
D

Y-

d

d

.........

. ~.. __ ~ -

. . ,~

.....

ORNL/TM-llSQO

Engineering Physics and Mathematics Division

Mathematical Sciences Section

SPEEDUP PROPERTIES OF PHASES IN THE EXECUTION PROFILE OF

DISTRIBUTED PARALLEL PROGRAMS

Brian M. Carlson
Thomas D. Wagner t
Lawrence W. Dowdy t

Patrick H. Worley *

Computer Systems Research Institute
University of Toronto
Toronto, Ontario MSSlAl
Canada

+ Computer Science Department
Vanderbdt University
Box 1679, Station B
Nashville, T N 37235

* Oak Ridge National Laboratory
Mathematical Sciences Section
P. 0. Box 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

Date Published: August 1992

I 1
Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U S . Department
of Energy.

L J

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DELAC05-840R21400

3 4 4 5 b 0366074 0

Contents

2 Phases of the Execution Profile . 2
2.1 Smoothing . 4

2.1.1 MovingAverages . 6
2.1.2 Rounding .
2.1.3 Piecewise Polynomial Fits . 9

2.2 Identification of Phases . 10
3 SpeedupofPhases . 11

3.1 Execution Signatures . 13

. 1 Introduction 1

7

.
. 4 Conclusions 14

5 References 16

... . 111 .

SPEEDUP PROPERTIES OF PHASES IN THE EXECUTION PROFILE OF

DISTRIBUTED PARALLEL PROGRAMS

Brian M. Carlson

Thomas D. Wagner

Lawrence W. Dowdy

Patrick H. Worley

Abstract

The execution profile of a distributed-memory parallel program specifies the number

of busy processors as a function of time. Periods of homogeneous processor utilization are

manifested in many execution profiles. These periods can usually be correlated with the

algorithms implemented in the underlying parallel code. Three families of methods for

smoothing execution profile data are presented. These approaches simplify the problem of

detecting end points of periods of homogeneous utilization. These periods, called phases,

are then examined in isolation, and their speedup characteristics are explored. A specific

workload executed on an Intel iPSC/SSO is used for validation of the techniques described.

- v -

1. Introduction

An important question in performance evaluation is - "how will code that exists on a. particular

system behave in a different environment?" This question might be asked when adding a piece

of hardware, such as a math coprocessor, a vector processor, more cache, or additional disk

capacity. One might also consider the more complex problem of moving the code to a different

type of hardware - perhaps from a conventional architecture to a RISC machine, or from a

shazed-memory to a distributed-memory multiprocessor. These constitute difficult modeling

problems.

A related problem is taking a parallel application, measuring its performance, and then pre-

dicting how well it might utilize more processors. The problem is that of predicting scalability.

Amdahl recognized that the portion of a parallel application that is inherently sequential limits

the amount of gain that is possible by an unlimited number of processors [l]. More recently,

lower and upper bounds have been obtained on both the speedup of an application and how

efficiently additional processors may be used. Those results emphasize the importance of av-

erage parallelism - the average number of busy processors through the life of the application

[3]. The number of processors utilized as a function of time (called the parallelism profile) is an

indicator of the inherent parallelism of an application [3], [16]. The parallelism profile assumes

that the number of processors exceeds the maximum parallelism of the system. This approach

to predicting scalability is most natural in a shared-memory system where a task graph may

be executed dynamically. In a distributed-memory environment, the placement of tasks and

the number of processors in the system determine program behavior. Consequently, since re-

assigning tasks to processors requires non-trivial overhead, determining the proper number of

processors to assign to each application is a more reasonable thing to do when studying the

behavior of an algorithm in a distributed-memory environment.

The number of busy processors, as a function of time, given a fixed number of available

processors is known as the execution profile of a system [9]. This study identifies and analyzes

the phases of a parallel program that are expressed in the execution profile. The methodology

is both descriptive and empirical. Attention is focused on the average parallelism of a program

in a phase and on the variance within that phase. The execution signature1 is used a s the basis

for modeling the scalability of a phase in a parallel program [2], [14]. It is argued that it is

often possible to decompose a program into phases and study the performance of each phage

independently. This is demonstrated for a specific parallel program.

Identification and study of the properties of phases of a parallel program's execution is

worthwhile for several reasons. For example, a large application must be cbeckpointed periodi-

The execution signature of a parallel program is the rate of execution expressed 8s a function of the number
of processors allocated to the program. Section 3.1 will extend the discussion of execution signatures.

- 2 -

cally to aid recovery in the event of processor failure. Phase boundaries, as defined in the next

section, are natural checkpoints since nondeterminism in the system is minimal at these times.

Also, it may be desirable to sypend the execution of a parallel application at checkpoints to

run a higher priority application. It may be appropriate to restart the application on a different

number of processors by reallocating processors between phases. If it is more efficient to run the

application on a different number of processors from phase to phase, information about phase

properties could be used in building an Q priori schedule off-line. This is particularly useful

if the schedules are for real-time workloads. If a phase is identified as too slow, sequential, or

unable to speedup adequately as more processors are added, then the corresponding code may

be replaced. If a distributed program is to be repartitioned (i e . , remapped to a different set

or number of processors), the repartitioning should be done between phases of execution.

