
3 4 4 5 6 0 3 b 4 9 2 b 5

- - - -

. .. -____

A - - ,-._.
I: : .;"..-.. x

ORNL/TM-12071

Engineering Physics and Mathematics Division

hlathematical Sciences Section

THE HIERARCHICAL SPATIAL DECOMPOSITION OF
THREE-DIMENSIONAL PARTICLE-IN-CELL PLASMA SIMULATIONS

ON MIMD DISTRIBUTED MEMORY MULTIPROCESSORS

David W. Walker

Mathematical Sciences Section
Oak Ridge National Laboratory

P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 378314367

Date Published: July 1992

Research was supported by the Applied Mathematical Sciences Re-
search Program of the Office of Energy Research, U S . Department
of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

3 4 4 5 6 0 3 b 4 9 2 b 5

Contents

1 Introduction . 1
2 ThePICAlgor i thm . 1
3 Decomposing PIC Problems . 2
4 Communication of Guard Layer Data . 4
5 Other Decomposition Methods . 7
6 Conclusions . 9
7 References . 9

... . 111 .

THE HIERARCHICAL SPATIAL DECOMPOSITION OF

ON MIMD DISTRIBUTED MEMORY MULTIPROCESSORS
THREE-DIMENSIONAL PARTICLCIN-CELL PLASMA SIMULATIONS

David W. Walker

Abstract

T h e hierarchical spatial decomposition method is a promising approach to decomposing
the particles and computational grid in parallel particle-in-cell application codes, since it
is able to maintain approximate dynamic load balance while keeping communication costs
low. In this paper we investigate issues in implementing a hierarchical spatial decomposi-
tion on a hypercube multiprocessor. Particular attention is focused on the communication
needed to update guard ring data , and on the load balancing method. The hierarchical
approach is compared with other dynamic load balancing schemes.

- v -

1. Introduction

For the last two decades the particle-in-cell (PIC) algorithm has been the method of choice for
many types of plasma simulation computation [3, 101. Current state-of-the-art, three dimen-
sional, PIC simulations involve millions of particles, and several hundred thousand grid points,
and thus impose heavy computational requirements. However, it is difficult to implement
the PIC algorithm efficiently on most advanced architecture computers because it performs
gather/scatter operations and recurrent data accesses [lS, 171. On MIMD distributed memory
concurrent computers (or rnufttcomputers) these difficulties manifest themselves as load imbal-
ance and communication overhead. These two types of overhead can be traded off against each
other, depending on the type of data decomposition scheme used. Thus, selecting the best
decomposition scheme is of crucial importance in designing an efficient parallel PIC application
code.

This report discusses issues concerned with implementing a PIC code that uses a unitary
hierarchical spatial decomposition on a multicomputer. In this type of decomposition scheme
the problem domain is subdivided over each coordinate direction in turn so that the total
computation arising from the particle and field updates in each time step is balanced among
the processors. In section 2 a brief description of the PIC algorithm is given. Section 3 outlines
approaches to decomposing PIC problems, and describes the hierarchical method in more detail.
Section 4 is concerned with the communication necessary to update a processor’s “guard data.”
In section 5 other decomposition schemes are considered. Section 6 presents a summary and
some conclusions.

2 . The PIC Algorithm

The fundamental equations governing the evolution of a plasma system are the equation of
motion for the particles, that relates the acceleration of a particle to the electromagnetic field at
its position, and Maxwell’s equations, that determine the evolution of the electromagnetic field.
In the PIC method the field equations are solved on a regular tensor product grid. However,
the particles are not constrained to lie on the grid and can be located a t any position in the
problem domain. The particle motion is driven by the electromagnetic field, so in advancing
the particle positions it is, therefore, necessary to interpolate EM field values on the grid to
each particle’s position. Similarly, the evolution of the EM fields is determined by the current
density generated by the motion of the particles, so when updating the EM fields by Maxwell’s
equations the current density at each grid point must be found by summing the contributions
from all particles in neighboring grid cells. Thus, the coupled equations of particle motion and
EM field evolution are solved by a time stepping algorithm, each step of which consists of four
phases:

(A) The scatter phase, in which each particle scatters its contributions to the current density
to the vertices of the cell in which it lies (its home cell) using a linear weighting scheme.

(B) The field solve phase, in which the current density on the grid evaluated in the scatter
phase is used to integrate Maxwell’s equations forward one time step.

