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The covariance matrix of quantities derived from measured data via nonlinear 
relations are only approximate since they are functions of the measured data taken as 
estimates for the true values of the measured quantities. The evaluation of such derived 
quantities entails new estimates for the true values of the measured quantities and 
consequently implies a modification of the covariance matrix of the derived quantities that 
was used in the evaluation process. Failure to recognize such an implication can lead to 
inconsistencies between the results of different evaluation strategies. In this report we show 
that an iterative procedure can eliminate such inconsistencies. 
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1.0 INTRODUCIlON 

Most data, such as nuclear cross sections, that are reported as having been measured 
were, in fact, not directly measured. Instead, their values were derived using some quantities 
that were directly observed in other experiments. Details of how precisely this was done in 
a specific experiment is often detailed under the heading of "data reduction." Whenever this 
occurs, the so-called "Law of Error Propagation (LEP)" is used to generate the covariance 
matrix of these derived quantities from the uncertainties associated with the directly measured 
quantities. Even though this LEP is well known to all experimenters and evaluators, there 
appears to be some circumstances where differences of opinion seem to exist today 
concerning its proper application. We became aware of this through informal discussions of 
a problem proposed by R. W. Peelle (1) which has been referred to as "Peelle's Pertinent 
Puzzle (PPP)." 

In essence, what has been referred to as PPP is based upon the following situation: 
we are given two independent measurements of a physical quantity A, which we will denote 
by A1 and A2, and another independent measurement of a different physical quantity C, 
which we will denote C1. We are also given the standard deviations associated with these 
measurements, i.e. the so called "experimental errors". Let us now suppose that we are 
interested in the physical quantity which is given by the ratio NC. The most straight forward 
way of estimating the value for this ratio is to first combine, using the method of least 
squares, the two independent measurements for A, and then this least squares estimate for 
A is divided by the measured value for C. The uncertainty in this ratio is obtained by 
"propagating the errors" in the usual fashion, Le. by using the LEP. There is an alternate way 
of proceeding which uses also the method of least squares and the LEP, but this second 
method involves generating a non-diagonal covariance matrix. From the three independent 
measurements one derives two values for the ratio of interest: Al/Cl and A2/C1. These two 
derived values for the ratio of interest are not independent of each other since the same 
measurement of C was used in deriving them. Consequently, the covariance matrix associated 
with these two derived values is not diagonal. We can nevertheless still u.e ihe method of 
least squares to combine these two derived values in order to obtain an estimate for the ratio 
of interest. Peelle thought that since the above two ways of proceeding used the same least 
squares method and LEP, they should both yield the same final answer. However, he was 
puzzled by the fact that in a particular numerical example, where the nondiagonal covariance 
matrix associated with the two derived values for the ratio of interest was generated in the 
usual manner, the two different ways of proceeding yielded different answers. We will show 
that "Peelle's Pertinent Puzzle" arose from an incorrect application of the Law of Error 
Propagation, where two different estimates for the true value of A were used in computing 
the approximate covariance matrix associated with the two derived ratios. 

Inconsistencies of the PPP type could readily occur in nuclear data evaluations 
because most of the input data to these evaluations are derived from directly measured 
quantities via nonlinear relations. Consequently, the approximate covariance matrix 
associated with the input data depends implicitly upon the estimates that one is seeking in the 
evaluation process, and this dependence is usually ignored. In this report we analyze the 
general problem of generating the covariance matrix associated with derived quantities and 
the use of such matrices in data evaluations using the least squares method. 

In Section 2, we discuss the Law of Error Propagation in a context where a 
nondiagonal covariance matrix would be generated for two derived quantities. In Section 3, 
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we analyze the general problem of obtaining the least squares estimate of quantities derived 
from measurements. In Section 4, we discuss the problem of obtaining least squares fits to 
derived quantities. Numerical examples are provided in Section 5, including the original 
problem Peelle was considering. 
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20 THE LAW OF ERROR PROPAGATION. 

Let us denote by A ,  B ,  and C the true values of three physical quantities. We 

assume that these true values are not known. Let us denote by a,, b,,  and c1 three 

independent measurements of these physical quantities with respective variances 

Var (a , ) ,  Var ( b,) and Var (q). For convenience we introduce a vector notation where 

vectors and matrices are indicated by a small arrow over the character: 

0 

0 0 Var(c,) 

We further assume that the measurements a,,  b,, and c1 are "unbiased and normally 

distributed." That is to say, we assume that if one were to  repeat these measurements one 

would find the measured values distributed according to the following joint normal density 

function: 

Q ( i l )  = (2, -6)'?iI1 (Z,-o') (2.4) 

Alternatively, we assume that one can consider that the values denoted a,, b , ,  and c1 were. 



