ones. Further, the subroutines can be 
used independently or jointly, giving the user the ability to create work routines. To assist 
the user, an on-line hclp has k e n  written to make this package very user friendly. 

SMI., can he used in an interactive modc or in a batch mode. In the interactive 
mode, each function of the package can be called scparakly. Then, each output can be 
analyzed and used as input for the following calls to functions. Tn the batch mode, a 
program to call thc functions can bc easily writtcn by the user. Furthemore, the user can 
develop new routines and even crcatc new functions that were not in the original package. 
In this way, the capability of thc program can be cxtcndcd, thus improving tlic user’s 
efficiency and accuracy. 

that Mathematica offcrs. The trigonometric rcductions routines play a central role in this 
program and represent the main contribution of this work. Thc numeric-symbolic 
manipulation of expressions and the trigonometric rcductions can take advantage of the 
geometrical configuration of the manipulator, reducing enoiinously the complexity 0% thc 
output. 

The SML progrdm package, presented in this paper, takes advantage of the potential 

I 1  
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Each SML function is a tool that can be used separately and can call automatically 

1. The first group is constituted by kinematic functions. They calculate everything 
related to kinematics such as homogeneous transformations, direct kinematic 
equations, Jacobian, and inverse kinematics for serial 6-DOF manipulators. 

2. Static forces and gravitatkmal effects functions constitute the second group. In this 
group, algorithms are perlomed to find the reaction of the joints of the manipulator 
to external static forces like payloads and gravitation. 

3. The third group i s  formed by miscellaneous functions like trigonometric reductions, 
output forms, and auxiliary functions. 
SML consists of three different packages: SML-P,m, SML-C.m, and 

As it was explained, Paid's notation (198 1) is used by default, but Craig's notation (1986) 
also can be lased in SML. Because usually only one of them is used at a time, a package 
has been written for each notation. The three packages can be loaded and used at the same 
time, even though they are not fully independent, because some functions are repeated to 
make them able to work separately. . 

(directory) "Robotics," which is to be created by the user inside the folder (directory) 
"Packages" of Mathematica. The next step is to load Mathematica on the computer and then 
to load SML on Mathcmatica, typing any of the following: 

other functions necessary to accomplish its goal. 'fiere we three differcnt groups of 
implemented functions. 

To load any of the packages, they have to be placed or copied first on the folder 

Needs["Robodcs'SME-P' "1 , 
Nee~s["Robotics'SML-C'"] , 
Needs[ "Robotics' RedTrig' "1 . 

(3.1) 

The h s t  package (SML-P.m) allows the user to use any of the functions descrikd 
in this report in Paul's notation ( 198 l), and the second one (SM1X.m) does exactly the 
same but in Craig's notation (1986). Trigonometric reductions arc already included in 
SML-P.m and SML-C.m; but with the third package (RedTrigm), only the trigonometric 
reductions and output forms functions of SML are loaded. 

All the f~nctions pre.sented in this work are the ones in Paul's notation (198 1). To 
use Craig's functions (1985), add a C to the name of any kinematic and static functions 
(e.g. OperTransformC: Pose, DircctKinEqG, etc.). Trigonometric and output forms 
functions arc common. so there is no need to add a (2 to their names. 

3.2 USAGE OF THE SOLVER: NUMERIC OR SYMBOLIC INPUT-OUTPUT 

Using the tools given by Matherrdca, SME can handle numeric andor symbolic, 
input-output. Tables for the mass and geometric properties of the manipulator are entered 
in the form of matrices. The elcmcnb of these matrices can be cither a number or a 
s y in b ol . 

comnioii terns and multiplication of algcbraic terns by numbers. In classical numcrical 
mcthodologies, a quaiitity can be calculated along all the modeling process to be multiplied, 
at last, by a r.ero; or i t  can be multiplicd by series of sincs and cosiries which could be 
tsigonomctrically reduced if the quantity werc taken as a common tern. All this amounts to 
a considerablc wastc of time in the real-time proczssing of the model. Contrarily, a 
numeric -symbolic methodology takes thcse reductions into account before the model is 
irnplerncntcd in the numeric coprocessor, making h e  control work faster and improving the 

Numeric-symbolic handling of cquations takes advantage of reductions due to 
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behavior of the manipulator. Symbolic manipulator models created by SML are diminished 
close to their minimal cxpressions, resulting in close-to-minimal computer time demand. 

3.2.1 Input: Denavit-Hartenberg and Mass Parameter Tables 

The input of most of the computer-aided modeling programs is the D-H Tablc 
(1955) and joint description; it is either revolute or prismatic. This is not the case for the 
SML input, where the symbolic subroutines account for this directly from the D-€3 Table. 

Using Paul's notation (1981), Figure 3.1 shows a pair of adjacent links and their 
associated joints, coordinate frames, and parameters. The D-W Table in Paul's notation is 
entered in SML as an n-by4 matrix, where n is the number of coordinate frames associated 
to links of the manipulator: 

Figure 3.2 shows a pair of adjacent links and their associated joints, coordinate 

The D-H Table in Craig's notation (1986) is also entered in SML as m n-by-4 
frames, and parameters using Craig's notation (1986). 

matrix: 

(3.3) 

The principal difference between Paul's notation and Craig's notation is that in the 
first case frame i is attached to the end of link i, but in the second case it is attached to the 
beginning of the link. This crcaks a totally different nomenclature for the kinematics of the 
manipulator, making a different package necessary for each notation. 
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J o i n t  i+l 

J o i n t  i I 

Figure 3,P. Link frames a d  parameters in Paul's notation. 



15 

qi 

ai-1 = angle from &-1 to Zi, about Xi-1 

ai.1 = length from Zi-1 to Zi, along Xi-1 

di 

= anglc from Xi-1 to Xi, about Zi 

= lcngth from Xi-1 to Xi, along Zi 

Figure 3.2. Link frames and parameters in Craig's notation. 
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Recause any parameter of the D-I1 Table can be a number or a symbol, it is also 

possible to have 2- or 3-DOFjohts. The I)-H Table has four parameters in a row for each 
joint: qi, ai, ai7 and di. If a joint is revolute7 then ai, ai,and di are constants and qi is the 

variable. But if a joint is prismatic then qi = 8, ai and ai are constants, and di is  the 
variable. To have a revolute-prismatic (cylindrical) joint, the variables are qi and di. 
Because the input for SML can be independently numeric or symbolic, the user can choose 
to give either a number or a symbol to any of the constants or variables. Further, the user 

u m k r  of DOF of cach joint or study the effect of a paramcter on the 
behavior of the manipulator. 

For most of the ~ubr~u t ines  of SML, the only necessary input is the D-%-I Table. 
But for the functions that give the static and gravitational forces model, SML needs also 
what has been called the Mass Table. This table is composed of four parameters for each 
link: the first one is the link mass, and the next three parameters define the location of the 
link centcr of mass with respect to the X-, Y-, and Z-axes of the coordinate frame attached 
to that link. 

(3.4) 

The Mass Table should have the same rows as the D-11 Table because each row 
rcprcscnts the mass and center of mass of a link whcre the coordinate frame is attached. 
Thus, if a link has negligible mass or Icngths, a row constituted by zeros should be added 
at its position in the Mass Table. For example, a joint with two rotational DOFs can be 
represented by two coordinate frames the origins of which are coincident- In this case, the 
first link rcprcsents a negligible mass link, and a row of zeros should be added to the Mass 
Table at its position. 

ut: FORTRAN, @, or Text for Papers or Research 

SML has been implemented from the beginning with the goal of including easy-to- 
use and multiple options in every function of the package. Different options on thc output 
f o m  give the uscrs more flexibility and accuracy in their work. 

Mathernatica has specific rules for the form in which the input-output is presented to 
the computer or user. Like other symbolic languages such as LISP or PROLOG, cvery call 
to a function of Mathcmatica is made by typing its name followed by brackets, inside which 
are the argumcnts separated by commas. Even though LISP and PROLOG use parentheses 
instead br;ickets, the structure is the s m e .  All the built-in functions in Mathematica use 
English words with the first letter of each one capitalized. For example, the following 
function expands products and powers that appear in the numerator of expr: 

ExpandNumcrator[exp~-~ . (3.5) 
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In modeling manipulators, trigonometric functions are always involved in the 

equations. For SML to know that cosines, sines, or tangents are functions, the computer 
needs to reprcsent every trigonometric function in the following mode: 

Cos[ql], Sin[tl+t2], Tan[q3], Cos[:! t3], etc. , (3.6) 

where qi or ti represent an angle in radians (and 2 t3 means 2*t3). This kind of 
representation is necessary for the computcr to be able to operate with these functions. In 
this form, not only the equations are difficult to read as Text, but they are also incompatible 
with other numerical languages like C or FORTRAN. Mathematica already provides .some 
basic functions to obtain more compatible kinds of forms, but thc output is not the most 
appropriate for manipulator symbolic modeling. SML presents more attractive outputs 
through 3 series of Output Form functions. These new outputs can be just copied into 3 
FORTRAN or a C program to be used for the control of the manipulator. 

When a specific symbolic model for a manipulator has k e n  created with SML and 
after the trigonometric rcductions have been applied, a multitude of sines, cosines, and 
even tangents will be obtained on the equations on the form prescntcd in Equation (3.4)- 
These are not good enough to be implemented in a numerical algorithm in a computer or to 
be included in a paper or report. The following notation has k e n  used to reduce 
trigonometric forms in most robotics publications: 

Cos[ql] -> C1 , 
Sin[ylq2:] -> S12 , (3.7) 

Tm[q2] -> T2 . 

This representation produces a more compact form to be read by the researcher and 
makes it easier to understand the equations of the model. ?3ey are also better suited for 
implementation in a numerical algorithm because no calculation rcpctition is made. For 
example, the expression Cos[ql] is, more than probably, repeated along the manipulator 
model. Being a trigonometric function, it consumes a lot of CPU time for calculation. 
Thus, it is intercsting to calculate its numerical value only once, call it C 1, and use this 
value throughout the model. 

trigonometrical functions to the classical nomenclature. Rcd Anglc has three arguments, the 
second and third ones being optional: 

A Iunction called RcdAngle has been implemented in SML to reduce the form of 

RedAnglelexpr-, var-:q, big-:O] , (3.8) 

where 
expr is the expression to be reduccd, which includes any of the trigonometric 
functions of the form of Equation {3.6)- Expr can bc a vector, a matrix, a 
polynomial, or any kind of expression. 
var defines the angles inside the trigonometric functions used in SML. The 
default for var is q bccause most robotic applications publications use it, but any 
name can be specified by the user as long as it is the same for all thc angles 
inside the expression. 
big is an option to enable RedAngle to deal with subindexes for the angles 
larger than nine. Big is zero by default, giving any value different from 7cro 
enables larger subindcxes. 

9 
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RedAngle can deal with any combination of addition and subtraction of angles 

inside the trigonometric functions sine, cosine, and tangent. The function sine is reduced 
to S ,  cosine to C, and tangent to T. The name q that defines the angles qi in SML 
disappears. A plus sign is eliminated by default when big is at its default value 0, but it is 
transformed into E' when big is different from 0. This enables users to work with 
subindexes with more than one digit. A minus sign is always represented by an M. 
Double, triple, or larger angles are translated using the following notation: 

2 ql -> D1; 3 ql  ->TI; 4 ql  -> Q1; 5 q l  -> F1; 

6 ql ->AI;  7 ql -> B1; 8 q l  ->El;  9 ql  -> Nl ;  . (3.9) 

As an example, Equation (3.10) shows the function R e d h g l e  operating on 
di Fferent expressions: 

RedAngle[Cos[ql] Sin[ql+q?] +- Tan[q2-q3+4 sa]] -> C1 S12 + T2M3Q4 , 

RedAngle[al Coshtl] / Sin[tl-2 t2] ,t] -> a1 C 1 /  SlMD2 (3.10) 

KedAnglle[Sin[ql-tq23] + Tan[q2-4 q411, q, 13 -> SlI'2.3 + T2MQ41 . 

RedAngli: can be used with any other function that Mathematica offers. An 
interesting text-form output for robotics application is obtained by using RedAngle arid 
MatrixForm, a built-in funceion of Mathematica. Thc following homogeneous 

transformation A, between the first and thc third coordinate frames of the Puma 
manipulator was obtained with Opcr'Transfom, a function of SME defined in Chapter 4. 

3 

[ C23 4 2 3  0 C2a21  

0 0 1 d 3  

-S23 -C23 0 -(S2 a2) 
* r A  1311 -> (3.11) 

l o 0 0  1 1 .  

Once the trigonometric functions havc bccn reduced to a more compact f o m ,  the 
next irnportmt step is to translate the expression to a form compatible with C or 
FORTRAN. One nf thc difficulties when translating to any of these languages is that to 
enter a multidimensional vector, the subindexes have to be specified to assign each value to 
a different meniory allocation. Both languages use different notations: (1) the first index 
allocation for C is zero but for FORTRAN is one and (2) C uses a pair of brackets for each 
index "List[O][2]," but FORTRAN needs a list of thc subindexes separated by commas 
inside parentheses "l,ist( 1,3)." 

A luiiction called Listoutput has been created which prints its first argument 
regardless of its di~nensions. This function checks the kind of input that is entered; it is 
cither 3: vector, a matrix, or an cxpression; and it automatically calls the necessary function 
that will print it out in the spccikd output form. 1,istOutput has four parameters, the lnst 
three being optional: 

IAOutput[cxpr-, narne--:"I,ist", fom-:Tcxt, var-:q, big-:O] , (3.12) 
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where 

0 

* 

expr is the expression to be printed in the specificd form. Expr can be either a 
vector, a matrix, or an cxpression. 
name is a string that gives the name that will be used for the listing. The default 
lor name is "List." 
form is the desired form in which the output will be printed. Its dcfault is Text, 
but the following options are available: 
1 .  form = Text gives expression in Text form. This is probably the easier to 

read, but it is not good enough to copy and paste to another program such 
as in a word processor, when powers or divisions are present. 

2. form = C gives the expression in C form. 
3.  form = RC prints the expression in C language, reducing the form of sines, 

cosines, and tangents by using RedAngle. 
4. form = F prints the expression in FORTRAN form. 
5. form = RF gives the expression in FORTRAN, reducing the form of sines, 

cosines, and tangents. 
var is thc same argument as in RedAngle. This argument necds to be specificd 
only whcn asking for Reduced FORTRAN (RF), Reduced C (RC), or Text 
forms and a different name that qi has b u n  used for the angles in the 
exprcssion. 
big is the option that enables ListOutput to deal with subindexes for the angles 
larger than nine. Big is zcro by default, giving any value different from zero 
enables larger subindexes. 

The forms defincd as RC or RF are the most powerful that ListOutput provides. 
Thcy are not only easy to read, but they can also Is: copied and pasted to other programs 
like word processors or program editors in text mode without any problem. 

Jacobian of a two-link planar manipulator cxpressed in four different forms: 

9 

As an example of the output obtained with ListOutput, the following represents the 

1. Mathematica and SML form: 

Jacob -> { { - L l  Sin[ql] - L2 Sin[ql+q2], - L2 Sin[ql+q2]), 
{ L1 Cos[q1] + L2 Cos[ql+q2], L2 Cos[ql+q2]) ). 

2. Tcxt form obtained from ListOutput by default: 

ListOutput[Jacob] -> List(1,l) = - (L1 S l )  - L2 S12 
Lisl(2,l) = L1 Cl  +L2C12  
List( I ,2) = - (L2 S 12) 
List(2,2) = L2 C12 . 

3. Reduced C f m n :  

List(-)utput[Jacob,"Jac",RCJ -> Jac[O][O] = - (Ll*Sl) - L2*S12 ; 
Jac[l][O] = Cl*LI + C12*L2 ; 
Jac[Ol[l] = - (L2*S12); 
Jac[l][l J = C12*L2 ; ~ 

(3.13) 

(3.14) 

(3.15) 



20 
4. Reduced FO1UXAN form: 

ListOutput[Jacob,"Jac",PiI;] -> Jac( 1,l) = - (Ll'Sl) - L2*S12 
Jac(2,l) == Cl*Ll  -t @12*L2 
Jac(1,2) = - (L2*S12) 
Jac(2,2) = @12*L2. 

(3.16) 

It is important to note the difference when operating on powers and divisions. The 
C language has the function "pow(x,y)" to calculate x to the power of y, but in FORTRAN 
syntax "xf*y" has to be specified. The output produced by Listoutput using any of the 
FORTRAN or C options is perfectly compatible with any editor or word processor. This i s  
not ttlc ca,x when using the option Text, which i s  compatible with only certain editors like 
Expressionist. 
The following are examples of three different outputs obtained for 

Listoutput [Cos[ql]/Cos[q2]*2, "Example", form option]. (3.17) 

1. Text option: 
C l  

Example = --- 
3 

s; 
2. RC option: Example = Gl*pow(S2,-2) ; 

3. RF option: 

Both functions, RedAngle and Listoutput, have on-line help. The user just; needs 

Example = Cl/S2**2. 

to type "?KcdAngle" or "'PEistOutput" to obtain an explanation about the function and its 
pan-amcters. More kinds of outputs are built into Mathematica. Especially interesting for 
robotics arc the functions MatrixFonn and ColurnnFsrm that Matliematica offers. 



4. SYMBOLIC SOLVER TOOLS 

The goal in this chapter is to develop a series of functions, in a computer package, 
for use in modeling a general serial link robot manipulator. Each of these functions is a 
tool that can be used separately and that can call automatically other tools necessaiy to 
accomplish its goal. Three diffcrent groups of functions exist in SML: 

1. The first group is constituted by kinematic functions. They calculate everything 
related to kinematics such as homogeneous transformations, direct kinematic 
equations, Jacobian, and inverse kinematics for serial 6-DOF manipulators. 

2. Static forces and gravitational effect functions constitute the second group. Tn this 
group, algorithms are performed to find the reaction of the joints of the manipulator 
to external static forces like payloads and gravitation. 

3 .  The third group is formed by miscellaneous functions like trigonometric seductions, 
output forms, and auxiliary functions. 
Even though the trigonometric reduction functions presented in Chapter 5 can be 

applied to the output of any of the following functions, it has been found to be more 
effective to include this kind of reductions inside some of the functions of SML. 
Moreover, taking advantage of the geometrical configuration of the manipulator in each 
function algorithm improves its speed. 

4.1 KINEMATICS FUNCTIONS 

Kinematics is the science of motion which treats motion without regard for the 
forces that cause it. In this section, kinematic functions are developed to symbolically 
compute the position and orientation of any coordinate frame of the manipulator with 
respect to any desired coordinate frame. Also included are functions to calculate the 
Jacobian of the manipulator with respect to an arbitrary coordinate frame, and the inverse 
kinematics of a 6-DOF manipulator. 

The input for each function is the D-H table, as stated in Chapter 3, except for the 
function that calculates the effect of gravity because the mass parameters table is also 
needed. 

4.1.1 Homogeneous Transformations, Rotational Matrices, and Position 
Vectors 

A homogeneous transformation A i  is a four-by-four matrix that describes the 
position and orientation of a coordinate frame (B) with respect to another frame (A). It is 

composed of a three-by-three rotational unitary matrix R I  and of a three-by-one position 

vector P z  relating both coordinate frames as shown in Equation (4.1). 

21 
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I 

Sin[Bi] Cos[€$] Cos[ai] - Cos[Si] Sin[ai] ai Sin[Bi] 

0 Sin [ ai] cos [ at] di 
(4.3) 

I 

I 
0 0 0  I 1  

(4.1) 

Homogeneous transformations can bc multiplied as general four-by-four matrices. 

' ~ h u s ,  having A! and A$, then coordinate frame (c) can be written wifi respect to frame 
(A) multiplying both matrices: 

A2 = A, B C  AB . 

As stated in Chapter 3, Paul's notation (1981) is, by default, the only one dcsribed 
in this report, but Craig's notation (1986) can also be used in SML. Paul's homogeneous 
transformation matrix between two consecutive coordinate frames is given by 

0 0 

wherc the parametzrs of the matrix are the same as those presented in Chapter 3, Figure 
3.1, for the D-H Table using Paul's notation (198 1). 

position and orientation of a coordinate frame i writkn with respect to its preceding 
coordinate frame i- I. If frame i- 1 written with respect to frame i is needed, then the inverse 

of q-l lias to be calculatcd. A gencral relation betwwn a homogeneous transformation and 
its inverse is uscd in SME to save calculation time: 

Note that Equation (4.3) represen& the homogeneous transformation that gives the 

I 

I 
0 0 0  I 1 

(4.4) 

The function OperTransfonn of SML gives the homogeneous transformation that 
relatcs any two coordinate: frames of the manipulator. Frames are called from 0 through N, 
corrcsponding with their order in the given D-H Table. The 0 coordinate frame is the base 
frame of the mnnipulator. If it were necessary to relate tlie manipulator to a fixed 
coordiiiale frame other than the base, it could he done just adding more rows of fixed 
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parameters at the beginning of the D-H Table. The function OperTransform is called with 
three arguments: 

OperTransfom[DHTable-, RefFrame-, Frame J , (4.5) 

where 

QperTransform uses Equations (4.2) and (4.3) to calculate, symbolically, the 
homogeneous transformation between Frame and RefFrame. If Frame is bigger than 

DHTable is the name given to the D-H Table of the manipulator, that should be 
entered as shown in Eyuation (3.2); and 
the output of OperTransform is the homogeneous transformation that relates 

Frame to RefFrame written with respect to RefFrame: A i s &  . 

