

........,. __ -.._ i_____.. __...- ___ __.,. .

-. . .., ___ ___

ORNL/ TM- 12 126

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A LOOK AT SCALABLE DENSE LINEAR ALGEBRA LIBRARIES

Jack J . Dongarra tf
Robert van de Geijn t

David W. Walker 5

1 Ilepartment of C:omputer Science
107 Ayres Hall
Knowville, T N 37996-1301

University of Texas
Austin, T X 78712

Oak Ridge National Laboratory
P.O. Box 2008, Rltlg. 6012
Oak Ridge, T N 37831-6367

t Department of Computer Sciences

f Mathematical Sciences Section

Date Published: July 1992

Research was supported by the Applied Mathernatical Sciences Re-
search Program of the Office of Energy Research, U.S. Department
of Energy, and by the Defense Advanced Research Projects Agency
under contract DAALOS-91-C-0047.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

US. UEPAKTMENT OF ENERGY
under Contract No. DE-AC05-840It21400

3 V 4 5 6 0 3 6 5 5 2 5 7

Contents

1 Introduction . 1
2 DataAllocation . 1
3 AnExample . 7

3.1 LU factorization . 7
3.2 Experiments on the Intel Delta . 9

4 Programmability . 13
5 Conclusions . 14
6 References . 15

A LOOK AT SCALABLE DENSE LINEAR ALGEBRA LIBRARIES

Jack J. Dongarra

Robert van de Geijn

David W. Walker

Abstract

We discuss the essential design features of a library of scalable software for performing
dense linear algebra computations on distributed niemory concurrent computers. The
square block scattered decomposition is proposed as a flexible and general-purpose way
of decomposing most, if not all, dense matrix problems. An object-oriented interface to
the library permits more portable applications to be written, and is easy to learn and use,
since details of the parallel implementation are hidden from the user. Experiments on the
Intel Touchstone Delta system with a prototype code that uses the square block scattered
decomposition to perform LU factorization are presented and analyzed. It was found that
the code was both scalable and efficient, performing at about 14 GAop/s (double precision)
for the largest problem considered.

- v -

1. Introduction

Advanced parallelizing compilers may one day be capable of generating efficient parallel code

for MIMD distributed memory concurrent computers (or multicomputers) from sequential code.

However, in the interim, the development of scalable libraries is a key component in the devel-

opment of a software environment that will allow the computational power of multicomputers

to be exploited, and made available to a broader community of users. Over the next few years

we envisage such libraries being developed in a number of areas, and that they will be accessible

through a variety of interfaces. This paper focuses on issues impacting the design of scalable

libraries for performing dense linear algebra on multicomputers. However, we believe that many

of the issues discussed here are applicable to scalable libraries in other areas, and, indeed, it is

important to impose some uniformity upon the design of different libraries.

In the next section we discuss data allocation, that is, how the data items in a parallel

program are laid out in the hierarchical memory of the concurrent computer. The block scat-

tered decomposition will be shown to encompass a large class of decompositions, and to provide

sufficient flexibility for essentially all dense linear algebra computations. In Section 3 we use

the right-looking variant of the LU factorization algorithm for dense matrices to demonstrate

the block scattered decomposition for a specific well-known example. A brief discussion of the

run-time analysis of the algorithm is given, together with results of experiments running at

up to 14 Gflop/s on the Intel Touchstone Delta system. Section 4 deals with programmability

and implementation issues, and will discuss an objected-oriented approach to scalable libraries.

Conclusions are presented in Section 5.

2. Data Allocation

The layout of an application’s data within the hierarchical memory of a concurrent computer

is critical in determining the performance and scalability of the parallel code. On shared mem-

ory concurrent computers (or multiprocessors) there are at least three levels to the memory

hierarchy: the shared memory, and each processor’s cache and registers. On such machines

efficient codes seek to maximize the cache hit ratio, i.e., to avoid having to reload the cache too

frequently. The software package LAPACK [1,8] does this by casting linear algebra computa

tions in terms of block-oriented, matrix-matrix operations known as the Level 3 BLAS [10,11]

whenever possible. This approach generally results in high cache hit ratios, without requiring

any explicit cache manipulation by the application programmer. One of the aims of our work

is to investigate a distributed memory version of LAPACK.

There are also levels to the memory hierarchy on multicomputers: the local and nonlocal

(remote) memory. In addition, each processor may have a hierarchical memory. Each processor

has its own local memory, and the nonlocal memory for a given processor is simply the local

- 2 -

memory of the other processors. A processor plus its local memory and other closely coupled

hardware is refered to as a node The nodes of a multicomputer are connected via a commu-

nication network; there is no physical shared memory. There are two important differences

between multiprocessors and multicomputers. The first is that multiprocessors are generally

faster than multicomputers in transfering data between two layers of the memory hierarchy. In

particular, MIMD multicomputers typically incur a high comiriunication latency. The second

difference is that while busbased niriltiprocessors usually have no more than 20 or 30 pro-

cessors, multicomputers typically have several hundred to a few thousand processors. Thus

the processors of a multiprocessor are large grain size and closely coupled, whereas those of

a multicomputer are of smaller grain size and are less closely coupled. This means that the

programming techniques and algorithms that are successful 011 multiprocessors may not result

in scalable codes on multicomputers.

