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Abstract 

We introduce mixtures of binomial distributions derived by assuming that the 
probability parameter p varies according to some law. We use the transforma- 
tion p = exp(-t) and consider various appropriate densities for the transformed 
variables. In the process, the Laplace transform becomes the fundamental en- 
tity. Large numbers of new binomial mixtures are generated in this way. Some 
transformations may involve several variates that lead to “multivariate” binomial 
mixtures. An extension of this to the logarithmic distribution, with parameter p ,  
is possible. Frullani integrals and Laplace transforms are encountered. 

Graphical representations of some of the more significant distributions are 
given. These include probability functions, regions of validity, and three dimen- 
sional representations of probability functions showing the response to variation of 
parameters when two parameters are involved. 
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1. Introduction 

Here we describe new mixtures of binomial distributions in which the probability pa- 
rameter, transformed exponentially, is taken to  be a random variable with a known 
probability structure. The derived binomial mixtures may depend on several parame- 
ters, which, in general, can be estimated by using the first few sample moments. Once 
the parameters are estimated, the corresponding probabilities are readily computed 
by the use of finite differences. Such methods are applied to  the data of Bender, et 
al. [l] on spontaneous chromosomal aberrations in human blood lymphocytes. These 
authors observe that the Poisson model works well in some cases, but that the Poisson 
characteristic, mean equals variance, does not always hold, and that,  in general, the 
variances exceed the means. The new binomial mixtures presented here include this 
type of "overdispersed" model, as well as models for " underdispersed" data. 

Various generalizations are mentioned including (a) representation for the param- 
eter p as t 2 / ( a 2  + t2), -CG < t < co; (b) truncated densities for p ;  (c) multivariate 
densities for p .  A link is given to  deviates deris- from other densities by varying the 
parameters. One typical case is the variation oi Poisson parameter as a x2 variate. 
Mixtures relating to the logarithmic distribution are studied. 

Historically, Skellam 1111 studied a beta modification of the binomial, deriving the 
expression for factorial moments, as well as an iterative scheme for maximum likelihood 
(m.1.) estimation of the two beta density parameters. He applied his results to data 
on the secondary association of chromosomes in Brassica oleruceu (Catcheside [3]). 
Shenton [lo] studied the asymptotic efficiency of the method of moments, deriving the 
first terms in a rather complicated series. He pointed out that  the Skellam modified- 
binomial may be regarded as a negative hypergeometric distribution which arises also 
in the relation between the binomial and negative binomial distributions. In a related 
study, Bowman, Kastenbaum and Shenton [a] show that the efficiency of the method of 
moments is fairly high over a segment of the parameter space, and does not contradict 
Shenton's [lo] assertion that the method of moments rarely has low efficiency. Indeed 
the study shows a joint efficiency of 99% when the asymmetry of the basic distribution 
is low. The authors also present new expressions for the likelihood equations and a 
brief study of extended series for moments of the moment estimators. 

2. Beta Distribution 

2.1. Beta Density for p 

The binomial probability function being 

B ( z ;  b ,  p )  = (E) pz&-z, (X = 0,1, . , k; 0 5 p 5 1 , p + q = 1; k = 1,2, . . .) 

the beta modified form is 
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Let 

is a simple recursive relationship, with E, P, = 1. It may be readily shown that 

where pt and ps are, respectively, the sth crude and central moments of distribution. 

2.2. M o m e n t  Es t ima to r s  

For the moment estimators of a, p use equation (3),  with sample moments mi, ma 
replacing p i ,  pa. Thus 

(4) 
a’ = mi(-mi -+ km’,)/{lc(m2 - mi)  + mi2} 

p* = (E/mi - l)a* (mi = Z; /TZ,  m2 = mi - mi2) 

2.3. P r o p e r t i e s  

Table 1 demonstrates how a and p values affect the modified distributions, and how 
the results compare with the basic binomial distribution. Values of P,, for E = 5 ,  
(Z = 0, - - -, k), are derived from equations (1) and (2). Similar calculations will yield 
values of P, for k = 20. These were omitted from Table 1 in the interest of conserving 
space. The binomial parameter p = a / ( a  + p),  p i  = Ica/(cr + p),  0 is the standard 
deviation, and Jp; and ,& are skewness and kurtosis parameters. 

We note, from Table 1, that with increases in a, the beta distribution approaches 
the binomial with p = a/(. i- p).  For small a, the beta distributions are skewed and 
platikurtic, and have larger standard deviations. In other words, these distributions are 
overdispersed in comparison with the binomial, in general. Illustrations of the densities 
for k = 20 are given in Figures 1. 
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Table 1: Moments of the Beta Distribution 

k = 5  

4.0000 8.0000 Binomial 4.0000 8.0000 Binomial 
1.3437 1.2426 1.1180 1.3553 1.2454 1.1066 
0.0000 0.0000 0.0000 -0.1991 -0.1721 -0.1291 

pz 
0.0707 0.0511 0.0312 0.0455 0.0294 0.0145 
0.1768 0.1703 0.1562 0.1299 0.1176 0.0964 
0.2525 0.2786 0.3125 0.2165 0.2353 0.2570 
0.2525 0.2786 0.3125 0.2597 0.2941 0.3427 
0.1768 0.1703 0.1562 0.2273 0.2311 0.2285 
0.0707 0.0511 0.0312 0.1212 0.0924 0.0609 

4.0000 8.0000 Binomial 4.0000 8.0000 Binomial 
1.3214 1.2054 1.0541 1.1547 1.0445 0.8944 
-0.5045 -0.4346 -0.3162 -1.1135 -0.9574 -0.6708 

p = a  p = 344 

2.2531 2.4115 2.5528 2.2630 2.4234 2.5758 

p = 4 2  p = a14 

2.4818 2.5891 2.6838 3.6429 3.4551 3.0447 
PZ 

0.0238 0.0128 0.0041 0.0079 0.0030 0.0003 
0.0794 0.0641 0.0412 0.0317 0.0200 0.0064 
0.1587 0.1648 0.1646 0.0794 0.0719 0.0512 
0.2381 0.2747 0.3292 0.1587 0.1798 0.2048 
0.2778 0.3022 0.3292 0.2778 0.3297 0.4096 
0.2222 0.1813 0.1317 0.4444 0.3956 0.3277 

k = 20 
p = a  p = 014 

4.0000 8.0000 Binomial 4.0000 8.0000 Binomial 
3.9441 3.2540 2.2361 4.0658 3.3320 2.2131 
0.0000 0.0000 0.0000 -0.1835 -0.1447 -0.0645 
2.4312 2.6444 2.7764 2.4243 2.6395 2.7b79 

p = a / 2  p = 344 
4.0000 8.0000 Binomial 4.000 8.000 Binomial 
4.0630 3.3076 2.108 3.6515 2.9542 1.7889 
-0.4717 -0.3743 -0.1581 -1.0563 -0.8463 -0.3354 
2.6099 2.7596 2.8419 3.6911 3.4860 3.0224 
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Figure 1: k = 20 
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3. Generalized Mixtures of Binomials 

3.1. Density on (0, 1) 

The Skellam [ll] distribution treats the probability parameter p as a beta random 
variable with density 

Families of binomial distributions exist that are generalizations of the beta-binomial. 
A more general binomial mixture is 

( 5 )  

where f(p) is a valid density on interval (0, 1). The r th  factorial moment, 

where dT) = z(z - 1) ---(z - T f l), is remarkable for its simplicity; note that p' 
resents the first non-central moment. For a probability parameter p ,  with distri l? ution rep- 
function o(p), the factorial moment generating function is 

From this expression, both non-central and central moments may be set up. However, 
the central moments may be computed more directly from p ,  = E(% - pia)'. Hald [5] 
gives asymptotic results for forms like (5) with f(p) a density on (0, 1). In particular 
he gives numerical error values when f(-)  is a beta density. 