- 
RetFrame, then it calculates first AEiFE'l then ARcFme+2 RefFrarnec 1 , and after that their 
multiplication. The function continues n steps until RePrame -t n = Frame: 

If Frame is smaller than ReFrame, then the function first calculates AEgE-l and 

then its inverse AEiEEg-l, using Equation (4.4). OperTransform continues n steps until 
the homogeneous transformation, is found, that relates Frame to RefFrame written with 
respect to RefFrame: 

OperTransform always gives complete trigonomctrically reduced output. It has 
been found that long and complex expressions are tremendously time-consuming when 
reducing them trigonometrically. It is better to reduce the expressions used along the 
algorithm of the function rather than reduce the long final expression. Furthermore, 
trigonometric reductions are performcd each time an operation between matrices and 
vectors is produced. 

Each time two matrices are multiplied together, OperTransform rcduces 
trigonometrically their product. Each time an inverse is calculated, this function reduces the 
product of thc transpose of the rotational matrix with the position vector [see Equation 
(4.4)J. It has been found that only five possible trigonometric combinations can appear 
when multiplying two homogeneous transformations or calculating its invcrse. Those are 
the sine and cosine of the addition or subtraction of two angles and the addition of the 
squares of cosine and sine. OperTransform reduces thesc expressions according to the five 
following patterns: 

a_. Sin[xJ Cos[y J + a_. Cos[x,l Sin[y-] -> a Sin[x + y] 

a_. Sinlx-] Cosfy-] - a_. Cos[x-] Sinry J -> a Sin[x - y] 

a_. Cos[x-l Cos[yJ - a_. Sin[x-] Sin[y_l -> a Cos[x + y] 

a_. Cos[x J Cos[y-] + a_. Sin[x-] Sin[y-] -> a Cos[x - y] 

a_. (Cos[x J)2 + a_. (Sin[xJ)2 -> a 
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?'he function Oper'I'ransform can keep in memory m y  of the homogeneous 

transformations that i t  calculated during a Mathematica session. Any kinematic or dynamic 
fomulation is baed  on thcse matrices, so calculating them each h e  they are needed 
would he a waste of time. 

with the same arguments as the first one. This function calculates any homogeneous 
transformation, or its inverse, between two consecutive coordinate frames an 
in memoy. 0perTransfor-m makes calls automatically to this auxiliary function each time it 
is reeded, hut it keeps in memory only the homogeneous transformation rquested by the 
user In this way, all the simple transformations are saved in memory already 
trigonometrically reduced and ready to be used by OperTrcunsform, reducing enormously 
the computational burden. As an example, the calculation of the inversc of the 

homogeneous transformation 4 of a 6-DOF manipulator (the KRAFT master) without 
using the auxiliary function required 664 seconds on a Macintosh LI computer, while only 
$3 seconds were necessary when using OpeiPransform Aux. 

Rot, that gives the threc-by-three rotational unitary matrix R E g h e  which describes 
Frame written with respect to RefFrarne; and (2) the function Pos, the output of which 

expresses the three-by-one position vector 
origin of Frame, written with respect to RefFrame. Both are called with three arguments, 
the same as those for Oper'Iransfom: 

A function associated with Oper'l'ransform is Oper'TransforrnAux, which is called 

TWQ other f~inctions of SML are directly related to OperTransform: (1) the function 

from the origin of RcfFrame to the 

Rot[DI-]Table-, Ret'Frame-, Frame-] 

Pos[DHTable-, RetFrarne-, Frame-] I 

(4.9) 

'Phese two functions call first OperTransform[DHTable, RetFrame, Frame], and 
then they create thcir own outputs from the four-by-four matrix. Furthermore, the 
expressions given by Rot and Pos are also completely trigonometrically reduced. 

forand. As an example, the position vector from coordinate frame 2 to frame 6 of a 
manipulator, defined by the D-1-1 Table called RobotTable and written with respect to its 
base frame is found by: 

Note that with the Rot and Pos functions, diffcrent interesting combinations can be 

OPg = Rot[lZobotTahle, 0, 21 . Pos[RobotTable, 2, 61 . (4.10) 

The position vector found after this multiplication is not necessarily completely 
trigonomctrically reduced, Further reduction can be obtained by using the functions 
RcdTrig or Red'TrigExp, presented in Chapter 5, by 

Red'TrigExp[ QP4 ] (4.11) 

because based on Oper'Transforni, the functions Rot and Po, can also kcep in memory any 
of die matrices or vectors, respectively, that thcy calculated. 
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4.1.2 Direct Kinematics 

The kinematic equations of a manipulator a m  provide the functional relationship 
between the end-effector position and orientation and the displacements of all the joints 
involved in the opcn kinematic chain. 

The kinematic equations are nothing more than the homogeneous transformation 
relating the coordinate frame attached to the last link of the manipulator with the base 
coordinate frame. Let us call qi the displacement of each joint as either an angle or a length. 
If the manipulator has n joints, then applying Equation (4.2), the kinematic equations of 
the manipulator become: 

(4.12) 

To find the operator T with SML, the user just needs to use the function 
OperTransform as shown in Quation (4.13), 

T = OperTransforrn[DHTable, 0, n] . (4.13) 

From the matrix T, can be deduced the position and orientation of frame ''n" with 
respect to the base frame. The position, in Cartesian coordinates, is given by its position 
vector: [P$T = [Px, P,, Pz]. The orientation is taken from its rotation matrix R8 in the form 
of angles rotated about the coordinated axes. Note that the nine elements of a rotation 
matrix are not indcpcndent, because they are subject to orthogonality conditions and the 
unitary vector length conditions. Bccause six conditions exist, only three parameters are 
independent. These parameters are usually defined as three angles rotated about the 
Cartesian axes, but several combinations are possible. The most common representations 
are solved in SML and presented here. 

Three diffcrent methods of describing the orientation of a coordinate frame that are 
gcnerally used in robotics are included in SML, so the user may choose one. The three 
methods will be presented now (see also Asada and Slotine 1986; Craig 1986; Paul 1981). 

1 - Roll, pitch, and yaw angles about fixed axes 
Start with the frame (B) coincidcnt with a known reference frame (A). Rotate first 
frame (B) about XA by an angle yaw($, then rotate about YA by an angle pitch@), 

and then rotate about ZA by an angle roll(a) (see Figure 4.1). 

I 

X i B  - -J 

Z A  

\ t Y"0 
\ 

J f  r' x4 

X"0 

i XA J '  
X"'0 

Figure 4.1. Roll, pitch, and yaw (XYZ) angles rotated about fixed axes. 
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2. Z-Y-X Euler an.glt=s 
Start with the framc coincident with a known frame (A). Rotate first frame (€3) 
about ZB by an angle roll(a), then rotate about the new YB by an angle pitch@), 

and then rotate about the new XB by an angle yaw(y) (sce Figure 4.2). 

X'B 

Y 
X " ' B  

X'b 

Figure 4.2. ZYX Euler angles. 

3 .  Z-Y-Z Euler angles 
Start with the frame coincident with a known frame (A). Rotate first frame (B) 
about ZB by an angle a, then rotate about the ncw YB by an angle p, and then rotate 

about the new ZB by an angle y. 
The reason so many different dcscriptions exist is that no one of them is perfect. 

All descriptions work perfectly in a range for pitch (the second angle) of slightly less than 

180°, but the real problem is that all have singular points. Thc orientation defined by roll, 
pitch, and yaw angles ahout fixed axes and the orientation defined by the Z-Y-X Euler 

angles have a singularity at pitch = f. 90" . The orientation defined by t!~e Z-Y-Z Euler 

angles has a singularity at pitch = -t- 180" . When the end-effector orientation is closed to 
one of the singulaiities, then the solution for the anglzs degenerates. This effect makes the 
manipulator uncontrollable because the torques or forces applied can be incrcmented 
cnormously . 

The fimction DirectKinQ of SML cdculates automatically the orientation angles. It 
gives not only tine position but also thrce different types of orientations. DirectKinEq is 
callcd with four arguments, the last three of which are optional: 

DirectKinEq[DMTable_, BaseFrame-:O, LastFrame-:n, Eule&rder-:ZYX] , (4.14) 

where 
a 

a 

DEITable is the name given to thc D-€1 Tabk of thc manipulator. 
BascFrame is by default the 0 coordinate frame, but a different one can be 
specified by the user. 
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9 

LastFrame is by default the last coordinate frame of the DHlTable. 
EulerOrder is the order of the Euler angles. Two orders can be used: (1) ZYX 
is the default, where the function gives the ZYX Euler angles or the XYZ angles 
about fcved axes (both solutions are the same) and (2) ZYZ to obtain the ZYZ 
Euler angles. 

Sometimes the user is interested in knowing the position and orientation of a link 
other than the last one. For example, a 7-DQF manipulator may have a .sensor on the base 
of its spherical wrist (three rotational DOFs with their axes intersected). A new fifth 
coordinate framc can be attached to the sensor that will relate its position to the fourth 
frame, which belongs to the fourth link. The new frame should be added to the D-H Table 
of the manipulator as a row of constant parameters in the fifth position of this table. To 
find the position and orientation of the monitored forces and/or torques written witb respect 
to the base frame, the user just needs to call 

DimctKinEq[NewDHTable, 0 , 5 ]  . (4.15) 

If needed, thc position vector can be found by calling Pos[NewDHTable, 0,5]  and 
the rotation matrix, instead the rotated angles, using Rot[NewDMTable, 0,5] .  

4.1.3 Inverse Kinematics: Pieper's Solution 

does not have a closed-form solution, ccruin important special cases can be solved. Picper 
(1968) studied 6-DOF manipulators with three consecutive rotational axes intersected. 
Pieper's work applies not only to all rotational axes but also to other configurations that 
include prismatic joints. 

In this report, only the solution for the inverse kinematics of 6-DOF manipulators 
with the l a t  three rotational axes intersected is presented. More in-depth studies were 
made on other program packages such as INKAS (Mu 1987) and SKIP (Eeseler and Wahl 
1990), and the inkrested rescarcher should refer to them. With the solution presented in 
this work, the basics €or the solvability of a more general manipulator are given. Anyway, 
most available 6-DOF manipulators have a spherical wrist and can be solved with the 
method presented here. 

The function InverseKin of SML calculates automatically, when it exists, the 
inverse kinematics of a 6-DOF manipulator of which the last three axes intersect. 
InverseKin is called with just one argument: 

Although the inverse kinematics of a complctely gencral6-DOF robot manipulator 

InverseKin[DHTableJ , (4.16) 

where 
DHTable is the name given to the D-H Table of the manipulator. Because the 
robot manipulator is 6 DOF with a spherical wrist, its D-H Table will, in 
general, be presented by Equation (4.17). 



(4.17) 

In a manipulator with a spherical wrist, q4,95, and 4s are the variables 
corresponding to the last three revolute link joints. The first three joints may be either 
revolute or prisnsatic and thcir variables either qi or di respectively. If joint i is prismatic, 
then qi is constant and di is the variable; but if joint i is revolute, then qi is the variable, 

The function InvcrseKin assumes as a hiown input the homogeneous 

transformation betwecn the hand and base frames of the manipulator. hts us call I$ for 
this transformation written with respect to the base coordinate frame. The output offered 
by InvcrseKin is rcferred to the matrix presented in Equation (4.18). 

(4.18) 

When the three last axes intersect, the origin of coordinate frames attached to links 
4, 5,  and 6 arc located at the point of intersection. The position vector of this point written 
with respect to the first coordinate frame is found by using the functions Pos and Rot of 
SML: 

'Pi: = Rot[RobotTable, I, 01 . Pos[RobotTable, 0,4] . (4.19) 

For the gcneral case table presented in Equation (4.17), the vector IPd gives the 
exprcssion 

= a1 I- C2 (a2 I- C3 an) 3 S2 (-(0x2 S3 a3) + Sa2 d3); 

@a1 (S2 (a2 -t C3 a3) + (12 (Ca2 S3 a3 - Sa2 d3)); 

S a l  (S2 (a2 + C3 a3) + C2 (Ca2 S3 a3 - Sa2 d3)); 

1'4, = Sa l  ( - (S3  Sa2 a3) - d2 - @a2 d3) -+- 
(4.20) 

P4, = C a l  (S3 Sa2 a3 + d2 -i- Ca.2 d3) -I- 

where Ci and Si and Coli and S a i  are the cosine and sine of angles qi and ai respectively. 

Also, the position vector shown in the above equation should he equal to 
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where OPt = [Px. P,, PZ]T. Thus, the left-hand sides of Equation (4.20) can be substituted 
with: 

P4x = C1 Px* + Py* S 1  
P4y = Carl (Cl Py* - Px* S l >  + Sal  Pz* 
P4, =Gal Pz* + S a l  (-(C1 Py*) + Px* Sl )  , 

where 

(4.22) 

(4.23) 

Equations (4.20) and (4.22) create a system of three equations in which the 
unknowns are the variables corresponding to the first three joints of the manipulator. The 
inverse kinematics problem has been changed from finding six unknowns to two problems 
of finding three unknowns. 

To complete the solution, InverseKin needs to solve for angles q4, q5, and q6. 
Computation can be based upon only the rotation matrix Rl$ of the specified goal 
presented in Equation (4.18). Because the first three joint variables have already been 

solved, the rotation matrix Ra is also known. The following matrix equation gives nine 
equations that can be solved for the three angles q4,95, and q6: 

(4.24) 

Substituting the left-hand side of Equation (4.24) with the rotational matrix of the 
general serial link manipulator with spherical wrist presented in Equation (4.17) gives 

R36(1,1) =L C4 C5 C6 + S4 [-(C6 Ca4 S 5 )  - S6 Sa41 
R36(2,1) = C5 C6 S4 + C4 (C6 Ca4 SS i- S6 Sa4) 
r ~ 6 ( 3 , 1 )  = - (ca4  s6) + c 6  s5 s a 4  

R36(1,2) = -(C5 Ca4 S4) - C4 S5 
R36(2,2) = C4 C5 Ca4 - S4 S5 
R36(3,2) = C5 Sa4 

R36(1,3) = C4 C5 S6 f 54 [-(Ca4 S5 SBj + C6 Sa41 

R36(3,3) = C6 Ca4 + S5 S6 Sa4 
R36(2,3) = C5 S4 S6 + C4 (Ca4 S5 S6 - C6 Sa4) 

(4.25) 

For many manipulators, Eyuation (4.24) can bc solved for angles q4, q5, and q6 
by using exactly ihe 2-Y-Z Euler angles presented in section 4.1.2 of this work. A more 
complicated scheme has to be developed to solve for the first three joint variables by using 
the system of equations created with Equations (4.20) and (4.22). This system of 
equations is highly non linear, and for some cascs, multiple solutions are found. For 
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several cases, the equations are not selvable, because of linear dependency. This 
dcpcndency appears when the first three links of the manipulator are constrained to tpc in a 

The third joint variable, either q3 (for revolute) or d3 (for prismatic), is solved 
dircctly by tkc third (if a1 = 0) or second (if a1 f 0) equation of the system by pattern 
matching. The rules of this pattern matching are. shown in Quation (4.26). 

a .._. Cos[x-] -t b-. Sin[x_I + d-. == c- -> 
Atan2[c-d,"+-"Sqrt[a"2+bh2-(c-d)"2]1, 

a__. Cos[x-] == h-- -> x -> Atan2["+-"Sqst[ l-(Wa)*2],b/a], 
a_. Sin1x-l == b- -> x -> Atan2 [ b/a, " +-I' Sqrt[ 1 - (b/a)"2]], 
c- -= z-. Coshx-1 +- b-. Sin[xJ -+ d--. -> x -> Atan2[a,-b] - 

AtanILI~-d,"t--"Sqrt[a~2+b*IE-(c-d)~2]], 
b- == a_. COS[X-] -> x -> Atan2 ["+-"Sqrt[ 1 -( b/a)"2] ,b/a] 
b- == a-. Sin[x_l -> x -> AtanZ[b/a,"+-."Sqrl[ 1-(b/a)A2]], 
A t a d  [ 0,x-1 -> 0 

plai1e. 

x -r Atan2[a,-b] - 

(4.26) 

The other two equations of the systcrn are then solved together by a similar 
procedure. 

4.3.4 Jacobian Written with Respect to An Arbitrary Frame 

The Jacobian of a robot manipulator specifies a mapping from velocities in joint 
space to velocities in Cai-ksian space. It also maps payload (external) forces to joint 
torqraes (see Asada and Slotine 1986, p. 81). End-point compliance analysis of 
manipulators also depends on the Jacobian of the manipulator. Furthennore, having the 
Jacobian of the manipulator in symbolic form and as reduced as possible will affect any 
control algorithm or research perfoimed on a robot manipulator. 

As shown in the examples for the Laboratory Telerobotic Marnipulator (Dubey et al. 
1988), thc Cciiter for Engineering Systems Advanced Research Manipulator (Dubey et al. 
l989), and the Robotics Research Manipulators presented in Chapter 6, the Jacobian of the 
manipulator whitten with respect to the third frame is used to obtain an efficient algorithm 
for a 7-DOF redundant manipulator. Those are good examples of how the Jacobian can be 
significantly simplified and powerfully written with respect to a different coordinate frame 
rather than to the base or end effector. 

TWQ diffcrcnt algorithms are used on SML to calculate the Jacobian of the 
manipulator. The first discussed by Asada and Slotine (1986, p. 58) ,  is used in SML to 
calculate the Jacobian written with respect to the base coordinate frame. In this algorithm, 
the effect of each joint on the movement of the end effector is taken into account. The 
difftxntial rnovcment of the end effector due to joint i produces the ith column of the 
manipulator Jacobian. The dimension of tlie Jacohian is six by n; the first three rows are 
associated with the lincar velocity of the end effector, and the three last correspond to its 
angular velocity. Furthermore, the Jacobian can he partitioned so that 

r 1 

JL1 i JL2 i . . . : J1.n 

JA1 i JA2 i i JAn 
(4.27) 
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where 3 ~ i  and JAi are three-by-one column vectors of the Jacobian matrix associated with 
the linear and angular velocities, respectively, of the end effector. These vectors are 
calculated in SML as follows, depending on the type of joint. 

1 .  For a prismatic joint, 

(4.28) 

where bi-1 i s  the unit vector pointing along the direction of the joint axes i, which is 
calculated in SML using the functions OperTransform and Table. Being the last 
one a built-in function of Mathematica (Wolfram 1988) to build up vectors, 
matrices, and tensors. 

bi-1 = Table[ OperTransform[DHTable, 0, i] [Ti, 311 {j, 1, 311 - (4.29) 

To obtain the ith column of the Jacobian, SML just needs to join the vector J L ~  to 
the null vector JAi = { 0,0, 0) by 

Join[JLi, (0, 0, 011 . (4.30) 

2. For a revolute joint, 

(4.31) 

where ri-1,e is the position vector from the origin Oi-1 of the ith coordinate frame to 
the end effector. This vector is calculated in SML by subtracting the ith frame 
position vector from the end effector one: 

ri-1,e = Ope - OP, = Pos[DHTable, 0, MTerm] - PosLDHTable, 0, i] , (4.32) 

where MTerm is equal to the number of rows of the DHTable. All the bi-1 and ri-1,e 
vectors are calculated by using OperTransform; thus, all are completely 

trigonometrically reduced already. The cross product hi-1 X ri-l,e is calculated and 
reduced trigonomelrically by SML. Finally, JI_i and Jfi are joined together to 
obtain the ith column of the Jacobian by 

(4.33) 

SML recognizes automatically whether a joint is revolute or prismatic by checking 
the first entry of the joint row on the D-H Table of the manipulator. If qi has a given 
numerical value (Le-, 0, Pi/2, Pi/4 ,...) or any symbolic value (Le, q, qv, x ,.-. ), then the 
joint is prismatic; the joint is revolute in the opposite case. 

The Jacobian is constructed by joining the columns created by either Equation 
(4.28) or (4.3 l), depending on the type of joint. The Jacobian matrix obtained with this 
method is writt.cn with respect to the base coordinate frame. 
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The function JacobianP (JacobianC when using Craig's notation) calculates the 

Jacobian of die nianipulator. It is called with just two arguments: 

JacobianP[DHTable-, RefFrme-:O] , (4.34) 

where 
* 

0 

DHTable is the name given to the D-H Table of the manipulator, which should 
be entcrcd as shown in Equation (3.2). 
RefFrame i s  the coordinate f r m e  with respect to which the Jacobian of the 
manipulator is required to be written. The default coordinate frame for 
RefFramc is the base frame. 

