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A brief overview of adaptive control methods relating to the design of self-tuning 
proportional-integral-derivative (PID) controllers is given. The methods discussed 
include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive control 
systems. Several process identification and parameter adjustment methods are discussed. 
Characteristics of the two most common types of self-tuning controllers implemented by 
industry (i-e., pattern recognition and process identification) are summarized. The 
substance of the work is a comparison of three self-tuning proportional-plus-integral 
(STPI) control algorithms developed to work in conjunction with the Bristol-Babcock 
PID control module. The STPI control algorithms are based on closed-loop cycling 
theory, pattern recognition theory, and model-based theory. A brief theory of operation 
of these three STPI control algorithms is given. Details of the process simulations 
developed to test the STPI algorithms are given, including an integrating process, a first- 
order system, a second-order system, a system with initial inverse response, and a system 
with variable time constant and delay. The STPI algorithms’ performance with regard to 
both setpoint changes and load disturbances is evaluated, and their robustness is 
compared. The dynamic effects of process deadtime and noise are also considered. 
Finally, the limitations of each of the STPI algorithms is discussed, some conclusions are 
drawn from the performance comparisons, and a few recommendations are made. 





1. INTRoDucfION 

It used to be a difficult and time-consuming task to tune process controllers, but 
in the past few years several manufacturers have begun to incorporate self-tuning 
controller algorithms to automatically tune their proportional-integral-derivative (PID) 
controller parameters. This work describes the research, process simulation 
development, and tests €or comparison of three self-tuning controller algorithms that 
were implemented by researchers at Sunderland Polytechnic, Sunderland, England, to 
work in conjunction with the Bristol-Babcock PID control module. These self-tuning PI 
control algorithms are based on closed-loop cycling theory, pattern recognition theory, 
and model-based theory. Bristol-Babcock, Inc., extended the opportunity to evaluate 
these self-tuning control algorithms prior to their commercial implementation. 

The objectives of this work are to 

1. investigate the operation of the three self-tuning control algorithms developed 
for the Bristol-Babcock, Inc., controller; 

2. develop process simulations needed to test these algorithms; and 

3. test the performance and robustness of the three self-tuning algorithms prior to 
their commercial implementation. 

1 2  BRIEF OVERVIEW OF RELATED ADAPTIVE CONTROL h4ETHODS 

Self-tuning control is just one of several related adaptive control methods. Most 
single-loop controllers in use today are designed to control a constant-gain linear 
Eeedback loop at a fured operating point as shown in Fig. 1.1. However, it may be 
necessary or desirable to use adaptive controller tuning methods for one or more of the 
following reasons. 

1. Most processes are really nonlinear. 

2. Process parameters may change dynamically. 

3. The process may have varying disturbance inputs. 

4. Adaptive tuning techniques can improve performance. 

5. Self-tuning improves engineering efficiency. 

Several related adaptive tuning methods have developed from modern control 
theory, including gain scheduling, self-tuning, auto-tuning, and model-reference adaptive 
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1.1. Conventional feedback controller structure. 

control (Astrllm and Wittenmark 1989). A brief introduction to each of these methods 
is given below. 

A gain-scheduling system monitors a process variable and adjusts the controller 
parameters according to a predetermined gain schedule as shown in Fig. 1.2. There is 
some debate as to whether this technique should really be classified as adaptive control, 
because there is really no feedback path that interactively "fine tunes" the controller 
parameter values. This technique is used mainly to control processes for which the 
dynamics are well understood (e.g., aircraft control). 

Self-tuning controllers (STCs) continuously adjust their controller parameters by 
using process identification and parameter by estimation techniques as shown in Fig. 1.3. 
Some manufacturers' implementations also add a small disturbance input to the control 
signal to assist with the process identification. Auto-tuning controllers (ATCs) are 
essentially the same as the STCs except that ATCs calculate new PID parameters o& at 
start-up and on demand whereas STCs can continuously adjust their PID parameters. 

parameters to obtain the desired performance as shown in Fig. 1.4. First, an ideal model 
is constructed to define the desired process behavior characteristics. Then, the 
measurement is compared to the model output and the controller parameters are 
adjusted as necessary to make the process behave like the model. 

Self-tuning systems and model-reference systems are closely related. Both 
systems have two feedback loops; the inner loops are ordinary feedback loops and the 
inner loop parameters are set by the outer loop. Also, the controller adjustments for 
both types of systems are based on both input and output sampling. Although much 
research has been done for each of these adaptive control techniques, most of the 
industrial adaptive controllers that have been developed use the self-tuning control 
technique. 

minimum variance, and various predictive control techniques) have been industrially 
implemented, but these are considered to beyond the scope of this work. 

Model-reference adaptive systems use a reference model to adjust the controller 

Other adaptive control techniques (e.g., linear quadratic gaussian, generalized 

13 ORGANIZATION 

A literature survey was done to determine which adaptive control methods were 
most commonly being used. A brief introduction to the methods that relate to the 
design of currently available self-tuning PID controllers is given above. The methods 
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discussed include gain scheduling, self-tuning, auto-tuning, and model-reference adaptive 
control systems. 

Chapter 2 provides additional background information specifically relating to self- 
tuning controllers. The two most essential parts of the self-tuning controller are 
examined-the process identification technique and the parameter adjustment method. 
The process identification techniques discussed include transient-response analysis, 
frequency-response analysis, and parameter estimation methods. The PID controller 
parameter adjustment techniques presented are the Ziegler-Nichols and the pole- 
placement methods. Then, the characteristics of the two most common types of self- 
tuning controllers that have been implemented by industry (ie., pattern recognition and 
process identification) are summarized. 

(PI) control algorithms developed by researchers at Sunderland Polytechnic, Sunderland, 
England, for use with the PID control module of Bristol-Babcock, Inc. (BBI) is given in 
Chapter 3 (full details are given in the original research report included in Appendix A). 
Bristol-Babcock graciously agreed to allow an independent evaluation of these algorithms 
prior to their commercial implementation. These algorithms are based on closed-loop 
cycling theory, pattern recognition theory, and model-based theory. 

and to determine the types of processes for which each of the controller algorithms 
might best be suited. The processes that were simulated include an integrating process, 
a first-order system, a second-order system, a system with initial inverse response, and a 
system with variable time constant and delay. The details of the process simulation 
design and the controller tests are given in Chapter 4. 

A brief theory of operation for the three self-tuning proportional-plus-integral 

Various process simulations were developed to test each controller’s performance 
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In Chapter 5, the STPI algorithms’ performance with regard to both setpoint 
changes and load disturbances is evaluated, and their robustness is compared. The 
effects of process deadtime and noise are also considered. 

in Chapter 6. Some conclusions are drawn from the performance comparisons, and 
several recommendations are made. 

Finally, the limitations of each of the seif-tuning controller algorithms is discussed 



2 FURTHER SELF-TUNING CONTROL BACKGROUND 

The two most essential parts of the self-tuning controller are the process (or 
system) identification technique and the parameter adjustment method (Fig. 1.3). These 
two important elements will be examined in greater detail in the following sections. 

2 1  PROCESS IDENTIFICATION TECHNIQUES 

Most commercially available self-tuning controllers use one of the following 
process identification techniques-transient-response analysis, frequency-response analysis, 
or parameter estimation methods. 

21.1 Transient-Response Analyski 

Transient-analysis techniques can identify simple (first- or second-order systems 
with or without deadtime) processes from an open-loop step-input response plot when 
the following conditions are satisfied. 

1. The system is initially in steady state when the test begins. 

2. The system is approximately linear (in the test range). 

3. Measurement errors are negligible (i.e., the system is relatively noise free). 

Although most processes are nonlinear and complex, most can also be 
approximated as a first-order process with time delay as given by 

Ke -L 
1 + Ts 

G(s) = ~ I 

The process gain K time constant T and deadtime L can easily be determined 
from the step-response reaction cume of a first-order process (Fig. 2.1). 

Oscillatory tie., second-order) systems can also be identified by using transient- 
response analysis techniques (Fig. 2.2). Once the period of oscillation Tp and damping d 
are obtained, they are used to calculate the natural frequency a,, and relative damping 
factor 5 to identify a second-order system of the form 

where 

6 
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t - 
L T 

L = Delay 
T = Time constraint 

21. Typical step response of a hrst-order proce~r 
Source: K. J. Astrdrn and Tore Hsgglund, Automatic Tuning 
of PID Controllers, Fig. 3.2B, p. 32, reprinted with permission 
from the Instrument Society of America, Raleigh, 
North Carolina, 1988. 

Transient-response process identification techniques are implemented in closed- 
loop self-tuning controllers in a variety of forms. Some STCs superimpose step (or 
pulse) disturbances on the reference signal. Some units only retune the controller 
parameters after setpoint changes or relatively large load disturbances. The desired 
system performance characteristics be may also be requested in many different ways (e.g., 
desired damping, overshoot, time constant). Many units also include heuristics and 
additional logic to handle systems of increased complexity. 
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k s Gain 
a = Magnitude of first peak 
Tp = Period of oscillation 
d = Damping 

2 2  Typical step response of a second-order p'~cess. Source: K J. Astrdm 
and Tore Hagglund, Automatic Tuning of PID Controllers, Fig. 3.4, p. 34, 
reprinted with permission from the Instrument Society of America, Raleigh, 
North Carolina, 1988. 

2 1.2 Frequency-Response Analysis 

Frequency-response analysis techniques can also be used to identify simple 
processes as well as some processes that have more complex forms. Many frequency- 
response analysis techniques exist. The Ziegler-Nichols frequency-response method is 
probably the most well known. However, the relay feedback method is really the most 
practical. 

after a brief transient response (Fig. 2.3). This means that the relationship between the 
input and output of a p r o m s  can be described by two numbers: 

For a sinusoidal input, a stable linear system will produce a sinusoidal output 

1. the quotient of the output and input amplitudes Q and 

2. the phase shift between the input and output signals p. 
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23. Qpical sinusoidal output response to a sinusoidal 
input Source: K. J. Astrdm and Tore Hagglund, Automatic 
Tuning of PID Controllers, Fig. 3.5, p. 38, reprinted with 
permission from the Instrument Society of America, Raleigh, 
North Carolina, 1988 

However, the system response with this method can be determined at only one 
point from each sinusoidal input. To completely describe the transfer function of the 
process, a and p must be known at all frequencies 

Fortunately, techniques have been developed that require the knowledge of the 
system response at only one frequency. The Ziegler-Nichols frequency-response 
technique is one experimental method of identifymg the process. This can be done with 
the following steps. 

1. Set the controller integral and derivative terms to zero. 
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2. Adjust the gain until uniform oscillations are obtained (Fig. 2.4). This gain is 
called the ultimate gain. 

3. Calculate the critical system frequency at the ultimate gain. 

Several design methods could then be used if this technique could be automated. 
However, implementation problems prevent the Ziegler-Nichols frequency-response 
method from being a practical design for implementation in an industrial self-tuning 
controller. The primary reason this technique is difficult to safely automate is that 
operating some processes at or near their point of instability may be harmful to the 
equipment or dangerous to personnel. 

technique for identifjing a process (Fig. 2.5). It uses a relay to automatically generate a 
sinusoidal output until the appropriate oscillations are obtained (Fig. 2.6). The ultimate 
period and ultimate gain are easily calculated from the critical frequency, and then the 
PID parameters can be determined. 

specified-the initial relay amplitude. However, the most widely used process 
identification method is the parameter estimation technique. 

The relay feedback method (Astrbm and Hagglund 1988) is a practical design 

This technique can be easily automated, and only one parameter must be 

213 Parameter Estimation Techniques 

Parameter estimation techniques involve sampling the controller’s input and 
output and constructing a mathematical model of the process. The most common 
parameter estimation technique is recursive in nature. The controller input/output (YO) 
is sampled, and process model parameters are computed recursively by using matrix 
manipulation techniques to fit a predetermined low-order process model. 

to identify the process. The process model output is continuously refined, and the 
controller can continuously update the PID parameters. However, the parameter 
estimation technique also has some disadvantages. The mathematics involved are more 
complex, and more prior information must be specified by the user (e.g., sampling 
period, initial model parameters). Thus, most products that use this technique have a 
pretuning phase (based on one of the transient or frequency analysis techniques) to 
obtain the additional required information. 

There are some distinct advantages to using the parameter estimation technique 

2 2  PID P A R f w E E R  ADJusTMENTTEc€€N?QuEs 

Once the process identification is complete, the self-tuning controller uses some 
technique to determine how to adjust the PID parameters. The most widely used PID 
parameter adjustment methods are the Ziegler-Nichols method and the pole-placement 
methods. Each of these methods will now be examined in further detail. 
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24. Varied output response plots for the same process with different 
controller gab. Some:  K. J. Astrdrn and Tore Hagglund, Automatic Tuning 
of PZD Controllers, Fig. 3.7, p. 39, reprinted with permission from the 
Instrument Society of America, Raleigh, North Carolina, 1988 

ref +P Y - 

25. Relay feedback controUer structure. Some: K. J. Astrdm and Tore Nagglund, 
Automatic Tuning of PID Controllers, Fig. 5.2, p. 109, reprinted with permission from the 
Instrument Society of America, Raleigh, North Carolina, 1988. 
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0 10 ?a )o 4 0  

26, Sinusoidal output response generated by a relay feedback controller. 
Source: K J. Astram and Tore Hagglund, Automatic Tuning of PID Conlrollers, 
Fig. 3.10, p. 41, reprinted with permission from the Instrument Society of 
America, Raleigh, North Carolina, 1988. 

2 2 1  Zegler-Nichols Methods 

The two classical tuning methods that were presented by Ziegler and Nichols 
(1942) are still widely used-the Z-N step-response method and the Z-N frequency- 
response method. The Z-N step-response method is based on an analysis of the open- 
loop step response of the system (Fig. 2.7). Once the gain and apparent deadtime have 
been determined, the recommended PID parameters and an estimate of the dominant 
dynamics of the closed-loop system can be determined from Table 2.1. 

to calculate PID parameters and dominant system dynamics (Table 2.2). The location of 
the dominant system pole has a great effect on the system performance (Figure 2.8). 
The Z-N methods are based on the idea that the system dynamics can be changed by 
moving one point on the Nyquist curve (Fig. 2.9). 

However, much uncertainty exists with the 2-N frequency design method. It is 
not possible to determine the location of all the dominant poles of the system from only 
one point on the Nyquist plot. Several other techniques could be used if two or more 
points on the Nyquist curve were known. However, most of these uncertainties vanish if 
the pole-placement design method can be used. 

The Z-N frequency response method uses the ultimate gain and ultimate period 
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a = Gain factor 
L = Apparent deadtime 

27. 'ihpical open-hp stepresponse p l d  Same:  K 3. Astrdm and 
Tore Hilgglund, Automatic Tuning of PID Controllen, Fig. 4.1, p. 53, 
reprinted with permission from the Instrument Society of America, 
Raieigh, North Carolina, 1988. 

222 Pole-Placement Method 

For this technique, the process is approximated by a model of fmt or second 
order. Then, the PID parameters are calculated on the basis of the desired dosed-loop 
pole-placement (AstrUm and Hagglund 1988). The effectiveness of the pole-placement 
method hinges on the ability to approximate the process accurately enough with a Iow- 
(i.e., first- or second-) order model. 

222.1 Fust-order approximation 

If the process can be described by a first-order model of the following form 

kP 
G p  = 1 + Tp ' (2-4) 
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Table 21. Controller parameters and dominant dynamics obtained by 
the Ziegler-Nichols open-loop stepresponse method 

Table 2 2  Controller parameters and dominant dynamics obtained by 
the Ziegler-Nichols closed-loop frequency-response method 
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I m  G l i a l  t 

29. Changing system dynamics by moving one point on the Nyquist curve Source: 
K J. Astrdm and Tore Hagglund, Aulomatic Tuning of PID Controllers, Fig. 4.4, p. 57, 
reprinted with permission from Instrument Society of America, Raleigh, North Carolina, 
1988. 

then the p r o w  can be controlled by a controller of the form 

G, = K [1 + $1. 
The closed-loop system can then be described as 

GPGR G, = 
1 + GpGR ’ 
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and the closed-loop pole can be obtained from the characteristic equation 

1 + GpGR = 0 . 

Substitution then shows that the characteristic equation is 

(2.7) 

which can be compared to the characteristic equation described by the desired relative 
damping and frequency 

8 2  + 2cos + o2 = 0 . (2.9) 

Because the coefficients of Eqs. (2.8) and (2.9) should be equal, we have 

(2.10) 

Thus, the proportional-integral (PI) parameters can be determined as 

21;oT, - 1 

kP 
K =  

2.2.22 Second-order approximation 

If the process can be described by a second-order model of the form 

(2.11) 

(2.12) 

then the process can be controlled by a PID controller of the form 
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K(l + Tp + T,T/) 
G, = 

*P 
(2.13) 

Then, if the desired response is described by the characteristic equation 

(s + ao)(s2 + 2 ~ 0 s  + a’)= 0 ,  (2,14) 

similar techniques can be used to show that the PID parameters can be calculated as 

T1T202(1 + 2Ca) - 1 
K =  

kP 

(2.15) 

23 TWO MOST COMMON INDU-Y IMP- DESIGNS 

In summary, the two most common industrially implemented self-tuning 
controllers are based on one of two basic techniques-pattern recognition or process 
identification. The characteristics for each type are listed in the following sections. 

23.1 Pattern Recognition Method 

Self-tuning controllers that use the pattern recognition method 

monitor the controller’s input and output; 1. 

2. 

3. 

4. 

5. 

identify the process by using transient- or frequency-response analysis; 

compare the actual response to the desired response characteristics; 

calculate new parameters by using Ziegler-Nichols methods; 

automatically update PID values whenever possible; and 

6. require only relatively simple mathematics techniques. 
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232 procesS Ideatifscation Method 

Self-tuning controllers that use the process identification method 

continuously monitor the controller’s inputs and outputs; 

identify the process by using parameter estimation techniques; 

construct a mathematical model of the process; 

calculate new PID parameters regularly by using the pole-placement methods; 

automatically update PID parameters whenever necessary; and 

require somewhat more complex mathematics techniques. 

1. 

2. 

3. 

4. 

5. 

6. 



3. THEORY OF OPERATION OF THE BBI STPI ALGORITHMS 

The remainder of this work focuses on the testing and comparison of the three 
self-tuning proportional-plus-integral (STPI) control algorithms. These STPI algorithms 
were implemented by researchers at Sunderland Polytechnic, Sunderland, England, for 
use with Bristol-Babcock's standard PID3TERM control module. The algorithms are 
based on closed-loop cycling theory, pattern recognition theory, and model-based theory 
(a copy of the original research report is included in Appendix A). An abbreviated 
theory of operation is given in the following sections. 

3.1 CLOSED-LOOP CYCLING ALGORITHM THEORY 

This algorithm is a one-shot tuning method based on the Astrdm and Hsgglund 
Relay Feedback Method (Astrdm and Wittenmark 1989). A relay controller and an 
integrator used as shown in Fig. 3.1 generates a periodic triangular perturbation output, 
and the process variable is forced to oscillate around its setpoint value as shown in 
Fig. 3.2. The period of the oscillations is determined by the dynamics of the process, but 
the user can constrain the amplitude of the oscillations by specifylng the initial relay 
amplitude characteristic, maximum and minimum controller output limits, and the 
maximum allowable deviation of the process variable from setpoint. The tuning phase is 
automatically terminated when a number of good oscillations have been recorded. 

Y -\  

3.1. Bristol-Babmck, he, relay feedback controller structure Source: Reprinted with 
permission from C. S. Cox et al., Development of ACCOL Self-Tuning PI (STPI) Control 
Module, Pt. 111, Fig. 6, Sunderland Polytechnic, Sunderland, U.K., 1990. 

20 
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3 2  Output response generated by the clased-kmp cycling 
algorithm. Source: Reprinted with permission from C. S. Cox et al., 
Development of ACCOL Self-Tuning PI (STPI) Control Module, 
Pt. 1, Fig. 2, Sunderland Polytechnic, Sunderland, U.K., 1990. 
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Upon termination, the period and amplitude of the oscillations are measured and used to 
calculate new PI controller settings. If the tuning phase does not obtain good results 
after the specified maximum number of cycles, then it will also terminate with no 
recalculation of the PI parameters. This technique is explained in further detail in the 
following paragraphs. 

Mter  activating the closed-loop cycling self-tuning procedure, the process should 
obtain constant-amplitude fmed-frequency oscillations within a few cycles. The algorithm 
is designed to automatically reduce the relay amplitude if the specified initial amplitude 
is too large. However, if the initial amplitude is obviously much too large, the user may 
want to manually adjust the amplitude during the tuning phase to keep the process 
variable near the setpoint. 

Once constant oscillations have been obtained, the Ziegler-Nichols critical gain 
K, for the process is easily calculated. The ultimate frequency P, is also calculated by 
using the error signal and a zero-crossing routine. Once these parameters are evaluated, 
PI settings could easily be calculated (for quarter-amplitude damping) as shown in 
Table 3.1. However, Astrdm’s proposed alternative approach, which allows calculation 
of PI settings of any desired phase margin, is implemented in this algorithm. 

Table 3.1. Zegler-Nichols ultimate frequency-response ControIler parameters 

Controller Parameters 

0.45 IC,, 

PID 0.6 K,, - 

The developers recognized that every user may not understand the concept of 
phase margin. So, to make this concept more user friendly, they only require the user to 
specify the maximum desired percentage overshoot, which is then used to approximate 
the desired phase margin. Although this method does not allow the user to specify an 
overdamped response, from Figs. 3.3 and 3.4 it can be seen that this technique can be 
used over a wide range of overshoot values to approximate the desired phase margin. 
The resulting PI values can then be calculated by 

Two optional enhancements may be needed if the process variable is somewhat 
noisy-relay hysteresis and digital filtering. The designers realized that noise 
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33. Percent avershoot vs damping ratio for the step 
response of a second-order system. Souwe: Reprinted with 
permission from C. S. Cox et al., Development of ACCOL Self 
Tuning PI (STPI) C o w l  Mdule,  Pt. 111, Fig. 7(a), Sunderland 
Polytechnic, Sunderland, U.K, 1990. 

superimposed on the process variable signal could result in false relay switching and 
invalidate the closed-loop cycling tuning procedure. Some hysteresis can easily be added 
to the relay to improve its noise rejection. Choosing the correct bandwidth for the 
digital filter is a more cumbersome problem. See the report in Appendix A, 
Developmeni of ACCOL Self-Tuning PI (STPI) Control Module, Pt. 111, pp. 14849, for 
more details regarding these enhancements. 

3.2 PATIERN RECOGNITLON ALGORFTHM THEORY 

This algorithm provides continuous self-tuning of the PI controller parameters, 
When the pattern recognition self-tuning procedure is active, the PI controlier 
parameters will be recalculated following any sufficiently large disturbance or setpoint 
change. New PI parameters are calculated in four distinct steps (Fig. 3.5). 

1. The controller’s error signal is continuously monitored for any disturbances that 
occur over a specified threshold value. When this threshold is exceeded, the 
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3.4. Phase margin vs damping ratio of a second-order 
system, Source: Reprinted with permission from C. S. Cox 
e t  al., Development of ACCOL Self-Tuning PI (STPI) 
Control Module, Pt. 111, Fig.7@), Sunderland Polytechnic, 
Sunderland, U.K, 1990. 

algorithm monitors the process variable to detect its peak deviation from 
setpoint, E,, 

2. Then the recovery time of the loop response TL is determined. TL is calculated 
to be equal to the elapsed time it takes the system to go from 90% to 50% of 
the peak deviation from setpoint on return from the peak deviation. 

3. T L  is then used in the evaluation of two integrals: S, and S,. T, is the time when 
the system has reached 50% of the peak on return from the initial peak deviation 
(i.e., when T L  is just determined). 

S, is the area under the curve from time T,(1 + a) to T,(1 + a -t b). 
S, is the area under the curve from time T,(1 + a I- /I) to T,(1 + a + #? + y) .  

4. Having obtained the value of these integrals, the new PI controller parameters 
can be calculated and updated as 
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33. Annotated output response desmiiing the operation of the pattern 
recognition algoritfim. Source: Reprinted with permission from C. S. Cox 
et a]., Development of ACCOL Serf-TW;ng PI (STPI) Control Module, Pt. I, 
Fig. 5, Sunderland Polytechnic, Sunderland, U.K, 1990. 

where 
S, = Area under the curve from time T1(1 + a) to Tl(l + a + p). 
S, = Area under the curve from time T,(1 + a + /3) to T,(1 + a + /? + y). 
R, = Level related to desired overshoot (R, = OVERSH/900). 
R, = Area related to the actual overshoot (R, = yR2). 
DONE = Confidence factor related to actual overshoot, 
K,, K,, K3, and & = Constants. 

33 MODELBASED ALGORITHM THEORY 

The model-based algorithm is primarily intended for use as a one-shot tuner, 
although it may also be configured to operate in a continuous tuning mode (by the 
expert user). A very important difference between this algorithm and the previous two is 
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that the task rate must be carefully matched to the response time of the process. The 
developers suggest that a good rule for use with this model-based method i s  to select a 
task rate that is approximately one-tenth of the process rise time, which may be 
determined from a step test (Fig. 3.6). 

at the controller output, as shown in Fig. 3.7. The user must specify the initial mean 
level, OPMEAN, and the amplitude, OPDEV, of the PRBS: the mean level should be 
chosen to cause the process variable to deviate at or near its setpoint value, and the 
amplitude should be sufficiently large to cause significant deviations yet keep the process 
variable within acceptable limits. The mean level of the PRBS may need to be manually 
adjusted during the tuning phase to keep the process variable near the setpoint. 

