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A LOOK AT SCALABLE DENSE LINEAR ALGEBRA LIBRARIES 

Jack J. Dongarra 

Robert van de Geijn 

David W. Walker 

Abstract 

We discuss the essential design features of a library of scalable software for performing 
dense linear algebra computations on distributed niemory concurrent computers. The 
square block scattered decomposition is proposed as a flexible and general-purpose way 
of decomposing most, if not all, dense matrix problems. An object-oriented interface to 
the library permits more portable applications to be written, and is easy to learn and use, 
since details of the parallel implementation are hidden from the user. Experiments on the 
Intel Touchstone Delta system with a prototype code that uses the square block scattered 
decomposition to perform LU factorization are presented and analyzed. It was found that 
the code was both scalable and efficient, performing at about 14 GAop/s (double precision) 
for the largest problem considered. 
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1. Introduction 

Advanced parallelizing compilers may one day be capable of generating efficient parallel code 

for MIMD distributed memory concurrent computers (or multicomputers) from sequential code. 

However, in the interim, the development of scalable libraries is a key component in the devel- 

opment of a software environment that will allow the computational power of multicomputers 

to  be exploited, and made available to a broader community of users. Over the next few years 

we envisage such libraries being developed in a number of areas, and that they will be accessible 

through a variety of interfaces. This paper focuses on issues impacting the design of scalable 

libraries for performing dense linear algebra on multicomputers. However, we believe that  many 

of the issues discussed here are applicable to scalable libraries in other areas, and, indeed, it is 

important to impose some uniformity upon the design of different libraries. 

In the next section we discuss data allocation, that is, how the data  items in a parallel 

program are laid out in the hierarchical memory of the concurrent computer. The block scat- 

tered decomposition will be shown to  encompass a large class of decompositions, and to  provide 

sufficient flexibility for essentially all dense linear algebra computations. In Section 3 we use 

the right-looking variant of the LU factorization algorithm for dense matrices to demonstrate 

the block scattered decomposition for a specific well-known example. A brief discussion of the 

run-time analysis of the algorithm is given, together with results of experiments running at 

up to 14 Gflop/s on the Intel Touchstone Delta system. Section 4 deals with programmability 

and implementation issues, and will discuss an objected-oriented approach to scalable libraries. 

Conclusions are presented in Section 5. 

2. Data Allocation 

The layout of an application’s data within the hierarchical memory of a concurrent computer 

is critical in determining the performance and scalability of the parallel code. On shared mem- 

ory concurrent computers (or multiprocessors) there are at least three levels to the memory 

hierarchy: the shared memory, and each processor’s cache and registers. On such machines 

efficient codes seek to maximize the cache hit ratio, i.e., to avoid having to reload the cache too 

frequently. The software package LAPACK [1,8] does this by casting linear algebra computa 

tions in terms of block-oriented, matrix-matrix operations known as the Level 3 BLAS [10,11] 

whenever possible. This approach generally results in high cache hit ratios, without requiring 

any explicit cache manipulation by the application programmer. One of the aims of our work 

is to  investigate a distributed memory version of LAPACK. 

There are also levels to the memory hierarchy on multicomputers: the local and nonlocal 

(remote) memory. In addition, each processor may have a hierarchical memory. Each processor 

has its own local memory, and the nonlocal memory for a given processor is simply the local 
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memory of the other processors. A processor plus its local memory and other closely coupled 

hardware is refered to  as a node The nodes of a multicomputer are connected via a commu- 

nication network; there is no physical shared memory. There are two important differences 

between multiprocessors and multicomputers. The first is that multiprocessors are generally 

faster than multicomputers in transfering data between two layers of the memory hierarchy. In 

particular, MIMD multicomputers typically incur a high comiriunication latency. The second 

difference is that while busbased niriltiprocessors usually have no more than 20 or 30 pro- 

cessors, multicomputers typically have several hundred to a few thousand processors. Thus 

the processors of a multiprocessor are large grain size and closely coupled, whereas those of 

a multicomputer are of smaller grain size and are less closely coupled. This means that the 

programming techniques and algorithms that are successful 011 multiprocessors may not result 

in scalable codes on multicomputers. 