Both JacohianB and JacobianC have an auxiliary function that transforms the 
Jacobian of the manipulator. Premiiltiplying it by thc matrix of Equation (4.35), the 
Jacobian i s  changed from being written with respect to frame B to be written with respect to 
frame A. 

(4.35) 

The auxiliary function Jacoh'T'ransform can be used independently by the user 
calling it  wish four arguments: 

JacobTransform[DHTable_, NewlFrame-, OldFrarne-, OldJacJ , (4.36) 

where 
* Dlr'r'able is the name given to the D-M Table of the manipulator. 

NewFrarne is the new frame (A in the case for Equation 4.35) with respect to 
which the Jacobian is desired to be written. 
OldFrarne is the frame (B in the case for Equation 4.35) with respect to which 
the Jacobim matrix OldJac (13  on Equation 4.35) is written. 

* 

Most often, the user will not even notice that JacobTransform is acting, because 
JacobianP calls it automatically when it is needed. The biggest obstacle in the use of 
Jacoh'rransform and the algorithm of Equation (4.35) upon which it is based, is that 
expressions obtaincd cm be rathcr complex. Thc complexity of trigonornetric reductions 
over thcsc exprcssions depends on the D-H Table of the manipulator. The Jacobian is of 

six-by-n diincnsion, means that 6x11 elements are to be reduced for a general n-DOF 
manipulator. The more pammctcrs different from Lero on the D-H Table, the more time 
will eK: nwdcd to rcdrice the model trigonometrically. Furthermore, trigonometric 
reductions may need a great deal of time to bc accomplished when using the function 
JacohTransfoim. The principal reason kcause SMI, has two algorithms to calculate the 
Jacobian matrix of the manipulator. 

A sccoind algorithm based on the Newton-Euler foimulation for static forces (see 
Craig 1986, p. 149; Asada and S h i n e  1986, p. 73) is used in SML to calculate the 
Jacobian written with respect to the end-effector coordinate frame. To the knowledge of 
the author, this algorithm has never been used before to create the symbolic or numeric 
Jacobian matrix of a manipulator in any robotic modeling package. In the contrary, most 
rcscxarches use this algorithm to calculate payload effects over the manipulator joints whcn 
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the Jacobian is known. On the Newton-Euler algorithm external forces and torques are 
applied at the end effector, and their effects are studied along all the links of the 
manipulator. As shown in Figure 4.3, Fi and Ti are the necessary force and torque to keep 
the link in static equilibrium when it is under the effect of an external force Fe and torque 
Te. Vectors fi and Ti are obtained by simply using the Newton-Eukr algorithm, that will 
be presented in more detail in section 4.2 in this chapter. 

c A 

Y 

Figure 4.3. Forces and torques applied to a link of a manipulator and the 
projection onto the Zi axes. 

The obtained torque Ti is projected onto the rotational joint axes, or the force Fi is 
projected instcad if the joint is prismatic. The projected force or torque Ti is the one that the 
motor has to supply at the joint to keep the manipulator in static equilibrium. The force Fi 
and torquc Ti will be applied latcr against the preceding link as if they were external so the 
procedure continues until the base of the manipulator is reached. 

The model of the forccs or torques Ti at every joint of the manipulator is created 
symbolically in function of the external forces (torques) applied at the cnd effector. The 
external force vector Fe = { Fx, Fy, Fz} and the external torque vector Te = {Tx, Ty, Tz} 
are joined together in a 6-dimensional vector N = { Fx, Fy, Fz, Tx, Ty, Tz}. Then, using 
the algorithm prcsented in Craig (1986, p. 152) based on the relation ktwecn the end- 
effector force N and joint toque (fore), 

(4.37) 

the transpose of the Jacobian matrix can be found written with respect to the Eth coordinate 
frame. To find the Jacobian written with respect to the end-effector frame, SML first 
makcs N = { 1, 0, 0, 0, 0, O}, The forccs (torques) found at the joints constitute the lirst 
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column of the transpose of the rnanipulator Jacobian matrix, which is the first row of the 
Jacobian of the manipulator written with respect to the end-cffcctor coordinatc frame, 

The same procedure is uscd for N = (0, 1,0,0,0,0} to find the second row of the 
manipulator Jacobian, and so on until its six rows are obtained. 

The vector of external forces N could be written with respect to any dcsired 
coordinate frame of the manipulator to obtain as a result the Jacobian of the manipulator 
written with respect to that coordinate frame. It was found in SML that it was morc 
complicated to deal with the equations in that way than by using the auxiliary function 
JacohTransform. 

thc cnd-effator coordinate frame is closer to the one rqucsted by the user (RcfFrame). 
Then, it will calculate the Jacobian written with respect. to the basc or end effector, 
whichever is closer. Finally, it will transform the Jacobian to the required frame by using 
JacobTransfom. 

higher rows on the table because most manipiilators have a spherical wrist or at least some 
of the last joint axes interccptcd. This effect causes thc rotatiorial matrix of the 
homogeneous transformations between the last frames to be simpler and less 
trigonometrically coniplex than the ones between the initial coordinate frames. 
Furthennore, the matrix that defines the Jacobian transformation from one coordinate frame 
to another, shown in Equation (4.35), is usually more complex when transforming 
between the initial coordiiiate frames than between the last ones. Furthemore, if the goal is 
to obtain the Jacobian matrix with respect to a middlemost frame of the robot, it is 
pre€crable to derive it with respect to the end-effector coordinate frame and them transform it 
to a lowcr frame, rather than to obtain it with respect to the base frame and transform it to 
highcr frames. 'lliis effect is taken into account by the function JacobianP, giving priority 
to calculatr: the Jacobian matrix written with respect to the end effector rather than to the 
b s c  coordinate frame. 

The function JacobianP (or JacobianC) will check first as to whether, the base or 

Usually, the D-W Table of a manipulator has many paraameters equal to zero at 

4.2 STA'T'lC FORCES FUNC'TPONS 

As shown in Section 2.2.4, correction to the control of robot manipulators duc to 
extcmal static foices and gravitational effects is the most computationally-efficient 
kchnique that can be applied with actual microcomputers. Therefore, it is important to 
have the model of the reactions at any joint due to external forces and gravitational effect. 
To thc knowledge of thc author, SMI, is the only package capable of creating this model. 

S M L  provides the user with the reaction forces due to external static nnd 
gravitational f~rces  over each joint. 'That output presents: (1) die three force and the three 
torque camponenes along ;hc ttirce Cartesian vectors that constitute each coordinate frame 
and (2) their reaction over the manipulator joints. 'The first output will allow the researcher 
to know in advance the intcrnal forces produced inside the manipulator. These reactions 
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provoke deflection and torsion of the links of the manipulator and stress of its joints. 
Further, they can be used in the joint and link stress design. Advanced knowledge of the 
value and direction of maximum deflection and torsion on the manipulator, will allow links 
to be reduced in weight and size. In this way, not only the joints but also the links can be 
more accurately designed. 

calculated directly from the Newton-Euler formulation. The forces and moments acting on 
link i are shown in Figure 4.4. The balance of linear forces and moments acting on the link 
about the center Q are given by 

The correction of external forces and the gravitation effect on the manipulator are 

(4.39) 

The function StaticForccs of SML calculates the effect of external forces and 
gravitation over the links of the manipulator. Because the Newton-Euler iterative algorithm 
can be used for both external and gravitational effects, only one function is necessary for 
their calculation. 
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fi-l,i 

Ni-1,i = moment appliedto link i by link i-1 

llli 

g 

@i 

‘i-1 ,i 

ri,ci 

force exerted by link i-1 acting upon link i 

= mass of link link i 

= the 3x1 gravity aceleration vector 

= centroid of link i 

= 3x1 position vector from Oi-l to Oi 

= 3x1 position vector from Oi to Ci 

ure 4.4. Forces and torques acting on link i. 
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The function StaticForces is called with the following parameters: 

StaticForcesI DHTable-, MassTable-:Zero, VGravity-: IO, 8, -43 1, 
Fext-:(O, 0,0, O,O, 0}, FramcFext-:MTerm, 

FrameFextApplied-:MTerm, Force-:Falsr=, Torque-:False] , 

(4.40) 

DHTable is the name given to the D-H Table as in Equation (3.2). 
MassTable is a table composed of four parameters for each link: the first is the 
link mass, and the next three parameters define the location of thc link center of 
mass with respect to the X-, Y-, and Z-axes of the coordinate frame attached to 
that link. This table was presentcd in Equation (3.4), and its default is a four- 
by-MTerm dimensional matrix composed by zeros. 
VGravity is a three-by-one vector that represents the direction of the gravity 
acceleration written with respect to the base coordinated frame. Its default is 
given by {0,O, -G}, which gives the classical direction along the -Z-axes and 
the absolute value G in symbolic form. 
Fext is the external force (torquc) applied to any coordinate frame 
(FrameFextApplied) defined by the DHTable. It can be written with respect to 
any f r m e  (FrameFext). Its default value is { 0, 0, 0, 0, 0,O) being applied at 
and written with respect to the end-effector coordinate frame (MTem). 
Force and Torque are options for the output of the function. They are set to 
False by default, giving only in the output the cffect of VGravity and Fext on 
the joints. If Force andor Torque is set to any different valuc (i-e., True), then 
all the internal forccs and/or torques on the links will be included in the output. 

On output, the function StaticForces types in text mode [see Equation (3.17)] the 
list of forces andor torques requested by ihe user and an explanation of the used 
convention. StaticForces writes also in memory thc following vectors: 

Fs = force exerted by link i-l acting upon link i 

Ns = momcnt applied tu link i by link i-1 

M = forcedmoment applied to joint i . 
(4.41) 

These vectors can be viewed or manipulated by the user after a call to the function 
StaticForces. Any time the function is called, these vectors are overwritten. Therefore, the 
vectors should be saved with a difkrent name if the plan is lo use them later. 

4.2.1 Reaction of Joints to Any Force/Torque Vector Applied at Any 
Coordinate Frame Attached to the Manipulator 

A robot manipulator can support forces or torques in different points. The most 
usual point of contact with the environmcnt is the end effector, but the manipuhtor can 
apply a general force at any of its points. The manipulator may have a contact point on one 
link while supporting a payload with thc end effector as, for example, a human arm does 
when writing on paper to improve its stiffness. Furthermore, it is important to be able to 
create a model of thc effcct of different forccs at distinct points of the manipulator and 
written with respect to different coordinate frames of the manipulator. Any combination 
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can be achieved by the function StaticForces when using it properly. In addition, by the 
principle of superposition, the effect of different forces can be studied and added for the 
same manipulator to obtain a model. 

function has been added. The function Forces is called with the following parameters: 
To facilitate the use of this package, an auxiliary function based on the StaticForces 

Forces[DW'Tahle-, Fext-: { 0, 0, 0, 0, 0, O}, FrameFext-:MTerm, 

E;ran?eFextApplicd_:MTe~~ Force-:False, Torque-:False] , (4.42) 

whcre the parameters arc the same as those for StaticForces in Equation (4.40). 

DHTable. Framekxt is by default the last frame reprcsented by the DF-ITable. This means 
that the applied force Fext will be written with respect to the end-effector coordinate frame, 
but any one in the DMTable can be used. If the manipulator has a sensor attached to a 
coordinate frame that does not exactly correspond with any link frame, the user will add a 
row of constant parameters to the DI-1Table at that position. As an example, to find the 
effect on the joints of a genera). force { F,, F,, Fy, T,, T,, Tz} applied at the fifth frame and 
writeen with respect to the third frame, the function Forces will be called as follows: 

FrmeFext and FrameFextApplicd should be frames rcpresented by a row of the 

E;orces[DHTable, { E;,, F,, F,, Tx, T,, T,}, 3, 51 ~ (4.43) 

4.2.2 Necessary Gravitational Compensation at Each Joint 

Gravitational effects on the manipulator can be calculated also with the function 
StaticForces, but an auxiliary function has been added to make SML user friendly. The 
function Gravitation is called with the following parameters: 

Gravitation[lDI-~rable_, MassTable-.:Zero, VGravity-: { 0, 0, -G }, 

where the parameters are the same as those for StaticForces in qua t ion  (4.40). 
Force-:Falsc, Torque-:False] , (4.44) 

4.3 TWIGONOME'I'RIC REDUCTIONS 

An objective of SML is to create simple and understandable output expressions 
froin standard input. To take full advantage of symbolic manipulation of equations, the 
input parameters can be numeric or symbolic, and so the output can be. Depending on the 
manipulator D-H Table or in a particular model, a different output structure may be 
preferred. The objective is to obtain output expressions that are easy to read and are 
compbltationally-cf~ien~ when iiiiplemented in a microprocessor. 

An important reduction of the complexity of the equation on robotics comes from 
the trigonometric reduciions. They play an important role in robotics modeling, but they 
have not been solved completely. This rcport presents an important study and solution for 
this problem. In SMEl two methods to reduce txigonometric expressions are presented. 

according to the following patterns. 
(1) A classical pattern matching, whcre expressions are compared and reduced 
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a_. Sin[x_l Cos[y J -t a_. Cos[x J Sin[yJ -> a Sin[x + y] 

a_. Sin[x_l Cos[y-] - a_. Cos{x-] Sin[y-J -> a Sin[x - y] 

a_. Cos[xJ Cos[y_l - a_. Sin[x J SinlyJ -> a Cos[x + y] 

a_. Cos[x,] Cos[y J + a_. Sin[x_l Sin[y_l -> a Cos[x - y] 

a_. (Cos[x,])2 + a-. (SinExJ2 -> a .  

(4.45) 

This is one of the fastest and most efficient ways to diminish trigonometrically a 
very short cxpression. The pattern recognition algorithm is used to check all possible 
combinations inside the expression. However, if an expression is long, the number of 
combinations is so large that the reduction of an expression can take so much time that the 
outcome would be worthless or too expensive. 

to their corresponding pseudo-exponential expressions, is given in Equations (4.46) 
through (4.48). 

(2) An exponential reduction method, based on changing trigonometric expressions 

Tan[xJ -> Sin[x) /Cos[x] , 
COS[XJ -> Ex[x] + EX[-X] , (4.46) 

Sin[x-] -> -I Ex[x] + I Ex[-x] . 

Some especial properties are defined for this pseudo-exponential lunction to reduce 
trigonometrically the expression 

(4.47) 

The final step is to transform the expression from the pseudo-exponential to the 
trigonometric functions by 

Ex[x-] -> Cos[x]/2 + I Sin[x]/2. (4.48) 

This method has proved to work well with long, complicated expressions that the 
classical method cannot deal with. Instcad of checking for any possiblc combination that 
matches one of the patterns, this method transforms every sine, cosine, and tangent in its 
pscudo-exponential expression by using Equation (4.46). The operations defined by 
Quation (4.47) art: faster than pattern matching for producing the desired trigonometric 
rcduction, and they give exprcssions, based on expericnce, that are close to minimum time 
solution. 

The classical pattern matching reduction method of Equation (4.45) works well 
when the expression is short and uncomplicated. It is performed in SML by the function 
RedTrig, that is called as follows with just one parameter. 
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RedTrige exprJ (4.49) 

The expoiaeiitial reduction method is best when used for long and messy 
expressions, and it is called also with just one parameter. 

RcdTx-igExp[ exprJ (4.50) 

In both trigonometric reduction functions, expr can bt: any kind of expression to be 
reduced. RedTrig arid ltedTrigExp can be applied to either a vector, a matrix, or any kind 
of expression. 

4.4 MPSCEEL4NEOUS FUNCTIONS 

Some miscellaneous functions have been added to SME to make it user friendly or 
to be used by some of the principal functions of the package. Output form functions were 
discusscd in detail in Section 3.2.2 and will be not presented again here. Some additional 
functions such CrossProd are added to SML. CrossProd gives the cross product of two 
vectors (V and U), which constitute the two arguments of the function: 

CrossProd[V-, U-] . (4.5 I )  

Another miscellaneous function is PosVector, which gives the position vector of 
any four-by-four homogenous transformation (Matrix): 

PosVector[Matrix J . (4.52) 

ROut is another function which performs first a trigonometric reduction on the 
expression given by expr and then reduces its output with RedAngle: 

ROut[expr-, var-:q, big-:O] , (4.53) 

whcrc var and big are the optional arguments presented for the function RcdAngle on 
Equation (3.8). Two other functions are RCForm and RFFomn, which reduce first the 
given expression and present the output in C or FORTRAN, respectively, compatible 
forms. 

RCFon-n~[expr-, var-:q , big-:0] 

RFFormEexpr-, var-:q , big-:O] . 

4.4.1 On-Line Help 

(4.54) 

SML can be used in both interactive and batch modes. When using an inkractive 
mode, each function of the package can hc callcd scpnrately. Thcn, each output can bc 
airalyzcd and uscd as input lor the following calls to [unctions. Because SML prcs" d t s  so 
many options, i t  was ncccssary to include the intcractive mode and an on-line hclp. 

writtm. It allows the user to know, at any tnoment in a scssion, how to use and call any 
To facilitate the user's work, an on-line hclp based on Mathematica's own help was 
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subroutine or the actual numeric-symbolic valuc for a variable, a vector, or a matrix. To 
obtain information about a function, type "?FunctionName." As an example, to find how 
to use OperTransform type "?OperTransfonn" and SML will give as output: 

OperTransform[DHTable, RefFrame, Frame] gives the 4x4 Homogeneous 

Transformation operalor that relates Frame and RefFrame. (4.55) 
Enter the Denavit-Hartenberg Table in Paul's Notation. 

If a list of the functions included in SML is desired, the user types "?SML" and a 

If the program is being used on a Macintosh or a Next machine, an extra help 
list will appear on the screen. 

feature is allowed by Mathernatica (Wolfram 1988). To obtain a template of one of the 
functions, the user types the name or a part of it, and highlights it (using the mouse or the 
keyboard). Then, look in the Action menu for the option Prepare Input to use the feature 
Make Template. If "Direct" is typed and highlighted, then using the feature Make Template 
gives the following output, which preparcs thc function and its parameters: 

DirectKinEq[DHTablc, EulerOrder, BaseFrame, LastFrame]. (4.56) 



5, CONCLUSIONS A N  

The primary result of this study is the creation of m efficient s 
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applications for FARS and for the LTM in appendixes C-1 and C-3 show the gravitational 
effect model. Using this model, gravitational compensation can be added to the control 
algorithm improving its accuracy and the behavior of the robotic system. 

An on-line help and an easy-to-use and easy-to-understand output is presented by 
SML. Several output forms are given as a choice for the user, such as those that are 
compatible with the FORTRAN and C language programs. 

Some example applications of SML are presented in Appendix C of this report. 
Two 7-DOF robots are studied to obtain their forward and inverse kinematics: CESARm, 
and LTM. Finally, a full kinematic and static study in symbolic form is presented for 
FARS manipulator. A design optimization for some lengths and angle constraints of the 
FARS manipulator is performed using the symbolic models obtained from Sh4L. 

5.2 RECOMMENDATIONS 

One of the fundamental objectives in developing SML was tc, create an open and 
interactive package. The package was created such that the user can call any of the 
functions to create new ones. This means that future research is continuously open. In 
fact, some new functions currently being implemented in SML by the author are not 
presented in this report. 

The extension of the package to dynamic symbolic robot modeling is obvious, and 
a function is already working that calculates the diagonal terns of the inertial matrix of a 
serial manipulator, Symbolic dynamic models have the advantage over numeric models in 
that no numerical error is introduced. In particular, when higher modes of flexible 
manipulators models are studied, very ill conditioned matrices are found. Most advanced 
and sophisticated control algorithms are required to be as close as possible to the exact 
model. This demands the inclusion of higher modes and a greater numerical error. If we 
are able to describe the transfer function in symbolic form (Lee 1990), then no numerical 
error is included, thus improving the behavior of the control algorithm. 

kinematic mudel can be created with SML and then used to plot the configuration for 
specific joint values or the work space for specific joint constraints. A g d  example of 
plotting the work space as a three-dimensional solid model is presented on the example 
application for the FARS manipulator. The functions that created the work space were 
written to be used only with the FARS manipulator, but more sophisticated functions could 
be created for more general cases. 

An immediately achievable important task for future investigations is the creation of 
a minimization function to reduce the expressions of the models to the minimum amount of 
computational time. It should take into account all the equations of the model. and, 
penalizing with weights the different algebraic functions, collect common terms to try to 
minimize the time necessary to compute the model. 

Another recommended field of expansion for SML is graphic simulation. The 
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APPENDIX A 
USER MANUAL 

To load any of the packages of SML,, they have to be placed or copied first on the 
folder (directory) "Robotics," which is to be created by the user inside the folder (directory) 
"Packages" of Mathematica. The next step is to load Matheinatica on the computer and tlien 
to load S M ,  on Mathemdtica, typing any of the following: 

Needsl"Robotics'SML-P' "1 , 
Needs["Robotics'SML,-C "1 , 
Needs ["Robotics' RedTrig' "1 . 