3.2. Transformed Beta Density 

Since p satisfies 0 5 p 5 1, we may consider the transformation, p = e - t ,  (0 5 t < 00) 

and the resulting, generalized binomial distribution 

where q5(t;ct) is a valid density on (0, oo), with parameters al, - --,am. More generally, 
we may use the Stieltjes form 

For 4( t ;g)  = 0 (except when t = lodl/p)), (6) reduces to  the binomial. Another 
possible transformation is p = t 2 / (  1 + t Z ) ,  with --oo < t < 00. 
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The probability function in (6)  is espressible in terms of the Laplace transform of 
4(.) or o( .). Thus if 

~ ( s ;  4) = lrn e-s td ( t ;g )d t  ( s  > 01, 

is assumed to  exist, then 

with a similar expression for the case of a discontinuous density. The summatory term 
in (7) will be recognized as an advancing difference. 

Factorial moments readily result from 

00 

41 = n(7) e - r 4 ( i ;  a)di = n ( r ) ~ ( r ;  4). 

A list of possible forms for these generalizations is given in Table 2 and Table 3. It 
seems reasonable to  describe these forms as mixtures which, to  our knowledge, have 
not been described in the literature. 

One case that does not arise obviously from the variation of parameters is model 
29 for which 

we assiime positivity and integrability. In particular J,"c$(t)dt = 1. Then for the 
transform, (Hardy [6], p126), take 

For example, for the case 

$ ( t )  = k(Ae-'* + Be-bt + CeWct - e W d t ) / t 3 ,  

we may take as a valid density 

A = ( d  - b ) ( c  - d ) / { ( a  t b)(c  - a ) } ,  

c = ( b  - d) (d  - a ) / { @  - c)(c - a ) } ,  
B = ( a  - d) (d  - c ) / { ( u  - b) (b  - c)}, 

and similar confluent expressions, when there are equivalences. In particular, for the 
t wo-parameter case, 

we have 
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Table 2: Generalized Binomial Distributions (1 - 15) 

Model 

j 

1 

2 

3 

4 

5 

9 

10 

11 

12 

13 

14 

15 

limits 

O < p < l  

a > b > O  

k > O  

k > O  

b > a > O  

a > O  

b > a > O  

B > A > O  

B > A > O  

R , A  > 0 

a,u > 0 

Functions in 5 ,  7, 11, and 14 are classical functions defined, for example, in 

Handbook of Mathematical function, AMS 55,  National Bureau of Standard. 
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Table 3: Generalized Binomial Distributions (16 - 29)  

Model 

j 

17 I tanh (2) eVbtl sin(at)l 

b3$4az b)e-b‘ cos2(at 

21 ( 2 k / t ) e - b t  sinh(at) 

26 ce-a ter fc  (6) 
27 

28 (see paragraph 3.3) 

29 
k(Ae-O.t+Be-bl+ ...) 

t m  

@(s) = e-3 t4( t )d t  

{ 2a2+ ( ~ + b ) ~ } (  b3 +4&) 
( 2 a 2 + 6 2 ) {  (6+~)~+4a2(b+3)1 

k { E i ( - a  - B )  - Ei(a - B ) }  

limits 

a,u > 0 

b > O  

b > O  

b > O  

b > O  

t > 0 , b  > a 

B = b + s  

b , a  > 0 

( b  > 0) 

a > 0 , k  > 0 

k > 0,a > 0 

a > 0 , k  > 0 

k > 0,a > 0 

-m > 1 / 2  

O < t < w ;  

m = 1 ,2 , . . .  
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k 
2! 

= -{a21na - 3 ( u  + b)21n(a + 6 )  f 3(a + 2b)26(a + 26)  - ( a  + 3b)2b(a t 3 b ) ) .  

If 

then 
@(s) = Q ( S ) / ! P ( O ) .  

Clearly @(s) is a valid density over s > 0. 

3.3. Pearson Type IV Density (Student's t included) 

A different kind of mixture, Model 28, (Table 3), is based on Karl Pearson's Type IV 
density. In this case 

We use 

- k  tan-'(t/a) 2 2 d(t; a,  k) = 31oe / ( t  / a  + 1)" (-00 < t < 00;m 2 1/2), 

which is independent of a, so that 

Defining 

we can either integrate by parts and derive the recurrence 

Qz = ((2 - 1)Qz-2 - kQz-1)/(21v - z - 1) ( N  = m + n ; x  = l,...), (8) 
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with Qo to  be determined, or ma.ke the transformation t = tan 0 and consider integrals 
such as 

M ( M  - 1) 
G ( M  - 2, k), (see K. Pearson[8]). 

M2 + k 2  G ( M ,  k) = cosM Oe-kedO = 
--AI2 

Qo, in (8), is given by 

and Q 1  = -kQo/(2n  + 2m - 2) .  Similarly for the r th  factorial moment of the binomial 
distribution, 

In particular, 

n( k2 + 2m) (2)  {k4 + (12m + 4)k2 + 12m(m + 1)) 
4 1 1  = (k2 + 4m2) 7 4 2 1  = n ( k 2  + 4n22){k2 + 4(m + 1)2} 

Moment estimators (k*, m*), based on these equations, are found from the relationships 

Am*3 f Bm*' + Cm' + D = 0, = 2m*(2m*v1 - 1)/(1 - VI), 

+ 4 4  (2-3v2) 
1 - 4  

+ 4 - - 8 ~ 1  
l-Lq 

D = -2(1 - v2)/(1 - u1). 

The validity of these equations is conditioned by the restraints, m* >_ 1/2 and 2m*q 2 
1. 

Properties and figures, related to  the generalized binomial distributions may be 
found in the appendix. 
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3.4. Applications 

We now apply the moment approach to  Catcheside's [3] data on the secondary associ- 
ation of chromosomes in Brassica, using Models 2, 15, and 28. (Note: There may be 
no solutions to the moment equations. In fact, solutions may exist that  do not yield 
valid probabilities.) Thus for Model 2 

b' b* P' 

mi = 3 (--> b* + 1 
= 1.741840, mi,] = 6 (-)'* b- +- 2 = 2.148368, 

and b* = 7.537223, p" = 4.363957, with $(t) = ~oe-7.537223tt3.363957. For Model 15 the 
density is not always positive. However, the moments 

R(a2 t u )  k(2) ( a2 + u)  
A = (. + 1)2 + u' 4 2 1  = (a + 2)2 + u' 

and 
u = { ( a  + 1 ) 2 y  - 2}/(1- VI), 

Estimates of the Model 15 parameters are 

a* = 1.574527, U* = 3.264956. 

For Model 28, 

Moment estimators are found from 

rnt,] = k(w2 t 2m)/ (w2 + 47723, 

In Table 4, the fits of three generalized binomials (Model 2,15 and 28) are compared 
with Skellam's modified binomial. Also the results of fitting Models 2 and 15 to a second 
set of data presented by Skellam appear in Table 4. 

Here the computed moments are mi = 0.465224, and mi2] = 0.44204, and the 
corresponding parameter estimates are 

Model 2 b" = 1.1183, p* = 3.7171, 
Model 15 a* = -0.1062, u* = 0.0695. 
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Number of Associations 
0 
1 
2 
3 

Degrees of Freedom 

X 2  

Table 4: Skellam's Example 

Observed Skellam Model 2 Model 15 Model 28 
32 33.92 33.90 31.98 30.37 

103 97.24 97.28 103.06 99.59 
122 127.76 127.73 121.94 133.97 
80 78.08 78.09 80.02 73.20 

1 1 1 1 
0.76 0.75 0.00007 1.91 

Number of Associations 
0 
1 
2 
3 
4 

5 or more 

X 2  

Degrees of Freedom 

In this application we note that the Model 2 parallels the Skellam very closely, but 
that  the Model 15 cannot be excluded as a reasonable fit. 

The da ta  presented by Bender, et  al. [l] provide additional applications. These 
authors caution that their data, in many instances, depart from the Poisson, with 
variances generally larger than means. The results of applying Models 4, 24, and 15 to  
one of these data  sets are presented in Table 5. For Model 4, 

Observed Skellam Model 2 Model 15 
447 448 448.32 442.07 
132 129 128.05 142.99 
42 47 46.77 38.45 
21 17 17.20 15.03 
3 5 5.49 6.28 
2 1.4 1.17 2.18 

3 3 3 
2.60 3.18 5.32 

and w* = 6.9819, with 4(t)  = &,el2.l9ft/t3f2. 
For Model 24, 

m/, = 3ew0{&'-J.';i7T) = 0.0028, mizl = 6e w*{6*-m) = 0.00026. 

and w* = 7.4431, a* = 0.0041 with 4(t)  = 4oe-0.0*4Xt-13.851t It 3 2 

For Model 15, 
U* = -0.4494, U* = -0.2018. 

