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Lawrence W. Dowdy 

Patrick H. Worley 

Abstract 

The execution profile of a distributed-memory parallel program specifies the number 

of busy processors as a function of time. Periods of homogeneous processor utilization are 

manifested in many execution profiles. These periods can usually be correlated with the 

algorithms implemented in the underlying parallel code. Three families of methods for 

smoothing execution profile data are presented. These approaches simplify the problem of 

detecting end points of periods of homogeneous utilization. These periods, called phases, 

are then examined in isolation, and their speedup characteristics are explored. A specific 

workload executed on an Intel iPSC/SSO is used for validation of the techniques described. 
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1. Introduction 

An important question in performance evaluation is - "how will code that exists on a. particular 

system behave in a different environment?" This question might be asked when adding a piece 

of hardware, such as a math coprocessor, a vector processor, more cache, or additional disk 

capacity. One might also consider the more complex problem of moving the code to a different 

type of hardware - perhaps from a conventional architecture to a RISC machine, or from a 

shazed-memory to  a distributed-memory multiprocessor. These constitute difficult modeling 

problems. 

A related problem is taking a parallel application, measuring its performance, and then pre- 

dicting how well it might utilize more processors. The problem is that of predicting scalability. 

Amdahl recognized that the portion of a parallel application that is inherently sequential limits 

the amount of gain that is possible by an unlimited number of processors [l]. More recently, 

lower and upper bounds have been obtained on both the speedup of an application and how 

efficiently additional processors may be used. Those results emphasize the importance of av- 

erage parallelism - the average number of busy processors through the life of the application 

[3]. The number of processors utilized as a function of time (called the parallelism profile) is an 

indicator of the inherent parallelism of an application [3], [16]. The parallelism profile assumes 

that the number of processors exceeds the maximum parallelism of the system. This approach 

to  predicting scalability is most natural in a shared-memory system where a task graph may 

be executed dynamically. In a distributed-memory environment, the placement of tasks and 

the number of processors in the system determine program behavior. Consequently, since re- 

assigning tasks to processors requires non-trivial overhead, determining the proper number of 

processors to assign to each application is a more reasonable thing to do when studying the 

behavior of an algorithm in a distributed-memory environment. 

The number of busy processors, as a function of time, given a fixed number of available 

processors is known as the execution profile of a system [9]. This study identifies and analyzes 

the phases of a parallel program that are expressed in the execution profile. The methodology 

is both descriptive and empirical. Attention is focused on the average parallelism of a program 

in a phase and on the variance within that phase. The execution signature1 is used a s  the basis 

for modeling the scalability of a phase in a parallel program [2], [14]. It is argued that it is 

often possible to  decompose a program into phases and study the performance of each phage 

independently. This is demonstrated for a specific parallel program. 

Identification and study of the properties of phases of a parallel program's execution is 

worthwhile for several reasons. For example, a large application must be cbeckpointed periodi- 

The execution signature of a parallel program is the rate of execution expressed 8s a function of the number 
of processors allocated to the program. Section 3.1 will extend the discussion of execution signatures. 
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cally to aid recovery in the event of processor failure. Phase boundaries, as defined in the next 

section, are natural checkpoints since nondeterminism in the system is minimal at these times. 

Also, it may be desirable to sypend the execution of a parallel application at checkpoints to 

run a higher priority application. It may be appropriate to restart the application on a different 

number of processors by reallocating processors between phases. If it is more efficient to run the 

application on a different number of processors from phase to phase, information about phase 

properties could be used in building an Q priori schedule off-line. This is particularly useful 

if the schedules are for real-time workloads. If a phase is identified as too slow, sequential, or 

unable to speedup adequately as more processors are added, then the corresponding code may 

be replaced. If a distributed program is to be repartitioned ( i e . ,  remapped to  a different set 

or number of processors), the repartitioning should be done between phases of execution. 

One difficulty in studying parallel applications is collecting information that is useful in 

building quantitative models without unduly perturbing the runtime behavior of the applica- 

tions. A system that is useful in this regard is PICL (Portable lnstrumeiited Communication 

- Library)[G], [7], [20]. PICL can generate execution trace information on demand, with thc 

volume and detail of the data controlled by the user. The data from PICL can be used to 

generate execution profiles, which are the object of this study. This study uses distributed code 

instrumented with PICL running on an Intel iPSC/860 hypercube system. 