randomly selected from such a density €unction. We denote by 62, the deviations of the 

-0 

measurements d ,  from the true values 0’ : 

and, using angle brackets to denote expectation values, we formally have: 

We now introduce a physical quantity, whose true value we denote X, that is related 

to the physical quantities whose true values are denoted A ,  B and C as follows: 

(2.7) X = F(A,C) 
x = f ( & C )  

Consequently, from the measurements a,, b, and c1 we can derive two different estimated 

values for X: 

(2-8) 
x ,  = F @,,c,) 
x2 = f (bpc,) 

The functions F and f need not be different. When these functions are different we are 

then dealing with three different physical quantities whose true values we denoted A ,  B and 

C. However, when we say that these functions are the same, then the quantities whose true 

values were denoted A and B are not different physical quantities and the measurements 

denoted by a, and b, are to be interpreted as two different and independent measurements 

of the same physical quantity whose true value is denoted A .  

4 



Let us now introduce a vector 5, whose components are x1 , xz and cl, i.e. 

and we refer to as the derived data vector. The so called Law of Error Propagation deals 

-t 

with generating the covariance matrix Vgl that we should associate with 5,. 

2.1 LINEAR FUNCTIONS. 

Let us assume that the functions F ( A  , C )  and f ( B , C )  are linear functions: 

X = F(A,C) = 1,+1,A+X2C 
X = f ( B , C )  = uo+a1B+u2C 

Then we have: 

x1 = 1,+Xla1+A2c1 
x2 = a o + a l b l + a 2 c l  

The deviations of the derived quantities are: 

ax1 = XI - x 
= Il(al - A )  + X,(C, - C )  
= X,Ba, + 1,6c, 

and 

(2.10) 

(2.11) 

(2.12) 

ax, = a,bbl + a26c1 (2.13) 

The elements of the covariance matrix are readily computed; for instance, we have: 
gl 

5 



and similarly: 

2 ~ u r  (5) = a: Vur(bl) + a,  ~ u r ( c ~ )  
Cov ( x i , % )  = a2A2 Vur(cl) 

Cov (%,cl) = a ,  Vur(cl) 
cov (x,,c,) = A, Vur(c,) 

In matrix notation we have: 

E = [i] 
The deviation a i ,  of the derived data vector g, is: 

with: 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The covariance matrix associated with the derived data vector il becomes: 
g1 

6 



The quadratic form (2.4) can also be readily transformed: 

6 & l p i i 1  = 6g,v;lbi;, -: + 

(2.19) 

(2.20) 

2.2 NONLINEARFUNCXONS. 

When the functions F ( A  , C )  and f ( B , C )  are nonlinear, truncated Taylor expansions 

about the true values A ,  B and C are used to linearize them. With such truncated 

expansions the deviations of the derived values are linear functions of the deviations of the 

measured values and one can then readily calculate the covariance matrix of the derived 

values. Proceeding formally we have: 

-F(A,C) + F,ba, + Fc6c1 (2.22) 

and 

(2.24) 

where: 
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I c=c I c=c 

I c=c I c=c 

Using (2.7) we obtain from (2.22) and (2.24): 

(2.25) 

(2.26) 

In practice, the true values A ,  B and C are not known and the terms in the 

expansions (2.22) and (2.24) must be calculated at some estimate A ,  B and e for the true 

values A ,  B and C. Consequently, when the derived quantities are nonlinear functions of 

the measured quantities, we can only obtain an estimate of the linear dependence of the 

deviations of the derived values upon the deviations of the measured values. In order to 

remind us that this is the case, we introduce the notation: 

I c = 6  
a = A  
c = C ’  

b = B  
C = C  

(2.27) 
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which yields: 

(2.25) 

We are now in a position to  obtain an estimate for the elements of the covariance matrix that 

we should associate with the derived values. From (2.28), taking expectations over the 

probability density function (2.3), we obtain: 

(2.29) 

In a matrix notation similar to the one used in the linear functional dependence case 

we have: 

with now: 

-e s =  

and 

(2.30) 

(2.31) 

(2.32) 
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23 CONCLUSION. 

In the case where the derived quantities are linear functions of the measured 

quantities, one can calculate exactly the covariance matrix that one should associate with the 

derived values from the covariance matrix associated with the measured values. However, 

when the derived quantities are nonlinear functions of the measured quantities, one can 

obtain only an estimate for the covariance matrix associated with the derived quantities, and 

this estimated Covariance matrix is based upon some specific estimates for the true values of 

the measured quantities. Consequently, some consistency problems may arise if such an 

estimated covariance matrix is subsequently used in conjunction with other results that are 

themselves based upon different estimates for the true values of the measured quantities. As 

we will show in Section 5, this is precisely what gave rise to PPP: two different estimates for 

the same quantity were used in constructing the covariance matrix associated with the two 

derived values. 