On a multicomputer the application programmer is responsible for distributing (or decom-

poszng) the data over the nodes of the concurrent computer. A vector of length M may be

decomposed over soiiie set of Np nodes by first arranging the nodes in a linear sequence, and

then assigning the vector entry with global index m (where 0 5 m < M) to the pth node in

the sequence (0 5 p < N p) , where it is stored as the ith entry in a local array. Thus the

decomposition of a vector can be regarded as a mapping of the global index, 771, to an index

pair, (p , i) , specifying the node location and the local index.

For matrix problems one can think of arranging the nodes as a P by Q grid. Thus the grid

consists of P rows of nodes and Q columns of nodes, and Np = PQ. Each node can be uniquely

identified by its position, (p , q) , on the node grid. The decomposition of an M x N matrix

can be regarded as the tensor product of two vector decompositions, p and v. The mapping

p decomposes the M rows of the matrix over the P rows of nodes, and v decomposes the N

columns of the matrix over the Q columns of nodes. Thus, if p (r n) = (p, i) and v(n) = (q , j)

then the matrix entry with global index (m, n) is assigned to the node at position (p , q) on the

node grid, where it is stored in a local array with index (i , j) .

Two common decompositions are the block and the scattered decompositions [7,18]. The

block decomposition, A , assigns contiguous entries in the global vector to the nodes in blocks.

where L = [M / P] . The scattered decomposition, CT, assigns consecutive entries in the global

vector to different nodes,

u(m) I= (m mod P, Lm/PJ) (2)

Figures 1 and 2 show examples of a 10 x 10 matrix decomposed over one and two-dimensional

- 3 -

processor meshes. Various combinations of block and scattered decompositions are shown.

Two features that are desirable in a parallel subroutine library are;

1. a large degree of decomposition independence, so that a subroutine will work correctly

for a large class of decompositions of the input data,

2. a set of communication routines for transforming between different decompositions.

These components give the application programmer the option of changing the decomposi-

tion, if necessary, so that a given phase of the computation can be performed optimally, Le.,

with the least concurrent overhead. Alternatively, the programmer may choose to leave the

decomposition unchanged and perform the computation suboptimally, thereby avoiding the

overhead associated with changing the decomposition. The important point here is that the

software should be sufficiently flexible to permit the programmer to make the choice, rather

than imposing a particular method.

Decomposition-independence could be achieved by having the subroutine contain a condi-

tional statement, with each clause corresponding to a different type of decomposition. A more

elegant and, we believe, better approach is to use a block scattered decomposition that is able

to reproduce all the decompositions in Figs. 1 and 2, except for those shown in Figs. 2(b) and

(c). In the block scattered approach blocks of r elements are scattered over the nodes instead

of single elements. The mapping of the global index, m, can be expressed as a triplet of values,

p(m) = (p , t , d) , where p is the node position, t the block number, and i the local index within

the block. For the block scattered decomposition we may write,

where T = r P . It should be noted that this reverts to the scattered decomposition when

r = 1, with local block index i = 0. A block decomposition is recovered when r = L , with

block number t = 0. The block scattered decomposition in one form or another has previously

been used by Saad and Schultz [20], Skjellum and Leung [all, Dongarra and Ostrouchov [9],

Anderson et al. [2], Ashcraft [4,5], Dongarra and van de Geijn [15], van de Geijn [22], and Brent

161, to name a few. The block scattered decomposition is one of the decompositions provided

in the Fortran D programming style [17].
A5 discussed above, the block scattered decomposition of a matrix can be regarded as the

tensor product of two block scattered decompositions, p, and v,. This results in scattered

blocks of size r x s. We can view the block scattered decomposition as stamping a P x Q

processor grid, or template, over the matrix, where each cell of the grid covers T x s data items,

and is labeled by its position in the template. In Table 1 we give the values of the block size

r x s that give the same results as the block and scattered decompositions in Figs. 1 and 2.

(a) p block, P-4, Q=1

- 4 -

@) p scattered, P4, Q=1

(c) v block, P=l, Q=4 (d) v scattered, P=l, Q=4

Figure 1: These 4 figures show different ways of decomposing a 10 x 10 matrix over a one-
dimensional processor mesh. Each cell represents a matrix entry, and is labeled by the position,
(p, q) , in the node grid of the node to which it is assigned. To emphasize the pattern of decom-
position the matrix entries assigned to the node in the first row and column of the node grid
are shown shaded. Figures (a) and (b) show block and scattered row-oriented decompositions,
respectively, for 4 nodes arranged as a 4 x 1 grid (P = 4, Q = 1). In figures (c) and (d) the
corresponding column-oriented decompositions are shown (P = 1, Q = 4).