On a multicomputer the application programmer is responsible for distributing (or decom- 

poszng)  the data over the nodes of the concurrent computer. A vector of length M may be 

decomposed over soiiie set of Np nodes by first arranging the nodes in a linear sequence, and 

then assigning the vector entry with global index m (where 0 5 m < M )  to the pth node in 

the sequence (0 5 p < N p ) ,  where it is stored as the ith entry in a local array. Thus the 

decomposition of a vector can be regarded as a mapping of the global index, 771, to an index 

pair, ( p ,  i ) ,  specifying the node location and the local index. 

For matrix problems one can think of arranging the nodes as a P by Q grid. Thus the grid 

consists of P rows of nodes and Q columns of nodes, and Np = PQ. Each node can be uniquely 

identified by its position, ( p , q ) ,  on the node grid. The decomposition of an M x N matrix 

can be regarded as the tensor product of two vector decompositions, p and v. The mapping 

p decomposes the M rows of the matrix over the P rows of nodes, and v decomposes the N 

columns of the matrix over the Q columns of nodes. Thus, if p ( r n )  = (p, i )  and v(n) = ( q ,  j )  

then the matrix entry with global index (m, n )  is assigned to  the node at  position ( p ,  q )  on the 

node grid, where it is stored in a local array with index ( i , j ) .  

Two common decompositions are the block and the scattered decompositions [7,18]. The 

block decomposition, A ,  assigns contiguous entries in the global vector to the nodes in blocks. 

where L = [ M / P ] .  The scattered decomposition, CT, assigns consecutive entries in the global 

vector to different nodes, 

u(m) I= ( m  mod P, Lm/PJ ) (2) 

Figures 1 and 2 show examples of a 10 x 10 matrix decomposed over one and two-dimensional 
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processor meshes. Various combinations of block and scattered decompositions are shown. 

Two features that are desirable in a parallel subroutine library are; 

1. a large degree of decomposition independence, so that a subroutine will work correctly 

for a large class of decompositions of the input data, 

2. a set of communication routines for transforming between different decompositions. 

These components give the application programmer the option of changing the decomposi- 

tion, if necessary, so that a given phase of the computation can be performed optimally, Le., 

with the least concurrent overhead. Alternatively, the programmer may choose to leave the 

decomposition unchanged and perform the computation suboptimally, thereby avoiding the 

overhead associated with changing the decomposition. The important point here is that the 

software should be sufficiently flexible to permit the programmer to make the choice, rather 

than imposing a particular method. 

Decomposition-independence could be achieved by having the subroutine contain a condi- 

tional statement, with each clause corresponding to a different type of decomposition. A more 

elegant and, we believe, better approach is to use a block scattered decomposition that is able 

to reproduce all the decompositions in Figs. 1 and 2, except for those shown in Figs. 2(b) and 

(c). In the block scattered approach blocks of r elements are scattered over the nodes instead 

of single elements. The mapping of the global index, m, can be expressed as a triplet of values, 

p(m) = ( p ,  t ,  d ) ,  where p is the node position, t the block number, and i the local index within 

the block. For the block scattered decomposition we may write, 

where T = r P .  It should be noted that this reverts to the scattered decomposition when 

r = 1, with local block index i = 0. A block decomposition is recovered when r = L ,  with 

block number t = 0. The block scattered decomposition in one form or another has previously 

been used by Saad and Schultz [20], Skjellum and Leung [all, Dongarra and Ostrouchov [9], 

Anderson et al. [2], Ashcraft [4,5], Dongarra and van de Geijn [15], van de Geijn [22], and Brent 

161, to name a few. The block scattered decomposition is one of the decompositions provided 

in the Fortran D programming style [17]. 
A5 discussed above, the block scattered decomposition of a matrix can be regarded as the 

tensor product of two block scattered decompositions, p, and v,. This results in scattered 

blocks of size r x s. We can view the block scattered decomposition as stamping a P x Q 

processor grid, or template, over the matrix, where each cell of the grid covers T x s data items, 

and is labeled by its position in the template. In Table 1 we give the values of the block size 

r x s that give the same results as the block and scattered decompositions in Figs. 1 and 2. 