In the remainder of this report we examine a few situations where such consistency 

problems may arise and how to avoid them in practice. 
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3.0 L;EAsT SQUARE ESTIMATE OF DERIVED QUANTITES- 

W e  now analyze two different ways of obtaining a least square estimate for X and 

show that these two different methods yield identical results. In the first method we fit 

directly the measured quantities considering them to be functions of X. In the second 

method we calculate the derived quantities, and their associated covariance matrix, which are 

then fitted. 

3.1 FROM FTITING THE DIRECIZY MEW3URED QUAN?TIIES. 

From the directly measured quantities a,, b, and c1 we can derive two different 

values for X: 

( 3 4  = F(a,, CJ Y 

3 = f ( b p c J  Y 

and what we seek is a least square estimate for X. However, in this first method we do not 

start from the relations (3.1) directly; instead we invert them and consider al and b, to be 

functions of xl, xz and cl: 

and we have: 

(3.2) 

Therefore, we obtain the least square estimate by minimizing with respect to X and C 

the following quadratic expression: 

with: 

11 



Q(21) = bd,  - 1  V d 1 - ' b ~ ,  - , (3.4) 

In general @(X,C) and (p(X,C) are nonlinear functions of X and C. Therefore, we have 

a classic case of nonlinear least square that is solved by linearization of the functions 4 ( X ,  C) 

and cp ( X ,  C), via a Taylor expansion, and by iteration. 

We formally expand @(X,C) and cp(X,C) to first order about some estimate forX 

and C ,  that we will denote f ( k )  and and we will denote f('+') and e'"') the values forX 

and C that minimize (3.4): 

Substituting (3.6) into (3.5) we obtain: 
with: 

12 



(3.8) 

(3.9) 

(3.11) 

(3.12) 

.-. f 
Denoting by P@+*) the value of which minimizes (3.13) and by the covariance 

matrix we have: 

13 



Note: An interesting case is the one where F ( A ,  C) and F ( B ,  C) are the same 

function. That is to say, what we had denoted b, is a second measurement for A .  Therefore, 

in this case we denote b, by a, and we have: 

x1 = F(a , , c , )  (3.15) 
x, = m,,q 

The function that we had denoted cp (X,C) is now identical to 6 (X,C). After some 

straight forward algebra (3.14) yields: 

where a,,, is the weighted average of a, and u2: 

(3.16) 

(3.17) 

and 

Clearly from (3.16) convergence will be obtained when = c1 and 6(k) = a, . 

Consequently the iteration stops when: 

R = F(u,,c,) 

c = c1 
(3.19) 

14 



What (3.19) states is that the least square estimate for X is obtained from the measurement 

c1 and the weighted average of the two measurements a, and a2, a result that could have 

been anticipated without performing all the algebra. 

3.2 FROM FTlTING THE DERIVED QUANTITIES. 

An alternate way of obtaining a least square estimate for X and for C is to minimize, 

also with respect to X and to C, a quadratic expression in which the derived values forX, x1 

and x2, appear explicitly. This quadratic expression is: 

where: 

with: 

1 0  +] 9 

(3.20) 

(3.21) 

(3.22) 

3 
and is given by (2.32). 

15 



-+ 
Since a;, is a linear function of P, the elements of f being constants, it would seem 

that we have transformed what was previously a nonlinear least square problem into a linear 

one. Of course, we could not have done such a thing. As discussed in section 2.2, in order 

4 

to compute we needed some estimate for A B and C .  These estimates are related to and 

should be consistent with the estimates for X and C that we seek by minimizing (3.20). The 

4 

estimates and that we should use to calculate are related to the solutions i and; 

that minimize (3.20) by: 

(3.23) 

or we should have: 

R = F(iyC) = f ( B , C )  . (3.24) 

The consistency between the values of 2 and t ,  that we seek by minimizing (3.20), 

-9 

and the values of 2, 6 and e, needed to calculate t,, that appears in (3.20), can be 

achieved by iterations. From the k-th estimates i(k) and we obtain 2") and jck) via: 

16 



(3.26) 

Having obtained such a matrix we calculate +$): 

Furthermore, in order to be fully consistent, the components of il that appear in (3.21) must 

be calculated using the same linear approximation that is used to calculate the elements of 

* 

the covariance matrix tf"' . We will be reminded that this is the case by introducing the 

-* 

notation gf) for where: 

(3.28) 

and 

17 



Then we minimize with respect to P the quadratic expression: 

If we denote by F(k+l) the value of % that minimizes (3.30) we have: 

(3  29) 

(3.30) 

(3.31) 

Let us again consider the special case where b, is a second measurement for A that 

we denote a?. After some algebra (3.31) yields: 

where n, is given by (3.17) as before. 