- 5 -

(a) p. block, v block, P=Q=4

(c) p. scattered, v block, P = Q 4

(b) p block, v scattered, P=Q=4

2,o 2,l + 3,O 3,l

2,3 2,O 2,l

3,3 3,O 3,l
0,3 0,l

(d) p scattered, v scattered, P=Q=4

Figure 2: These 4 figures show different ways of decomposing a 10 x 10 matrix over a two-
dimensional processor mesh of 16 nodes arranged as a 4 x 4 grid (P = Q = 4).

- 6 -

-
P

4
4
1

1

4
4
4
4

-

-

I-

Q -
1

1

4
4
4
4
4
4 -

__
r

3

1

10

10
3

3

1

1

-

-

I

S -
10

10

3

1

3

1

3

1 -

r = s

Table 1: Block-scattered decomposition parameters needed to reproduce the block and scattered
decompositions in Figs. 1 and 2. The last column gives the block size when only square blocks
are used. Decompositions 2(b) and 2(c) cannot be generated with square blocks.

The block and scattered decompositions may be regarded as special cases of the block scattered

decomposition. In general, the scattered blocks are rectangular, however, the use of nonsquare

blocks can lead to complications. For example, in the LU factorization algorithm, described in

the next section, a triangular solve is needed to update submatrix C. If nonsquare blocks are

used either the triangular matrix will extend over more than one column of blocks (if r > s),

or the submatrix C will extend over more than one row of blocks (if r < s). Thus, nonsquare

blocks will result in additional software and cornrnunication overhead. We, therefore, propose

to restrict ourselves to the square block scattered (SBS) class of decompositions. The column

and row decompositions can still be recovered by setting P = 1 or Q = 1, as shown in Table

1, however, the decompositions shown in Figs. 2(b) and (c) cannot be generated with an SBS

decomposition.

So far we have only considered how to map matrix elements onto the node grid. In decom-

posing a problem we must also specify how locations in the node grid are mapped to physical

nodes. Common mapping functions are the natural mapping,

and the binary-reflected Gray code mapping,

A (i , j) = G(i) + G(j) . Q (5)

where G(zj denotes the Gray code of z, and i = 0 , 1 , . . . , Q - 1, j = O , l , . . . , P - 1. On most

current multicomputers the cost of communicating between any two nodes is weakly dependent

of their separation in the topology of the communication network. Hence the choice of mapping

should not impact perforrnance very much, 'The subroutine library should support the natural

- 7 -

and Gray code mappings, as well as any function, A, supplied by the application programmer.

3. An Example

In this section, we discuss the scalability of the LU factorization algorithm when it is imple-

mented using the block scattered decomposition. First, we describe the algorithm. Next, we

summarize the results from an analysis of the time complexity. Data from experiments on the

Intel Touchstone Delta system are used to further demonstrate the scalability.

3.1. LU factorization

To obtain our parallel implementation of the LU factorization, we started with a variant of the

right-looking LAPACK LU factorization routine. It can be briefly described w follows: Assume

the LU factorization has proceeded so that all but the labeled portions of the matrix have been

updated:

where B E RMxr, C E RrX(”-‘), and E f R(M-r)x(M-r). During the next step, the right-

looking algorithm factors panel B, pivoting if necessary. Next, the pivots are applied to the

remainder of the matrix. Blocks C and E now become blocks and E, a triangular solve

updates submatrix e, and a rank r update updates submatrix E. This process continues

recursively with the updated matrix [12].

Turning now to the distributed memory implementation, m u m e the matrix is distributed

among a P x Q grid of nodes using a block scattered decomposition, with block size r x r. For

our analysis, we assume that communicating a block of k floating point numbers between any

two nodes requires time a + kp, where a and /3 represent the communication latency and the

inverse of the bandwidth, respectively. In addition, the time for a floating point operation is

given by 7.

The above described process proceeds as follows:

(fB) The column of nodes that holds B collaborates to factor this panel. Since there is

relatively little to compute (the panel is typically narrow), and communication is restricted

to short messages, the contribution of this operation to the run-time is almost entirely due

to communication latency. We will ignore the other costs. For each column, this consists

of log(+ for determining the pivot row, a for swapping pivot rows of this panel, and

- 8 -

another log(P)a for broadcasting the pivot row. (Possible optimization: since this is

latency bound, a clever implementation would combine the messages for determining the

pivot row, and distributing it within the column of nodes that hold the panel.)

e (bp) Pivot information is distributed to all other columns of nodes. Approximate con-

tribution to run-time: (Y per panel.

0 (p) Columns of nodes collaborate to pivot the remainders of the matrix rows. Approx-

imate contribution to run-time:

for panel k = 1,. . . , N / r

0 (bB) Factored panel B is distributed within rows of nodes. Approximate contribution to

run-time:

2(a + [(N - (k - l) r) /P l rP) (7)

for panel k = 1 , . . . , N / r . (Since this operation can be pipelined around the ring, over-

lapping with computation, there is no log(&) term here.)

e (b c j The row that holds performs the triangular solve, the results of which are dis-

tributed within columns of nodes. Approximate contribution:

for panel k = 1,. . . , N / T .

e (uE) Most parallelism is derived from updating E. Approximak contribution:

for panel k = 1 , . . . , N / r .