(C) The gather phase, in which each particle gathers contributions to the electric and magnetic
fields a t its position by summing over the vertices of its home cell.

- 2 -

(D) The push phase, in which the equation of motion of each particle is advanced one time
step using the E31 field values found in the gather step.

3. Decomposing PIC Problems

In general. in a parallel PIC plasma simulation code there are two distributed data objects: the
set of particles and the computational grid. In seeking an efficient implementation on hlIMD
distributed memory concurrent computers we wish to distribute (or decompose) these two data
objects over the nodes of the concurrent computer so that communication and load imbalance
overhead are simultaneously controlled to within reasonable limits, so that the total overhead
is close to minimum. The push phase involves no interprocessor communication, while the field
solve phase only requires communication of boundary values between processors. Thus, we are
mainly concerned with controlling communication overhead in the scatter and gather phases of

the parallel PIC algorithm.
If the distribution of particles remains fairly homogeneous throughout the simulation then

load imbalance is not a problem, and communication overhead can be minimized by applying
the same uniform spatial decomposition to the particles and the grid. This is referred to as
an Eulerzon decompositzon. Clearly, if the particle distribution is inhomogeneous an Eulerian
decomposition will suffer from significant load imbalance, as some processors will contain more
particles than others. In this case, an alternative approach would be to decompose the grid
spatially as i n the Eulerian approach, but to apply a nonspatial decomposition to the particles
by placing approximately the same number in each processor without regard to their location.
This is referred to as a Lagrangian decomposztzon, and ensures good load balance. However, a
high communication overhead is incurred in the scatter and gather phases of the PIC algorithm
as particles do not, in general, lie in the same processor as the grid points with which they
must interact.

Other more sophisticated decompositions attempt to keep communication costs low while
simultaneously controlling load imbalance by dynamically changing the decomposition as the
system evolves (see [5, 181 for an overview of some dynamic load balancing methods). In
the adaptive Eulerian decomposition (1 11, a static uniform spatial decomposition is applied to
the grid, and a non-uniform dynamic spatial decomposition is applied to the particles. The
t w o decompositions are coupled so that some degree of data locality is maintained, and by
dynamically changing the particle distribution reasonably good load balance can be achieved.
In the scatter and gather phases it is necessary to transfer pieces of the grid between nearby
processors.

In the unitary, hierarchical, spatial (UHS)decomposition [4] the same dynamic spatial
decomposition is applied to both the grid and the particles. Again the dynamic decomposition
ensures good load balance, and by applying the same spatial decomposition to the particles
and the grid communication costs in the gather and scatter phases are kept low. Hierarchical
spatial decomposition has previously been independently proposed as a load balance method
by RlcCormick and Quinlan [13]. McCormick and Quinlan call their load balance method the
“multilevel load balancer,” and have used it in solving partial differential equations using the
asynchronous fast adaptive composite (AFAC) grid method [8, 141. Since the use of the UHS
decomposition i n PIC problems is the main concern of this report, we shall describe it in more
detail.

A spatial domain is first divided into n, subdomains by partitioning the domain orthogonal

n
- d -

Figure 1: Hierarchical spatial decompositions of (a) a two dimensional domain decomposed
onto a 4 x 4 processor mesh, and (b) a three dimensional domain decomposed onto a 4 x 4 x 4
processor mesh.

to the z-axis. Each subdomain is then further partitioned orthogonal to the p-axis into ny
pieces. At this stage we have ny . n, subdomains, each of which is next partitioned orthogonal
to the z-axis t o produce n, . ny . n, subdomains. Examples of the UHS partitioning of twc-
and three-dimensional domains are given in Fig. 1. The subdomains are then assigned to
processors, that can be regarded as forming a logically regular processor mesh. In this report
we shall assume that one subdomain is assigned to each processor, although it may be desirable
to overdecompose the domain so that each processor is assigned more than one subdomain.
This overdecomposition permits communication and calculation to be overlapped. At each
stage of the decomposition process the partitions are placed so that the workload in each of the
resultant subdomains is approximately equal. I t should be noted that n o assumptions have been
made about how the partitioning orthogonal to each coordinate direction is done. Fast heuristic
methods based on a smooth approximation to the workload distribution across the coordinate
direction of interest provide an attractive way of positioning the orthogonal partitions [/I, 121.