One difficulty in studying parallel applications is collecting information that is useful in

building quantitative models without unduly perturbing the runtime behavior of the applica-

tions. A system that is useful in this regard is PICL (Portable lnstrumeiited Communication

- Library)[G], [7], [20]. PICL can generate execution trace information on demand, with thc

volume and detail of the data controlled by the user. The data from PICL can be used to

generate execution profiles, which are the object of this study. This study uses distributed code

instrumented with PICL running on an Intel iPSC/860 hypercube system.

Section 2 describes phases of execution and mechanisms for smoothing the execution profile

of a parallel program. Section 3 applies the discussion of Section 2 to a specific application

code. Section 4 discusses open problems and further applications of this type of analysis.

2. Phases of the Execution Profile

The notion of a phase of a program is natural in both sequential and parallel environments. For

example, a software engineer might design a numerical application from the following abstract

specification.

Program Linear-Solve

a. X t-- Read-Input file(BigProb1ern)

b. LU-Decomposition-Algorithm(X)

c. Rack-Substitution-Algorithm(X)

d. Write-Results(X, file(8igAnsiuer))

Of the specification, parts a and d are often sequential processes on multiprocessor systems,

whereas part b may be highly parallelizable, and part c may be moderately parallelizable. (See

[13] for a discussion of these algorithms and their scalability.) From a performance perspective

- 3 -

Processors
Utilized

E

Time

Figure 1: Idealized Execution Profile

there are three problems: 1) minimizing the sequential bottleneck, 2) getting maximum advan-

tage from a multiprocessor when the number of available processors is less than the maximum

parallelism of the application code, and 3) efficiently distributing the workload when the num-

ber of available processors exceeds the parallelism of the problem. Thus, the runtime behavior

can be quite different within the different phases of an application.

In this section the problem of identifying various phases of an application from its execution

profile is considered. Each phase of a parallel program has specific properties that distinguish

i t from other phases. The following definitions are given.

Definition 1 (Stationary Phase). A stationary phase, P,, is asubsequence of the execution

profile, P, that shares the same average parallelism and variance.

Definition 2 (Transitional Phase). A transitional phase, Pt, is a subsequence of P that

bridges two stationary phases. In other words, a transitional phase represents portions of the

execution profile that constitute an abrupt change in P.

Consequence 1. It follows directly from definitions 1 and 2 that an ordered list of P, 's and

Pt's, is a complete description of? (the execution profile).

It is not always adequate to characterize the performance of a parallel code from decompositions

of the execution profile into a sequence of stationary and transitional phases. Sometimes more

complicated phase structures must be identified [18], However, the decomposition into station-

ary and transitional phases is appropriate for many large scientific codes, especially those with

an iterative structure.

Figure 1 illustrates the intent of these definitions. Phases A, C, and E are designated as

stationary phases, whereas phases B and D are transitional phases. In many applications,

phases are bounded by abrupt changes in utilization. In some cases, abrupt valleys reveal

- 4 -

barrier synchronization2. In other cases, more shallow valleys denote changes in the underlying

algorithm (e.g., such as going from step b to step e in the earlier example). Unfortunately,

stationary phases separated by shallow (or less abrupt) transitional phases may not be clearly

identifiable in the execution trace. This is because not all processors reach the transitional phase

sirnoltaneously. (If they did, the transitional phase would be of length zero and two stationary

phases would be adjacent.) Also, a high variance in the number of utilized processors makes

phases difficult to identify. For our purposes, we treat and refer to high variance as noise. While

it is not noise in a traditional sense, it represents uninteresting detail that masks underlying

trends in the execution profile. This interpretation motivates the techniques for extracting

phase structure.

The identification of phases in an execution profile is useful for a number of reasons, as

indicated earlier. However, the problem of automatic phase identification is computationally

expensive. Often there i s no a priori knowledge about the number of phases present in an

execution profile, and the measured data contains sufficient noise that identification based solely

upon local information in P is not reliable. In this case, a simple search procedure is required.

That is, a single phase in the execution profile is first assumed and some measure of goodness

is determined. Then, two phases are assumed and a new measure of goodness is determined,

etc. The proper number of phases is associated with the best goodness measure [18]. Finally,

recognizing transitional phases and stationary phases effectively requires distinguishing between

“transient” and “steady state” behavior in the system, which itself is a difficult task.

While work is continuing on algorithms for the automatic identification of phases, the hu-

man visual system i s quite good at this task, particularly if the uninteresting high variance

components have been removed. Since phase identification is just one step in a larger modeling

effort that will probably never be completely automated, the modeler’s direct participation in

the phase identification process is a natural option. In this context, the initial step in solving

the phase identification problem is the removal of noise. A number of techniques involving

polynomial fitting and approximation exist for filtering. This process of filtering is generally

known as srnoothtng. Note that automatic techniques for phase identification often require

that the data be smoothed first [ll]. Smoothing is also useful in other aspects of performance

analysis [IO].

2.1. Smoothing

Figure 2 illustrates an actual execution profile as measured (i e . , no smoothing). If the noise

in the execution profile is removed, visual identification of phases can be simplified. All the

2These would be valleys in the execution profile that drop the parallelism to 1, where only a single processor
is utilized.

- 5 -

Processors
Utilized

'

0.25 0.50 0.75

Time (seconds)
Figure 2: Sample Execution Profile with Distinct Phases

execution profiles shown in this section will use the data described by Figure 2 as input. This

particular application is from a parallel implementation of a program that solves the nonlinear

shallow water equations on the sphere using the spectral transform method [19]. This program

constitutes an algorithmic kernal of a spectral global weather model.3 The specifics of the

parallel program are briefly described below.

