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A simple model of economic and ecological interplay for a system of two 
interacting populations grown in a closed environment and harvested periodically for 
economic purposes was analyzed. The analysis was carried out by exploring the 
parameter space of the model, defined by a discrete map, a harvesting strategy, and 
an objective functional. Results showed nonmonotonicities of the outcome and sharp 
sensitivities that depend on the values of the parameters and that are caused by the 
discrete nature of the system. This approach may prove useful for solving problems 
that cannot be solved analytically and for providing some guidance in the 
management of complex systems. 
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM 

Awareness of resource depletion and need for sustainable development has 
increased greatly in recent years [l]. One of the most important aspects which both 
decision-making organizations and the general public have come to realize is that in 
social systems the coupling of individual, apparently rational decisions can produce 
huge, often catastrophic, global effects. Over-exploitation, careless waste disposal, 
abusive deregulation, or one-dimensional socioeconomic policies may lead, and often 
have led, to severe upsets and sometimes irreversible destruction of natural or even 
man-made ecological entities. It has thus become evident that understanding the 
internal mechanisms and triggers interwoven in the structure of complex systems, like 
the economy or the environment, is a necessary step toward their more rational, 
profitable, and sustainable management. 

The undeniable successes scored by physical sciences in the last several 
centuries within the hypothetical-deductive paradigm, the newly-added exploratory 
dimension offered by fast computers, together with the complexity and urgency of the 
present world challenges, have naturally led to various attempts at introducing more 
scientific methods into social sciences such as economics, sociology, operations 
research, psychology, and political science. Usually these sciences deal with extremely 
large systems and very intricate issues related to non-repetitive, one-time events. 
Moreover, the analysis is complicated by the scarcity of data, lack of scaling 
properties, imperfect knowledge about the present, and vague expectations about the 
future. 

Mathematical modeling of very large systems will, almost by default, deprive 
them of their complexity and reduce them to a bare skeleton. Models - no matter 
how sophisticated - will never predict the exact evolution of the actual system; 
instead, their usefulness is to be evaluated in a different context. According to their 
main purpose (e.g. comparison, training, prediction, reinforcement, verification, 
prescription, etc.), the main functions of models in social sciences are: 

to guide and educate our perception and grasp of complex situations 
via computer experimentation, analytic results, or graphical output; 
to allow extensive and rapid sensitivity analyses to eliminate undesirable 
alternatives; 
to illustrate that complex, hierarchical, and decision-driven systems 
more often than not lead to counter-intuitive behaviors, emergent 
properties, and self-organizations that result from subtle interplays and 
counter-balancing effects; 
to isolate the common causes and universal features of such 
phenomena, within the dynamics of the system itself; 
to provide heuristic insights and educated guesses for better control 
strategies and a1 ternative approaches. 
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Through these functions, mathematical models can contribute to increased 
public awareness of the intricate causal relationships and limits on predictability in 
the global results of human activities. This in turn could lead to a more sensible and 
thoughtful approach to environmental problems and resource utilization. Coming to 
realize - on very simple examples -that stability is fragile, that extinction is possible, 
and that sustainability is not unconditional, will hopefully build a stronger consensus 
and lead to more careful monitoring and utilization of our resources. 

The purpose of this paper is to present the results of our analysis of a simple 
model of economic and ecological interplay for a system of two interacting 
populations grown in a closed environment and harvested periodically for economic 
purposes. The analysis is geared towards indicating the range of things that may 
happen, rather than accurately predicting when they happen. 

In the continuous time version, the time evolution of the two populations is 
described by a system of coupled nonlinear ordinary differential equations: 

where x(t), y(t) represent the populations at time t and Hl(t) and H2(t) are the 
harvesting rates (see Refs. [2-51 and references therein). The functions F1 and F2 
represent the net growth rate of the populations in the absence of harvesting and 
include the effects of interactions that may range from purely competitive to 
mutualistic. 

In general, economic profitability, dependent on the amount harvested, and 
ecological reward, related to the amount left to ensure sustainability and/or quality 
of the environment, have proven to represent conflicting interests. Thus evaluating 
the relative and total benefits provides an appropriate measure of the overall 
performance of the system. 
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2 THEMODEL 

To define the model, we have to specify: (i) an evolution rule, (ii) a harvesting 
strategy including termination conditions, and (iii) an evaluation function. 

(i) The time evolution of the system is described by discrete-time evolution 
models (maps). Using discrete, instead of continuous, dynamics is more appropriate 
since the entire life history of plants, animals, and crops has a naturally periodic or 
seasonal character. The population is assumed to be metered (Le. measured) once 
during each cycle, usually a year. Thus the intrinsic evolution of the system can be 
written as: 

where 

The values x,,  y ,  represent the sizes of the two populations at time step k. The 
parameters a,, b, represent the intrinsic growth coefficients, while the signs and sizes 
of a , ,  b, determine the type and strength of interaction between the populations, 
namely: competitive (a,,  6, < 0), predator-prey (a, b, < 0), and mutualistic (a,, b, 
> 0). Ejramples of each type abound in natural and man-made environments [2-61 
and occasional switches from one type to another are not impossible [7]. All 
members of the population are considered to have the same growth rate, Le. there 
is no age group differentiation. When the interaction coefficients (a, ,  b2) are set 
equal to zero, the two populations may still be coupled via external conditions. In 
Eqs. (2.2) the carrying capacities (K L) represent the limits of the system to support 
the two populations, and the factors (I-x/K)", ('l-y/L)" act as self-repression (negative 
feedback), ensuring a finite sized population. Indeed, if the population exceeds its 
carrying capacity and rn = 1 (which is usually used in modeling self-repression terms), 
the growth rate becomes negative. By modifymg the self repression terms to: 
sign(K - x& 1 1 - xJK J ", s&(L - yA I I - ydL I ", we are able to consider other values 
of m, rn > 0. The growth rates considered in Eqs. (2.2) are concave functions in x 
and y respectively (compensation models). Depensation or critical depensation 
models [SI, leading to either slow growth or extinction at low densities, have not been 
considered. 
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(ii) Another important part of the model is represented by the harvesting 
strategies. We experimented with several different combinations of harvesting 
conditions and methods in order to see how harvesting policies affect the system. 
One condition for initiating a harvest, used in all but one of the strategies, is that 
whenever the population size reaches or exceeds a harvest threshold (xthold or 
ythold), the population is harvested. In the other strategy, the harvest occurs after 
a certain number of iterations (n). The harvesting method can either be selective 
(each population is harvested separately when its threshold condition is satisfied) or 
nonselective (the two populations are always harvested together when either one of 
the threshold conditions is satisfied. This situation arises when the populations are 
strongly intermingled and their separation is viewed as costly or unnecessary.) The 
harvest size is another possible factor. One option is to harvest a certain percentage 
of the population when the harvesting conditions are met. Another method is to take 
a constant sized harvest every time and leave the rest to continue growing. Yet 
another possibility is to leave a constant (reset) amount after each harvest. 