The total run time is then given by

where the different terms come from summing over all panels the different contributions given

above.

Since the total computation time of the algorithm on a single processor is given by TI *
(2 / 3) N 3 r , the efficiency attained, E = T1/pTtOt, as a function of the various parameters, can

-9-

be shown to be of the form

where c1-6 depend only on r .

Let us start by considering the block column scattered decomposition, Le., P x Q = 1 x p .

Then, for reasonably large N,

In the limit, N must grow with p to maintain efficiency. Notice that the N2 cannot be readily

ignored, even for N = 0(103), since a is several orders of magnitude greater than y for many

multicomputers. This kind of scalability poses a problem: Memory requirements grow with N2
and hence eventually N cannot be increased to maintain efficiency. A similar analysis can be

done for row distributions.

By contrast, consider a general P x Q grid of nodes. Assume the ratio Q/P is kept constant

as p is increased, i.e., P = u~ and Q = v f l , where u and v are constants. Then PIN and

& / N become u f i / N and v f i / N , respectively. If log(P) is ignored, since it is a slowly growing

function, N 2 must grow with p in order to maintain efficiency. If log(P) is not ignored, it can

be argued that once P is sufficiently large (e.g., greater than 4) performance will degrade slowly

with p.

3.2. Experiments on the Intel Delta

In this section, we discuss results from experiments conducted on the Intel Touchstone Delta

that illustrate the scalability of the LU factorization.

The Intel Touchstone Delta system is a distributed-memory, message-passing multicomputer

of the Multiple Instruction Multiple Data (MIMD) class [19]. It consists of 520 i860-based nodes,

interconnected via a communications network having the topology of a two-dimensional rectan-

gular grid. The interconnection network employs a Mesh Routing Chip (MRC) at each system

node. The peak interprocessor communications bandwidth is * 30 MBytes/s in each direction.

The system supports explicit message-passing, with a latency of w 75 microseconds via worm-

hole routing using a packet-based protocol. Interconnect blocking is minimized by interleaving

packets associated with distinct messages that need to traverse the same interconnect path.

There are a number of issues that complicate a direct comparison of our analytical estimates

and observed performance. First, certain optimizations can be done to improve the algorithm

given in Section 3 [22], details of which go beyond the scope of this paper. Second, the parameter

7 is affected by the size of the data being manipulated: computation at different stages involves

- 1 0 -

DELTA @ r e d i d)

PROBLEM SUE, N x104

Figure 3: Total predicted performance for various p as a function of the problem size N .

PROBLEM SIZE, N XI04

Figure 4: Total observed performance for various p as a function of the problem size N .

- 11 -

30

...............
Nlsqrt(p) = loo0

30 -
': -.-.-.-.- - *.- _._,. 'I.--

...... Nkr!Lpl.=.m

ji
:. . : -. -. Nlsqrt(p) = loo0 .. , ..

"0 100 200 300 400 500

NUMBER OF NODES, p

10

5 -

0-

Figure 5: Predicted performance per node as the number of nodes p varies. Different curves
correspond to problem sizes increased so that N 2 / p is constant.

-

,

Figure 6: Performance per node attained as the number of nodes p varies.

- 12 -

MASSIVELY PMALLEL LEVACK BEN-

35c-1
DELTA

, O b ------- _--

NCUBE"2

I
0 20 40 60 80 100 120 140 160 180 200

NUMBER OF NODES, p

Figure 7: Performance per node attained for the LINPACK benchmark by various parallel
architectures as the number of nodes p varies.

Level 1, 2, and 3 BIAS, which yield different performance depending un the size of the data

being manipulated. Finally, the blocksize 9- and grid size P x Q are chosen so the performance

of the BLAS is maximized without creating unreasonable idle time due to load inbalance. This

leaves us to investigate if the predicted trends can be observed in practice.

In Figs. 3-4, we report the predicted and observed performance of the LU factorization for

different numbers of nodes when the problem size N is varied. For the predicted performance,

cy = lOOpsec, j3 l p e c (8 Mbytes/sec bandwidth), and y = 29nsec (34 MFLOPS per node)

where used. Communication

overhead is somewhat increased by our code.) The grid sizes were experirrientally determined

to be optimal for large problem sizes. As the problem size increases, performance improves.

The results compare favorably with the peak performance that can be attained for this type of

problem on the Delta.

(These correspond roughly to what we observed in practice.

'rhe predicted degradation of performance wheu N/Jp is held constant is illustrated in

Fig. 5. This trend is also observed in practice, a3 illustrated in Fig. 6. In these figures, we

report efficiency a? performance (in MFLOPS) per node.