The spectral transform method used in this application code approximates the solution on

both a tensor product grid representing physical coordinates and a triangular grid representing

spectral coordinates. The computational kernal of the method is the transformation of the so-

lution between the two representations, requiring both Legendre and Fourier transforms. The

parallel implementation decomposes the two grids in such a way that all processors participate

in a Legendre transform, but only one processor calculates any given Fourier transform. The re-

sulting code is perfectly load balanced, with all inefficiencies due to the overhead o€ interprocess

communication.

Our experience is that Figure 2 is representative of most execution profiles in that they ex-

hibit phases that are quite apparent visually, but that can be difficult to isolate mathematically.

Smoothing is used to help isolate the phases, both visually and algorithmically.

Definition 3 (Smoothing). Smoothing is the process ofremoving noise from a sequence while

preserving the coarse properties (in particular, transitional and stationary phases) of the original

sequence.

3The serial version of the program WAS provided by J. J. Hack at the National Center for Atmospheric
Research. The distributed version was implemented by P. H. Worley at Oak Ridge National Laboratory.

- 6 -

Determining which aspects of the execution profile are noise can be a subjective process. In

order t o smooth out the noise automatically, that subjective process must be made an objective

one. One method is to make smoothing an issue of determining meaningful granularity. If small

local minima and maxima are important to the expression of a function, then removing noise

may be detrimental. From Definitions 1 and 2 it is clear that small perturbations in the

execution profile have little effect on the end points of a phase. Thus, a fairly coarse level

of granularity is preferable in smoothing because it simplifies the problem when a fine level

of granularity is not necessary. Numerous techniques are available to accomplish a suitable

smoothing. Four cornputationally inexpensive approaches are presented

2.1.1. Moving Averages

A common technique for studying data with noise (or, more generally, any experimental data

set) is the method of least squares. In the method of least squares, the data is approximated

by a linear function that minimizes the sum of squares of the differences between the function

and the data [15]. In fitting a line to a collection of data, the following two equations are

simultaneoiisly satisfied [17]:

Here, rn is the slope and b is the y intercept of the line to be fit t o the n observed points (z-y

pairs).

In the context of smoothing, each data point is replaced by the value of the linear function

that best fits the data in some small neighborhood. Without loss of generality, the local

neighborhood of i;'s may be transformed to be [-k , -k + 1, . . . , 0,. . . , k - 1, k] . Notice that

this transformation reduces the two equations to a simpler form since now Q = 0. In order

to smooth the point located at 0, it is necessary to solve for b in the above two equations. That

is,

n

i = l

which is the simple average of a neighborhood. Figure 3 shows the example data set smoothed

using this method where the neighborhood size is 11.

The approach of moving averages generalizes the linear least-squares fit. Any smooth func-

tion may be approximated locally to an arbitrary degree of accuracy by a polynomial. The

- 7 -

t

Processors

Utilized

0.25 0.50 0.75
Time (seconds)

Figure 3: Execution Profile Smoothed by Least Squares

technique of moving averages exploits this fact by fitting 2k + 1 points of a measured data set

with a polynomial. The polynomial is then used to predict the (k + smoothed data value.

(See [SI for an introductory exposition on moving averages and trend.) Figure 4 shows the

smoothed version of Figure 2 using a cubic to fit a neighborhood of 11 points from the data

set.

The moving averages strategy is a weighted average of neighboring points. Let j t be the

smoothed data value a t t imet in the execution profile. Let yt be the actual observed utilization

in the execution profile. The execution profile shown in Figure 4 is constructed as the weighted

average of the example data set by:

2.1.2. Rounding

If the phases to be identified are extremely stratified (k e . , far apart in average parallelism),

then it is useful to round the average utilization. For example, each point in a real-valued

function may be rounded to the nearest integer or loth or looth integer (i e . , to its nearest

rounding value). Figure 5 illustrates the execution profile of Figure 2 where utilization has been

rounded to the nearest whole number. This technique, as shown in Figure 5 , is of little help by

itself if the variance within a phase exceeds the rounding value. It is more desirable in practice

- 8 -

Processors

Utilized

10 --

30

20

I I I t

30

20

Processors

Utilized

0.25 0.50 0.75
Time (seconds)

Figure 5: Execution Profile Smoothed by Simple Rounding

- 9 -

c

Processors
Utilized

0.25 0.50 0.75
Time (seconds)

Figure 6: Execution Profile Smoothed by Rounding and Averaging Neighborhioods

to combine rounding with one of the other averaging techniques. Figure 6 combines rounding

with moving averages.

2.1.3. Piecewise Polynomial Fits

Moving averages and rounding are both effective smoothing techniques for the example data

set. However, since they use only local information, these techniques can sometimes smooth

away important detail. In particular, a short transitional phase between stationary phases

with similar mean and variance can be lost, leading to the merging of the three phases. An

alternative is to calculate the optimal piecewise polynomial fit to the data, using a large number

of pieces. In this approach, the data domain is partitioned into segments and the d a h is fit by

polynomials in each segment separately. Both the endpoints of the segments and the individual

fits are chosen to minimize the error in the approximation. Since this is a global optimization

process, the algorithm is more robust when identifying transitions.