While the PRBS is applied, the process output and the controller output data are 
fed into a recursive least-squares-estimation algorithm that calculates the mathematical 
model parameters. The model is a first-order lag with time delay: 

During the tuning phase, a pseudorandom binary sequence (PRBS) is produced 

Ke -" 
1 + Ts 

GJs) ~ . (3.3) 

Although the digitized equivalent of this equation could theoretically have any 
number of terms in the numerator to accommodate any amount of delay time, the 
developers fmed the numerator terms to five. Thus, the digitized model equation is 

The process output and controller output are prefiltered by a digital band-pass 
filter to remove dc offsets and high-frequency noise and to make the estimation 
algorithm more robust. 

PI controller settings. The discrete form of the ACCOL PI controller is given by 
At the end of the self-tuning phase, the identified model is used to calculate new 

Kj is calculated such that the zero of the controller will cancel the pole of the 
system model in Eq. (3.4). Because the sample rate T is known, Ki is easily calculated as 
€0 llows : 
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3.6 Open-loop step response to determine a suitable task rate for the 
model-based algorithm, S o m :  Reprinted with permission from C. S. Cox 
et a]., Developmnt of ACCOL Self-Tuning PI (STPI) Control Mdule ,  Pt. I, 
Fig. 6, Sunderland Polytechnic, Sunderland, U.K, 1990. 
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3.7. Output response generated by the model-based algorithm 
pseudorandom binary sequence Source: Reprinted with permission from 
C. S .  Cox et al., Development of ACCOL Selj-Tuning PI (STPI) Control 
Module, Pt. I, Fig. 7, Sunderland Polytechnic, Sunderland, U.K., 1990. 
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[ - tan-l “g[GOL(h)] = -tan-’ 

Now the task is to calculate the K, that will provide the required phase margin 
for the closed-loop compensated system. As with the closed-loop cycling algorithm, the 
user has simply defined the desired system performance by specifSrlng the maximum 
desired percentage overshoot, which is then used to approximate the desired phase 
margin. However, the mathematics involved is slightly more complicated than before. 
With the pole-zero cancellation obtained by determining Ki, the remaining compensated 
open loop transfer function is given by 

5 

bpinioT 

b,cmio T 

(3.9) 
5 

i-I  

To determine the required K,, the frequency response of the compensated system 
must be computed. This can be done using the discrete time to frequency domain 
mapping 

z - I  = c - j d  (3.8) 

The angular frequency wo at which the required phase margin occurs can be 
calculated as 

The particular angular frequency oo which yields the desired phase: margin is then 
computed from Eqs. (3.9) and (3.10) by using a linear search algorithm in the range 

0 < w < n. Once oo has been determined, K, can be calculated from 
T 

(3.1 1) 



4. PROCFBSSIMULATIONS 

To facilitate the self-tuning control algorithm tests, various process simulations 
were developed. Because the self-tuning algorithms were developed for Bristol- 
Babcock's distributed process controller model DPC 3330, it was the obvious process 
simulator of choice because the controller could execute both the self-tuning algorithms 
and the process models simultaneously. The self-tuning control algorithms and the 
simulation programs were written in ACCOL 11, a language developed by Bristol- 
Babcock specifically for use with their distributed process controllers. 

system, a second-order system, a system with initial inverse response, and a system with 
variable time constant and delay. The process simulations are connected via software to 
the STPI module as shown in Fig. 4.1. More details oE the test setup are given in 
Chapter 5. The simulation programs and the STPI module code have been integrated 
into a single ACCOL program (Appendix B). 

In physical processes, whenever the input to the system changes, there is 
frequently some time interval during which no effect can be measured or observed on 
the output. Thus, each of the simulations includes a delay, or deadtime, term to model 
the effect of this delay time. 

There are usually also some known process dynamics that cannot be accounted 
for in a simple mathematical model (e-g., variance in properties of the inlet process 
materials, uncon trolled process environmental variables). These dynamics can be 
classified as disturbance inputs. In fact, any input that is not a result of an adjustment by 
the operator or the control system may be called a disturbance input. To account for 
some of these uncontrolled process dynamics and to measure their effects, each process 
includes load disturbances that can be added to the process inputs. 

Although any unknown process dynamic could be classified as noise, one 
common source of noise is associated with measuring the process output. Thus, the 
process simulations include the capability of adding a noise signal to the process output 
to simulate measurement noise. This was done by using the noise generator in the 
GENESIS software package that is being used to monitor the process and controller 
output. Fhch process is described in more detail in the following sections. 

The processes that were simulated include an integrating process, a first-order 

4.1 INTEGRATINGPROCESS 

Processes with integrating action are common, especially in the chemical industy 
(e-g., tanks storing liquids, vessels storing gases, inventory systems storing raw materials). 
A purely capacitive, or integrating, process will behave as if there were an integrator 
between its input and output. Its output will grow (or shrink) linearly with time as 
shown in Fig. 4.2 (depending on whether material is being added or removed). The 
value of Kp (Le., the process gain) is related to the rate of increase or decrease. The 
larger the value of Kp, the steeper the slope (Le., the larger the increase) will be. 

30 
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Noise 

+ 

4.1. Block diagram of the COM- betwaeo the &-tuning pmportional-integral 
controller and the process simulations. 

t 

4 2  Unbounded output response of 
a pure integrating p’ocess Source: 
George Step hanopodas, Chemical Process 
Conrrol: An Introductwn to Theory and 
Practice, Fig. 10.3, p. 179, reprinted with 
permission from Pren tice-Hall, Englewood 
Cliffs, New Jersey, 1984. 

The simulated integrating process (with deadtime) is described by 

The code to implement this process is in Task 10 of the ACCOL program in 
Appendix B. In practice, the process output will probably encounter some upper and 
lower limits (e.g., a tank has a finite capacity). So, the simulation of the integrating 
process has both upper and lower bounds. 
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4 2  FIRST-ORDERsYsrEM 

A first-order system is so-named because the time-domain transfer function of 
the process can be described by a first-order differential equation. The first-order 
process simulation (with deadtime) is described by 

Unlike the integrating process, when its input is changed, the first-order Zag 
process automatically seeks a new equilibrium or steady state. The time constant 7p of a 
process is a measure of the time necessary for the process to adjust to a change in its 
input (Stephanopoulos 1984). The value of Kp corresponds to the ultimate or final value 
of the output. For a step change in input, the output response would be exponential as 
given by 

fit) = AKJ1 - e-"P) . (4-3) 

Figure 4.3 shows how the process output changes with respect to time in 
response to a step change in the input. The output will reach 63.2% of its final value 
when the elapsed time is equal to one time constant. After four time constants, the 
output will have essentially reached its final value. The code to implement this process 
is in Task 11 of the ACCOL program in Appendix B. 

4 3  SECOND-ORDER SysllEM 

A second-order system is a process that can be described by a second-order 
differential equation. The familiar Laplace transformation for a second-order system is 
given by 

where 

Kp = system gain, 
e, = undamped natural frequency, < = damping factor. 
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43. Output response of a first-order process for a step 
input. Source: George Stephanopoulas, Chemical €?mess 
Control: An Introduction to Theory and RQctice, fig. 10.4, p. 180, 
reprinted with permission from Prentice-Hall, Englewood Cliffii, 
New Jersey, 1984. 

Thus, the characteristic equation is given by 

and its roots are 

S,’ sz = -con f u , @ 7  

The form of the output response depends on the roots s1 and s2, which describe 
the location of the two poles in the s-plane (D’Souza 1988). Three cases are easily 
distinguished: 

Case 1: overdamped response, 
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Ca.e 2: critically damped response, and 

Case 3: underdamped response. 

When 5 > 1, two distinct real poles exist (Le., two system time constants can be 
defined) as shown in Fig. 4.4, and the roots can be expressed as 

sz = -UTz = -lo, - andm . 

I 01 

4.4. Output response of an overdamped second-order system for a step input 
Source: k Frank D'Souza, Design of Control System, Fig. 4.8, p. 139, reprinted 
with permission from Prentice-Hall, Englewood Cliffs, New Jersey, 1988. 

case 2: criticay. damped response 

When 5 = 1, two real, equal poles exist (i.e-, a single repeated root) as sham in 
Fig. 4.5, and the multiple root can be expressed as 

SI = sz = -l/r = -a" . (4.8) 
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45. Output response of a critically damped samnd-order system for a 
step input Source: A. Frank D'Souza, Design of Control System, Fig. 4.9, 
p. 140, reprinted with permission from Prentice-Hall, Englewood Cliffs, 
New Jersey, 1988. 

Case 3: Underdamped response 

When f c 1, two complex conjugate poles exist as shown in Fig. 4.6, and the 
roots can be expressed as 

sl, sz = -<a, * jo,,li-C2 . (4.9) 

0 

4.6 Output response of an underdamped second-order system for a step input 
Source: A Frank D'Souza, Design of Contmi System, Fig. 4.10, p. 141, reprinted with 
permission from Prentice-Hall, Englewood Cliffs, New Jersey, 1988. 
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Figure 4.7 shows the output response plots for various values of 5. It can be 
seen from the graph that for values of 5 > 1, the response becomes more sluggish as the 
damping factor is increased. When 5 = 1, the response is similar to the first-order 
response, except that its initial response is somewhat more sluggish. For values of 
5 c 1, the initial response is faster, but the system tends to oscillate around the final 
value. This oscillatory behavior becomes more pronounced as the damping factor is 
decreased. The code to implement this process is in Task 16 of the ACCOL program in 
Appendix B. 

systems described above. However, to more thoroughly test the capabilities of the STPI 
controller, two more processes of interest were developed-a system with initial inverse 
response and a system with variable time constant and delay. 

Most industrial processes can be adequately approximated by one of the three 

4.4 !3YSTEM WITH INITIAL INVERSE RESPONSE 

The dynamic response of a boiler level-control system is quite different from 
those systems described thus far. If the flow rate of the cold feedwater to a boiler 
system is increased by a step amount, the total volume of the boiling water, and 
consequently the liquid level, will decrease for a short period of time before it starts to 
increase due to the initial cooling effect caused by adding the cold water. Thus, the 
system will initially have an inverse response to the desired behavior. 

of two opposing first-order systems, yielding an overall response equal to 
A system of this type can be mathematically described by the difference equation 

(4.10) 

This system will have an initial inverse response when both of the following 
conditions are satisfied. 

1. Process 1 is able to reach a higher steady-state value than Process 2 (Le., 
Kl > K2) and 

2. Process 2 is able to initially dominate the overall response of the system (Le-, 
K d ~ z  > KIh,). 

Figure 4.8 shows the overall response of the system. The code to implement this 
process is in Task 14 of the ACCOL program in Appendix B. 

4 5  WSTEM WITH VARIABLE TIME CONSTANT AND DELAY 

For the processes that have been described thus far, it has been assumed that the 
system parameters (e.g., gain, time constant) for physical processes always remain 
constant. However, this is not always the case, especially for chemical processes. 
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4.7. Step response plots of a secondsrder system for various 
values of the damping factor. Sowre: George Stephanopoulas, 
Chemical Rocess Control: An Introduction to Theory and F’ractice, 
Fig. 11.1, p. 189, reprinted with permission from Prentice-Hall, 
Englewood Cliffs, New Jersey, 1984. 
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4.8 Initial inverse response resulting from two 
opposing lirst-order systems to a step input Source: 
George Stephanopoulas, Chemical Process Control: 
An Introduction to Theory and Practice, Fig. 12.5, 
p. 219, reprinted with permission from Prenticc-Hall, 
Englewood Cliffs, New Jersey, 1984. 

For example, consider the problem oE controlling the chemical concentration of a 
continuously flowing output stream from a mixing tank (Fig. 4.9). The tank has two inlet 
streams, each of which has a distinctly different concentration of the desired chemical. A 
mass rate balance at the feed end of the pipe is given by 

c,(Oq&) = c141(0 + C&O - (4.11) 

If only the flow rate of q2 can be controlled, then assuming the flow rate of 41 to 
be constant at a particular instant in time, then 

(4.12) 

where 
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vd - Fluid volume in pipe 
v, - Fluid volume in mixing tank - 
q’s - Flow rates 
c’s - Concentrations 

4.9. Continuous concentration control of a chemical mixing process. 

To solve the problem, one can also assume that at a given instant in time, the 
volume in the mixing tank is constant. For a constant volume in the mixing tank, the 
process transfer function from the feed end of the pipe to the mixing tank outlet is given 
bY 

T- Mt) = CJt - 5 )  - c(?) 
d? 

where 

(4.13) 



The Laplace transform of Eq. (4.13) is given by 

c(s) = a?- 

CJS) 1 +Ts * 

Thus, the process transfer function is 

where 

(4.14) 

(4.15) 

(4.16) 

The code to implement this process is in Task 15 of the ACCOL program in 
Appendix B. 



5. TESTING AND CX)MPARISON OF TME BBI s"I ALGORITHMS 

Each of the three STPI algorithms (is., closed-loop cycling, pattern recognition, 
and model based) was tested with each of the process simulations to determine the types 
of processes for which the STPI controllers might best be suited. A summary of the 
simulated processes is given in Table 5.1. By varying their parameters, these fwe 
processes represent a wide range of the industrial proasses that would typically be 
encountered in industry. More details of the process simulations are provided in 
Chapter 3. 

systems of higher order, especially when the dynamic effects of the sensors and control 
elements are considered. However, most industrial processes can be approximated by 
either a first- or second-order system with deadtime. Another reason for using low-order 
systems is that the fundamental concepts can be tested and understood more clearly 
without the additional mathematical complexity. For these reasons, most of the 
simulation testing concentrated on the first- and second-order systems (processes I1 
and 111). 

It is acknowledged that the practical implementation of most processes results in 

5.1 DESCRIPTIONOF= 

The process simulations are connected via software to the STPI module as shown 
in Fig. 4.1. The test procedure generally consisted of the following seven steps. 

1. Select the desired process simulation and enter the appropriate process 
parameters (including percent noise and process deadtime, if desired). 

2. Select the STPI algorithm to test (changing its defaults only if necessary). 

3. Set initial P, I, and setpoint values and allow the process to stabilize. 

4. Enable self-tuning on the STPI controller (PI values are automatically 
updated when self-tuning is complete). 

5. Turn off self-tuning and allow the system to stabilize. 

6. Test controller setpoint response with new PI values by changing setpoint 
from 40 to 50%. 

7. Test load step response by adding 10% load disturbance (to the process 
input). 

More details regarding these tests are given in the next section. A RESET 
feature was added to simplify the setup procedure (steps 1, 2, and 3), and the test 
procedures (steps 6 and 7) were automated to ensure repeatability. 

41 



42 

Table 5-1. Transfer functions of the simulated processes 

*NOTE: A simplified linear approximation of a 
nonlinear process where 

Kp = Process gain, 
r,, r, = Deadtime, 
T, zP, z,, r2 = Time constants, 
b, = Undamped natural frequency, 
5 = Damping factor, 
c,, c2, c, = Concentration of input streams, 
41, q2 = Flow rates of input streams. 
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5 2  PEREORMANCE EVALUATIONS 

First, the desired process simulation was selected (process I, 11, 111, IV, or V), 
and the appropriate process parameters were entered (including percent noise and 
process deadtime, if desired). Then, the STPI algorithm to test was selected (changing 
its defaults only if necessary). Each of the three STPI algorithms is somewhat different 
in design, and each has several special features that may optionally be set by the user. 
Thus, it would be a difficult task to exhaustively compare the performance of the 
algorithms while varying all of their optional features. Therefore, the default settings 
were used for all parameters except where othenvke stated. For more details about the 
special features, see the report in Appendix A 

algorithm of the form 
The Bristol-Babcock PID3TERM module uses a noninteracting PID control 

For the STPI controller tests, the controller gain was initially set to unity ( i s . ,  
P = l.O), the integral, or reset, was initially set to one repeat per minute (Le., I = LO), 
and the derivative was not used (Le., D = 0). All the process measurements and 
controller outputs were scaled from 0 to loo%, and the initial setpoint was generally set 
equal to 40%. 

After allowing the system to stabilize with these initial tuning values, the STPI 
controller self-tuning was enabled. Self-tuning is performed without user intervention 
(as described in Chapter 4), and the PI values are automatically updated when self- 
tuning is complete. Tables 5.2 through 5.7 show the calculated PI tuning parameters for 
each of the five processes. 

that the results for both the closed-loop cycling method and the model-based method are 
generally comparable, although the model-based method generally seems to design 
slightly more conservative values. The values determined by the pattern recognition 
method are frequently widely different from the other two methods. 

Upon further inspection, it was determined that the pattern recognition method 
was frequently unable to design useful controller parameters for the tests because it 
encountered k20% maximum percentage change limits which are imposed on it (ie., it 
can change the PI parameters from those initially specified by the user up to a maximum 
of only 20% for each adaptation). The change limits are presumably imposed by the 
designers in an attempt to prevent it from designing erroneous results. However, these 
limits are a major hindrance to this algorithm when attempts are made to use it from a 
cold start. 

By comparing the calculated PI parameters in Tables 5 2  through 5.7, it seems 

5 2 1  Process Incompatibilities 

If the process is naturally integrating, the user can set the INTEG flag in the 
ACCOL program before activating either the closed-loop cycling or model-based self- 
tuning algorithm to indicate that the process is naturally integrating (the INTEG flag 
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Table 5 2  Calculated proportional-integral (PI) parameters for the integrating process 

Controller parameters for Process I 

Process I PI I CLC I PR I MB 
parameters parameters 

Kp = 0.2 Gain ( I Q  1.740 1.200 0.5514 
tp = 0.0 Integ (KI) 6.264 1.200 19.52 

CF 70.51 % 0.0% 58.84% 

Kp = 1.0 Gain (K) 0.5583 0.8320 0.33% 
T p  = 0.0 Intel-! (Kd 9.019 0.8333 30.66 

CF 56.53% 21.27% 60.62% 

CF = Confidence factor. 
K ,  = Controller gain. 
K, = Controller integral. 

= Process gain. 
zp = Process time constant. 

Table 53. Calculated proportional-integral (PJJ parameters for the ht-order process 

Controller parameters for Process I1 

Process parameters PR I MB 
parameters 

Kp = 1.0 Gain (K) 1.556 1.200 
tp = 5.0 (KI) 11.27 1.200 
Zd = 0.0 CF 94.72% 0.0% 

Kp = 1.0 Gain (KJ 1.548 1.0 
tp = 5.0 Integ (KI) 2.038 1.0 
T* = 0.0 CF 51.35% 0.0% 

OVERSH = 10% 

OVERSH = 0% 

2.506 
11.96 
99.95% 

0.5672 
10.90 
99.85% 

CF = Confidence factor. 
K, = Controller gain. 
K, = Controller integral. 
I$, = Process gain. 
zd = Deadtime. 
tp = Process time constant. 
OVERSH = Overshoot. 



45 

Table 5.4. catculated pmphnal-hte@ parametem (PI) for the secondsrder pmcess 
(0, = 03) 

fl Controlier parameters for Process 1 Process 
parameters parameters 

Kp = 1.0 
t d  = 0.0 
r; = 0.2 

0.2855 
7.046 

70.38% 

1.173 
4.698 
68.90% 

III (9, = 0.2) 

CF = Confidence factor. 
K, = Controller gain. 
KI = Controller integral. 

Kp = Process gain. 
r d  = Deadtime. 
f = Damping factor. 

Controller parameters for Process 111 (e, = 0.04) 

Process PI 
parameters parameten 

I$) = 1.0 Gain (KJ 

- .C 

7 d  = 0.0 (KI) 
6 = 0.2 CF 

r d  = 0.0 Integ (KI) 
Kp = 1.0 Gain (&) 

f = 1.0 CF 

Kp = 1.0 Gain (I&) 

5 = 2.5 CF 
rd = 0.0 Integ @I> 

MB 
PR I CLC I 

0.3830 0.8929 3.583 
1.427 0.9356 0.4287 

60.14% 71.43% 98.14%" 

1.640 1.200 0.5741 
1.303 1.200 2.143 

82.24% 0.0% 87.87% 

3.939 
1.181 

64.11% 

1.200 20.98 
1.199 1.106 

17.22% 25.63%* 

CF = Confidence factor. 
K, = Controller gain. 
KI = Controller integral. 
I$ = Process gain. 

zd = Deadtime. 
f = Damping factor. 
* = Calcualted value is unstable. 
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Table 5.6. Calculated proportional-integral parameters (PI) for the system with initial 
inverse response 

Controller parameters €or Process IV 

Process PI CLC PR MB 
parameters parameters 

K, = 2.0 Gain (I&) 0.8423 0.9450 0.4237 
tl = 5.0 Integ (KI) 5.500 0.9677 11.43 

t2 = 0.5 
K2 = 1.0 CF 78.32% 80.69% 99.95% 

CF = Confidence factor. 
Kl = Process 1 gain. 
K2 = Process 2 gain. 
K ,  = Controller gain. 

K, = Controller integral. 
t, = Process 1 time constant. 
z2 = Process 2 time constant. 

Table 5.7. calculated proportional-integral (PJJ parameten for the system with variable 
t h e  constant and delay 

C, = Input stream 1 concentration. 
C, = Input stream 2 concentration. 
CF = Confidence factor. 
K, = Controller gain. 
KI = Controller integral. 

= Process gain. 
q, = Flow rate of stream 1. 
V, = Fluid volume in pipe. 
V, = Fluid volume in mixing tank. 
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has no effect on the pattern recognition algorithm). In the case of the closed-loop 
cycling algorithm, the controller will use a square-wave perturbation output (instead of 
the sawtooth waveform). In either case, a proportional-only controller should be 
designed. However, some problems were experienced when attempting to use the STPI 
algorithms' INTEG feature to design a proportional-only controller @.e., the feature did 
not seem to work reliably). Therefore, the MTEG feature was not used, and PI 
controllers were designed to control the integrating process as wet1 as for all other 
processes. 

implementation, is that they are not suitable for controlling fast processes. However, the 
one-second update wilt probably pose no problem €or most industrial processes where 
the Bristol-Babcock controller is generally used. One would also expect the STPI 
algorithms to execute somewhat faster once they are commercially implemented (in 
microcode in PROW) than they do when written in ACCOL. 

Another limitation of the STPI controller algorithms, at least in their present 

52.2 TunedSystemPerFomance 

Several simple performance specifications can be used to evaluate characteristic 
features of the closed-loop system response (e.g., overshoot, rise time, settling time, 
decay ratio). However, several performance criterion also can be used to simultaneously 
minimize multiple requirements. The most popular criteria used to evaluate the overall 
quality of the tuned system response are 

1. integral of the square error (ISE), where 

ZSE = /"e'(?)& ; 
0 

2. integral of the absolute value of the error (LAE), where 

3. integral of the time-weighted absolute error (ITAE), where 

The determination of which criterion is best to use depends upon which 
characteristics of a particular process are the most important to control. 

The ISE criterion strongfy penalizes large errors because the errors are squared 
and thus contribute more to the value of the integral (however, small errors of less than 
one would actually be downplayed). The IAE criterion penalizes small errors the same 
as large errors. The ITAE criterion severely penalizes errors that persist for a long time. 
The IAE criterion seems to have the most practical significance because it gives a more 
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accurate indication of the actual error (e.g., the area under the curve that can be directly 
related to operating costs). For this reason, the L4E criterion was used to evaluate the 
STPI algorithms’ performance. 

A controller that is tuned to provide optimum setpoint response (to step changes 
in the setpoint) will not necessarily provide good load-step response. So, the controllers’ 
responses to both setpoint changes and load-step response were tested. During these 
response tests, the controller’s output and the process measurement variable were 
sampled simultaneously at one-second intervals. The STPI algorithms’ performance was 
then evaluated by analyzing the tuned system IAE response data with MATLAB. The 
results of the response tests are in Table 5.8. 

From Table 5.8, it can be seen that the pattern recognition Outperformed the 
other two algorithms only once (for Process 111, with 9, = 0.04 and 5 = 0.2). Upon 
close observation of the data in Tables 5.2 through 5.7, it is obvious that this algorithm 
yields unreliable tuning results when used from a cold start. With this information, it is 
safe to say that this algorithm should probably not be used from a cold start, but only for 
continuous tuning refinements. 

The rest of the test results show that the closed-loop cycling algorithm 
outperformed the model-based algorithm in 10 of the 15 other test cases. Although the 
model-based algorithm generally yielded results comparable to those designed by the 
closed-loop cycling method, it failed to design a controller with stable PI parameters for 
three of the tested processes. Thus, it appears from these tests that the closed-loop 
cycling algorithm will generally yield the best results. 

Various amounts of process deadtime were added to the first-order process to 
examine the effects of deadtime on the STPI algorithms. The results of these tests are 
shown in Table 5.9. The data in Tables 5.8 and 5.9 indicate that the closed-loop cycling 
algorithm is more likely to design better PI parameters for processes with deadtime. The 
pattern recognition method was unable to design useful controller parameters for these 
tests because it always encountered the k20% maximum change limits. 

Note that the model-based algorithm actually computes unstable PI parameters 
for the test with 20 seconds of deadtime. This is an inherent limitation of the 
implementation of this algorithm. Specifically, because the developers fured the number 
of numerator terms to five, only the deadtime information contained in the previous four 
time samples is available to model the deadtime. Thus, processes with a large amount of 
deadtime (relative to the process time constant) cannot be accurately modeled by the 
algorithm. 