In a strict unitary decomposition the workload in a subdomain consists of the work done
processing both particles and grid points, and communication between processors is permitted
only at the start of each time step. The basic unit in the spatial decomposition is a cell of
the computational mesh, where a cell consists of the particles within the cell plus the root grid
point of the cell (i.e., the first grid point in the cell as we sweep first over the t, then the y, and
finally the z direction). The decomposition method described above divides the domain into
n,nyni rectangular blocks of cells that are then assigned to processors. In the gather phase
we need the grid point data at each cell vertex in order to find the Ehl fields a t the particles
within a given cell. This can be done without additional communication if at the start of each

- 4 -

time step a “guard layer” of grid points is added to the three positive faces of each processor’s
block of cells. This requires communication with neighboring processors. To do the field solve
phase without additional communication we need to be able to update each grid point that
takes part in the gather phase in a processor. If we are using a method that requires data from
grid points G grid spacings away, then the guard layer must be extended to G + 1 grid points
on the positive faces, and G grid points on the negative faces. For the simple finite difference
scheme often used G = 1. Finally, to perform the scatter phase to find the current density a t
each grid point used in the field solve phase requires a guard layer of particle data (G+ 1) cells
thick on each face.

A strict unitary decomposition requires both grid point and particle data to be exchanged
between processors a t the start of each time step. This can result in significant overhead,
particularly in the transfer of particle data. If we relax the restriction that there be only
one communication phase in each time step, and allow grid point data to be comniunicated
between the scatter and field solve phase then no particle data need be transferred to update
the guard layer. This avoids some redundant computation in the scatter phase, and reduces the
communication overhead. In this case we only require a guard layer of grid points that is G + 1
and G grid points wide on the positive and negative faces of each subdomain, respectively. If
we further permit grid point data to be communicated between the field solve and gather steps
then the communication overhead is reduced even more since then the thickness of the guard
layer need only be G grid points on each face. This of course introduces a synchronization point
in the PIC algorithm between the field solve and push phases that destroys the unitary load
balance of the grid and particle based update. However, this loss of unitary load balance may
be worthwhile if the relative cost of the field solve phase is small, and so does not significantly
contribute to the workload.

4. Communication of Guard Layer Data

In this section we discuss how each processor determines with which processors t o communicate
when updating guard layer information. We begin with some notation. We shall denote the
set of consecutive integers running from 11 to 1 2 , inclusive, by (11~12). Regular grids are
represented in terms of tensor products. For example, a N , x N,, x N , grid, G , is written as,

This representation explicitly shows that the grid points are indexed starting a t 1. The extent
of each subdomain can be expressed in terms of the global index range in each coordinate
direction. Thus, the subdomain a t position m = (i , j, I ;) in the logical processor mesh can be
described by,

q m) = D1(m) @ W m) @ Ds(m) (2)

and 1 = 1, 2 and 3 corresponds to the x, y, and z coordinates, respectively. Here, d(m) =
(dl(m), da(m), &(m)) refers to the global index of the first grid point in the subdomain at
position m of the processor mesh, and similarly, n(m) is a vector whose elenients are the
number of grid points in each direction in that subdomain. We can succinctly refer to the
index set of a subdomain by means of a vector whose elements are the global index ranges in

- 5 -

each coordinate direction. Thus,

is just a vector whose elements D t (m) are given by Eq. (3).
We shall use the term augmented subdomain of a processor to refer to that processor’s

subdomain together with its associated guard layer. The augmented subdomain of the processor
at position m in the processor mesh can be represented as,

A(m) = (d(m) - GI, d(m) + n(m) - G2 - 1) (5)

where GI and Gz are vectors giving the width of the guard layer on the negative and positive
faces, which in general can be different on each face. If we use the expression S(m --* m‘) to
refer t o the data that the subdomain at position m must send to the subdomain a t position
m’ to update the guard layer, then we may write,

S(m 4 m‘) = D(m) n A(m‘) (6)

meaning that we must send the intersection of the subdomain at m and the augmented sub-
domain a t m’. Similarly, the data to be received by the subdomain a t position m from the
subdomain at position m’ can be expressed as,

R(m + m’) = D(m’) n A(m) (7)

The hierarchical spatial decomposition first divides the problem domain into slabs. These
slabs are then divided into rows, and the rows are divided into the subdomains and assigned
t o processors. I t therefore follows that when updating the guard layer a processor will only
have to communicate with processors in the same slab as itself, and in the slabs that lie above
and below it. Within the slabs above and below, a processor may have to communicate with
any processor. Within the same slab a processor may have to communicate with any processor
in the adjacent two rows of processors, in addition to communicating with the adjacent two
processors in the same row.