Calculating the piecewise polynomial that minimizes the least-squares error is prohibitively

expensive. Since the endpoints of the segments, as well as the polynomials between the end-

points must be calculated, a large nonlinear least-squares problem must be solved. Fortunately,

there are inexpensive algorithms for approximating the least-squares solution that are quite ef-

fective [4], [5]. A more robust solution is to calculate a piecewise polynomial that solves the

segment approximation problem [12]. For this problem, the least-squares error between the data

and the approximating function is calculated over each segment individually. The segments and

fits are chosen to minimize this maximum piecewise error. This measure of the error is par-

- 10 -

Processors

Utilized

0.25 0.50 0.75
Time (seconds)

Figure 7: Execution Profile Smoothed by a Piecewise Constant Fit

ticularly suitable for the identification of phases in the processor profile, and a fast algorithm

exists for computing the optimal fit [18].

Whereas, in moving averages, the amount of smoothing is determined by the size of the

averaging neighborhood, the amount of smoothing when using a piecewise polynomial fit is a

function of the number of pieces. For example, in the example data set there are 1157 data

points. Thus, in a piecewise polynomial fit, using 105 pieces has similar smoothing properties

to using an averaging neighborhood of 11 (since 1157/105 m 11). Figure 7 shows the 105-piece

piecewise constant function fit to the example data set of Figure 2.

The choice of which smoothing technique to use is data-dependent. For the execution profile

used in this study, all four of the smoothing techniques discussed are effective. There are also

many other smoothing techniques that could be used that are not discussed here. In the graphs

and discussion that follow, the smoothing technique chosen is that of moving averages.

2.2. Identification of Phases

In this study, the identification of transitional phases and three special types of stationary

phases are of interest. One special type of stationary phase is where utilization is equal to

the number of allocated processors and the variance in the utilization over the phase is 0.

These stationary phases typically scale almost linearly. For example, doubling the number of

processors decreases the length of the phase by half. This type of phase represents intervals of

pure computation with no interfering communication.

A second special type of stationary phase is where the average utilization is 1 (i e . , only a

- 11 -

single processor is utilized) and the variance in utilization over the time interval is 0. These

stationary phases correspond to the sequential portion of the parallel program. They represent

intervals that exhibit no speedup as additional processors are allocated. The sum of the time

periods of these stationary phases divided by the run time of the entire program is the fraction

sequential of the program [l]. According to Amdahl’s law, a program can not speedup more

than the inverse of the fraction sequential of the program. Amdahl’s definition of sequential

is quite broad since a sequential portion of code could be arbitrarily short (e.g., the bottom

of a transitional phase). Phases, as defined here, are typically longer. I t is assumed that

sequential code occurs over an entire phase. From a practical perspective, this is not a limiting

assumption.

The remaining stationary phases are considered to be of the same type. However, each

phase has different scaling properties. That is, as additional processors are allocated, each

phase is characterized by its own speedup curve. These phases are characterized by their

average parallelism and the variance in parallelism. In the next section, the program shown in

Figure 2 is characterized by these two parameters for 8, 16, 32, and 64 processors. The use of

average parallelism to characterize parallel programs is not new. Both [3] and [16] study the

properties of these parameters thoroughly for use in scheduling and in studying efficiency. Our

approach differs by considering subsequences of the execution profile and aggregating them to

make speedup predictions for the entire program.

Phase identification within a parallel program is important since phases appear to be asso-

ciated with the parallel algorithm rather than with the number of processors allocated. That is,

phases are often independent of the number of allocated processors. This implies that if one is

able to associate a phase of the execution profile to some portion of the underlying algorithm,

then it is possible to identify the parts of the execution profile that do not scale well, and

replace them with algorithms that have better scaling properties. In the next section, speedup

of phases is examined as the program is executed on a varied number of processors. Figure 8

illustrates the smoothed execution profile for 8, 16, 32, and 64 processors for the algorithm

described in Section 2.

3. Speedup of Phases

As noted earlier, the identification of transitional phases is difficult. I t is generally true, however,

that transitional phases occur between two stationary phases. I t is also true, by definition, that

transitional phases are relatively short in duration. The peaks and troughs of transitiaiial phases

are easier to identify after smoothing. The approach taken in this study is to first identify the

stationary phases that fully utilize the available processors. This can be done before smoothing.

After smoothing using the moving averages technique, the peaks and troughs of the execution

- 12 -

Number of
Processors

Utilized

60

40

20

\

64 processors ’ allocated

I

32 processors
allocated

0.5 1 .o 1.5

Time (seconds)

Figure 8: Smoothed Execution Profile for 8, 16, 32 and 64 Processors

profile are identified by ranking all local minima (maxima) by the average difference of each local

minimum (maximum) with each data point in its neighborhood. The size of the neighborhood

chosen depends upon the desired granularity. The local minima (maxima) with the highest rank

are taken to be the troughs (peaks) of transitional phases. After the beginning and end points

of stationary phases with full utilization and the peaks and troughs of the transitional phases

are identified, the execution profile is then decomposed into phases. Phases are identified to

begin at either a peak or trough of a transitional phase or at the end of a stationary phase with

maximum utilization. Of course, the stationary phases with ~iiaximum utilization are retained.

Using the same application discussed in the previous sections, phases were identified as just

described. The identification was carried out on PICL trace files of the application running on

8, 16, 32, arid 64 processors. A total of 9 stationary phases were identified in each execution

trace. The phases identified are shown in Figure 9. The phases are labeled, in order, PI through

Pg. The lengths of those phases, their mean utilizations, and their variance in utilization are

tabulated in Table 1. Of the nine phases identified, phases P I , P.2, and P7 have similar behavior.