Measurement noise was added to the first-order process output to observe the 
STPI algorithms’ sensitivity to measurement noise. The results of these tests are shown 
in Table 5.10. Examination of these data along with the performance results obtained 
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Table 5.8 Tuned system intepl of the absolute value of the error (ME) response to 
both setpoint arid load changes 

Process and 
parameters* 

Process I 

Kp = 1.0 
(zd = O )  

Kp = 0.2 

Process I1 

OVERSH = 10% 
OVERSH = 0% 

(Kp = 1, tp = 5 )  

%d = 5.0 
t d  = 20.0 

NOISE = 2% 
NOISE = 5% 

Process HI 
(Kp = 1, td = 0) 

(0, = 0.2) 
f = 0.2 
{ = 1.0 
5 = 2.5 

(b, = 0.04) < = 0.2 
5 = 1.0 
f = 2.5 

Process N 
K, = 2.0 
71 = 5.0 
KZ = 1.0 
tz = 0.5 

Process V 
IC,, = 0.55 
c1 = 10% 
c.2 = 90% 
q1 = 10.0 

v, = lo00 
v d =  100 

IAE Response for setpointlflos 

CLC 

29.7 (122.3) 
47.7 (57.4) 

31.0 (36.5) 
161.7 (178.3) 
118.8 (113.3) 
415.1 (416.1) 
20.0 (32.7) 
25.9 (24.6) 

285.1 (398.9) 
92.0 (110.5) 
70.2 (38.5) 

857.3 (867.1) 
288.5 (233.8) 
337.5 (132.5) 

135.8 (172.3) 

78.0 (17.1) 

PR 

26.2 (707.8) 
76.8 (388.6) 

285.4 (235.8) 
400.5 (324.4) 
287.0 (252.9) 
UNSTABLE 
285.4 (235.8) 
285.4 (235.8) 

391.7 (351.7) 
295.4 (244.8) 
315.6 (260.8) 

687.1 (883.7) 
351.9 (299.6) 
660.5 (522.8) 

359.6 (328.3) 

550.1 (40.4) 

) changes 

m 

58.9 (108.9) 
122.5 (131.5) 

9.9 (21.1) 
86.8 (98.6) 

277.0 (277.9) 
UNSTABLE 
13.5 (25.7) 
48.5 (49.3) 

754.9 (415.3) 
68.8 (92.8) 
62.1 (86.8) 

UNSTABLE 
482.3 (446.0) 
UNSTABLE 

114.6 (150.9) 

~- 

340.9 (56.0) 

*See definitions on the next page. 
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Definitions for Table 5.8: 

C, = Input stream 1 concentration. 
C, = Input stream 2 concentration. 
K, = Process 1 gain. 
K, = Process 2 gain. 
$ = Process gain. 
OVERSH = Overshoot. 
qr = Flow rate of stream 1. 
v d  = Fluid volume in pipe. 
V, = Fluid volume in mixing tank. 
e, = Undamped natural frequency. 
t1 = Process 1 time constant. 
t2 = Process 2 time constant. 
td = Deadtime. 
tp = Process time constant. 
5 = Damping factor. 

Tabk 5.9. Calculated proportional-integral (PI) parameters for the first-order process 
with deadtime 

Controller parameters for Process I1 (with deadtime) 

CF = Confidence factor. 
K ,  = Controller gain. 
KI = Controller integral. 
I$, = Process gain. 
t d  = Deadtime. 
tp = Process time constant. 
* = Calculated value is unstable. 
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Table 5.10. cata;rlated p ~ ~ - h t e ~  (PI) parameters for the Eirst-order gmcess 
with mise 

Controller parameters for Process I1 (with noise) 

NOISE = 0% 

CF = Confidence factor. 
K, = Controller gain. 
K, = Controller integral. 

CLC 

1.556 
11.27 

94.72% 

1.924 
10.02 

51.22% 

1.612 
16.11 

57.03% 

I$, = Process gain. 
r d  = Deadtime. 
tp  = Process time constant. 

for these tests in Table 5.8, indicates that for small amounts of noise the performance of 
the model-based algorithm is best, but for iarger amounts of noise the closed-loop cycling 
algorithm seems to yield better results. The pattern recognition method was once again 
unable to design useful controller parameters for these tests because it always 
encountered the k20% maximum change limits. 

53 ROBUSTNESS COMPARXSONS 

The two primary parameters that greatty affect the value of the PI tuning 
constants are the process gain and deadtime. PI controllers can accommodate any 
decrease in process gain or deadtime without destabilizing the loop, although the output 
response will become more sluggish. However, the amount by which either of these two 
process parameters can be increased is much more important. The amount by which 
process (or controller) gain or deadtime can be increased before reaching the stability 
limit of the process is a measure of the robustness of the system (using the specified 
tuning constants). 
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In fact, system performance and robustness are inversely related (Shinskey 1991). 
Performance can generally be improved by increasing the gain (P) and integral ( I )  until 

the desired system performance is obtained. However, robustness can usually be 
improved by detuning the controller, although performance will be decreased. Thus, to 
determine which STPI controller algorithm is really best for a particular process, it is 
necessary to examine both the performance and robustness of the tuned systems 
simultaneously, considering which of these characteristics is most important to control for 
that particular process. 

The robustness of the tuned system was determined by using MathCAD with the 
following method. Given a plant [GJs)], and controller [G,(s)], find the maximum 
amount the gain could be increased (Le., the gain limit K,), and the maximum amount of 
deadtime that could be added (Le., the deadtime limit T,) before the closed-loop system 
reaches the stability limit. 

open-loop system is equal to 1.0: 
The gain limit K, can be determined by computing where the magnitude of the 

I ~ & ( j ~ , ) G , ( j q  I = 1 * (5.5) 

To solve this equation for K,, one must know the zero crossing frequency 0,. 
This is, oE course, described as the point where the phase is equal to -z rad/s: 

u ~ K , G ~ ( ~ w ~ ) G ~ ( ~ o ~ ) ]  = -T( . (5.6) 

Because Eq. 5.6 is independent of Kl (Le., K, does not affect the open-loop 
phase), this equation can be solved using a linear search algorithm to obtain a,, then the 
gain limit can be calculated by solving Q. 5.5 for K,: 

Similarly, the deadtime limit TI can be determined by 

I K,Gp(joz)G,(jo,)e -'M I = 1 

such that 

Because Eq. 5.8 is independent of TI, it can be solved by using a linear search 
algorithm to obtain 0,. Then, noting that 

atgfG,~~z)G,Ooz)e -jw T I] = arg[G,0'o3GcV0,)] - UzT, 9 
(5.10) 
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the deadtime limit can be calculated by solving E%& 5.9 for T,, as 

A + at#G&jw>G~(jw>] 
T , =  (5.11) 

Although the above method calculates the gain limit and the deadtime limit 
independently, both the gain and deadtime could be increased simultaneously (by lesser 
amounts) to drive the closed-loop system to the stability limit. The MathCAD routines 
used to calculate these limits for both the first- and second-order systems are given in 
Appendix I). Table 5.11 shows the results of the robustness calculations. Because the 
pattern recognition method rarely yielded reliable results from a cold start, the 
robustness calculations compared the results from only the closed-loop cycling and the 
model-based tuning methods. 

stable when the gain (or deadtime) is increased by a factor of 2. Although no process 
deadtime was specified except for two of the second-order process tests, these 
calculations still give an overall indication of the robustness of the STPI algorithms. 
Comparison of the data in Table 5.11 indicates that the two algorithms are nearly equally 
robust, with one or the other having the edge for a particular process. Of the 11 tests, 
the closed-Ioop cycling values were more robust for six of the processes, while the 
model-based technique yielded better results for 5 processes. The gain limit is, of 
course, infinite for the integrating process and for first-order processes with no deadtime 
(because a -180' phase shift would be approached for only extremely high values of 
gain). It was considered to be infinite for other processes if the gain could be increased 
by an extremely large amount before the system became unstable. 

The tuned system is generally considered to be robust if the system remains 

The pattern recognition algorithm is the most time-effcient became it 
determines new PI values after each setpoint change or disturbance without any further 
process perturbation. However, this algorithm frequently failed to identi@ reliable PI 
values (when used from a cold start). In their present implementations, the closed-loop 
cycling algorithm is more efficient than the model-based algorithm. ?%is is because the 
closed-loop cycling algorithm automatically terminates after the process oscillations have 
stabilized to update the PI values, whereas the model-based algorithm just calculates new 
PI values after a specified number of cycles. 
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Table 5.11 Tuned system mbustness with respect to 
gainandBeadtimeincreases 

~~ ~ 

~ 1 Gain/(deadtime) stability limits 

Gain 
limit limit 

Process 
parameters 

00 2.28 
00 3.56 

Process I 

K, = 1.0 
Kp = 0.2 

(rd = 

Process I1 
(Kp = 1, rP = 5) 
OVERSH = 10% 
OVERSH = 0% 

r d  = 5.0 
rd = 20.0 

NOISE = 2% 
NOISE = 5% 

00 

03 

1.97 
1.56 
00 

00 

5.23 
8.84 
4.21 
42.0 
4.42 
4.07 

Process I11 
(Kp = 1, Z, = 

(0, = 0.2) 
[ = 0.2 
f = 1.0 
[ = 2.5 

7.49 
03 

00 

49.6 
11.8 
7.7 

MB 

limit 
Gain 
limit 1 1.56 

2.74 

00 3.14 
00 15.3 

4.66 39.6 

00 3.86 
00 6.55 

* * 

00 275.9 

1 0 0  11.6 
l o o  10.1 

I$, = Process gain. 
rp = Process time constant. 
OVERSH = Overshoot. 
0, = Undamped natural frequency. 
zd = Deadtime. 
5 = Damping factor. 
* = Not calculated because tuned system was unstable. 



4. coNcLusIoNs 

Of the three STPI algorithms, the closed-loop cycling technique is the most 
reliable and the easiest to use because it only requires the user to specify the setpoint 
(when operated with the default parameters). It is also good from a cold start. Another 
good feature of this algorithm is that it terminates and updates the PI parameters as 
soon as the self-tuning is complete @e., when it has identified the period and amplitude 
of the constant process oscillations). This algorithm seems to have been implemented 
well, but the initial default relay amplitude frequently seemed to be too large for the 
processes that were tested. 

Although the algorithm automatically reduces the relay amplitude when the 
specified initial amplitude is too large, when output limits are incurred it only reduces 
the amplitude by a predetermined factor. Thus, if the initial amplitude is much too 
large, several successive automatic amplitude reductions will be needed before the 
process variable begins to stay near the setpoint. Some form of intelligent amplitude 
reduction should be done analytically. One rather simple method w u f d  be to 
approximate the slope of the output response, compare it to the amount of time the 
output stays out of range, and then calculate the relay amplitude reduction factor. 

only one of the three that simply cannot be used in continuous self-tuning mode. The 
self-tuning must be initiated by the user. 

cause any process disturbance during self-tuning. When this algorithm is activated by the 
user, it recalculates the PI controller parameters following any sufficiently large setpoint 
change or disturbance. Note that it is also the only one that stays on continuously until 
it is turned off by the user. This could be either an advantage or a disadvantage, 
depending on one’s viewpoint (especially because it will retune following any sufficiently 
large process disturbance). It is also the most time-efficient because it determines new 
PI values after each setpoint change or disturbance without any further process 
perturbation. 

controller PI parameters and is therefore not suitabie for use from a cotd start. The 
algorithm also limits the adjustment of the PI values (the maximum change allowed after 
each adaptation) to &20%. It is the only one of the three algorithms that currently has 
any parameter change limits. A serious disadvantage of this algorithm is that it does not 
work when the process response is overdamped. The particular implementation of this 
algorithm is rather simplistic. However, its usefulness is greatly enhanced by using the 
closed-loop cycling method as a pretuning phase to obtain reasonably goad estimates for 
the initial P and I values. 

This algorithm could also be improved by adding some additional logic or 
heuristics (similar to those implemented in the Foxboro EXACT self-tuner) to enable it 
to work when the process is overdamped. Or, for overdamped processes, perhaps the 
pattern recognition algorithm could increase the controller gain until the required 
oscillatory response is obtained and then perform the self-tuning in the same fashion. 
The model-based algorithm can be used from a cold start, although it requires more 
values to be specified by the user than the other algorithm. Because the selection of an 
appropriate sampling rate (ie-, ACCOL task rate) is extremely important to the proper 

Another minor disadvantage of the closed-loop cycling algorithm is that it is the 

The pattern recognition algorithm is the only one of the three that does not 

The pattern recognition algorithm requires reasonably good initial values of the 
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operation of this algorithm, it should be modified to automatically approximate the 
response time of the process (with a step response) and adjust the ACCOL task rate 
accordingly. The STPI research report claims that this algorithm can also be used to 
provide continuous tuning refinements (by the expert user). However, no continuous 
parameter refinement tests were attempted with this algorithm, because of time 
constraints. 

One serious disadvantage of this algorithm is that it cannot properly tune 
processes that have large amounts of deadtime (see additional explanation in Sect. 5.2.3). 
A potential problem with this algorithm is that it employs the pole-zero cancellation 
technique. This technique has the inherent disadvantage that if the process model is 
incorrectly identified, or if the the process model dynamically changes over time, the 
pole-zero cancellation may not work and the tuned system may then be unstable. 

The mean level of the PRBS could also be monitored and automatically adjusted 
during the tuning phase (as done in the closed-loop cycling algorithm) to keep the 
process variable near the setpoint. If intelligent PRBS amplitude adjustment is added, it 
should also be able to increase the amplitude if the initially specified value only causes 
very small deviations from the setpoint. Deviations of at least 3 to 5% would most likely 
result in better model estimation. 

period of time (using the default values) even though it adequately approximated the 
model after the first few cycles. The algorithm should be modified to terminate model 
identification and update the PI parameters whenever the confidence factor (DONE) 
reaches some acceptable value (perhaps 85%) rather than just continuing to update 
these values for a specified number of cycles (the default number of cycles is 50). 

be adjusted recursively as new estimates of the process model are obtained to obtain 
even better models (and thus more precise tuning). 

As suggested in the original STPI research report, these tests confirmed that 
some additional logic should probably be added to check the confidence factor, DONE, 
before updating the controller parameters. In their present implementation, the PI 
values will be updated even if the algorithm practically fails. Note that although the 
confidence factor does give some indication as to the reliability of the tuning parameters 
for a particular STPI algorithm use, it should not be used to compare the performance 
or robustness of one STPI algorithm to another. 

It might also be desirable to allow the user to limit the range for the PI 
parameters or specify the maximum percentage change allowed after each adaptation for 
both the closed-loop cycling and model-based algorithms (the pattern recognition 
algorithm already limits the change to 220%). 

In summary, these tests demonstrated that some good single-loop adaptive 
control techniques have been developed that can be used to adequately control many 
processes. Although it is certain that single-loop self-tuning controllers will not be 
enough to solve evety process control problem, it may be possible to meet increased 
demands and achieve better process control results simply by using one of these single- 
loop advanced control techniques. Because most industrial processes are still being 
controlled with single-loop PID controllers, perhaps one of these techniques can be 
implemented to obtain the desired efficiency improvements without costly redesign of 
existing processes. 

For slower processes, this algorithm’s self-tuning takes an unacceptably long 

Although not as critical, the coefficient a in the digital bandpass filter could also 
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It should be noted that these tests actually evaluated the particular 
implementation of these STPI algorithms and their interactions with the Bristol-Babcock 
PID control algorithm. Different implementations of these same algorithms could 
provide somewhat different results. Likewise, if the same implementations of these STPI 
algorithms were used in conjunction with other control algorithms of a different form, 
widely differing results may be obtained. 
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1. INTRODUCTLON 

The basis of the vast majority of today's commercial 

controllers and PLC's is the microprocessor. The new families of 

cheap powerful processors have produced environments suitable for 

the development of both fixed-parameter controllersp often with 

advanced features such as  feedforward control and wind-up 

protection, or, those possessing 'self-tuning' capabilities. The 

idea behind self-tuning is to adjust the controller settings 

automatically, based on the measured input/output behaviour of the 

process under control. Fig. 1 presents t h e  general self-tuning 

structure favoured by most academic researchers. The idea of a 

self-tuner h a s  been with u s  f o r  some time, t h e  s,olution to the 

extra data-processing requirements h a s  only been economically 

feasible in recent years. 

The rapid advancement of microprocessor technology has 

re-stimulated the interest in digital control implementation. New 

cont ro l  laws have been postulated but industry still appears to 

favour a digitisation of the w e l l  known continuous time PID three 

term controller. This dilemma has led to two contrasting 

approaches to the use of this new computational power. The first 

is to add tuning features to an  otherwise standard PI(D) 

regulator. This approach recognises that the majority of 

regulators used in industry are still of the PID form and complex 

processes may have hundreds of regulators. However, even after 

careful instruction, instrument engineers and plant operators 

o f t e n  s t i l l  have difficulty in installing and operating such 

...... I... 
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regulators. A feedback control system is of little value if it is 

improperly tuned. Several different methods have been proposed for  

tuning PID regulators. The need in tuning a controller is to 

determine the 'optimum' values of the controller gain Kc ( o r  the 

proportional band PB), the reset time Ti (or the reset rate in 

repeats per minute) and the derivative time Td. The adjustment of 

these tuning parameters on feedback controllers is one of the 

least understood yet extremely important aspects of automatic 

control theory. Several methods for  manually tuning these 

algorithms are used in practice, ranging from 'trial-and-error' to 

the more systematic use of empirical formu'lae such as those 

proposed by Ziegler and Nichols (1943). However for some complex 

processes, where the plant dynamics vary significantly in the 

course of their operation, automatic retuning is the only real 

answer in order to maintain a consistent final product. The second 

philosophy is to provide a general purpose control law which is in 

some sense optimal. By careful 'tailoring' o f  these control laws, 

acceptable performance may be achievable in those situations where 

PI(D) may not function too well, e.g. processes with long time 

delays. These tuners might involve several design parameters which 

are used to prescribe the characteristics of the closed loop 

control system rather than direct entry of the controller gains, 

as is done with the standard PID law. Such general purpose 

techniques include: (i) Pole-Placement (PP), (ii) Linear Quadratic 

Gaussian (LQG), (iii) Generalised Minimum Variance (GMV), (iV) 

Long Range Pred ic t ive  Control (LPRC) and (v) Generalised 

P r e d i c t i v e  Control (GPC). Table 1 summarises the underlying 

control  laws of some of the better known industrial adaptive 
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m n  

s .  
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Predictive Control 
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DMC Inc. 
Set Point f n c .  
Leeds & Northrup 
Foxboro 
Turnbull Control 
Goulton West 
Ho neywe 11 
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Control & Readout 
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Fe nwa 1 
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Westinghouse 
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Hungarian Sc i . Acad . 
First Control 
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LQG 
GMV 
LPRC 
LPRC 
PID 
PID 
PID 
PID 
P ID 
PID 
PID 
PfD 
PID 
PID 
PID 
PID 
PID 
PID 
P I D  
PID 
P I D  
PP 

' 1 "  
GS = Gain Scheduling 
AT = Auto-Tuning 

CT = Continuous Tuning 
FF = Feed-Forward 

Table 1 - Characteristics of Some Adaptive Controllers 

This report explains the implementation of an STPI module, 

within ACCOL, which provides an automatic facility for tuning 

proportional-plus-integral (PI) controllers, and has been designed 

f o r  use with the standard PID3TERH module. The STPI module may be 

used in either a 'one-shot' or continuous tuning mode. In t h e  

'one-shot' mode, when tuning is enabled, the module will 

perturbate the p l a n t  f o r  a period of time, after which PI 

controller settings are determined. The module then returns 

control to t h e  PID3TERM and effectively becomes transparent until 
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it is once more enabled. In the continuous tuning mode, the 

performance of the PID3TERM module is monitored, and the 

controller settings are adjusted accordingly. It should be noted 

that the STPI module will set the derivative gain of the PID3TERM 

to zero. The reason for developing a self-tuning PI module, as 

opposed to self-tuning PID, is that the final module is simpler to 

implement and use, and is more robust within industrial 

applications. In addition, because most processes exhibit 

non-oscillatory, stable, open-loop behaviour, the active damping 

provided by derivative action is not usually necessary for good 

control. This, along with the inherent disadvantage of noise 

amplification mean that derivative action is rarely employed in 

process control applications. 

The STPI module incorporates three different algorithms for 

tuning PI controllers. These three algorithms have proved most 

popular with other controller manufacturers. This means that the 

ACCOL STPI module should be able to match the performance of most 

of its leading competitors. In addition to this reason, the 

algorithms have individual characteristics and in a particular 

application one may prove more suitable than the others. 

(a) Closed Loop Cycling Algorithm (Alg. # 0 )  

This 'one-shot' tuning algorithm forces the process variable 

to oscillate around its set point value, as shown in Fig. 2 .  The 

process variable is forced to oscillate through the use of a relay 

controller, as illustrated in Fig. 3. An integrator is also 

included in order to ensure that the process variable oscillates 
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around the set point value, The integrator gives rise to the 

characteristic triangular waveform produced by the controller 

output during the tuning phase. The period of the oscillations is 

determined by the dynamics of the process, but the user has the 

power to constrain the amplitude of the oscillations by specifying 

limits on the controller output and process variable. Thus the 

technique is inherently safer than the traditionally used 

Ziegler-Nichols ultimate method. The tuning phase is automatically 

terminated when a number of 'good' oscillations have been 

recorded. Upon termination, the period and amplitude of the 

oscillations are measured, and used to design the PI controller 

settings. When operated with default parameters, this technique 

only requires the user to specify the set point, and is therefore 

suitable for use from a 'cold start'. 

(b) Pattern Recognition Algorithm (Alg. U l )  

This algorithm provides continuous tuning of the controller 

gains. The key idea here is that processes respond to disturbances 

(or set point changes) with distinctive patterns whilst under PI 

control. By characterising these patterns, it is possible to 

formulate some rules for re-tuning the controller gains. Note that 

this algorithm is similar in many ways to how a skilled instrument 

engineer might re-tune a loop. Re-tuning takes place following the 

effect  of disturbance, as shown in Fig. 4 .  During the disturbance, 

t h e  performance of the controller is monitored, as shown in 

Fig. S .  Once the  process variable has reached its peak deviation 

( E m a x )  from t h e  s e t  point, t h e  response time of the loopt TL, is 

measured and subsequently used in the evaluation of the t w o  
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integrals: S1 and s2. Having obtained these values, the controller 

gains may be updated, as described in Fig. 5 .  Note that the 

pattern recognition algorithm requires initial values f o r  

proportional gain and integral gain, and is therefore not suitable 

fo r  use from a 'cold start'. 

(c) Model Based Algorithm ( A l g .  8 2 )  

The model based algorithm is primarily intended as a 

'one-shot' tuner, although it may also be configured the technique 

to operate in a continuous tuning mode. The important difference 

between this algorithm and the previous two is that the task rate 

of the control system must be carefully matched to the response 

time of the process. For example, the flow of a fluid through a 

pipe may respond within seconds to a change in valve position, 

whereas the pH within a large reaction vessel may take several 

minutes to respond to a change in acid dose. These two application 

examples would require the use of two different task rates. A good 

rule f o r  use with the model based method, is to select a task rate 

that is approximately l/lOth of the process rise time, which may 

be determined from a step test, as shown in Fig. 6 .  

During the tuning phase, a pseudo random binary sequence 

(PRBS) is produced at the controller output, as shown in Fig. 7 .  

The user must specify the mean level and the amplitude of the 

PRBS: the mean level should be chosen in order to cause the 

process variable to deviate at, or near, its set point value, and 

the amplitude should be sufficiently large to cause significant 

deviations, yet keep the process variable within acceptable 
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limits. While the PRBS is applied, the process output and the 

controller output data are fed into a recursive estimation 

algorithm, as illustrated in Fig. 1, which fits a mathematical 

model to the data. At the end of the tuning phase, the model is 

then used to design PI controller settings. The model based 

algorithm may be used from a 'cold start', although it requires 

more values to be specified by the user than the closed loop 

cycling algorithm. 

In the STPI module, the user has four methods available for 

tuning. These are designated: 

Method WO - Closed Loop Cycling followed by Pattern Recognition 

Method fl - Closed Loop Cycling 
Method # 2  - Pattern Recognition 
Method t 3  - Model Based 

Method 10 is the default method, as it is the most robust, 

requires the minimum amount of setting up, aqd will effectively 

provide continuous tuning from a 'cold staxt'. Method #1 is 

provided f o r  applications where periodic re-tuning is more 

desirable than continuous tuning. Method X2 is provided to allow 

pattern recognition to be switched on and off following initial 

tuning. Method #3  may be used as an alternative to method 81, or 

else configured by the expert user to provide an alternative 

continuous tuning procedure. 
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2 .  CONFIGURING A SELF-TUNING a CONTROLLER WITHIN fiCCO& 

Fig. 8 shows the basic structure of a self-tuning PI 

controller implemented within ACCOL. The detailed connections 

required to configure the self-tuning PI controller are presented 

in Fig. 9 .  The f o u r  major outputs of the STPI module are: 

PROP2 - the designed value of proportional gain 
INT2 - the designed value of integral gain 
STATUS - a status word containing various flags 
DONE - a confidence factor relating to the tuning 

STATUS is a seven bit word which contains information related to 

the tuning phase. Each bit represents a particular status 

condition, and their meanings are defined as follows: 

STATUS bit 0 - tuning in progress 
(refers to all three algorithms) 

STATUS bit 1 - pattern monitoring in progress 
(refers only to pattern recognition algorithm) 

STATUS bit 2 - relay amplitude reduced during tuning 
(refers only to closed loop cycling algorithm) 

STATUS b i t  3 - relay amplitude very small 
(refers only to closed loop cycling algorithm) 

STATUS bit 4 - termination of tuning after 2 1  cycles, due to limit 

cycle not converging 

(refers only to closed loop cycling algorithm) 
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STATUS b i t  5 - input or output limits incurred during tuning 
(refers to all three algorithms) 

STATUS b i t  6 - model gain negative, possibly due to incorrect 
setting of the REVERSE flag 

(refers to the model based algorithm only) 

The status word may be logically ANDed with the appropriate masks 

in order to determine the condition of individual bits. F o r  

example if the STATUS word has the value 37, then this corresponds 

to bits 0, 2 and 5 being set (i.e. 1 + 4 + 32 = 3 7 ) ,  which means 

that the relay amplitude was reduced during tuning due to signal 

l i m i t s  being incurred. Note that bits 0 and 1 are continually 

updated whereas the others are only set during tuning, and remain 

fixed until tuning is re-initialised. 