The following chart summarizes the characteristics of each harvest strategy: 

Harvest Strategy Harvest technique 

1 nonselective 

2 selective 

selective 
nonselective 
selective 
after n iterations 

Size of harvest 

(harvest percentage x 

(harvest percentage x 

constant harvest size 
(population - reset) 
(population - reset) 
(harvest percentage x 

population) 

population) 

population) 

Each harvest strategy is supplemented with termination conditions. In our 
case they are fairly simple: whenever a certain number of harvests, N, have occurred, 
the harvest sequence (the evolutions with one set of parameters) is finished. This 
amounts to acknowledging that one can extend a reasonable prognosis for only a 
limited future time (e.g. N years). 

(iii) To evaluate the results of a whole harvest sequence, we use an objective 
functional that quantifies the total economic plus ecological benefit of that sequence 
and compare the value of our functional at various values of the parameters. The 

objective functional, G, is defined as the sum of two terms, G and G, accounting for 

the economic profit and the ecological reward respectively: 

" 
.i 
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k=l k=1 

- 
Li 

In Eq. (2.3), the objective functional G and its two terms G and G depend on the 

variables, x, y ,  and on the set of varying parameters and controls in the problem that 
we denoted, in short, by 1. 

" 

The total economic profit, G, is calculated as the sum of the profits from each 

harvest, G,, k = 1,2, ...$I. The profit from one nonselective harvest is calculated as 

the product between the harvest sizes, Hi, Hi, and a specific profit function that is 
assumed to depend only on the harvest size. In a selective harvest the profit has a 

similar form, but for any one harvest, one of the harvest sizes, H: or @ , is zero. 
- - - 
Gk = g , O  H: + H i  

k = 1,27... ,N. 

. . -  
The specific profits, g,, gz, could have different forms, but we used the one 

represented in Fig. 1 and modeled by the analytic formula: 

gi (Hi  )= exp ( - (A/&)*)  (23 + (C/H;)')  , i = 1,2 

where A = 2000, B = 0.1, C = 1778. The specific profit is equal to the total revenue 
from one unit of that population minus the cost to produce it. With small harvest 
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Figure 1. Economic specific profit g as a function of harvest size. 
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sizes, the fixed costs are large enough that the cost per unit will make the specific 
profit zero. At large harvest sizes, the efficiency of the process decreases, because 
of additional storage and equipment costs, and again the specific profit decreases. 
We are assuming throughout that the market price for the populations is constant. 
Other factors we do not consider are the elasticity of the market, the type of market 
(monopoly or pure competition), and the effects of time discounting [5 ] .  

L 

The total ecological reward, G ,  is calculated as the sum of individual rewards, 

depending only on the size of the population (or reset value) left after harvest 

k (ri, i = 1,2). The k-th contribution to ecological reward is calculated as: 

k = 1,2, ..., N 

S D  

where g,, g2 are the specific reward functions (see Fig. 2). The specific reward is 

negative if too little is left, peaks for some moderate-sized remaining amount, and 
decreases for larger amounts because overpopulation may be detrimental. Again 
many actual forms would be possible for this function, but we used 

c 

Overall scaling factors multiplying G and G are used to adjust the relative 

importance of the two terms in G. 

The total value of the functional, G, is used to appraise the system’s 
performance in different regions of the parameter space. These comparisons allow 
us to evaluate the effects of various parameters and to adjust decision-making policies 
and management toward an optimal performance. Thus the discrete evolution system 
(2.1) with periodic harvesting bears strong similarities with an optimal control 
problem and sometimes might be solved that way [8-91. 
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Figure 2. Ecological specific profit g as a function of reset value. 
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Yet there are two main reasons for which we preferred a different approach, 
based on the more or less exhaustive exploration of the parameter space: 

- in many instances the solution of the optimal control problem is: (i) 
not known to exist, (ii) known to fail, (iii) difficult to obtain, or (iv) 
inconclusive (see Appendix A for a description and limitations of the 
optimal control approach). 

- even when the solution is known to exist and to yield usable answers, 
no indication is given whatsoever about the stability of that solution 
with respect to parametric changes. Our analysis will provide 
preliminary answers and indications on this aspect, that will turn out to 
be rather important for decision making and establishing policies. 

In face of model-related uncertainties, various unsolved aspects of the 
mathematical analysis, and occasional inapplicability of the maximum principle, the 
study carried out in this paper is aimed at building a computer-based decision aid to 
support the analyst and the decision maker on the possible consequences of the 
different economic policies within a given ecological environment. Experimental 
mathematics and the associated computer graphics output could be of great help in 
assessing a situation and formulating a plan or, when still in doubt, exploring further 
conjectures. 
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3. ANALYSIS 

The model described in Section 2 contains a relatively large number of 
parameters and options. An exhaustive analysis of all the options is at this point both 
irrelevant and time-consuming. In the absence of a validated model or a particular 
reason to explore a certain region in the parameter space, the main scope of the 
analysis presented here is more to illustrate and alert, than to demonstrate or predict. 

Starting from a base case - to be described below - we analyzed the effect 
of the different harvesting strategies and parameters described in Section 2 by varying 
them in turn, in a somewhat hierarchical order of importance. The hierarchy was 
determined after a large number of preliminary computer experiments, and while 
neither perfect nor absolute, it serves as a reasonable taxonomic starting point. Our 
parameter hierarchy is organized in the following way: 

1. Intrinsic growth rate; 
2. Harvest strategy; 
3. Type and size of interaction; 
4. Carrying capacity compared to harvest threshold; 
5. Delay between order for harvest and actual harvest; 
6. Exponent of the self repression term. 

The different parameters were varied one at a time, either as a singleton (for 
one population) or as a pair (for both populations). The results of these variations 
were plotted in one dimensional (1-D) and two dimensional (2-D) graphs, 
respectively. In the 1-D graphs we were interested in the variation of the economic, 
ecological, and total benefit over the whole harvest sequence as a function of the 
respective varying parameter. In the 2-D graphs we represented the regions of 
superior, acceptable, and unacceptable overall performance as a function of two 
similar varying parameters (e.g. the harvest size of the two populations). 

The base case models a situation where the two populations evolve 
independently and the harvesting strategy is nonselective. The amount harvested is 
a percentage of the population at the time of the harvest (harvest strategy #l). 
Other parameters were set to the following values: a,  = 1.0, b, = 0.95, a2 = b, = 

0.0, K = L = 20,000, xthold = ythold = 10,000, m = 1/2, N = 40, G factor = 1, 
* 
G factor = 0.12. 