(a) p block, P-4, Q=1 
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@) p scattered, P4, Q=1 

(c) v block, P=l, Q=4 (d) v scattered, P=l, Q=4 

Figure 1: These 4 figures show different ways of decomposing a 10 x 10 matrix over a one- 
dimensional processor mesh. Each cell represents a matrix entry, and is labeled by the position, 
(p, q ) ,  in the node grid of the node to which it is assigned. To emphasize the pattern of decom- 
position the matrix entries assigned to the node in the first row and column of the node grid 
are shown shaded. Figures (a) and (b) show block and scattered row-oriented decompositions, 
respectively, for 4 nodes arranged as a 4 x 1 grid ( P  = 4, Q = 1). In figures (c) and (d) the 
corresponding column-oriented decompositions are shown ( P  = 1, Q = 4).  
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(a) p. block, v block, P=Q=4 

(c) p. scattered, v block, P = Q 4  

(b) p block, v scattered, P=Q=4 

2,o 2,l + 3,O 3,l 

2,3 2,O 2,l 

3,3 3,O 3,l 
0,3 0,l 

(d) p scattered, v scattered, P=Q=4 

Figure 2: These 4 figures show different ways of decomposing a 10 x 10 matrix over a two- 
dimensional processor mesh of 16 nodes arranged as a 4 x 4 grid (P = Q = 4). 
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Table 1: Block-scattered decomposition parameters needed to  reproduce the block and scattered 
decompositions in Figs. 1 and 2. The last column gives the block size when only square blocks 
are used. Decompositions 2(b) and 2(c) cannot be generated with square blocks. 

The block and scattered decompositions may be regarded as special cases of the block scattered 

decomposition. In general, the scattered blocks are rectangular, however, the use of nonsquare 

blocks can lead to  complications. For example, in the LU factorization algorithm, described in 

the next section, a triangular solve is needed to update submatrix C. If nonsquare blocks are 

used either the triangular matrix will extend over more than one column of blocks (if r > s), 

or the submatrix C will extend over more than one row of blocks (if r < s). Thus, nonsquare 

blocks will result in additional software and cornrnunication overhead. We, therefore, propose 

to  restrict ourselves to  the square block scattered (SBS) class of decompositions. The column 

and row decompositions can still be recovered by setting P = 1 or Q = 1, as shown in Table 

1, however, the decompositions shown in Figs. 2(b) and (c) cannot be generated with an SBS 

decomposition. 

So far we have only considered how to map matrix elements onto the node grid. In decom- 

posing a problem we must also specify how locations in the node grid are mapped to physical 

nodes. Common mapping functions are the natural mapping, 

and the binary-reflected Gray code mapping, 

A ( i ,  j )  = G(i)  + G(j) . Q (5) 

where G(zj denotes the Gray code of z, and i = 0 , 1 , .  . . , Q - 1, j = O , l , .  . . , P - 1. On most 

current multicomputers the cost of communicating between any two nodes is weakly dependent 

of their separation in the topology of the communication network. Hence the choice of mapping 

should not impact perforrnance very much, 'The subroutine library should support the natural 
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and Gray code mappings, as well as any function, A, supplied by the application programmer. 

3. An Example 

In this section, we discuss the scalability of the LU factorization algorithm when it  is imple- 

mented using the block scattered decomposition. First, we describe the algorithm. Next, we 

summarize the results from an analysis of the time complexity. Data from experiments on the 

Intel Touchstone Delta system are used to further demonstrate the scalability. 