The parameters estimated for the Model 2 fit to the second set of data are b* = 1.7718, 
p' = 5,2926. 

Model 4 and Model 24 are variations of the Poisson distribution with the variance 
greater than the mean. As the x2 values show, they provide a satisfactory fit to the 
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Number of Aberidiions 
0 
1 
2 
3 

X 2  
Number of Aberrations 

0 

Degrees of Freedom 

Observed Poisson Model 4 Model 24 Model 15 
85571 85561.33 85573.77 85571 -60 85570.72 

220 238.34 213.93 218.11 220.84 
8 0.33 12.30 9.95 7.16 
1 0.34 1.28 

1 1 1 1 
229.20 1.06 1.68 0.16 

Observed Poisson Model 2 
267 244.61 271.14 
110 137.42 100.92 
33 38.60 37.80 
14 7.23 13.54 

1 
Degrees of Freedom 3 3 

X 2  27.73 2.33 

3 4.33 
1 11.14 }1.27 
1 

data. Their meaning, however, in a biological context, remains to  be explained. 

4. Truncated Densities for p 

Finally we note that the generalized binomial mentioned in Section 1 belongs to  the 
family 

4 ( p )  being a valid density on (0, 1). If 4(.)  is a point mass distribution, then the 
classical binomial is returned. A truncated form, namely, 

where +(-), a valid density on (u ,  v), suggests itself. Thus the beta density, 

involves four parameters a, p, u ,  and v, where u, v relate to the range of p.  A moment 
solution using the first two moments and the trial values of u, 2) may be optimized for 
a minimum x2 value. 
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Expression (9) may be written as 

y-l(i - y)B-ir(a + p) 
J3 f f  >r(p 1 dY B(n;  6; u, w) = ($ il{u+(w - u)y}2’{1 - 21- (w - u)y}”-“ 

involving four parameters u, w, a ,  and p, the first two of which define the range of 
the probability parameter p in (9). The “binomial” probabiLities B(n; 4; u, w) may be 
evaluated by quadrature or by expanding the two binomial components of the integrand. 

, .n where n 2 6 it is possible to  use the 
first four sample moments misl(s = 1 N 4) to  determine a solution, if solutions exist. 
However, mi3] and mi,] may involve high sampling variation in general. An alternative 
is t o  select values of u, w, and then use the first two moments mill and miz] to determine 
a* and p*. If a* and p* are positive, then a unique solution is availab e. Thus, there 
are two criteria for deciding on the optimum choice of u and w: 

Given frequency data on the integers 0,. 

0 Minimize the goodness of fit x2 value; 

0 Compute the skewness and kurtosis, and look for the closest approximation to  
the normal values, (0, 3). 

* (v1 - 4-x. + 4.1 - - v2) ) p* = a (v - v1> a =  
(v - 4 ( v 2  - .;) (v1 - 4) 

are solutions, provided they are positive. 

TI. In this case 
It is also useful t o  guess at values of a*, /?* in order to arrive at estimates of u and 

u* = v1 - 4 { ( v 2  - .,”)(a* + /?* + l ) a * / p * } )  21. = u* + (v1 - u*)(a* + p*>/a*. 

For an example, David and Johnson [4] gave data  on the distribution of the number 
of defective teeth in 11 year old boys. These data were used by Ran and Chakravarti 
[9] for the test for a Poisson distribution. Here n = 12, N = 265, mi,] = 2.573585, 
mi2] = 9.841509, with variance m2 = 5.791755, greater than the mean. 

For the model of equation (9) we calculate a Pearson X2-value of 6.81, with five 
degrees of freedom, when u = 0.001, w = 0.85, a* = 0.942848 and /?* = 2.80707. This 
fit (Table 6) appears to  be satisfactory. By way of comparison, when u = 0, and v = 1, 
we found a* = 1.05056, /?* = 3.84794, and x2  = 6.78 with seven degrees of freedom. 

Another alternative is to  use the model of Model 1 (Table 2) transformed onto (0, 
1). We calculate a Pearson X2-value of 7.01, with five degrees of freedom when u=O.OOl, 
v = 0.800, b* = 1.2898 and p* = 2.2996. By way of comparison, when u = 0 and v = 1, 
we found b* = 1.7506, p* = 3.4073, and x2 = 7.30 with seven degrees of freedom. 

In a number of cases which we have studied, the introduction of the interval pa- 
rameters (u ,  w) does not always provide improvement. 
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Defected teeth 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Degrees of Freedom 
Y2 

Table 6: David and Johnson Data 

Number of boys Poisson Equation (9) 
61 20.21 61.81 
47 52.01 50.10 
43 66.93 40.47 
35 57.41 32.36 
28 36.94 25.34 
15 19.01 19.26 
20 8.16 14.06 
5 3.00 9.69 
5 0.96 6.16 
2 
1 
2 0.37 5.74 
1 

8 5 
224.30 6.81 

Model 1 
61.58 
50.60 
40.48 
32.13 
25.14 
19.19 
14.12 
9.82 
6.27 

5.69 

5 
7 -00 

5.  Further Binomial Mixtures 

5.1. Exponential Density 

In Section 3, we introduced binomial mixtures defined as 

Pr(X = E )  = JoDDe-ztjl - e-t)k-”$(t>dt (z = ~,-..,n;k = I,...) 

where +(t) is a valid probability density on ( 0 , ~ ) .  For the most part we do not 
use the purely discontinuous case. Here we show a link with distributions arising as 
probability densities subject to  random variable parameters; for example, the Skellam 
[ll] distribution, which assumes that the binomial probability parameter p has a beta 
distribution. 

In addition, we list further examples of binomial mixtures including multivariate 
densities which may have interest or applicability. Diagrams are presented to  give some 
insight into the question of modality of mixtures, because we have encountered serious 
problems with approaches that are purely mathematical. 

Let 
&(t,a> = ore-”t ( t  0; Q > 0) 

be the basic distribution, where cy has the distribution 

# ~ ~ ( a )  = k / a ,  (0 < A 5 a < B;k = l / ln(B/A)).  (10) 
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Then the (variated) basic distribution becomes 

$ u ( t )  = {e-At - e-Bt}/{tln(B/A)}, (0 < t < m) (11) 

= 0, ( t  < 0). 

The corresponding binomial mixture is 

Upon expanding the second binomial factor in the integrand, we require the fundamen- 
tal entities 

~ ( s )  = 1 e-st+v(t)dt, 
cc 

which, from (12), yields ( A  3 A + s, B -+ B t s) 

@(s) = h{(B 3- s) / (A + s)}/ln(B/A). 

We notice the role played by Laplace transforms in (12), and the appearance of 
Frullani integrals (see Hardy [GI) from (12). We have, for simplicity, sometimes omit- 
ted the parameter in probabilities such as $ v ( t ) ,  which doubtless should be written 

d u ( G  A, B) .  
There are several generalizations. First, take the cases: 

with CY varying as (10). Then 

&(t)  = ((1 t At)e-At - (1 t Bt)e-B'}/{tln(B/A)}, ( t  > 0) 

= 0, ( t  0) 

and 
B + S  A B 

@(s) = {In (-) A + s  f (- A f s  - -)} B + s  / ln(B/A),  

and 

Take another case: 

4 b ( t )  = "+'tme-af/m!, ( t  > 0; a > 0, m = 0, - * e). 

Then if CY varies as in (10) 
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where 

and 

5.2. Modified Exponential 

with a varying as in (10). Then 

where El(z) is the exponential integral. Thus 

and for the binomial mixture 

1 Bs + 3 

'(') = ( B  - A)s  In (m) 
(Note that @ ( O )  = lim,,o @(s) = 1). 

5.3. Another Example 

@(s) = {h (-) B - t s  + - A - 
A + s  A t s  

5.4. Gamma (Chi-squared) 
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where lp has the density 

Then 

which in terms of a Bessel function, gives 

For the Laplace transform function, after simplification, 

U 
@(s) = - du. qT) JOO e-" 1  us '-' 

6. Miscellaneous Geiieralizations 

6.1. Binomial Gamma-Gamma Mixtures 

Let 
g ( t ; u , T )  = e-a t t rur+l /T!  (u  > O , T  > -1;0 < t < CQ) 

and 

* 
h( t ;  T )  = e - V / / r ! ,  

so that rnuz(h) occurs when t = T .  It follows that 

The binomial gamma-gamma mixture is 

and 

with 
@ ( O ;  I C ,  To; a,  ?-) = 1. 
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The binomial gamma-gamma mixture is now defined as 

depending on the parameters I ; ,  T O ,  a,  and T .  