This solution is identical to the one found before, (3.16), since: 

(3.33) 

18 



and again the iterations in (3.32) will stop when: 

2 = F(a, ,  cl) 
c = c, 

(3.34) 

As we now show, this is not a special case; the solutions (3.14) and (3.31) will always 

yield identical results whatever the functions F ( A ,  C )  and f ( A ,  C) are. 

-0 

In (3.31) we replace t: by its expression (3.27) to obtain: 

but we have: 

(3.36) 

4 -. 
*(&)-I - Replacing S T by gk) in (3.35) we obtain: 

19 



(3.37) 

(3.38) 

The expression (3.39) is identical to the result (3.14) after suitable manipulation of the last 

term on the right hand side as follows: 

Therefore, the two different ways of obtaining the least square estimate of the derived 

quantities will always produce identical results. 

20 



4.0 LEAST SQUARE TO DERTVED QUAN?TI?ES. 

We frequently least square f i t  theoretical expressions to data whose values were not 

directly measured but were derived from other measured data. If the functional dependence 

of the data being fitted upon the measured quantities is nonlinear, then, as discussed in 

section 2, the covariance matrix associated with the data being fitted is only approximate. We 

now show that an "outer iteration" may be required in the least square fitting process to deal 

with these non linearities. We also show that such "outer iterations" are not necessary if one 

fits the directly measured data instead of the derived data. Let us denote by: 

X ( E )  = R ( E ; H )  , 

the theoretical expression being fitted to  the derived data, where E is the independent 

variable and the L components of the abstract vector H are the parameters being adjusted 

to  fit the data. We consider the situation where the X(E)'s are related to some other 

physical quantities we denote A(E)  and C via a nonlinear relation: 

X ( E )  = F ( A ( E  ),C). 

Let us assume that we have R measurements of the quantities A ( E )  and we denote these 

measurements: 

21 



and consider the a, ( i ) ' s  to be the components of an abstract vector G1 : 

In addition to these n measurements let us denote by c1 a measurement of the physical 

quantity denoted C in (4.2). For convenience sake we consider these n + l  measurements to 

be independent measurements and that we can neglect the uncertainties in the variablesEi 

where the measurements we denote a, (0 were made. We introduce what we refer to as the 

"directly measured data" vector that we denote a ,  with: 

and we denote by vd, the diagonal covariance matrix associated with the data vector dl.  

From G1 and c, ,  using (4.2), we obtain: 

22 



and consider the x1 ( i ) ' s  to be the components of an abstract vector G I .  As we did in section 

3, we introduce a "derived data" vector il whose components are: 

We now need to express the deviation 6zl  in terms of the deviation 62, in order to 

generate the covariance matrix 3 associated with the derived data vector. As discussed in 
81 

section 2, the elements of the transformation matrix that transforms 6 2 ,  into 6;, are the 

partial derivatives of F ( A ( E )  , C) evaluated at some estimate of the true values A ( E )  and 

C. Let us denote by 22 and c(k) such estimates, and we have: 

where: 

23 



0 

0 0 

. . .  

. . .  

. . .  

The lck)(i) must be consistent with the estimate we will obtain for the true 

parameters we denote fi@). If we denote the inverse of (4.2): 

then: 

ralues 

(4.9) 

f the 

(4.10) 

(4.11) 

24 



From (4.8) we obtain: 

4 4 

(k)  = i ( k )  i ( k M  
4 

The quadratic form we want to minimize with respect to G' is: 

6(i> = R ( E ~ ; @  , i sn  
E ( n + l )  = c 

Introducing the parameter vector $, where: 

we formally express G' as: 

where: 

q), 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

25 



and 

+ a R ( E i  ; h )  - (k) . . 
T ( 2 , ~ )  = 

$k)(n+l) = 0 for j s  L 

$(k)(i ,L+l) = 0 for i s n 

for i s n, and j s L I -  (4.18) d i ( j )  ii' = f j ( k )  

? (k ' (n+l  , L + 1 )  = 1 

and also 

(4.19) 

Substituting (4.16) for c in (4.13) we obtain: 

If we denote by $Q+*) the value of 9 that minimizes (4.20) and by $@+') its associated 

covariance matrix, we have: 

(4.21) 

It should be noted that if R ( E ; @ )  is a linear function of the L components of fi then 

f r 
(4.16) is exact, and the notation TCk) is somewhat misleading since the elements of TCk) are 

26 



constants. However, even if R ( E ;  H) is a linear function of the L components of I?, one 

must iterate (4.24) because we have assumed that the function F(A ( E ) ;  C) was nonlinear and 

consequently the covariance matrix of the derived data Vg: is an approximation which will 
f 

rr 
be a function of &k). To our knowledge, very few if any of the least square fitting codes that 

allow €or a non-diagonal covariance matrix of the data being fitted allow for an iterated 

solution oE the type represented by (4.24) where one recalculates the covariance matrix of the 

data being fitted based upon an updated estimate for the parameters being determined. 