1. One factor that has a large effect on the size of the oscillations is the value of 
the intrinsic growth coefficients, a, and b,. As these coefficients increase, so does the 
size of the oscillations (Fig. 3 & 4b). The difference between the intrinsic growth 
coefficients of the two populations also affects the behavior of the total profit in 
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nonselective situations. If the two populations grow at significantly different rates, 
the ecological factor, and therefore the total profit, will become negative quickly for 
iarger harvests (Fig. Sa, 5b, 6a & 6b). 

2. The next factor we analyzed was the harvest strategy. This factor affects the 
shape of the total functional curve significantly. Taking the growth coefficients close 
to one, we looked at six different strategies. The first was strategy #1, the base case 
(Fig. 4b). The results for strategy #2 are similar, but differences in the growth 
coefficients do not have as much effect in the latter case (Fig. 7). The two 
dimensional graph for this strategy, with the harvest percentages varying separately, 
shows somewhat fractal boundaries (Fig. 8). For strategy #3 (Fig. 9), the results are 
surprisingly different than for the previous ones. This difference is due to the 
discrete nature of the system, which causes the population size to differ from harvest 
to harvest. Growth occurs in discrete lumps, so in most strategies the harvest will 
occur at a point past the threshold. Within strategy #3, the harvest is exactly the 
same size for each harvest in a sequence while the amount remaining varies. When 
harvesting a percentage, both the amount that is harvested and what remains changes 
for each harvest. The results for strategy #4 and #5 are given in Fig. lob and 
Fig. l lb,  respectively. The shapes of these graphs are again significantly different 
from the previous graphs. They show a total profit with fewer but larger oscillations. 
Because the populations are always harvested to a certain level, the ecological reward 
is monotonic (Fig. loa, lla). Only the economic profit causes oscillations in the total 
profit. In the graph of strategy #5 with the reset values varying separately, 
boundaries appear that represent limits in the system (Fig. 12). The last strategy, #6, 
shows sections of connected behavior and then jumps (Fig. 13). These jumps result 
from the fact that after a small number of steps the population is oscillating around 
the carrying capacity. The timing of the harvest can greatly influence the value of the 
economic conditions. These oscillations are especially evident in the two dimensional 
graph (Fig. 14). 

3. In order to test the effect of the interactions, we took a moderate value for 
the intrinsic growth and used our original parameters and harvest strategy (Fig. 15). 
Using a high value for the intrinsic growth may lead to unrealistic time steps when 
a mutualistic interaction is added, so the highest values were not used. For purely 
competitive situations (a, , 6,  c 0), the total profit becomes negative more quickly 
for large harvesting percentages (Fig. 16). In the mutualistic setting (a, ,  b, > 0), the 
value of the total functional increases for most harvest percentages and becomes 
negative only at very large percentages (Fig. 17). When a, > 0, b, = 0 or a, = 0, 
6,  > 0, it matters which side is benefiting. If the slower-growing population benefits 
(b, > 0), then the total profit is higher at high values of the harvest percentage, and 
the total becomes negative much later (Fig. 18). With predator-prey interactions, the 
predator has a positive interaction and the prey has a negative interaction. The 
results depend on which population is given the positive interaction coefficient. 
When the slower-growing population is the prey (a, > 0, b, < 0), the total profit 
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becomes negative much sooner (Fig. 19). When the slower population is the 
predator (a, < 0, b, > 0), the total profit stays positive longer than with no 
interaction (Fig. 20). The analysis of these cases show that the interaction acts like 
it is increasing or decreasing the growth rate and so can increase or decrease the 
oscillations. These examples also demonstrate that if the difference between the two 
populations’ growth rates is increased, it causes the total profit to become negative 
at lower harvest percentages. The size of the interaction causes the results to be 
more or less pronounced. 

4. Another factor that alters the total profit is the relative size of the carrying 
capacity compared to the harvest threshold. If they are equal, a pattern of rounded 
oscillations will result (Fig. 21). If the carrying capacity is somewhat larger than the 
threshold, the oscillations become steeper and the peak at lower percentages 
becomes more noticeable. The combination with the largest oscillations (Fig. 4b) 
occurs when the carrying capacity is approximately twice the threshold which 
corresponds to the maximum sustainable yield [5 ] .  The size of the oscillations in Fig. 
4b is directly related to the populations’ growth rates at the time of the harvest. 

5. Another parameter that plays an important role is the delay between the 
moment the harvest conditions are met and the actual harvest time. This delay, 
accounting for inherent communication and preparation time in real situations, 
changes the original results significantly. With just a one iteration delay, the whole 
pattern is shifted to the right (Fig. 22). With a delay of two iterations, the shape of 
the oscillations is already altered (Fig. 23). These changes are, at least in part, a 
result of the population size oscillating around the carrying capacity. When the 
population grows two steps past the harvest threshold, it often has begun oscillating 
around the carrying capacity, while after only one step past the threshold, it is not yet 
oscillating. For longer delays, the pattern has more short continuous steps with large 
jumps between (Fig. 24). These continuous parts become longer as the length of the 
delay increases (Fig. 25). Another trend with these delays is that the first jump will 
be down if the delay is for an even length of time and up if the delay is odd. After 
a delay of two steps, the populations are oscillating around the carrying capacity and 
where they are when the harvest occurs determines the behavior. A series of two 
dimensional graphs show more about the effect of a delay. Fig. 26 shows the base 
case with no delay. The addition of a one and two time step delay appear in Fig. 27 
and 28, respectively. The change from an orderly pattern to something more random 
is obvious. To show a time delay of five it is necessary to change the boundaries that 
determine the acceptable range of values. This delay causes large random patches 
(Fig. 29). 
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6. By varying the exponent in the self repression term, it is possible to look at 
how different maps change the total profit. It turns out that if the exponent is close 
to one, the oscillations are large at larger percentages of harvest (Fig. 30). With 
smaller exponents, the initial peak is increased and the following oscillations are 
reduced (Fig. 31). Our original value of 1/2 provides a judicious balance between the 
two trends. 