In particular with TO = 1 

and 
@(s; T )  = ar+'e3(s + T ) ! / ( ( U  + s )r+s+lr!} ,  

pi = Ca'+'(r + l ) e / ( a  + I)'+'. 
with 

6.2. Mixtures and Multivariate Densities 

Consider the mixture 

where the density of p1 is &(PI) for (0 L: p l  _< l), and 0 elsewhere, and similarly for 
the remaining variates p2, p 3 , .  - , P m ,  which we assume to be independent. Then by 
expansion 

where 
@ m ( s )  = q l ( s ) q 2 ( s ) " . @ m ( S ) ,  

and 

W) = I 1 P ; h ( P l ) 4 J l .  

Similarly for U ~ ( S > ,  .--, \Em(s).  In the case of identically and independently distributed 
(i.i .d .) variates, 
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Examples 

Let the common density be the uniform V ( 0 , l ) .  Then 

(rn = 1,2, * * ;z  = 0 , l ) .  * .,q. 

If m = 1, the binomial mixture becomes the discrete uniform with probabilities 
1 / ( k  + 1). 

The factorial moments are, 

p[,] = IJr)/(r + I ) ~ .  

and clearly as m --+ 00, the binomial mixture tends to a point mass at 2 = 0. l n  
general the multivariate case tends to concentrate the binomial probabilities near 
the origin. 

If the variate follows a beta density with parameters cy and P ,  then, in the mul- 
tivariate case (i.i.d.) 

Alternatively, one may use 

the integration being from A to  B ( B  > A > 0). Here 

For example, in Skellam's example (k = 3) we could try A = 0, B > 0 with 

m 

' ; = n ( l y B )  . 
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0 For the mixture use 

depending on m parameters. If the range of each variate is 0 5 A 5 t < B ,  then 

0 For another example, take 

Multivariate 

@*(s) = { @ ( S ) } m  (m = 1,2,  - .). 
Guess m (positive integer), and solve p i  = k(@(l)}m for A .  Search for min x2. 

0 For yet another example, take 

For the multivariate case (i.i.d.), we have @,(s) is { @ J ( S ) } ~ .  

7. Mixtures of Logarithmic Distributions 

7.1. General Forms 

For the logarithmic distribution 

Pr(X=2)=p'/{ZIn(l-p)-'}, ( z =  1 , 2 , . . . ; 0 < p <  1). 
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Following the ideas in Section 3, we consider the mixture 

for a valid density (parameters PI, pz,. .) on (0, oa). The probability generating func- 
tion (p.g.f.) is 

oc) 

ln(we-t + 1 - w)dt = c w '  Pr(X = z),  (IwI 5 1) (15) 
1 

P ( w )  = - 

with factorial moments, if they exist, 

41 = so O0 ef(l-e-f)4(t; t ppt ,  

7.2. Gamma Density 

and 

Factorial moments of order s or less exist, if b > s. In fact 

There are three cases to consider: 

e p > 1. By expansion of (1  - 

b P-1 

Pr(X = z; b, p )  = -- b ( 5 )  (b+r) ( P  - 1) r=O 

Note if p = 2, then 



- 23 - 

For example, 

Pr(X = 1 ;  b ,  2 )  = l / ( b  + 1)  

Pr(X = 2; b, 2 )  = l ! b / { ( b  + 2 ) ( b  t I)} 

Pr(X = 3;  b ,  2 )  = 2 ! b / { ( b  + 3 ) ( b  + 2 ) ( b  + 1)) etc. 

This is a factorial-type series (see Johnson and Kotz [7]). The mean exists if 
b > 1, the variance if b > 2 and so on. The distribution will be long-tailed if 
b ( >  0) is small. The probability generating function is 

with s th  factorial moment 

0 p = 1. Here 

this being a Frullani integral (Hardy [6 ] ) .  

0 0 < p < 1 .  To allow for the apparent singularity at t = 0 in (14), we consider 

for which the integral of a finite sum is that of the sum. A typical term is now 

and the integral component is 

The first term in the sum is dominated ( E  + 0) by 

8 - 1  2 (;) { 1 - ( b  + f ) E  + 
r=O r =O 
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Table 7: Example 

Pr(X = z; 1,1/4) 
0.90905 7 
0.056052 
0 .O 15682 
0.006712 
0.003551 
0.002135 
0.006811 

j 
57 

Pr(Ji = s; 5,1/4) 
0.976876 
0.020036 
0.002360 
0.000494 
0.000284 
0.000050 
0.000021 

and will approach 0, since p > 0. Finally for 0 < p < 1. 

In particular 

2 Pr(X = 2; b, p )  = -bP{b'-P - 2 ( b  + 1 ) l - p  + ( b  + 2)- / ( I  - P ) ,  

3 Pr(X = 3; b , p )  = --bP{b'-p - 3 ( b  + 1)l-P + 3(b  + 2)l-P - ( 6  + 3 ) ' - P } / ( l -  p ) .  

values for b = 1, p = 1/4 are shown in Table 7. From (15), moments do not exist. 

By contrast, for 6 = 5,p = 1/4, and mean approximately equal to 1.027, derived 
values are shown in the Table 7. Expression (15) expands as 

for b = 5 , p  = 1/4. 

7.3. Riemann Zeta Function ((s) Density 

Take 

Then 
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In particular for s = 2, Pr(X = x) = G / ( r 2 x 2 )  (x = 1,2, - .  .). 

7.4. Uniform Density 

7.5. Triangular Density 

Here 

4(t) = 2t/A2, (0 < t < A )  
= 0, otherwise 

and 

7.6. Trigonometric Density 

and 

Thus 

1 (b2 + 4 4 b  
Pr(X = x) = - 

x 8a2 

x I n  (1 + s) - ( 7 )  In (1 + 4a2 ) + (;) In (1 t *a2 ) - . . -1 . 
( b  t 1)' ( b  + 2)2 

7.7. Beta Density 
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This reduces to a Frullani integral if LY is a positive integer. The s th  factorial moment 
is 

8. Concluding Remarks 

Using a truncated form of the beta density, or any other appropriate form of the dis- 
tribution of the binomial parameter p ,  it may be possible to  gain some insight into the 
variation of p among sets of observations. The search technique for truncation param- 
eters suggested here becomes feasible with the aid of a computer. Suitable examples to  
test models seem to be rare in the literature, perhaps because poor fits of the binomial 
were naturally withheld from publication especially in the early part of the century. 
Nevertheless, with the accumulation of massive data sets in biology and other areas 
of research, one should expect to  find numerous applications in which the probability 
parameter p is confined to  a subinterval of (0, 1).  
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APPENDIX 

A. Graphical Analysis 

The following is a graphical analysis of a set of generalized mixtures of binomial distri- 
butions. 

In addition to  the graphical analysis, the skewness and kurtosis of the distributions 
were used in order to  compare them with the Pearson-type frequency curves. Models 
7 and 14 were not compared in this fashion, because of the difficulty in obtaining data. 

In what follows, n is taken to  be 20. "sd" denotes the standard deviation, "skew" 
denotes the skewness, and "kurt" denotes the kurtosis. 

A . l ,  Model 1 

The model 1 distribution is simply the binomial distribution. A short description will 
be helpful in comparing it with the other mixtures. 

For the model 1 distribution, f ( s ; p  = p o )  = f ( n  - x ; p  = 1 - P O ) ,  for 0 < po < 1. 
The model 1 distributions are in the form of bell-shaped curves. When p = 0.5, the 
distribution has skewness=O, the kurtosis is a t  a minimum and the standard deviation 
is at a maximum. Thus as p deviates from 0.5, the kurtosis increases and the skewness 
decreases. When p is very close to  0 or 1, the distribution becomes J-shaped. When 
p < 0.5, the distribution is skewed to  the left (skewness> 0); when p > 0.5, the 
distribution is skewed to  the right (skewness< 0). 