However, even though what we seek through the fitting process are the parameters 

of a theoretical expression for the derived data, it is not necessary that we directly fit the 

derived data 3,. The same end result can be achieved by fitting the directly measured datad, 

with its diagonal covariance matrix f in a way similar to what was done in section 2. 4 ’ 

Let us denote by 6 the abstract vector whose components are the true values of the 

components of the directly measured data vector 3,. We have: 

27 



(4.22) 

Treating 0' as a nonlinear function of 2 and C, the components of ?, we can obtain the 

least square estimate for fi that we seek by minimizing with respect to 3 the following 

quadratic expression: 

(4.23) 

As usual this nonlinear least square problem can be solved by iteration. Performing a Taylor 

expansion of 0' about some estimate for 3 we have: 

0' &(k) + @ ( j 5  -$ca> 3 

(4.24) 

with: 

28 



Substituting the Taylor expansion (4.24) into (4.23) we obtain: 

which is formally identical to the quadratic expression (3.13). Consequently the result sought 

is formally given by (3.14). 
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5.0 COMPUTATIONAL EXAMPLES. 

In this section several computational examples are given, and we illustrate some of 

the inconsistencies that can arise when one ignores the fact that covariance matrices of 

derived data are only approximate if they are not linearly related to the directly measured 

data. 

5.1 LINEAR FUNCTIONS. 

In this example we take the functions F ( A  , C) and f(B,C) to be different but linear: 

X = F ( A , C )  = A - C  
X = f(B,C) = B -2C/3 

and the independently measured values, with their standard deviations, to be: 

a, = 2.5 i 0.15 
b, = 1.67~ 0.10 
c, = 1.0 i 0.30 

Let us calculate the least square estimated values for A ,  B ,  C and X. At first sight it would 

seem that: (1) since we have single independently measured values for A,  B and C their 

least square estimate should be these measured values, and (2) since using (5.1) we can derive 

two values for X, 

2 5  3 = b, -- = 1.0 , 
3 

(5.3) 

the least square estimate for X will be between these two derived values. The situation is in 

fact slightly more complicated since we can eliminate X from the relations (5.1) to obtain: 

30 



(C + 3B) 
3 

A =  Y 

( 3 A  - C )  B =  
3 

C = 3 ( A - B )  Y 

X = 3B - 2A 

Y (5.4) 

Therefore, given the measurements b, and c1 we can derive a value for A which is 

independent from the directly measured value a l .  The least square estimate for A should 

be based upon these two "measurements" for A .  The same situation prevails for B and C. 

Consequently we have not only a,, b, and c1 but also: 

c2 = 3(a,  - b,) = 2.5 

Furthermore, from (5.1) we can extract the identity: 

x = 33 - 24, (5.6) 

which allows us to  obtain a third derived value for X that is not based upon the measurement 

cl, whereas the other two derived values for X were based upon it: 

x3 = 3b, - 2a, = 0.0. (5-7) 

It should be noted that the three derived values for X are not independent, and it is no 

longer obvious that the least square estimate should be between the derived values denotedxl 

and x2. 

Let us now apply the formalism developed in Section 3. We first proceed by fitting 
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-4 

the directly measured quantities. Using the notation of Section 3.1, the vector d ,  and its 

3 .  

associated covariance matrix are: 4 

d ,  = b, - 1:: (5.8) 
2.50 0.0225 0 

= [ 1.671, fdl = [ 0 0.01 

1.00 0 0 0.0 9 

Inverting the identities (5.1) we get: 

A = $(X,C) = X + C 
2c 

B = ( P ( X , C )  = x + - 3 

from which we obtain for the matrix 9': 

(5.9) 

(5.10) 

Because the relations (5.1) are linear our least square problem (3.12) is a linear one, since: 

o"(t, = &)$(e 

and (3.13) yields the least square estimates: 

(5.11) 

6 = ($) = (,.,,,,), 0.8823 6 = [ 0.04765 -0.05293 
-0.05293 0.06880 

(5.12) 
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From these estimates for X and C we can readily calculate, using (5.9), the least square 

estimates for A and B :  

A A A  

A = X + C = 2.2352 

2; A I  

B = X + - = 1.7842 
3 

and by straight forward "propagation of the errors": 

A A * * *  
Var(A) = V i r ( X )  + Vur(C) + 2COV(X,C) 

4Var(C) + 4COV(X,C) Var(i) = V a r ( i )  + 
9 3 

C o v ( i , i )  = Var( i )  + COY(?, C) 

C O V ( r i , E )  = V a r ( e )  + C O V ( i , E )  

COV(i,S) = Vur(X) A + Z C O V ( i , t )  

3 

COV(i,i) = Vur( i>  + 2 V 4 )  + 5Cov( i ,E)  
3 3 

The numerical results are collected in Table 1. 

