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THE HIERARCHICAL SPATIAL DECOMPOSITION OF 

ON MIMD DISTRIBUTED MEMORY MULTIPROCESSORS 
THREE-DIMENSIONAL PARTICLCIN-CELL PLASMA SIMULATIONS 

David W. Walker 

Abstract 

T h e  hierarchical spatial decomposition method is a promising approach to decomposing 
the particles and computational grid in parallel particle-in-cell application codes, since it 
is able to maintain approximate dynamic load balance while keeping communication costs 
low. In this paper we investigate issues in implementing a hierarchical spatial decomposi- 
tion on a hypercube multiprocessor. Particular attention is focused on the communication 
needed to  update guard ring data ,  and on the load balancing method. The  hierarchical 
approach is compared with other dynamic load balancing schemes. 
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1. Introduction 

For the last two decades the particle-in-cell (PIC) algorithm has been the method of choice for 
many types of plasma simulation computation [3, 101. Current state-of-the-art, three dimen- 
sional, PIC simulations involve millions of particles, and several hundred thousand grid points, 
and thus impose heavy computational requirements. However, it is difficult to implement 
the PIC algorithm efficiently on most advanced architecture computers because it performs 
gather/scatter operations and recurrent data accesses [lS, 171. On MIMD distributed memory 
concurrent computers (or rnufttcomputers) these difficulties manifest themselves as load imbal- 
ance and communication overhead. These two types of overhead can be traded off against each 
other, depending on the type of data decomposition scheme used. Thus, selecting the best 
decomposition scheme is of crucial importance in designing an efficient parallel PIC application 
code. 

This report discusses issues concerned with implementing a PIC code that uses a unitary 
hierarchical spatial decomposition on a multicomputer. In this type of decomposition scheme 
the problem domain is subdivided over each coordinate direction in turn so that the total 
computation arising from the particle and field updates in each time step is balanced among 
the processors. In section 2 a brief description of the PIC algorithm is given. Section 3 outlines 
approaches to decomposing PIC problems, and describes the hierarchical method in more detail. 
Section 4 is concerned with the communication necessary to update a processor’s “guard data.” 
In section 5 other decomposition schemes are considered. Section 6 presents a summary and 
some conclusions. 

2 .  The PIC Algorithm 

The fundamental equations governing the evolution of a plasma system are the equation of 
motion for the particles, that relates the acceleration of a particle to the electromagnetic field at  
its position, and Maxwell’s equations, that determine the evolution of the electromagnetic field. 
In the PIC method the field equations are solved on a regular tensor product grid. However, 
the particles are not constrained to lie on the grid and can be located a t  any position in the 
problem domain. The particle motion is driven by the electromagnetic field, so in advancing 
the particle positions it is, therefore, necessary to  interpolate EM field values on the grid to  
each particle’s position. Similarly, the evolution of the EM fields is determined by the current 
density generated by the motion of the particles, so when updating the EM fields by Maxwell’s 
equations the current density at  each grid point must be found by summing the contributions 
from all particles in neighboring grid cells. Thus, the coupled equations of particle motion and 
EM field evolution are solved by a time stepping algorithm, each step of which consists of four 
phases: 

(A) The scatter phase, in which each particle scatters its contributions to  the current density 
to  the vertices of the cell in which it lies (its home cell) using a linear weighting scheme. 

(B)  The field solve phase, in which the current density on the grid evaluated in the scatter 
phase is used to integrate Maxwell’s equations forward one time step. 

(C) The gather phase, in which each particle gathers contributions to  the electric and magnetic 
fields a t  its position by summing over the vertices of its home cell. 
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(D) The push phase, in which the equation of motion of each particle is advanced one time 
step using the E31 field values found in the gather step. 

3. Decomposing PIC Problems 

In general. in a parallel PIC plasma simulation code there are two distributed data objects: the 
set of particles and the computational grid. In seeking an efficient implementation on hlIMD 
distributed memory concurrent computers we wish to distribute (or decompose) these two data 
objects over the nodes of the concurrent computer so that communication and load imbalance 
overhead are simultaneously controlled to within reasonable limits, so that the total overhead 
is close to minimum. The push phase involves no interprocessor communication, while the field 
solve phase only requires communication of boundary values between processors. Thus, we are 
mainly concerned with controlling communication overhead in the scatter and gather phases of 

the parallel PIC algorithm. 
If the distribution of particles remains fairly homogeneous throughout the simulation then 

load imbalance is not a problem, and communication overhead can be minimized by applying 
the same uniform spatial decomposition to the particles and the grid. This is referred to as 
an Eulerzon decompositzon. Clearly, if the particle distribution is inhomogeneous an Eulerian 
decomposition will suffer from significant load imbalance, as some processors will contain more 
particles than others. In  this case, an alternative approach would be to decompose the grid 
spatially as i n  the Eulerian approach, but to apply a nonspatial decomposition to the particles 
by placing approximately the same number in each processor without regard to their location. 
This is referred to as a Lagrangian  decomposztzon, and ensures good load balance. However, a 
high communication overhead is incurred in the scatter and gather phases of the PIC algorithm 
as particles do not, in general, lie in  the same processor as the grid points with which they 
must interact. 