Section 2 describes phases of execution and mechanisms for smoothing the execution profile 

of a parallel program. Section 3 applies the discussion of Section 2 to a specific application 

code. Section 4 discusses open problems and further applications of this type of analysis. 

2. Phases of the Execution Profile 

The notion of a phase of a program is natural in both sequential and parallel environments. For 

example, a software engineer might design a numerical application from the following abstract 

specification. 

Program Linear-Solve 

a. X t-- Read-Input file(BigProb1ern) 

b. LU-Decomposition-Algorithm(X) 

c.  Rack-Substitution-Algorithm(X) 

d. Write-Results(X, file(8igAnsiuer)) 

Of the specification, parts a and d are often sequential processes on multiprocessor systems, 

whereas part b may be highly parallelizable, and part c may be moderately parallelizable. (See 

[13] for a discussion of these algorithms and their scalability.) From a performance perspective 
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Figure 1: Idealized Execution Profile 

there are three problems: 1) minimizing the sequential bottleneck, 2) getting maximum advan- 

tage from a multiprocessor when the number of available processors is less than the maximum 

parallelism of the application code, and 3) efficiently distributing the workload when the num- 

ber of available processors exceeds the parallelism of the problem. Thus, the runtime behavior 

can be quite different within the different phases of an application. 

In this section the problem of identifying various phases of an application from its execution 

profile is considered. Each phase of a parallel program has specific properties that  distinguish 

i t  from other phases. The following definitions are given. 

Definition 1 (Stationary Phase). A stationary phase, P,, is asubsequence of the execution 

profile, P, that shares the same average parallelism and variance. 

Definition 2 (Transitional Phase). A transitional phase, Pt, is a subsequence of P that 

bridges two stationary phases. In other words, a transitional phase represents portions of the 

execution profile that constitute an abrupt change in P.  

Consequence 1. It  follows directly from definitions 1 and 2 that an ordered list of P, 's and 

Pt's, is a complete description of? (the execution profile). 

It is not always adequate to characterize the performance of a parallel code from decompositions 

of the execution profile into a sequence of stationary and transitional phases. Sometimes more 

complicated phase structures must be identified [18], However, the decomposition into station- 

ary and transitional phases is appropriate for many large scientific codes, especially those with 

an iterative structure. 

Figure 1 illustrates the intent of these definitions. Phases A, C, and E are designated as 

stationary phases, whereas phases B and D are transitional phases. In many applications, 

phases are bounded by abrupt changes in utilization. In some cases, abrupt valleys reveal 
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barrier synchronization2. In other cases, more shallow valleys denote changes in the underlying 

algorithm (e.g., such as going from step b to step e in the earlier example). Unfortunately, 

stationary phases separated by shallow (or less abrupt) transitional phases may not be clearly 

identifiable in the execution trace. This is because not all processors reach the transitional phase 

sirnoltaneously. (If they did, the transitional phase would be of length zero and two stationary 

phases would be adjacent.) Also, a high variance in the number of utilized processors makes 

phases difficult to identify. For our purposes, we treat and refer to high variance as noise. While 

it is  not noise in a traditional sense, it represents uninteresting detail that masks underlying 

trends in the execution profile. This interpretation motivates the techniques for extracting 

phase structure. 

The identification of phases in an execution profile is useful for a number of reasons, as 

indicated earlier. However, the problem of automatic phase identification is computationally 

expensive. Often there i s  no a priori knowledge about the number of phases present in an 

execution profile, and the measured data contains sufficient noise that identification based solely 

upon local information in P is not reliable. In this case, a simple search procedure is required. 

That is, a single phase in the execution profile is first assumed and some measure of goodness 

is determined. Then, two phases are assumed and a new measure of goodness is determined, 

etc. The proper number of phases is associated with the best goodness measure [18]. Finally, 

recognizing transitional phases and stationary phases effectively requires distinguishing between 

“transient” and “steady state” behavior in the system, which itself is a difficult task.  