DONE takes a value between 0 and 100% and provides an 

indication of the success of the tuning phase. Note that the three 

algorithms will produce different values for DONE because of the 

different ways that it is calculated. DONE should therefore not be 

used to compare the performance of the algorithms (the quality of 

control. is a much better comparison). In general however, values 

of DONE which are less than 5 0 %  imply low confidence in the 

designed controller gains. 

It is recommended that the results of the tuning are checked 

using a CALCULATOR b l o c k  before feeding them into t h e  PID3TERM 

module, as shown in Fig. 8 .  For example, the following calculator 

block could be used t o  limit the range of the proportional gain: 
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PROP 1 =PROP2 
: IF ( PROP 2 < 1 ) 
PROP 1 = 1 

: ENDIF 
:IF(PROP2>10) 
PROP 1 = 1 0 

: ENDIF 

Alternatively, the following calculator would only update the 

gains if the confidence factor exceeded a specified value: 

:IF(DONE>SO) 
PROPL=PROP2 
INTl= INT2 

: ENDIF 

3 .  OPERATION STPI MODULE 

This section presents a 'check-list' f o r  operating the 

self-tuning PI module at its simplest level. 

(1) Choose the self-tuning method using SELECT 

SELECT = 0 => Closed Loop Cycling + Pattern Recognition 

SELECT = 1 => Closed Loop Cycling 

SELECT = 2 => Pattern Recognition 

SELECT = 3 => Model Based 

( 2 )  Define whether the process is direct  or reverse acting using 

the f lag  REVERSE. Note that ON implies reverse acting, i.e. 

an increase in the controller output produces a decrease in 
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t h e  process variable (default is OFF). 

S p e c i f y  t h e  desired SETPOINT. 

Set t h e  required per fo rmance  of t h e  closed loop sys t em i n  

terms of i t s  p e r c e n t a g e  overshoot t o  a step change .  Note 

d e f a u l t  v a l u e  = 10%. 

S e t  t h e  safety l i m i t s  (if requi red)  o n  t h e  c o n t r o l l e r  o u t p u t :  

OPMAX and OPMIN. 

( O p t i o n a l )  Set variables i n  a u x i l i a r y  s i g n a l  l i s t ,  i f  

r e q u i r e d .  N o t e  t h a t  i f  method 3 i s  b e i n g  u s e d  from a ' c o l d  

s t a r t ' ,  OPMEAN must be set i n  a u x i l i a r y  s i g n a l  list ' B ' .  

I n i t i a l i s e  t h e  t u n i n g  p r o c e d u r e  by t u r n i n g  ENABLE on. Note 

t h a t  tuning is i n i t i a l i s e d  by t h e  OFF-ON t r a n s i t i o n  of 

ENABLE. 

On c o m p l e t i o n  of a ' one - sho t '  t u n i n g  procedure, c o n t r o l  is 

r e t u r n e d  to the PID3TERM module, and the STPI module becomes 

t r a n s p a r e n t .  
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4 .  AUXILIARY S I G N I U ,  LISTS 

Whilst the default values f o r  the three algorithms have been 

chosen to work well in most applications, the expert user may want 

to tailor the parameters of each algorithm to match the needs of a 

particular process. This facility is provided, within the module, 

by allowing access to additional information which is contained in 

a series of auxiliary signal lists: 

Auxiliary List ' A '  ( f o r  use with Methods 0, 1 and 2 )  

1. PVDEV 
2. RELAY 
3. INTEG 
4. ACCEPT i 5. HYSTER 

(1) PVDEV (RW) - maximum peak deviation of process variable from 

set point during closed loop cycling. This may be used as an 

additional safety feature. Default value = 100%. 

( 2 )  RELAY (RW) - amplitude of relay characteristic during closed 
loop cycling. Note a good initial choice can  reduce the 

tuning time. Defaul t  value = 2 % .  
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( 3 )  INTEG (RW) - a flag which is set to indicate that the process 

has a natural integrating action, which is sometimes the case 

in l e v e l  control problems. Setting this flag means that the 

c l o s e d  loop cycling algorithm will use a square wave (as 

opposed to triangular) perturbation sequence and will design 

a proportional controller. Default value = OFF. 

( 4 )  A C C E P T  (RW) - tolerance between successive peaks which 

constitutes 'acceptable' oscillation during closed loop 

cycling. When successive peaks, P1 and P2, satisfy the 

condition 100% x IP1 - P21 < P1 x ACCEPT, controller settings 

are designed. Default value = 5 0 % .  

( 5 )  HYSTER (RW) - a noise protection facility which adds 

hystersis to the relay characteristic. HYSTER should be set 

to 1/2 of the observed peak-to-peak n o i s e .  Default value = 

0 . 2 % .  

( 6 )  PVM (RO) - current peak amplitude of the process variable 
oscillations. 

( 7 )  PERIOD(R0) - current period of the oscillations. 

( 8 )  THRESH (RW) - a noise protection feature for the pattern 

recognition algorithm. THRESH is a threshold value which the 

measured error must exceed before the controller settings are 

re-assessed. Default value = 5 % .  



(Note: 

Auxili 

RW = Read/Wri te, RO 

80 

= Read O n l y  ) 

ry Signal L i s t  ' B '  f o r  use with Xethod 3 )  

3 .  TOTAL 

7. ADAPTIVE 

( 1 )  OPMEAN (RW) - the mean value of the perturbation sequence 

during tuning. When tuning is enabled OPMEAN is automatically 

set to the last value of the PID3TERM output. OPMEAN may be 

manually adjusted during the tuning phase in order to keep 

the process variable at, or near, the set point. 

( 2 )  OPDEV (RW) - the amplitude of the perturbation sequence. The 
default value is 5 % .  

( 3 )  TOTAL (RW) - t h e  total number of samples in the tuning 

period. Default value = 100. 

( 4 )  ALPHA (RW) - a first order digital filter coefficient 

(O<ALPHA<l). Default value = 0 . 5 .  

( 5 )  LAMBDA (RW) - estimator f o r g e t t i n g  f a c t o r  (O.S<LAMBDA<l.O). 

Default value = 0.99. 
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(6) P E R R  (RO; - the  current value of t h e  prediction error. 

( 7 )  ADAPTIVE (RW) - flag to set continuous closed loop tuning. 

( 8 )  A l l  B1, B2, 8 3 ,  B4, B5, C1 (RW) - Estimated coefficients of 
t h e  discrete time process model. 

( 9 )  D I A G  1, DIAGZ , DIAG3, DIAG4, DIACS, DXAG6, DIAG7 (RW) - 
Covariance matrix diagonal elements. 
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Figure 5 - Pattern Recognition Calculations 

Re-tuning A 1  gor  ithm : 

PROP2 = PROP1 + (1-DONE).( Kl.(Sl+Rl) + K2.S2 ) 

INT2 = INTl + (1-DONE).( K3.(Sl+Rl) + K4.SZ ) 

where 

R1 is a pre-defined area, 

R2 is a pre-defined level, 

DONE is a confidence factor related to overshoot,  

and K1, K2, K3, K4, a, 8 ,  a are constants. 
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Figure 8 - Basic Structure of ACCOL Self-Tuning PI Controller 
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PART I I  

SUMMARY OF FIELD TRIALS 
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FIELD TRIALS SUMMARY 

This section summarises the results of the field trials that 

were undertaken to evaluate the performance of the self-tuning 

algorithms on real industrial plant. Three sets of trials were 

carried out. The first of these was on a pH control loop at a 

water treatment plant belonging to the Sunderland and South 

Shields Water Company (SSSSWC). The second set of trials were 

carried out on various flow control loops at English China Clay 

( E C C ) .  The third field trial involved a pressure loop at a British 

Gas Pressure Control Station. In all three trials, the algorithms 

performed well using their default settings despite the widely 

differing properties o f  the processes under test. 

1 .  Field Trial No.1 - pH Control Loop 

Fig. 1 presents a schematic of the loop, which i s  used to 

adjust the pH of the treated water. The controller output is used 

ta vary the speed of a lime pump which raises the pH to the 

correct value. Fig. 2 illustrates the operation of the closed loop 

cycling algorithm in action. It i s  apparent that the pH signal is 

rather noisy, and also that the process is subject to 

disturbances. Despite these adverse conditions, tuning proceeded 

in the normal way and produced good PI controller settings. Fig. 3 

shows a longer time history of the tuning and it can be seen the 

resulting control i s  as good as, if not better than the existing 

enhanced PI controller. Also presented in Fig. 3 is the time 

history o f  the model based algorithm, which was obtained on the 
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following day .  Once again good control is achieved. It should be 

noted that although the both tuning methods perturb the process, 

the amplitude of the perturbations are not much greater than those 

caused by the normal disturbances. 

2 .  Field Trial No.2 - Flow Control 

A range of tests were carried out during four days of testing 

at: the English China Clay works, all of which involved flow 

control problems. Fig. 4 presents a general schematic of the type 

of loop under control. Fig. 5 shows the typical results obtained 

with closed loop cycling tuning and Fig. 6 illustrates those 

obtained using model based tuning. Both methods worked well in all 

tests. Note that a shorter tuning period could probably have been 

used with the model based algorithm, and also the amplitude of the 

perturbations could have been reduced, if required. Fig. 7 

presents an interesting result obtained when applying closed loop 

cycling to a loop which had a faulty control valve. The fac t  that 

the valve was faulty was not known beforehand, but was soon 

diagnosed when the asymmetric oscillations w e r e  observed on t h e  

flow signal, Subsequent inspection revealed that the valve was 

sticking in one direction, and required maintenance. 

3 .  Field Trial No.3 - Pressure Contro l  Loop 

Fig. 8 presents a schematic of the loop undet control. The 

control objective is to maintain a desired pressure at a point 

which could be several miles downstream of the control valve. 



Fig. 9 presents the time history of t h e  t u n i n g  exercise. Closed 

loop cycling was initiated with a lower safety limit of 30% on the 

valve command signal in order to prevent excessively high 

pressures developing. It can be seen that during the first two 

cycles the valve command hits this lower limit and hence the relay 

amplitude is reduced until acceptable oscillations are obtained. 

In this test the tuning phase was deliberately forced to continue 

(for safety reasons) while the operators went off to lunch, and on 

return the cycling was disabled. A set point change was 

subsequently requested and it is apparent that the control is 

stable, although rather sluggish. This is most likely to have 

resulted from the severely nonlinear valve characteristic. The 

pattern recognition algorithm was then activated and another set 

point change introduced. Following this change, the controller 

gains were redesigned and the two set point changes at the end of 

the test show that good control has been achieved (N.B. lower 

safety limit has been moved to 2 5 % ) .  This example illustrates 

nicely how the "piggy back" arrangement of the tuning algorithms 

is used firstly to get reasonable settings which  are subsequently 

refined . 
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CLOSED LOOP CYCLING AUTO-TUNER 

1. Introduction 

The majority of regulators used in industry are still of the 

PID form. Complex processes may have hundreds of regulators. Even 

after careful instruction instrument engineers and plant operators 

often still have difficulty in installing and operating such 

regulators. A feedback control system is of little value if it is 

improperly tuned. Several different methods have been proposed for 

tuning PID regulators. The need in tuning a controller is to 

determine the 'optimum' values of the controller gain Kc (or the 

proportional band PB), the reset time Ti (or the reset rate in 

repeats per minute) and the derivative time Td. The adjustment of 

these tuning parameters on feedback controllers is one of the 

least understood yet extermely important aspects of automatic 

control theory. Several methods for manually tuning these 

algorithms are  used in practice, ranging from 'trial-and-error' to 

the more systematic use of empirical formulae such as those 

proposed by Ziegler and Nichols (1943). However for some complex 

processes, where the plant dynamics vary significantly in the 

course of their operation, automatic retuning is the only real 

answer in order to maintain a consistent final product. Astrom 

( 1 9 8 4 )  has proposed a simple robust estimation technique which 

provides the basis for a number of new methods for automatic 

tuning of P I D  regulators which easily can be incorporated into the 

new breed of microprocessor based controllers for single loop use. 
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This report develops the implementation (in ACC3L XI) of a similar 

range of algorithms initialiy for use on the RDC 3350 unit. It 

should be emphasised that the approach will not work for problems 

where d more complicated regulator than the P I D  structure is 

required. 

2 .  Theoretical Principles Supporting the Autotuner Design 

In 1943 Ziegler-Nichols presented their seminal paper on 

controller tuning. In the interim period many other approaches 

have been suggested but rarely have they affected the popularity 

of this early simple strategy. The autotuner design to be 

developed here is based around an elementary approach to automate 

the Ziegler-Nichols rules as discussed by Astrom and Hagglund 

(1984). 

Techniques for tuning controllers may be classified as either 

open-loop or closed-loop methods. The Ziegler-Nichols ultimate 

method is a closed-loop technique which has been applied 

successfully to both analogue and digital control situations. The 

basic method requires the determination of the ultimate gain, Xu. 

This is the value of gain ( f o r  a controller with only a 

proportional mode of operation) which causes the closed-loop 

controlled variable to cycle continuously with fixed amplitude. 

This 'marginally stable' situation implies that the Nyquist curve 

of the open-loop frequency response must pass through the critical 

- l + j O  point on the Argand diagram (see Fig. 1) .  The period of the 

oscillation, Pu, is called the ultimate period. In the original 



Z i e g l e r - N i c h o l s  scheme, Ku and Pu w e r e  d e t e r m i n e d  i n  t h e  f o l l o w i n g  

way: t u n e  out any reset or d e r i v a t i v e  a c t i o n  from t h e  c o n t r o l l e r ,  

l e a v i n g  only t h e  p r o p o r t i o n a l  mode. Ma in ta in  t h e  c o n t r o l l e r  on 

a u t o m a t i c ,  i.e. leave t h e  l o o p  c l o s e d .  With t h e  g a i n  of t h e  

p r o p o r t i o n a l  mode se t  t o  some l o w  a r b i t r a r y  v a l u e  impose an u p s e t  

o n  t h e  p r o c e s s  (move t h e  s e t p o i n t  f o r  a f e w  seconds  t h e n  r e t u r n  it 

t o  t h e  o r i g i n a l  v a l u e )  and observe t h e  r e s p o n s e .  I f  t h e  o u t p u t  

r e s p o n s e  g r o w s ,  r educe  t h e  c o n t r o l l e r  g a i n ;  if t h e  r e s p o n s e  damps 

o u t  i n c r e a s e  t h e  c o n t r o l l e r  g a i n .  Con t inue  i n  t h i s  w a y  u n t i l  

s u s t a i n e d  o s c i l l a t i o n s  of c o n s t a n t  a m p l i t u d e  a re  e n c o u n t e r e d .  

F i n a l l y ,  t h e  c o n t r o l l e r  parameters can  t h e n  b e  o b t a i n e d  by u s i n g  

e m p i r i c a l  formulae  which rely o n  Ku and Pu. The u l t i m a t e  method 

e m p i r i c a l  r e s u l t s  are p r e s e n t e d  as t a b l e  1. 

Some of t h e  shor tcomings  of t h e  t e c h n i q u e  are listed below:- 

( i )  t h e  p r o c e s s  t r a n s f e r  f u n c t i o n  must be a t  least  t h i r d  o r d e r .  

(ii) for a system w i t h  l o n g  time c o n s t a n t s  t h e  t e c h n i q u e  is a 

v e r y  s l o w  p r o c e s s .  

(iii) it i s  d i f f i c u l t  t o  au tomate  t h e  expe r imen t ,  and per fo rm it 

i n  such  a way t h a t  t h e  ampl i tude  of t h e  o s c i l l a t i o n  is k e p t  

unde r  c o n t r o l .  

( i v )  t h e  magnitude of t h e  o s c i l l a t i o n  is dependent  on t h e  p l a n t  

g a i n  as  w e l l  as t h e  c o n d i t i o n s  suppor t ed  by t h e  p l a n t  when- 

t h e  t e s t  i s  i n i t i a t e d ,  i . e .  t h e  ampl i tude  of o s c i l l a t i o n  is  

n o t  known b e f o r e  t h e  t e s t .  
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As a consequence of the above features, another method which 

can provide automatic determination is proposed. 

3 .  Astrom and Hagglund Relay Method 

This  method is based on the observation that a system with a 

phase lag of at l e a s t  n radians at high frequencies must 

oscillate with period tc under ideal relay control. One immediate 

advantage gained by including the relay is that the possibility of 

an unstab le  response is avoided. Secondly, the amplitude of the 

o s c i l l a t i o n  may be controlled simply by varying the limits of the 

relay. 

The constant amplitude fixed frequency oscillation is callsed 

a limit cycle. Limit cycles arise in a wide variety of practical 

situations; consequently, considerable efforts have been expended 

t o  develop algorithms which can help the designer assess whether 

or not a system will exhibit such behaviour. Limit cycles can be 

stable ox unstable; only stable oscillations exist in practice. 

For systems of higher order than t w o ,  the basis for limit 

cycle studies is usually the frequency domain. Here, much of the 

published work assumes a separable system where the l i n e a r  part is 

represented by its frequency response whilst the single non-linear 

element (in this case the ideal relay) is characterised by a 

quasilinear complex gain  called a describing function. The 

describing function is evaluated on the assumption that t h e  input 

to the non-linearity is a sinusoid of known amplitude. 



The describing function is defined a s  

B + jC 
N(A) .= I___ 

A 
... 3.1 

where B and C are the Fourier coefficients of the fundamental 

component present in the periodic non-linear output in response to 

the sinusoidal input A . s i n  e .  E3 and C are given by 

f(e) s i n  e de 
B =  - I ,  1 2R 

n 

and 

. . .  3.2a 

... 3.2b 

f ( e )  is the true non-linear output in response to A . s i n  8. For the 

ideal relay when 

o < e s n  f(0) = + Ym ... 3.3a 
and R < % s 2 l l  f(B) = - vm ... 3 . 3 b  

assuming a symmetrical relay output. 

Fram equations 3.1 to 3.3 it is easily shown that 

4vm N(A) = - ... 3 . 4  

The resulting autatunet strategy using the ideal relay controller 

i s  presented as Fig. 2 .  

To illustrate how the c i r c u i t  w o r k s  consider the case when 

KW; ... 3.5 
2 

G ( j w )  = 
j w  { (0; - + mu, 1 
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Fig. 3 shows how the system responses fo r  two different intial 

conditions; one a small (practically zero case) and the other a 

large value. In b o t h  cases we eventually converge onto the same 

l i m i t  cycles. To increase the amplitude of the limit cycle we 

simply increase V m .  

With reference to Figures 1 and 2 ,  it is easily shown that 

Ziegler Nichols critical gain, Ku, is in fact the sane numeric 

value as the describing function. 

... 3.6 vm KU = - 
lTA 

It follows, since Vm is fixed, to automatically determine Ku 

all that is required is to estimate A .  In practice this is done 

using software programmed to implement a ’peak detection’ strategy 

on the system error signal. The ultimate frequency is also 

calculated using the  error signal and a ‘zero-crossing’ routine. 

Once these are evaluated, PI or P I D  settings can be determined 

using the look-up table 1. An alternative approach ha8 been 

postulated by Astrom whereby systems with prescribed phase margin 

are obtained. The theory behind this approach is described in the 

next section. 

4 .  Control with Specified Phase Margin 

Consider nex t  the block diagram of Fig. 4(a) where GoL(s)  is 

the  open-loop transfer function; t h e  open-loop frequency response 

of this system is plotted as Fig. 4 ( b ) .  The frequency “4, when the 

open-loop gain is 1, i . e .  



is called t h e  gain cross-over frequency 

defined as 

$m = L G O L ( j u d )  f 180D 

. . .  4 . 1  

The phase margin $I is 
0 

... 4 . 2  

where L G o L ( j w d )  is the angle corresponding t o  the magnitude 

condition of Equation 4.1. 

Consider now Fig. 5 ( a )  where the system G ( s )  is under PI 

c o n t r o l ;  the open-loop transfer function is given by 

... 4 . 3  

and the corresponding phase shift is 

L G o L ( j w )  = - g o o  +. tan-' wTi + L G ( j w )  ... 4 . 4  

If at frequency wd rad/s, the argument of G ( j w )  is -go', then it 

is easily shown that 

1 
or Ti = __ tan #m ... 4 . 5  

w 
Further, from the definition of the phase margin, i.e. Equation 4 . 1  

... 4 . 6  
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Cons ider t h e  t r i ang 1 e 

then 

1 

... 4 . 7  

Equations 4.5 and 4.7 can be re-expressed in terms of t h e  measured 

parameters Pu and A .  Firstly, 

... 4 . 8  

and secondly from F i g .  5(b) under limit cycle conditions 

... 4 . 9  

Hence from 4.6 to 4 . 9  the parameters Kc and Ti of t h e  P I  

controller are given by 

and 

Pu t a n  Qla 

21r 
Ti = 

4Vm Pu s i n  #m 
Kc = 

2n2A 

. . .  4 . 1 0 a  

... 4.10b 
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The eventual scheme is presented in block diagram form as Fig. 6. 

The autotuner operates as a relay controller in the tuning mode 

(position 1) and then a s  an ordinary PI regulator in the control 

mode (position 2 ) .  Once PU and A are determined as outlined in 

Section 2. Kc and Ti can be computed €or any desired 

an input parameter. A final point. It will have been noticed 

that the relay controller of Fig. Sb contains an integrator not 

present in the original structure (Fig. 2 ) .  An extra benefit of 

this arrangement is that it forces the limit cycle on the output 

to be sustained about the setpoint value. In control engineering 

terms the system, in the tuning mode, has Type 1 servomechanism 

tracking performance. This helps ensure 'bumpless' transfer 

ern , Qm is 

between tuning and control modes. 

5 .  Autotuner Refinements 

This section describes t w o  refinemen ic method 

described earlier; one is intended to make the algorithm more 

user friendly while the second is included to improve its noise 

rejection properties. 

3 t  th ba 

The Phase Margin-Overshoot(O/S) Concept 

The phase margin is a frequency response design parameter 

introduced to describe the relative stability situation, i.e. just 

how stable is d stable system? Closed-loop systems with large 

phase margins have well damped step responses. Many control 
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system d e s i g n  c r i t e r i a  assume t h a t  t h e  sys tem c a n  i n  e f f e c t  be  

a d e q u a t e l y  described by a second-order p r o c e s s .  The behav iour  of 

second-order  systems s t e p  and s i n e  wave inputs is w e l l  unders tood  

and p r o f u s e l y  documented. The fo l lowing  r e s u l t s  have been 

a b s t r a c t e d  from t h e  t e c h n i c a l  l i t e r a t u r e .  

( i )  t h e  maximum p e r c e n t a g e  O/S of an i d e a l  second-order  

process to  a s t e p  func t ion  i n p u t  i s  g i v e n  by 

[/I;;.] Maximum p e r c e n t a g e  O/S = 100 e x p  ... 5.1 

(ii) t h e  phase margin  #a of an  ideal second-order  p r o c e s s  

is  given by 

r 1 

J [ J [4C'+ 1]''2 - 
2R 4. = tan-' ... 5 . 2  

Note both equa t ions  5.1 and 5 . 2  depend only on the damping r a t i o  

I t  is a p p r e c i a t e d  t h a t  many process  o p e r a t o r s  may not have heard 

of a phase  margin. However, most should unde r s t and  the concep t  of 

peak overshoot  related t o  step input  behaviour .  I t  follows t h a t  

by s p e c i f y i n g  the maximum percentage overshoot  one  c a n  e v a l u a t e  

C . Once C is  known u s i n g  Eqn. 5 . 2  one can  d e t e r m i n e  t h e  phase  

margin. F i g .  7 d i s p l a y s  p l o t s  of bo th  Eqns. 5.1 and 5 . 2 .  From 

Fig.  7(b) it can be seen t h a t  over a wide range  

... 5 . 3  
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Improvement of Noise Rejection Performance 

tegy is that A problem with the simple ideal relay str "Y 
noise superimposed on the useful signal can result in 'false' 

relay switching which in turn invalidates the tuning procedure. 

The noise rejection properties can be improved by simply adding 

some hysteresis into the relay characteristic as shown in Fig. 8 .  

If too much hysteresis is added a degradation of the ultimate 

process will result. The general effect is an increase in the 

amplitude of the signal appearing at the input to the relay with a 

consequent lowering of Ku as compared with the ideal case. 

Section 7 presents a number of illustrative examples to clarify 

what may occur. Another feature is that Pu also tends to increase 

further consolidating a slower more heavily'damped response than 

may have been anticipated. The ACCOL implemented algorithm has a 

default hysteresis band of * 22 quantum levels; however, the 

operator can set the hysteresis to any desired level. 

Tests to date have indicated that for signal to noise ratios 

greater than 5 : l  additional. 'analogue' filtering may be required. 

In practice this is supplied via an optimal 'digital' filter which 

is also addressable by the operator. The filter chosen is a 

discrete equivalent of the simple analogue filter 

1 ... 5 . 4  - - -  
1 4. s/wo 

fo The algorithm requests a value f o r  expressed in Hz, i.e. 
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w h e r e  

w = 2nfo 
0 

The choice of hysteresis width plus filter bandwidth ( i f  

required)  is l e f t  to the user, however, the following simple r u l e s  

should help the selection process. With the filter inactive vary 

the relay characteristics (always ensuring initially that D > E) 

until an 'oscillatory trend' is obtained. Measure the frequency 

of the oscillation then s e t  fo equal to this value or 

exceptionally equal to twice this value. 

Before leaving t h i s  s e c t i o n  it should be emphasised that a 

large number of problems WILL NOT require the above refinements. 

We estimate perhaps less than 10% of the problems we have looked 

at over the years. Nevertheless, w i t h  commercial software we must 

try and consider a l l  possible contingencies. 
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F i g .  3a 

F i g .  3b 
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PART JV 

PATTERN RECOGNITION ALGORITFOYI THEORY 
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PATTERN RECOGNITION CONTROL 

- 1. Introduction 

The need for self tuning controllers arises as instrument 

engineers and plant operators often have great difficulty in 

installing and operating control systems. The ability of the self 

tuner to model processes using some predefined testing sequence 

and establish suitable controller parameters to meet some 

pre-def ined performance criteria can produce considerable savings 

in both time and expense during plant commissioning. 