(A- I)  

The first package (SML-P.m) allows the user to use any of the functions described 
in this report in Paul's notation (198 1), and the second one (SML-C.m) does exactly the 
same but in Craig's notation (1986). Trigonometric reductions are already included in 
SML-P.m and SML-C.m; but with the third package (RedTrig.m), only the trigonometric 
reductions and output form functions of SML are loaded. 

A-1. INPUT TABLES 

The D-H Table in Paul's notation (198 1 ) is entered in SML as an n-by-4 matrix, 
where n is the number of coordinate frames associated to links of the manipulator: 

(A-2) 

where: 

q i  = angle from Si-1 to Xi, about Zi-1 , 

The mass table is composed of four parameters for each link: the first one is the 
link mass, and the next three parameters define the location of the link center of inass with 
respect to the X-, Y-, and Z-axes of the coordinate frame attached to that link. 

(A 3)  

5 1  
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A-2, O[JTPUT FORMS 

1%~ function RcdAngie reduccs the form of trigonometricd functions to the 
classical nomenclature. R e d h g l e  has three arguments, the second and third ones being 
optional: 

RedAngleCexplr__,var_:q, big-:01 , (A-4) 

where 
s expr is the expression to be reduced, which includes any of the trigonometric 

functions of the form of Equation (3.6). Expr can be a vector, a matrix, a 
polynomial, or any kind of expression. 
var defines the angles inside the trigonometric functions used in SML. The 
default for var is q because most robotic applications publications use it, but any 
name can be specified by the user as long as it i s  the same for all the angles 
inside the expression. 
big is  an option to enable RedAngle to deal with subindexes for the angles 
largcr than nine. Big is  zero by default, giving any value different from zero 
enables larger subindexes. 

a 

Listoutput prints the expression given as its first argument, regardless of its 
dimensions, in an easy-to-read and compatible output form. Listoutput has four 
parameters, the last thee being optional: 

ListOutput[expr-, name-:"List", foim-:Texr, var-:q, big-:0] , (A-5) 

where 
@ expr is thc expression to be printed in the specified foim. Expr can be either a 

vector, a matrix, or an expression. 
name is a string that gives the name that will be used for the listing. The default 
for name is "L ix"  
form is the dcsired form in which the output will be printed. Its default i s  Text, 
but the following options are available: 
1. form = Text gives expression in Text form. This is probably the easier to 

read, 19ut it is not good enough to copy and paste to another program such 
as in a word processor, when powers or divisions are present. 

2. form = C gives the expression in C form. 
3. form = RC prints thc expression in C language, reducing the form of sines, 

cosines, and tangents by using RedAngle. 
4. form = F prints the expression in FORTRAN form. 
5 form = RF gives the expression in FORTRAN, reducing the form of sines, 

cosines, and tangents. 
var is the same argument as in RedAngle. This argument needs to be specified 
only when asking for Reduced FORTRAN (RF), Reduced C (RC), or Text 
forms and a different name that qi has bwn used for the angles in the 
expression. 
big is the same option as in Redtasgle. 

0 

0 

0 
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A-3. FUNCTION TOOLS 

OperTransform gives the homogeneous transformation that relates any two 
coordinate frames of the manipulator. 

OperTransform[DHTable-, RefFrame-, Frame-] , (A-4) 

where 
* DHTable is the name given to the D-H Table of the manipulator, that should be 

entered as shown in Equation (A-2); and 
* the output of OperTransform is the homogeneous transformation that relates 

Frame to RefFrame written with respect to RefFrame: 
Two functions are directly associated to OperTransform: (1) Rot, that gives thehe 

A E 3 k e  . 
rotation matrix, and (2) Pos, that presents the position vector that relate any two coordinate 
frames of the manipulator. 

Rot[I)f-ITable-, ReiFrame-, Frame-] 

Pos[QHTable-, Rel'Frame-, FrameJ . (A-7) 

The function DirmtKinEq calculates automatically the position and three different 
types of orientation angles. DirectKinEy is called with four arguments, the last three of 
which are optional: 

DirectKinEqt DHTable-, BaseFrame-:O, LastFrame-:n, EulerOrder-:ZYX] , (A-8) 

where 
DHTable is the name given to the Q-€1 Table of the manipulator. 
BaseFrame is by dcfault the 0 coordinate frame, but a different one can be 
specified by the user. 
LastFramc is by default- the last coordinatc frame of the QH'Table. 
EulerOrder is thc order of the Euler angles. Two orders can be uscd: (1 j ZYX 
is the delault, where the function gives the ZYX Euler angles or the XYZ angles 
about fixed axes (both solutions art: the same) and (2) ZYZ to obtain the ZYZ 
Euler anglcs. 

InverseKin calculates automatically, when it exists, the inverse kinematics of a 6- 

0 

0 

DOF manipulator of which the last thrw rotational joint axcs intcrscct. Invcrst3.fCin is called 
with just one argument: 

InvcrseKin[DHTahlc J , (A-9) 

where 
DMTable is thc namc given to thc D-H Table of the manipulator. 

The function JacobianP (JacobianC when using Craig's notation) calculates the 
Jacobian of thc manipulator. It is called with just two arguments: 
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where 

e 

Q 

DHTatsle is the name given to the D- Table of the manipulator. 
Refirame is the coordinate frame with respect to which the Jacobian of the 
manipulator is required to be written. The default coordinate franie for 
ReGFrame is the base frame. 

The auxiliary function JacobTrmsform transforms the Jacobian of the manipulator 
from being written with respcct to one coordinate frame to another. It is called with four 
arguments: 

JacobTransfortiiCI>M'l'ablc_, NewFrame-, OldFrame-, OldJac-] , (A- 1 1) 

where 
Q DWable is the name given to the D-H Table of the manipulator. 
* NewFrame is the new frame with respcct to which the Jacobian is desired to bc 

written. 
* OldFramc is the frame with respect to which the Jacobian matrix (OldJac) is 

written. 
The function StaticForces calculatcs the effect of extcrnal forces and gravitation 

over the links of the manipulator. It is called with the following parameters: 

StaticForces[DHTable_, MassTable-:Zero, VGravity-: { 0, 0, -G 1, 
Fcxt-: { 0, 0, 0, 0, 0, O}, FrameFcxt-:MTerm, 

FrameFexaAlpplied__:MTerrrm, Force-:False, Torque-:False] , 
(A- 12) 

where 
e 

Q 

e 

DIPTable is the name given to the D-H Table as in Equation (A-2). 
MassTable should be entered as in Equation (A-3), and its default is a four-by- 
MTerm dimensional matrix composcd by zeros. 
VGmvity is a three-by-one vector that represents the direction of the gravity 
acceleration written with respect to the base coordinated frame. Its default is 
given by { 0, 0, 431, which gives the classical direction along the -Z-axes and 
the absolute value G in symbolic form. 
Fext is the external force (torque) applicd to any coordinate frame 
(FrameFexeApplied) d e h e d  by the DltITable. It can be written with respect to 
any frame (FrameFcxt). Its default value is { 0, 0, 0, 0, 0,0} being applied at 
the end-effector coordinate frame (MTerm) and wiittcn with rcspcct to the same 
frame. 
Forcc and 'T'orque arc options for the output of the function. Thcy are set to 
False by dcfault, giving only on output tlie effect of VGrdvity and Fext over the 
joints. If Force andor Torque is set to any different value (i.c., True), then all 
thc internal forces and/or torques on the links will be included on the output. 

Two auxiliary functions facilitate the use of StaticForces: (1) Forces, that calculates 
the effect of extcrnal forces, and (2) Gravitation, that calculates thc effect of gravitation, 
over the links of the manipulator. 

0 

4) 



55 

Forces[DHTable-, Fext-: { 0, 0, 0, 0, 0,0} , FrameFext-:MTerm, 

FrameFextApplied-:MTerm, Force-:False, Torque-:False] , 
(A-13) 

Gravitation[DWTable-, MassTable-:Zero, VGravity-: (0, 0, G}, 
Force-:False, Torque-:False] . 

A-4. TRIGONOMETRIC, MISCELLANEOUS, AND HELP FUNCTIONS 

Trigonometric reductions on an expression (expr) are obtained with the functions 
RedTrig and RedTrigExp. Use the first one for very simple expressions, and the second 
function for more complicated and messy ones. Both are called with just one argument, 
which can be any kind of expression (ie., vector, matrix, or list). 

RedTrig[ exprJ, 

RedTrigExpr expr-] . 
(A-14) 

CrossProd gives the cross product of two vectors (V and U), which constitute the 
two arguments of the function: 

CrossProd[V-, U J . (A-15) 

PosVector, which gives the position vector of any lour-by-four homogeneous 
transformation (Matrix): 

PosVectoifMatrixJ . (A- 16) 

RQut is another function that performs first a trigonometric reduction on the 
expression given by expr and then reduces its output with RedAngle: 

ROut[expr-, var-:q, big-:O] , (A-17) 

where var and big are the optional arguments presentitd for the function Redhgle .  Two 
other functions are RCForm and RFForm, which reduce first the given cxprcssion and 
present the output in C or FORTRAN, respectively, compatible forms. 

RCFormrexpr-, var-:q , big-:O] 

RFForm[expr-, var-:q , big-:0] . 
(A-18) 

An on-line help has h e n  included in SML. To obtain information about a function, 
type "?FunctionNamc." If a list of the functions included in SML is desired, the user types 
"?SML" and a list will appear on the screen. 
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APPENDIX B-1  

SML-P.m, S Y M B O L I C  MANIPULfiTOR LABOAATQ 
By Santiago M8rCh-L0Uba, Nouember 1891 

E )> This f i le  contains rout ines f o r  r o b o t  man ipu la to r  model ing.  
Seueral  funct ions are included t o  calculate t h e  k inemat ic  and s ta t i c  
models  o f  B manipulator.  In addit ion, some t r igonomet r ic  
reduc t ions  and ou tpu t  f o r m  funct ions deuetoped f o r  use in robot ics  
a r e  Incorporated. This f i le  i s  cal led SML-P, in t h a t  i t  p e r f o r m s  
models  based on Paul's notat ion.  To use Craig's notat ion,  look f o r  
t h e  f i l e  cal led SML-C. A l i s t  o f  the  funct ions in SML i s  p resented  
b e l o w  with help o n  h o w  t o  use them. (< 

Beginpackage ["Robotics' SML-P' ' '1 ; 

GENERAL HELP 
SML::usage = "Symbolic Manipulator Laboratory (SML) \n 
was writen by Santiago March-Leuba at the Oak Ridge \n 
National Laboratory to be used in symbolic modeling of \n 
robot manipulators. Functions ending in C are to be used \ n  
w i t h  Craig's notation; otherwhise use Paul's notation. \n 
L i s t  of Functions on SML: \n 
1.- Trigonom.etric Reductions and Output Forms \n 

RedTrig, RedTr igExp, RedAngle, \n 
Listoutput, Rout, RFForm, RCForm. \n 

2. - Kinematics Functions : \n 
OperTransform, Rot, Pos, \n 
D i r e c t K i n E q ,  InverseXin, JacobianP, \n 
OperTransformC, RotC, PosC, \n 
DirectKinEqC, InverseKinC, JacobianC. \n 

3 . -  Static Forces Functions: \n 
StaticForces, Forces, Gravitation, \n 
StaticForcesC, ForCeSC, GravitationC. \n 

4 . -  Miscellaneous Functions: \n 
Crossprod, PosVector. \n 

Input Tables: \n 
1.- Denavit-Hartenberg table (DHTable). \n 
2 .  - Mass parameters table (MassTable) . "; 
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DE3Table::usapr = "DHTable i s  t h e  i n p u t  used i n  k i n e m a t i c  \ n  
a n d  s t a t i c  forces f u n c t i o n s .  I t  i s  e n t e r e d  o n  t h e  form: \ n  
a ) w h e n  u s i n g  P a u l ' s  n o t a t i o n :  \n 

DHTable  = ((41, a l f l ,  al, dl), \ n  
{ q 2 ,  a l f 2 ,  a2,  d 2 } ,  \n 

. . . \ n  
{ q n ,  a l f n ,  a n ,  d n ) ) ,  \ n  

w h e r e :  q i  = a n g l e  f r o m  X i - 1  t o  X i ,  a b o u t  Z i - 1 ,  \ n  
a l f i  = a n g l e  from Zi-1 t o  Z i ,  about X i ,  \ n  
a i  l e n g t h  f r o m  z i - 1  t o  Z i ,  a l o n g  X i ,  \n 
d i  l e n g t h  from X i - 1  t o  X i ,  a b o u t  Z i - l . \ n  \ n  

a ) w h e n  u s i n g  Cra ig ' s  n o t a t i o n :  \ n  
DHTable = {{ql, alfO,  aO, dl), \n 

Iq2, a l f l ,  a l ,  621,  \n 

{qn, a l f n - - 1 ,  a n - 1 ,  d n ) ) ,  \ n  
. . . \ n  

w h e r e :  qi = a n g l e  f r o m  X i - 1  t o  X i ,  a b o u t  Zi, \ n  
a l f i  = a n g l e  f r o m  Z i - 1  t o  Z i ,  a b o u t  X i - 1 ,  \n 
a i  = l e n g t h  from Z i - l  t o  Z i ,  a l o n g  Xi-l,\n 
d i  = l e n g t h  from X i - 1  t o  X i ,  about Z i . " ;  

::usage = "MassTable i s  t h e  i n p u t  n e c e s s a r y  f o r  \n 
t h e  f u n c t i o n s  G r a v i t a t i o n  and  S t a t i c F o r c e s .  I t  is e n t e r e d  ?n  
o n  t h e  f o r m :  \ n  

MassTable = ( ( r n l ,  mxl ,  myl, m y l ) ,  \ n  
(m2, mx2, mz2, mz2), \ n  

(mi, mxn, myn, mzn)), \ n  
. . . \ n  

where: (1) m i  is t h e  mass of l i n k  i; a n d  ( 2 )  mxi ,  m y i ,  a n d \ n  
mzi are  t h c  l o c a t i o n s  of t h e  c e n t r o i d  of l i n k  i a l o n g  t h e  \n 
X-, Y - ,  a n d  Z-axes  of t h e  c o o r d i n a t e  f r a m e  a t t ached  t o  \ n  
t h a t  l i n k .  "; 



TRI6ONOMETRIC REDUCTIONS 
R e d T r i g :  :usage = "RedTtigtexpr] 
gives e x p r  Trigonometricaly reduced using \ n  
classical pattern matching."; 

RedTrigExp::usage = "RedTrigExpfaxpr] 
gives expr Trigonometricaly reduced using \n  
pseudo-exponential functions. After using RedTrigExp, any \ n  
of the four following functions can help to obtain a \n 
simpler output: \n 
ToMin [expr] , ToMinC[expr] , ToPaper [expr] , ToMinCS [expr] . \n 

They have been listed in order of time consumption and \ n  
sophistication. If the expression to deal with is l ong  \n 
and complicated, it is to the u s e r  advantage to use one a f t e r  \n 
the other, checking at any step to determine whether the \ n  
output is good enough. "; 



OUTPUT F Q  
ResEAngLe: :usage = "RedAngle [expr, var, big] 
gives the expression (expr), \n 
regardless of its dimensions, reducing the form of tangents, \n 
sines, and cosines: Tan[ql] -> T1, Sin[q2+q3] -> 523, \n 
Cos[ql-q4] -> ClM4. By default, the angles are defined by qi;\n 
to use a different one, specify it on var; \n 

example: using ti makes var=t. \n 
When biq > 0, subindexes bigger than 9 are allowed."; 

L i a t h t p u t ; :  :usage = "Listoutput [ L i s t ,  name, t o m ,  var, big] 
prints the given List, \n 
regardless of its dimensions, a s  a multidimensional vector \n 
w i t h  its subindexes. The printed name of the list is \n 
g i v e n  by name, "List" being its default. \ n  
Optional parameter form: \n 

form = Text(by default:, gives the list on Text Form. \n 
form = C, gives the lis% on C Form. \n 
form = RC, gives the list on C: Form, reducing the form of \n 
tangents, sines, and cosines: Tan[ql] -> T1, \n 
Sin[q2+q31 -> S 2 3 ,  Cos[ql-q4] -> ClM4. By default, \n 
the angles are defined by qi; to use a \n 
different one, specify it on var; \n 

example: using ti make var=t. \n 
form = F, gives the list on FORTRAN Form. \n 
forin = RF, gives the list on FORTRAN Form reducing the form \n 
of sines and cosir.es. \n 

When big > 0, subindexes bigger than 9 are allowed."; 

CrossPrsd . :  :usage = "CtossProd [V-, U-] 
gives the cross product of the two vectors V and U."; 

P Q s V ~ C ~ O ~ :  :usage = "PosVector[Matrix-] 
gives the posititon vector of the \n 
4 x 4 homogeneous transformation Matrix."; 
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FUNCTION -- " OPERRTORS " -- [Paul's Notatlan) - -  
OperTxansform: :usage = "OperTransformCDXTsbl~, RefFrame, Frame] 
g ives  t h e  4 x 4 homogeneous  \n  
t r a n s f o r m a t i o n  operator  t h a t  r e la tes  Frame a n d  RefFrame .  \ n  
E n t e r  t h e  D e n a v i t - H a r t e n b e r g  t a b l e  i n  P a u l ' s  n o t a t i o n . "  ; 

IFUNCTION -- " ROTflTIONRL M A T R I X  " -- 
Rot: :usage = " I l a t [ D H T a b l e ,  R e f 3 r a r n e ,  Frame] 
gives  t h e  r o t a t i o n a l  m a t r i x  t h a t  \n 
re la tes  Frame a n d  RefFrame .  E n t e r  t h e  D e n a v i t - H a r t e n b e r g  t a b l e \ n  
i n  P a u l s ' s  n o t a t i o n . "  ; 

I F U N C T I O N  -- " POSITION UECTOR " -- 
POS: :usage I " PO8 [ D X T a b l e ,  RefFrame, Frame] 
g i v e s  t h e  p o s i t i o n  v e c t o r  t h a t  \ n  
re la tes  Frame a n d  RefFrame .  E n t e r  t h e  D e n a v i t - H a r t e n b e r g  \ n  
t a b l e  i n  P a u l ' s  n o t a t i o n . "  ; 

B F U N C T I O N  -- 'I PAUL'S TO C R A I G ' S  NOTATION I '  -- 
Pau1ToCraig::usaga = " PaulToCraig[PDHTable] 
t r a n s f o r m s  t h e  D e n a v i t - H a r t e n b e r g  t a b l e  \ n  
from P a u l ' s  T o  Cra ig ' s  n o t a t i o n . "  

BFUNCTION -- " KINEMRTIC EQUATIONS " -- 
Dir.ctKinZq: :usage = "\ 
birectXinEq[DHTablo, Eulerbrder, BaseFrams, LastFrame] 
gives  \ n  
the k i n e m a t i c  e q u a t i o n s  :Px, Py,  Pz, R o l l ,  P i t c h ,  Y a w .  E n t e r  \ n  
t h e  D-H T a b l e  i n  P a u l ' s  n o t a t i o n .  \ n  

The d e f a u l t  f o r  BaseFrame is '0' a n d  f o r  LastFrame is t h e  \ n  
number  of rows of t h e  g i v e n  D - H  T a b l e ' .  \ n  
E u l e r O r d e r  i s  t h e  order  of t h e  E u l e r  a n g l e s .  I t s  d e f a u l t  i s  \ n  
Z Y X  where t h e  f u n c t i o n  g ives  t h e  Z Y X  E u l e r  a n g l e s ,  o r  t h e  X Y Z  \ n  
a n g l e s  a b o u t  f i x e d  a x e s  ( b o t h  s o l u t i o n s  a r e  t h e  same). \ n  

Use E u l e r O r d e r  = Z Y Z  t o  get  t h e  Z Y Z  E u l e r  a n g l e s .  \ n  
On o u t p u t ,  t h e  a n g l e s  a r e  R o l 1 : w i t h  respect t o  X; P i t c h : w i t h  \ n  

respect t o  Y; a n d  Y a w : w i t h  respect t o  2 .  \ n  
To u s e  t h e  d e f a u l t s ,  c a l l  t h e  f u n c t i o n  w i t h  o n l y  t h e  f i r s t  \ n  
parameter:  D i r e c t K i n E q  [ D H T a b l e ]  , I' ; 



FUNCTION -- " INUEASE KINEMATICS ' I  -- 
1nvarseKin::usage = "InverseXin[DHTable] 
gives  the  inverse kinematics so lu t ion ,  when \ n  
it. e x i s t ,  of a 6-DOF manipulator with the  l a s t  t h r e e  r o t a t i o n a l  \ n  
axes i n t e r s e c t e d .  Enter t he  D-H Table i n  P a u l ' s  no ta t ion . "  : 

BlAN - PAUL'S 'I -- 
JacobianP : : usage = 'I YscobianP [ D H T a b l e ,  RefFrame] 
gives t he  Jacobian of t he  robot \ n  
wr i t t en  w i t h  respect  t o  any spec i f i ed  re ference  frame: \ n  