We have written a prototype parallel code that updates the guard layer for a hierarchical

decomposition, and runs 011 the Intel iPSCI2 hypercube. The update for some processor, P, is
done in the following steps:

1. Processor P gathers together information about the decomposition in its slab. This
information consists of the positions of the boundaries between the processor subdomains
in the z and y directions, i.e., d l (i , j , k) and & (j , k), where here we have shown that for
a hierarchical spatial decomposition the positions of the y boundaries depend only on the
location in the processor mesh in the y and z directions.

2. Processor P exchanges information about its slab with the processors above and below it
in the processor mesh. P now has the decomposition information for the three slabs with
which it must communicate.

3. For each of the three slabs we check to see which augmented subdomains overlap with
the subdomain of processor P . This is done by first checking y boundaries, and then 2:

- 6 -

boundaries. That is, for each slab, k = A’ - 1, I<, Ii + 1, we find all j’ such that,

& (j , A’) f lA2 (j f , k) is not empty (8)

and then for each of these j’ we find for each of the three slabs the i’ such that,

D l (i , j , K) n AI(?, j’, k) is not empty (9)

The set of indices (i’(j‘, k) , j ’ (k) , k) for k = I<- 1, K, K + 1 gives the set of subdomains to
which processor P must send data, and the overlap between the augmented subdomains
of target processors and the subdomain of processor P can easily be found to determine
which data should be sent.

4. For each of the three slabs we check to see which subdomains overlap with the augmented
subdomain of processor P . For each slab IC = A’ - 1, K, K + 1 we find all j ’ such that,

D?(j‘ , k) fl Az(j, K) is not empty (10)

and then for each of these j ’ we find for each of the three slabs the i’ such that,

Dl(i’ , j ’ , k) n A l (i , j , 1;) is not empty (11)

The set of indices (i ‘ (j ’ , k), j ’ (k) , k) for k = A‘ - 1, I<, 11’ + 1 gives the set of subdomains
from which processor P must receive data. Again, the overlap for the communicating
processors can be found to determine where in its guard layer each processor must store
the data received.

5. Processor P sends the appropriate data to its target processors, and then receives data
from its source processors. The data received are copied into the guard layer.

In the prototype code the hierarchical decomposition is produced by perturbing the boundaries
of a perfectly regular decomposition by a random amount. In a full code the data accumulated in
steps 1 and 2 could be determined and stored while performing the hierarchical load balancing.

In the prototype code each processor sends its messages independently when updating guard
layer data. An alternative approach would be the use a “dimensional router”. In such a scheme
each processor would first send all the messages destined for the slabs above and below in just
two big messages. The messages are now in the same slab as their destination processor, and are
next moved in the y direction until each is in the correct row of the processor mesh. Finally, the
messages are moved along the rows to their final destinations. Thus, in the dimensional router
messages are routed synchronously over each spatial dimension in turn until they reach their
destination, and this may result in a lower communication cost than the independent routing
strategy, particularly if the topology of the communication network contains a three-dimensional
grid. In addition, dimensional routing avoids congestion in the communication network that
could occur if independent routing generates too much message traffic. Otto and Felten [7]
found that a type of dimensional router called the “Crystal Router” was more efficient than
the independent routing method for sufficiently high message volumes on the nCUBE/3200.
More recent multiprocessors have different computation and communication characteristics, so
this type of work needs to be on machines such as the Intel iPSC/860 hypercube, to determine
the best message routing strategy. A third approach would be to employ a hybrid strategy

- 7 -

in which a dimensional router is used for messages that must be sent to processors within a
certain distance in the processor mesh, and independent routing is used for the more distant
(and hopefully fewer) processors.