While work is continuing on algorithms for the automatic identification of phases, the hu- 

man visual system i s  quite good at this task, particularly if the uninteresting high variance 

components have been removed. Since phase identification is just one step in a larger modeling 

effort that will probably never be completely automated, the modeler’s direct participation in 

the phase identification process is a natural option. In this context, the initial step in solving 

the phase identification problem is the removal of noise. A number of techniques involving 

polynomial fitting and approximation exist for filtering. This process of filtering is generally 

known as srnoothtng. Note that automatic techniques for phase identification often require 

that the data be smoothed first [ll]. Smoothing is also useful in other aspects of performance 

analysis [IO]. 

2.1. Smoothing 

Figure 2 illustrates an actual execution profile as measured ( i e . ,  no smoothing). If the noise 

in the execution profile is removed, visual identification of phases can be simplified. All the 

2These would be valleys in the execution profile that drop the parallelism to 1,  where only a single processor 
is utilized. 
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Figure 2: Sample Execution Profile with Distinct Phases 

execution profiles shown in this section will use the data described by Figure 2 as input. This 

particular application is from a parallel implementation of a program that solves the nonlinear 

shallow water equations on the sphere using the spectral transform method [19]. This program 

constitutes an algorithmic kernal of a spectral global weather model.3 The specifics of the 

parallel program are briefly described below. 

The spectral transform method used in this application code approximates the solution on 

both a tensor product grid representing physical coordinates and a triangular grid representing 

spectral coordinates. The computational kernal of the method is the transformation of the so- 

lution between the two representations, requiring both Legendre and Fourier transforms. The 

parallel implementation decomposes the two grids in such a way that all processors participate 

in a Legendre transform, but only one processor calculates any given Fourier transform. The re- 

sulting code is perfectly load balanced, with all inefficiencies due to the overhead o€ interprocess 

communication. 

Our experience is that Figure 2 is representative of most execution profiles in that they ex- 

hibit phases that are quite apparent visually, but that can be difficult to isolate mathematically. 

Smoothing is used to  help isolate the phases, both visually and algorithmically. 

Definition 3 (Smoothing). Smoothing is the process ofremoving noise from a sequence while 

preserving the coarse properties (in particular, transitional and stationary phases) of the original 

sequence. 

3The serial version of the program WAS provided by J. J. Hack at the National Center for Atmospheric 
Research. The distributed version was implemented by P. H.  Worley at Oak Ridge National Laboratory. 
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Determining which aspects of the execution profile are noise can be a subjective process. In 

order t o  smooth out the noise automatically, that subjective process must be made an objective 

one. One method is to make smoothing an issue of determining meaningful granularity. If small 

local minima and maxima are important to the expression of a function, then removing noise 

may be detrimental. From Definitions 1 and 2 it  is clear that small perturbations in the 

execution profile have little effect on the end points of a phase. Thus, a fairly coarse level 

of granularity is preferable in smoothing because it simplifies the problem when a fine level 

of granularity is not necessary. Numerous techniques are available to accomplish a suitable 

smoothing. Four cornputationally inexpensive approaches are presented 

2.1.1. Moving Averages 

A common technique for studying data with noise (or, more generally, any experimental data 

set) is the method of least squares. In the method of least squares, the data is approximated 

by a linear function that minimizes the sum of squares of the differences between the function 

and the data [15]. In fitting a line to a collection of data, the following two equations are 

simultaneoiisly satisfied [17]: 

Here, rn is the slope and b is the y intercept of the line to be fit t o  the n observed points (z-y 

pairs). 

In the context of smoothing, each data point is replaced by the value of the linear function 

that best fits the data in some small neighborhood. Without loss of generality, the local 

neighborhood of i;'s may be transformed to be [ -k ,  -k + 1, . . . , 0,. . . , k - 1, k ] .  Notice that 

this transformation reduces the two equations to a simpler form since now Q = 0. In order 

to smooth the point located at 0, it is necessary to solve for b in the above two equations. That 

is, 

n 

i = l  

which is the simple average of a neighborhood. Figure 3 shows the example data set smoothed 

using this method where the neighborhood size is 11. 

The approach of moving averages generalizes the linear least-squares fit. Any smooth func- 

tion may be approximated locally to an arbitrary degree of accuracy by a polynomial. The 
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Figure 3: Execution Profile Smoothed by Least Squares 

technique of moving averages exploits this fact by fitting 2k + 1 points of a measured data set 

with a polynomial. The polynomial is then used to predict the (k + smoothed data value. 