For 0.03 5 p 5 0.97, the model 1 distribution could be classified as a Pearson type 
I distribution. For p 5 0.29 or p 2 0.98, it could be classified as a Pearson type I(J) 
distribution. 

P :  0.1000 0.3000 0.5000 0.7000 0.9000 
sd: 1.3416 2.0494 2.2361 2.0494 1.3416 
skew: 0.5963 0.1952 0.0000 -0.1952 -0.5963 
kurt: 3.2556 2.9381 2.9000 2.9381 3.2556 

A.2. Model 2 

The model 2 distributions include J-shaped and bell-shaped curves. For small b ,  in- 
creasing p changes the distribution from a U-shaped curve to a J-shaped curve with 
skewness.< 0 to a bell-shaped curve with skewness> 0. For larger b, increasing p changes 
the distribution from a J-shaped curve with skewness< 0 to  a bell-shaped curve with 
skewness< 0 to  a bell-shaped curve with skewness> 0. 

In general, for p < 1, the model 2 distribution could be classified as Pearson type 
I(U) when b < 0.5 and Pearson type I(J) when b > 1.0. For p > 1 ,  it could be classified 
as Pearson type I(J) for b < 1 and Pearson type I for b > 2 or b > 3. 

Note that f(z; b = 1 , p  = 1 )  is a discrete uniform distribution. 
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P 
b / 2  sd: 

skew: 
kurt: 

b sa: 
skew: 
kurt: 

3b/2 sd: 
skew: 
kurt: 

2b sd: 
skew: 
kurt: 

b = 0.50 
6.1950 

3.0240 

6.9394 

1 .6560 

6.7409 
0.2208 
1.6616 

6.1824 
0.6393 
2.1391 

-1.1629 

-0.3025 

b = 1.00 b = 2.0 b = 4.0 b = 8.0 
5.7910 5.0553 4.2248 3.4980 

2.5053 2.3922 2.4870 2.6379 
-0.S181 -0.5671 -0.3927 -0.2770 

6.0553 4.9876 4.0181 3.2845 
0.0000 0.1820 0.2488 0.2401 
1.7945 2.1348 2.4692 2.6916 

5.49.56 4.2789 3.3340 2.7016 
0.5255 0.6712 0.6614 0.5672 
2.2163 2.7866 3.0881 3.1342 

4.7140 3.4775 2.6312 2.1224 
0.9625 1.0776 0.9948 0.8297 
3.1221 3.8578 3.9680 3.7118 

A.3. Model 3 

The model 3 distribution is in general J-shaped. Fixing b and increasing a changes the 
distribution from a J-shaped curve with skewness> 0 to a relatively uniform curve to a 
J-shaped curve with skewness< 0. Fixing a and increasing b results in similar changes. 

For b < 0.4 and a < 1, the model 3 distribution could be classified as Pearson type 
I(U). For larger values of a and b ,  it could be classified as Pearson type I(J). 

b a = 1.0 a = 2.0 a = 4.0 a = 8.0 
a/5 sd: 6.2675 6.3548 5.6090 4.3073 

skew: 0.6926 0.0524 -0.5424 -1.1064 
kurt: 2.1743 1.7219 2.2354 3.6662 

2a/5 sd: 6.3021 5.8948 4.7321 3.3308 
skew: 0.3960 -0.2194 -0.7810 -1.2739 
kurt: 1.8724 1.8925 2.8178 4.4619 

3a/5 sd: 6.2338 5.5389 4.2219 2.8597 
skew: 0.2209 -0.3739 -0.9030 -1.3443 
kurt: 1.7920 2.0766 3.1838 4.8197 

4a/5 sd: 6.1448 5.2673 3.8879 2.5799 
skew: 0.0966 -0.4823 -0.9876 -1.3976 
kurt: 1.7792 2.2422 3.4576 5.0770 

A.4. Model 4 

The model 4 distribution is generally bell-shaped. For very small k,the distribution is J- 
shaped with skewness< 0. Increasing k causes the distribution to  become bell-shaped, 
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decreasing the skewness and the kurtosis. When the skewness becomes positive, the 
kurtosis begins to increase. For large k, the distribution is again bell-shaped. 

For 0.03 5 k 5 0.51, the model 4 distribution could be classified as a Pearson type 
I distribution. For k 5 0.02 or k 2 0.52, it could be classified as Pearson type I(J). 

k: 0.1000 0.4000 1.0000 2.0000 4.0000 
sd: 1.3123 2.1023 2.1566 1.5298 0.5997 
skew: -0.6170 -0.1620 0.1225 0.4767 1.6065 
kurt: 3.2807 2.9263 2.9150 3.1273 5.4808 

A.5. Model 5 

The model 5 distribution is either J-shaped or U-shaped. Increasing k changes the 
curve from J-shaped with skewness< 0 to U-shaped to J-shaped with skewness> 0. 

For k 5 1.55, the model 5 distribution could be classified as Pearson type I(J). For 
k 2 1.56, it could be classified as Pearson type I(U).  

k: 1.0000 2.0000 4.0000 8.0000 
sd: 5.5153 6.5717 6.9035 6.5275 
skew: -0.7655 -0.2162 0.3390 0.9235a 
kurt: 2.5280 1.7058 1.6734 2.4338 

A.6. Model 6 

The model 6 distribution is either J-shaped or U-shaped. Fixing a and increasing b 
changes the distribution from a U-shaped curve with skewness> 0 to  a J-shaped curve 
with skewness< 0. Fixing b and increasing a causes a similar change. 

For a < 0.1 or b < 1, the model 6 distribution could be classified as Pearson type 
I(U). For larger values of a and b, it could be classified as Pearson type I(J). 

b a = 0.25 a = 0.5 a = 1.0 a = 2.0 
3a/2 sd: 7.3742 6.6608 5.3703 3.8488 

skew: 0.0410 -0.4574 -0.9812 -1.5095 
kurt: 1.4726 1.8338 2.9257 4.8784 

3a sd: 7.0902 6.0679 4.6375 3.1870 
skew: -0.2446 -0.7621 -1.3123 -1.8648 
kurt: 1.5946 2.3543 3.9950 6.6561 

9a/2 sd: 6.8379 5.6778 4.2301 2.8578 
skew: -0.4325 -0.9680 -1.5447 -2.1251 
kurt: 1.7779 2.8347 4.9160 8.1789 

A.7. Model 7 

The model 7 distribution is U-shaped. Increasing a changes the skewness from positive 
t o  negative. For small and large values of a ,  the kurtosis is larger and the standard 
deviation is smaller. 
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The model 7 distribution has not been classified in regard to  the Pearson distribu- 
tions. 

a: 0.1000 0.5000 1.0000 2.0000 5.0000 
sd: 6.1092 7.1723 6.7103 5.6720 3.8671 
skew: 1.3962 0.0879 -0.4377 -0.9935 -1.8017 
kurt: 3.5853 1.5177 1.8184 2.9097 6.1301 

A.8. Model 8 

The model 8 distribution is generally J-shaped. Fixing b and increasing a changes the 
distribution from a J-shaped curve with skewness> 0 to  a relatively uniform curve to a 
J-shaped curve with skewness< 0. Fixing a and increasing b is accompanied by similar 
changes. 

For large values of a ,  the model 8 distribution could be classified as Pearson type 
I(J). For smaller values of a ,  it could be classified as Pearson type I(U) for small values 
of b and Pearson type I(J) for larger values of b. 

b a = 0.5 a = 1.0 a = 2.0 a = 4.0 a = 8.0 
3a/2 sd: 6.2552 5.8417 4.6582 3.2532 2.0967 

skew: 0.4272 -0.1884 -0.7376 -1.2057 -1.5739 
kurt: 1.9092 1.8885 2.7486 4.2386 5.9437 

2a sd: 6.2640 5.6448 4.3647 2.9873 1.9082 
skew: 0.2633 -0.3379 -0.8791 -1.3390 -1.6969 
kurt: 1.8030 2.0249 3.1028 4.7806 6.6019 

3a sd: 6.1926 5.3074 3.9468 2.6387 1.6697 
skew: 0.0155 -0.5728 -1,1122 -1.5696 -1.9184 
kurt: 1.7633 2.3535 3.8066 5.8436 7.9062 

A.9. Model 9 

The model 9 distribution is, in general, J-shaped. Fixing B and increasing A changes 
the distribution from a J-shaped curve with skewness< 0 to  a relatively uniform curve 
to  a J-shaped curve with skewness> 0. 