{Car tes ian  Coordinates speeds)  = Jacobian . ( J o i n t  speeds ) , \ n  
where:{Cart .  Coord. speeds)  = (dx /d t ,  dy /d t ,  dz/dt, wx, wy, w z ] \ n  
wr i t t en  w i t h  respec t  t o  RefFrame. The d e f a u l t  f o r  RefFrame i s  \ n  
t he  baseframe. Enter t he  DHTable i n  P a u l ' s  n o t a t i o n . " ;  

J a ~ ~ b ~ ~ a ~ ~ ~ o ~ ~  : m a p  J ' I \  

transforms \ n  
t he  Jacobian of t h e  robot (o ldJac ) ,  wr i t t en  w i t h  respect  t o  any\n 
spec i f i ed  re ference  frame (oldFrame),  t o  a d i f f e r e n t  frame \ n  
(newFrame) . Enter t he  DHTable of t he  robot i n  P a u l ' s  n o t a t i o n . " ;  

Jaco~T~ansfo~[DHTabls,newFrame,ol~r~e,o~dJac] 



UFUNCTION -- I' S T A T I C  AND GRAUITATIONAL FORCES 'I -- 
StaticPorces::usage = "StsticForce8[DBTable, MassTable, \ 
Vgravity, Fext, FrameFext, FtameFextApplied, Force, Torque] 
gives  the  f o r c e ( t o r q u e )  t h a t \ n  
i s  n e c e s s a r y  t o  a p p l y  a t  e a c h  j o i n t  t o  keep t h e  robot i n  s t a t i c \ n  
c o n d i t i o n s  when u n d e r  t h e  e f fec t  o f  a n  e x t e r n a l  force F e x t \ n  
a n d / o r  G r a v i t y . \ n  
1)MassTable i s  composed o f  f o u r  parameters fo r  e a c h  l i n k .  The \n  

f i r s t  o n e  d e f i n e s  i t s  mass a n d  t h e  n e x t  t h ree  d e f i n e \ n  
t h e  l o c a t i o n  of t h e  c e n t e r  o f  m a s s . \ n  

2 ) V g r a v i t y :  3 x 1 vector t h a t  r e p r e s e n t s  t h e  d i r e c t i o n  a n d  v a l u e \ n  
of t h e  g r a v i t y  a c c e l e r a t i o n .  By d e f a u l t ,  Vgrav i ty={O,O, -G} .  \ n  

3 ) F e x t :  6 x 1 vector  t h a t  r e p r e s e n t s  t h e  e x t e r n a l  f o r c e ( t o r q u e ) \ n  
(Fx, Fy,  F z ,  Tx, Ty, Tz) a l o n g  t h e  t h r e e  axes a p p l i e d  t o  \ n  
a n y  c o o r d i n a t e  frame ( F r a m e F e x t A p p l i e d )  a n d  w r i t t e n  w i t h  r e s p e c t '  
t o  a n y  frame ( F r a m e F e x t )  . By d e f a u l t ,  F e x t  = IO, O,O, O,O, 0 )  , \ n  
F r a m e F e x t A p p l i e d  = FrameFex t  = L a s t F r a m e  o f  t h e  DHTable . \n  

4 ) F o r c e  a n d  T o r q u e  are  b y  d e f a u l t  f a l s e .  S e t t i n g  them t o  t r u e \ n  
i n c l u d e s  i n  t h e  o u t p u t  a l l  t h e  i n t e r n a l  r e a c t i o n s  on t h e  l i n k s . " ;  

Torces: :usage = "Forced [ D H T a b l e ,  t e x t ,  \ 
TramePext, frameFextApplied, form, Torque]\n 
gives  t h e  f o r c e ( t o r q u e )  t h a t  i s  n e c e s a r y  t o  a p p l y  a t  e a c h  \n 
j o i n t  t o  k e e p  t h e  robot,  g i v e n  b y  D H T a b l e ,  i n  s t a t i c  \ n  
c o n d i t i o n s  when u n d e r  t h e  e f f e c t  o f  a n  e x t e r n a l  force F e x t .  \ n  
1)Fext: 6 x 1 vector t h a t  r e p r e s e n t s  t h e  e x t e r n a l  f o r c e ( t o r q u e )  \ n  

(Fx, Fy,  F z ,  Tx, Ty, Tz) a l o n g  t h e  t h r e e  a x e s .  Applied t o  \ n  
a n y  c o o r d i n a t e  f r a m e  ( F r a m e F e x t A p p l i e d )  a n d  w r i t t e n  w i t h  respect 
t o  a n y  frame ( F r a m e F e x t )  . By d e f a u l t ,  F e x t  = {O,O,O,O,O,O), \n 
F r a m e F e x t A p p l i e d  = FrameFex t  = L a s t F r a m e  of t h e  DHTab le .  \ n  

2 ) F o r c e  a n d  T o r q u e  are b y  d e f a u l t  f a l s e ,  I f  t h e y  a r e  se t  t o  \ n  
a d i f f e r e n t  v a l u e ,  t h e n  all t h e  i n t e r n a l  forces a n d  torques \ n  
on t h e  l i n k s  are  i n c l u d e d  i n  t h e  o u t p u t "  ; 

Gravitation: :usage = "Gravitation [DHTable, MassTable, \ 
Vqrrvity, Force, Torque] 
g i v e s  t h e \ n  
f o r c e ( t o r q u e )  t h a t  i s  n e c e s a r y  t o  a p p l y  a t  each j o i n t  t o  k e e p \ n  
t h e  robot,  g i v e n  b y  D H T a b l e ,  i n  s t a t i c  c o n d i t i o n s  when u n d e r \ n  
t h e  e f f ec t  of G r a v i t y , \ n  
1)MassTable i s  composed of f o u r  p a r a m e t e r s  fo r  each l i n k .  The \n  

f i r s t  o n e  d e f i n e s  i t s  mass a n d  t h e  n e x t  t h r e e  d e f i n e \ n  
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t he  loca t ion  of t h e  cen ter  of mass.\n 
2)Vgravi ty:  3 x 1 vector  t h a t  represents  t h e  d i r e c t i o n  and value\n 

of t h e  gravity a c c e l e r a t i o n .  By de fau l t ,  Vgravity-IO, 0 ,  -6). \ n  
3)Force and Torque a r e  by d e f a u l t  f a l s e .  X f  they  a r e  s e t  t o  \n  

a d i f f e r e n t  value,  then a l l  t h e  i n t e r n a l  fo rces  and torques\n 
on t h e  l i n k s  a r e  included i n  t h e  output'a ; 

EndPnckage [ ] 
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APPENDIX B-2 

SML-C.m, S Y M B O L I C  MflNIPULRTQR L A B B R R T O R Y  
By Santiago March-Leuba,  Nouember 1991 

W > >  This f i le conta ins rou t ines  f o r  robo t  man ipu la to r  model ing.  
Several  funct ions are lncfuded t o  calculate the k inemat i c  end s ta t i c  
models  o f  a manipulator .  In addition, some t r igonomet r ic  
reduct ions and o u t p u t  f o r m  funct ions developed f o r  use in robot ics  
a re  incorporated. This f i l e  is called SML-C, in t h a t  i t  p e r f o r m s  
models  based on Creig’s notat ion.  To use Paul’s notat ion,  look f o r  
t h e  f i l e  cal led SML-P. A list o f  the funct ions in SML i s  p resented  
be low w i t h  he lp o n  h o w  t o  use them. << 

Beginpackage [“Robotics’ SML-C‘ “ 1  ; 

CENERAL HELP 
SML::usage = “Symbolic Manipulator Laboratory (SML) \n 
was writen by Santiago March-Leuba at the Oak Ridge \n 
National Laboratory to be used in symbolic modeling of \n 
robot manipulators. Functions ending in C are to be used \n 
w i t h  Craig’s notation; otherwhise use Paul’s notation. \n 
List of Functions on SML: \n 
1.- Trigonometric Reductions and Output Forms \n 

RedTrig, RedTrigExp, RedAngle, \n 
Listoutput, Rout, RFForm, R C F o r m .  \n 

2.- Kinematics Functions: \n 
OperTransform, Rot, Pos, \n 
DirectKinEq, InverseKin, JacobianP, \n 
QperTransformC, RotC, PosC, \n 
DirectKinEqC, InverseKinC, YacobianC. \n 

3 . -  Static Forces Functions: \n 
StaticForces, Forces, Gravitation, \n 
StaticForcesC, ForcesC, GravitationC. \n 

4 . -  Miscellaneous Functions: \n 
CrossProd, PosVector. \n 

Input Tables: \n 
1.- Denavit-Hartenberg t a b l e  (DHTable). \n 
2.- Mass parameters table (MassTable).”; 



68 

DRTablps :  :usage = “ D H T a b l e  is t h e  i n p u t  u s e d  i n  k i n e m a t i c  \ n  

a n d  s t a t i c  forces f u n c t i o n s .  I t  i s  e n t e r e d  on  t h e  f o r m :  \ n  
a ) w h e n  u s i n g  P a u l ’ s  n o t a t i o n :  \n 

D H T a b l e  = ( { q l ,  a l f l ,  a l ,  d l ) ,  \n 
(92, a l f 2 ,  a 2 ,  d 2 ) ,  \ n  

. . . \ n  
{ q n ,  a l f n ,  a n ,  d n ) ) ,  \ n  

w h e r e :  qi = a n g l e  f rom X i - 1  t o  X i ,  a b o u t  Zi-1, \n 
a l f i  = a n g l e  f rom Z i - 1  t o  Zi, a b o u t  X i ,  \ n  
a i  = l e n g t h  f rom Z i - 1  t o  Z i ,  a l o n g  X i ,  \n 
d i  = l e n g t h  f r o m  X i - 1  t o  X i ,  a b o u t  Z i - l . \ n  \n 

a ) w h e n  u s i n g  C r a i g ’ s  n o t a t i o n :  \n 
D H T a b l e  = ( ( q l ,  alfO, aO, d l ) ,  \ n  

(q2, a l f l ,  a l ,  d21 ,  \ n  

I q n ,  a l f n - 1 ,  an-1 ,  d n ) ) ,  \n 
. . .\n 

w h e r e :  q i  = a n g l e  f rom X i - 1  t o  X i ,  a b o u t  Z i ,  \n 
a l f i  = a n g l e  from Z i - 1  t o  Zi, a b o u t  X i - 1 ,  \ n  
a i  = l e n g t h  f rom Z i - l  t o  Z i ,  a l o n g  X i - l , \ n  
d i  = l e n g t h  from X i - 1  t o  X i ,  about Z i . ” ;  

NassTab1e::usaga = “MassTable  i s  t h e  i n p u t  n e c e s s a r y  f o r  \ n  
t h e  f u n c t i o n s  G r a v i t a t i o n  a n d  S t a t i c F o r c e s .  I t  i s  e n t e r e d  \n 
on t h e  form: \ n  

MassTable = [(ml, mxl, myl ,  m y l } ,  \ n  
(m2, mx2, mz2, mz2), \ n  

{mn, m n ,  myn, mznl), \ n  
. . . \ n  

w h e r e :  (1) m i  i s  t h e  mass o f  l i n k  i ;  a n d  ( 2 )  mx i ,  myi ,  a n d \ n  
mzi are  t h e  l o c a t i o n s  o f  t h e  c e n t r o i d  of  l i n k  i a l o n g  t h e  \ n  
X- ,  Y - ,  a n d  Z-axes  of t h e  c o o r d i n a t e  f r a m e  a t t a c h e d  t o  \ n  
t h a t  l i n k .  ‘I; 



TR I CQNOHETR I C  REDUCTIONS 
R e d T s i g  : : usage = "RedTrig [ expr J 
gives expr Trigonometricaly reduced using \n 
classical pattern matching. "; 

RedTr1gExp::usage = "RedTrigExpfexpr] 
gives expr Trigonometricaly reduced using \n 
pseudo-exponential functions. After using RedTrigExp, any \n 
of the four following functions can help to obtain a \n 
simpler output: \n 
ToMin lexprl ToMinC[exprl ToPaper [expr] , ToMinCS [expr] . \n 

They have been listed in order of time consumption and \n 
sophistication. If the expression to deal with is long \n 
and complicated, it is to the user advantage to use one after \ n  
the otherl checking at any step to determine whether the \n 
output is good enough."; 



OUTPUT FORMS 
~eBAng1e: :usage = "RadAngle[expr, var, big] 
gives the expression (expr), \n 
regardless of its dimensions, reducing the form of tangents, \n 
sines, and cosines: Tan[ql] -> T1, Sin[q2+q3] -> S23, \n 
Cos[ql-q4] -> C1M4. By default, the angles are defined by qi;\n 
to use a different one, specify it on var; \n  

example: using ti makes var=t. \n 
When big > 0, subindexes bigger than 9 are allowed."; 

Listoutput: :usage = "LiatOutput [List, name, form, var, big] 
prints the given List, \n 
regardless of its dimensions, as a multidimensional vector \ n  
with its subindexes. The printed name of the list is \n 
given by name, "List being its default. \n 
Optional parameter form: \n 

form = Text(by default), gives the list on Text Form. \ n  
form = C, gives the list on C Form. \n 
form = RC, gives the list on C Form,  reducing the form of \n 
tangents, sines, and cosines: Tan(ql1 -> T1, \n 
Sin[qZ+q3] -> S23, Cos[ql-q4] -> C1M4. By default, \ n  
the angles are defined by qi; to use a \n 
different one, specify it on var; \n 

example: using ti make var=t, \ n  
form = F, gives the list on FORTRAN Form. \ n  
form = RF, gives the list on FORTRAN Form reducing the form \n 
of sines and cosines. \ n  

When big > 0, subindexes bigger than 9 are allowed."; 

FUNCTION - -  Auxil lar - -  
CrO33Prad: :usage = "CrossProd [V-, U-] 
gives the cross product of the two vectors V and I J . " ;  

PosVectar::usags = "PasVector[Matrir-] 
gives the posititon vector of the \n 
4 x 4 homogeneous transformation Matrix."; 

FUNCTION -- ' I  O P E R R T O R S  I'  - -  (Cra ig 's  nota t ion)  -- 
OparTransformC: :usage = "OpesTransformC[DBT~le, RefFrama, Frame) 
gives the 4 x 4 homogeneous transformation operator that \n 
relates Frame and RefFrame. \n 
Enter the Denavit-Hartenberg table in Craig's notation." ; 
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MFUNCTION -- I '  ROTATIONRL M A T R I H  'I -- 
RotC: :usage = 'I RotC[DHTable, R e f f r a m e ,  Frame] 
gives  t h e  r o t a t i o n  matrix t h a t  \ n  
r e l a t e s  Frame and RefFrame. E n t e r  t h e  Denavit-Hartenberg t ab le \n  
i n  Craig's n o t a t i o n . "  ; 

IFUNCTION -- 'I POSITION UECTOR " -- 
PosC: :usage = " PosC[DHTsl- Is, RefFrame,  Frame] 
gives  t h e  Pos i t i on  Vector t h a t  \ n  
r e l a t e s  Frame and RefFrame. Enter  t he  Denavit-Hartenberg \n 
t a b l e  i n  Cra ig ' s  notat ion. ' '  i 

aFUNCTlON -- I' PAUL'S TO C R A I G ' S  NOTIDTION 'I -- 
Pau1ToCrsig::usaga - " PaulToCraig[PDHTable] 
t ransforms the  Denavit-Hartenberg Table \n 
from P a u l ' s  To  Cra ig ' s  no ta t ion . ' '  ; 

IFUNCTION -- 'I KlNEMftTlC EQUATIONS I '  -- 
Dir0ctnLnEqC::usage = "\ 
DirectKinEqC[DHTablo, LulerOrder, ElaseFrl~mo, LastFrame] 
gives \n 
t h e  kinematic  equat ions :Px, Py ,  Pz, Roll ,  P i t ch ,  Yaw. E n t e r  \n 
t h e  D-H Table i n  Cra ig ' s  no ta t ion .  \n 

The d e f a u l t  f o r  BaseFrame i s  '0' and f o r  LastFrame is t h e  \n 
number of rows of the  given D-H Tab le ' .  \n 
EulerOrder i s  t h e  order  of t h e  Euler angles .  I t s  d e f a u l t  i s  \ n  
ZYX where t h e  funct ion g ives  t h e  Z Y X  Euler  angles ,  o r  t h e  X Y Z  \ n  
angles  about f ixed  axes (both s o l u t i o n s  a r e  t h e  same). \n 

Use EulerOrder = Z Y Z  t o  ge t  t he  Z Y Z  Euler ang le s .  \n 
On ou tpu t ,  t h e  angles  a r e  Rol1:with respec t  t o  X; Pi t ch :wi th  \n 

r e spec t  t o  Y ;  and Yaw:with respec t  t o  2 .  \ n  
TO u s e  t h e  d e f a u l t s ,  c a l l  t he  funct ion with only t h e  f i r s t  \n 
parameter:  DirectKinEqC[DHTable]." ; 
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FUNCTllON -- " INLBERSE KINEMI IT ICS " -- 
1nverseKinC::uaage = "InverseKinC[DHTs~~] 
gives  the  inverse kinematics so lu t ion ,  when \n 
it e x i s t ,  of a 6-DOF manipulator with the  l a s t  t h r e e  r o t a t i o n a l  \ n  
axes i n t e r s e c t e d .  Enter the  D-H Table i n  Cra ig ' s  n o t a t i o n . "  ; 

FUNCTlQN -- " J A C O B l  

JacobianC::usaga = '' JacobianC[DHTable, RafFrame] 
gives the  Jacobian of t h e  robot \ n  
w r i t t e n  w i t h  respec t  t o  any s p e c i f i e d  reference frame: \ n  

{Cartesian Coordinates speeds )  = Jacobian . { J o i n t  speeds ) , \ n  
where: (Car t .  Coord. speeds)  = {dx/d t ,  dy/dt ,  dz /d t ,  wx, wy, w z ) \ n  
wr i t t en  w i t h  respect  t o  RefFrame. The  de fau l t  f o r  RefFrame i s  \n  
t he  number of rows of t he  given DHTable, \ n  
given i n  Cra ig ' s  no ta t  ion.  'I; 

JaeobTransfomC: ;Usage " \  
SiucobTransfomC [DRTalts le ,  nawFrme, olcBrama, oldJac] 

transforms \ n  
t h e  Jacobian of t h e  robot ( o l d J a c ) ,  wr i t ten  with respec t  t o  any\n 
s p e c i f i e d  re ference  frame (oldFrame),  to a d i f f e r e n t  frame \n 
(newFrame). Enter t he  DI?Table of t he  robot i n  C r a i g ' s  no ta t ion . " ;  



.FUNCTION -- " STATIC AND GRAUITATIONAL FORCES " -- 
StaticForcesC::usags = "StaticForcesC[DHTable, MassTable, \ 
Vgravity, Fext, FrameFext, IrameFextApplied, lporce, Torq.;e] 
g ives  t h e  force ( t o r q u e )  t h a t \ n  
i s  n e c e s s a r y  t o  a p p l y  a t  e a c h  j o i n t  t o  k e e p  t h e  robot i n  s t a t i c \ n  
c o n d i t i o n s  when u n d e r  t h e  e f f e c t  of a n  e x t e r n a l  f o r c e  F e x t \ n  
a n d / o r  G r a v i t y . \ n  
1 ) M a s s T a b l e  is composed of f o u r  parameters for  e a c h  l i n k .  The \n  

f i r s t  o n e  d e f i n e s  i t s  mass a n d  t h e  n e x t  t h r e e  d e f i n e \ n  
t h e  l o c a t i o n  of t h e  c e n t e r  of mass.\n 

2 ) V g r a v i t y :  3 x 1 v e c t o r  t h a t  r e p r e s e n t s  t he  d i r e c t i o n  a n d  v a l u e \ n  
of t h e  g r a v i t y  a c c e l e r a t i o n .  By d e f a u l t ,  V g r a v i t y = { O , O , - G I .  \ n  

3 ) F e x t :  6 x 1 vector t h a t  r e p r e s e n t s  t h e  e x t e r n a l  f o r c e ( t o r q u e ) \ n  
(Fx ,  Fy, Fz ,  Tx, Ty, T z )  a l o n g  t h e  t h r e e  axes a p p l i e d  t o  \n 
a n y  c o o r d i n a t e  frame ( F r a m e F e x t A p p l i e d )  a n d  w r i t t e n  w i t h  respect'  
t o  a n y  frame ( F r a m e F e x t ) .  By d e f a u l t ,  F e x t  = ( O , O , O , O , O , O ~ , \ n  
F r a m e F e x t A p p l i e d  = FrameFex t  = L a s t F r a m e  of t h e  DHTable . \n  

4 ) F o r c e  a n d  T o r q u e  a r e  b y  d e f a u l t  f a l s e .  S e t t i n g  them t o  t r u e \ n  
i n c l u d e s  i n  t h e  o u t p u t  a l l  t h e  i n t e r n a l  r e a c t i o n s  on  the l i n k s . " ,  

rorcrrsC : : usage = "JporcesC [DHTable, Fext , \ 
Iramehxt , TrasneFoxtApplied, Force , Torque J \n 
gives t h e  f o r c e ( t o r q u e )  t h a t  i s  n e c e s a r y  t o  a p p l y  a t  e a c h  \ n  
j o i n t  t o  k e e p  t h e  robot ,  g i v e n  b y  DHTable,  i n  s t a t i c  \ n  
c o n d i t i o n s  when u n d e r  t h e  e f f e c t  of a n  e x t e r n a l  f o r c e  F e x t .  \ n  
1 ) F e x t :  6 x 1 vec tor  t h a t  r e p r e s e n t s  t h e  e x t e r n a l  f o r c e ( t o r q u e )  \ n  