However, because processes are often time variant or 

nonlinear in operation then no guarantee exists that the system 

will perform to the required levels without the need f o r  frequent 

retuning. This, in itself can lead to several problems. Firstly, 

when is re-tuning deemed necessary and secondly, will the 

application of the input disturbance sequence cause the process 

output to exceed plant limits and introduce further expense 

through down time. 

One solution to this particular problem is to re-assess the 

present control scheme performance when the plant is subjected to 

some form of disturbance. The exact method fo r  changing the 

controller parameters is normally based upon the experience and 

expertise of the control engineer. However, because these 

mechanisms, for PI regulators, are well understood several, methods 

of automating this adaption procedure have been suggested 11-31. 
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Generally these types of technique can be termed 'Pattern 

Recognition Controllers'. 

- 2 ,  Pattern Recoanition Philosophy 

The basic procedure followed by the pattern recognition 

controllers is as follows: 

(i) monitor t h e  error signal for any disturbances that occur 

over a specific amplitude, typically two times the process 

noise threshold. When recognized, record the maximum 

amplitude of the disturbance, 

(ii) identify the necessary information regarding the response of 

the present control scheme with respect to some predefined 

performance criteria, 

(iii) update the present control parameters, if necessary, using 

some empirical formulae. 

The major advantage of t h i s  type of adaptive control scheme 

over others  is that it does not require a model of the system in 

order to re-evaluate the controller parameters. Therefore any 

problems that may arise with systems whose model dimensions vary 

with time are  avoided. Moreover, the implementation of the scheme 

in software is relatively straightforward, its lack of complexity 

leading to much faster sampling rates than might otherwise be 
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possible from other self tuning strategies. 

Its one real disadvantage is its reliance upon some other 

technique to provide the controllers starting parameters. Although 

the coupling of the technique with one of the previously encoded 

self tuners, acting as an initialization stage, will provide a 

simple solution to this problem. 

3. Pattern Recoqnition pI Adaptive C w  

The operation o f  the proposed adaptive control scheme occurs 

in four distinct stages, represented graphically in F i g u r e  1, 

based on a setpoint disturbance. 

(i) Recognition of a new disturbance with d peak error (ERMAX) 

larger than a predefined noise threshold (NOISE). 

(ii) Xdentification of the recovery time o f  the response (TI), 

the time taken by the present system to go from 7 5 %  of the 

peak error (To) to 25% of the peak error (TI). 

(iii) Definition of the pattern features for adaption, Figure 1. 

Firstly, the area SI, representing the first peak o f  

overshoot of the response with respect to the area R1 and 

secondly, the area S 2 .  This represents the decay rate of the 

response with respect to the level R2.Both R1 and R2 are 

evaluated f r o m  the defined performance specifications, where 
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f o r  i d e a l  o p e r a t i o n  S1 = Rl, S2 = 0. 

Although t h e s e  areas can readily be measured when t h e  

process response  i s  oscillatory, this informat ion i s  not  

recoverab le  when t h e  response  i s  overdamped. The answer,  in 

each c a s e ,  is  to compute t h e  areas when they  l i e  w i t h i n  t h e  

time slots d e f i n e d  below: 

SI = (ERR) dt  

s2 = (ERR - R2) dt 

TI + ( a + B ) T l  

where a, 13 and 7 are all c o n s t a n t s  evaluated from a study of 

the response  of a t h i r d  order system. 

( i v )  Updating of the controller parameters us ing  t h e  d e f i n e d  

p a t t e r n  features and t h e  e m p i r i c a l  r e l a t i o n s h i p s :  

I KC -L Kc + (I-DONE) Kl(Sl-R1) + K2S2 

where the v a r i a b l e s  K1, K2, K3 and K4 are w e i g h t i n g  

c o n s t a n t s  and DONE is a confidence f a c t o r  related to 

overshoot .  
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I f  r e q u i r e d  t h e  u p d a t i n g  p r o c e d u r e  c a n  b e  c o n s t r a i n e d  u s i n g  

a r e - t u n i n g  f a c t o r .  T h u s  l i m i t i n g  t h e  maximum p e r c e n t a g e  

c h a n g e  t h a t  c a n  o c c u r  a t  each adaption s t e p .  
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Figure 1 - Pattern Recognition Calculations 

Re-tuning Algorithm: 

PROP2 = PROP1 + (l-DONE).( KL.(Sl+Rl) + K2.S2 ) 

INTZ = INTI + (l-DONE).( K3.(Sl+R1) + R4.S2 ) 

where 

R1 i s  a pre-defined area, 

R2 i s  a pre-defined l e v e l ,  

DONE is d confidence factor related to overshoot, 

and K1, K2, K3, K4, a, 8 ,  T are constants. 





127 

PART V 

MOOEL BASED ALGORITHM THEORY 



MODEL BASED CONTROL 

- 1 .  Introduction 

Proportional-Integral-Derivative ( P I D )  controllers are employed 

extensively within the process Industries. In many application however, only 

proportional and integral action are utilised because derivative action causes 

the controller to respand too energetically t o  any noise that 1s present on 

the measured process variable. In addition, many processes exhibit 

non-oscillatory open loop behaviour an therefore the active damping provided 

by derivative action is rarely required. Finally, the specifications for 

controller responses are often blouse and PI controllers are capable of 

providing acceptable performance in a number of process applications. 

Acceptable performance can only be obtained however if the PI controller 

is properly tuned, which means that the amounts of proportional and integral 

actian provided by the controller are correctly set. Before these two values 

can be selected, information about the plant must be known, therefore a 

mathematical description of the process is required. Once this description, or 

'model' has been obtained, values of proportional and integral gain can be 

evaluated such that some pre-specified design objective is achieved. When 

these two operations are automatically performed, the resulting scheme is 

popularly known as a self-tuning controller. 

For the purposes of this report, a self tuning controller is defined as 

one uhich uses an on-line estimator/design procedure for an initial tuning 

period, after which the procedure is turned off and the controller effectively 

operates in a fixed gain mode. 
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- 2. Model Estimation 

2.1 Model Structure 

The structure of the model is developed from the commonly encountered 

process reaction curve that is a standard first order lag with time delay [ l ] ,  

whose step response is displayed i n  Fig. 2 and transfer function by Equ. 2.1: 

K. e-" 
CpCs) = 

I + ST 
where s is the Laplace operator, 

K is the process gain; 
T is the process time constant, 

and 0 is the process time delay. 

(2.1) 

However, the self-tuning PI controller estimates a discrete time model of the 

process dynamics. the main reasons for adopting the discrete time approach, as 

opposed to a continuous time scheme, are that i t  removes difflculties involved 

in digitislng systems, and that it handles time delays naturally. Thus good 

control will be -provided even when the sampling time (task rate) Is 'coarse' 

with respect to the process time constant: 

Using the structure described in Equ. 2.1. it digitised equivalent is of 

the form: 

(2 .2)  

where z-' Is the backward shift operator (the value one sample previously) and 

d the integer number of sampling times in the process time delay. Therefore 



the numerator can be extended to accommodate any value of time delay. A direct 

comparison between the continuous and dlscrete time systems is possible if the 

parameters within Equ. 2 . 2  are defined by: 

-f/T a = -e 
1 

I - ( l -rnjT/T = K f I - e  
bd+ 1 

(2.3) 

where T is the sampling time, 
d is the integer part of BIT 

and m is the fractional part of B/T 

2.1.1 Effects of Sampling Time Selection 

A good choice of sampling time will improve the efficiency of the on-line 

model estimation algorithm, and will therefore result in a better controller 

being designed. Ultimately, the choice of sampling time must reflect the 

response time of the system. As a rule of thumb, approximately 10 sampling 

intervals should span the rise time of the process. When this rule is 

followed, the value of d In Equ. 2.2 typically lies in the range 0 to 5 .  

Therefore, the fixed structure of Equ. 2 . 4  can be used to represent the 

maJority of cases for which the self-tuning PI controller is designed. 

( 2 . 4 1  

2.2 Recursive Least Squares Estimation 

Having developed the necessary model structure for the PI self-tuner 

(Equ. 2.41. a technique is required to estimate the model parameters. The 

Recursive Least Squares (RLS) algorithm provides a general purpose statistical 

tool [21 for estimating the parameters of any system that can be represented 
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by the summation: 

or, alternatively, 

It is recursive 

estimates as each 

transfer of Equ. 2 

uhere k refers t o  

i n  vector notation as: 

T y = e . ?  (2.5bl 

where eT is the parameter vector, 
and 5 is the data vector. 

in the sense that the algorithm updates its parameter 

new observation, 

4 is a subset of 

bl b2 

or sample, is recorded. The discrete time 

Equ. 2 . 5 ,  uith: 

b3 b4 bS 

.. (2.61 ' -yk-l U k-1 U k-2  U k-3 U k-4 u k-S 1 '  

the present sample value and k-n to the value n samples in 

the past. Therefore, provision of the input and output data required to  

complete the data vector defined above vi11 allow the RLS algorithm, detailed 

in Appendix A. to estimate the discrete time model parameters. 

In practice, the lnput/output data  are pre-filtered by a digital 

band-pass filter, given in E-. 2 . 7 ,  in order to remove d.c. offsets and high 

frequency noise, thus making the estimator more robust. 

( 1  - a) r 1 - 2-1 1 
-1 

cpf(z-') = 
1 - a 2  

(2.71 



132 

Ideally the coefficient a. should be chosen to be equal to the system bandwidth 

( - a  in Equ. 2 . 4 1 ,  but the choice is not critical and a default value of a = 

0 . 5  is employed. 

1 

- 3. Controller Desinq 

3.1 Performance Specification 

The specification for system performance is In terms of the maximum 

percentage overshoot of the closed loop system's step response. This 

specification is translated, using the well documented theory of the behaviour 

of second order systems to the frequency domain concept of phase margin (#I ) 

using the relationships: 

m 

(i 1 Maximum X overshoot of an ideal second order process 

input: 

-(<Id 67 ) 
maximum % overshoot = 100.e 

(ii) Phase margin of an ideal second order system [31: 

r 2n 

(3.1) 

1 

to a step function 

I I 

When translated, the phase margin specification for a stable system will lie 

in the range: 

oo < # < 9u0 ( 3 . 3 )  

In general, the smaller the phase margin, the faster and more oscillatory the 

closed loop system's behaviour. Larger phase margins result in less 

oscillatory, more sluggish responses. A good default value for phase margin is 



60'. vhich produces a cautious response with little overshoot. Fig. 4 

illustrates the responses of PI controllers designed for different phase 

margins. 

3.2 Controller Design Algorithm 

In order to establish the controller design algorithm for processes 

described by the discrete time model of Equ. 2 . 4 .  we must flrst consider the 

discrete time structure of the ACCOL PI controller: 

K i .  T .  z-' 

-1 

( 3 . 4 )  

Selection of the controller's numerator to cancel the denominator of the 

discrete time transfer function of Equ. 2 . 4  fixes the value o f  Ki: 

KL = ( 1  + a ) / T  (3.5) 
1 

This results in the compcnsted open loop transfer functlon: 

To establish the value of Kc which will provide the required phase margin, the 

frequency response of the compensated system must be computed. This is 

achieved using the discrete time t o  frequency domain mapping: 

(3.7) - t  - jwT 
z = e  

Under this transformation, the open loop phase shift can be evaluated a t  any 

frequency w ,  using the relationship: 
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5 

( 3 . 5 )  I s in  wP z b , s i n  iwT 1 - tan-' [ 1 1 1  5 L G O L ( j w )  = - tan-' 1 I - 
cos UT 1 b ,cos  i w T  

I = 1  

The anqular irequency, w at which the required phase margin occurs can be 

simply evaluated. since at this frequnecy: 

0' 

coL(jw0) = -ISO' + gm ( 3 . 9 )  

The combinations of Equ's. 3.5 and 3.9 allows w to be computed using a 
0 

1 inear search. 
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APPENDIX A2 

Kecursivc Least S q u a r e s  (RLS) Parameter Est imat ion 

T h e  algorithm uses t h e  follouing v e c t o r s :  

1 Ysrameter vec tor :  

"Diagonal" vector: 

"Upper tr iangular" v e c t o r :  !eee_E { 15 elements, initial values = 0 } 

"Kalman gain" vector: 5 { 6 elements } 

The c a l c u l a t i o n s  performed a t  e v e r y  sanipling in terva l  a r e :  

( i )  Form the data  vector 

( i i )  Ca lcu la te  the prediction error ,  

0 = [ -al, b 1 9  b2, bg, b4, b5 1 { i n i t .  values = 0 ) 

{ 6 elements, i n i t i a l '  values = lo6 ) 

'k 
- T  ek - Xk * gk-1 - yk 

( i i i )  Update covariance matrix ( U D  method) 

fj = x ( t )  

q j = l + v  . f j  

vJ = diag(1) . fj 

d i a g ( 1 )  = diag(1) / Hj 

K ( 1 )  = vd 

Kp = 0 

Ku = 0 

FOR j=2 TO 6 STEP 1 

f J  = x ( j )  

jl  = j-1 
FOR i=l TO j l  STEP 1 

Kf = Kf + 1 

f j  = f .  + x ( i )  . upper(KP) 
J 

ENDFOR 
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v = f .  . diag(J) 
j J 

5 a s t  = 5 
+ v  . P j  "5 = %st 

diag(2) = diag(j) . Hlast / Kj 

K(j) = vj 

Pj = -fj 1 Lilast 

FOR i = l  TO jl STEP 1 

KU = Ru + 1 

temp = uppe.r(KU) + K ( i )  . pj 

K ( i )  = K ( i )  + upper(ku) . vj 

upper(Ku) = temp 

ENDFOR 

ENDFOR 

(iv) Update the parameter vector 
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APPENDIX A3 

C o n t r o l l e r  D e s i g n  A l g o r i t h m  

Discre te  t ime p l a n t  model ( s a m p l i n g  t i n e  = T s e c o n d s ) :  

t b Z z q 2  + b32-3 + b42-4 t b5z -5  
bl2 Gp(z-l) = 

1 + alz -1 

Discrete t i m e  p r o p o r t i o n a l - p l u s - i n t e g r a l  ( P I )  c o n t r o l l e r :  

[ 1 + ( K I T  - 1) z - l  J 

-1 = Kc 
1 - 2  

By c h o o s i n g  KI s u c h  t h a t  (KIT - 1) = al 
the open loop t r a n s f e r  f u n c t i o n  becomes:  

= >  KI = ( 1 - +  al)/ 'T 

-' t b2z-' + b3z-3  + b4ze4 t b 5 ~ - 5  

GOL(z-l)  = KC 1 - 2  -1 

BY r e p l a c i n g  z-' by e - j W T ,  t h e  phase of t h i s  p l a n t  c a n  be computed a s :  

5 
b i s i n  iwT 

bicos iwT 

LG, , ( jw)  = - t a n  

i = l  

For a c e r t a i n  phase margin ,  $,,, t h e  a n g u l a r  f r e q u e n c y  w 

t!.G,,Cjw> = - n + 8, 
is f o u n d  f r o m :  0 

wo is computed  by u s i n g  a l i n e a r  s e a r c h  i n  the r a n g e  0 < w < 

The f a c t  t h a t  t h e  tan-'  f u n c t i o n  is n o t  a v a i l a b l e  can be r e s o l v e d  b y  

r e - u r i t i n g  the e x p r e s s i o n  as: 

t a n  ( L G O L ( j w )  ) = t a n  ( - n + gm ) 

and r e c a l l i n g  t h a t  

T 

tan a! + t a n  6 
1 - tan d t a n  p t a n  (#.t p )  = 
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T h e r e f o r e  t h e  s e a r c h  equation becomes: 

- ( A + B )  
= tan $,n 

1 - A . B  

end B = 
b i c o s  iwT 

sin UT 

1 - COS UT 
where  A = 

T h e  s e a r c h  algorithm is: 

wT h ig  h = lr, low = +r/100, uTinc = (HThigh - low >/ 1.0 

FOR p a s s  = 1 TO 2 STEP 1 

w T = w T  low, f l a g  = 0 0 
FOR UT = wTlou ” WThigh STEP wTinc 

I F  f(A,B,wT) < tan grn THEN f l a g  = 1 

I F  flag = 0 THEN woT = UT 

ENDFOR 

H T h i g h  = w 0 T t. wTinc,  wTlow = woT, wTinc ( “ T h i g h  - UTlou > / 5  

ENDFOR 

O n c e  woT has been d e t e r m i n e d ,  Kc may be eva lua ted  u s i n g  I G o , ( j w )  I I: 1, 

5 5 

CiTl b i c o s  i w O T ]  + [ icl b i s i n  iwOT 

2 [J J [: I - cos w o ~  I + c s i n  w 0 T 1 

=)  KC 







APPENDIX B 
*TARGET 3330 VERS: 0084 
*SECURITY-CODES 6 555555 444444 333333 
*MEMORY 

EXPANDED-XEX OK 
RO-ARRAY-MX BASE 
EQUATION-LOC EASE 
RU-ARRAY-LDC BASE 
AGAB-LOC BASE 
STORAGE-ROWS 0 
EVENTS 0 
TEMPLATES 0 

AUX-1 UNUSED 
AUX-2 UNUSED 
PORT-A SLAVE 9600 
PORT-B PSWVE 9600 
PORT-C UNUSED 
PORT-D UNUSED 
BUFFERS 15 

*COMMUNICATIONS 

*PROCESS-1/0 
1 4 U  
2 4AI 
3 2AO 
4 2AO 
5 2A0 

*TASK 1 RATE: 1.0 PRI: 31 
*TASK 9 RATE: 0.0 PRIr 1 
*TASK 10 RATE: 0.3 PRI: 1 
*TASK 11 RATE: 0.3 PRI: 1 
*TASK 12 RATE: 0.3 PRI: 1 
*TASK 13 RATE: 0.3 PRI: 1 
*TASK 14 RATE: 0.3 PRIr 1 
*TASK 15 RATE: 0.3 PRI: 1 
*TASK 16 RATE: 0.3 PRI: 1 
* BASENAMES 
SIGNALS 

#ALARM. FORMAT. L R1 W4 MI CI 0 ON 
IDIAC.OO1. LA R1 W4 MI CI Ae 0 ON 
/DIAC. 002. A R1 W4 MI CI 
IDIAG.003. A R1 W4 MI CI 
IDIAL.OOO. A R1 W4 MI Cf 
#DIAt.001. A R1 W4 MI CI 
#DIAL. 002. A R1 W4 MI CI 
IDIAL.003. A R1 W4 MI Cf 
#E.. A R1 W4 MI CI 
IERAXRAY. . A R 1  W4 MI CI 
#ERRCT. 000. AA R1 W4 MI CI AE 

IERRCT. 001. M R1 W4 MI CI AS 

CEhCl'. 009. AA R1 W4 XI CI AE 

IERRCT.010. AA R1 W4 MI CI AE 

HALM : IERRCT . LIM . 
HALM: #ERRCT.LIM. 

HALM: #ERRCT.LIM. 

HAW: #ERRCT.LIM. 

W: IERRCT.LIM. 

H A L M  : IERRCT. LIM . 
HALM: #ERRCT.LIM. 

IERRCT.011. AA RI w4 n I  CI AE 

IERRCT.012. M RI w4 nr CI AE 

#ERRCT.O13. AA R1 W4 MI CI A6 

141 

222222 111111 

OFF 
OPF TRUE C 
0.0000000 

0 .  0000000 
0.0000000 
0.0000000 
0.0000000 
2 .7182817  
10.0000000 
0.0000000 ERRORS 

0.0000000 ERRORS 

0.0000000 ERRORS 

0.0000000 ERRORS 

0.~00000 ERRORS 

~.OOOOOOO ERRORS 

60.0000000 SECS 

A C  

A C  

A C  

A C  

A C  

A C  

A C  
O.OOOOOO0 ERRORS 
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CERRCT.014. 

#ERRCT.OlS. 

#ERRCT.016. 

#ERRCT . L IH . 
#LINE.000. 
CLINE.001. 

ILINE.003. 
tLINE.004. 
#LINE.005. 
#LINKE.O01. 

#LINE. 002. 

#LINKE.O02. 

#LINKE.LIN. 
#LINKF.OO~. 

fLINKF. 002. 

#LINKF.LIN. 
#NDARRAY. . 
#NODEADR.. 
#OCTIME . . 
#OCTIME:.ERROR. 
#OFF.. 
#ON. e 
#PDM. 000. 
#PDH. 001. 
#PDX.OOZ. 
#PDH. 003. 
fPDX.004. 
IPDX. 005.  
CPDX. 006. 
#PDM. 007. 
tPDU.008. 
#PI. * 
tPOLLPER.000. 
#POLLPER. 001. 
#POLLPER.O02. 
IPOLLPER.003. 
tPOLLPER.004. 
#POLLPER. 005 .  
/PRI .001. 
#PRI. 009. 
#PRI .010. 
#PRI .011. 

#PRI .013. 
#PRI .014. 
#PRI .01S. 
#PRI.O16. 
fPWRUP. 000. 
#RATE. 001. 
/RATE 009. 
#RATE.010. 
#RATE. 01 1. 
CRATE. 0 1 2 . 

#PPI. 012. 

AA R1 W4 MI CI AE 

AA R1 W4 HI CI AE 

AA R1 W4 XI CI AE 

HALM: #ERRCT.LIH. 

HALK: #ERRCT. LIK. 

W: #ERRCT.LIH. 
A R1 W4 MI CI 

LA R1 W4 MI CI AE 0 ON 
LA R1 W4 MI CI AE 0 ON 
LA R1 W4 MI CI AE 0 ON 
LA R1 W4 HI CI AE 0 ON 
LA R1 W4 XI CI AE 0 ON 
LA R1 W4 MI CI AE 0 ON 
AA R1 W4 HI CI AE 

hA R1 W4 MI CI AE 

Wi #LINKZ. L I H .  

W: #LINKE.LIN. 
A R1 W4 MI CI 

AA R1 W4 MI CI AE 

AA Rl W4 HI CI AE 
HALx: #LINXF.LIH. 

HALN: #LINKF.LIH. 
A R1 W4 HI CI 
A R1 W4 MI CI 
A R1 W4 HI CI 
LA R1 W4 HI CI 
LA R1 W4 MI CI 
L R1 W4 HI CI 
L R1 W4 HI CI 
A Rl W4 HE CI 
A R1 W4 ME CI 
L R1 W4 UE CI 
L R1 W4 MI CE 
A R1 W4 MI CE 
A Rl W4 HI CE 
A R1 W4 MI CE 
A R1 W4 HI CE 
A R1 W4 HI CE 
A R1 W4 HI CI 
A Rl W4 MI CI 
A R1 W4 HI CI 
A Rl W4 HI CI 
A R l  W4 MI CI 
A R1 W4 MI CI 
A R1 W4 HI CI 
A R1 W4 MI CI 
A R1 W4 HI CI 
A R1 W4 MI CI 
A R1 W4 HI CI 
A R1 W4 MI CI 
A R1 W4 MI CI 
A R1 W4 MI CI 
A Rl W4 HI CI 
A R1 W4 HI CI 

A R1 W4 MI CI 
A R1 W4 HI CI 
A R1 W4 MI CI 
A R1 W4 MI CI 
A R1 W4 HI CI 

LA ~i w4 nr CI 

AE 0 ON 
AE 0 ON 

0 ON 
1 ON 

0 ON 
0 ON 

AE 0 ON 

0.0000000 ERRORS 

0.0000000 ERRORS 

O.O~OOQO0 ERRORS 

0.0~~0000 ERRORS 

A C  

A C  

A C  

OFF TRUE C 
OFF TRUE C 
OFF TRUE C 
OFF TRUE C 
OFF TRUE C 
OFF TRUE C 
0.0000000 ERRORS 

A C  

A C  
0.0000~00 ERRORS 

20.0000000 ERRORS 
0 . 0 0 0 0 ~ 0 0  ERRORS 

0.0000000 ERRORS 

20.0000000 ERRORS 

A C  

A C  

0.0000000 
0.0000000 

OFF TRUE C 
OFF TRUE C 
OFF 
OFF 

0.0000000 
0.0000000 

OFF 
OFF 
0. OOOOOQO 
0 * 0000000 
0.0000000 
0.0000000 
0.0000000 
3.1415927 
20.0000000 SECS 
20.0000000 SECS 
20.0000000 SECS 
20.QOOOOOO SECS 
20.0000000 SECS 
20.0000000 SECS 
31.0000000 
1.0000000 
1 .OOOOOQO 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 

1 * 0000000 
0.0000000 
0.2500000 
0.2500000 
0.2500000 

OFF TRUE C 
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#RATE. 013. 
#RATE. 014. 
CRATE. 0 15. 
#RATE.016. 
#RCNT.001. 

fRCNT.009. 

# RCNT . 0 11. 
CRCNT. 012. 

#RCNT.013. 

CRCNT.014. 

#RCNT.O15. 

CRCNT.016. 

#RCNT.LIM. 
#RTTIME. 000 
fRTTIHE.001. 
#SPARE. 000. 
/SPARE. 001. 
#SPARE. 002 * 
#SPARE. 003. 
#SPARE. 004. 
#SPARE. 005. 
CTIME.000. 
#TIHE. 001. 
fTIMX.002. 
#TIHE. 003. 
#TIME. 004. 
#TIME. 005. 
#TIME. 006. 
#TIME. 007. 
A.. 
Al.. 
ACCEPT.. 
ADAPT. FLAG. 
ADAPTIVE.. 
AIS.. 
ALAST.. 
U O . .  
-1.. 
m 2 . .  

B.. 
81.. 
82 . .  
83.. 
B4.. 
85. .  
Cl.. 
cm.. 
CIN. 
CIN. PRIME. 