3.1. LU factorization 

To obtain our parallel implementation of the LU factorization, we started with a variant of the 

right-looking LAPACK LU factorization routine. It can be briefly described w follows: Assume 

the LU factorization has proceeded so that all but the labeled portions of the matrix have been 

updated: 

where B E RMxr, C E RrX(”-‘), and E f R(M-r)x(M-r). During the next step, the right- 

looking algorithm factors panel B, pivoting if necessary. Next, the pivots are applied to the 

remainder of the matrix. Blocks C and E now become blocks and E, a triangular solve 

updates submatrix e, and a rank r update updates submatrix E. This process continues 

recursively with the updated matrix [12]. 

Turning now to the distributed memory implementation, m u m e  the matrix is distributed 

among a P x Q grid of nodes using a block scattered decomposition, with block size r x r. For 

our analysis, we assume that communicating a block of k floating point numbers between any 

two nodes requires time a + kp, where a and /3 represent the communication latency and the 

inverse of the bandwidth, respectively. In addition, the time for a floating point operation is 

given by 7. 

The above described process proceeds as follows: 

(fB) The column of nodes that holds B collaborates to factor this panel. Since there is 

relatively little to compute (the panel is typically narrow), and communication is restricted 

to short messages, the contribution of this operation to the run-time is almost entirely due 

to communication latency. We will ignore the other costs. For each column, this consists 

of log(+ for determining the pivot row, a for swapping pivot rows of this panel, and 
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another log(P)a for broadcasting the pivot row. (Possible optimization: since this is 

latency bound, a clever implementation would combine the messages for determining the 

pivot row, and distributing it within the column of nodes that hold the panel.) 

e (bp) Pivot information is distributed to  all other columns of nodes. Approximate con- 

tribution to run-time: (Y per panel. 

0 (p) Columns of nodes collaborate to  pivot the remainders of the matrix rows. Approx- 

imate contribution to  run-time: 

for panel k = 1,. . . , N / r  

0 (bB) Factored panel B is distributed within rows of nodes. Approximate contribution to  

run-time: 

2(a + [ ( N  - (k - l ) r ) /P l rP )  (7) 

for panel k = 1 , .  . . , N / r .  (Since this operation can be pipelined around the ring, over- 

lapping with computation, there is no log(&) term here.) 

e ( b c j  The row that holds performs the triangular solve, the results of which are dis- 

tributed within columns of nodes. Approximate contribution: 

for panel k = 1,.  . . , N / T .  

e (uE) Most parallelism is derived from updating E. Approximak contribution: 

for panel k = 1 , .  . . , N / r .  

The total run time is then given by 

where the different terms come from summing over all panels the different contributions given 

above. 

Since the total computation time of the algorithm on a single processor is given by TI * 
( 2 / 3 ) N 3 r ,  the efficiency attained, E = T1/pTtOt, as a function of the various parameters, can 
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be shown to  be of the form 

where c1-6 depend only on r .  

Let us start by considering the block column scattered decomposition, Le., P x Q = 1 x p .  

Then, for reasonably large N, 

In the limit, N must grow with p to maintain efficiency. Notice that the N2 cannot be readily 

ignored, even for N = 0(103), since a is several orders of magnitude greater than y for many 

multicomputers. This kind of scalability poses a problem: Memory requirements grow with N2 
and hence eventually N cannot be increased to maintain efficiency. A similar analysis can be 

done for row distributions. 

By contrast, consider a general P x Q grid of nodes. Assume the ratio Q/P is kept constant 

as p is increased, i.e., P = u~ and Q = v f l ,  where u and v are constants. Then PIN and 

& / N  become u f i / N  and v f i / N ,  respectively. If log(P) is ignored, since it is a slowly growing 

function, N 2  must grow with p in order to maintain efficiency. If log(P) is not ignored, it can 

be argued that  once P is sufficiently large (e.g., greater than 4) performance will degrade slowly 

with p. 

3.2. Experiments on the Intel Delta 

In this section, we discuss results from experiments conducted on the Intel Touchstone Delta 

that illustrate the scalability of the LU factorization. 

The Intel Touchstone Delta system is a distributed-memory, message-passing multicomputer 

of the Multiple Instruction Multiple Data (MIMD) class [19]. It consists of 520 i860-based nodes, 

interconnected via a communications network having the topology of a two-dimensional rectan- 

gular grid. The interconnection network employs a Mesh Routing Chip (MRC) at each system 

node. The peak interprocessor communications bandwidth is * 30 MBytes/s in each direction. 