(See [SI for an introductory exposition on moving averages and trend.) Figure 4 shows the 

smoothed version of Figure 2 using a cubic to fit a neighborhood of 11 points from the data 

set. 

The moving averages strategy is a weighted average of neighboring points. Let j t  be the 

smoothed data value a t  t imet  in the execution profile. Let yt be the actual observed utilization 

in the execution profile. The execution profile shown in Figure 4 is constructed as the weighted 

average of the example data set by: 

2.1.2. Rounding 

If the phases to be identified are extremely stratified ( k e . ,  far apart in average parallelism), 

then it is useful to round the average utilization. For example, each point in a real-valued 

function may be rounded to the nearest integer or loth or looth integer ( i e . ,  to its nearest 

rounding value). Figure 5 illustrates the execution profile of Figure 2 where utilization has been 

rounded to the nearest whole number. This technique, as shown in Figure 5 ,  is of little help by 

itself if the variance within a phase exceeds the rounding value. It is more desirable in practice 
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Figure 5: Execution Profile Smoothed by Simple Rounding 
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Figure 6: Execution Profile Smoothed by Rounding and Averaging Neighborhioods 

to combine rounding with one of the other averaging techniques. Figure 6 combines rounding 

with moving averages. 

2.1.3. Piecewise Polynomial Fits 

Moving averages and rounding are both effective smoothing techniques for the example data 

set. However, since they use only local information, these techniques can sometimes smooth 

away important detail. In particular, a short transitional phase between stationary phases 

with similar mean and variance can be lost, leading to the merging of the three phases. An 

alternative is to calculate the optimal piecewise polynomial fit to the data, using a large number 

of pieces. In this approach, the data domain is partitioned into segments and the d a h  is fit by 

polynomials in each segment separately. Both the endpoints of the segments and the individual 

fits are chosen to minimize the error in the approximation. Since this is a global optimization 

process, the algorithm is more robust when identifying transitions. 

Calculating the piecewise polynomial that minimizes the least-squares error is prohibitively 

expensive. Since the endpoints of the segments, as well as the polynomials between the end- 

points must be calculated, a large nonlinear least-squares problem must be solved. Fortunately, 

there are inexpensive algorithms for approximating the least-squares solution that are quite ef- 

fective [4], [5].  A more robust solution is to calculate a piecewise polynomial that solves the 

segment approximation problem [12]. For this problem, the least-squares error between the data 

and the approximating function is calculated over each segment individually. The segments and 

fits are chosen to minimize this maximum piecewise error. This measure of the error is par- 
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Figure 7: Execution Profile Smoothed by a Piecewise Constant Fit 

ticularly suitable for the identification of phases in the processor profile, and a fast algorithm 

exists for computing the optimal fit [18]. 

Whereas, in moving averages, the amount of smoothing is determined by the size of the 

averaging neighborhood, the amount of smoothing when using a piecewise polynomial fit is a 

function of the number of pieces. For example, in the example data set there are 1157 data 

points. Thus, in a piecewise polynomial fit, using 105 pieces has similar smoothing properties 

to using an averaging neighborhood of 11 (since 1157/105 m 11). Figure 7 shows the 105-piece 

piecewise constant function fit to the example data set of Figure 2. 

The choice of which smoothing technique to use is data-dependent. For the execution profile 

used in this study, all four of the smoothing techniques discussed are effective. There are also 

many other smoothing techniques that could be used that are not discussed here. In the graphs 

and discussion that follow, the smoothing technique chosen is that of moving averages. 

2.2. Identification of Phases 

In this study, the identification of transitional phases and three special types of stationary 

phases are of interest. One special type of stationary phase is where utilization is  equal to 

the number of allocated processors and the variance in the utilization over the phase is 0. 

These stationary phases typically scale almost linearly. For example, doubling the number of 

processors decreases the length of the phase by half. This type of phase represents intervals of 

pure computation with no interfering communication. 