The LU factorization is at the core of the LINPACK benchmark. This benchmark mea-

sures the performance of a given computer while performing a dense linear solve. A typical

- 1 3 -

implementation starts by factoring the matrix, followed by triangular solves. Results from

implementations on various parallel architectures are reported in [13]. To illustrate that the

predicted trends can be observed on other parallel computers as well, we report performance

per node in Fig. 7. While there is a clear incentive to fill the memory with the largest possible

problem, thereby automatically increasing N 2 roughly with p , the data made available to us did

not in all cases include problem sizes that scaled as nicely as those used for Fig. 6. Although

data was available for an NCUBE2 up to size 1024, and for the Fujitsu and Delta up to size

512, we concentrate on the more interesting range of machine sizes in this figure.

Several observations can be made: Both the NCUBE2 and the Fujitsu are based on rel-

atively slow processors. This decreases the ratios a/7 and a / P , thereby reducing the effects

of communication overhead. Moreover, the performance of the BLAS on these machines is

less affected by the size of the problem. All other machines are based on the same processor:

the Intel i860. The curve for the Meiko follows the predicted trend, except that the last data

point (for 62 nodes) is for a much smaller problem size than is required to keep N 2 / p constant.

At first glance, the efficiency attained by the Alliant appears to improve with the number of

nodes, defying the results of our analysis. Moreover, when looking at the raw data, the problem

sizes actually grow slower than required by our analysis. This indicates that there is a lower

order term that affects performance for small problem sizes. Indeed, it is reportedly due to an

inefficient triangular solve algorithm used in this implementation.

4. Programmability

Programmability will be used here to refer to a number of features of the software environment

concerned with software maintenance and usage. Programmability covers the flexibility, range

of functionality, portablility, and ease of use of some software component. From an application

programmer’s point of view, the main factor that will determine how easy it is to learn and use

the proposed subroutine library will be the interface to the subroutines. Clearly, this interface

must pass the appropriate information about the decomposition and layout of the data in

memory to the subroutine. This could be done in three ways:

1. by only allowing one type of decomposition for each subroutine so that different sub-

routines must be called for different decompositions. This avoids having to specify the

decomposition in a lengthy argument list, but makes maintaining and porting the sub-

routine library rather tedious.

2. have a single subroutine handle all possible different decompositions and pass the decom-

position information via the argument list. This can result in long argument lists.

- 14 -

3. use an object-oriented approach in which a matrix is actually a data structure containing

the data itself (or pointers to it), plus all the information necessary to fully specify the

decomposition. This allows a single subroutine to handle all decompositions, and avoids

a long argument list. This approach i s the most elegant and conceptually simplest for

the application programmer. It is rather more difficult to implement than the other two

approaches.

The object-oriented approach allows details of the parallel implementation to be hidden

at a low level of the software. Ideally, all communication would be hidden below the level

of the R I M routines. In the prototype parallel dense linear algebra library currently under

development all interprocessor communication takes place explicitly at the level of the parallel

linear algebra routines through calls to a communication library, the LACS routines [3,16,14].

Thus, currently the sequential BEAS routines, together with the LACS, are the building blocks

used to build higher level library routines, such as LU and QR factorization.

In addition to a set of subroutines for performing matrix computations the proposed library

will also contain routines for performing communication tasks. Such tasks will include global

changes to the decomposition, such as performing a matrix transpose, and replicating parts of

a matrix over groups of nodes. This latker type of communication is similar to the SPREAD

routine in Fortran 90 [8], and will allow, for example, row and colurnns of a matrix to be

communicated across the machine. These LACS could also be given an object-oriented style

of interface. In fact, some of the array intrinsic functions of Fortran 90, such as SPREAD,

CSEIIFT, arid EOSHIFT, could be included in the LACS.

Other utility routines will also be provided. One set of assignment routines will be used to

initially specify the decomposition, and another set of inquiry routines will provide a means

of extracting information about the current decomposition. These inquiry routines will allow

application programmers to develop modular subprograms that are fully compatible with our

linear algebra library.

5 . Conclusions

The square block scattered decomposition (SBS) is a practical and general-purpose way of

decomposing dense linear algebra computations. In problems, such as LTJ factorization, in

which rows and/or columns become inactive as the algorithm progresses, the SBS decomposition

provides good load balance. A t the same time it reduces communication latency since fewer

messages need to be sent than in the nonhlocked case (T = 1). It is possible to regard each of the

blocks as a distinct process, so the SBS deconiposition, in effect, overdecomposes the problem.

The resultant parallel slackness could then be exploited by overlapping communication and

computation. This might be a viable approach on future machines that support multithreading

- 1 5 -

in the operating system kernel, or in hardware. However, on currently available machines

the communication latency is probably too high to make it worthwhile, although our general

approach should make it easy to exploit overdecomposition in the future.

The LU factorization timings presented in Section 3 show that the SBS decomposition results

in scalable and efficient code, attaining a speed of about 14 Gflop/s on the Intel Touchstone

Delta system for the largest problem considered.