ALPHA.. 

A R1 W 4  HI CI 
A R1 W4 MI CI 
A R1 W4 WI CI 
A Rl W4 WI CI 

M R1 W4 WI CI 
WI #RCNT.LIM. 

AA R1 W4 HI CI 
W: #RCNT.LIM. 

M Rl W4 MI CI 
Hun: #RCNT.LIW. 

AA R1 w4 nr CI 
W: #RCNT.LIM. 

M R1 W4 MI CI 
HALH: #RCNT.LIM. 

AA R1 W4 WI CI 
W: #RCNT.LIM. 

M R1 Vi4 MI CI 
HAtnx #RCNT. LIM. 

M R1 W4 MI CI 
W: /RCNT.LIM. 

M: #RCNT.LIU. 
A R1 W4 WI CI 
A Rl W4 HE CI 

L R1 W4 HE CE 
L R1 W4 WE CE 
L R1 W4 ME CE 
L R1 W4 ME CE 
L R1 W 4  ME CE 
L R1 W4 ME CE 
A R1 W4 MI CI 
A R1 W4 MI CI 
A R1 W4 UI CI 
A R1 W4 HI CI 
A R1 W4 MX CI 
A R1 W4 MI CI 
A R1 W4 HI CI 
A Rl W4 WI CI 
A 
A 
A 
L 
L 
A 
A 
L 
L 
L 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 

M xi w4 HI CI 

A RI wa nI CI 

AE 

AI3 

AE 

AB 

AE 

M 

M 

AE 

RE 

0 ON 
0 ON 
0 ON 
0 OR 
o w  
0 ON 

0 ON 
0 ON 

0 ON 
0 ON 
0 ON 

0.2500000 
0.2500000 

0.2 500000 
0.0000000 COUNTS 

0.0000000 COUNTS 

0.0000000 COUNTS 

O.OOQOQQ0 COUNTS 

0.0000000 COUNTS 

0.0000000 COUNTS 

0.0000000 COUNTS 

0.000~0000 COUNTS 

0.0000000 COUNTS 

0.2500aoo 

A C  

A C  

A C  

A C  

A C  

A C  

A C  

A C  

A C  
20.000a000 COUNTS 
o . ooooooo 
0.0000000 

OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
0. OOOOOOQ 
O.OOOQOO0 SECS 
0.0000000 
0.0000000 
0.0000000 
O.OOOOQO0 HOURS 
0.0000000 MINS 
0.0000000 SECS 
0 .  OOQOOOO 
0.0000000 

50.0000000 I 
OFF 
OFF 

0 .  OQOOOOO 
0 .  ooooooo 

OFF 
OFF 
OFF 

0.5000000 

0. QOOOOOQ 
0.0000000 
0.0000000 
0. OOOQOOO 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0. ooooooo 



COLD.. 
COUNT.. 
DATA.TIHER.TIHE 
DESIGN.. 
DESIGN.FACTOE.KC 

DESIGN.FACTOR.KS 
DESSGN.X1. 
DESIGN.lt2. 

DESIGN.K4. 
DIAGl.. 
DIAG2.. 
DIAG3.. 
DIAGQ.. 
DIAGS.. 
DIAG6.. 

DESIGN.FACTOR.KC 

DESIGNaK3. 

DIAG7. . 
DISTURB. I 

DONE. * 
DONE.FACTOR. 
EO.. 
El.. 
ENABLE.. 
ENABLE.NEW. 
ENABLE.OLD. 
EVAR.. 
FJ. - 
FLAG . E W .  

HYSTER.. 
FLAG.SNIT. 

I.. 
IKAG.. 
INPUT.. 
INPUT-OLD. 
INTl. - 
INT2.. 
INTEC. 
IPXAX.. 
IPMIN.. 
IPSPAN.. 
IPZERO.. 
J.. 
J1.. 
IC. .  
KF.. 
Kp.. 

KP1. - 
KP2. - 
KO,. 
LAMBDA.. 

LORI). INIT. 
XhGN.. 
MAGN. DEN. 
MAGN . NUX. 
NOISE - - 
NOISE .AMP. 
NO1 SE - REQ 
OPDEV.. 

Lns.. 

L 
A 
A 
L 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
A 
L 
L 
L 
A 
A 
L 
L 
A 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
A 
A 
L 
A 

144 

1 ON 

0 ON 

0 ON 

0 ON 
0 ON 
0 ON 

0 ON 
0 ON 

GLB 

GLB 

1 ON 

0 ON 

GLB 
GLB 
GLB 0 ON 

OFF 
1.0000000 
0.0000000 

0,0000000 
0.0000000 
0. DO00000 
1.0000000 
-0.6000000 
1.0000000 
-0.3000000 
0.0000000 
0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.0000000 % 
0.0000000 
0 .ooooooo 
0 .ooooooo 

OFF 

0 .  aoooooo 

OFF 

OFF 
OFF 
OFF 

0 .  OOOOOQO 
0 * 0000000 

OFF 
OFF 

0.2000000 I 
0.0000000 
0.0000000 
0.0000000 # 
0.0000000 # 
1.0000000 
0.0000000 

OFF 
100.0000000 0 
0.0000000 % 

100.0000000 I 
0.0000000 % 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
1. OOOOOQO 
2.0000000 
1.0000000 
0 s 0000000 
0.9900000 
0 .  QOOQOOO 

0. OOQOOOO 
0 .ooooooo 
0.0000000 
0.0000000 
0 QOOOOOO 

5.0000000 I 

OFF 

OFF 
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O P W . .  
OPMEAN . . 
OPHIN.. 
OPSPAN.. 
OPZERO.. 
0UTPUT.SAMPLE. 
OUTPUT1 . . 
OUTPUT2.LIHIT. 
OUTPUT2.OLD. 
OVERSH.. 
0VERSH.CHECK. 
OVERSH . KAX . 
0VERSH.WIN. 
PASS.. 
PERIOD. . 
PEW. 
PHI.. 
PJ.. 
PRBS-BITO. 
PRBS. BIT1 . 
PRBS.BIT3. 
PRBS.BIT4. 
PRBS. BITS. 
PRBS. SXT6. 
PRBS.BIT7. 
PRBB.BIT8. 
PRBS.BIT8.NEW 
PROC. INIT. 

PROC2.INIT. 

OUTPUT2. . 

PRBS. BIT2 

PROCl.INIT. 

PROP1 m 

PROP2 4 

P V W . .  
PVDEV.. 
PVERROR. 
PVERROR . HAX . 
PVERROR.M.OLD 
PVERROR . HI N . 
PVERROR.HIN.OLD 
Ql.. 
Q2. a 

REAL.. 
REDUCE. ENABLE. 
REDUCE. FACTOR. 
RELAY.. 
RELAY. REDUCE. 
RELAY. SIGN. 

RESET. TIWER. DATA 

RESET2 - . 
REVERSE. . 
RHS.. 
SELECT. 
SETPOINT.. 
SIW.. 
s1n.e. 
SIN.Cl. 

RESET- - 
RESET1 * 

A 
A 
A 
A 
A 
L 
A 
A 
L 
A 
h 
A 
A 
A 
ri 

A 
A 
A 
A 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
L 
A 
A 
L 
A 
L 
L 
L 
L 
L 
A 
A 
A 
A 
A 
A 

0 ON 

GLB 
0 ON 

1 ON 
1 ON 
1 ON 
1 ON 
1 ON 
1 ON 
1 ON 
1 ON 
1 ON 
0 ON 
0 ON 
0 ON 
0 ON 

GLB 

0 ON 

O O N  

0 ON 
0 ON 
0 ON 
0 ON 
0 ON 

GLB 

100.0000000 t 
0.0000000 I 
0.0000000 t 

100.0000000 % 
0.0000000 I 

OF? 
0.0000000 I 
0.0000000 t 

0.0000000 t 
10.0000000 I 
0.0000000 t 
75.0000000 % 
1.0000000 t 
0 .0OOQQOO 
0.0000000 SECS 
0.0000000 
0.0000000 DEG 
0.0000000 

OFF 

OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 
OFF 

1 .000O000 
0.0000000 
0.0000000 t 

100.0000000 I 
0.0000000 % 
0.0000000 I 
0.0000000 I 
0.0000000 % 
0.0000000 I 
1O.QOOOOOQ 
0. OOOOQOO 
0.0000000 

0.6666667 
2.0000000 * 
0 .0000000 

OFF 

OFF 

OFF 
OFF 
OFF 
OFF 
OFF 

0.0000000 
0.0000000 
40.0000000 8 
1.0000000 
0.0000000 
10.0000000 
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SIM. C2. 
STATUS.. 
STATUS.BIT0. 
STATUS.BIT1. 
STATUS.BIT2. 
STATUS. BIT3. 
STATUS.BIT4. 
STATUS. BITS. 
STATUS. BIT6. 
STPI.YO. 
STPI. Y1. 
SYSINIT.. 
TANPHI. * 
TAU. DEL 
TAU.L. 
TAU-P. 

TAU. P2. 
TEMP.. 
TESTPI. . 
TESTPI.TIME. 
THI.. 
THRESH. - 
TIMER. IN. 
TIMER. OUTPUT. 
TIMER. PULSE. 
TOTAL.. 
TRACKl. . 
TRACK2 . . 
TUNE. ALPHA. 
TUNE.BETA. 
TUNE.COUNT. 
TUNE. COUNT. OL 

TUNE. GAXMA. 
TUNE. L O C K .  
TUNE.R1. 
TUNE. R2 
TUNE.S1. 
TUNE.S2. 
TUNE.STAGE.1 
TUNE.STAGE.2 
TUNE.STAGE.3 
TUNE.STAGE.4 
TUNE. TO. 
TUNE. T2. 
TUNE.T3. 
TUNE. T4. 
TUNE. TS . 
TUNE. TL. 
TUNING.. 
u0. s 
Ul.. 
u2.. 
u3.. 
u4.. 
us.. 
UPDATE. . 
VD.. 
VJ.. 

TAU. PI 

TUNE.De. 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
L 

1 L 
L 
A 
L 
L 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
A 
L 
L 
L 
L 
A 
A 
A 
A 
A 
A 
L 
A 
A 
A 
A 
A 
A 
L 
A 
A 

bD 

0 ON 

0 ON 

0 ON 
0 ON 
0 ON 

0 ON 
0 ON 

0 ON 

0 ON 
0 ON 
0 ON 
0 ON 

0 ON 

1 ON 

90.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0. 0000000 
0.0000000 
0. 0000000 

0.0000000 
0.0000000 
0.0000000 
s .0000000 
s.0000000 
0. s000000 
0.0000000 

OFF 
120.0000000 
0. 0000000 
5.0000000 b 

OFF 

OFF 
OFF 
OFF 
100.0000000 COUNTS 
OFF 
OFF 
1.0000000 
2.0000000 
0.0000000 COUNTS 
0.0000000 COUNTS 
2.0000000 % 
6.0000000 

0.0000000 b 
0.0000000 t 
0. 0000000 
0.0000000 

OFF 

OFF 
OFF 
OFF 
OFF 
0.0000000 COUNTS 
0.0000000 COUNTS 
0.0000000 COUNTS 
0.0000000 COUNTS 

500.0000000 COUNTS 
0.0000000 COUNTS 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

OFF 
100.0000000 
0. 0000000 

OFF 
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vu.. A 
w.. A 
WT.. A 
WT.0. A 
WT.FWG. L 0 ON 
WT.HICH. A 
WT. INC. A 
wT.Low. A 
X l . .  A 
XlDOT. - A 
x2.. A 
x2DoT.. A 
Y. .  A GLB 
Y.RES. A 
Y.SPAlV. A 
Y-TRK. L 0 ON 
Y.  ZERO. A 
Y l . .  A 
YIDOT. I) A 
Y2. .  A 
Y 2 . W .  A 
Y2.HIN. A 
YZDOT.. A 
YD.. A 
YP.. A 
YP.MAx. A 
YP.HIN. A 
YPDOT.. A 
YVAR.. A 
2. .  A 
Z . S P M .  A 
2 .  ZERO. A 
ZEROX. COUNT. A 
ZEROX . TOTAL. A 
ZETA.. A 
ZETA.SIM. A 
ZL.. A GLB 
ZL.I#. A 
ZLDOT.. A 

*TASK 0 
*TASK 1 

10 c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
20 c * * *  ***  
30 C ***  SELF TUNING PI CONTROLLER *** 
40 C ***  * * *  
50 C *** 22ND MARCH 1990 ***  
60 * C +** *** 
7 0  c * i * * * t * * * * . * * * ~ t * * t * * * * t t . * * * ~ * * * .  

80 C 

9a * - c  *** RESET DEFAULT VALUES BETWEEN STPISIN 
100 * CALCULATOR 

10 :IF(RESET) 
12 TESTPI=dOFF 
15  ENABLE=#OFF 
20 STATUS.BITO=O. 
30 STATUS.BITl=O. 
40 STATUS.BIT2=0. 
SO STATUS.BIT3=0. 
60 STATUS.BIT4=0. 
70 STATUS.BITS=O. 

1000.0000000 
2.0000000 
0 .  aoooooo 
0 .  oaaoaoo 

OFF 
0.0000000 
0 ~ 0 0 0 0 0 0 0  
0.0000000 
0.0000000 
0 * 0000000 
0 .  0000000 
0 .  aoooooo 
0. aoooooo 
0.0000000 

100.0000000 t 
OFF 
o.ooooaoo * 
0 .  ooooaoo 
0 .  oooooao 
0 .  oaoaooa 

0 .  ooooaoo 

0. ooaoooo 

100.0000000 

0.0000000 

0.0000000 
100.0000000 

0.0000000 
0.a000000 
0.0000000 
0 .  ooooaoo 

1ao.ooooooo t 

0 .  oooaooo COUNTS 

0 .  aoooooo 
o.5oa00oo 
0. oooooao 
0. oooaooo 

0.0000000 * 
0 * 0000000 COUNTS 

o.oooa0oo 

TESTS 



80 
90 
100 
110 
11s 
120 
125 
130 
140 
150 
160 
170 
180 
190 
200 
2 10 
220 
230 
240 
2 50 
2 60 
2 70 
2 80 
2 90 
300 
3 10 
320 
330 
340 
350 
360 
370 
380 
390 
4 00 
4 10 
420 
430 

STATUS.BIT6rO. 
PROPZ-0. 
INT2=O. 
DONE-0. 
:CI:ZL=#OFF 
ZL-0. 
:CI:ZL=#ON 
REVERSE=fOFF 
OVERSH=10. 
SETPOINT=40. 
PROP1=1. 
IHTl-1. 
PVDEV= 100. 
RELAY-2 D 

INTEC=#ON 
ACCEPT-SO. 
HYSTERmO. 2 
THRESHIS. 
OPHEAN=l . 
OPDEV-5. 
TOTAL=100. 
ALPfm=O * 5 
LAHBDA=O. 99 
Also. 
Bl-0. 
B2=0. 
B3-0. 
84-0. 
BS=O. 
c1=0. 
DIAGlrO. 
DIAG2-0. 
DIAG3mO. 
DIAC4=0. 
DIACS=O. 
DIAG6-0. 
DIAG7-0. 
RESET=#OFF 

440 :ENDIF 
110 c 
112 C *** TEST PI VALUES (STEP RESPONSE & DISTURBANCE RESPONSE) 
115 C 
120 * TIHER 

INPUT TESTPI. . 
SETPOINT TESTP1.TIM.E. 
RESET TESTPI.. 
OUTPUT-2 DISTURB. - 
10 :IF(TESTPI) 
20 SETPOINTs50. 

40 rIF(D1STURB) 
50 : CI : ZL=#OFF 
60 ZL=lO. 
70 : CI : ZL=#ON 
80 :ENDIF 

130 * CALCULATOR 

30 -:ENDIP 

140 * C 
150 c SELECT &J,GORIT~ * * * * * t t t * t * * * * * t * 4 * 4 * * * * * * * * * * * * * * 4 * * * * * * * * * * *  

160 * C 
170 * C 
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180 CALCULATOR 
10 rIF(SELECT-1) 
20 ALCO=#ON 
30 ALCl*#OFF 
40 ALG24OFF 
50 :ENDIF 
60 :IF(SELECT==Z) 
70 ALGO=#OFF 
80 ALGl=#ON 
90 ALG2-#OFF 
100 :ENDIF 
110 rIF(SELECT=-3) 
120 AU;O=/OFF 
130 AU;l=#OPF 
140 ALCS=#ON 
150 tENDI? 
160 ENABLE.NEW=ENABLE 
170 :IP(ENABLE.OLDC-ENABLE.NEW) 
180 TUNINC=#OFF 
190 TUNE. LOCK=#OFF 
200 :ENDIF 

190 c 
200 * c 

220 * c 
230 C 
240 ANIN 

210 * C ***  HEASURE THE PROCESS VARIABLE * * * * * * * * * * * * * * * * * * * 2 * * * * t * * * + t . t  

DEVICE 1 
INITIAL 2 
INPUT 1 INPUT. . 
ZERO 1 IPZERO.. 
SPAN 1 IPSPAN.. 

250 * CALCULATOR STPI.YO=ALP~*STPf.Y1+(1-RLPHA)*(INPUT-INPUT.O~D) 
260 C 
2 7 0  * c 
280 * C *** UPDATE THE OUTPUT OF THE PID3TElZM MODULE **************e***** 
290 C 
300 C 
310 * PID3TERH 

INPUT INPUT.. 

PROPORTION PROP1 . . 
INTEGRAL INTl.. 
RESET OUTPUT2. . 
TRACK TRACK2 . . 
OUTPUT OUTPUT1 . . 

SETPOINT SETWINT 6 

320 C 
330 C 

350 * C 

370 * C 
380 * IF (-TUNING) 
390 CALCULATOR 

340 * c ***  UPDATE THE OUTPUT OF THE STPI n0nux.E * 4 * * * * 4 * * * * * * + * * * * * * * * * *  

360 ** C --- UPDATE PROCEDURE WHEN NOT TUNING ------------------I--------- 

10 OUTPUTZ-OUTPUT1 
20 TRACKP=TRACKl 

400 ENDIP 
410 C 
420 * IF (TUNING) 
430 C 



440 C --- UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #O -------------- 
450 C 
460 * IF ( A L G O )  
470 CALCULATOR 

10 iIP(-REVERSE) 
20 : IF (INTEG) 
30 OUTPUT2=OUTPWT2+RELAY.SICN*RELAY*#RATE.001 
40 :ENDIF 
50 :IF(-INTEG) 
60 OUTPUTZQOPHEAN+RELAY.SIGN*RELAY 
70 :ENDIP 
80 :ENDIF 
90 :IF(REVERSE) 

100 :IF(INTEG) 
110 OUTPUT2=OUTPUTZ-RELAY.SICN*RELAY*#RATE.001 
120 :ENDIP 
130 :IF(-INTEC) 
140 OUTPUTZ=OPNEAN-RELAY.SIGN*RELAY 
150 :ENDIP 
160 :ENDIF 
170 TRACKZ=#ON 

480 ENDIP 
490 C 
500 * c --- UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #i -------------- 
510 * c 
520 * IF (ALc1) 
530 * CALCULATOR 

10 OUTPUTZ=OUTPUTl 
20 TRACKZ=TRACKl 

540 ENDIB 
550 C 
560 C --- UPDATE PROCEDURE WHEN TUNING WITH ALGORITHM #2 -------------- 
570 C 
580 * IF (ALG2) 
590 * CALCULATOR 

10 :IF(-ADAPT.FLAG) 
20 xIP(PRBS.BIT0) 
30 OUTPUTZ=OPMElW+OPDEV 
40 :ENDIP 
50 :IF(-PRBS.BIT0) 
60 OUTPUTZ=OPHEAN-OPDEV 
70 :ENDIF 
80 TRACKZ=#ON 
90 :ENDIF 
100 rIF(ADAPT.FLAG) 
110 OUTPUTZ=OUTPUTl 
120 TRACKZ=TRACKl 
130 :ENDIP 

600 ENDXB 
610 ENDIF 
620 * * C  
630 C --- LXMXT OUTPUT AND CHECK FOR INPUT LIMITING ------------------- 
640 C 
650 CALCULATOR 

10 OUTPUTZ.LINXT=#OFF 
20 :IF(OUTPUT2<OPMIN) 
30 OUTPUTZ=OPMIN 
40 OUTPUT?I.LIHIT=#ON 
5 0  TRACKZ=/ON 
60 :ENDIP 
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70 I IF (OUTPUT2 W P W  
80 OUTPUT2=OPW 
90 OUTPUT2.LIHIT=#ON 
100 TRACKZ=#ON 
110 #ENDIF 
120 :IF(TUNING) 
130 :IF(OUTPUT2.LIHITI (fNPUT<rIPHIN) I (INPUT>=IPW)) 
140 TUNE.STAGE.l=#OFF 
150 TUNE.STAGE.2=#OF? 
160 TUNE.STAGE.3=#QFF 
170 TUNE.STAGE.4rlOFP 
180 ZEROX.COUNT=O 
190 STATUS.BIT5-32 
200 xENDI? 
210 :ENDIF 

660 C 
670 * C 
680 C * * *  OUTPUT THE NEW ACTUATOR COMMAND SIGNRL . . . . . . . . . . . . . . . . . . . . . .  
690 C 
700 C 
710 ANOUT 

DEVICE 
IHITIAL 
OUTPUT 1 OUTPUT2. . 
z Ern 1 OPZERO.. 
SPAN 1 OPSPAN. . 

720 * C 
730 C 
740 * C ***  TUNING INITIALISATION PROCEDURES ***********.*******+******** 
750 c 
760 C 
770 IF (-ENABLE.OLD&ENABLE.NEW) 
780 CALCULATOR 

10 TUNINC=fON 
20 STATUS.BIT0-0 
30 STATUS.BIT1mO 
40 STATUS.BITZ=O 
50 SThTUS.BIT3=0 
60 STATUS.BIT4rO 
70 STATUS.BITS=O 
80 STATUS.BIT6-0 

790 IF (SELECT-0) 
800 CALCULATOR 

10 AU;O=#OI( 
20 AL.Gl=#OP? 
30 ALG2=#0FF 

810 * ENDI? 
820 c 
830 C --- TUNING INITIALISATION PROCEDURE FOR ALGORITHM #O ------------ 
040 C 
850 * -  IF (ALGO)  
860 CALCULATOR 

10 REDUCE.ENABLE=lOFF 
20 TUNE.COUNT=O 
30 ZEROX. COUNT=O 
40 ZEROX.TOTAL=O 

60 R E L A Y .  SIGNS1 
70 :ENDIF 
80 :IF(SETPOINT-INPUT<O.O) 

50 :IP((SETWINT-INPUT)>~O.O) 

3 
2 
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90 RELAY.  SIGNS-1 
100 :ENDIP 
110 I IF{ -1NTEC) 
120 OPHEAN=OUTPUT2 
130 :ENDIF 

870 ENDIP 
880 c 
090 C --- NO INITIALISATION REQUIRED FOR ALGORITHM #l ----------------- 
900 * c 
910 c --- TUNING INITIALISATION PROCEDURE FOR ALGORITHM #2 ------------ 
920 C 
930 IF (ALG2) 
940 CALCULATOR 

10 OPMEAN=OUTPUTZ 
20 TUNE. COUNT=O 
30 E010 
40 EVAR=O 
so Y V A R m o  
60 W N E = O  
7 0  ADAPT.FLAG=#OFP 
80 DIAGl=lOOO 
90 DIAG2=1000 
100 DIAG3=1000 
110 DIAG4=1000 
120 DIAG5=1000 
130 DIAG6~1000 
140 DIAG7=1000 

950 * ENDIP 
960 ENDIP 
970 * C 
980 c 

1000 c 
1010 c 
1020 IF (TUNING) 
1030 CALCULATOR PVERROR=SETPOINT-INPUT 

990 C TUNING PROCEDURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1040 C 
1050 c --- TUNING PROCEDURE FOR 
1060 * C 
1070 IF ( -0 )  
1080 * C u c u u r n R  

10 TUNE.COUNT=TUNE.COUNT+I 
20 :IF(REDUCE.ENABLE) 
30 :fP((:ABS(PVERROR)>PVDEV 
40 RELAY.REDUCE=#ON 
50 ZEROX.COUNT=O 
60 :ENDIF 
70 :IP(RELAY.REDUCE&ZEROX.COUNT>O) 
80 RELAY.REDUCE=#OFF 
9 4  STATUS.BIT2=4 
100 RELAY=REDUCE.FACTOR*RELAY 
110 :IP(RELAY<HYSTER) 
120 STATUS.BIT3=8 
130 :ENDIF 
140 :ENDIP 
150 :ENDIP 
160 :IF(RELAY.SICN<O&PVERROR>HYSTER) 
170 REDUCE.ENABLE=#ON 
100 ZEROX.COUNT=ZEROX.COUNT+l 
190 ZEROX.TOTAL=ZEROX.TOTAL+1 
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200 TUNE.DB-:ABS(PVERROR.MAX.OLD*ACCEPT/l00.0) 
210 DONE~50+50*(1-:ABS(PVERROR.HAX-PVERROR.WX.OLD)/TUNE.DB) 
220 rIF(DONE<O) 
230 DONE-0 
240 :ENDIF 

2 60 PVMP*(P\fERROR.MAX-PVERROR.WIN.OLD)/2.0 
250 ~I~(~ABS(PVERROR-WAX-PVE~OR.HAX.OLD)~TUNE~DB&ZEROX.COUNT~3) 

2 70  PERfOD~(TUNE~COUNT+TUNE~COtRfT~OLD)'#RATE~OOl 
280 DESSG#=#ON 
290 tIF(-INTEG) 
300 OuTPUT2=0PnEAN 
310 : ENDIF 
320 :ENDIF 
330 PYERROR. WAX. OLD-PVERROR. WAX 
340 PVERROR.MAX=O.O 
350 TVNE.COUNT.OLD=TUPIE.COUNT 
360 TvHg.COUNT-0 
370 R6LAY.SICN-1 
380 :ENDIF 
390  :IP(RE~Y.SIGN,06rPVERROR<-WYSTER) 
400 REDUCE.ENABLE=#ON 
410 ZEROX.COUNT=ZEROX.MUNT+l 
420 ZEROX.TOTAL=ZEROX.TOTAL+1 
430 TUNG.DE=:ABS(PVERROR.HIN.OtD*ACCEPT/100) 

450 : IP(DONE<O) 
4 60 DONE-0 
470 :ENDS? 
480 tIF(:AES(PVERROR.NIN-PVERROR.WIN.OLD)~TUNE.DB&ZEROX.COUNT>3) 
490 PVAMP=(PVERROR.W.OLD-PVERROR.MIN)/2.0 
500 PERIOD=(TUNE.COUNT+TUNE.COUNT.0LD)*#RATE.001 
510 DESIGN=#ON 
515 rIF(-INTEG) 
S16 OUTPUT2=OPMEAN 
517 : ENDI? 
520 :ENDIF 
530 P'VERROR.XlN.OLD=PVERROR.HIN 
5 40 
550 TUNE.COUNT.OLD-TUNE.COUNT 
560 TUNE. COUNT=O 
570 RELAY.SICN=-l.O 
580 :ENDIP 
590 :IP(ZEROX.TOTAL>21) 
600 DESICN=#ON 
610 STATUS.BIT4=16 
620 : E N D I t  
630 :IF(PVERROR>PWRROR.MAX) 
640  PVERROR.lUK=PVERROR 
650 :ENDIP 
660~:IP(PVERROR<PVERROR.HIN) 
670  P\FERROR.HIN=PVER.ROR 
680 :ENDIF 

440 DONE~50+50*(1-:ABS{PVERROR.XfW-PVERROR.HIN.OLD)/TUNE.DB) 

PVERROR . Wf N==O . 0 

1090 ENDIF 
1100 c 

1120 * c 
1130 * IP (-1) 
1140 CALCULATOR 

1110 c --- TUNING PROCEDURE FOR a M R I T M  #1 ........................... 