For A > 1, the model 9 distribution can be classified as Pearson type I(U). For 
A < 1, it can be classified as Pearson type I(J) for small values of B and Pearson type 
I(U) for larger values of B .  
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B 
5A/4 sd: 

skew: 
kurt: 

3A/2 sd: 
skew: 
kurt: 

2A sd: 
skew: 
kurt: 

A = 0.3 A = 0.6 
4.2728 5.5775 

3.0730 2.0336 
-0 .8~01  -0.3331 

4.4996 5.7391 

2.8902 1.9447 
-0.7946 -0.2535 

4.8900 5.9821 

2.6014 1.8311 
-0.6806 -0.1172 

A = 1.0 
6.1474 
0.1002 
1.7791 

6.2110 
0.1877 
1.7855 

6.2774 
0.3367 
1.8394 

A = 2.0 
6.1179 
0.7537 
2.3057 

6.0481 
0.8539 
2.4763 

5.9037 
1.0250 
2.8211 

A.lO. M o d e l  10 

The model 10 distribution is either J-shaped or bell-shaped. Fixing b and increasing a 
changes the distribution from a J-shaped curve with skewness> 0 to  a flatter, more cen- 
tered, bell-shaped curve to  a bell-shaped curve with skewness< 0 and higher kurtosis. 
Fixing a and increasing b causes similar changes. 

For a < 1.3, the model 10 distribution could be classified as Pearson Type I(J) for 
small or large values of b and Pearson Type I for intermediate values of b. For a > 1.4, 
it could be classified as Pearson Type I for small values of b and Pearson Type I( J)  for 
large values of b. 

b 
3a/2 sd: 

skew: 
kurt: 

5a/2 sd: 
skew: 
kurt: 

5a sd: 
skew: 
kurt: 

A.ll. Model 12 

a = 0.5 
3.9785 
1.6844 
5.4265 

4.5993 
1.1523 
3.5594 

5.3055 
0.4842 
2.2141 

a = 1.0 
4.9485 
0.6834 
2.5750 

5.1678 
0.3136 
2.1403 

5.1975 

2.1141 
-0.2136 

a = 2.0 
4.8753 

2.1392 

4.6626 

2.3302 

4.2377 

3.1157 

-0.0245 

-0.3227 

-0.8004 

a = 5.0 
3.5205 

3.0663 

3.1303 
-0.9472 
3.7333 

2.6376 

5.3675 

-0.6946 

-1.3998 

The model 12 distribution is bell-shaped or J-shaped. Fixing B and increasing A 
changes the distribution from a bell-shaped curve with skewness< 0 to a J-shaped 
curve with skewness> 0. Fixing A and increasing B causes similar changes. 

For A 5 0.73, the model 12 distribution could be classified as Pearson type I for 
small values of B and Pearson type I(J) for larger values of B. For A 2 0.74, it could 
be classified as Pearson type I(J). 
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B A = 0.3 A = 0.6 A = 1.0 A = 2.0 
5A/4 sd: 4.6598 5.0213 4.5697 3.3081 

skew: -0.1692 0.484G 1.1192 2.3596 
kurt: 2.2305 2.3225 3.5089 8.7901 

3A/2 sd: 4.7996 4.9985 4.4347 3.1219 

kurt: 2.1701 2.4435 3.9063 10.1458 
skew: -0.0917 0.5926 1.2602 2.5831 

2A sd: 5.0114 4.9194 4.1899 2.8284 
skew: 0.0457 0.7829 1.5094 ' 2.9814 
kurt: 2.0996 2.7252 4.7249 12.8617 

A.12. Model 13 

The model 13 distribution is bell-shaped or J-shaped. Fixing B and increasing A 
changes the distribution from a bell-shaped curve to  a J-shaped curve with skewness> 0. 
Fixing A and increasing B causes a similar change. 

For A 5 0.6, the model 13 distribution could be classified as Pearson type I for 
small values of B and Pearson type I(J) for larger values of B .  For A 2 0.625, it could 
be classified as Pearson type I(J).  

B A = 0.2 A = 0.4 A = 0.6 A = 0.8 
3A/2 sd: 4.2827 4.3238 3.8053 3.2608 

skew: -0.0390 0.6550 1.2192 1.7366 
kurt: 2.3256 2.7438 4.0718 6.0489 

2A sd: 4.4825 4.2209 3,56013 2.9678 
skew: 0.0920 0.8586 1.4882 2.0747 
kurt: 2.2667 3.0903 4.9704 7.6843 

3A sd: 4.6912 3.9714 3.1625 2.5454 
skew: 0.3294 1.2100 1.9508 2.6570 
kurt: 2.2787 3.9303 6.9322 11.1696 

A.13. Model 14 

The model 14 distribution is U-shaped or J-shaped. For R = 1, it is U-shaped and 
for R 2 2 it is J-shaped. Fixing R and increasing A increases the skewness and the 
kurtosis. 

The model 14 distribution has not been classified in regard to  the Pearson distri- 
butions. 



- 34 - 

R 
1 sd: 

skew: 
kurt: 

2 sd: 
skew: 
kurt: 

3 sd: 
skew: 
kurt: 

A = 1.0 
6.7066 

1.8170 
-0.4334 

6.7248 
0.3106 
1.6978 

6.3103 
0.7811 
2.2748 

A = 2.0 A = 3.0 
7.1663 7.1396 
0.0911 0.3967 
1.5186 1.6494 

6.2878 5.7890 
0.9307 1.3355 
2.5102 3.5200 

5.4690 4.8417 
1.5073 2.0080 
4.1088 6.0751 

A.14. Model 15 

For many values of a and u,  the model 15 distribution assumes negative values for 
extreme values of the variate (this phenomenon is noted and in sequel, we refer t o  it a 
“bad” case). For a = (LO, there is some value uo (depending on a )  for which f(x; ao, u) 
is positive (a  “good” case) for u < uo but “bad” for u > 110. For a < 20, the value 
uo(a) increases a t  a not quite linear rate. For 20 < a < 30, the values fluctuate rather 
intricately, finally dropping down t o  uo = 0 for a = 35, meaning that the model 15 
distribution yields negative values for a > 35. 

The model 15 distribution is J-shaped or bell-shaped. Fixing u and increasing a 

changes the distribution from a J-shaped curve with skewness> 0 t o  a bell-shaped curve 
with skewness< 0. 

The model 15 distribution could be classified as Pearson type I(J) for a < 0.75 and 
Pearson type I for a > 1.25. For 0.75 < a < 1.25, it could be classified as Pearson type 
I(J) for small values of u and Pearson type I for larger values of u. 

u a = 0.5 a = 1.0 a = 2.0 a = 4.0 a = 8.0 
a/5 sd: 3.8795 4.7567 4.8653 4.1105 2.9906 

skew: 1.6909 0.8047 0.1286 -0.4034 -0.8120 
kurt: 5.5454 2.8344 2.1504 2.5161 3.3935a 

2a/5 sd: 4.0854 4.7396 4.7336 3.9989 2.9357 
skew: 1.4215 0.6904 0.0900 -0.4090 -0.8076 
kurt: 4.5719 2.6676 2.1675 2.5339 3.3842 

3a/5 sd: 4.1969 4.6794 4.5956 3.8899 2.8824 
skew: 1.2389 0.6111 0.0660 -0.4093 -0.8017 
kurt: 4.0136 2.5683 2.1778 2.5385 3.3688 

A.15. Model 16 

For many values of a and u,  the model 16 distribution assumes negative values (and 
is thus “bad”). Just as for the model 15 distribution, for a = ao, there is some value 
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uo (depending on u) for which f(z; a g ,  u) is “g00d” for u < uo but “bad”for u > uo. 
Similarly to  the model 15 distribution, the value of uo(a) increases at a not quite linear 
rate for a < 15, and then fluctuates intricately for 15 < a < 25, at which point , 
quickly drops to  0. Thus the model 16 distribution yields negative values for a > 25. 

The model 16 distribution is J-shaped or bell-shaped. Fixing ?I and increasing n 
changes the distribution from a J-shaped curve with skewness> 0 to  a bell-shaped curve 
to  a J-shaped curve with skewness> 0. 