( F x ,  Fy ,  F z ,  T x ,  Ty, Tz) a l o n g  t h e  t h r e e  a x e s .  A p p l i e d  t o  \ n  
a n y  c o o r d i n a t e  frame ( F r a m e F e x t A p p l i e d )  and w r i t t e n  w i t h  r e s p e c t  
t o  a n y  frame ( F r a m e F e x t ) .  By d e f a u l t ,  F e x t  = { O , O , O , O , O , O ) ,  \ n  
F r a m e F e x t A p p l i e d  = FrameFext = L a s t F r a m e  of t h e  D H T a b l e .  \ n  

2 ) F o r c e  a n d  Torque are b y  default f a l s e .  I f  t h e y  a r e  s e t  t o  \ n  
a d i f f e r e n t  v a l u e ,  t h e n  a l l  t h e  i n t e r n a l  forces  a n d  torques \n 
on t h e  l i n k s  are  i n c l u d e d  i n  t h e  o u t p u t "  ; 

GravitationC::usage = "GravitationC[DHTable, MassTable, \ 
Vpravity, Force , Torque] 
g i v e s  t h e \ n  
f o r c e ( t o r q u e )  t h a t  i s  n e c e s a r y  t o  a p p l y  a t  e a c h  j o i n t  t o  k e e p \ n  
t h e  robot ,  g i v e n  b y  DHTable, i n  s t a t i c  c o n d i t i o n s  when u n d e r \ n  
t h e  effect  of  G r a v i t y . \ n  
1 ) M a s s T a b l e  i s  composed of four  parameters fo r  e a c h  l i n k ,  The \n  

f i r s t  o n e  d e f i n e s  i t s  mass a n d  t h e  n e x t  t h r e e  d e f i n e \ n  
t h e  l o c a t i o n  o f  t h e  c e n t e r  o f  m a s s . \ n  

2 ) V g r a v i t y :  3 x 1 vector  t h a t  r e p r e s e n t s  t h e  d i r e c t i o n  a n d  v a l u e \ n  
of t h e  g r a v i t y  a c c e l e r a t i o n .  By d e f a u l t ,  V g r a v i t y = ( O , O , - G I ,  \ n  
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3)Force a n d  T o r q u e  a r e  by d e f a u l t  f a l s e .  I f  they  a r e  s e t  t o  \n 
a d i f f e r e n t  v a l u e ,  then all t h e  i n t e r n a l  forces  and torques\n 
on  t h e  l i n k s  a r e  included i n  t he  output"  ; 

EndPackage [ ] ; 

Mu1 1 



APPENDIX B-3 

FladTrigm, S Y M B O L I C  MANIPULATOR L A B O R R T Q R Y  
By Sant lago March-Leuba, Nouember 1991 

>> This file contains routines for  trigonometric reductions a n d  
output forms developed to be useful in robotics. 

I f  SML-C or SML-P are to b e  loaded, this file i s  not needed, 
because all i ts  functions are included in the other two 
packages. << 

Beginpackage ["Robotics' RedTtig' "1  

CENLRAL HELP 
SML::usags = "Symbolic Manipulator Laboratory (SML) \n 
was writen by Santiago March-Leuba at t h e  Oak Ridge \n 
National Laboratory to be used in symbolic modeling of \n 
robot manipulators. Functions ending in C are to be used \n 
with Craig's notation; otherwhise use Paul's notation. \n 
List of Functions on SML: \ n  
1.- Trigonometric Reductions and Output Forms \n 

RedTrig, RebTrigExp, RedAngLe, \n 
Listoutput, Rout, RFForm, RCForm. \ n  

2.- Kinematics Functions: \n 
OperTransform, Rot, Pos, \n 
DirectKinEq, InverseKin, JacobianP, \n 
OperTransformC, R o t C ,  PosC, \n 
DirectKinEqC, InverseKinC, JacobianC. \n 

3 . -  Static Forces Functions: \n 
StaticForces, Forces, Gravitation, \n 
StaticForcesC, ForcesC, GravitationC. \n 

4 . -  Miscellaneous Functions: \n 
CrossProd, PosVector. \n 

Input Tables: \n 
1.- Denavit-Hartenberg table (DHTable). \n 
2 .- Mass parameters table (MassTable) . ' I ;  
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TRI6QNOMETRIC REDUCTIONS 
RedTrig::usaga f "RsdTrig[expr] 
gives expr Trigonometricaly reduced using \n 
c l a s s i c a l  pattern matching, ": 

R a d T r i g E x p :  :usage = "RedTrigExp [ e x p r ]  
gives expr Trigonometricaly reduced using \n 
pseudo-exponential functions. After using RedTrigExp, any \n 
of the four following functions can help to obtain a \n 
simpler output: \n 
ToMin [exprl , ToMinC [exprl , ToPaper [exprl, ToMinCS[exprl . \n 

They have been listed in order of time consumption and \n 
sophistication. If the expression t o  deal with is long \n 
and complicated, it. is to the user advantage to use one after \n 
the other, checking at any step to determine whether t h e  \n 
output is good enough, "; 
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OUTPUT FORMS 
RedAnglo: :usage = "RedAngle [axpr, var, big1 
g ives  t h e  expression ( e x p r ) ,  \ n  
r ega rd le s s  of i t s  dimensions, reducing t h e  form of tangents ,  \n 
s i n e s ,  and cos ines :  Tan[ql]  -> T1,  Sin[q2tq3]  -> S23, \n 
Cos[ql-q41 -> C l M 4 .  By d e f a u l t ,  t he  angles  a r e  def ined  by q i ; \ n  
t o  use a d i f f e r e n t  one, spec i fy  i t  on var;  \n 

example: using t i  makes var- t .  \ n  
When b i g  > 0, subindexes bigger  than 9 a r e  allowed."; 

ListOutput: :usage = "ListOutput [List, name, form, varl big] 
p r i n t s  t h e  given L i s t ,  \n 
r ega rd le s s  of its dimensions, as a multidimensional vec tor  \n 
with i t s  subindexes.  The p r i n t e d  name of t h e  l i s t  is \n 
given by name, " L i s t "  being i t s  d e f a u l t .  \n 
Optional  parameter form: \n 

form = Text(by d e f a u l t ) ,  g ives  t h e  l i s t  on Text Form. \n 
form = C, g ives  the  l i s t  on C Form. \n 
form = RC, g ives  t h e  list on C Form, reducing t h e  form of \n 

t angents ,  s i n e s ,  and cos ines :  Tan[ql]  -> T1, \n 
Sin[q2+q3] -> S23, Cos[ql-q4] -> C l M 4 .  By d e f a u l t ,  \ n  
t h e  angles  a r e  def ined by q i ;  t o  use a \n 
d i f f e r e n t  one, spec i fy  it  on var ;  \n 

example: us ing  t i  make var - t .  \n 
form = F, gives  t h e  l i s t  on FORTRAN Form. \n 
form = RF, g ives  the  l i s t  on FORTRAN Form reducing t h e  form \n  

of s i n e s  and cos ines .  \n 
When b i g  > 0 ,  subindexes bigger  than 9 a r e  a l lowed.";  

m F U N C T I D N  - -  RuHJlIar -- 
CrossProd: :usage = "CrossProd[V-, U,] 
g ives  t h e  c ros s  product of t he  two vec tors  V and U."; 

PosVector::usage I: "PosVector[Matrix-J 
g ives  t h e  p o s i t i t o n  vector  of t h e  \n 
4 x 4 homogeneous t ransformation Matrix."; 
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APPENDIX C 

FUTURE ARMOR REARM SYSTEM MANIPULATOR: KINEMATICS, 
WORK SPACE, STATIC FORCES MODEL, AND DESIGN 

This example application presents a complete study of the kinematics of the Future 

Armor Rearm System (FARS) Manipulator (ISress et al. 1991). The design of some of 

FARS lengths and angular constraints with the goal of optimization of the work space is 

also presented here. The manipulator coordinate system is shown in Figure C-1, from 

which the D-H Table in Craig's notation (Craig 1986) is obtained. It is a 5 deg-ree-of- 

freedom @OF) manipulator, of which the first four joints are rotational, and the fifth is 

prismatic. 

The goal of the FARS vehicle, is to automatically reload the Army's new M l A l  

Block III tank as shown in Figure C-2. The automated shell-handling hardware is 

composed of four major systems: the articulated boom and docking port used for 

connecting with the tank, the carousel used for storage and selection of shells, the lift table, 

and the boom conveyor used for transfer of shells along the boom into the M1 A1 tank. 

The articulated boom plus the extra rotational DOF of the carousel constitute the FARS 

manipulator, the kinematics and work space of which are presented in this example 

application for the Symbolic Manipulator Laboratory (SML). 

The shells are to be transfered through the interior of the manipulator. Angular joint 

constraints cannot be large, because the shells are long and cannot turn in a srnall angle. 

This size limitation creates a very constrained robot with a reduced work space. An 

optimization design of lengths and angular constraints is presented here to maximize the 

work space of the FARS manipulator. 
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The following pages with the example are printed directly from SML, thus 

presenting the same format as on the computer monitor. Note that bold characters here are 

either input for SML and Mathematica (Wolfram 1988) or text comments, and the plain 

iionbold rcpresents output obtained from SML or Mathematica. 

zo = z1 

2 4  

z5 

Figure C-1. FAKS manipulator coordinate system definition. 



I- FARSSYSTEM 

00 w 

Figure C-2. FARS vehicle reloading an M I A 1  tank. 
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A R S  Manipulator D-H Table in Craig's notation and Mars 
Table,  

Homogeneous transformation betwveea second and fifth 
frames in two different output forms. 

~r fPranafornsC[FarsTable ,  2,5]  

{(Cos[q31 Cosiq41, -Sin[q31, Cos[g31 Sin[qQl, 

a2 + d5 Cos[q31 Sin[q41 I t  

(Cos[q41 SinIq31, Cos[q31, Sinlq31 SinIq41, 

d5 Sinly3I Sin[qQI), (-Sin[q4], 0, Coslq41, d5 Cos[qQI1, 

(0, 0, 0, 11) 

Katriflorara [ RedAngle [ b ]  J 

e3 c4 -53 c3 s4 a2 + C3 S4 d5 

c4 s3 c3 5 3  s4 S3 S4 d5 

- S 4  0 c4 c4 65 

0 0 0 1 
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Direct Kinematic equations. 

Di+actKlnXqC[ParaT8bla] 

/ * *  KINEMATIC EQUATIONS * * /  
/*Position: Px, Py, Pz * /  
/*Orientation: * /  

Roll: respect to X; 
Pitch: respect to Y: 
Yaw:  respect to 2; * /  

/ *  - Roll, Pitch, Yaw about t h e  f i x e d  axes X Y 2 .Or 
/ *  - ZYX E u l e r  angles 
Px = C1 a1 + C1 C2 a2 t C4 S1 d5 + C1 C23 S4 dS; 
Py = 51 a1 + C2 S1 a2 - C1 C 4  dS + C23 S1 5 4  dS; 
Pz - 52 a2 + 523 S4 d5; 
Roll - Atan2 IC23 ,  S23 541 ; 
Pitch = Atan2 [ - t C 4  S231, 

2 2  2 
Sqrt[S23 S4 + (C1 C23 C4 - S1 S 4 )  11; 

Y a w  = Atan2[C23 C4 S1 t C l  54,  C 1  C23 C4 - S1 S41; 
#Obtain the Jacobian written with respect to the fiftb 

frame.  

I Y S  = R a d A n g l o (  JacobianCIFarsTabla, 51 I 

( ( S 4  a1 + C2 S 4  a2 + C23 d5, C4 S3 a2 ,  0, dS, 01, 

( - t C 4  S23 d5), C3 a2 + 54 d 5 ,  S 4  435, 0, 01, 

(-(c4 al) - C2 C 4  a2,  S3 S4 a 2 ,  0, 0, 11, 

(C4 S23, -S4, -S4, O f  01, (C23, 0, O f  1, 01, 

(S23 S4, C4, C4, 0, 0 ) )  
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FJO(1,2) - C 1  (-(S2 a2) - S23 S4 d5) 
FY0(2,2) = SI (-(S2 a2) - S23 54 dS) 
~ y O ( 3 , 2 )  = C2 a 2  + C23 S 4  d5 
FY0(4,2) S1 
FJ0(5,2) -C1 
~Y0(6,2) = 0 

FJO(1,3) -JI -(C1 523  S4 d5) 
FY0(2,3) -(SI S 2 3  S4 d5) 
FJO(3,3) - C23 S4 d5 
FJ0(4,3) a S1 
FJ0(5,3) = - C 1  
FJO(6,3) = 0 

FJO(1,4) = C l  C 2 3  C 4  d5 - S1 S 4  d5 
F J O ( 2 , r l )  = C 2 3  C4 S1 d5 + C1 S4 dS 
FJ0(3,4) = C4 S23 d5 
FJ0(4,4) = -(e1 S23) 
FJ0(5,4) = - ( S 1  S23) 
FJ0(6,4) = C23 

F SO 
F J O  
F JO 
F JO 
F JQ 

FJQ(1,S) - C4 S1 + Cl. C23 54 
2 , s )  = - ( C 1  C4) + C 2 3  S 1  S4 
3,5) = 5 2 3  S4 
4 , s )  = 0 
5,s) = 0 
6,s) = 0 
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ISta t tc  forces model: forcehorque that each joint has 
to support to keep the manipulator in static 
equilibrium under the effect of an external general 
force (rx,ry,rx,xx,ng,x.) applied at the 
e tli d -ef fect  or. 

mar8 ~orcerC(ParaTab10, (Y'JCpFYt IZ,)lx,XyrMX)I 

' I / **  STATIC AND GRAVITATIONAL FORCES COMPENSATION * * / "  
'I/* Fs!il - Force exerted on link i by link i-1 * / "  
" / *  Ns[i] - Torque e x e r t e d  on link i by link i-1 * / "  

M I 1 1  - -(-((C4*Fz - fx*S4)*al) + 
S2*(-(S3*(My + Fx*d5)) + 
C3*(Mz*S4 + C4*(Hx - Fy*dS))) + 
CZf(-((C4*Fz - Fx*S4)*a2) + C3*(My + Fx*dS) + 
S3*(Mz*S4 + C4* ( M x  - Fy*dS) 1 ) 1 ; 

'I/* M[i] = Necesary Force/Torque in Motor 1 */a 

M[2] = -(C4*Mz + (C3*Fy + S3*(C4*Fx + Ft*S4))*a2 - 
M ( 3 ]  -(C4*MZ - S4*(Mx - F y " d 5 ) ) ;  
M[4] -(My + F x * d S ) ;  
M [ 5 ]  = -Fz; 

S4*(Mx - Fy*d5) 1 i 
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Optimization Design. 

CI An aptirnizatlon design of lengths a n d  a n g u l a r  conslralnts 
is ~ ~ e ~ ~ n ~ E ~  lo ' the  next example f a r  w h k h  t h e  goal Is to 
msaimlre t h e  work space of the FARS manipulator. 

irot step was to obtain the inverse kinematics. 

WThc known input i s  t h e  positton v e c t o r  a n d  the or ient~ t lon  
of t h e  las t  link (see Figure C-1) of t h e  manipulntor. Let us 
d e f l n c  TO5 as the homogeneous t ransformat ion b e t w e e n  t h e  
first a n d  t h e  fifth f rame.  The u n k n o w n  p a r a m e t e r s  a r c  
called U In t h e  following: 

TO% I (  U, 13, 449, P X ) i  
{ u, u, ayI PY), 
{ tp, U, a%* P r ) ,  
{ 0 ,  0,  0, 111; 

T h e  equations to  solve f o r  the  i n v e r s e  k i n e m a t i c s  were 
o b t a i n e d  f r o m  SML a s  follows: 

As0 = O p o ~ r a n s ~ o ~ [ ~ ~ ~ s ~ ~ 1 ~ ,  1, 01; 
A53 = C?pesTrasnsformC(ParsTablr, 5 ,  31 ; 
AI3 = Oparl"xansfomC[FarsTable, 1, 31; 
K13 = PosVmctor [  A 1 0  . TO5 . A53 ] ; 
PI3 = PasKtactor( A 1 3  1 ; 
Do[ Print[ RedAngle(K13[[i]l], " a ", RsdAngle[P13[[illl 

1 1 ti,1P311 

C 1  Px + P y  SI - ( C 1  ax  + S1 a y )  d5  = a 1  + C2 a2 
C 1  Py - P x  SI - (-(S1 a x )  + C1 a y )  d 5  0 
Pz - a z  d5 = S 2  a2 

DThcre  a r e  only  t h r e e  unknowns in the a b o v e  e q u a t i o n s :  q l ,  
q2, and d 5 .  Adding  the s q u a r e  of t he  t h r e e  e q u a t i o n s  a n d  
r e d u c i n g  them t r igonometr ica l ly ,  a f o u r t h  o r d e r  
polynomial in  d S  is obtained that c3n be solved with  t h e  
help o f  M o f h r m a t i c o .  Then, q l  and q 2  can be  solved f rom 
t h e  same e q u a t i o n s .  
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QOncc q l ,  q2, and d5 arc known, it can be solved for 94, qS, 
and q6 by: 

a 0  b p . f l ~ f O a r r C [ r ' . r 8 T & h ,  1, 01 ; 
AIS = Og.flruuforral:[r'.r8T.blo, 1, SI; 
KlS 9 T e l a (  (AZO - T O S )  [ [ i t31 1, I5,1,31 I ; 
PIS .I T&l*( MI [[i,31], ( i t 1 , 3 ) 1  ; 
DO[ Print[ ~ l o [ 1 C T S t t i l l l ,  " ", ~ g l o ~ P 1 S t f i l J J  

I ? ( i t l t 3 1 1  

C1 ax + Sl ay - C23 S4 
-(S1 ax)  + C1 ay - -C4 
a z  - S23 S4 

I A  function was created that solves for the inverse 
kinematics of FARS manipulator. 

r.rsInvltin::usrge = FarsInvPlin gives thm Invrrse 
Urrarrtic Solution fol: F W  Manipulator. This 
ntnctfon has seven parsmetetil, baing tho last throe 
of them optionrl .  
F8rsInvKiu[Px-, Py-, Pt-, AngY-, hngt- ,  

al-; 1.98120, a2-: 2 . 0 2 5 6 4 ,  Prt- :  O ]  "; 

CY FarsInvKin calculates the joint angles ( q l ,  q2, q3, and q4), 
and the joint distance dS necessary to reach, with the last 
link of FARS. a position and orientation given by Px, Py, Pt, 
AngY, and AngZ. The solution is a function of  the lengths 
a 1  and a 2  of the manipulator, which allow us l o  plot the 
Joint solutions as functions of a2, when a1 is fixed at 6.5 
feet (1.98120 meters). The more conflicting joint 
constraints are for q3, q4,  and d5. Thus, only these are 
ploled here.  



\ 
10 x dS max 

10 x d5 min -- LemJ th 
I. 6 

-Graphics- 

CIThs f igure above shows  angles q3 and q4 (q4-90) in 
degrees. and length  dS (10 x dS) in  meters as func t ions  of 
the second link length af, in meters. Only because SML 
allows symbol ic model ing we could ob ta in  th is  plot. These 
plots were  ob ta ined for dif ferent con f igura t ions  o f  the 
robot. The fo l low ing  cond i t i ons  fo r  a goad design of FARS 
manipu la to r  w e r e  obtained by  analyzing a series of plots 
l i k e  the one above: 

1.98 meters. 

allow a large v a l u e  of q3. 

Use the largest posiblr! v a l u e  of a2. I t  shoul be a t  least 

Joint  3 i s  to  have the largest possible range o f  motion 10 

Choose dS t o  be as small  as possible. 
Extend the reach along the x axis  to the largest possible 

value making  Px a t  l e a s t  5.3 meters. 

a2 
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IIIWork Space study. 

0 Different soubroutines were created to study the effect of 
variation of lengths on the work space of the manipulator. The 
next figure shows the relation between the position (Py) end 
orientation (AngY) and the last link length (as). 

FARS at: Px=5.5, Py=O, Pz=o, AngY=AngZ=O 

-4z.; ‘AngY “d5 

- 0 . 2  

-SurfaceGraphics- 
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69 Finslly, three dimensional solid plot of the work space 1s 
obtained as shown below, This was obtained using the symbol ic  
in verse 

FARS 3 0  WORK SPACE FOR AngY and AngZ EQUAL TO 8 
DEGREES. 

k ine 111 B t i cs so I ut ion. 