Table 1. RESULTS OF EXAMPLE 5.1 

(5.13) 

(5.14) 

Estimate Std. Dev. Correlation Matrix - 
i =0.8823 0.2183 1-00 

2 =2.2352 0.1029 -0.23 1 .oo 
=1.7842 0.0875 0.65 0.59 1 .oo 
=1.3529 0.2623 -0.92 0.59 -0.3 1 1.00 
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The problem will now be solved by fitting the derived quantities. Using the notation 

of Section 3.2, the vector il is: 

f 
and from (5.1) we obtain for the matrix SCk): 

(5.15) 

(5.16) 

Applying (3.25) with the matrices (5.8) and (5.16), the covariance matrix associated with the 

derived vector il, (5.15), is: 

1 0.1 125 0.0600 -0.0900 
0.0600 0.0500 -0.0600 I -0.0900 -0.0600 0.0900 

(5.17) 

Substituting (5.15) and (5.17) into (3.28) yields very precisely the results (5.12) and 

consequently those of Table 1. 

5 2  NONLINEAR FTJNCI’IONS: 

This example is one that was proposed by R. W. P e e k  in the form of a puzzle and 

has been discussed informally by some evaluators in the nuclear data community. As of this 

F ( A  , C) = f(A , C) . 
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writing, we do not think that there is unanimity as to the root cause of the "puzzle", or if, in 

fact, this example leads to a "puzzle". The functional relation is: 

X = F ( A , C )  = A/C (5.18) 

and the three independent measurements, with their associated standard deviations, are: 

a, = 1.50 * 0.15 
a* = 1.00 f 0.10 
c1 = 1.00 f 0.20 

We first solve this problem fitting the directly measured quantities. 

A 

From Section 3.1, the result for A is given by (3.16): 

= a,,, = 1.1538 i 0.0832 

and from (3.18) 

A 

c = CI = 1.00 * 0.20 
A 

^ A  

C 
X = 7 = 1.1538 

The final numerical results are presented in Table 2a. 

Table 2a. RESULTS WHEN FTITING DIRECTLY OBSERVED DATA 

(5.19) 

(5.20) 

(5.21) 

Estimate Std. Dev. Correlation Matrix 

i =1.1538 0.2453 1.00 
A 

A =1.1538 0.0832 0.34 1 .oo 
2 =l.ooOo 0.2000 -0.94 0 1.00 

We now solve this problem by the method we referred to in Section 3.2 as: "Trom 

fitting the derived quantities." As we showed in Section 3.2, this method should yield 
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precisely the same results as when the directly measured quantities are fitted. Our main 

reasons for providing such a numerical example are: (1) to illustrate the iteration procedure 

that one must go through since the covariance matrix of the derived quantities is only 

approximate and, (2) to show that a contradiction may arise if one fails to be consistent in 

the computation of this approximate covariance matrix. 

Since in this example F ( A  , C) is nonlinear, we must use a linear expansion about 

some estimates i(k) and which imply an estimate for X, to calculate the approximate 

2 
derived data vector gr) and its associated covariance matrix Vgi"', that enter into the 

quadratic expression (3.27) which must be minimized and iterated until convergence. For the 

derived data vector ir) we have: 

(5.22) 

and since will be c1 for k 2 1, the derived data vector i:) will be identical to the 

derived data vector 3,. The results of such an iterated procedure, starting form the arbitrary 

values of 10 and 20 for ice) and e(*) respectively are presented into Table 2b. 
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Table 2b. ITERATION RESULTS FROM EI?TING THE DERIVED DATA 

- k 

Standard deviations Corr. Coef. 

10.0 20.0 
9.5577 1 .oo 0.1001 0.20 -0.999 1 
1.1538 1 .oo 1.9133 0.20 -0.9991 
1.1538 1 .00 0.2453 0.20 -0.9407 
1.1538 1-00 0.2453 0.20 -0.9407 

These results are in full agreement with those in Table 2a. Based upon these results, the 

r' 
approximate covariance matrix V that one should associate with the derived data vectorgl 

g1 

is : 

0.07 5 7 7 
0.05377 0.06327 

-0.04616 -0.04616 0.04 

-. (5.23) 

We now explain what was the "puzzle" that R. W. Peelle constructed based upon this 

example. Let us assume that we are given only the independent measurements al and cl, 

with their associated standard deviations. We could construct a derived data vector whose 

components are x1 and cl. What would be the covariance matrix associated with such a 

derived data vector? Because we would then have single measurements for A and C, their 

least square estimates would be: 
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A 

A = u l ,  
C = c 1 .  