5. Other Decomposition Methods

It is important to note that a t the data parallel level i t is not possible to split the PIC problem
as a whole into independent subtasks. The finest granularity that one might use corresponds to
that of the grid cells, which are interdependent because of the interaction between grid points
and particles in the gather/scatter phases, and because of the interaction between grid points
in the field solve phase. This spatial interdependency between the grid and the particles is a
fundamental characteristic of the PIC method, and precludes the use of load balancers that
assume independence between the tasks to be balanced. In the push phase the particle positions
are updated independently, and so such methods could be used just for this phase. In such a
scenario a regular Eulerian decomposition would be used for the scatter, gather and field solve
phases, and the push phase would be run under control of the load balancer. At the end of
the push phase it would be necessary to “write back” the particle information to the original
Eulerian decomposition. On currently available multiprocessors the communication overhead
needed to do this would be too large.

Baden and Kohn [Z] have found orthogonal recursive bisection (ORB) to be an efficient way
of maintaining load balance. As they point out, the imposition of a CFL condition ensures that
load imbalance grows slowly, with the result that only a relatively small number of particles need
be transferred between processors when the load balancer is run sufficiently frequently. Baden
and Kohn found in their experiments on a 32-node Intel iPSC/S60 hypercube that updating the
guard layer is a much larger source of overhead than load balancing. Baden [l] has developed
a programming abstraction called GenMP that simplifies the task of developing applications,
such as PIC simulations, that require the problem domain to be dynamically partitioned on
MIMD concurrent computers.

Dragon and Gustafson [6] have proposed a load balancing method that is efficient both
in terms of concurrent overhead and memory usage. In this approach subcubes exchange
individual particles, based only on knowledge of the positions of the two particles in each
subcube nearest the partition between the two subcubes. By successively performing particle
exchanges a t finer spatial scales the domain can be partitioned exactly.

Other partitioning strategies result in approximate load balance, and typically are based on
an approximation to the workload distribution obtained by averaging over some spatial scale,
such as over cells [9]. Approximate load balance can also be achieved by approximating the
work load density at the boundaries between partitions [15], although the accuracy of such
methods for unitary decompositions is reduced since the work load density is not a smooth
function of position. Another approach that might be worthwhile investigating is similar to
that taken by Dragon and Gustafson, but instead of exchanging individual particles, subcubes
exchange slabs of cells one cell thick. This has the advantage of keeping processor boundaries
aligned with the computational grid.

Hinz [9] has discussed the use of N4 nets for dynamically maintaining unitary load balance
of spatial tw*dimensional domains. An N4 net is a regular rectangular mesh of quadrilaterals
such that any two neighboring quadrilaterals in any row or column have only one boundary in
common, as is illustrated in Fig. 2(a). To maintain approximate load balance each processor

Figure 2: Example of the use of (a) an N4 net, and (b) rectilinear partitioning in decomposing
a two dimensional domain onto a 4 x 4 processor mesh.

is responsible for moving the top lefthand corner of its subdomain. Processors lying along the
bottom and righthand boundaries may move two points. The four corners of the domain are
fixed. An attractive feature of the N 4 net approach is that each processor needs to communicate
only with its nearest neighbors in the processor mesh - the complications discussed in Section
4 that arise from non-neighboring communication do not occur. A disadvantage is that some
additional bookkeeping is necessary to deal with the non-rectangular subgrids in each processor.
Hinz’s results with N4 partitioning of two-dimensional domains are encouraging, and it would
be interesting to apply the N4 method to three-dimensional problems.

Another interesting way of dynamically maintaining unitary load balance of spatial domains
has been proposed by Nicol [15]. In this approach we seek a rectilinear partitioning of the dc-
main, such as that shown in Fig. 2(b). As for the N 4 net method, this rectilinear approach
has the advantage of requiring only simple communication patterns between processors when
exchanging grid and/or particle guard layer data a t the start of each time step. Nicol presents
an algorithm for the one-dimensional Rectilinear Partitioning Problem (RPP), and uses this
to find a conditionally optimal rectilinear partitioning of a twedimensional domain. This is
done by an iterative refinement procedure in which the optimal partitioning in one dimension is
found with the partitioning in the other dimension held fixed. ‘The resultant partitioning in the
first dimension is then held fixed, and the partitioning in the second dimension is optimized.
This procedure is iterated until no further change in the partitioning occurs. Nicol compares
load balance and communication metrics for regular and irregular grids for partitionings pro-
duced by the rectilinear, binary recursive, and hierarchical spatial (called “jagged” by Nicol)
decompositions. The general conclusions of this work were that rectilinear partitioning is most
useful for grids that are not too irregular and when global communication is expensive. The
rectilinear partitioning strategy may be appropriate for the Connection Machine.