Constraints: 
* a31 = 6 . 5  fegt 
* a2 6 . 6 4 5 8  feet 
* -90 < A l  < 90 degrees 
* -15 < < 32 degr6 
* - 2 4  < A3 < 24 degrees 
* (98 - 2 6 )  < A 4  < (90 + 24) degrees 
* 3 < 615 < 5 beat. 

-5 
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APPENDIX D-1 

CENTER FOR ENGINEERING s Y s r m 1 s  ADVANCED RESEARCH 
MANIPULATOR FORWARD AND INVERSE KINEMATICS 

This example application presents the implementation of the forward kinematics and 

an algorithm for the inverse kinematics of the Center for Engineering Systems Advanced 

Research manipulator (CESARm) of Oak Ridge National Laboratory based on a paper 

presented by Dubey, Euler, and Babcock (1988). 

The CESARm manipulator coordinate system is shown in Figure D-1, from which 

the D-H Table in Paul's notation (Paul 1981) is obtained. Figure D-2 shows the CESARm 

(slave) and the KRAFT (master) used together in a teleroperated robotic system at Oak 

Ridge National Laboratory. 

CESARm is a 7-DOF manipulator. Because of its redundant contiguration, special 

algorithms such as the one developed by Dubey, Euler, and Babcock (1988) are necessary 

to control it. Following the algorithm described in  their paper and using SML, 

computational efficient closed-form solutions are obtained for the joint rates as a function of 

the Cartesian velocities of the end effector. The following pages with the example are 

printed directly from SML, thus presenting the same format as on the computer monitor. 

Note that bold characters here are either input for SML or text comments, and the nonbold 

text represents output obtained from SML. 
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rdinate system definition. 

Source: Dubey, Euler, and Babcwk 1988. 



Figure D-2. Teleoperated system: CESARm and the KRAFT master (ORNL-Photo 5224-89). 



Figure D-2. Tebperated system: CESARm and the KRAFI' master (ORNLPhoto 5224-89). 
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BCESARM Robot D-H Table in Paul's notation. 

C a 8 8 m T l b l e  :* {(Ql, P i / 2 ,  0, 0 1, 
(¶Z, - p i / 2 ,  0, 1, 
fq3, Pi129 .3, -63 1, 
(q4, 0 , a d f  0 1, 
{qlr, - p i . / a ,  0 ,  0 1, 
(q6, P i / 2 ,  0 ,  0 1, 
Iq7,  0 0, d7 1 1  

I Direct Kinematic Equations using the ZYZ Euler angles 

DircrctKinJZq [ C e s r m T s b l o ,  ZY2] 

/ * *  KINEMATIC EQUATIONS * * /  
/*Position: P x ,  Py, P z  * /  
/+Orientation: * /  

Rol l :  respect t o  X; 
P i t c h :  respect t o  Y;  
Yaw: respect t o  2 ;  * /  

/ *  - Z Y Z  Euler angles 
Px - S1 (d2 + C3 C6 d7 - S3 (a3 + C4 a4 + C45 5 6  d 7 ) )  + 

C1 (C2 C6 S3 d7 + C2 C3 (a3 + C4 a4 + C45 S6 d7) + 

. S2 (-(S4 a4) + d 3  - 545 S6 d7)); 
Py 1 Cl (-d2 - C 3  C6 d7 + S 3  ( a 3  + C4 a4 + C45 S6 d 7 ) )  + 

S1. (C2 C6 S3 d7 + C2 C3 (a3  + C4 a4 + C45 S6 d7)  + 
S2 (-(S4 a4) + 63 - 545 S6 d 7 ) ) ;  

P I  C2 (S4 a4 - d3 + S45 S6 d 7 )  + 

Roll = AtanZ(C2 (C45 C7 - C6 S45 S 7 )  + 
S2 (C6 53 d7 + C 3  (a3 + C4 a4 + C45 S 6  d 7 ) ) ;  

S2 (-(C3 C7 S 4 5 )  + (-(C3 C45 C 6 )  + S3 S 6 )  S 7 ) ,  
C2 (-(C6 C7 S45) - C45 S 7 )  + 

. S2 (C7 ( - ( C 3  C45 C6) + S3 S6) + C3 545 S7) 1 ;  
Pitch = AtanZ(SqrtfPower(C2 (C6 C 7  545 + C45 S 7 )  + 

S2 (C7 (C3 C45 C6 - S3 S 6 )  - C3 S45 S 7 ) ,  2 1  + 

Power(C2 (C45 C7 - C6 S45 S7) + 

C2 S45 56 + 52 (C6 S3 + C 3  C45 S6)]; 
S2 (-(C3 C7 S 4 5 )  + (-(C3 C45 C6) + S3 S6) S7), 2 1 1 ,  

Yaw = AtanZ[Cl (-(C3 C6) + C45 S3 S6) + 
SI ( - ( S 2  S 4 5  5 6 )  + C2 (C6 53  + C3 C 4 5  S6)), 
SI. (C3 C6 - C45 S3 S6) + 

C1 (-(S2 S45 56) + C 2  (C6 5 3  + C3 C45 S 6 ) )  I ;  
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aObtrrin the Jacobian from the wrist written with respect t o  the 
third frame. Making d7 = 0, the Jacobian from the wrist 
instead from the end-effector will  be obtained. 

C48.ggl'I.bl. := C O 8 8 m ' r . b h  / .  67 -> 0 ;  

53 - R . d T t i g f J ~ c o b i r n P f C o 8 8 ~ T ~ l o , 3 ] ] ;  

Jac3(lrl) - C 2  C3 d2 + S3 (-(S2 54 a4) + S2 d3) 
3ac3(2 ,1 )  = 53 (S2 a3 t C4 S2 a4) - S2 d2 
Jac3(3,1) = -(C2 a3) - C2 C4 a4 + C2 53 62 + C3 (S2 S4 a4 - S2 d3)  
Jac3(4,1) - C3 S2 
Jac3(5,1) - C2 
Jac3(6,1) - S2 S3 

I b t O u t p u t  ( C O l h c t  ( 53, I C 4 8  [q3], S a  (431 1 1 ,  " Jac3"] 

Jac3(1,21 C3 (-(S4 a4) + d3) 
Jac3(2,2) = C3 (a3 + C4 a4) 
Jac3(3,2) = S3 (-(S4 a41 + 63) 
Jac3(4,2) - -53 
Jac3(S,2) - 0 
Jac3(6,2) = C3 

Jac3(1,3) = 0 
Jac3(2,3) - 0 
Jac3(3,3) = -a3 - 2 4  a4 
Jac3(4,3) = 0 
Jac3(5,3) = 1 
Jac3I6,3) - 0 

Jac3(1,4) = -(S4 a4) 
Jac3(2,4) - C4 a4 
Jac3(3,4) = 0 
Jac3(4,4) = 0 
Jac3(5,4) = 0 
Jac3(6,4) 1 

Jac311,5) = 0 
Jac3(2,5) = 0 
Jac313,S) = 0 
Jac3(4,5) = 0 
Jac3(5,5) = 0 ' 
Jac3(6,5) = 1 

Jac3(1,6) - 0 
Jac3(2,6) - 0 



Jac3(3,6) - 0 
Jac3 ( 4 , 6 )  * -S45 
Jac.315,6) = C 4 5  
Jac3(6,6) - 0 



Contruct a not singular jacobian J *  from any six 
independent columns o f  the Jacobian. Dropping the second 
column the following Jacobian i s  obtained. 

Jatar = Tabla ( 1.13 f t j , 1 1 1 ,  J3f t j, 31 f 53 t t j t  41  1 t 
33 [ [ $,SI 1 53 t j t 6  J ] 53 [ [  j r  73 1 1 , ( j, 116 11 i 

R*dhgla [ Jstclzl 

( ( - ( s 2  S3 S 4  a4 )  + C 2  C3 d2 + S2 53 d 3 ,  0, - ( S 4  a 4 ) ,  0, 0, 01, 

IS2 5 3  a3 + C 4  S 2  S 3  a4 - 52 d 2 ,  0, c 4  a4,  0, 0 ,  01, 

(-(C2 a 3 )  - C 2  C4  a4 + C3 S2 S 4  a4 + C2 S 3  d2 - C3 S 2  d3,  

-a3 - C4 a4,  0, 0, 0, 01, (C3 S 2 ,  0, 0, 0, - S 4 5 ,  C45 S 6 1 ,  

(C2, 1, 0, 0, C45, 5 4 5  S61, ( 5 2  53, 0, 1, 1, 0 ,  C61) 

mFollowing the algorithm, the 3acobian can be decomposed in 
two matrices using the first three and last three rows. 

Jlstar = T a b l a [  Jstas![i,jlf , t i , 1 , 3 1  I { j , 1 ,3 )1 ;  
J2atar = Tablet Jstar[[i,jll , f i , 4 , 6 )  , t j t l , 6 1 1 ;  

D The solution for the first three joint rates can be obtained 
from: Jlstar (81, 03,  84)  = { x l ,  x2, x3). 

{ e l ,  03, 6 4 )  = Inverse(J1star) {XI, x2, x3). 
Furthermore, the solution using hfathernatica is found by: 

ListOutput [ JtJtar J 

List(1,l) - -(S2 5 3  S4 a4) + C2 C 3  d2 + 52  S3 d3 
tist(2,I) = 5 2  S3 a3 + C 4  S 2  5 3  a4 - S 2  d2 
L i s t ( 3 , : )  = - ( C 2  a 3 )  - C 2  C 4  a4 + C3 S 2  S4 a4 + 

C2 53 d2 - C 3  52 d3 

List(1,f) = 0 
L i s t ( 2 , 2 )  = 0 
List(3,2) = -a3 - C 4  a4 

List(l,3) = - ( 5 4  a41 
List(2,3) = C4 a4 
List(3,3) - 0 



C 2  C 3  d2 x 2  + S 2  S 3  d3 x i )  / 

(S2 S 3  S 4  a3 a 4  + C 2  C 3  C 4  a 4  d2 - 5 2  S 4  a 4  d2 + C 4  S 2  S3 a4 d 3 )  

tt3 a AsdAngls[ t 3  ! I .  Sol2 [ [ l ] ]  ] 

(-(C2 a3 t l )  .- C2 C4 a4 tl + C3 S2 S 4  a4 t l  + C2 S3 d2 t l  - 
C 3  S 2  d3  tl - x j l  / ( a 3  + 64 a4) 

Cl Reducing t e r m s  

D m 3  =I: Dsnominator(ttl] ; " D e n "  - D a n  

Den == S 2  S 3  S 4  a3 + C 2  C 3  C 4  d 2  - S 2  S4 d2 + C 4  S2 S 3  d 3  

tl - Numerator[ttl] Simplify[Den/Den~nator[~tl] ] /"Den" 

t t 4  = Numarator[ttl] Simp~ify[B%n/Dsnoenator[tt( J ] /"Den" ; 
t4 == Colract[N~erator[tt4~,(xl,x2}] / t1enominatar[tt4]  

t 4  == ( ( - ( 5 2  S 3  a 3 )  - C 4  S 2  S 3  a4 + S 2  d.?) xl + 

( - ( S 2  S 3  5 4  a4)  + C 2  C 3  d2 + s2 s3 d 3 )  x 2 )  / (Den a 4 )  
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t 3  - collect [Nuwrata~[tt31, (tl,w3} J / Den&nator[tt3] 

t3 =- ( ( - ( C 2  a3) - C2 C4 a 4  t C 3  S2 S4 a4 + C2 53 d2 - 
C3 S2 d3) tl - x 3 )  / (a3 + C4 a 4 )  

H The solution for the last three joint rates can be obtained 

J2star ( e l ,  93, 84)  + J3star (QS, 96, 87)= (x4, x5, x6), 
(91, 83, 94)  = InversefJlstar] {XI, x t ,  x3). 

from the folIowing. 

UatOutput(J2artrrJ 

List(1,l) - C3 S2 
List(2,l) - c2 
LiSt(3,l) - s2 s3 
List(l,Z) - 0 
List(2,2) - 1. 
LiSt(3,2) - 0 
LiSt(l,3) = 0 
List(2,3) - 0 
List(3,3) = 1 

List(1,Q) ,- 0 

List(3,4) = 1 
LiSt(2,;i) = 0 

List(l,S) = -545 
List(2,5) = C45 
List(3,S) = 0 

List(l,6) - C45 S6 
List(2,6) = S45 56 
List(3,6) Q C6 

J2starT = J2star . (tl,t3,td,t5,tb,t7); 
L i s t m t p u t  [ J2starT, " x " ]  

~ ( 1 )  = C3 S2 t l  - S45 t 6  + C4S S6 t 7  

x ( 2 )  = C 2  tl + t3 + C 4 5  t6 f S45 56  t7 
x ( 3 )  = 52 53 tl + t 4  + t 5  + C6 t7 

So13 = Solve[(JPstarT[[l)] - x4, J2starT[[P]] == x S t ,  {t6,t7)]; 
Sol4 = Solve( JZstarTt [3] J - x 6 ,  t t s t 1 ;  
tt5 = RedAngle(Together(t5 //. So14 [Ill] 1 1  
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FINAL SOLUTION 
Dan 5 2  S3 S 4  a3 + C 2  C3 C 4  d 2  - S 2  S 4  d 2  + C4 S 2  S3 d3 

t3 -= ( 

t 4  == ( 

( -  

Den 

- ( C 2  a3)  - C 2  C4  a 4  + C3 S 2  5 4  a 4  + C2 53 d2 - 
C3 S 2  d3) tl - x 3 )  / (a3  + C 4  a 4 )  

-(S2 S 3  a31 - C4 S 2  S 3  a4 + S 2  d2) xl + 

S 2  S 3  S 4  a 4 )  + C 2  C3 d2 t S2 S3 d3) x 2 )  / (Den a4) 



APPENDIX D-2 

LABORATORY I'ELEROBOTIC MANIPULATOR (LTM) FORWARD AND 
INVERSE KINEMATICS AND GRAVITATIONAL COMPENSATION 

This example application presents the implementation of an algorithm for the 

inversc kinematics of the Laboratory 'I'elcrobotic Manipulator (LTM) of Oak Ridge National 

Laboratory based on the paper presented by Dubey et al. (1989). The direct kinematic 

equations and the gravitation compensation model are also obtained by using SML. 

The LTM coordinate system is shown in Figure D-3, from which the D-H Table in 

Paul's notation (Pad  1981) is obtained. 

LTM is a 7-DOF manipulator; thus, it needs special algorithms such as the one 

developed by Dubey et al. (1989) to be controlled. Following the algorithm described in 

their paper and using SML, computational-efficient closcd-form solutions are obtained for 

the joint rates as a function of the Cartesian velocities of the end effector. The following 

pages with the example are printed directly from SML, thus presenting the same fonnat as 

on the computer monitor. Note that bold characters here are either input for SML or text 

comments, and the nonbold text represents output obtained from SML. 
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Figure D-3. LTM coordinate system definition. 

Source: Dubey et a]. 1989. 
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C2 (C3 C4 C5 C6 - C6 S3 SS - C3 S4 S6))) + 
57 (S1 (C3 c5 - c4 53 SS) + 

c1 (S2  s4 ss + c2 (CS s3 + c3 c4 S S ) ) ) ,  2 1 1 ) ;  
Yaw - AtanZtC7  (C1 (C4 CS C6 53 + C3 C6 SS - S3 S4 56) t 

S1 (S2 (C5 C6 S4 + C4 S6) + 
C2 (C3 C4 CS C6 - C6 S3 S5 - C3 S4 56))) + 

s1 (S2 s4 s5 + c2 (C5 s3 + c3 c4 SS))), 

c1 (s2 (CS c6 S4 + C4 S6) + 

s7 '(C1 (-(a C5) + c4 s3 S5)  + 

C7 (S1 (-(C4 C5 C6 S3) - C3 C6 SS + S3 S4 S6) + 

C2 (C3 C4 C5 C6 - C6 S3 S 5  - C3 S4 56))) t 
s7 (S1 (C3 c5 - c4 s3 S 5 )  + 

c1 (S2 54 s5 t c2 (C5 53 + c3 c4 S S ) ) ) ] ;  

UObtain the Jacobian from the wrist written with respect to the 
third frame. Making d7 = 0, we will obtain the Jacobian from 
the wrist instead from the end-effector. 

Ll'MTa1. := L m r b l 8  /. d7 -> 0 ;  

J1 = R~Trfp[J.cobi.nP[L~~le, 31 1 ; 
Li~tOutput[Collo&[J3, (Cos(q3],Sin[q3])],"Jlc3"] 

Jac3(1,1) = S3 (CZ a2 + S2 S4 a4) 
Jac3(2,1) = -IC4 52 S3 a4) 
Jac3(3,1) - -(C2 C4 a4) + C3 (-(C2 a2) - S2 S4 a4) 
Jac3(4,1) - -(C3 S2) 
Jac3(S,1) - C2 
Jac3 ( 6 , l )  -(S2 S3) 

Jac3(1,2) - C3 S4 a4 
Jac3(2,2) = -a2 - C3 C4 a4 
Jac3(3,2) = S3 S4 a4 
Jac3(4,2) = '53 
Jac3(5,2) - 0 
Jac3(6,2) = -C3 

Jac3(1,3) = 0 
Jac3(2,3) = 0 
Jac3(3,3) - -(C4 a4) 
Jac3(4,3) = 0 
Jac3(5,3) = 1 
Jac3(6,3) - 0 
Jac3(1,4) - - ( S 4  a 4 )  
Jac3(2,4) - C4 a4 
Jac3(3,4) - 0 
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I L T M  Robor DOH Table in Paul's notation. 

irect Kinematic Equations. 

/ * *  KINEMATIC EQUATIONS * * /  
/*Position: Px, Py, Pz * /  
/*Orientation: * I  

Roll: respect to X ;  
Pitch: respect to Y; 
Yaw: respect to 2; * /  

/ *  - Roll, P i t c h ,  Y a w  about the fixed axes X Y 2 .Or 
/ *  - ZYX E u l e r  angles 

P X  = - ( C 4  SI 53 a d )  + C1 ( ~ 2  a2 + c2 C3 C 4  a4 + S2 5 4  a41 + 
(SI (-(C3 S 5  S6) + S 3  ( - ( C 6  S 4 1  - C4 CS S6)) + 
C 1  (-(C2 53 S 5  S 6 )  + C 2  C 3  ( C 6  S4 + C4 C 5  S 6 )  + 

S2 ( - ( C 4  C 6 )  * C S  S4 S6))) d7; 
p y  = C1 C 4  S3 a4 4 S1 ( S 2  S 4  a4 + C 2  (a2 + C 3  C4 a 4 ) )  4 

(CL ! c 3  S S  S 6  + S 3  ( c 6  S 4  4 C4  C5 S6)) + 
$1 (-(C2 S 3  S 5  S 6 )  + C 2  C3 ( C 6  S 4  + C 4  C5 S 6 )  + 

S 2  (-(C4 C 6 )  + C 5  5 4  S 6 ) ) )  d 7 ;  
Pz = C 2  S4 a 4  c S2 ( -a2  - C 3  C 4  a4 )  + 

(C2  ( - ( C 4  C 6 )  4 C5 S4 S 6 )  + 
S 2  ( S 3  S 5  S 6  + C3 ( - ( C 6  S 4 )  - C 4  C 5  S 6 ) ) )  d7; 

Roll = A t a n Z [ C 7  ( C 2  S4 S5 + S2 (-(e5 S 3 )  - C 3  c4 S 5 ) )  + 
S 7  ( C 2  (-(CS C 6  5 4 )  - C4 S 6 )  + 

C 2  ( - t C 4  C 6 )  + C S  S4 S 6 )  + 
S 2  ( 5 3  S5 S6 + C 3  ( - ( C 6  5 4 )  - C 4  C5 S f i ) ) ] ;  

S 2  ( - ( C 6  53 S 5 )  + C 3  ( C 4  C 5  C6 - S 4  S6))), 

P i t c h  = A t a n Z [ C :  ( C 2  ( - ( C 5  C 6  5 4 )  - C 4  S 6 )  + 

S2 ( C 6  ( C 3  C 4  C 5  - S 3  S S )  - C 3  S 4  5 6 1 )  + 
s7 ( - ( c 2  5 4  s5) + s 2  (c5  s 3  + c3 C 4  S 5 ) ) i  

S q r t  [Power[ ( C 2  ( - i C 4  C 6 )  + C5 5 4  5 6 )  + 
S2 ( S 3  SS S 6  + C 3  ( - ( C 6  5 4 )  - C4 C 5  S6))),21 + 

PoweriC7 (SI ( - t C 4  CS C 6  s3 )  - C 3  C 6  SS t S3 S4 S6) + 
c 1  (s2 ( c 5  c 6  s4 + c 4  S6) + 
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4,6) m C4 $ 5  
5 , 6 )  = S 4  S5 
6,6) = C5 

he end-effector velocity is transformed to being in base 
inates to be written with respect to the wrist  coordinate 

by premultiplying the velocity vector with the following 
rotation matrix, 

~ ~ ~ ~ ~ ~ ~ [ ~ ~ ~ ~ l ~ ~  

c1 c2 e3 - SI s3 c2 c3 SI + c 1  s3 -(C3 5 2 )  

t. (ILTmabla, 3 ,  a1 I I 

c1 s2 SI s2 c2 

c3 s1 + c 1  c2 s3 -(Cf C 3 )  + c2 s 1  s3 -(S2 53) 
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Contruct a not singular jacobian J *  from any six 
independent columns of  the Jacobian. Dropping the second 
column the following Jacobian is obtained 

J.t*r - T*l.t ~ ~ ~ f f , ~ l l ~ J ~ ~ r ~ , 3 l l ~ ~ ~ ~ f , ~ l ~ ,  
n I I j , 5 1  f i J3[[f, $1 1,J3IIj,7llli ( j ,  1 , 6 l l ;  

R.dAngl0 [ Jatrr] 

(IC3 S 4  a4, 0, - ( S 4  a 4 ) ,  0, 0, 01, 

(-a2 - C 3  C4 a4, 0, C4 a4, 0, 0, 01, 

[S3, 0, 0, - S 4 ,  C 4  s5, C 6  S4 + C4 C5 S6), 

(0, 1, 0, c4, S4  S 5 ,  - ( C 4  C6) + C5 S4 S 6 1 ,  

(-c3,  0, 1, 0, C 5 ,  -(SS S6) 1 )  

8 Following the algorithm, the Jacobian can be decomposed in 
two matrices using the first three and last three rows. 

J l a t a r  = T a b l o (  Jst*r[(iljll , ( i l 1 , 3 )  , i j l 1 , 3 1 I ;  

J38trr I. T a b l o [  J S t 8 t [ [ i , j ] ]  , ( i 1 4 , 6 1  , ( j , 4 , 6 ) ] ;  
J18t.t = T a b l a [  JSt8r[[i,jI] , {i14,61 , ( j t 1 , 3 ) ] ;  
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c solactlorn far the first three joint rates can be abtaine 
Jlstar (82, 433, 84) = (xl, x2, x3). 