(5.24) 

Consequently: 

and: 

Vur (a1) a: Var (Cl) 
E + 

4 2 
C1 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Of course, a covariance matrix calculated with (5.26) and (5.28) is only approximate and based 

upon the least squares estimates (5.24). 

Let us assume now that we are given only a, and cl, rather than al and cl. We 

would construct a derived data vector with components x2 and cl. Now, instead of(5.24) we 

would have: 

A 

e = a , ,  
C = c 1 .  

(5.29) 



The covariance matrix associated with the derived data vector whose components are xz andc, 

has elements based upon (5.29): 

and: 

(5.30) 

(5.31) 

Such a covariance matrix is approximate and based upon the least squares estimates 

(5.29) for A and C .  

Let us now consider the situation where we are given a1 , a2 and cl. We could still 

construct two derived data vectors having components x, , c1 and x2 , cI respectively. If we 

still associated with these derived data vectors covariance matrices with components given by 

(5.26) , (5.28) and (5.301, (5.31) respectively these two covariance matrices would be 

inconsistent with each other. This is because these two covariance matrices are based upon 

different least squares estimates for A ,  unless al and u2 are numerically the same. Such an 

inconsistency is what gave rise to Peeile’s puzzle. Quite specifically, what is done to obtain 

Peelle’s puzzle is that one associates with the derived data vector 3, a covariance matrix with 

elements given by: 
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(5.32) 

ai Var (cl ) 
C 0 V ( X i , C , )  = - 2 

C1 

Furthermore, one does not consider that such a covariance matrix is approximate, by 

being conditional upon some least square estimate for A because X is a nonlinear function 

of A and C. Substituting numerical values (5.19) into (5.32) one obtains the covariance 

matrix: 

0.1 125 
= [ 0.06 0.05 

81 

-0.0 6 -0.04 0.04 

(5.33) 

This covariance matrix is very different from what we claim is the correct approximate one 

given by (5.23). If one associates with the vector il, the covariance matrix (5.33) and one 

seeks least squares estimates for X and C by minimizing the quadratic expression (3.19), then 

one solves a linear least squares problem whose results are given in Table 2c. 

Table 2c. RESULTS FROM PEELLE’S PUZZLE. 

Estimate Std. Dev. Correlation Matrix 

i =0.882 0.213 

2 =Lo90 0.141 

1 .00 

0.34 1.00 
CL 

C = 1.235 0.175 -0.92 -0.66 1 .oo 
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These results are different from those in Table 2a and were said by R. W. Peelle to give rise 

to  a puzzle. The puzzle was: Why do we not get the same results when we fit the derived 

data and the directly observed data? Pede  thought that the results given in Table 2a were 

correct, and that some mistake must have been made in obtaining the results in Table 2c. 

53 NONLINEAR FUNCIIONS: F(A , C )  f f(B, C) . 

We now consider the functional relations: 

X = F ( A , C )  = A  - C 
B 
C 

x = f ( B , C )  = - 

and their inverse: 

A = cp(X,C) = x + c 
B = cp(X,C) = X C 

with the three independent measured data: 

ax = 2.50 i 0.05 
b, = 1.00 i 0.30 
c1 = 1.00 * 0.30 

(5.34) 

(5.35) 

(5.36) 

W e  can obtain the least squares estimates that we seek by solving the traditional 

nonlinear least squares problem (3.12), what we refer to as from fitting the directly observed 

data. The converged results of such a procedure are given in Table 3a. 
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Table 3a. RESULTS WHEN FITTING THE DIRECTLY OBSERVED DATA 
__ ~~ __ ~ 

Estimate Std. Dev. Correlation Matrix 

i =1.783 0.2 16 
* 
C =0.712 0.206 

=2.495 0.050 

B = 1.269 0.220 
A 

1.00 

-0.97 1 .00 

0.3 1 -0.09 1.00 

-0.92 0.99 0.08 1 .OO 

Alternately we can proceed by fitting the derived data. Because of the nonlinearity of the 

functional dependence of X upon B and C, we must linearize it via an expansion about some 

A 

estimates BCk) and t(k) and iterate the solution. That is to say, we minimize the quadratic 

expression (3.27) iterating until convergence is achieved. The expression for i:) is: 

2 
and for it is: 
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- Var ( CI ) 

(5.38) 

The results of such a procedure are identical to those given in Table 3a. It is important to 

note that in this problem if instead of (5.37) we take the derived data vector to be: 

(5.39) 

f 

that is to say we do not use the same linearization to calculate both il and Vg1(') in the least 

square procedure, then we do not obtain the results given in Table 3a. We must, therefore, 

emphasize that consistency between the least squares results obtained by fitting the directly 

observed data and the derived data is only guaranteed if the same linearization of the 

nonlinear functional dependences are used to calculate the elements of the derived data 

vector and its associated covariance matrix. 