- 9 -

6. Conclusions

In the implementation of parallel PIC simulations a common, unitary, spatial decomposition of
the particles and grid is necessary to avoid the high cost of communication in the gather/scatter
steps of the PIC algorithm. The hierarchical spatial approach promises to provide a partitioning
strategy that dynamically maintains such a decomposition at low cost. Communication is
necessary before and after each scatter step to update grid point values in each processor’s
guard layer. In general, this will involve communication between processors that are not nearest
neighbors in the processor mesh. We have implemented this type of communication using
independent routing, although other strategies involving dimensional routing may be more
appropriate on different multiprocessors.

N4 nets and rectilinear partitionings provide other means of dynamically maintaining a

unitary spatial decomposition, and require only nearest neighbor communication within the
processor mesh to update guard layers. Further research is required to investigate the appli-
cability of these methods to three-dimensional problems. A fast heuristic approach based on a
smooth approximation to the workload distribution may provide a quicker way of performing
rectilinear partitioning in three dimensions.

7. References

[I] S. B. Baden. Programming abstractions for dynamically partitioning and coordinating
localized scientific calculations running on multiprocessors. SZA M J . Scz. Stat. Contpul.,
12:145-157, 1991.

[2] S. B. Baden and S. R. Kohn. A comparison of load balancing strategies for particle methods
running on mimd multiprocessors. Technical Report CS91-199, Department of Computer
Science and Engineering, University of California, San Diego, May 1991.

[3] C . K. Birdsall and A . B. Langdon. Plasma Physics Via Computer Stmulation. McGraw-
Hill, New York, 1985.

[4] P. M. Campbell, E. A. Carmona, and D. W. Walker. Hierarchical domain decomposition
with unitary load balancing for electromagnetic particle-in-cell codes. In D. W. Walker and
Q. F. Stout, editors, Proceedzngs of the Fzfih Dzstrzbuted Memory Computing Conference,
pages 943-950. IEEE Computer Society Press, 1990.

[5] George Cybenko. Dynamic load balancing for distributed memory multiprocessors. J . Par-
allel and Dastributed Cornput., 7~279-391, 1989.

[6] K. M . Dragon and J . L. Gustafson. A low-cost hypercube load-balance algorithm. In
J . L. Gustafson, editor, Proceedzngs of the Foudh Conference on Hypercubes, Concurrent
Computers, and Applications, pages 583-589, 1989.

[7] E. W . Felten and S. W. Otto. A safe vertex. In G. C. Fox, editor, Proceedings o f i h e Third
Conferewe on Hypercube Concurrent Computers and Applications, pages 560-562. ACM
Press, 1988.

[8] L. Har t and S. McCormick. Asynchronous multilevel adaptive methods for solving partial
differential equations on multiprocessors: Basic ideas. Parallel Computing, 12:131-144,
1989.

- 10 -

[9] D . Y. Hinz. A run-time load balancing strategy for highly parallel systems. In D. \!’.
15:alker and Q . F. Stout, editors, proceedings of the Fifth Disiributtd Memory Conipuiing
Conference, pages 951-961. IEEE Computer Society Press, 1990.

[lo] R. W. Hockney and J . it’. Eastwood. Computer Simulatton Using Particles. Adam Hilger,
Bristol, England, 1988.

[ll] P. C . Liewer and V. K . Decyk. A general concurrent algorithm for plasma particle-in-cell
simulation codes. J . Comput. Phys., 85:302, 1989.

[12] P. C. Liewer, E. W . Leaver, V. I<. Decyk, and J . hl. Dawson. Dynamic load balancing
in a concurrent plasma PIC code on the JPL/Caltech Mark I11 hypercube. In D. W.
Walker and Q. F. Stout, editors, Proceedings of the Fifth Distributed Memory Computing
Conference, pages 939-942. IEEE Computer Society Press, 1990.

[13] S. hlcCormick and D. Quinlan. Multilevel load balancing for multiprocessors - an out-
line. In Preliminary Proceedings of the Third Copper Mountain Conference on Multigrid
Methods, Copper Mountian, Colorado, 1987.

[I41 S. McCormick and D. Quinlan. Asynchronous multilevel adaptive methods for solving
partial differential equations on multiprocessors: Performance results. Parallel Computing,
12:145-156, 1989.