The same is true for phases P3, P,, arid Pg. The similarities in each of those groups can be

seen in the mean utilizations and variance. These similarities become more obvious as the

number of processors is increased. Phases P,, P,, and Ps are the phxses of full utilization.

- 13 -

I I

Processors
utilized

0.25 0.50 0.75
Time (seconds)

Figure 9: Phases Identified in a Smoothed Execution Profile

There is a repeating pattern whose first occurrence is the sequence of phases PI, P,, and P3.

Not surprisingly, this repeating pattern can be associated with the underlying structure of the

parallel shallow water equation code.

3.1. Execution Signatures

Having identified the phases in this application, the speedup properties of the phases were

examined. The characterization of speedup chosen for this study was the execution signature

PI, ~ 4 1 .

Definition 4 (Execution Signature). The execution signature of a (phase of a) parallel

program is a function whose abscissa is the number ofprocessors allocated, and whose ordinate

is the rate at which the program executes in the absence of other programs.

The runtime of the program may be obtained directly from the execution signature since runtime

is the reciprocal of rate. The functional form of the execution signature Ei of parallel program

i used is:

where pi is the number of processors assigned to i . The parameters Hi1 and kia are specific to

the program and architecture. The functional form in Equation (1) passes through the point

(0,O) and is concave increasing as a function of p i . As more processors are allocated, programs

- 1 4 -

Phase
PI

P2
P.7
P4

‘ps
p6
P7

F8
Pa

217 102 48

430 271 184

I_-

Actual . Pred.
149 142
26 24

136 118
144 141
25 23

137 119
143 142
26 23

133 124

.- 64 8 16 32 64
149 7.85 15.29 28.70 53.74
26 8.00 16.00 32.00 64.00

136 7.71 15.16 27.60 45.78
144 7.89 15.33 28.81 54.03
25 8.00 16.00 32.00 64.00

137 7.72 15.17 27.55 45.76
143 7.88 15.32 28.81 54.00
26 8.00 16.00 32.00 64.00

133 7.77 15.18 27.41 46.07
919 7.85 15.38 28.65 51.21

-_I

Variance i n Utilization
Processors

8 16 32 64
0.39 0.84 2.17 6x
0.00 0.00 0.00 0.00
0.50 0.61 1.52 4.52
0.31 0.74 1.95 5.16
0.00 0.00 0.00 0.00
0.52 0.60 1.28 4.32
0.40 0.82 1.79 5.11
0.00 0.00 0.00 0.00
0.51 0.61 1.34 4.22
0.40 0.71 2.12 7.26

I___

____..I__

Table 1: Length, Mean Utilization, and Variance for 9 Phases

I Runtirne(O.5rns)
Error
73%-

7.7%
13.2%
2.1%
8.0%

13.1%
0.7%

11.5%
6.8%

‘Table 2: Actual and Predicted Runtimes and Error on 64 Processors

execute faster but incur added communication overhead and synchronization costs. Forms

other than Equation (1) are possible as long as they possess these properties [14]. Using the

reciprocals of the runtimes of the phases identified above for 8, 16 and 32 processors, execution

signatures of the above form were calculated from a linear least-squares fit. (It is apparent from

Table 1 that phases ’P,, Ps, and Pg exhibit speedup behavior that is different from the other

phases. For these three statioriary phases with full utilization a linear execution signature was

calculated, again using a least-squares fit.) Using these execution signatures, a prediction of

the runtimes of all nine phases on 64 processors can be made. Figure 10 presents the actual

execution signatures of each phase as solid lines. ‘The dashed segment in each graph represents

the predicted values for 64 processors. The predicted runtimes, along with the actual runtimes

and the error, can he found in Table 2.

4. Conclusions

The execution profile of a distributed-memory multiprocessing system illustrates the iiumber of

busy processors in an application as a function of time. This study has observed that, within

Phase PI

- 15 -

Phase P, Phase P7

0.008 1

Execution
Rate

Phase P2

8 16 32 64

Number of Processors

Phase P5

c 8 16 32 64

Phase P8

Execution
Rate

8 16 32 64 8 16 32 64 8 16 3 2 64

Number of Processors

Phase P3 Phase p6 Phase Ps

0.008

0.006

Execution
Rate 0.004

0.002

8 16 32 64 8 16 32 64

Number of Processors

Figure 10: Execution Signatures of the 9 Phases

- 16 -

the execution profile, phases exist that are periods of roughly uniform processor aclivity sepa-

rated by abrupt transitions in processor utilization. These phases of uniform processor activity

(stationary phases) may be studied in isolation with respect to their speedup behavior. The

resulting analysis may be aggregated, providing information regarding the speedup properties

of the parallel application as a whole.

There are a number of potcntial applications for both the software designer as well an

adaptive operating system. For example, phases that are identified as those that scale very

poorly may indicate portions of the program that should be redesigned. For an operating

system, if remapping a program to a different number of processors is feasible, the execution

profile identifies times iu the application when remapping should occur (2 . e., during transitional

phases). One can envision taking the four execution profiles of Figure 8, rearranging phases

and constructing a new (reconfigurable) application that increases the efficiency of the system's

processors. The identification of transitional phases also suggests times that the operating

system might checkpoint at minimal cost (since the fewest number of busy processors would be

interrupted).

One extension of this research is to compare the execution profile against communication

volume as a function of time and attempt to detect phases given two dimensions instead of just

one. This approach has been used successfully in a similar context [ll]. Another extension is to

incorporate variance into the execution signature as a method to minimize error in predicting

phase speedup.