5.4 CURVE FKXING. 

Finally we consider an example of performing a least squares fit to derived quantities. 

We have the directly measured data are given in Table 4. 
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Table 4. DIRECTLY MEASURED DATA. 

1 1 2 3 4 5 6 7 8 

Ei 0.8 1 .o 2.3 3.4 4.5 7.4 8.8 9.7 

q i )  19 30 27 41 52 53 63 78 

We assume that all of the data a,(i) in Table 4 are independent and have a 10% standard 

deviation associated with them. We also assume that the uncertainties in the independent 

variable denoted Ei can be neglected. Furthermore, we have the independent measurement 

of the quantity C 

c1 = 1.0 f 0.2 (5.40) 

We are interested in the derived quantity: 

X ( E )  = F ( A ( E ) ,  C) = A ( E )  . ~ r  C 

Therefore, we have the derived data: 

X J i )  = U l ( i )  * c1 

We assume that we also have: 

X ( E )  = R ( E ;  l?) = HI + H2E 

(5.41) 

(5.42) 

(5.43) 

and that we seek a least squares estimate for the parameters HI and H2. The traditional 

method of solving this problem would be by fitting the directly observed data. That is to say, 

minimize the quadratic expression corresponding to (4.23) where we have: 
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and: 

* v =  4 

4 

d ,  - D  = 

I c1 - c 

(5.44) 

(5.45) 

This nonlinear least squares problem is solved by iteration and yields the results in Table 4a 

and by the curve labelled A in figure 1. 

Table 4a. RESULTS WHEN FITI?NG DIRECTLY OBSERVED DATA. 

Estimate Std. Dev. Correlation Matrix 

= 17.12 3.819 1 .oo 
f i ,  = 5.689 1.244 0.69 1 .oo 
i. = 1.OOo 0.20 0.90 0.91 1.00 

This problem can also be solved by fitting the derived data, i.e. by minimizing with 

respect to H , ,  H2 and C the quadratic expression (4.13). However, we must emphasize again 
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that the results given in Table 4a will only be obtained if a consistent linearization is used to 

+ 

calculate the vector we denote G(') and the elements of the covariance matrix v". Given 
gl 

informal discussions that have taken place concerning PPP, we conjecture that a number of 

evaluators might attempt to fit the derived data in the following manner. The following 

vector would be taken to be the derived data to be fitted: 

(5.46) 

and the elements of its associated covariance matrix taken to be given by: 

i;B, (9, 9) = Var ( c , )  

Vgl (i, 9) = ai Var (c,) 
4 

The derived data vector (5.46) and its associated covariance matrix (5.47) would be treated 

as if they were directly measured data and the following quadratic expression would be 

minimized with respect to the components of the vector P: 

(5.48) 
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where: 

-4 

T= 

and 

- 
P 

If one were indeed to solve this problem _ _  

1 E,  0 

1 E2 0 
. . .  . . .  . . .  
1 EB 0 

3 0 1  

n that manner the resulrs WOL 

(5.49) 

(5.50) 

be as given in 

Table 4b and the curve labelled B in Figure 1, rather than those given in Table 4a and the 

curve labelled A. 

Table 4b. RESULTS WHEN TREATING DERIVED DATA AS IF THEY WERE 
DIRECTLY OBSERVED DATA. 

Estimate Std. Dev. Correlation Matrix 

* 
HI = 10.47 3.167 

A 

H, = 3.478 1.002 

= 0.611 0.156 

1 .oo 
0.55 1.00 

0.85 0.87 1 .oo 

47 



x = 17.12 + 5.689 E 

X 

X = 10.47 + 3.478 E 

E 

Figure 1. Example 5.4: Curve fitting. 
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6.0 CONCLUSION 

In this report we have analyzed the general problem of generating the covariance 
matrix associated with quantities derived from directly measured data via nonlinear relations, 
and the use of such matrices in data evaluations using the least squares method. When the 
derived quantities are nonlinear functions of the measured data, which is very often the case 
in practice, we can only obtain an approximate covariance matrix associated with the derived 
quantities. These approximate covariance matrices depend implicitly upon estimated values 
for the measured data. We have analyzed a few situations, based upon a problem suggested 
by R. W. Peelle, where inconsistencies can occur in evaluation work if one ignores the fact 
that these covariance matrices are not only approximate but a function of the very estimates 
one is seeking in the evaluation work. We have indicated how these inconsistencies can be 
avoided by a suitable iteration procedure. 
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