We propose an object-oriented interface to the library routines, in which the objects are

matrices that include pointers to both the matrix data and the decomposition. With this

approach all interprocessor communication takes place within the Level 3 BLAS routines, or

within the Linear Algebra Communication Subprograms (LACS), which are provided to perform

common communication tasks. The user is largely insulated from the details of the parallel

implementation, making applications more readily portable, and easier to develop.

Acknowledgements

This research was performed in part using the Intel Touchstone Delta System operated by

the California Institute of Technology on behalf of the Concurrent Supercomputing Consor-

tium. Access to this facility was provided by the California Institute of Technology and Intel

Supercomputer Systems Division.

6. References

[l] E. Anderson, Z. Bai, C. Bischof, J . Demmel, J . Dongarra, J . DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, and D. Sorensen. Lapack: A portable linear algebra library

for high-performance computers. In Proceedings of Supercomputing '90, pages 1-10. IEEE

Press, 1990.

[2] E. Anderson] A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and

R. van de Geijn. LAPACK for distributed memory architectures: Progress report. In

Parallel Processing f o r Scientific Computing, Fifth SIA M Conference. SIAM, 1991.

[3] E. Anderson, A. Benzoni, J . Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and

R. van de Geijn. Basic Linear Algebra Communication Subprograms. In Sizlh Dis-

tributed Memory Computing Conference Proceedings, pages 287-290. IEEE Computer So-

ciety Press, 1991.

[4] C. C. Ashcraft. The distributed solution of linear systems using the torus wrap data

mapping. Engineering Computing and Analysis Technical Report ECA-TR- 147, Boeing

Computer Services, 1990.

- 16 -

[5] C. C. Ashcraft. A ta?tonamy of distributed dense LU factorization methods. Engineering

Computing and Analysis Technical Report ECA-TR-161, Boeing Computer Services, 1991.

[6] R. Brent. The LINPACK benchmark on the AP 1000: Preliminary report. In Proceedings

o f t h e 2nd CAP Workshop, NOV 1991.

[7] E. F. Van de Velde. Data redistribution and concurrency. Parallel Cornpuiing, 16, Decem-

ber 1990.

[8] J . Demmel, J . J . Dongarra, J . Du Croz, A. Greenbaum, S. Hammarling, and D. Sorensen.

Prospectus for the development of a linear algebra library for high performance computers.

Technical Report 97, Argonne National Laboratory, Mathematics and Computer Science

Division, September 1987.

[9] J . Dongarra and S. Ostrouchov. LAPACK block factorization algorithiris on the Intel

iPSC/860. Technical Report CS-90-115, University of Tennessee at Knoxville, Computer

Science Department, October 1990.

[lo] J . J . Dongarra, J . Du Croz, S. IIamniarling, and I . Duff. A set of level 3 basic linear

algebra subprograms. A CM Transactions on Mathenwlical Soft,zuare, 16(1):l-17, 1990.

[ll] J . J . Dongarra, I. Duff, J . Du Croz, and S. Hammarling. A set of level 3 basic linear

algebra subprograms. A CM TOMS, 16:l-17, March 1990.

[la] J . J . Dongarra, I. S. Duff, and D. C. Sorensen II. A. van der Vorst. Solving Linear Systems

on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1990.

[13] Jack J . Dongarra. Performance of various computers using standard linear equations

software Techiiical Report CS-89-85, University of Tennessee, October 1991.

[14] J.J. Dongarra. Workshop on the BLACS. LAPACK Working Note 34, Technical Report

CS-91-134, University of Tennessee, 1991.

[15] J.J. Dongarra and R.A. van de Geijn. Reduction to condensed form for the eigenvalue

LAPACK Working Note 30, Technical problem on distributed memory architectures.

Report CS-91-130, University of 'Tennessee, 1991. To appear in Parallel Compadzng.

[16] J . J . Dongarra and R.A. van de Geijn. Two dimensional basic linear algebra communication

LAPACK Working Notc 37, Technical Report CS-91-138, University of subprograms.

Tennessee, 1991.

[17] G. Fox, S. Wiranandani, K. Kennedy, C. Koelbel, U . Kremer, C-W. Tseiig, and M-Y. Wu.

Fortran D language specification. 'l'echnical Report CRPC-TR90079, Center for Research

on Parallel Computation, Rice University, December 1990.

- 1 7 -

[18] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J . K. Salmon, and D. W. Walker.

Solving Problems on Concurrent Processors, volume 1. Prentice Hall, Englewood Cliffs,

N.J., 1988.

[19] S.L. Lillevik. The Touchstone 30 Gigaflop DELTA Prototype. In Sixth Distributed Memory

Computing Conference Proceedings, pages 671-677. IEEE Computer Society Press, 1991.

[20] Y. Saad and M. H. Schultz. Parallel direct methods for solving banded linear systems.

Technical Report YALEU/DCS/RR-387, Department of Computer Science, Yale Univer-

sity, 1985.