Furthermore, the solution using Mathematics is abtained 
(82, 83, 8 4 )  = tnverse[Jlstar) (xl, x2, x33. 

List(l,l! a c3 s4 a4 
~ i s e ( 2 , P )  * -a2 - C3 C4 a4 
List(3,l) = s3 s4 e4 

JfmelarT '3: Jlatar  . (t2,t3,tO; 
LirtOutput [ JlstarT, "x"]  

x ( 1 )  1 C 3  54 a4 e 2  - S4 a4 t4 
~ ( 2 )  = ( -a2  - C 3  C4 a 4 )  t2 + C 4  a4 t4 
x ( 3 )  = 5 3  54 a4 t2 - c4 a4 t 3  
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t2 - tt2 
- ( C 4  xl) - s4 x2 

t-2 1" -----"---I------ 

S4 a2 

t 4  - COllOCt[Numo+8tOr(tt4], (xl,r2)] / Dancd.a8tor(tt4] 
(-a2 - C3 C4 a4) xl - C3 S4 a4 x2 

t 4  -- ----------I--------"------------- 

S4 a2 a4 

t3 - tt3 
s3 s4 a4 t2 - x3 

t3 -.I ---------------- 
C4 a4 

m The solution for the last three joint rates can be obtained 

JZstar ( e l ,  83, 84) + J3star (OS, 96, 87)= (x4, x5, x6), 
Furthermore, the solution using Mathernatica is obtained by: 

from: 

{el ,  83, 94)  = Inverse[Jlstar] ( x l ,  x2, x3), 
{OS, 86, 87)  = Iaverse(J3starj ((x4, x5, x6) - Jtstar ( x l ,  x2, x3)). 

Doter = Rs~gr.fRsdTrig[Det(J3st.r)ll 

S6 

fntr * RedTrig[Inv.rjefJ3star] Det[J3star]]; 
XltrixForm[RedAnglo[invf] 

C4 C5 C6 - 54 S6 C 5  C6 S4 + C4 S6 -(C6 S5) 

C4 S 5  S6 54 s5 56 CS S6 

c4 c5 c5 s4 -55 

 sol = {x(L,x5,x6)  - JZstar . {t2,t3,tl); 
RadAngle [ Jsoll 

(-(S3 t2) + ~ 4 ,  -t3 + ~ 5 ,  C3 t2 - t 4  + ~ 6 )  
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I LTM gravitational compensation model 

OThs  m a i l  table i s  needed to obtrin lhe effect of the gravitation over 
the jointa of the LTM. Note that even though l inks 1,  3, and 7 have no 
mau,  rows of zeros are added at their positions. 

LTma..  := ( (  8 ,  0 , 0 * 0 }, 
(a, -2, w, =2), 
( 0 ,  O ?  O ?  0 1 ,  
(m4, -4, ym4, =4), 
( 0 ,  O ?  O ?  0 1 ,  
f m 6 ,  xm6, ym6, rm6), 
( O f  O f  0 ,  0 ) )  

O A  simple command is enough to find the gravitational compensation 
m o d e l :  

LTXGrav = GrrvitatioafLTMTablm, LTbQ4assI; 

0 Using the Function Listoutput and collecting terms, the model is 
obtained in FORTRAN compatible form: 

M ( 1 )  = - ( -  (S2* (C3* (C4* ( -  (C5*G*S6*m6*xm6* 
(CSf(CltC3 - C2*Sl*S3) - 
SS* (Sl*S2*S4 + C4* (C2*C3*S1 t Cl*S3) ) 1 )  + 
G*S5*rn6"xm6* 
(C6*(C4*Sl*S2 - S4b(C2*C3*Sl + Cl'S3)) - 
S 6 *  ( S 5 *  (Cl*C3 - CZ*Sl*S3) + 
CS*(Sl'S2*S4 + C4*(CZ+C3*Sl + Cl*S3))))) - 
54*(Gtm4*xm4*(C1*C3 - C2*Sl*S3) + 
C6*G*m6*xm6* 
(CS*(Cl*C3 - C2*Sl*S3) - 
S5*(Sl*S2*S4 + C4*(CZ*C3*Sl + Cl*S3))) - 
a4* ( -  (CStG*m6* 
(C5*(Cl*C3 - C2*Sl*S3) - 
SS*(Sl*S2*S4 + C4*(C2*C3*S1 + Cl*S3)))) - 
S5* ( -  (G*S6*m6* 
(C6*(C4*Sl*SZ - S4*(C2*C3*Sl + Cl'S3)) - 
S6* (S5 '  (Cl*C3 - CZ*Sl*S3) + 
C5*(Sl*SZ*S4 t C4* (CZ*C3*Sl + Cl*S3) 1 )  1 )  + 
C6*G*m6* 
(S6*(C4*SltSZ - S4*(C2*C3*Sl + Cl*S3)) t 
C6*(SS*(Cl*C3 - CZ*Sl*S3) t 
C5* (sl*s2*s4 + 

S3* (G*m4*xm4* 
(C4*Sl*S2 - S4*(C2*C3*Sl + Cl*S3)) + 

C4*(C2*C3*S1 + Cl*S3)))))))) + 
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G*SS*S6*m6*xrn6* 
(C5*(Cl*C3 - C2*Sl*S3) - 
SSe(Sl*S2*S4 + C4*(CZ*C3*Sl + Cl*S3))) + 
CS *G * m 6 xm6* 
(C6*(C4*Sl*S2 - S4*(C2*C3*Sl + C1*S3)) - 
C5*(S1*S2*S4 4 C4*(CZ*C3*Sl 4 Cl*S3)])) + 
a4* (C6*G*m6* 
(C6*(C4*SZ*S2 - S4*(C2*C3*S1 + Cl*S3)) - 
S6*(SS*(Cl*C3 - C2*Sl*S3) + 
CS*(Sl*S2*S4 + C4*(CZ*C3*Sl + Cl*S3)))) + 

56*  ( S 5 *  (Cl*C3 - C2*Sl*S3) + 

G*S6'm6* 
(S6*(C4*Sl*S2 - S4*(CZ*C3*S1 + C1*S3)) + 
C6* ( S 5 *  (C1*C3 - C2*S1*S3) + 
c5* (Sl*S2*S4 + 

C4*(C2"C3*Sl + C1*!33)))))))) - 
C2* ( -  tC1*Gmm2*xm2) - 

S 4 *  ( -  (CS*G*S6*m6*xm6* 
(C5*(Cl*C3 - C2*Sl*S39 - 
SS* ( S 1 * § 2 * S 4  + c4* (C2*C3*Sl t Cl's3) 1 ) ) + 
G*SS*m6*xm6* 
(C6*(C4*Sl*S2 - S4*(C2*C3*Sl + Cl'S31) - 
S 6 *  ( S 5 *  (Cl*C3 - C2*Sl*S3) + 
cs* (sl*s2*s4 + c4* (c2*c3*~1 + C1*S3) 1 ) )  ) - 
a2* (S3* 
(-(S4* 
[G*m4*(C4*SlCS2 - S4*(CZ*C3*S1 t Cl*S3)) + 
Cf i *G*rn6*  
(C6*(C4*Sl*S2 - S4*(C2*C3*S1 + Cl"S3)) - 
S6*(SS* (Cl*C3 - C2*Sl*S3) + 
CS*(sl*S2*S4 + C4*(C2*C3*S1 + Cl*S3)))) + 
G*S6*m6* 
(S6*(C4*SltS2 - S4*(C2*C3*S1 t Cl*S3)) + 
C6* (S!5*(CltC3 - CZ*Sl*S3) + 
C5* (Sl*SZ*S4 + 

C4* (Gfm4*(S1*S2*S4 + 
C4* (C2*C3*S1 + Cl*S3) 1 ) 1 )  ) + 

C4* (CZ*C3*Sl + C l ' S 3 )  1 - 
G * S 5 * ~ a 6 *  
(CS"(Ci"C3 - C2*Sl*S3) - 
SS*(Sl*S2*S4 + C4"(CZ*C3*Sl + Cl*S3))) + 

C S *  ( -  (G*S6*n6* 
(C6*(C4'Sl*S2 - S4*(C2*C3*S1 + Cl*S3)) - 
S6*(S5*(Cl*C3 - C2*S1*S3) + 
c s *  (Sl*S2*S4 i- c4* (C2*C3*Sl + Cl'S3) ) 1 )  + 
C 6 * G * m 6 *  
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(S6*(C4*Sl*S2 - S4*(CZfC3*S1 + Cl*S3)) + 
C6* ( S 5 *  (Cl*C3 - C2*Sl*S3) + 
c5* (sl*sZ*s4 + 

C3* ( -  (G*m4* (Cl*C3 - C2*Sl*S3) 1 - 
CS*G*m6* 

C4* (CZ*C3'S1 + Cl*S3) 1 ) ) ) ) ) - 

(CS*(Cl*C3 - CZ*Sl*S3) - 
SS*(Sl*S2*S4 + CQf(C2*C3*S1 + Cl*S3))) - 
SS* ( -  (G*S6*m6* 
(CS*(CQ*Sl*SZ - S4*(CZ*C3*Sl + Cl*S3)) - 
S6* ( S S *  ( ~ 1 ~ 3  - CZ*Sl*S3) + 
CS* (Sl*S2*S4 + C4* (C2*C3*S1 + Cl*S3) ) ) ) ) + 
CB*G*m6* 
(S6*(C4*Sl*SZ - S4*(C2*C3*S1 + Cl*S3)) + 
C6* (S5* (Cl*C3 - C2*SlfS3) + 
c5* (Sl*SZ*S4 + 

C4*(C2*C3*S1 + Cl*S3))))))) - 
C4* (G*m4*xm4* (Cl*C3 - C2*51*S3) + 
C6*G*m6*xm6 * 
(CS*(Cl*C3 - C2*Sl'S3) - 
S5*(Sl*S2*S4 + C4*(CZtC3*S1 + Cl*S3))) - 
a4* ( -  (C5*G*rn6* 
(C5*(Cl*C3 - C2*Sl*S3) - 
S5* (Sl*SZ*S4 + C4* (CZ*C3*Sl + Cl*S3) ) ) ) - 
SS* ( -  ( G * S 6 * m t ; *  
(C6*(C4*Sl*S2 - S4*(CZtC3*S1 + Cl*S3)) - 
S6* ( S 5 *  (c1*c3 - C2*S1*S3) 4 

CS*(Sl*S2*S4 + C4*(C2*C3*S1 + Cl*S3))))) + 
C6*G*n6* 
(S6*(C4*Sl*S2 - SQ*(C2*C3*Sl + Cl*S3)) + 
C6* ( S 5 *  (Cl*C3 - CZ*Sl*S3) 4 

CS*(Sl*S2*S4 + 

C4*(C2*C3*S1 + Cl*S3))))))))); 
M(2) = -(-(G*Sl*SZ*m2*xmZ) + 

S3*(C4*(-(CS*G*S6*m6*xm6* 
(C5*(ClfC3 - C2*Sl*S3) - 
S S c  (Sl*S2*S4 + C4* (C2*C3*S1 + Cl*S3) 1 ) )  + 
G*SS*m6*xm6* 
(C6*(C4*Sl*S2 - S4*(C2*C3*S1 + Cl*S3)) - 
5 6 *  ( S 5 *  (c1*c3 - C2*Sl*S3) + 
C5*(Sl*S2*S4 + C4* (C2*C3*S1 + Cl*S3)) 1 )  - 
54* (G*m4*xm4* (Cl*C3 - C2*Sl*S3) + 
C 6 * G *m 6 * xm6 * 

S5*(Sl*S2*S4 + C4*(CZfC3*S1 + Cl*S3))) - 
a4* ( -  (CS*G*m6* 

(CS*(Cl'C3 - C2*Sl'S3) - 
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(C5'(Cl*C3 - C2*Sl*S3) - 
S S * ( S T * S ~ * S ~  + C4* (C2*C3*Sl + Cl'S3) ) ) )  - 
SS* ( -  (G*S6*rn6* 
(C6*(C4*Sl*S2 - S4*(C2*C3*Sl f C1*S3)) - 
S6* (S5* (CI*C3 - CZ"Sl'S3) + 
CS* ( S l * S 2 * S 4  4 CQ* (CZ*C3*Sl + Cl*S3) ) 1 ) )  + 
C6*G*'m6* 
(S6*(CQ*Sl*S2 - S4*6C2*C3*SI + CP*S3)) + 
C6* ( S 5 *  (C1*C3 - C2*§1*S3) + 
CS" ( S l * S 2 * S B  + 
C4* (C2*C3*S1 + C l * S 3 )  1 )  ) 1 )  1 )  - 
C6*G*rn6* 
(C6*(C4*Sl*SZ - S4*(CZ*C3*Sl + Cl*S3)) - 
S6* ( S 5 *  (Cl*C3 - C2*SP*S3) + 

a 2 *  (CQ* ( G * m 4 *  (C4*Sl*S2 - § 4 *  ( C 2 * C 3 * S 1  + Cl.*S3) ) + 

C5* (S l*SZ*s4  + C 4 *  (C2*C3*Sl  t Cl*S3) ) ) ) + 
G*S6*m6* 
(S6*(C4*Sl*S2 - S4*(CZ*C3*Sl + Cl*S3)) + 
C6* (S5*(Cl*C3 - CZ*S1*S3) + 
C5*(Sl*S2*S4 + C4*(CZ*C3*S1 + ClfS3))))) t 
S 4 *  (G*m4* (Sl*SZ*SB + 

G*SS*m6* 
C4*(C2*C3*S1 + C l * S 3 ) )  - 

(CS*(Cl*C3 - C2*Sl*S3) - 
S5*(§1*S2*S4 + C4*(C2*C3*Sl + CI*S31)1 + 

C5* ( -  (G*S6*n6* 
!C6*(C4*Sl*S2 - S4*(C2*C3*Sl + Cl*S3)) - 
SS* (S5*(Cl*C3 - C2*S1*S3) + 
C5*(SlUS2*S4 + C4*(C2*C3*S1 + Cl'S3))))) + 

(S6*(C4*Sl'S2 - S4*(C2*C3*Sl + Cl*S3)) + 
C 4 *  (SS (Cl*C3 - C2 *S1 'S3) + 

CS* (Sl*SZ*S4 f 
C4*(CZ*C3fSl + ClfS3))))))) - 
GtSS*S6*m6*xm6* 
(CS'(Cl*C3 - 22*S1*53) - 
S5*(S1*~2*S4 + C4*(CZ*C3*Sl + Cl*S3))) + 

CS*Gtm6*xm6* 

C 6 * G * m 6 *  

C3*(G*m4*xrn4*(C4*Sl*S2 - S4*(CZ*C3*Sl + Cl*S3)) + 

(CSC(C4*S1*S2 - S4*(CZ*C3*Sl + Cl*S3) 1 - 
S6* (SS* (Cl*C3 - C2*Sl*S3) + 
CS*(S1*S2*S4 + C4'(C2'C3*Sl + Cl*S3) + 

a 4 *  (C6*G'rn6* 
(C6*(64*Sl*SZ - S4*(C2*C3*S1 + Cl*S3)) - 
S6*(S5*(ClCC3 - C2*SZ*S3) + 

C 5 *  (S l*S2*SJ  t c4*  (cZ*C3*S1 + Cl*S3) 1 9 )  + 
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G*S6'm6* 
(S6*(C4*Sl*S2 - S4*(C2*C3*Sl + Cl*S3)) + 
C6' (S5* ( C l * C 3  - CZ*Sl*S3) + 
c5* (Sl*S2*S4 + 
C4*(C2*C3*S1 + Cl'S3))))))); 

(C5*(Cl*C3 - C2*Sl*S3) - 
S S f ( S 1 * S 2 + S 4  + C4+(C2*C3*Sl t Cl*S3)))) + 
G*SSfm6*xrn6* 
(C6*(C4*Sl*S2 - S4*(C2*C3*§1 + Cl*S3)) - 
S6* (S5*(Cl*C3 - C2*Sl*S3) + 

M13) - - (S4* (-(CSfG*S6*rn6*m6* 

CS*(§l*S2+s4 t C4*(C2*C3*Sl + Cl*S3))))) t 

C6*G*m6+xm6* 
(CS*(Cl*C3 - C2*Sl*S3) - 
SS*(Sl*S2*S4 + C4*(C2*C3*Sl + Cl*S3))) - 
a4* ( -  (C5*G*m6* 
(C§*(Cl*C3 - C2*Sl*S3) - 
SS' (SltS2*S4 + C4* (C2*C3*S1 + Cl*S3) ) )  ) - 
SS*(-(G*S6*m6* 
(C6*(C4*Sl*S2 - S4*(C2*C3*Sl + Cl'S3)) - 
S6* (SS* (Cl'C3 - C2*Sl*S3) + 

C 4 *  (G*m4*xm4* (ClfC3 - C2*Sl*S3) + 

CS*(Sl*S2*S4 + C4*(C2*C3*S1 + Cl*S3))))) + 
C6 *G *m6 
(S6*(C4*Sl*S2 - S4*(C2*C3*S1 + Cl*S3)) + 
C6* (SS* (Cl'C3 - C2*Sl*S3) + 
C5*(Sl'S2*S4 + 
C4*(C2*C3*Sl + Cl*S3)))))))); 

M ( 4 )  = -(G*rn4*xm4*tC4*Sl*S2 - S4*(CZ*C3*Sl + Cf*S3)) + . ... 
G*SS*SO*m6*xm6* 

(CS'(Cl'C3 - C2*Sl*S3) - 
S5*(S1*S2*S4 + C4*(C2*C3*Sl + Cl*S3))) + 

CS*G*m6*xm6* 
(C6*(C4*SlfS2 - S4*(C2*C3*S1 + Cl*S3)) - 

S6* (SS* (Cl*C3 - C2*Sl*S3) + 
i5* (Sl*S2*S4 + C4* I C 2 * C 3 * S 1  t CI'S3)))) f 

a4* (C6*G+m6* 
(C6*(C4*S1*S2 - S4*(C2*C3*Sl + Cl*S3)) - 
S6' (SS'(Cl'C3 - C2*Sl*S3) + 
C5*(SI*S2*S4 + C4*(C2*C3*S1 + Cl*S3)))) + 
G*S6*rn6* 

C6* (S5* (Cl*C3 - CZ*Sl*S3) 4 
C5*(Sl*S2*S4 + C4*(C2*C3*S1 + Cl*S3)))))); 

(S6*(C4*Sl*SZ - S4*(C2*C3*Sl + Cl'S3)) 4 

M(5) = - (C6*G*m6*xm6* (C5* (Cl*C3 - CZ*Sl*S3) - 

M ( 6 )  = -(G*n16*xrn6~ (c6* (C4*Sl*S2 - 5 4 *  (CZ*C3*sl + cl*s3)  ) - 
S5*(SlrS2*S4 + C4*(C2*C3*Sl + Cl*S3!)! ) ,  

S6*(SS* (Cl*C3 - S2*Sl*S3) + 
CS2(S1*S2+S4 + C4*(CZ*C3*S1 + Cl*S3))))); 

M(7)  - 0; 
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