10 :l?(:ABS(PVERROR)>THRESHL-TUNE.LOCK) 
20 TUNE.LOCK=#ON 
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30 TUNE.STAGE.l=#ON 
40 PVERROR. MAX-0.0 
50 SENDIF 
60 :IF(TUNE.STACE.l) 
70 
80 
90 
100 
110 
120 
130 
140 
150 
160 
170 
380 
190 
200 
210 
220 
230 
240 
2 5 0  
260 

tIF(rABS(PVERROR)>xABS(PVEERROR.HAX)) 
FLAG.ERHAX=#OFP 
PVERROR. MAX-PVERROR 

: ENDIF 
:IF(:ABS(PVERROR)<tABS(PVERROR.HAX)&-FLAC.ERHAX) 
FLAC.ERNAX=#ON 
FLAG.INIT=#ON 

: ENDIF 
:IP(FLAG.INXT) 
FLAG.INIT-#OFF 
TUNE.STAGE.Z=#ON 
TUNE.STAGE.3=#OPF 
TUNE.STAGE.4=#OFF 
STATUS.BITS=O 
TUNE. COUNT-0 
TUNE.Rl=OVERSH/150.0 
TUNE.RZ=TUNE.Rl/C 
TUNE.Sl*O.O 
TUNE.SZ=O.O 

: ENDIP 
270 :ENDIF 
280 :IF(TUNE.STAGE.2&:ABS(PVERROR)<0.9*:ABS(PVERROR.XAX)) 
290 TUNE.STAGE.Z=#OFP 
300 TUNE.STAGE.3=#ON 
310 TUNE.TO=TUNE.COUNT 
320 :ENDIP 
330 :IF(TUNE.STAGE.3&:ABS(PVERROR)<0.5*:ABS(PVERROR.W)) 
340 TUNE.STAGE.3-#OFF 
350 TUNE. STAGE. 4=#0N 

370 
380 TUNE. TL= 1 
390 :ENDIP 
400 TUNE.TZ=TUNE.COUNT+TUNE.ALPHA*TUNE.TL 
410 TUNE.T3=TUNE.TZ+TUNE.BETA*TUNE.TL 
420 TUNE.TQ=TUNE.T3+TUNE.GAMHA*TUNE.TL 
4 30 
440 :ENDIF 
450 :IF(TUNE.STAGE.4) 
460 :IF(TUNE.COUNT>=TUNE.T2&TUNE.COUNT<TUNEeT3) 
470 TUNE.S~=TUNE.S~+PVERROR/PVERROR.MAX/TUNE.BETA/TUNE.TL 
480 :ENDIF 
490 :IF(TUNE.COUNT>=TUNE.T36iTUNE.COUNT<TUNE.T4) 
500 TUNE.S~PTUNE.S~+(PVERROR/PVERROR.MAX+TUNE.R~)/TUNE.GAMHA/TUNE.TL 
510 :ENDIF 
520- :IF(TUNE.COUNT>=TUNE.T4) 
530 TUNE.STAGE.l=#OFF 
540 TUNE.STACE.4=#OFF 
550 DESICN=#ON 
560 DONE.FACTOR~(:ABS(TUNE.Rl)-:ABS(TUNE.Sl+TUNE.Rl))/:ABS(TUNE.Rl) 
5 70 rIF(TUNE.Rl==O) 
580 DONE.FACTOR=O.S 
590 : ENDIF 
600 DONE=SO+SO*DONE.FACTOR 
610 rIF(DONE<O) 
620 DONE=O 

360 TUNE.TL=TUNE.COUNT-TUNE-TO 
: IF ( TUNE. TL< 1 ) 

TUNE. TS=TUNE . T4+TUNE. T4 
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630 : ENDIF 
640 ;ENDIF 
650 :ENDIF 
660 :IF(TUNE.LOCK) 
670 TUNC.COUNT-TUNE.COUNT+l 

690 TUNE. LOCK=/OPF 
700 SENDIF 
710 :ENDXI . 

680 ;IP(TU~.COUNT>T~.TSC:ABS(PVgRROR)<THRESH) 

1150 ENDIF 
1160 4 C 

1180 4 C 

1200 * CALCULATOR 

1170 4 C TUNING PROCEDURB FOR ALGORITHM /2 ........................... 
1190 4 IP (ALG2) 

10 :IF(-ADAPT-PLAC) 
20 TUNE. COUNTtTUNE . COUNT+l 
30 :ENDIF 

1210 * IF (TUNB.COUNT>S) 
1220 4 CALCULATOR 

10 TEMP-1 
20 :IF(IREVERSE) 
30 TEMP=-1 
40 :ENDIP 
50 #ADATA l(l,l]=-STPI.Yl 
60 #ADATA 2(l,l]=Al 
70 #ADATA 3 ( 1 , 1 J =DIAG1 
80 fADATA 1 [ 1,2 ] =Ul*TEHP 
90 #ADATA 2[1,2]=Bl 
100 CADATA 3(1,2 
110 #ADATA lilt3 
120 ~ADATA 2[1,3 
130 #AJMTA 3(1,3 
140 CADATA 1(1,4 
150 #ADATA 2[1,4 
160 #ADATA 3[1,4 
170 #ADATA l[1,5 
iao #ADATA 211, s 

=DIAG2 
=U2 *TEMP 
=B2 
=DIAG3 
43'TEWP 
=E3 
=DIAG4 
-U4*TEWP 
=E4 

190 #ADATA 3[ 1,s )=DIAGS 
200 #ADATA 1[1,6]=US*TEHP 

220 #ADATA 3[1,6]-DIAG6 
230 CADATA 1[1,7]=El 
240 #ADATA 2(1,7)=Cl 
250 #&DATA 3(1,7]=DIAG7 

210 #ADATA 2(1,6]~85 

1230 CALCULATOR EO=-STPI.YO 
1240 4 FOR l., 7., l., J.. 
1250 
1260 4 ENDPOR 
1270 4, CALCULATOR 

10 PERRnEO 
20 :fF(TUNE,COUNT212) 
30 TEMP=TUNE.COUNT-12 
40 EVARo(EVAR*(TEMP-l)/TEMP)+(EO*EO/TEMP) 

60 DONE=lOO*(l-EVAR/YVAR) 
70 rIP(DONEC0) 
80 DONE=O 
90 :ENDIP 

CALCULATOR EO+EO+#ADATA 1[1,J]*#ADATA 2(1,J] 

5 0  W~R=(WAR*(TEHP-~)/TEHP)+(STPI.YO*STPI.YO/TEHP) 

100 :ENDIF 
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1280 CALCULATOR 
10 FJ-#ADATA 1[1,1] 
20 VJ=#ADATA 3 ( 1 , 1) *PJ 
30 AJ-l+(VJ*FJ) 
4 0  CADATA 3[1,1]-#ADATA 3[1,1]/AJ/W(BDA 
50 CADATA S[l,l]=VJ 

70 KU-0 
60 w-a 

1290 * FOR 2., 7., l., J.. 
1300 * CALCULATOR 

10 PJ=#AJJATA l[l,J] 
20 J1m.J-1 

1310 * FOR I., J1e-t I., 1.- 
1320 * CALCULATOR 

10 W=KP+l 
20 FJ-PJ+(#ADATA l[l,I]*#ADATA 4[1,KF]) 

1330 ENDFOR 
1340 CALCULATOR 

10 VJxFJ'CADATA 3[1,J] 
20 ALAST=AJ 
30 AJ=ALAST+(VJ*FJ) 
40 #ADATA 3[1,J]=#ADATA 3[1,J]*ALAST/AJ/I..AMBDA 
50 #ADATA S[l,J]=VJ 
60 PJa-FJ/ALAST 

1350 FOR l., Jl.., I., I.. 
1360 CALCULATOR 

10 KU=KU+l 
20 TEHP=#ADATA 4(1,KU]+(#ADATA 5[1,I]*PJ) 
30 #ADATA 5[1,I]=#ADATA 5[1,I]*(#ADATA 4[1,KU]*VJ) 
40 #ADATA Q[l,KU]=TEMP 

1370 * ENDFOR 
1380 * ENDFOR 
1390 FOR l., 7., le, J.. 
1400 * CALCULATOR 

1410 ENDFOR 
1420 CALCULATOR 

10 AI=#ADATA 2[1,1] 
20 Bl=#ADATA 2[1,2) 
30 BZ=#ADATA 2[1,3] 
40 B3=#ADATA 2(1,4] 
50 B44ADATA 2[1,5] 
60 BS=#ADATA 2[1,6] 
70 Cl==#ADATA 2[1,7) 
80 DIAGl=#ADATA 3[1,1] 
90 DIAGZ=#ADATA 3[lr2] 
100 DIAG3=#ADATA 3[1,3] 
110 DIAG4=#ADATA 3[1,4] 
120 DIACS=#ADATA 3[1,5] 
13OSDIAG6=#ADATA 3[ 1,6] 
140 DIAC7=#ADATA 3[1,7] 

10 #ADATA 2[1,J]=#ADATA Z[l,J]-(#ADATA 5[1,J]*EO/AJ) 

1430 CALCULATOR 
10 :IF(-ADAPT.FLAG) 
20 :IP(TUNE.COUNT>-TOTAL) 
30 OUTPUTZ=OPUEAN 
40 DESIGN=#ON 
50 :ENDIF 
60 :ENDIF 
70 :IP(ADAPT.FLAC) 
80 DESIGN=#ON 



157 

90 rtNDII 
1440 ENDI? 
1450 ENDIF 
1460 ENDII 
1470 * C 
1480 C 

1500 C 
lSl0 c 
1520 CALCULATOR 

1490 C **t SHIFT DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

10 UO~ALPHA*Ul+(1-ALPHA)*(OUTPUTZ-OUTPUTZ.OLD) 
20 ENABLE.OLD=ENABLE.NEW 
30 1NPUT.OLD-INPUT 
40 OUTPUT2.OLD-OWTPUTZ 
50 STPX.Yl-STPI.YO 
60 US-U4 
70 04-U3 
80 U3=U2 
90 U2-Ul 
100 Ul=UO 
110 El=EO 
120 PRBS.BITB.WEW=PRBS.BIT1*PRBS.BIT6 
130 PRBS.BITO=PRBS.EITl 
140 PRBS.BITl=PRBS.BIT2 
150 PRBS.BIT2=PRBS.EIT3 
160 PRBS.BIT3xPRBS.BIT4 
170 PRBS.BITQ=PRBS.BITS 
180 PRBS.BIT5=PRBS.BIT6 
190 PFiBS.BIT6=PRBS.BIT7 
200 PRBS.BIT7*PRBS.BIT8 
210 PRBS.BITB=PRBS.BITB.NEW 

1530 C 
1540 * C 
1550 t c + * e  CONSTRUCT STATUS WORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1560 C 
1570 C 
1580 CALCULATOR 

10 STATUS.BXT0-O 
20 sIF(TUN1NG) 
30 STATUS. BITO-1 
40 :ENDX? 
50 STATUS.BIT1-0 
60 :IF(TUNE.LOCK) 
70 STATUS.BIT1-2 
80 :ENDIF 
100 STATUS~STATUS~BITO+STATUS~BLT1+STATUS~BIT2+STATUS~~IT3+STATUS~~IT4+@ 

STATUS.BITS+STATUS.BIT6 
1590 C 
1600 * C 

1620 * * C  
1630 C 
1640 IF (DESIGN) 
1650 C 

1670 * C 
1680 CALCULATOR 

1610 C * * e  DESIGN PROCEDURES * * * * * * * * * t * * * * * i + * * * * * t * + * * * * * * * t * * *  

1660 C --- CHECK OVERSHOOT 

10 OVERSH.CHECK=OVERSH 
20 :IF(OVERSH>OVERSH.HAX) 
30 OVERSH.CHECK=OVERSH.MAX 
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40 :ENDIF 
50 :IF(OVERSH<OVERSH.HIN) 
60 0VERSH.CHECK-0VERSH.MIN 
70 :ENDIF 
80 ZETA=:LOG(OVERSH.CHECK/~~~.~)*:LOC(OVERSH.CHECK/~O~.~) 
90 ZETA-:SQR(ZETA/(ZETA+#PI*#PI)) 
100 PHI-ZETA*100.0 
110 THI=PHI*#PI/180.0 

1690 C 

1710 c 
1720 IF (ALGO) 
1730 CALCULATOR 

1700 * C --- DESIGN PROCEDURE FOR U G O R I T m  # O  ........................... 

10 :IF(-REWRSE) 
20 PROP2-2.O*RELAY*PERIOD*:SIN(THI)/(/PI*#PI*PVAMP) 
25 :IF(-INTEG) 
26 PROP2=OVERSH.CHECK/100.0*4.O*RELAY/#PI/PVAMP 
27 :ENDIF 
30 :ENDIF 
40 :IF(REVERSE) 
50 PROP2=-2.O*RELAY*PERIOD*:SIN(THI)/(~PI*#PI*PVAMP) 
55 :IF(-INTEG) 
56 PROP2~-OVERSH.CHECK/100.0*4.OfREIAY/#PI/PVAMP 
57 :ENDIF 
60 :ENDIF 
70 INT2=120.0*#PI/(PERIOD*:T~(THI)) 
75 :IF(-INTEG) 
77 INT2-0 
78 :ENDIF 
80 TUNE.T5=4*INT2/#RATE.001/60 

1740 ENDIF 
1750 C 
1760 C --- 
1770 C 
1780 IF (ALGl) 
1790 * CALCULATOR 

DESIGN PROCEDURE FOR AtGORITM #I ........................... 

10 DESIGN.FACTOR.KC~(1-DONE.FACTOR)*(DESIGN.Kl*(TUNE.Sl+TUNE.Rl)+DESIGN.K2@ 
*TUNE.SZ) 

20 :IF(:ABS(DESIGN.FACTR.KC)>o.2) 
30 DESIGN.FACTOR.KCPO.~~DESIGN.FACTOR.KC/:ABS(DESIGN.FACTOR.KC) 
4 0  :ENDIF 
50 PROPZ=PROPl*(l+DESIGN.FACTOR.KC) 
60 DESIGN.FACTOR.KI~(l-DONE.FACTOR)*(DESIGN.K3*(TUNE.Sl+TUNE.R1)+DESIGN.K4@ 

7 0  rIF(:ABS(DESIGN.FACTOR.KI)>O.2) 
80 DESIGN.FACTOR.KI=0.2*DESIGN.FACTOR.KI/:ABS(DESIGN.~ACTOR.K1) 
90 :ENDIP 

'TUNE. S2 ) 

100 INT2-INTZ*(l+DESIGN.FACTOR.K1) 
110 :IF(-INTEG) 
120 INTZ-0 
130*:ENDIP 

1800 * ENDIF 
1810 * c 

1830 C 

1840 IF (-2) 
1850 CALCUWTOR TEMP=O 
1860 * FOR l . ,  S . ,  l., J.. 
1870 * CALCULATOR TEMP=TEHP+#ADATA 2[1,1+J] 
1880 ENDFOR 

1820 * c --- DESIGN PROCEDURE FOR RLGORITW #2 --------------I------------ 
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1890 * IF (TLWP<O) 
1900 * CALCULATOR STATUS.BIT6r64 
1910 ENDIF 
1920 CALCULATOR 

10 INT2=60*(l+fADATA 2[1,l))/#RATE.001 
20 tIF(INT2<O) 
30 INT2-0 
40 :ENDIP 
50  TANPHI=:TAN(PHI*fPI/180) 
60 WT.HIGH=IPI 
70 WT.LOW=#PI/lOO 
80 WT.INC=(WT.HIGH-WT.LOW)/lO 

1930 FOR 1.1 2.r 1.1 PASS.. 
1940 CALCULATOR 

10 WT.o=wT.u)(J 
20 WT. PLAC=#OPF 

1950 * FOR WT-LOW., WT.HIGH., WT.INC., WT.. 
1960 CALCULATOR 

10 A=:SXN(WT)/(l-:COS(W)) 
20 IMAG=#ADATA 2[1,2)*:SIN(WT) 
30 REAL-IADATA 2(1,2]*:COS(WT) 

1970 FOR 2.8 5.8 1.1 J.. 
1980 CALCULATOR 

10 IMAG-IMAG+#ADATA 2(1,J+l]*:SIN(J*WT) 
20 REAL=REAL+#ADATA 2[1,J+l]*:COS(J*WT) 

1990 * ENDFOR 
2000 CALCULATOR 

20 LHSn-(A+B)/(l-A*B) 
30 RHSzTANPHI 
40 8 IF (LHS<RHS) 
50 WT.FLAG=#ON 
70 :ENDIF 
80 sIF(-WT.PWIC) 
90 wT.o=WT 

10 B=IHAC/REAL 

100 :ENDIF 
2010 * ENDFOR 
2020 CALCULATOR 

10 WT.HIGH=WT.O+WT.INC 
20 WT.Low=wT.o 
30 WT.IHC~(WT.HIGH-WT.LOW)/lO 

2030 * ENDFOR 
2040 CALCULATOR 

10 IMAC-:SIN(WT.O) 
20 REALsl- : cos (WT. 0) 
30 NAGN.DEN~:SQR(REAL*REAL+IHAG*IHAC) 
40 IMAG=#ADATA 2[1,2]*:SIN(WT.O) 
50 REAL=#ADATA 2[1,2)*:COS(Wr.O) 

2050 FOR 2., 5 . ,  l., J.. 
2060 *- CALCULATOR 

10 IHhC-fMAG+fADATA 2[1,J+l]*:SXN(J*WT.O) 
20 REAL=REAL+#ADATA 2(1,J+l]*:COS(J*WT.O) 

2070 ENDFOR 
2080 CALCULATOR 

10 HAGN.HOM=:SQR(REAL*REAL+XHAG*IHAC) 
20 HAGN=MAGN.NUH/UAGH.DEN 
30 PROPZ=l/llAGN 
40 rI?(REVERSE) 
50 PROP2x-PROP2 
60 :ENDIF 
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2100 c 
2110 c --- UPDATE CONTROLLER GAINS ---------------- 
2120 c 
2130 CALCULATOR 

30 DESIGN-#OFF 
20 rII(UPDATB) 
30 PROPl=PROPZ 
40 INT1-INT2 
50 rENDI? 
60 :IF(SELECT==O) 
70 :IP(ALCO) 
80 AI&O=#OFP 
90 ALGl=#ON 

100 :ENDIP 
110 :ENDIP 
120 rIP(SELECT=-1) 
130 TUNINC=#OFF 
140 :ENDIP 
150 :IP(SELECT==3) 
160 :IF(ADAPTIVE) 
170 ADAPT. FLAG=#ON 
180 :ENDIP 
190 :IF(-ADAPT.FLAG) 
200 TUNING=#OFP 
210 :ENDIP 
220 :ENDIP 

2140 ENDIF 
*TASK 9 
10 C OUTPUT VALUES TO PC USING LOCGER MODULE 
20 * TIMER 

INPUT TIUER.PULSE. 
SETPOINT s.0000000 
RESET RESET.TIUER.DATA 
TIXE DATA.TIMER.TIME 
OUTPUT-1 TIUER.OUTPUT.1 
OUTPUT-2 0UTPUT.SAMPLE. 

30 IF (TIUER.OUTPUT.1) 
40 * CALCULATOR 
10 TIMER.PULSE=#OFF 

50 * ENDIF 
60 * IF (0UTPUT.SAUPLE) 
70 LOGGER 

PORT 2,0000000 
UODE #OFF..  
FORMAT 9.0000000 
LIST 9.0000000 

10 TIMER.PULSE=#ON 
80 CALCULATOR 

90 *, ENDIF 
*TASK 10 

1 IF (SIM==O.O) 
2 * C PURE INTEGRATING PROCESS SIMULATION (SIMO) 
5 . c  

10 * C GET OUTPUT FROU THE SELF TUNING CONTROLLER 
20 ANIN 

DEVICE 1 
INITIAL 1 
INPUT 1 2.. 
ZERO 1 2 .  ZERO. 
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s PAN 1 Z.SPAN. 
25  C 
30 * C *** BEGINNING OF PROCESS SIMULATION MDI: 
40 CALCULATOR 

SO * INTEGRATOR 
10 YPDOT=KP*(Z+ZL) 

INPUT YPDOT.. 
RESET SYSXNXT. - 
ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT YP.. 

52 * C BOUND THE PROCESS BETWEEN ITS UPPER AND LOWER LIMITS 
55 * CALCULATOR 

10 IIF(YP>YP.MbX) 
20 YP=YP.uAx 
30 :ENDIF 
40 rIP(YWYP.HIN) 
50 YP-XP.MIN 
60 :ENDIF 

60 C UPDATE ARRAY USED TO SIMULATE DEADTIME 
80 CALCULATOR 

10 zIF(COUNT<=200) 
20 #ADATA 6[COUNT]-YP 
30 COUNT=COUNT+l 
40 SENDIF 
50 rIF(COUNT>2OO) 
60 COUNT=l 
70 :ENDIF 

95 C CALCULATE DELAYED INPUT 
110 CALCULATOR 

10 K~COUNT-(l/#RATE.OIO*TAU.DEL)-1 
20 rIF[K<l) 
30 K=K+200 
40 :ENDIF 
50 YD=#ADATA 6[K] 
60 Y=YD+NOISE 

112 C *** END OF PROCESS SIMULATION CODE 
113 * C 
115 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER 
120 ANOUT 

DEVICE 3 
INITIAL 1 
OUTPUT 1 Y. .  
ZERO 1 Y.ZER0. 
SPAN 1 Y.SPAN. 
TRACK 1 X.TRK. 
RESET 1 Y.RES. 

130 ENDIF 
'TASK 11 

5 *-IF (SIH==l.O) 
10 * C FIRST ORDER PROCESS SIMULATION (SIH1) 
20 c 
25 C CODE TO RESET SYSTEX 
30 CALCULATOR 
10 rIF(SYSIN1T) 
20 PROC. INIT=#ON 
30 LOAD. INIT=#ON 
40 :ENDIF 

40 * C 
50 C GET OUTPUT FROM THE SELF TUNING CONTROLLER 
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1 
1 

60 ANIN 
DEVICE 
INITIAL 
INPUT 1 z . .  
ZERO 1 2 .ZERO. 
SPAN 1 Z.SPAN. 

10 c 
80 C ***  BEGINNING OF PROCESS SIHULATION CODE 
82 C 
83 * C CALCULATE MAD DISTURBANCE 
85 * CALCULATOR 

10 rIP(TAU.L<O.S) 
20 TAU.L=O.S 
30 :ENDIF 
40 ZLDOT=(ZL.IN-ZL)/TAU.L 

INPUT ZLDOT.. 
RESET LOAD. INIT. 
OUTPUT ZL.. 

87 * INTEGRATOR 

88 C CALCULATE NEW PROCESS VALUE 
90 * CALCULATOR 
10 :IF(TAU.P<.5) 
20 TAU.P-.5 
30 :ENDIP 
40 YPDOT=(KP*(Z+ZL)-YP)/TAU.P 

INPUT YPDOT.. 
RESET PROC-INIT. 

100 INTEGRATOR 

ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT YP.. 

110 * C UPDATE ARRAY USED TO SIHULATE DEADTIME 
120 * CALCULATOR 

10 :IP(COUNT<=200) 
20 #ADATA 6[COUNT]=YP 
30 COUNT=COUNT+l 
40 :ENDIF 
50 rIF(COUNT>ZOO) 
60 COUNT-1 
10 :ENDIF 

130 * C CALCULATE DELAYED INPUT 
14Q CALCULATOR 

10 A*COUNT-(l/#RATE.011*TAU.DEL)-l 
20 rIF(K<l) 
30 K=K+200 
40 :ENDIP 
5 0  YD=#ADATA 6[K] 
60 Y=YD+NOISE 

150 C ***  END OF PROCESS SIMULATION CODE 
160 C 
110 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER 
180 * ANOUT 

DEVICE 
INITIAL 
OUTPUT 1 Y.. 
2 ERO 1 Y. ZERO. 
SPAN 1 Y.SPAu. 
TRACK 1 Y.TRK. 
RESET 1 Y.RES. 