Many other factors could be varied such as: (i) the number of harvests 
considered in one sequence (N), (ii) initial values of the populations (xo , yo), and (iii) 
the functional form of the nonlinear maps. Compared to the ones we analyzed 
before, these factors either produce small changes or would be difficult to control in 
a real system. 
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Figure 4a. Economic and ecological profit as a function of harvest percentage. 
Base case 
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16 



1 I 

Figure 6a. Economic and ecological profit as a function of harvest percentage. 
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Figure 6b. Total profit as a function of harvest percentage. a,=0.25, b,=0.25 
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Figure 15. Total profit as a function of harvest percentage. a,=0.5, b,=0.45 
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Figure 16. Total profit as a function of harvest percentage. 
a1=0.5, bl=0.45, a2=-0.00001, b2=-0.00001 
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Figure 17. Total profit as a function of harvest percentage. 
a,=0.5, b,=0.45, a,=0.00001, b2=0.00001 
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Figure 18. Total profit as a function of harvest percentage. 
a,=0.5, b,=0.45, a,=0.0, b,=0.00001 
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Figure 19. Total profit as a function of harvest percentage. 
a1=0.5, b1=0.45, a2=0.00001, b2=-0.00001 
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Figure 20. Total profit as a function of harvest percentage. 
a,=0.5, b,=0.45, a2=-0.00001, b2=0.00001 
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Figure 21. Total profit as a function of harvest percentage. K=L=10,000 
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Figure 22. Total profit as a function of harvest percentage. Delay=l 
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Figure 23. Total profit as a function of harvest percentage. Delay=:! 
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Figure 25. Total profit as a function of harvest percentage. Delay=5 
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Figure 28. Overall performance of the system as a function of the harvest percentages. Delay = 2 
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Figure 30. Total profit as a function of harvest percentage. m = l  
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Figure 31. Total profit as a function of harvest percentage. m=1/5 
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4. DISCUSSION 

We have analyzed the sustainability and profitability of an ecological system 
of two populations harvested periodically for economic reasons. The applications we 
envisage range from forestry, fishing, greenhouse cultures, and ecological 
management to -more remotely - economic competition and social texture stability. 

A simple dynamicai model and its variants have been used to understand the 
consequences of various parametric changes that would be related to a decision- 
making policy. 

There are two main reasons for using this type of approach: 

(i) Ecological interactions can result in widely varying and extremely 
unstable harvested populations. For multi-population systems subject 
to nonselective harvesting there are not many rigorous results 
concerning the existence of optimal harvest policies, and it may very 
well be that, in general, there is no solution for this type of problem. 

(ii) Despite their limitations, mathematical models of complex 
environmental, political, and economic issues are our only tools to 
understand, predict, and ultimately modify the outside world. They are 
crucial to coping with resource management, sustainability, and 
coexistence. Mathematics and computer-aided agriculture, banking, 
fishing, investing, arms negotiations, etc., are features of our present 
world that are here to stay and to develop. 

The results of the analysis indicate strong nonmonotonicities of the outcome 
as a function of the varying parameters as well as large regions of "blurred," non- 
clear-cut alternating zones in the parameter space. To ensure smooth operations, 
non-catastrophic behavior, and manageable sensitivities, these zones are to be 
avoided. 

To some extent we should also be able to understand the cause of large 
sensitivities and catastrophe-like behavior. In particular, we should be able to 
recognize whether those are due - at least in part - to chaotic behavior in the 
underlying dynamics. For the bioeconomic model analyzed in this paper this does not 
seem to be the case: instead, the nonmonotonicities are caused by the discrete 
nature of the evolution and especially of the hawesting. These nonmonotonicities 
become continuous if the time step is decreased (Fig. 32). 
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steps. a, = 0.01, b, = 0.0095 
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Discretization has been recognized to be the cause of similar 
nonmonotonicities in simpler competitive [ 101 or mutualistic systems [ll].  

The work in reference [ 111 considers only the ecological effects of harvesting 
on a mutualistic system. Thus a different objective functional is studied which 
captures the persistence quality of the two-population system after N harvests within 
strategy #3. A population persists if the ratio of its size to the size of the other 

population is larger than the assigned limit, so x persists if 5 2 x.ratio and y persists 

if 5 2 yratio (xratio = 0.22, y-ratio = 0.28). A graph then represents which persists 

with red for x, blue for y, and white for both. The 2-D graph in Fig. 33 shows the 
ecological results of varying the reset value of the two populations for a, = b, = 0.2 
and a, = b, = 0.00011. 

Y n  

x n  

From the viewpoint of direct applications, the principal weakness of 
bioeconomic models, like the one analyzed in this paper, is related to the 
identification problem, namely estimating the model’s parameters in order to test and 
use its, albeit limited, predictive or prescriptive power. These aspects must be further 
analyzed in future work. 
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APPENDIX A - OPTIMAL CONTROL FOR D-TiME SYSTEMS 

In an optimal control problem, the state variables (xk , yk) describe the state of the 
system at time step A; k=1,2, ..., N. Equations (21) are the state equations and describe the 
evolution of the system from its initial state (ro , yo), as a result of the application of the 
controls (HI, H'). The terminal time step, N, is called the time horizon and usually is finite. 

Given a set of controls (Hi, e), P=O,l, ...J, the corresponding solution yk+,) 
is referred to as the response. The controls are assumed to belong to a specified control set, 
or a class of admissible controls. Any admissible control that determines a response satisfying 
the initial condition is called feasible control. 

Usually one wants to control a system in order to achieve a certain goal or 
preassigned task. The measure of achieving the goal (task) is quantified by the objective 
functional: 

The fundamental problem in optimal control theory is to determine the feasible control that 
maximizes G. If it exists, such a control is called the optimal control. Proving the existence 
of optimal controls is, in general, difficult, but necessary conditions are provided by 
Pontryagin's maximum principle (see references [8,9]). This principle works in both 
continuous and discrete forms, but due to the characteristics of our problem, we shall give 
here a short description of the discrete time version. 

As mentioned before, the objective functional is constructed as the sum over all 
harvests of the ecological reward plus the economic profit. We note that the final controls 

(Hi, Hi) do not influence the dynamics but do affect the value of the objective functional. 

To be specific, we consider that nonselective harvesting occurs after n steps of 
autonomous evolution and is performed N times. We can rewrite system (2.1) as 

k = O,l, ...JV- 1 
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where the effects of the autonomous evolution between successive hawestings are contained 
in the new nonlinear maps F' and F2. 

The optimal control problem for this new discrete evolution system consists in finding 

the controls (Hl, Hi), K=O,l, ...A, that maximize the value of the objective functional G. 

As a necessary condition for optimality we apply the maximum principle in its 
Lagrangian form [8,9]. In analogy with mechanical systems we define the Lagrangian [5,8]: 

The additional u11 town functions A:, A: are called adjoint variables and have somewhat the 
significance of a "price" associated with the state variables xk , yk respectively. Since the state 

equations do not apply any longer for k=N, we can take A; = A i  = 0 (transversality 
conditions) [SI. 