The system supports explicit message-passing, with a latency of w 75 microseconds via worm- 

hole routing using a packet-based protocol. Interconnect blocking is minimized by interleaving 

packets associated with distinct messages that need to  traverse the same interconnect path. 

There are a number of issues that complicate a direct comparison of our analytical estimates 

and observed performance. First, certain optimizations can be done to improve the algorithm 

given in Section 3 [22], details of which go beyond the scope of this paper. Second, the parameter 

7 is affected by the size of the data being manipulated: computation at different stages involves 
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DELTA @ r e d i d )  

PROBLEM SUE, N x104 

Figure 3: Total predicted performance for various p as a function of the problem size N .  

PROBLEM SIZE, N XI04 

Figure 4: Total observed performance for various p as a function of the problem size N .  
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Figure 5: Predicted performance per node as the number of nodes p varies. Different curves 
correspond to problem sizes increased so that N 2 / p  is constant. 
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Figure 6: Performance per node attained as the number of nodes p varies. 
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Figure 7: Performance per node attained for the LINPACK benchmark by various parallel 
architectures as the number of nodes p varies. 

Level 1, 2, and 3 BIAS, which yield different performance depending un the size of the data 

being manipulated. Finally, the blocksize 9- and grid size P x Q are chosen so the performance 

of the BLAS is maximized without creating unreasonable idle time due to load inbalance. This 

leaves us to investigate if the predicted trends can be observed in practice. 

In Figs. 3-4, we report the predicted and observed performance of the LU factorization for 

different numbers of nodes when the problem size N is varied. For the predicted performance, 

cy = lOOpsec, j3 l p e c  (8 Mbytes/sec bandwidth), and y = 29nsec (34 MFLOPS per node) 

where used. Communication 

overhead is somewhat increased by our code.) The grid sizes were experirrientally determined 

to be optimal for large problem sizes. As the problem size increases, performance improves. 

The results compare favorably with the peak performance that can be attained for this type of 

problem on the Delta. 

(These correspond roughly to what we observed in practice. 

'rhe predicted degradation of performance wheu N/Jp is held constant is illustrated in 

Fig. 5. This trend is also observed in practice, a3 illustrated in Fig. 6. In these figures, we 

report efficiency a? performance (in MFLOPS) per node. 

The LU factorization is at the core of the LINPACK benchmark. This benchmark mea- 

sures the performance of a given computer while performing a dense linear solve. A typical 
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implementation starts by factoring the matrix, followed by triangular solves. Results from 

implementations on various parallel architectures are reported in [13]. To illustrate that the 

predicted trends can be observed on other parallel computers as well, we report performance 

per node in Fig. 7. While there is a clear incentive to fill the memory with the largest possible 

problem, thereby automatically increasing N 2  roughly with p ,  the data made available to  us did 

not in all cases include problem sizes that scaled as nicely as those used for Fig. 6. Although 

data was available for an NCUBE2 up to size 1024, and for the Fujitsu and Delta up to size 

512, we concentrate on the more interesting range of machine sizes in this figure. 

Several observations can be made: Both the NCUBE2 and the Fujitsu are based on rel- 

atively slow processors. This decreases the ratios a/7 and a / P ,  thereby reducing the effects 

of communication overhead. Moreover, the performance of the BLAS on these machines is 

less affected by the size of the problem. All other machines are based on the same processor: 

the Intel i860. The curve for the Meiko follows the predicted trend, except that the last data 

point (for 62 nodes) is for a much smaller problem size than is required to keep N 2 / p  constant. 

At first glance, the efficiency attained by the Alliant appears to improve with the number of 

nodes, defying the results of our analysis. Moreover, when looking at the raw data, the problem 

sizes actually grow slower than required by our analysis. This indicates that there is a lower 

order term that affects performance for small problem sizes. Indeed, it is reportedly due to  an 

inefficient triangular solve algorithm used in this implementation. 