5 . References

[l] G. AMDAHL, The validity of the single processor approach t o achieving large scale com-

puting capabilities, AFIPS Conference Proceedings, 30 (1967), pp. 483-485.

[2] L . W. DOWDY AND M . R. LEIJZE, On modeling partitioned mtiltiprocessorsystems. under

revision, 1991.

[3] D. EAGER, J . ZAHORJAN, AND E. D. LAZOWSKA, Speedup versw eficeincy in parallel

systems, IEEE Trans. Comput., 38 (1989), pp. 408-423.

[4] W. D. FISHER, On groupzng for maximum homogeneity, Journal of the American Statis-

tical Association, 53 (1953), pp. 789-798.

[5] J . H . FRIEDMAN AND B. W. SIrJvEKMr=N, Flezable parsimonious smootkang and addiizve

modeling, Technometrics, 31 (1989), pp, 3-21.

- 17 -

[6] G. A. GEIST, M. T. HEATH, B. W. PEYTON, AND P. I-I. WORLEY, PICL: a portable

instrumented communication library, C reference manual, Tech. Report ORNL/TM-11130,

Oak Ridge National Laboratory, Oak Ridge, T N , July 1990.

[71 - , A users’ guide to PICL: a portable instrumented communication library, Tech. Re-

port ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, T N , August 1990.

[8] M . KENDALL, Time-Series, Charles Griffith and Company, London, 1973.

[9] M . KUMAR, Measuring parallelism in computation intensive scientific/engineering appli-

cations, IEEE Trans. Comput., 37 (1988), pp. 1088-1098.

[lo] T. .J. LEBLANC, J. M. MELLOR-CRUMMEY, AND R. J . FOWLER, Analyzing parallel

progrant executions using multiple views, J . Par. Dist. Corny., 9 (1990), pp. 203-217.

[ll] B. P. MILLER, M. CLARK, J . HOLLINGSWORTH, S. KIERSTEAD, S . 3 . LIM, AND

T. TORZEWSKI, IPS-2: the second genwration of a parallel program measurement system,

IEEE Trans. Par. Dist. Sys., 1 (1990), pp. 206-217.

[12] G. NURNBERGER, M. SOMMER, AND H. STRAUSS, A n algorithm for segment approxima-

tion, Nuuierische Mathematik, 48 (1986), pp. 463-477.

[13] J . M. ORTEGA, Introduction t o Parallel and Vector SoZutzon of Lanear Systems, Plenum

Press, New York, 1988.

[14] K.-H. PARK, Dynamic Processor Partitioning for Multiprogrammed Multiprocessor Sys-

tems, Ph.D. thesis, Vanderbilt University, Nashville, T N , August 1990.

[15] M. B. PRIESTLEY, Spectral Analysis and Time Series, Academic Press, New York, 1981.

[16] IC. C. SEVCIK, Characterization of parallelism an applications and their use in scheduling,

Performance Evaluation Review, 17 (1989), pp. 171-180.

[17] G. THOMAS AND R. FTNNEY, Calculus and Analytic Geometry, Addison-Wesley Publish-

ing Company, Reading, Massachusetts, S t h ed., 1981.

[lS] P. H . WORLEY, Modeling histogram da ta with piecewise polynomials, Tech. Report

ORNL/TM-11637, Oak Ridge National Laboratory, Oak Ridge, T N , August 1990.

[19] P. H . WORLEY AND J . R. DRAKE, Paralklizing the spectral transform method - part I ,

Tech. Report ORNL/TM-11747, Oak Ridge National Laboratory, Oak Ridge, T N , Febru-

ary 1991.

- 13 -

[20] P. H. WORLEY AND M. T. HEATH, Performance characterization research at Oak

Ridge National Laboratory, in Parallel Processing for Scientific Computing, .J. Dongarra,

P. Messina, U. C. Sorenson, and R. G. Voigt, eds., Society for Industrial and Applied

Mathematics, Philadelphia, PA, 1990, pp. 431-1136,

- 1 9 -

ORNL/TM- 11900

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. E. F. D’Azevedo

3-4. T. S. Darland
5 . J. J. Dongarra
6. T. H. Dunigan
7. G. A. Geist
8. M. R. Leuze
9. C. E. Oliver

10. G. Ostrouchov

16. T. H. Rowan
11-15. S. A. Raby

17-21. R. F. Sincovec
22-26. R. C. Ward
27-31. P. H. Worley

32. Central Research Library
33. ORNL Patent Office
34. K-25 Applied Technology Li-

35. Y-12 Technical Library
36. Laboratory Records - RC

brary

37-38. Laboratory Records Department

EXTERNAL DISTRIBUTION

39. Donald M. Austin, 6196 EECS Building, University of Minnesota, 200 Union
Street, S.E., Minneapolis, MN 55455

40. Robert G. Babb, Oregon Graduate Center, CSE Department, 19600 N.’W. Walker
Road, Beaverton, OR 97006

41. Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratory, Albuquerque, NM 87185

42. Adam Beguelin, Carnegie Mellon University, School of Computer Science, 5000
Forbes Avenue, Pittsburgh, PA 15213-3890

43. Robert E. Benner, Parallel Processing Division 1413, Sandia National Laborata
ries, P. 0. Box 5800, Albuquerque, NM 87185