For a < 1, the model 16 distribution could be classified as Pearson I(U) for very 
small values of u and type I(J) for larger values of u. For 1 < a < 3,  it could be 
classified as Pearson type I(J) for small values of and type I for larger values of u.  

For a > 3, it  could be classified as Pearson type I(J). 

U a = 0.5 a = 1.0 a = 2.0 n = 4.0 a = 8.0 
a/20 sd: 6.1577 5.9238 4.9357 3.5866 2.3680 

skew: 0.5276 -0.0477 -0.5812 -1.0544 -1.4417 
kurt: 2.0237 1.8260 2.4310 3.6923 5.2896 

a110 sd: 6.0873 5.7762 4.8127 3.5213 2.3425 
skew: 0.4334 -0.0866 -0.5898 -1.0497 -1.4349 
kurt: 1.9558 1.8574 2.4571 3.6815 5.2576 

3a/20 sd: 5.9726 5.6125 4.6859 3.4556 2.3171 
skew: 0.3581 -0.1141 -0.5918 -1.0420 -1.4271 
kurt: 1.9156 1.8810 2.4652 3.6565 5.2191 

A.16. Model 17 

The model 17 distribution is either J-shaped or bell-shaped, and may have more than 
one “peak”. For small a,  increasing 6 changes the distribution from a J-shaped curve 
with skewness> 0 to a bell-shaped curve with decreasing skewness. For larger a ,  the 
curve changes from a curve that has a J-shape on the left and a bell-shape on the right 
( a  sideways S-curve) to  a simple bell-shaped curve. Similar changes occur when 6 is 
fixed and a is increased. 

For a < 3 (approximately), the model 17 distribution could be classified as Pearson 
type I(J) for small values of 6 and type I for larger values of 6 .  For a > 3, it could be 
classified as Pearson type I(U) for small values of 6 ,  type I(J) for intermediate values 
of b,  and I for larger values of 6 .  

Note that f ( z ;  a,  b )  = f(z; -a ,  6 ) .  
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b a = 1.0 a = 2.0 a = 4.0 a = 8.0 
a/10 sd: 3.2092 4.6997 5.8236 6.1156 

skew: 2.5979 1.5092 0.7924 0.1673 
kurt: 9.8685 4.2197 2.3187 1.7550a 

a12 sd: 4.6644 5.1610 4.6341 3.4854 
skew: 0.8535 -0.0068 -0.6317 -1.0998 
kurt: 2.9835 2.0971 2.6624 3.9494 

U sd: 4.7792 4.3977 3.3883 2.3340 
skew: 0.4622 -0.2537 -0.8165 -1.1969 
kurt: 2.4265 2.4996 3.6198 4.9412 

2a sd: 4.6931 3.7346 2.6038 1.7212 
skew: 0.0653 -0.4426 -0.8172 -1.1068 
kurt: 2.1828 2.6401 3.5028 4.4115 

A.17. Model 18 

The model 18 distribution is either J-shaped or bell-shaped, but it may have several 
“peaks”, forming the sideways S-curve as in model 17. When u is small, increasing 
b changes the distribution from a J-shaped curve with skewness> 0 to  a bell-shaped 
curve with skewness< 0. For larger a ,  increasing b changes the distribution from a 
sideways S-curve (J-shaped on the left and bell-shaped on the right) t o  a simple bell- 
shaped curve and finally back to  a J-shaped curve with skewness< 0. Similar changes 
are observed when b is fixed and a increases. 

For a < 2, the model 18 distribution could be classified as Pearson type I(J)  for 
small values of b and type I for larger values of b. For a > 2, it could be classified 
as Pearson type I( U) for small values of b,  I( J ) for intermediate values of b,  and I for 
larger values of b. For a > 5 ,  there is a range of values of b for which the model 18 
distribution could be classified as Pearson type 111. 

As for the model 17 distribution, f(t; a ,  b )  = f ( t ;  -a ,  b ) .  
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b a = 1.0 a = 2.0 a = 4.0 a = 8.0 
a/10 sd: 2.8406 4.5006 5.7369 6.0805 

skew: 2.4291 1.4155 0.7577 0.1542 
kurt: 9.0316 3.8612 2.2276 1.7385 

a/2 sd: 3.9363 4.7311 4.4341 3.4066 
skew: 0.8320 -0.0903 -0.7014 -1.1384 
kurt: 3.2064 2.2089 2.8114 4.0962 

a sd: 3.9882 3.9546 3.1947 2.2742 
skew: 0.5917 -0.2025 -0.7869 -1.1369 
kurt: 2.8848 2.7403 3.8311 4.9959 

2a sd: 4.1086 3.5270 2.5838 1.7734 
skew: 0.3320 -0.2064 -0.5828 -0.8658 
kurt: 2.5035 2.5776 3.1687 3.8290 

A.18. Model 19 

The model 19 distribution is generally J-shaped, but it may have several “peaks”, 
forming sideways-S curves or W-shaped curves. Fixing a and increasing b changes the 
distribution from a J-shaped curve with skewness> 0 to a W-shaped curve (J-shaped 
at  both ends with a bell-shaped in the center) to  a backwards sideways-S curve (J- 
shaped on the right and bell-shaped on the left) and finally to  a J-shaped curve with 
skewness< 0. Similar changes occur when b is fixed and a increases. 

The classification of the model 19 distribution with regard to  the Pearson frequency 
curves is quite complicated. For small values of b ,  the distribution could be classified 
as Pearson type I(U). For larger values of b, it could be classified as type I(J), I or 111. 
For large values of b,  the distribution is type I(J). 

As for models 17 and 18, f(s; a, b) = f(z; -a,  b) .  
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b a = 1.0 a = 2.0 a = 4.0 a = 8.0 
a/10 sd: 4.9755 5.7537 6.3096 6.3166 

skew: 2.2988 1.6784 0.9289 0.2320 
kurt: 6.9581 4.5010 2.6102 1.8253 

a /5  sd: 7.1262 6.7517 5.4217 3.7985 
skew: 0.1141 -0.2719 -0.6751 -1.1125 
kurt: 1.4685 1.5430 2.2349 3.5731 

a sd: 5.9061 4.9260 3.5369 2.2816 
skew: -0.7175 -1.2778 -1.6837 -2.0170 
kurt: 2.4774 3.7455 5.3564 7.3280 

2a sd: 4.0938 2.8546 1.8659 1.1871 
skew: -0.9441 -1.6183 -2.1196 -2.3953 
kurt: 3.6488 6.7665 9.9997 11.9942 

A.19. Model 20 

The model 20 distribution is very similar to the model 18 distribution, forming J-shaped 
curves, sideways-S curves, and bell-shaped curves, and undergoing similar changes. As 
with models 17, 18, and 19, f(z; a, b) = f(z; -a ,  b) .  

The classification of model 20 with regard to the Pearson type frequency curves is 
nearly identical to that of the model 18 distribution. 

b a = l  a = 2  a = 4  a = 8  
a110 sd: 4.6975 5.6233 5.6753 4.8714 

skew: 0.8362 -0.0340 -0.6567 -1.2128 
kurt: 2.9182 1.8871 2.2967 3.6729 

a /5  sd: 4.6422 4.3944 3.5068 2.4749 
skew: 0.4706 -0.3396 -1.0111 -1.4703 
kurt: 2.5289 2.7006 4.2488 6.2015 

U sd: 4.6090 3.8950 2.8326 1.9136 
skew: 0.3006 -0.3054 -0.7842 -1.1211 
kurt: 2.3369 2.6325 3.7361 4.8805 

2a sd: 4.5127 3.4821 2.3929 1.5810 
skew: -0.0053 -0.4737 -0.8173 -1.0984 
kurt: 2.2203 2.7025 3.4827 4.3223 

A.20. Model 22 

The model 22 distribution is either J-shaped or U-shaped. Fixing a and increasing b 
changes the distribution from a J-shaped curve with skewness> 0 to  a U-shaped curve 
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t o  a J-shaped curve with skewness< 0. Fixing b and increasing a is accompanied by 
similar changes. 