4. Programmability 

Programmability will be used here to refer to a number of features of the software environment 

concerned with software maintenance and usage. Programmability covers the flexibility, range 

of functionality, portablility, and ease of use of some software component. From an application 

programmer’s point of view, the main factor that will determine how easy it is to learn and use 

the proposed subroutine library will be the interface to  the subroutines. Clearly, this interface 

must pass the appropriate information about the decomposition and layout of the data in 

memory to the subroutine. This could be done in three ways: 

1. by only allowing one type of decomposition for each subroutine so that different sub- 

routines must be called for different decompositions. This avoids having to specify the 

decomposition in a lengthy argument list, but makes maintaining and porting the sub- 

routine library rather tedious. 

2. have a single subroutine handle all possible different decompositions and pass the decom- 

position information via the argument list. This can result in long argument lists. 
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3. use an object-oriented approach in which a matrix is actually a data structure containing 

the data itself (or pointers to  it), plus all the information necessary to  fully specify the 

decomposition. This allows a single subroutine to handle all decompositions, and avoids 

a long argument list. This approach i s  the most elegant and conceptually simplest for 

the application programmer. It is rather more difficult to implement than the other two 

approaches. 

The object-oriented approach allows details of the parallel implementation to  be hidden 

at a low level of the software. Ideally, all communication would be hidden below the level 

of the R I M  routines. In the prototype parallel dense linear algebra library currently under 

development all interprocessor communication takes place explicitly at the level of the parallel 

linear algebra routines through calls to  a communication library, the LACS routines [3,16,14]. 

Thus, currently the sequential BEAS routines, together with the LACS, are the building blocks 

used to  build higher level library routines, such as LU and QR factorization. 

In addition to a set of subroutines for performing matrix computations the proposed library 

will also contain routines for performing communication tasks. Such tasks will include global 

changes to  the decomposition, such as performing a matrix transpose, and replicating parts of 

a matrix over groups of nodes. This latker type of communication is similar to  the SPREAD 

routine in Fortran 90 [8], and will allow, for example, row and colurnns of a matrix to  be 

communicated across the machine. These LACS could also be given an object-oriented style 

of interface. In fact, some of the array intrinsic functions of Fortran 90, such as SPREAD, 

CSEIIFT, arid EOSHIFT, could be included in the LACS. 

Other utility routines will also be provided. One set of assignment routines will be used to  

initially specify the decomposition, and another set of inquiry routines will provide a means 

of extracting information about the current decomposition. These inquiry routines will allow 

application programmers to develop modular subprograms that are fully compatible with our 

linear algebra library. 

5 .  Conclusions 

The square block scattered decomposition (SBS) is a practical and general-purpose way of 

decomposing dense linear algebra computations. In problems, such as LTJ factorization, in 

which rows and/or columns become inactive as the algorithm progresses, the SBS decomposition 

provides good load balance. A t  the same time it reduces communication latency since fewer 

messages need to be sent than in the nonhlocked case (T  = 1). It is possible to regard each of the 

blocks as a distinct process, so the SBS deconiposition, in effect, overdecomposes the problem. 

The resultant parallel slackness could then be exploited by overlapping communication and 

computation. This might be a viable approach on future machines that support multithreading 
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in the operating system kernel, or in hardware. However, on currently available machines 

the communication latency is probably too high to make it worthwhile, although our general 

approach should make it easy to exploit overdecomposition in the future. 

The LU factorization timings presented in Section 3 show that the SBS decomposition results 

in scalable and efficient code, attaining a speed of about 14 Gflop/s on the Intel Touchstone 

Delta system for the largest problem considered. 

We propose an object-oriented interface to the library routines, in which the objects are 

matrices that include pointers to both the matrix data and the decomposition. With this 

approach all interprocessor communication takes place within the Level 3 BLAS routines, or 

within the Linear Algebra Communication Subprograms (LACS), which are provided to perform 

common communication tasks. The user is largely insulated from the details of the parallel 

implementation, making applications more readily portable, and easier to develop. 
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