44. Philippe Berger, Institut National Polytechnique, ENSEEIHT, 2 rue Charles Camichel-
F, 31071 Toulouse Cedex, France

45. Donna Bergmark, 745 E & TC Building, Hoy Road, Cornel1 University, Ithaca,
NY 14853

46. Roger W. Brockett, Harvard University, Pierce Hall, 29 Oxford Street Cambridge,
MA 02138

47. James C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

48. Greg Burns, Trollius Project Leader, Academic Computing, The Ohio State Uni-
versity, 1224 Kinnear Rd., Columbus, OH 43212

49. Bill L. Ruzbee, Scientific Computing Division, National Center for Atmospheric
Research, P. 0. Box 3000, Boulder, CO 80307

- 20 -

50. Maria Calzarossa, Dipartirnento di Informatica e Sistemistica, Universitk Degli
Stutli di Pavia, Via Abbiategrasso 209, 1-27100 Pavia, Italy

51-55. Brian M . Carlson, Computer Systems Research Institute, IJniversity of Toronto,
Toronto, Ontario M5S 1A1, Canada

56. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

57. Jagdisli Chandra, Aririy Research Office, P. 0. Box 12221, Research Triangle Park,
NC 27709

58. Siddhartha Chatterjee, RIACS, Mail Stop T045-1, NASA Ames Research Center,
Moffett Field, CA 94035-1000

59. Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

60. Alva Couch, Department of Computer Science, Tufts University, Medford, MA
02155

61. George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 South Wright Street, Urbana, II, 61801-2932

62. Helen Davis, Computer Science Department, Stanford University, Stanford, CA
94305

63. Michel Dayde, Institut National Polytechnique, ENSEEIHT, 2 rue Charles Camichel-
F, 31071 Toulouse Cedex, France

64. John J . Uorning, Department of Nuclear Engineering Physics, University of Vir-
ginia Reactor Facility, Charlottesville, VA 22901

65. Craig Douglas, IBM T . J. Watson Research Center, P. 0. Box 218, Yorktown
Heights, NY 10598-0218

66-70. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville,
T N 37235

71. lain S. DiiK, Atlas Centre, Rutherford Appleton Laboratory, Ghilton, Oxon OX11
OQX, England

72. Dannie Dinand, IRISA, Campus de Beaulieu, 35042 Rennes Cedex, FRANCE

73. Derek Eager, Department of Computer Science and Engineering, Sieg Hall, FR-35,
University of Washingtoil, Seattle, WA 98195

74. Stanlry Eisenstat, Department of Computer Science, Yale University, P. 0. Box
2158 Yale Station, New Haven, CT 06520

75. Edward Felten, Department of Computer Science, University of Washington, Seat-
tle, WA 98195

76. Charles Finernan, Ames Research Center, Mail Stop 269/3, Moffet Field, CA
94035

77. Jon Flower, Parasoft Corporation, 2500 E. Foothill Boulevard, Suite 205, Pasadena,
CA 91107

- 21 -

78. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
13244-4 100

79. Chris Fraley, Statistical Sciences, Inc., 1700 Westlake Avenue N, Suite 500, Seattle,
WA 98119

80. Joan M. Francioni, Computer Science Department, University of Southwestern
Louisiana, Lafayette, LA 70504

81. Offir Frieder, George Mason University, Science and Technology Building, Com-
puter Science Department, 4400 University Drive, Fairfax, Va 22030-4444

82. Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

83. Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47401

84. Alan George, Vice President, Academic and Provat , Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

85. Gene Golub, Computer Science Department, Stanford University, Staaford, CA
94305

86. Eric Grosse, AT&T Bell Labs 2T-504, Murray Hill, NJ 07974

87. John L. Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State University,
Ames, IA 50011-3020

88. Ann H. Hayes, Computing and Communications Division, Los Alamos National
Laboratory, Los Alamos, NM 87545

89. Michael T. Heath, National Center for Supercomputing Applications, 4157 Beck-
man Institute University of Illinois, 405 North Mathews Avenue, Wrbana, IL
61801-2300

90. John L. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

91. Charles J . Holland, Air Force OfEce of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

92. Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P. 0. Box 808, Livermore, CA 94550

93. Leah H. Jamieson, School of Electrical Engineering, Purdue University, West
Lafayette, IN 47907

94. Gary Johnson, Scientific Computing Staff, ER-7, Applied Mathematical Sciences,
Office of Energy Research, U.S. Department of Energy, Washington, DC 20585

95. Lennart Johnsson, Thinking Machines Corporation, 245 First Street, Cambridge,
MA 02142-1214

96. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

97. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Building,
Cornell University, Ithaca, NY 14853-3901

- 22 -

98.

99.

100.

101.

102.

103.

104.

105.

106.

109.

108.

109.

110.

111.

112.

113.

114.

115.

116.

Alan H Karp, IIP Labs RU-7, Hewlett-Packard Company, 1501 Page Mill Road,
Palo Alto, CA 94304

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,
WoUstQn, T X 79001

Michael Larigston, Department of Computer Science, University of Tennessee,
Knoxville, T N 37996-1301

Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

Robert L. Launer, Army Research Ofice, P. 0. Box 12211, llesearch Triangle
Park, NC 27709

E. D. Lazowska, Department of Computer Science and Engineering, Sieg Hall,
FR-35, University of Washington, Seattle, WA 98195

James E Leiss, Rt. 2, Box 1 4 X , Broadway, VA 22815

Ted Lewis, Research Director, Oregon Advanced Computing Trrst., 19500 NW
Gibbs Boulevard # l O l , Beaverton, OR. 97006

Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queer: Mary College, University of London, Mile En3 Road,
London E l 4NS, England