For a < 2, the model 22 distribution could be classified as Pearson type I(U) for 
small values of b and type I(J) for large values of b. For 2 < a < 7, it could be classified 
as Pearson type I(J) for small and large values of b and type I(U) for intermediate 
values of b. For a > 7, it could be classified as Pearson type I(J) for all values of b. 

b a = 0 . 5  a = l  a = 2  a = 4  
a/2 sd: 6.3199 6.8660 6.9023 6.1453 

skew: 1.4557 0.8816 0.3191 -0.2277 
kurt: 3.6704 2.3017 1.6790 1.8032 

a sd: 7.3303 6.8491 5.6579 4.1023 
skew: 0.3403 -0.1646 -0.6755 -1.1667 
kurt: 1.5829 1.6108 2.3088 3.7024 

2a sd: 6.5140 5.1404 3.5957 2.3032 
skew: -0.4623 -0.9759 -1.4709 -1.9026 
kurt: 1.8669 2.9632 4.7981 7.1018 

A.21. Model 24 

The model 24 distribution is either J-shaped or bell-shaped. Fixing a and increasing 
k changes the distribution from a J-shaped curve with skewness< 0 to a bell-shaped 
curve with increasing skewness. Fixing b and increasing a is accompanied by similar 
changes. 

For a < 0.5, the model 24 distribution could be classified as Pearson type I(U) for 
small values of k and type I(J) for larger values of C. For a > 0.5, it  could be classified 
as Pearson type I(J) for small and large values of C and type I for intermediate values 
of k. 

k a = l  a = 2  a = 4  a = 8  
a /4  sd: 3.0508 3.0808 2.9579 2.7770 

skew: -2.5650 -1.6889 -0.9948 -0.4989 
kurt: 10.6347 6.3018 4.0322 3.1037 

a sd: 4.6123 4.0205 3.1944 2.3809 
skew: -0.7615 -0.2466 0.1356 0.3841 
kurt: 2.8878 2.4704 2.6325 2.9658 

3a/2 sd: 4.6937 3.7214 2.6324 1.7194 
skew: -0.3234 0.1427 0.4754 0.7050 
kurt: 2.2917 2.4432 2.9622 3.4601 
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A.22. Model 25 

The model 25 distribution is either J-shaped or bell-shaped. Fixing a and increasing k 
changes the distribution from a bell-shaped curve to  a 3-shaped curve with skewness> 0. 
Fixing k and increasing a is accompanied by the opposite change: from a J-shaped curve 
with skewness> 0 to  a bell-shaped curve with decreasing skewness. 

For small values of a or large values of k, the model 25 distribution could be classified 
as Pearson type I(J). For large values of a ,  it could be classified as Pearson type I. 

k a = l  a = 2  a = 4  a = 8  
a12 sd: 5.2518 5.3782 4.5127 3.2398 

skew: 0.8814 0.1464 -0.4286 -0.8718 
kurt: 2.7856 2.0058 2.4149 3.4187 

a sd: 4.8416 5.3328 4.7589 3.5585 
skew: 1.2362 0.4071 -0.2174 -0.6923 
kurt: 3.6963 2.1679 2.2050 2.9958 

2a sd: 3.8874 4.8758 4.8753 3.9442 
skew: 1.9691 0.8783 0.1317 -0.4065 
kurt: 6.6518 2.9536 2.1646 2.5539 

A.23. Model 26 

For many values of a and k, the model 26 distribution assumes negative values (and is 
thus "bad"). Similarly to  model 15 and 16, for a given k = ko, there is some value a0 
(depending on k) for which f ( z , a , k o )  is "good" for a > a0 but "bad" for a < ao. It 
appears that this value is a ( k )  = 6.5 (approximately) for all values of k. [A more exact 
value is a ( k )  = 6.4975961 

The model 26 distribution is a sideways, backwards S-curve (J-shaped on the right 
and bell-shaped on the left, It is the point at  z = 19 that becomes negative, while 
z = 20 is very large (giving the curve the J-shape) and for 5 < 19 the curve is bell- 
shaped. Fixing a and increasing b results in a decrease in the value at 2 = 20 and 
changes the bell-shaped part of the curve from skewness< 0 to  skewness> 0. 

For small values of k, the model 26 distribution could be classified as Pearson type 
I(J). For larger values of k, it could be classified as Pearson type I. 
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a k = 0.5 k = 1.0 k = 2.0 
6.5 sd: 3.0450 4.0008 4.8858 

skew: -2.0870 -1.2271 -0.5058 
kurt: 6.9579 3.6768 2.2840 

8 sd: 2.7583 3.6414 4.4890 
skew: -2.0819 -1.2440 -0.5495 
kurt: 7.1020 3.8508 2.4405 

10 sd: 2.4709 3.2793 4.0857 
skew: -2.0776 -1.2632 -0.5970 
kurt: 7.2544 4.0377 2.6103 

15 sd: 2.0117 2.6959 3.4245 
skew: -2.0706 -1.2972 -0.6787 
kurt: 7.5058 4.3592 2.9110 

k = 4.0 
5.1607 
0.1849 
2.1720 

4.8317 
0.1002 
2.2266 

4.4915 
0.0116 
2.2970 

3.9128 

2.4522 
-0.1360 

k = 8.0 
4.1030 
0.9914 
3.7200 

3.9880 
0.8266 
3.3824 

3.866 
0.663 

3.1086 

3.6352 
0.4085 
2.8128 

A.24. Model 27 

The model 27 distribution takes the form of a bell-shaped or J-shaped curve. Fixing 
k and increasing a changes the distribution from a sideways-S curve (J-shaped on the 
left and bell-shaped on the right) to a simple bell-shaped curve to a J-shaped curve 
with skewness> 0. Fixing a and increasing k is accompanied by similar changes. 

For k < 1, the model 27 distribution could be classified as Pearson type I(U) for 
small values of a and type I(J) for larger values of a. For k > 1, it could be classified 
as Pearson type I(J) for small values of a and type I for larger values of a. 

k 
4 2  

a 

2a 

5a 

a = 1.0 
sd: 5.6099 
skew: -0.3550 
kurt: 2.0268 

sd: 5.2450 
skew: -0.0252 
kurt: 1.9736 

sd: 4.3326 
skew: 0.4651 
kurt: 2.3883 

sd: 2.0613 
skew: 1.5266 
kurt: 5.5795 

a = 2.0 a = 4.0 
4.4989 3.6004 

2.4298 2.6093 
-0.4107 -0.2433 

4.1383 3.1522 
0.0485 0.2388 
2.3117 2.6674 

3.0671 1.9734 
0.6326 0.8214 
2.9859 3.6304 

0.9926 0.4154 
1.8655 2.8110 
7.4999 11.9636 

a = 8.0 
2.9637 

-0.0118 
2.7212 

2.3362 
0.4194 
3.0030 

1.1711 
1.0560 
4.2393 

0.1410 
7.2022 

55.6491 
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B. Three Dimensional Graphs 

Three axes refer to probability, a parameter and the variable x; n is taken to be 20. 

Model 1 

"t 

Model 4 

"I 

Model 7 Model 5 

Figure 2: Models 1, 4, 5 ,  and 7 
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Figure 3:  Model 2 
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Figure 4: Model 2 



- 45 - 

"F 

b = a /5  b = 3a/5  

a = l  

a = 4  

a = 2  

a = 8  

Figure 5: Model 3 
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Figure 6 :  Model 6 
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Figure 7: Model 8 
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Figure 8: Model 9 
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Figure 9: Model 10 
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Figure 10: Model 10 

a = 10 



- 51 - 

B = 5A/4 

B = 10A 

7 

B = 2A 

A =  0.3 

A = 0.6 

Figure 11: Model 12 
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Figure 12: Model 13 
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Figure 13: Model 15 
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Figure 14: Model 16 
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Figure 15: Model 17 
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Figure 16: Model 17 
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Figure 17: Model 18 
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Figure 18: Model 18 
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Figure 19: Model 19 
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Figure 20: Model 19 
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Figure 21: Model 20 
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Figure 22: Model 20 



- 63 - 

b = a / 2  

b = 5a 

1 

a = 2  

b = a  

a = l  

a = 8  

Figure 23: Model 22 
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Figure 24: Model 24 
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Figure 25: Model 24 
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Figure 26: Model 25 
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Figure 27: Model 25 
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Figure 29: Model 26 
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Figure 30: Model 27 
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Figure 31: Model 27 
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