A second special type of stationary phase is where the average utilization is 1 ( i e . ,  only a 
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single processor is utilized) and the variance in utilization over the time interval is 0. These 

stationary phases correspond to the sequential portion of the parallel program. They represent 

intervals that exhibit no speedup as additional processors are allocated. The sum of the time 

periods of these stationary phases divided by the run time of the entire program is the fraction 

sequential of the program [l]. According to Amdahl’s law, a program can not speedup more 

than the inverse of the fraction sequential of the program. Amdahl’s definition of sequential 

is quite broad since a sequential portion of code could be arbitrarily short (e.g., the bottom 

of a transitional phase). Phases, as defined here, are typically longer. I t  is assumed that 

sequential code occurs over an entire phase. From a practical perspective, this is not a limiting 

assumption. 

The remaining stationary phases are considered to  be of the same type. However, each 

phase has different scaling properties. That is, as additional processors are allocated, each 

phase is characterized by its own speedup curve. These phases are characterized by their 

average parallelism and the variance in parallelism. In the next section, the program shown in 

Figure 2 is characterized by these two parameters for 8, 16, 32, and 64 processors. The use of 

average parallelism to characterize parallel programs is not new. Both [3] and [16] study the 

properties of these parameters thoroughly for use in scheduling and in studying efficiency. Our 

approach differs by considering subsequences of the execution profile and aggregating them to 

make speedup predictions for the entire program. 

Phase identification within a parallel program is important since phases appear to be asso- 

ciated with the parallel algorithm rather than with the number of processors allocated. That is, 

phases are often independent of the number of allocated processors. This implies that if one is 

able to associate a phase of the execution profile to some portion of the underlying algorithm, 

then it is possible to  identify the parts of the execution profile that  do not scale well, and 

replace them with algorithms that have better scaling properties. In the next section, speedup 

of phases is examined as the program is executed on a varied number of processors. Figure 8 

illustrates the smoothed execution profile for 8, 16, 32, and 64 processors for the algorithm 

described in Section 2. 

3. Speedup of Phases 

As noted earlier, the identification of transitional phases is difficult. I t  is generally true, however, 

that transitional phases occur between two stationary phases. I t  is also true, by definition, that 

transitional phases are relatively short in duration. The peaks and troughs of transitiaiial phases 

are easier to identify after smoothing. The approach taken in this study is to first identify the 

stationary phases that fully utilize the available processors. This can be done before smoothing. 

After smoothing using the moving averages technique, the peaks and troughs of the execution 
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Figure 8: Smoothed Execution Profile for 8, 16, 32 and 64 Processors 

profile are identified by ranking all local minima (maxima) by the average difference of each local 

minimum (maximum) with each data point in its neighborhood. The size of the neighborhood 

chosen depends upon the desired granularity. The local minima (maxima) with the highest rank 

are taken to be the troughs (peaks) of transitional phases. After the beginning and end points 

of stationary phases with full utilization and the peaks and troughs of the transitional phases 

are identified, the execution profile is then decomposed into phases. Phases are identified to 

begin at either a peak or trough of a transitional phase or at the end of a stationary phase with 

maximum utilization. Of course, the stationary phases with ~iiaximum utilization are retained. 

Using the same application discussed in the previous sections, phases were identified as just 

described. The identification was carried out  on PICL trace files of the application running on 

8, 16, 32, arid 64 processors. A total of 9 stationary phases were identified in each execution 

trace. The phases identified are shown in Figure 9. The phases are labeled, in order, PI through 

Pg. The lengths of those phases, their mean utilizations, and their variance in utilization are 

tabulated in Table 1. Of the nine phases identified, phases P I ,  P.2, and P7 have similar behavior. 

The same is true for phases P3, P,, arid Pg. The similarities in each of those groups can be 

seen in the mean utilizations and variance. These similarities become more obvious as the 

number of processors is increased. Phases P,, P,, and Ps are the phxses of full utilization. 
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Figure 9: Phases Identified in a Smoothed Execution Profile 

There is a repeating pattern whose first occurrence is the sequence of phases PI, P,, and P3. 

Not surprisingly, this repeating pattern can be associated with the underlying structure of the 

parallel shallow water equation code. 

3.1. Execution Signatures 

Having identified the phases in this application, the speedup properties of the phases were 

examined. The characterization of speedup chosen for this study was the execution signature 

PI, ~ 4 1 .  

Definition 4 (Execution Signature). The execution signature of a (phase of a) parallel 

program is a function whose abscissa is the number ofprocessors allocated, and whose ordinate 

is the rate at which the program executes in the absence of other programs. 