If (Hi, Hi) is the optimal control and (xk , yk) the corresponding response, the 

maximum principle asserts the existence of adjoint variables ( A i ,  A i )  such that the following 
equations are satisfied: 

d 9  d9  - = 0, - = 0 k = l J ,  ...A- 1 
&k cfyt 

- & = o ,  - dg = 0 k= O,l, ...a. 
dXi dHt 
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Eqs. ( k 3 ) - ( k 5 )  are nothing but the necessary conditions of extremality for the functionalg 
depending on the set of variables x, y, A', A2, HI, H2. These conditions provide 6N equations 

to determine 6N unknowns: xt. ...., y1 ,..., yN-I; H, ,..., HN; Ifo ,-.., HN; I, ,.-., AN-l; 1 1 2  2 1  1 

Equations (A.3) and (A.4) give: 

d e  1 - + A i - -  &-I = 0 4 

k = 1,2,...,lV-l 

k = 12, ...A- 1 

k = 0,l y...,N 

k = O,l, JV, 

while 3 s .  (A.5) merely restate the evolution equations (kl). 
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As mentioned before, the existence and uniqueness of optimal controls are not 
guaranteed by Eqs. ( k 3 ) - ( k 5 )  which only represent necessary (but not sufficient) conditions. 
Moreover, system ( k 3 ) - ( k 5 )  is a two-point boundary-value problem (the state variables 
evolve forward in time starting from the initial condition (xu,  yo), while the adjoint variables 

evolve backward in time starting from the final condition ( A i ,  A i ) )  which renders its 
numerical solution unstable and computationally intensive. 

There are many situations in which: (i) either it is known that an optimal control fails 
to exist, or (ii) it is not known whether an optimal control exists .  Lack of or uncertainty 
about an optimal solution may sometimes indicate failures in modeling and can be corrected 
by altering the concept of admissible control or by revising the model, which is by no means 
an easy task Actually, there is always the possibility that severe dynamic instabilities may be 
introduced into nonlinear bioeconomical models by otherwise benign-looking modifications. 

Factors that have the potential of inducing instabilities in bioeconomic models include 
[5]: demand inelasticity, depensation effects in the biological growth function, nonlinear cost 
effects, convexity of the objective functional as a function of the control, and character of 
harvesting (selective vs. nonselective). In turn, such dymamical instabilities are responsible for 
nonexistence of optimal controls, chattering controls, hysteresis effects, and pulsing. 

In addition to all these caveats, we may encounter situations when we would like to 
have the control set depend on the state variable and thus invalidate the maximum principle 
a1 together. 
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APPENDIX B - DESCRIPnON OF PROGRAM 

B.1 STRUCTURE 

The results described in this paper were obtained using the following algorithm: 

Initialize variables and graphics screen. 
For x - varying = x-start to x-end by x-increment. 

For y - varying = y-start to y-end by y-increment. 
Until termination condition is met. 

Grow until a harvest condition is met. 
Harvest; calculate profit and reward. 

End until termination condition. 
Graph the total functional. 

End €or y-varying. 
End x-varying. 
Finish graph and wait for user response. 

The parameters x-varying and y-varying are varying quantities in the 2-D graphs. In 
the 1-D graphs, x-varying = y varying and both x and y vary together. What this parameter 
actually is depends on the situ%ion, but in our cases it relates to the size of the harvest. The 
start, end, and increment variables are determined before the program is run and identify the 
region to be studied. 

The harvest condition is specified by the user as either after the population has 
increased to at least a certain size, or when a certain number of iterations have been 
completed. One harvest includes resetting the population sizes to reflect how much of the 
population is left and calculating the benefit of the harvest. The conditions to determine 
these values depend on the harvest strategy. The economic profit €or this harvest is then 
calculated from the given formula and added to a running total for the population being 
harvested. Similarly, the ecological reward is calculated and added to its running total. The 
process of growth and harvests is concluded after N harvests; that is the termination condition 
in these cases. 

After the harvesting sequence has been completed, the economic and ecological totals 
for the separate populations are added for a total economic profit and a total ecological 
reward for the whole sequence. Then the objective functional is found as the sum of these 
totals. This final result is then ready to be graphed. (See Appendix B.2.) 

The present algorithm is implemented in the C+ f program [All, combined.c, given 
in Appendix C. Some of the commands, especially those for graphics are C+ + specific. The 
program includes two supplemental files. The first, eqmap.c, contains all the equations that 
define the problem, such as the growth map, the profit function, and the ecological reward 
€unction. The values €or the parameters are in the second included file, paramsx. The 
separate file allows easier access and allows a user without much programming experience to 
make some changes without looking through the code. The program must be compiled after 



each change, but it has many options and does not require much user input during a run. 

Because this program was set up to allow the user to choose different harvest 
strategies by setting the values of a few variables in paramsx, there are several conditional 
statements that would not be needed in a program specific to one strategy. 

In the program instead of having "x" and "y" populations, we used red and blue, 
respectively. This allowed us to refer to the coordinate axes as "x" and "y" without confusion. 

B.2 DATA DISPLAY 

The results of our program are displayed on the screen using the graphic capabilities 
of C+ +. The graphics library easily allows us to draw the axes, plot points, and print text for 
titles and labels. 

Two types of graphs are available in this program. The 1-D graph plots the profit for 
variations in one parameter. This graph can show the economic and ecological profit while 
also displaying the total. The 2-D graph evaluates the value of the objective functional as a 
function of two parameters. The value of the functional is classified as either above an upper 
bound (superior performance), below a lower bound (unacceptable performance), or between 
the two bounds (acceptable performance). Then the appropriate color for each category is 
used to plot that point on the screen. We consistently used blue, red, and yellow for the 
three respective situations. The upper and lower bounds can be modified to fit the situation. 

The output from the programs was saved using PC Paintbrush IV Plus [MI. This 
program offers a screen capture routine, Frieze, that saves the graphs. Printouts can be made 
later using the Paintbrush software. 

&2 



APPENDIX C - PRINTOUT OF PROGRAM 

I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
/* 
I* 
I* 
I* 
I* 
I* 
I* 
I* 

This program simulates the growth of two populations. 
These populations grow according to the equations in 
eqmap.c. When one fulfills the harvesting conditions a 
harvest occurs. The harvest is either selective or 
nonselective depending on the settings in paramu. The 
harvest can be done in any of three ways: harvest all 
but a reset amount, harvest a certain amount, or harvest a 
percentage of the population. After a number of harvests, 
harvest-max, the harvest sequence is terminated. 

The simulation involves two cycIes. The first is the 
growth cycle, and it ends with a harvest. The second is 
the harvesting sequence, and it ends with termination 
after a certain number of harvests. After a harvest the 
economic profit from that population is calculated and 
added to a total. Also the ecological reward is 
calculated in a similar way. At the end of a harvesting 
sequence the totals of the economic profit, ecological 
reward, and their total, the objective functional, can be 

*I 
*/ 
*I 
.*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*I 
*/ 
*I 
*I 
*I 
*I 
*I 

graphed. The parameter values are changed and the initial 
values reset as a new harvesting sequence begins. 