[15] D. M . Nicol. Rectilinear partitioning of irregular data parallel computations. Technical
Report 91-55, ICASE, July 1991.

[16] D. W. Walker. Characterizing the parallel performance of a large-scale particle-in-cell
plasma simulation code. Concurrency: Practice and Experience, 2:257-288, 1990.

Particle-in-cell plasma simulation codes on the connection machine. [17] D. W. Walker.
1111. J . of Computing Systems in Engineering, 2(2/3):307-319, October 1991.

[18] hl. Willebeek-Lehlair a n d A . P. Reeves. Dynamic load balancing strategies for highly
parallel multicomputer systems. Technical Report EGCEG-89-14, School of Electrical
Engineering , Cornel1 University, December 1989.

- 11 -

ORNL/TM-12071

INTERNAL DISTRIBUTION

1 .
2.
3 .

4-5.
6 .
7 .
8.
9.

10.
11.
12.
13.

14-18.

B. R. Appleton

C. Bottcher
B. A. Carreras
T. S. Darland
E. D’Azevedo
J . J . Dongarra

J . B. Drake
T . H . Dunigan

R. E. Flanery
J . N . Leboeuf
V. E. Lynch

C. E. Oliver
S. A. Raby

19-23.
24.
25.

26-30.
31-35.

36.
37.
38.
39.
40.
41.

42-43.

R. F. Sincovec

G. M. Stocks
hi . R. Strayer
D. W. Walker
R. C. Ward
P. H. Worley

Central Research Library
ORNL Patent Office

K-25 Applied Technology Library
Y-12 Technical Library
Laboratory Records - RC

Laboratory Records Department

EXTERNAL DISTRIBUTION

44. Scott Baden, Department of Computer Sci. and Eng., University of California at San
Diego, CSE 0114, 9500 Gilman Drive, La Jolla, CA 92093-0114

45. Colin Bennett, Department of Mathematics, University of South Carolina, Columbia, SC
29208

46. Dominique Bennett, CERFACS, 42 Avenue Gustave Coriolis, 31057 Toulouse Cedex,
FRANCE

47. Roger W. Brockett, Wang Professor of EE and CS, Division of Applied Sciences, Harvard
Universit,y, Cambridge, MA 02138

48. Captain Edward A. Carmona, Parallel Computing Research Group, Phillips Laboratory,
Kirtland AFB, Albuquerque, Nhl 87117

49. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical Sci-
ences, Office of Energy Research, U S . Department of Energy, Washington, DC 20585

50. Alexandre Chorin, Mathematics Department, Lawrence Berkeley Laboratory, Berkeley,
CA 94720

51. James Corones, Arries Laboratory, Iowa State University, Ames, IA 50011

52. John J. Dorning, Department of Nuclear Engineering Physics, Thornton Hall, McCormick
Road, University of Virginia, Charlottesville, VA 22901

53. Richard E. Ewing, Department of hlathematics, University of Wyoming, Laramie, WY
82071

- 12 -

54. Geoffrey C. Fox, KPAC, 111 College Place, Syracuse University, Syracuse, NY 13244-4100

55. James Glimm, Department of Mathematics, State University of New York, Stony Brook,
NY 11794

56. Hans Kaper, Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

57. Tom Kitchens, ER-7, Applied Mathematical Sciences, Scieiitific Computa rig Staff, Office
of Energy Research, Ofice G-437 Germantown, Washington, DC 20585

58. Peter D. Lax, Courant Institute of Mathematical Sciences, New York Universi:y, 251
Mercer Street, New York, NY 10012

59. James E. Leiss, Rt . 2, Box 142C, Broadway, VA 22815

60. George McNulty, Department of Mathematics, University of South Carolina, C mbia,
SC 29208

61. Keville Moray, Department of Mechanical and Industrial Engineering, University of Illi-
nois, 1206 West Greeii Street, Urbana, IL 61801

62. Captain Mike Proicou, Parallel Computing Research Group, Phillips Laboratory, Kirtland
AFB, Albuquerque, N M 87117

63. Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P. 0. Box 1892,
Houston, T X 77251

64. Ofice of Assistant Manager for Energy Research and Development, U.S. Department of
Energy, Oak Ridge Operations Office, P. 0. Box 2001, Oak Ridge, T N 37831-8600

65-74. Office of Scientific & Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