The runtime of the program may be obtained directly from the execution signature since runtime 

is the reciprocal of rate. The functional form of the execution signature Ei of parallel program 

i used is: 

where pi is the number of processors assigned to i .  The parameters Hi1 and kia are specific to 

the program and architecture. The functional form in Equation (1)  passes through the point 

(0,O) and is concave increasing as a function of p i .  As more processors are allocated, programs 
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Phase 
PI 

P2 
P.7 
P4 

‘ps 
p6 
P7 

F8 
Pa 

217 102 48 

430 271 184 

I_- 

Actual . Pred. 
149 142 
26 24 

136 118 
144 141 
25 23 

137 119 
143 142 
26 23 

133 124 

.- 64 8 16 32 64 
149 7.85 15.29 28.70 53.74 
26 8.00 16.00 32.00 64.00 

136 7.71 15.16 27.60 45.78 
144 7.89 15.33 28.81 54.03 
25 8.00 16.00 32.00 64.00 

137 7.72 15.17 27.55 45.76 
143 7.88 15.32 28.81 54.00 
26 8.00 16.00 32.00 64.00 

133 7.77 15.18 27.41 46.07 
919 7.85 15.38 28.65 51.21 

-_I 

Variance i n  Utilization 
Processors 

8 16 32 64 
0.39 0.84 2.17 6x 
0.00 0.00 0.00 0.00 
0.50 0.61 1.52 4.52 
0.31 0.74 1.95 5.16 
0.00 0.00 0.00 0.00 
0.52 0.60 1.28 4.32 
0.40 0.82 1.79 5.11 
0.00 0.00 0.00 0.00 
0.51 0.61 1.34 4.22 
0.40 0.71 2.12 7.26 

I___ 

____..I__ 

Table 1: Length, Mean Utilization, and Variance for 9 Phases 

I Runtirne(O.5rns) 
Error 
73%- 

7.7% 
13.2% 
2.1% 
8.0% 

13.1% 
0.7% 

11.5% 
6.8% 

‘Table 2: Actual and Predicted Runtimes and Error on 64 Processors 

execute faster but incur added communication overhead and synchronization costs. Forms 

other than Equation (1) are possible as long as they possess these properties [14]. Using the 

reciprocals of the runtimes of the phases identified above for 8, 16 and 32 processors, execution 

signatures of the above form were calculated from a linear least-squares fit. (It is apparent from 

Table 1 that phases ’P,, Ps, and Pg exhibit speedup behavior that is different from the other 

phases. For these three statioriary phases with full utilization a linear execution signature was 

calculated, again using a least-squares fit.) Using these execution signatures, a prediction of 

the runtimes of all nine phases on 64 processors can be made. Figure 10 presents the actual 

execution signatures of each phase as solid lines. ‘The dashed segment in each graph represents 

the predicted values for 64 processors. The predicted runtimes, along with the actual runtimes 

and the error, can he found in Table 2. 

4. Conclusions 

The execution profile of a distributed-memory multiprocessing system illustrates the iiumber of 

busy processors in an application as a function of time. This study has observed that, within 
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the execution profile, phases exist that are periods of roughly uniform processor aclivity sepa- 

rated by abrupt transitions in processor utilization. These phases of uniform processor activity 

(stationary phases) may be studied in isolation with respect to their speedup behavior. The 

resulting analysis may be aggregated, providing information regarding the speedup properties 

of the parallel application as a whole. 

There are a number of potcntial applications for both the software designer as well an 

adaptive operating system. For example, phases that are identified as those that scale very 

poorly may indicate portions of the program that should be redesigned. For an operating 

system, if remapping a program to a different number of processors is feasible, the execution 

profile identifies times iu the application when remapping should occur ( 2 .  e., during transitional 

phases). One can envision taking the four execution profiles of Figure 8, rearranging phases 

and constructing a new (reconfigurable) application that increases the efficiency of the system's 

processors. The identification of transitional phases also suggests times that the operating 

system might checkpoint at minimal cost (since the fewest number of busy processors would be 

interrupted). 

One extension of this research is to compare the execution profile against communication 

volume as a function of time and attempt to detect phases given two dimensions instead of just 

one. This approach has been used successfully in a similar context [ll]. Another extension is to 

incorporate variance into the execution signature as a method to minimize error in predicting 

phase speedup. 
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