Other more sophisticated decompositions attempt to keep communication costs low while 
simultaneously controlling load imbalance by dynamically changing the decomposition as the 
system evolves (see [5, 181 for an overview of some dynamic load balancing methods). In 
the adaptive Eulerian decomposition (1 11, a static uniform spatial decomposition is applied to 
the grid, and a non-uniform dynamic spatial decomposition is applied to the particles. The 
t w o  decompositions are coupled so that some degree of data locality is maintained, and by 
dynamically changing the particle distribution reasonably good load balance can be achieved. 
In the scatter and gather phases it is necessary to transfer pieces of the grid between nearby 
processors. 

In the unitary, hierarchical, spatial (UHS )decomposition [4] the same dynamic spatial 
decomposition is applied to both the grid and the particles. Again the dynamic decomposition 
ensures good load balance, and by applying the same spatial decomposition to the particles 
and the grid communication costs in the gather and scatter phases are kept low. Hierarchical 
spatial decomposition has previously been independently proposed as a load balance method 
by RlcCormick and Quinlan [13]. McCormick and Quinlan call their load balance method the 
“multilevel load balancer,” and have used it in solving partial differential equations using the 
asynchronous fast adaptive composite (AFAC) grid method [8, 141. Since the use of the UHS 
decomposition i n  PIC problems is the main concern of this report, we shall describe it in more 
detail. 

A spatial domain is first divided into n, subdomains by partitioning the domain orthogonal 
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Figure 1: Hierarchical spatial decompositions of (a) a two dimensional domain decomposed 
onto a 4 x 4 processor mesh, and (b) a three dimensional domain decomposed onto a 4 x 4 x 4 
processor mesh. 

to the z-axis. Each subdomain is then further partitioned orthogonal to  the p-axis into ny 
pieces. At this stage we have ny . n, subdomains, each of which is next partitioned orthogonal 
to the z-axis t o  produce n, . ny . n, subdomains. Examples of the UHS partitioning of twc- 
and three-dimensional domains are given in Fig. 1. The subdomains are then assigned to 
processors, that can be regarded as forming a logically regular processor mesh. In this report 
we shall assume that one subdomain is assigned to each processor, although it may be desirable 
to  overdecompose the domain so that each processor is assigned more than one subdomain. 
This overdecomposition permits communication and calculation to  be overlapped. At each 
stage of the decomposition process the partitions are placed so that the workload in each of the 
resultant subdomains is approximately equal. I t  should be noted that n o  assumptions have been 
made about how the partitioning orthogonal to each coordinate direction is done. Fast heuristic 
methods based on a smooth approximation to  the workload distribution across the coordinate 
direction of interest provide an  attractive way of positioning the orthogonal partitions [/I, 121. 

In a strict unitary decomposition the workload in a subdomain consists of the work done 
processing both particles and grid points, and communication between processors is permitted 
only at the start of each time step. The basic unit in the spatial decomposition is a cell of 
the computational mesh, where a cell consists of the particles within the cell plus the root grid 
point of the cell (i.e., the first grid point in  the cell as we sweep first over the t, then the y, and 
finally the z direction). The decomposition method described above divides the domain into 
n,nyni rectangular blocks of cells that are then assigned to processors. In the gather phase 
we need the grid point data at  each cell vertex in order to find the Ehl fields a t  the particles 
within a given cell. This can be done without additional communication if at  the start of each 
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time step a “guard layer” of grid points is added to the three positive faces of each processor’s 
block of cells. This requires communication with neighboring processors. To do the field solve 
phase without additional communication we need to be able to update each grid point that 
takes part in the gather phase in a processor. If we are using a method that requires data from 
grid points G grid spacings away, then the guard layer must be extended to G + 1 grid points 
on the positive faces, and G grid points on the negative faces. For the simple finite difference 
scheme often used G = 1. Finally, to perform the scatter phase to find the current density a t  
each grid point used in the field solve phase requires a guard layer of particle data  (G+ 1) cells 
thick on each face. 