*! 
*I 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

#include <graphics.h> 
#include <stdio.h> 
#include <conio. h > 
#include <stdlib.h> 
#include <stdarg.h> 
#include <math.h> 
#define MIN-VAL le-299 
#define PI 3.141592654 
#include "eqmapx" 

int gprintf(int *xloc, int "yloc, char *fmt, ... ); 

int MAXY; //Holds the largest y position for the graphics screen 

typedef struct thresh { 
double haw-thresh; 
int haw-time; 

/* Harvesting thresholds */ 
I* How many iterations between harvests*/ 
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double initial; 
double growth-1; 
double growth-2; 
double reset; 
double harvsize; 
double harvperc; 
long delay; 

double carry; 

int ordered-harv; 
int ham-count; 

long gets-haw; 
long double prev; 
long double next; 

double profit; 
double to t j ro f ;  

double ecology; 
double tot-ecol; 

/* Initial populations (RO&BO) */ 
/* Growth rates (a1 & b l )  
/* Interaction terms (a2 & b2) 

*/ 
*/ 

/* Reset values after harvest */ 
/* Size of harvest to collect */ 
/* Percent of population to harvest */ 
/* Delay between ordering harvest & */ 
/* actually executing it */ 
/* Carrying capacity for this */ 
/* population (K&L) */ 
/* Flag if harvest has been ordered */ 
/* Counts number of harvests that */ 
/* have been completed */ 
/* Holds time pop. is to be harvested */ 
/* Population size in past step */ 
/* Population size calculated for the */ 
/* next step */ 
/* Profit from this harvest */ 
/* Total profit during this harvesting */ 
/* sequence for this population */ 
/* Ecological reward for this harvest */ 
/* Total ecol. reward for this harvest */ 
/* sequence for this population */ 

} thold; 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* initial3raph */ 
/* */ 
/* Sets the screen for graphics output. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void initial_graph() 
{ 

int gerror; 
int gdriver = DETECT, 
int gmode; 
int m w ;  

initgraph(&gdriver, &gmode, "C:\\TC\\BGI"); 
gerror = graphresult(); 
if (gerror < 0) 
{ 

printf("Graphics initialization error: "); 
printf("%s \n", grapherrormsg(gerr0r)); 
exit(1); 
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setbkcolor(EGA-LIGHTGRAY); 
maxx = getmaxx(); 
MAXY = getmaxy(); 
setcolor(EGA-BLUE); 
settextstyle(2,HORIZ_DIR,4); 

/* Outlines the screen and draws the axes */ 

rectangle(O,O,rnaxx,MAXY); 
line( 30,30730,( uAxy-25)); 
line(25,(MAxY-30), (maxx-30), ( UAXY-30)); 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* graphp */ 
/* */ 
/* Graphs the profit as it varies with a parameter. Three */ 
/* colors are available for plotting economic profit, */ 
/* ecological reward and their total separately. Is also *I  
/* used for 2-D graphs where the color represents the size */ 
/* of the total objective functional and both axes represent */ 
/* values of parameters. *I 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void graphp(doub1e xpt, double ypt, int y-axk, 
double yf, double yoff, int color, int x-axis, int graph) 

{ 
double wal; 
double yval; 
in t maxy2; 
int j =l; 

/* Plots only points above the yais  in the profit graph */ 

if (!((ypt < yoff) && (graph ==1))) 
i 

maxy2 = MAXY-20; 

mal = x-axis; 
yvai = y-axis; 

/* Labels the x axis as points are plotted in profit graph */ 

if (graph = = 1) 
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{ 
(x-axis % 60) ? (j=j): 

(x-axis % 30) ? (j=j) : 

yval = MAXY - 31 - (ypt * yf) + yoff; 

gprintf(&x-axis,&maxy2,"%2.1en,xpt); 

line(x-axis,MAXY-25,x-axis,MAXY-30); 

1 

switch (color) { 
case 0 : putpixel(xval,yval,EGA-RED); 

case 1 : putpixel(xval,yval,EGA - YELLOW); 

case 2 : putpixel(xval,yval,EGA-BLUE); 

break; 

break; 

break; 
1 

1 //end if 
1 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* plot-maxy *I 
/* */ 
/* Labels y-axis for profit plot & 2-D graph. */ 
/* */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

void plot-maxy (double start, double end, double scale-factor) 
{ 

int x, y; 
double yval, y-scale; 
double interval; 
int yoff; 

yoff = start*scale factor; 
yval = end * scaldfactor - yoff; 
interval = end - start; 
y - scale = 0.2; 

//Label the starting point 

x = 21; 
y = M A X Y  - 40; 
gprintf( &x,&y,"%3.2f",start); 
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//Label the rest of the axis 

while (y-scale <= 1) 

y = MAXY - 30 - @a1 * y-scale); 
lw25,y,30,y); 

gprintf(&x,&y,"%3.2Fl(start + (interval * y-scale))); 
y-scale = y-scale + 0.2; 

y = y - 13; 

1 
settextstyle( 2,HORIZ-DIR14); 

1 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* plot-maxx */ 
/* */ 
/* */ 
/* */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
This function labels the x-axis for the 2D plot. 

void plot - maxx (double start, double end, double scale-factor, 

I 
int xoff) 

int x, y; 
double xval, x-scale; 
double interval; 

xval = end * scale-factor - xoff; 
interval = end - start; 
x-scale = 0.2; 

//label beginning of axis 

y = MAXY-15; 
x = 2s; 
gprintf(&x,&y,"%3.2Flstart); 

Iflabel the rest of the axis 

while (x - scale <= 1) 
{ 
x = 30 + (mal * x scale); 
line(x,= - ~O,.~,MAXY - 20); 
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x = x - 7 ;  
gprintf(&x,&y,"%3.2f",(start + (internal * x-scale))); 
x-scale = x-scale + 0.2; 

1 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
/* harvest */ 
/* */ 
/* */ 
/* either population *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
void harvest (thold *population, double factor, int measure) 
{ 
double harvested, 

remains; 

This function does the calculations for a harvest of 

switch (measure){ 
case 1: harvested = (*population).prev - 

(*population).reset; 
remains = (*population).reset; 
break; 

remains = (*population).prev - harvested; 
break; 

case 2: harvested = (*population).harvsize; 

case 3: harvested = (*population).prev * 
(*population). harvperc; 

remains = (*population).prev - harvested; 
break; 

1 

(*population).harv-count+ +; 
(*population).proHt = pro€(harvested); 
(*population).totgrof + = (*population).profit; 
(*ppulation).prev = remains; 
(*population).ecology = ecology(remains, factor); 
(*population).tot-ecol + = (*population).ecology; 
(*population).ordered-harv = 0; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
/* mainline *I 
/* */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
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main() 
1 