[21] A. Skjellum and A. Leung. LU factorization of sparse, unsymmetric, Jacobian matrices

on multicomputers. In D. W. Walker and Q. F. Stout, editors, Proceedings of the Fifth

Dfstribvted Memory Concurrent Computing Comference, pages 328-337. IEEE Press, 1990.

[22] R.A. van de Geijn. Massively parallel LINPACK benchmark on the Intel Touchstone Delta

and iPSC/860 systems. Computer Science report TR-91-28, Univ. of Texas, 1991.

- 1 9 -

ORNLjTM-12126

INTERNAL DISTRIBUTION

1. B. R. Appleton

4. E. F . D’Azevedo
2-3. T. S. Darland

5-9. J . J . Dongarra
10. G. A. Geist
11. L. J . Gray
12. M. R. Leuze
13. E. G. Ng
14. C. E. Oliver
15. B. W. Peyton

21. C. H. nomine
16-20. S. A. Raby

22. T. 8. Rowan
23-27. R. F. Sincovec
28-32. D. W. Walker
33-37. R. C. Ward

38. P. H . Worley
39. Central h e a r c h Library
40. O R ” Patent Office
41. K-25 Applied Technology Li-

42. Y-12 Technical Library
43. Laboratory Records - RC

brary

44-45. Laboratory Records Department

EXTERNAL DISTRIBUTION

46. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

47. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union Street,
S.E., Minneapolis, M N 55455

48. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

49. Lawrence J . Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

50. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

51. Edward H . Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

52. Michael L. Barton, Intel Corporation, 15201 N. W. Greenbrier Parkway, Beaver-
ton, OR 97006

53. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia,
SC 29208

54. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 ‘I’oulouse
Cedex, FRANCE

55. Marsha 3 . Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,
New York, NY 10012

56. Mike Berry, Department of Cornputer Science, University of Tennessee, 107 Ayres
Hall, Knoxville, T N 37996-1301

- 20 -

57. Chris Bischof, Mathematics and Computer Science Division, Argonnr National
Laboratory, 9700 South C a s Avenue, Argonne, IL 60439

58. Ake Ejorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

59-63. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

64. Weather Booth, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301

65. Roger W. Brockett, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

66. James 6. Rrowne, Department of Computer Science, University of Texas, Austin,
T X 78712

67. Bill L. Buzbee, Scientific Computing Division, National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

68. Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

69. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Ofice of Energy Research, U.S. Department of Energy, Washington, DC
20585

70. Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

71. Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

72. Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

73. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N21, 3G1

74. Melvyn Cimenl, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

75. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

76. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

77. Andy Conn, IBM 'r. J . Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

78. John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Uowie,
MD 20715-4300

79. Jane K. Cullurn, IUM T. J . Watson Research Center, P.O. Box 218, Yorktown
IIeights, NY 10598

- 21 -

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

George Cybenko, Department of Math and Computer Science, Dartmouth College,
Hanover, NH 03755

George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 3261 1-2024

John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

Iain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

Howard C. Elman, Computer Science Department, {Jniversity of Maryland, Col-
lege Park, MD 20742

Robert E. England, Mathematics and Computer Science Department, Northern
Kentucky University, Highland Heights, KY 41076-1448

Albert M. Erisman, Roeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 98124-0346

Ian Foster, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Argonne, IL 60439

Geoffrey C. Fox, Northeast Parallel Architectures Center, I 1 1 College Place, Syra-
cuse University, Syracuse, NY 13244-4100

Paul 0. Frederickson, Center for Research on Parallel Computation, MS B287,
Los Alamos National Laboratory, Los Alamos, NM 87545

Fred N. Fritsch, Computing & Mathematics and Statistics Division, Lawrence
Livermore National Laboratory, P.O. Box 808, L-316 Livermore, CA 94550

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

K . Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

Dennis €3. Galinon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

99. David M. Cay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

- 22 -

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

C. William Gear, Computer Science Department , University of Illinois, Urbana,
IL 61801

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
K1A OR8

J . Alan George, Vice President, Academic and Provost, Needles Mall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

Gene H . Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8245, Sandia National Laboratories, Livermore, CA
94551-0969

John Gustafson, 236 Wilhelm, Ames Laboratory, Iowa State University, Ames, IA
50011

Per Christian Ilansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston. T X 77042-3020

Michael 'f. Heath, NCSA, University of Illinois, 4157 Beckman Institute, 405 North
Matthews Avenue, Urbana, IL 61801-2300

Don E. IIeller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, T X 7'7001

Nicholas J . Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

John IIuseby, Cray Research Superservers, Inc., 3601 S. W. Murray Blvd., Beaver-
ton, OR 97005

Ilse Ipsen, Department of Computer Science, Yale IJniversity, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Elizabeth Jessup, University of Colorado, Department of Computer Science, Roul-
der, CO 80309-0430

Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta T6G 2B I , Canada

118. Leiiriart Johnsson, Thinking Machines Inc. , 245 First Street, Cambridge, MA
02142- 12 14

- 23 -

119. Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

120. Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

121. Malvyn H. Kalos, Cornel1 Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

122. Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

123. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Rill, NJ 07974

124. Robert J . Kee, Division 8245, Sandia National Laboratories, Livermore, CA 94551-
0969

125. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

126. Eric S. Kirsch, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37996-1301

127. Thomas Kitchens, Department of Energy, Scientific Computing St&, Office of
Energy Research, EK-7, Office G-236 Germantown, Washington, DC 20585

128. Michael A. Langston, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, T N 37996-1301

129. Richard Lau, Office of Naval Research, Code l l l l M A , 800 N . Quincy Street,
Boston Tower 1 Arlington, VA 22217-5000

130. Alan J . Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

131. Robert L. Lamer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

132. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

133. Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

134. James E. Leks, Rt. 2, Box 142C, Broadway, VA 22815

135. John G. Lewis, Boeirig Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

136. Jing Li, IMSI, Inc., 2500 Park West Tower One, 2500 City West Rlvd., Houston,
TX 77042-3020

137. Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London E l 4NS, England

138. Arno Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich, Switzer-
land

- 24 -

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MU 20715-4300

Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

Brian A. Malloy, 216 Duke Street, Clemson, SC 29631

Thonias A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Paul C. Messina, Mail Code 158-19, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

Cleve Moler, The Mathworks, 24 Prime Park Way, Natirk, MA 0176

Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

Dianne P. Q’Leary, Computer Science Departmeiit, University of Maryland, Col-
lege Park, MD 20742

James M. Qrtega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Charles F. Osgood, National Security Agency, Ft. George G. Meade, MD 20755

Steve Otto, Department of Computer Sci. & Eng., Oregon Graduate Institute,
19600 N.W. von Neumann Drive, Beaverton, OR 97006-1999

Chris Paige, OADDR, McGill University, McConnell Engineering Building 3480
University Street Montreal, PQ Canada E13A 2A7

Roy P. Pargas, Department of Computer Science, Clernson University, Clemson,
SC 29634-1906

Beresford N . Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Daniel J . Pierce, Roeing Computer Services, P.Q. Box 24316, M/S 7L-21, Seattle,
WA 98124-0346

Robert J . Plemmons, Departments of Mathematics and Computer Science, Box
731 1, Wake Forest IJniversity Winst,on-Salem, NC 27109

Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, T N 37995-1301

159. Alex Pothen, Department of Coriiyuter Science, Pennsylvania State University,
University Park, PA 16802

- 25 -

160. Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-
4040 Hafrsfjord, Norway

161. Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

162. S. S . Ravi, Department of Computer Science, LI67A, 1400 Washington Avenue,
Albany, NY 12222

163. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

164. Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

165. John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

166. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

167. Donald J . Rose, Department of Computer Science, Duke University, Durham, NC
27706

168--172. Bill Rosener, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301

173. Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

174. Axel Ruhe, Department of Computer Science, Chalmers University of Technology,
S-41296 Goteborg, Sweden

175. Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

176. Ahmed 11. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

177. Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

178. Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

179. Martin H . Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, C T 06520

180. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

181. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

182. Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

- 26 -

183. Kermit Sigmon, Department of Mathematics, University of Florida, Crainesville,
FL 32611

184. Horst Simon, Mail Stop T045-1, NASA Arne3 Research Center, Moffett Field, CA
94035

185. Anthony Skjrllum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

186. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box
1892, LIouston, 'TX 77251

187. G. W. Stewart, Computer Science Department, University of Maryland, College
Park, MD 20742

188. Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, GO 80307

189. Michael G. Thomason, Department of Computer Science, Ayres Hall, University
of Tennessee, Knoxville, T N 37996-1301

190. Philippe Toint, Department of Mathematics, University of Narnur, FUNOP, 61
rue de Bruxelles, B-Namur, Belgium

191. Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

192. Hank Van der Vorst, Department of Techn. Mathematics and Computer Science,
Delft University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

193. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

194. Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6'I'
1W5. Canada

195. Udaya B. Vemilapati, Department of Computes Science, University of Central
Florida, Orlando, FI, 32816-0362

196. Robert G. Voigt, National Science Foundation, Room 417, 1800 G Street, N.W.,
Washington, DC: 20550

197. Phuong Vu, Cray Research, Inc., 1345 Northland Ur., Mendota Heights, MN
55120

198. Daniel I). Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

199. Gilbert G . Weigand, Computing Systems 'l'echnology Office, Defense Advanced
Research Projech Agency, 3701 North Fairfax Drive, Arlington, VA 22203-1714

200. Mary P. Wheeler, Rice University, Department of Mathcmatical Sciences, P.O. Box
1892, Houston, 'TX '77251

201. Andrew R . White, Computing Division, Los Alarnos National Laboratory, P.O. Box
1663, MS-265, Los Alamos, N h l 87545

- 27 -

202. Michael Wolfe, Department of Computer Sci. & Eng., Oregon Graduate Institute,
19600 N.W. von Neumann Drive, Beaverton, OR 97006-1999

203. Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

204. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, T X 78731

205. Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

206. Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, T N
37831-8600

207-216. Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