A strict unitary decomposition requires both grid point and particle data to be exchanged 
between processors a t  the start of each time step. This can result in significant overhead, 
particularly in the transfer of particle data. If we relax the restriction that there be only 
one communication phase in each time step, and allow grid point data to be comniunicated 
between the scatter and field solve phase then no particle data need be transferred to update 
the guard layer. This avoids some redundant computation in the scatter phase, and reduces the 
communication overhead. In  this case we only require a guard layer of grid points that is G + 1 
and G grid points wide on the positive and negative faces of each subdomain, respectively. If 
we further permit grid point data to be communicated between the field solve and gather steps 
then the communication overhead is reduced even more since then the thickness of the guard 
layer need only be G grid points on each face. This of course introduces a synchronization point 
in the PIC algorithm between the field solve and push phases that destroys the unitary load 
balance of the grid and particle based update. However, this loss of unitary load balance may 
be worthwhile if the relative cost of the field solve phase is small, and so does not significantly 
contribute to the workload. 

4. Communication of Guard Layer Data 

In this section we discuss how each processor determines with which processors t o  communicate 
when updating guard layer information. We begin with some notation. We shall denote the 
set of consecutive integers running from 11 to 1 2 ,  inclusive, by (11~12). Regular grids are 
represented in terms of tensor products. For example, a N ,  x N,, x N ,  grid, G ,  is written as, 

This representation explicitly shows that the grid points are indexed starting a t  1. The extent 
of each subdomain can be expressed in terms of the global index range in each coordinate 
direction. Thus, the subdomain a t  position m = ( i ,  j, I ; )  in the logical processor mesh can be 
described by, 

q m )  = D1(m) @ W m )  @ Ds(m) (2) 

and 1 = 1, 2 and 3 corresponds to the x, y, and z coordinates, respectively. Here, d(m) = 
(dl(m), da(m), &(m) ) refers to the global index of the first grid point in the subdomain at  
position m of the processor mesh, and similarly, n(m) is a vector whose elenients are the 
number of grid points in each direction in that subdomain. We can succinctly refer to the 
index set of a subdomain by means of a vector whose elements are the global index ranges in 
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each coordinate direction. Thus, 

is just a vector whose elements D t ( m )  are given by Eq. (3).  
We shall use the term augmented subdomain of a processor to  refer to that processor’s 

subdomain together with its associated guard layer. The augmented subdomain of the processor 
at  position m in the processor mesh can be represented as, 

A(m) = (d(m) - GI, d(m) + n(m) - G2 - 1) (5) 

where GI and Gz are vectors giving the width of the guard layer on the negative and positive 
faces, which in general can be different on each face. If we use the expression S(m --* m‘) to  
refer t o  the data that the subdomain at position m must send to the subdomain a t  position 
m’ to  update the guard layer, then we may write, 

S(m 4 m‘) = D(m) n A(m‘) ( 6 )  

meaning that we must send the intersection of the subdomain at  m and the augmented sub- 
domain a t  m’. Similarly, the data to be received by the subdomain a t  position m from the 
subdomain at  position m’ can be expressed as, 

R(m + m’) = D(m’) n A(m) (7) 

The hierarchical spatial decomposition first divides the problem domain into slabs. These 
slabs are then divided into rows, and the rows are divided into the subdomains and assigned 
t o  processors. I t  therefore follows that when updating the guard layer a processor will only 
have to  communicate with processors in the same slab as itself, and in the slabs that lie above 
and below it. Within the slabs above and below, a processor may have to  communicate with 
any processor. Within the same slab a processor may have to communicate with any processor 
in the adjacent two rows of processors, in addition to  communicating with the adjacent two 
processors in the same row. 

We have written a prototype parallel code that updates the guard layer for a hierarchical 

decomposition, and runs 011 the Intel iPSCI2 hypercube. The update for some processor, P, is 
done in the following steps: 

1. Processor P gathers together information about the decomposition in its slab. This 
information consists of the positions of the boundaries between the processor subdomains 
in the z and y directions, i.e., d l ( i , j ,  k )  and & ( j ,  k), where here we have shown that for 
a hierarchical spatial decomposition the positions of the y boundaries depend only on the 
location in the processor mesh in the y and z directions. 

2. Processor P exchanges information about its slab with the processors above and below it 
in the processor mesh. P now has the decomposition information for the three slabs with 
which it must communicate. 