/* Red and Blue are the two populations */ 
/* Red = x, Blue = y in other documentation*/ 

thold red, blue; 

long time = 0; 
int graph = 0, done = 0, 

x-axis = 31, y-axis; 
long harvest-ma; 
double wary, bvary; 
double r-reset-start, r-reset end, r-reset interval, 

b-reset-start, b-resetend, b-resecintervd; 
double r harvsiz-start, r h&vsize-end, r-hamsize-interval, 

bIharvsize start, b-ham&-end, b-hamsizeinterval; 
double r-halvperF-start, harvperc-end, r-harvperc-interval, 

b-harvperc-s tar t , b-hanrperc-end, - b-harvperc-in terval; 
double rfactor, bfactor; 
double r-start, b-start, 

int roff,bofc 
double haw-size; 
double prof-factor, prof-off, 

int x, y; 
double p e r ;  
double prof-upper, prof-lower; 
double tot-emf, functional, factor; 
int condition, selective, measure; 

r-end, b-end, 
r interval, b-interval; 

totgrof=O, maxgrofit =0, m a j a r a m ;  

#include "params.c"; 

/* Determine from user which map to graph */ 

prin tF(" 1. Profit plo tW); 
printf(2. Two Dimensional Profit PlotbW); 
printf("Enter Choice - "); 
scan€( "%d",&graph); 

initial_graph() ; 

/*Initialize parameters */ 

y-axis = MAXY - 31; 
switch(measure) { 

case 1: /* reset*/ 
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r-start = r-reset-start; 
b-start = b-reset-start; 
r - end = r-reset-end; 
b-end = b-reset-end; 
r-interval = r-reset-interval; 
b-interval = b-reset-interval; 
break; 

r - start = r-harvsize-start; 
b start = b-harvsize-start; 
rIend = r-harvsize-end; 
b-end = b-hamsize-end; 
r interval = r hamsize-interval; 
b-interval = ~-hamsize-interval; 
break; 

r - start = r-harvperc-start; 
b-start = b-harvperc-start; 
r-end = r-harvperc-end; 
b - end = b-harvperc-end; 
r-interval = r-hamperc-interval; 
b-interval = b-harvperc-interval; 
break; 

case 2 /* hamsize*/ 

case 3: /* harvperc*/ 

1 

/* label x and y axis for 2-D graph */ 

if (graph == 2) 
{ 

1 

plot maxy(r-start, r-end, rfactor); 
plot-maxx(b-start, - b-end, bfactor, boff); 

bvary = b-start; 
wary = r-start; 

/* Begin the loops that try each value of wary and bvary */ 

while (rvary <= r-end) 
{ 

while (bvary < = b-end) 
{ 

time = 0; 
blue-ordered harv = 0; /*Reinitialize values after */ 
red.ordered-karv = 0; I* eack irarvesting sequence */ 
blue.harv-count = 0; 
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red.harv-count = 0; 
blue.prev = bluehitial; 
red.prev = redinitial; 
red.tot-ecol = 0; 
blue.tot-eco1 = 0; 
red.totqrof =O; 
blue.totqrof = 0; 

/* Assign all of these because others not used anyway */ 

blue.hamize = bvary; 
red.harvsize = rvary; 
blue.reset = bvary; 
red-reset = wary; 
blue.harvperc = bvary; 
red-harvperc = wary; 

while (!done) I* Main Loop - harvesting sequence */ 
{ 

/* Populations grow */ 

eqrnap(&blue.next, &red.next, blue.prev, red-prev, 
blue.growth-1, blue.growth-2, red.growth-1, 
red-growth-2, blue-carry, red.cariy, power); 

if ((blue-prev > le320) I 1 (red-prev > le320)) 
{ 

1 
blue-prev = blue.next; 
red.prev = red-next; 
time + +; 

break; /* numbers are getting out of bounds */ 

I* Check if a harvest has already been ordered. If 
/* not and one is needed order harvest. 

*/ 
*/ 

if (!bhe.ordered-harv) 
{ 

if (((condition == 1) && (blue-prev > = 
blue. haw-t hresh) ) 

I /((condition == 2) && (time % blue.harv - time == 
0))) 

blue-ordered-haw = 1; 
blue-gets-haw = time + blue.delay; 

1 
} 
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if (!red.ordered-haw) 
{ 

if (((condition = = 1) && (red-prev > = red.haw-thresh)) 
I I ((condition = = 2) && (time % red.harv-time = = 0))) 

{ 
retiordered haw = 1; 
red.gets-haL = time + red.delay; 

1 
1 

/* Check if harvest has been ordered and if delay has 
/* passed. If so, harvest. 

*/ 
*/ 

if ( (blue.ordered-haw) && (time = = blue.gets-ham) ) 
{ 

if (blue.harv-count > = harvest-ma) 

break; 
1 
harvest(&blue, factor, measure); 
if (!selective) 
{ 

1 
harvest(&red, factor, measure); 

1 

if ( (red.ordered - haw) && (time == red.gets-haw) ) 
{ 

if (red.haw-munt > = harvest-max) 

break; 
1 
harvest(&red, factor, measure); 
if (!selective) 
{ 

1 
harvest(&blue, factor, measure); 

1 

} /* EndWhile (Main Loop) - Termination Reached - *I 

/* Calculate grand totals */ 

t o t j r o f  = red.totqrof + blue.totjrof; 
tot-ecol = red.tot-eco1 + blue.tot-eco1; 
functional = totgrof + tot-ecol; 
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I* Graph appropriate results */ 

switch(graph) { 
case 1 : /* Profit graph */ 

graphp(bvary, totgrof, y axis, prof-factor, 
prof off+prof-factor;O, x axis, graph); 

graphp(biary, tot-ml, y-axisrprof-factor, 
prof ofF*prof-factor, 1, x-axis, graph); 

graphp(bvary, functional, y-axis, prof-factor, 
prof - off* prof-€actor, 2, x-axis, graph); 

break; 

if (totgrof > = prof-upper) 
case 2 : /* Two Dimensional Graph */ 

graphp(bvary, rvary, y-axis, rfactor, roff, 2, 
x-axis, graph); 

else 
{ 

if (totgrof < = prof-lower) 
graphp(bvary, wary, y-axis, rfactor, roff, 0, 

x-axis, graph); 

x-axh graph); 

else 
graphp(bvary, wary, y-axis, rfactor, roff, 1, 

1 
break; 

1 /*end switch*/ 

/* determines maximum of functional so it can be used in 
/* labeling the y axis, and printed as the maximum. 