190 ENDIF 

3 
1 
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*TASK 12 
5 IF (SIW-2.0) 
10 C SECOND ORDER PROCESS SIHULATION (SIH2) 
20 * c 
25 C CODE TO RESET SYSTEW 
30 CALCULATOR 
10 rIF(SYSIN1T) 
20 PROCl. INIT=#ON 
25 PROC2. INIT=#ON 
30 MAD. INIT=#ON 
40 :ENDIP 

4 0  C 
50 C GET OUTPUT F R W  THE SELF TUNING CONTROLLER 
60 ANIN 
DEVICE 1 
INITIAL 1 
INPUT 1 z . .  
ZERO 1 Z.ZERO. 
SPAN 1 2. SPAN. 

7 0  C 
80 * C ***  BEGINNING OF PROCESS SfHULATION CODE 
82 C 
83 C CALCULATE LOAD DISTURBANCE 
85 * CALCULATOR 
10 tIF(TAU.L<O.S) 
20 TAU.L=O.S 
30 :ENDI? 
40 ZLDOTs(ZL.IN-ZL)/TAU.L 

INPUT ZLDOT.. 
RESET LO-. I N I T .  
OUTPUT Zt.. 

87 INTEGRATOR 

88 4 C CALCULATE NEW PROCESS VALUE 
90 CALCULATOR 
10 tIP(TAU.Pl<.S) 
20 TAU.Plr.5 
30 :ENDIF 
40 :IF(TAU.Pz<.S) 
SO TAU.P2-.5 
60 :ENDIF 
70 XlDOT=X2 
80 XZDOT~-(Xl/(TAU.P1*TAU.P2))-((TAU.Pl+TAU.P2)*XZ/(TAU.Pl+TAU.P2))+(KP*(~@ 

+ZL)/(TAV.Pl*TAU.P2)) 
100 * INTEGRATOR 

INPUT XlDOT.. 
RESET PROCl.INIT. 
ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT X I . .  

INPUT XZDOT.. 
RESET PROCZ.INIT* 
ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT x2.. 

105 4 -  INTEGRATOR 

110 C UPDATE ARIViY USED TO SIMULATE DEADTIME 
120 * CALCULATOR 

10 :IF(COUNT<-POO} 
20 iADATA 6(COVNTI-X1 
30 COUNT=COUNT+l 
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4 0  rENDI? 
50 :IF(COUNT>2OO) 
60 COUNT=l 
70 rENDI? 

130 C CALCULATE DELAYED INPUT 
140 * CALCULATOR 

10 K=COUNT-(l/IRATE.Ol2*TAU.DEL)-l 
20 xIF(ltC1) 
30 K=K+200 
40 xENDIF 
5 0  YD-#ADATA 6[K] 
60 Y=YD+NOISE 

150 C * * *  END OF PROCESS SIMULATION CODE 
160 * C 
170 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER 
180 * ANOUT 

DEVICE 3 
INITIAL 1 
OUTPUT 1 Y . .  
ZERO 1 Y .  ZERO. 
s PAN 1 Y * SPAN. 
TRACK 1 Y.TRK. 
RESET 1 Y.RES. 

190 ENDIP 
*TASK 13 

5 IF (SIM-3.0) 
10 C BOILER PROCESS SIMULATION WITH INVERSE RESPONSE (SIM3) 
20 c 
30 C CODE TO RESET SYSTEM 
40 CALCULATOR 

10 :IF(SYSINIT) 
20 PROCl.INIT=#ON 
30 PROCZ.INIT=#ON 
40 :ENDIP 

50 c 
60 C GET OUTPUT FROM THE SELF TUNING CONTROLLER 
70 ANIN 

DEVICE 1 
INITIAL 1 
INPUT 1 2.. 
ZERO 1 2. ZERO. 
SPAN 1 2.SPA.N. 

80 C 
90 C *** BEGINNING OF PROCESS SIMULATION CODE 
95 C CALCULATE LIQUID LEVEL WRT FEEDWATER 
100 * CALCULATOR 

110 * INTEGRATOR 
10 Y2DOT=KPZ*(Z+ZL) 

INPUT YZDOT.. 
RESET PROC2.INIT. 

SPAN 1 * 0000000 
OUTPUT Y 2 . .  

ZERO 0.0000000 

120 * C BOUND THE FEEDWATER PROCESS BETWEEN ITS UPPER AND LOWER LIMITS 
330 CALCULATOR 

10 rIF(Y2>YZ.MAX) 
20 Y2-YZ.HAX 
30 :ENDIF 
40 tIF(YZ<YZ.MIN) 
50 Y2-YZ.HIN 
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60 tBNDI? 
135 * C CALCULATE LIQUID L E M L  WRT HEAT SUPPLY 
140 * CALCULATOR 

10 :X?(TAU.Pl<.S) 
20 TAU.Plm.5 
30 :ENDIF 
40 YlDoT~((KPl*(Z+ZL))-Yl)/TAU.P1 

INPUT YlDoT. 
RESET PROCl.IN1T. 
ZERO 0 .) 0000000 
SPAN 1. QOQOOOO 
OUTPUT Yl.. 

150 INTECRXFOR 

160 C CALCULATE OVERALL RESPONSE & UPDATE ARRAY USED To SIMULATE DEADTIME 
170 * CALCULATOR 

5 YP=YZ-YI 
10 rIF(COUNTc-200) 
20 fADATA G[COVNT]=YP 
30 COUNT=COUNT+l 
40 :ENDIF 
50 iIF(COUNT>200) 
60 COUNT-1 
70 :ENDIF 

180 C CALCULATE DELAYED INPUT 
190 * CaCULATOR 

10 X=COUNT-(1//RATE.013*TAU.DEL)-l 
20 :IF(K<l) 
30 K=K+ZOO 
40 :ENDIF 
50 YD=#ADATA 6(K] 
60 Y=YD+NOISE 

200 * C *** END OF PROCESS SIHUWLTION CODE 
210 * c 
220 * C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER 
230 * ANOUT 

DEVICE 3 
INITIAL 1 
OUTPUT 1 Y. .  
ZERO 1 Y. ZERO. 
SPAN 1 Y.SPAN. 
TRACK 1 Y.TRX. 
RESET 1 Y.RES. 

240 ENDIP 
'TASK 14 

5 IF (SIK-=4.0) 
10 C PROCESS SIMULATION WITH INVERSE RESPONSE (SIN4) 
20 ' c 
30 ' C CODE TO RESET SYSTEM 
40 * CALCULATOR 
10- rIF(SYS1NIT) 
20 PROCl.INIT=#ON 
30 PROC2. INIT=#ON 
40 rENDIF 

50 c 
60 * C GET OUTPUT FROM THE SELF TUNING CONTROLLER 
7 0  * AHIN 
DEVICE 1 
INITIAL 1 
INPUT 1 2..  
ZERO 1 2. ZERO. 
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SPAN 1 Z.SPAN. 
80 c 
90 C *** BEGINNING OF PROCESS SIMULATION CODE 
100 * C CALCULATE SLOWER PROCESS WITH DIRECT-ACTING RESPONSE 
110 CALCULATOR 

10 :IF(TAU.P1<.5) 
20 TAU.Pl=.S 
30 :ENDIF 
40 YlDoT=((KPl*(Z+ZL))-Yl)/TAU.Pl 

INPUT YlDOT.. 
RESET PROC1.INIT. 
ZERO 0. OOOQQOO 
SPAN 1.0000000 
OUTPUT Y l . .  

120 INTEGRATOR 

130.. C CALCULATE FASTER PROCESS WITH INVERSE RESPONSE 
140 CALCULATOR 

10 :IP(TAU.P2<.5) 
20 TAU.PZ1.5 
30 :ENDIP 
40 Y2DoT~((KP2f(Z+ZL))-YZ)/TAU.P2 

INPUT Y2DOT.. 

ZERO 0. OOOQOQO 
SPAN 1. OQOOOOO 
OUTPUT Y2.. 

150 INTEGRATOR 

RESET PROCZ.INIT* 

160 C CALCULATE OVERALL RESPONSE & UPDATE ARRAY USED TO SIMULATE DEADTIME 
170 CALCULATOR 

5 YP-Yl-YS 
10 :IP(COtJNTX=2OO) 
20 CADATA S[COUNT]=YP 
30 COUNT=COUNT+l 
40 :ENDIP 
50 :IP(COUNT>ZOO) 
60 COUNT=l 
IO :ENDIP 

180 C CALCULATE DELAYED INPUT 
190 CALCULATOR 

10 K=COUNT-(l/#RATE.014+TAU.DEL)-l 
20 :IF(K<l) 
30 K-K+ZOO 
40 :ENDIP 
50 YDzCADATA 6[K] 
60 Y=YD+NOISE 

200 C *++  END OF PROCESS SIMULATION CODE 
210 * c 
220 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER 
230 ANOUT 

DEVICE 3 
INITIAL 1 
OUTPUT 1 Y . .  
ZERO 1 Y. ZERO. 
SPAN 1 Y.SPAN. 
TRACK 1 Y.TRK. 
RESET 1 Y.RES. 

240 * ENDIP 
+TASK 15 

5 * IF (SIX==5.0) 
10 C SYSTEM WITH VARIABLE TIME CONSTANT AND DELAY (SIH5) 
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20 c 
30 * C CODE TO RESET SYSTEn 
40 CALCULATOR 

10 tIF(SYSIN1T) 
20 PROC. INIT=#ON 
30 LOAD. INIT=#ON 
40 rENDIF 

50 c 
60 C GET OUTPUT PROH THE SELF TUNING CONTROLLER 
70 ANIN 
DEVICZ 1 
INITIAL 1 
INPUT 1 2. .  
ZERO 1 Z ZERO. 
SPAN 1 Z.SPAN. 

80 c 
90 C *** BEGINNING OF PROCESS SIHVIJITION CODE 
100 * CUICVLATOR 

10 Q2=(Z+ZL) 
20  C I N * ( ( S I W . C l t Q l ) + ( S I n . c 2 * Q 2 ) ) / ( q l + Q 2 )  

110 C UPDATE ARRAY USED TO SIMULATE DEADTIME 
120 * CALCULATOR 

10 :IF(COUNT<=200) 
20 #ADATA 6[COUNT]=CIN 
30 COONT=COUNT+l 
40 :ENDIF 
50 :IF(COUNT>2OO) 
60 COUNT-1 
70 :ENDIF 

130 C CALCULATE DELAYED INPUT CONCENTRATION 
140 * CALCWTATOR 

5 TAU.DEL=VD/(Q1+92) 
10 K~COUNT-(l/#RATE.olS*TAU.DEL)-l 
20 rIF(K<l) 
30 K=K+200 
40 :ENDIF 
50 CIN.PRIIIE=#ADATA 6 [ K ]  

150 C CALCULATE N E W  CONCENTRATION 
160 * CALCULATOR 

10 TAU.P==VM/(Ql+QZ) 
2 0  CDOT=((KP*CIN.PRIME)-SIH.C)/TAU.P 

INPUT CDOT.. 
RESET PROC. INIT. 
ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT S1H.C. 

170 * INTEGRATOR 

180 CALCULATOR Y=SIM.C+NOISE 
190 C *** END OF PROCESS SIMULATION CODE 
200 ? c 
210 C OUTPUT PROCESS VALUE TO SELF TUNING CONTROLLER 
220 * ANOUT 

DEVICE 3 
INITIAL 1 
OUTPUT 1 Y.. 
ZERO 1 Y.  ZERO. 
SPAN 1 Y.SPAN. 
TRACK 1 YTTRK. 
RESET 1 Y.RES. 

240 ENDIF 



*TASK 16 
5 I? (SIX-6.0) 
10 C SECOND ORDER PROCESS SIMULATION ALLOWING COMPLEX POLES (SIM6) 
20 * c 
25 * C CODE TO RESET SYSTEM 
30 CALCULATOR 

10 rIP(SYSIN1T) 
20 PRoCl.INIT=#ON 
25 PRoC2.INIT*#ON 
30 MAD. INIT-#ON 
40 rENDI? 

40 * C 
50 * C GET OUTPUT FROM THE SELF TUNING CONTROLLER 
60 ANIN 

DEVICE 1 
INITIAL 1 
INPUT 1 2. .  
ZERO 1 Z. ZERO. 
SPAN 1 Z.SPAN. 

70 * C 
80 * C * * *  BEGINNING OF PROCESS SIMULATION CODE 
82 * c 
83 * C CALCULATE LOAD DISTURBANCE 
85 f CALCULATOR 

10 rIF(TAU.L<O.S) 
20 TAU.L-0.5 
30 :ENDIP 
40 ZLDOT=(ZL.IN-ZL)/TAU.L 

INPUT ZLDOT.. 
RESET LOAD. INIT. 
OUTPUT ZL.. 

87 INTEGRATOR 

88 C CALCULATE NEW PROCESS VALUE 
90 CALCULATOR 

10 XlDOT-X2 
20 XZDOT~-((WN**2)*X1)-(2.*ZETA.SIM*WN*XZ)+(KP*(WN**2)*(Z+ZL)) 

100 INTEGRATOR 
INPUT XlDOT.. 
RESET PROC1.INIT. 
ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT Xl.. 

INPUT X2DOT.. 
RESET PROC2.INIT. 
ZERO 0.0000000 
SPAN 1.0000000 
OUTPUT x2.. 

105 * INTEGRATOR 

110 C UPDATE ARRAY USED TO SIMULATE DEADTIKE 
120 * CALCWTOR 

los  : IP(COUNT<=200) 
20 #ADATA 6 [COUNT] -Xl 
30 COUNT=COUNT+l 
40 :ENDIF 
50 :IF(COUNT>ZOO) 
60 COUNT=l 
70 :ENDIF 

130 * C CALCULATE DELAYED INPUT 
140 CRLCULATOR 

10 K=CoUNT-(l/fRATE.Ol6*TAU.DEL)-l 
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20 rIF(Kc1) 
30 lr;-?i+200 
40 rENDIt  
50 YD=#ADATA 6[K] 
60 Y-YD+NOISZ 

1 5 0  C *** END OF PROCESS SIWUUTION CODE 
160 C 
170 C OUTPUT PROCESS V U U E  TO SELF TUNING CONTROLteR 
180 MOOT 

DEVICE 3 
INITIAL 1 
OUTPUT 1 Y.. 
ZERO 1 Y .  ZERO. 
s PAN 1 Y.SPAN. 
TRACK 1 Y .TM. 
RESET 1 Y.RES. 

190 ENDXP 
*LIST 1 

10 ENABLE.. 
20 SELECT.. 
30 REVERSE.. 
40 OVERSW.. 
SO SETPOINT.. 
60 INPUT.. 
7 0  OPMAX.. 
80 OUTPUT2.. 
90 OPMIN.. 

100 PROPI.. 
110 I N T 2 . .  
120 STATUS.. 
130 DONE.. 

*LIST 2 
10 PMEV..  
20 R E L A Y . .  
30 INTEC.. 
40 ACCEPT.. 
50 HYSTER.. 
60 PVAMP.. 
7 0  PERIOD.. 
80 TURESH.. 

10 OPrnAN.. 
20 OPDEV.. 
30 TOTAL.. 
4 0  ACPIU.. 
5 0  LAUBDA.. 
60 PERR.. 
70  ADAPTIVE.. 

*LIST 4 
10 A?.. 
20 D I A C l . .  
3 0  E l . .  
40 DIAG2..  
50 8 2 . .  
60 DIAG3..  

80 DIAGQ.. 
90 B4.. 
100 DIAGS.. 
110 B5.. 

*LIST 7 

70 83 . .  
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120 DIAC6.. 
130 Cl.. 
140 DIAC7.. 

*LIST 9 
10 2..  
15 ZL.. 
17 NOISE.. 
20 Y . .  
30 #TIWE.007. 

*A-ARRAY 1 RW ( 7 ,  1 ) 
*A-ARRAY 2 RW ( 7 ,  1 ) 
*A-ARRAY 3 RW ( 7, 1 ) 
*A-ARRAY 4 RW ( 21, 1 ) 
*A-ARRAY 5 RW ( 7, 1 ) 
*A-ARRAY 6 RW (200, 1 1 
*A-ARRhY 10 RW ( 15, 4 ) 
*FORHAT 9 
10 PS.2,1X,P5.2,1X,F5.2,1X,F5.2,lX812,/ 
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APPENDIX C 

% MOD1FY.M 

% Before using this program, run an external QB program to strip header 
% and timestamp info from the GENESIS testXXX.pm output file, using the 
% !striphdr command. 

% Ask user which test file data to use load the file to matrix testXXX 

num=input(’Enter Test No. to modify : ’,’s’); 
testnum=l)test*,num); 
filename=[testnum,’.mod’]; 
eval([’load ’,filename]) 

% Transpose the testXXX matrix and convert it to a long vector 

testx=evai([’test’,num])’; 
testv=testx(:); 

% Find out how many complete data records there are 

k =fw(iength(testv)/5); 

% Put data into the appropriate vectors 

for j=O(k-1) 
% th(j+l)=testv(j+8+1); 
% tm(j + 1) = testvCj*8+2); 
% ts(j+l)=testv(j*8+3); 

ipo + 1) = testv(j*5 +2); 
op0+l)=testv(j*5+3); 
p(i + 1) = testv(j*S +4); 
io+ 1) = testv(j*S +5); 

sp(j+l)=testv(j*5+1); 

end 

% Create ’proc’ and ’cont’ arrays needed for plotting 

Pr~P=rsp;ip;opl;  
proc = procp’; 
contp= Ip;i]; 
a n t  =contp’; 

173 
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% Display the data 

datap = [ip;sp;op;p;i]; 
data=datap'; 

% DEl3ATAX.M 

start=input('Enter First Sample Number €or Plotting: ','s'); 

last=input(' Enter Last Sample Number for Plotting: ','s'); 

datax=data(eval(start):eval(last),:); 
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% EVALCRXT.M 

start1 =input('Enter Criteria Starting Sample Number: ','s'); 

last1 =input(' Enter Criteria Ending Sample Number: ','s'); 

datay=da ta(eval(start l):eval(last l),:); 

n = fii(length(datay)); 

iae=0; 
ise=o; 
itae=Q 

€or j=l:a 
iae = iae + abs(datay(j,l) - datay(j,2)); 
ise = ise + (datayCj,l) - datay(j,2)) 2; 
itae= itae+ j * abs(datay(j,l) - datay(j,2)); 

end 
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% LA3EL.M 

% M A W  routine to plot and label measurement vs. 
% setpoint, controller output, and controller PI 
% parameter plots (without performance criterion) 
yo _-__-__.._----___-*_” __-_____--_____---__________ 

eval( [ ’dele te ’,test nu m,’.met ‘1) 

clg 
plot(datax( :, 1:2)) 
title([’Measurement vs Setpoint (’,testnum,’)’]) 
xlabel(’Samp1e Number’) 
ylabel(’Percent’) 
% text( 100,90,[’ WE = ’,num;?str(iae)]) 
% text(lO0,85,[’ ISE = ’,nurn2str(ise)J) 
% text(100,80,[’ITAE = ’,numhtr(itae)]) 

eval([’meta ’’testnum]) 
pause 
clg 

plot(datax(:,3)) 
title([’Controller Output’]) 
xlabel(’Samp1e Number’) 
ylabel( ‘Percen t ’) 

meta 
pause 
C k  

plot (d atax(:,4:5)) 
title((’Chntro1Ier PI Parameters’]) 
xlabel(’Samp1e Number’) 
ylabel(’Gain and RepeatsMinute’) 

meta 
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% LABELCRLM 

mal( [’delete ’, testnum,’.rnet’f ) 

clg 
plot (da tax( :, 1~2)) 
title([‘Measurement vs Setpoint (’,testnum,.)’]) 
xlabel(’Sarnp1e Number’) 
ylabel(’Percen t ’) 
text(.72,.85,[’ LAE’],’sc’) 
text(.82,.85,[num2str(iae)],’sc’) 

text(.72,.8,[’ ISE’],’sc’) 
text(.82,.8,(num2str(ise)],’sc’) 
text(.79,.8,[’=’],’sc’) 
text( .72,.75,[’iT~E’],Hc’) 
text(.82,.75,[num& tr(itae)],’sc’) 

text(.79,.85,1‘= ’pc’) 

text(.79,.75,[’=’],’sc’) 

eval([’meta ’,testnumJ) 
pause 
clg 

plot(datax(:J)) 
title((’Contro1ler Output’]) 
xlabel(’Samp1e Number’) 
ylabel( ‘Percent’) 

plo t(da tax(:,4:5)) 
title([’Controller PI Parameters’]) 
xlabeI(’Samp1e Number’) 
yIabel(’Gain and RepeatsMinute’) 

meta 
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' STRIPHDR.BAS 

' Microsoft QuickBASIC ver 4.0 program designed to: 
' (1) input a GENESIS testXXX.pm data file, 
' (2) strip the header and timestamp information, and 
' (3) output the data to a testXXX.mod file 

* 
____-_----_------_c------------------------_---_--- 

' ____-_-__-____-_-_-------------__-_-------"-------- 

INPUT T e s t  File to modify: ", FileNamelS 
INPUT 'Name of Output file: *, FiIeNameB 

OPEN FdeNamelS FOR INF'UT AS #1 
OPEN FiJeNarneS FOR OUTPUT As #2 
IF FdeNarnelS = " THEN END 

CONST QUOTE = 34, COLON = 58 

' Skip the header info 
F O R I = l T O 7  

NEXT 
LINE INPUT #1, LineBufferS 

' Keep modiFying as long as there are enough bytes left in 
' the file. 

DO UNTIL EOF( 1) 

Characters = INPuTs(1, #1) 
CharVal = ASC(CharacterS) 

SELECT CASE CharVal 
CASE QUOTE 

Characters = INPuTs(1, #I)  
CharVal = ASC(CharacterS) 
DO UNTIL CharVal = QUOTE 

Characters = INPUTS(1, #1) 
CharVal = ASC(CharacterS) 

LOOP 

PRINT #2, Characters; 
CASE ELSE 

END SELECT 

LOOP 

CLOSE #1 

CLOSE #2 
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APPENDIX D 

This file is ueed to determine the robustnees of a control eyetem by 
indicating the amount the plant gain and deadtime may be increased 
before the oneet of instability. The algorithm simply finde the gain 
factor K and deadtime that yield8 zero phaee margin. File Robust1.mcd 

F i r g t ,  deacribe the known plant and controller in the s domain 

2.147 
K t -  1 1 i- 5 T := 20 K := .7103 K := - 
P C i 6 0  

Plant WO Deadtime Controller 

K 
P 

r e a  + 1 
G ( 6 )  8' 

P 

Phase 

Maqnitude 

9 

M 

G ( 6 )  := K 
C C 

[. + ;] 

M a  nitude Phaee 

2 0  * log E" [w,]] IO 
- 4 0  - 2 . r  

0.001 w 10 
n 

A linear aearch i s  ueed to find the frequency where 
phaee=-llO degree8 

Supply an initial guesa 0 := . 5  
Then find the frequency w h e r e  phaee margin i s  zero 

Given 

0 . ~ 0 1  w 10 
n 

0 := Find(O) 
2 

0 = 0.116 
z 
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Now compute t h e  g a i n  l i m i t  t h a t  c a u s e s  zero phase margin  

K := - 1 

"E 1 1 

K = 1 . 5 5 5  
1 

T h e  d e a d t i m e  l i m i t  c a n  aleo b e  f o u n d .  W e  f i r e t  f i n d  t h e  z e r o  
db c r o s e i n g  f r e q u e n c y  

S u p p l y  a queen o f  z e r o  db c r o s e i n g  f r e q u e n c y  

G i v e n  

M(O) * 1 

0 := Find(W) 

W = 0 . 0 3 5  
z 

2 

T h e  d e a d t i m e  l i m i t  c a n  t h e n  be computed 

T := 
1 0 

2 

0 1' .001 

T = 4 1 . 9 9 4  
1 
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Thie fi 
indicat 
before 
factor 

le is ueed to determine the robuetnosr of a control syetem by 
ing the amount the plant gain and deadtime may be increased 
the onset of inetability. The algorithm eimply finds the gain 
K and deadtime that yields zero phase margin. Pile Robuet.mcd 

First, describe the known plant and controller in the e domain 

wn I -  . 2  X := 2 . 5  

Plant WO Deadtime 

2 
wn 

G ( e )  t -  
P 2 2 

e + 2d)r.wn.s + wn 

Phaee 

Magnitude 

2.214 
K I =  3.093 x := - 

C i 60  

Controller 

---I C ( e )  := K 
C E 

I (j . O ) . G  ( J  . O )  
C 

-60 
0.001 w 10 

n 

Phaee 

- 2 -  R 

Supply an initial gueae 0 := . 5  
Then find the frequency where phase margin is zero 

Given 

0 := Find(W) 
z 

0.001 w 1 0  
n 

a 
0 = 2 . 7 4 2 . 1 0  
z 
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Now compute  t h e  g a i n  l i m i t  t h a t  c a u s e 8  zero p h a s e  m a r g i n  

K := 
1 

"K 1 1 

17 
K = 6 . 0 7 8 - 1 0  
1 

The d e a d t i m e  limit c a n  also b e  f o u n d .  We f i r e t  f i n d  t h e  zero 
d b  c r o e e i n g  f r e q u e n c y  

S u p p l y  a g u e e s  o f  zero d b  c r o s s i n g  f r e q u e n c y  w := .001 

G i v e n  

x ( o )  - 1 

0 :- P i n d ( O )  

0 = 0 . 1 2 7  
z 

L 

The d e a d t i m e  l i m i t  c a n  t h e n  b e  computed 

T = 1 1 . 6 4 4  
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