3. For each of the three slabs we check to see which augmented subdomains overlap with 
the subdomain of processor P .  This is done by first checking y boundaries, and then 2: 
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boundaries. That  is, for each slab, k = A’ - 1, I<, Ii + 1, we find all j’ such that, 

& ( j ,  A’) f lA2 ( j f ,  k) is not empty (8) 

and then for each of these j’ we find for each of the three slabs the i’ such that,  

D l ( i , j ,  K )  n AI(?, j’, k) is not empty (9) 

The set of indices (i’(j‘, k ) , j ’ ( k ) ,  k) for k = I<- 1, K,  K + 1  gives the set of subdomains to 
which processor P must send data,  and the overlap between the augmented subdomains 
of target processors and the subdomain of processor P can easily be found to determine 
which data should be sent. 

4.  For each of the three slabs we check to  see which subdomains overlap with the augmented 
subdomain of processor P .  For each slab IC = A’ - 1, K, K + 1 we find all j ’  such that, 

D?(j‘ ,  k )  fl Az(j, K )  is not empty (10) 

and then for each of these j ’  we find for each of the three slabs the i’ such that, 

Dl(i’ ,  j ’ ,  k) n A l ( i , j ,  1;) is not empty (11) 

The set of indices ( i ‘ ( j ’ ,  k), j ’ ( k ) ,  k )  for k = A‘ - 1, I<, 11’ + 1 gives the set of subdomains 
from which processor P must receive data. Again, the overlap for the communicating 
processors can be found to determine where in its guard layer each processor must store 
the data  received. 

5. Processor P sends the appropriate data to its target processors, and then receives data  
from its source processors. The data received are copied into the guard layer. 

In the prototype code the hierarchical decomposition is produced by perturbing the boundaries 
of a perfectly regular decomposition by a random amount. In a full code the data  accumulated in 
steps 1 and 2 could be determined and stored while performing the hierarchical load balancing. 

In the prototype code each processor sends its messages independently when updating guard 
layer data. An alternative approach would be the use a “dimensional router”. In such a scheme 
each processor would first send all the messages destined for the slabs above and below in just 
two big messages. The messages are now in the same slab as their destination processor, and are 
next moved in the y direction until each is in the correct row of the processor mesh. Finally, the 
messages are moved along the rows to their final destinations. Thus, in the dimensional router 
messages are routed synchronously over each spatial dimension in turn until they reach their 
destination, and this may result in a lower communication cost than the independent routing 
strategy, particularly if the topology of the communication network contains a three-dimensional 
grid. In addition, dimensional routing avoids congestion in the communication network that 
could occur if independent routing generates too much message traffic. Otto and Felten [7] 
found that a type of dimensional router called the “Crystal Router” was more efficient than 
the independent routing method for sufficiently high message volumes on the nCUBE/3200. 
More recent multiprocessors have different computation and communication characteristics, so 
this type of work needs to be on machines such as the Intel iPSC/860 hypercube, to determine 
the best message routing strategy. A third approach would be to  employ a hybrid strategy 
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in which a dimensional router is used for messages that must be sent to  processors within a 
certain distance in the processor mesh, and independent routing is used for the more distant 
(and hopefully fewer) processors. 

5. Other Decomposition Methods 

It is important to note that a t  the data parallel level i t  is not possible to split the PIC problem 
as a whole into independent subtasks. The finest granularity that one might use corresponds to 
that of the grid cells, which are interdependent because of the interaction between grid points 
and particles in the gather/scatter phases, and because of the interaction between grid points 
in the field solve phase. This spatial interdependency between the grid and the particles is a 
fundamental characteristic of the PIC method, and precludes the use of load balancers that 
assume independence between the tasks to  be balanced. In the push phase the particle positions 
are updated independently, and so such methods could be used just for this phase. In such a 
scenario a regular Eulerian decomposition would be used for the scatter, gather and field solve 
phases, and the push phase would be run under control of the load balancer. At the end of 
the push phase it would be necessary to “write back” the particle information to the original 
Eulerian decomposition. On currently available multiprocessors the communication overhead 
needed to  do this would be too large. 

Baden and Kohn [Z] have found orthogonal recursive bisection (ORB) to be an efficient way 
of maintaining load balance. As they point out, the imposition of a CFL condition ensures that 
load imbalance grows slowly, with the result that only a relatively small number of particles need 
be transferred between processors when the load balancer is run sufficiently frequently. Baden 
and Kohn found in their experiments on a 32-node Intel iPSC/S60 hypercube that updating the 
guard layer is a much larger source of overhead than load balancing. Baden [l] has developed 
a programming abstraction called GenMP that simplifies the task of developing applications, 
such as PIC simulations, that require the problem domain to be dynamically partitioned on 
MIMD concurrent computers. 