*/ 
*/ 

if (functional > maxgrofit) 

maxgrofit = functional; 
maxgaram = bvary; 

1 

x - axis++; 
bvary = bvary + b - interval; 

1 /* EndWhiIe (Blue Loop) */ 

rvary = rvary + r-interval; 
bvary = b-start; 
x-axis = 31; 
y-dS--; 
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} /* EndWhile (Red Loop) */ 

/*prints out the maximum profit and where it is found */ 

if (graph == 1) 
{ 

x=275; 

plot-maxy (prof-off, mmgrofit, prof-factor); 
outtextq( 150,20,"Maximum profit ="); 
gprintf(&x, &y, "%1.6g", maxgrofit); 
outtextxy(350,20,"at"); 
x= 380; 
gprintf(&x,&y, "%1.4gN, maxgaram); 

y=20; 

1 

/*indications that the program has finished */ 

outtextxy(7,5,"(Press any key ...)"); 
putchar(7); //Beeps when done 
getch0; 
getch0; 

closegraph(); 
return (0); 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* GPRINTF: Used like PRINTF except the output is sent to the */ 
/* screen in graphics mode at the specified co-ordinate. */ 
/* */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

int gprintf( int *doc, int *yloc, char *fmt, ... ) 
{ 
va-list argptr; /* Argument list pointer */ 
char str[ 1401; /* Buffer to build string into */ 
int cnt; /* Result of SPRINTF for return */ 

va start( argptr, fmt ); /* Initialize va- functions */ 
*/ 

outtextxy( *doc - 7, *yloc, str ); */ 
va end( argptr ); /* Close va- functions */ 

cnt = vsprintf( str, fmt, argptr ); 

return( cnt 1; /* Return the conversion count *I 

/* prints string to bufrer 
/* Send string in graphics mode 
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//params.c for c0mbined.c 

harvest-max = 40; 

red.growth-1 = 1; 
blue.growth-1 = 0.95; 

blue-initial = 200.0; 
redinitial = 200.0; 

blue.delay = 5;  
reddelay = 5; 

blue-carry = 2oooO; 
red.carry = 2oooO; 

power = 1./2.; 

prof factor = 0.002; 
profroff = 0; 

blue.growth 2 = 0.0; 
red-growth-5 = 0.0; 

factor = 0.12; 

//termination condition 

//intrinsic growth rates 

//initial population sizes 

//how long to delay between reaching 
// harvest condition and actually harvesting. 

//carrying capacities 

//power in the self repression terms 

//Scaling factors for 1D graph 

//Interaction coefficients 

//factor determining effect of ecology 
// compared to economy 

prof-upper = 125000; 
prof-lower = 100000; 

//limits for categories in 2D graph 

/* Choose the harvest strategy and give the appropriate information */ 

/* Condition for harvest */ 
I* 1. = threshold *I 
/* 2 = # iterations */ 

condition = 1; 

if (condition == 1) 
{ 

1 

b1ue.hat-v-thresh = loo00; 
red-haw-thresh = 1oooO; 
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if (condition == 2) 
{ 

1 

blueharv-time = 10; 
red-haw-time = 10; 

/* Selective harvest? */ 
/* 0 = nonselective */ 
/* 1 = selective */ 

selective = 0; 

/* Measure of harvest *I 
/* 1 =reset */ 
/* 2 = harvest size */ 
/* 3 = harvest percent *I 

measure = 3; 

if (measure = = 1) 
{ 

r-reset-start = 200; 
r-reset-end = 6ooo; 
r-reset - interval = 15; 

b-reset-start = 200; 
b-reset-end = 6OOO; 
b-reset-interval = 10; 

rfactor = 1.0 / r-reset interval; 
roff = r-reset-start * ;factor; 
bfactor = 1.0 / b-reset interval; 
boff = b-reset-start * ;factor; 

1 

if (measure == 2) 
{ 

r-harvsize-start = 2000; 
r-harvsizt-end = 1oooO; 
r-harvsix-internal = 20; 

b hansize start = 2000; 
bIharvsizeIend = 1oooO; 
b-harvsize - interval = 20; 

rfactor = 1.0 / r-hamize - interval; 
roff = r-harvsize-start * rfactor; 
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bfactor = 1.0 / b-harvsize-interval; 
boff = b-harvsize-start * rfactor; 

1 

if (measure == 3) 
{ 

r-harvperc-start = 0.5; 
r-harvperc-end = 0.99; 
r-harvperc-interval = 0.00125; 

b-harvperc-start = 0.5; 
b-harvperc-end = 0.99, 
b-harvperc-interval = 0.001; 

rfactor = 1.0 / r-harvperc-interval; 
roff = r-harvperc-start * rfactor; 
bfactor = 1.0 / b harvperc-interval; 
boff = b-hampeFc-start * bfactor; 

1 

1leqmap.c for combinedx 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I* sgn */ 
/* */ 
I* is positive. Allows use of exponents less than one */ 
I* without the program blowing up when the population passes */ 
/* the carrying capacity. */ 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Returns -1 if parameter is negative and +1 if parameter 

int sgn (double number) 

int sign; 

if (number > 0) 
else 
{ 

1 
return sign; 

sign = 1; 

if (number c 0) 
else sign = 0; 

sign = -1; 

1 

/ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/* eqmap */ 
/* The evolution equations for the populations. In */ 

G15 



/* documentation these equations have x = red, y = blue, */ 
/* a1 = r lxrow,  a2 = r2_grow, b l  = b l j o w ,  b2 = bZ_grow. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 

void eqmap(1ong double *b-next, long double *r-next, 
long double bgrev, long double rgrev, double bl_grow, 
double b2_grow, double rl_grow, double r 2 ~ r o w ,  
double b-carry, double r-carry, double power) 

{ 
int b-sign, r-sign; 

b - sign = sgn( 1-bjrevb-carry); 
r-sign = sgn( 1-rjrevlr-carry); 

*b-next = b g r e v  + b sign*bl_grow*bgrev* 
pow( fabs( 1 -bgrev/b-carry),power) 
+ bwsign*b2grow* (rgrev*bgrev)* 
pow(fabs( 1-bgrevb-carry), power); 

if (*b - next < MIN-VAL) 
*b - next = 0.0; 

*r-next = r j r e v  +r-sign*rlgrow*rgrev* 
pow(fabs( 1-rgrevlr-carry), power) 
+ r-~ign*r2_grow*(bqrev*rgrev) * 
pow(fabs( 1-rgrevlr-carry), power); 

if (*renext < MIN-VAL) 
*r - next = 0.0; 

1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
/* prof */ 
/* The equation for the profit function. */ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
double prof(doub1e harv-size) 
{ 
double profit; 

profit = harv-size* (exp(-pow((2000/harv-~ize),4)) * 
(.l + pow((l778/harv_size), 4))); 

return profit; 
1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 
/* ecology */ 
/* *I  
/* population not harvested. *I 

Function to calculate a reward for the amount of the 
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/ /****************************************************%********** 

double ecology(doub1e remains, double factor) 

double reward; 

reward = factor*remains*((remains/1000 -1) 

return reward; 
/pow((remains/l000),2) + 0.01); 

1 
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