Ivo de Lotto, Dipartimento di Informatiea e Sistcmistica, Universitb Degli Studi
di Pavia, Via Abbiategrasso 209, 1-27100 Pavin, Italy

Ewing Lusk ~ Mathematics and Computer Science Division, Argonne National Lah-
oratory, 9700 South Cass Avenue, MCS 221 Argonne, KL 60439-4844

Allen c). Malony, Department of Computer and Information Science, University
of Oregon, Eugene, OR 97403

James hCcGraw, Lawrence Livermore National Laboratory, L-306, P. 0. Box 808,
Livermore, CA 94550

Paul C. hlessina, Mail Code 158-79, California Institute of Technology, 1231 E.
California Boulevard, Pasadena, CA 91125

Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

Richard Muntz, Computer Science Department, University of California at Los
Angeles, Los Angeles, CA 90024

Jacek Myczkowski, Thinking Machines Corporation, 245 First Street, Cambridge,
MA 02142

David Nelson, Director, Scientific Computing Staff, ER-7, Applied Mathematical
Scienees, Office of Energy Research, U S Department of Energy, Washington, DC
20585

Randolph Nelson, IBM, P.O. Box 704, Room H2-D26, Yorktown Heights, NY
10598

- 23 -

117. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA
94305

118. James M. Ortega, Department of Applied Mathematics, Thornton Hall, university
of Virginia, Charlottesville, VA 22901

119. Steve Otto, Oregon Graduate Institute, Department of Computer Sci. & Eng.,
19600 NW von Neumann Drive, Beaverton, OR 97006-1999

120. Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

121. Peter C. Patton, Special Consulting Services, Inc., 1990-A Christensen Avenue,
West St. Paul, MN 55118

122. David A. Poplawski, Department of Computer Science, Michigan Technological
University, Noughton, MI 49931

123. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, IL
61801

124. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

125. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National
Laboratory, Livermore, CA 94550

126. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

127. Diane T. Rover, 155 Engineering Building, Dept. of Electrical Engineering, Michi-
gan State University, E& Lansing MI 48824

128. Ahmed H. Sameh, Department of Computer Science, University of Minnesota, 200
Union Street S.E., Minneapolis, MN 55455

129. Joel Saltz, ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton,
VA 23665-522

130. Jorge Sanz, IBM Almaden Research Center, Department K53/802, 650 Harry
Road, San Jose, CA 95120

131. Robert B. Schnabel, Department of Computer Science, University of Colorado at
Boulder, ECOT 7-7 Engineering Center, Campus Box 430, Boulder, CO 80309-
0430

132. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet Field,
CA 94035

133. James L. Schwarzmeier, Cray Research, Inc., 900 Lowater Road, Chippewa Falls,
WI 54729

134. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

135. The Secretary, Department of Computer Science and Statistics, The University of
Rhode Island, Kingston, RI 02881

- 24 -

136. Charles L. Seitz, Department of Computer Science, California Institute of Tech-
nology, Pasadena, CA 92125

137. Giuseppe Sera,zzi, Dipartinmento di Scienze della Informazione, Universitb di Mi-
lano, Via Moretto da Brescia 9, I20133 Milano, Iialy

138. Kenneth C. Sevcik, Computer Systetras Research Institute, 10 King’s College Road;
University of Toronto, Toronto, Ontario ha5s 1A1, Canada

139. Margaret L. Simmons, Coiiipiitixag and Cornmiinkations Uivision, Los Alamos
National. Laboratoiy, LGS Alamm, NM 87545

140. Horst D. Simon, NASA Ames Research Center, Mail Stop T045-1, Moffett Field,
CA 94035

141. Tony Skjellum, Lawrence Livermore National Laboratory, L-316, P. 0. Box 808,
Livermore, CA 94550

142. Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattle,
WA 98103

143. Marc Snir, IBM T.J. Watson Research Center, Departmerit 420/36-241, P. 0.
Box 218, Yorktown Heights, NY 10598

144. Larry Snyder, Department of Coniputer Science and Engineering, FR-35, Univer-
sity of Washington, Seattle, WA 98195

145. Rick Stevens, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonnc, IL 60439

146. Steven Suhr, Computer Science Department, Stanford University, Stanford, CA
94305

147. Wei Pai Tang, Department of Computer Science, University of Waterloo, Water-
loo, Ontario, Canada N21 3G1

148. Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyori cedex 07, France

149. Mary Vernon, Computer Sciences Department, University of Wisconsin, 1210 W.
Dayton Street, Madison, WI 53706

150. Robert G . Voigt, National Science Foiindation, Room 417, 1800 G Street N.W.,
Washington, DC 20550

151. Micbacl D. Vcse, 107 Ayres Hall, Departnient of Computer Science, University of
Tennessee, Knoxville, T N 37996-1301

152. Phuong Vu, Cray Research, Inc., 19607 Franz Road, Houston, ‘I’X 77084

153-157. Thomas Wagner, Computer Science Departmefit, Vanderbilt University, Nashville,
T N 37235

158. Mary F. Wheeler, Department of Mathematical. Sciences, Rice University, P. 0. Box
1892, Houston, T X 77251

159. Andrew 13. White, Coiliputing Division, Los Alamos National. Laboratory, Los
Alarntrs,, NM 87545

- 25 -

160. John Zahorjan, Department of Computer Science and Engineering, Sieg Hall, FR-
35, University of Washington, Seattle, WA 98195

161. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, TN
37831-8600

162-171. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, TN 37831