Dragon and Gustafson [6] have proposed a load balancing method that is efficient both 
in terms of concurrent overhead and memory usage. In this approach subcubes exchange 
individual particles, based only on knowledge of the positions of the two particles in each 
subcube nearest the partition between the two subcubes. By successively performing particle 
exchanges a t  finer spatial scales the domain can be partitioned exactly. 

Other partitioning strategies result in approximate load balance, and typically are based on 
an approximation to  the workload distribution obtained by averaging over some spatial scale, 
such as over cells [9]. Approximate load balance can also be achieved by approximating the 
work load density at  the boundaries between partitions [15], although the accuracy of such 
methods for unitary decompositions is reduced since the work load density is not a smooth 
function of position. Another approach that might be worthwhile investigating is similar to  
that taken by Dragon and Gustafson, but instead of exchanging individual particles, subcubes 
exchange slabs of cells one cell thick. This has the advantage of keeping processor boundaries 
aligned with the computational grid. 

Hinz [9] has discussed the use of N4 nets for dynamically maintaining unitary load balance 
of spatial tw*dimensional domains. An N4 net is a regular rectangular mesh of quadrilaterals 
such that any two neighboring quadrilaterals in any row or column have only one boundary in 
common, as is illustrated in Fig. 2(a). To maintain approximate load balance each processor 



Figure 2:  Example of the use of (a) an N4 net, and (b) rectilinear partitioning in decomposing 
a two dimensional domain onto a 4 x 4 processor mesh. 

is responsible for moving the top lefthand corner of its subdomain. Processors lying along the 
bottom and righthand boundaries may move two points. The four corners of the domain are 
fixed. An attractive feature of the N 4  net approach is that each processor needs to communicate 
only with its nearest neighbors in the processor mesh - the complications discussed in Section 
4 that arise from non-neighboring communication do not occur. A disadvantage is that  some 
additional bookkeeping is necessary to deal with the non-rectangular subgrids in each processor. 
Hinz’s results with N4 partitioning of two-dimensional domains are encouraging, and it would 
be interesting to apply the N4 method to three-dimensional problems. 

Another interesting way of dynamically maintaining unitary load balance of spatial domains 
has been proposed by Nicol [15]. In this approach we seek a rectilinear partitioning of the dc- 
main, such as that shown in Fig. 2(b). As for the N 4  net method, this rectilinear approach 
has the advantage of requiring only simple communication patterns between processors when 
exchanging grid and/or particle guard layer data a t  the start of each time step. Nicol presents 
an algorithm for the one-dimensional Rectilinear Partitioning Problem (RPP),  and uses this 
to find a conditionally optimal rectilinear partitioning of a twedimensional domain. This is 
done by an iterative refinement procedure in which the optimal partitioning in one dimension is 
found with the partitioning in the other dimension held fixed. ‘The resultant partitioning in the 
first dimension is then held fixed, and the partitioning in the second dimension is optimized. 
This procedure is iterated until no further change in the partitioning occurs. Nicol compares 
load balance and communication metrics for regular and irregular grids for partitionings pro- 
duced by the rectilinear, binary recursive, and hierarchical spatial (called “jagged” by Nicol) 
decompositions. The general conclusions of this work were that rectilinear partitioning is most 
useful for grids that are not too irregular and when global communication is expensive. The 
rectilinear partitioning strategy may be appropriate for the Connection Machine. 
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6. Conclusions 

In the implementation of parallel PIC simulations a common, unitary, spatial decomposition of 
the particles and grid is necessary to avoid the high cost of communication in the gather/scatter 
steps of the PIC algorithm. The  hierarchical spatial approach promises to provide a partitioning 
strategy that dynamically maintains such a decomposition at  low cost. Communication is 
necessary before and after each scatter step to update grid point values in each processor’s 
guard layer. In general, this will involve communication between processors that  are not nearest 
neighbors in the processor mesh. We have implemented this type of communication using 
independent routing, although other strategies involving dimensional routing may be more 
appropriate on different multiprocessors. 

N4 nets and rectilinear partitionings provide other means of dynamically maintaining a 

unitary spatial decomposition, and require only nearest neighbor communication within the 
processor mesh to update guard layers. Further research is required to investigate the appli- 
cability of these methods to three-dimensional problems. A fast heuristic approach based on a 
smooth approximation to the workload distribution may provide a quicker way of performing 
rectilinear partitioning in three dimensions. 
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