
3 4 4 5 6 0 3 b 0 3 5 7 1

Lloyd F. Wrra
Br;aee E. Tonn

........... ~

~ _ __

ORNLlTM- 11987

COMPUTING AND TELECOMMUNICATIONS DIVISION
ENERGY DIVISION

EXPERT SYSTEMS AND "5 CPI PRODUm SUBSTITUTION REVlEW
A NEEDS ANALYSIS FOR THE U S BUREAU OF LABOR STATISTICS

Lloyd E Arrowood
Bruce E. Tonn

February, 1992

Research Sponsored by
U.S. Bureau of Labor Statistics

U.S. Department OE Labor

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831-6207
managed by

MARTIN MAFUE'ITA ENERGY SYSTEMS, INC.
€or the

U.S. DEPARTMENT OF ENERGY
under

Contract No. DE-ACOS-840R21400

3 4 4 5 b 0360357 I

TABLE OF CONTEN'IS

ABSTRACT . vii

1 . INTRODUCTION . 1

2 . PROJECTGOALS ... 3

3 . METHODOLOGY ... 5

4 . TOOL SURVEY AND EVALUATION 7
4.1 TRENDS .. 9
4.2 COMMERCIALLY AVAILABLE EXPERT SYSTEM SHELLS 10

4.2.1 Aion Development System 10
4.2.2 ARTDM .. 11
4.2.3 CLIPS .. 11
4.2.4 EXSYS Professional 12
4.2.5 GURU ... 12
4.2.6 Intelligence Compiler 12
4.2.7 KBMSPC ... 13
4.2.8 Is tClassHT ... 13
4.2.9 KES ... 14
4.2.10 KnowledgePro ... 14
4.2.11 LEVEL5 OBJECT .. 15
4.2.12 NEXPERT/Object .. 15
4.2.13 Kappa PC ... 16

4.3 TOOL RECOMMENDATIONS 16
4.3.1 External Data and Program Interfaces 16
4.3.2 Support for Rule-based Processing 17
4.3.3 Support for Frame-based or Object-oriented Processing 18
4.3.4 Support for Procedural Programming 19
4.3.5 Uncertainty Measures 19
4.3.6 Induction Capabilities 20
4.3.7 Mathematical Functions 20
4.3.8 Developer and User Interfaces 20
4.3.9 Cost and Licensing Issues . 21
4.3.10 Final Assessment ... 21

5 . MACHINE LEARNING APPROACHES 23

6 . FINAL RECOMMENDATIONS ... 29

ACKNOWLEDGEMENTS .. 35

REFERENCES ... 37

...
111

APPENDIX A DEFINITION OF TERMS FROM THE TOOL MATRIX 39

APPENDIX B: HARDWARE AND SOFTWARE REQUIREMENTS 41

APPENDIX C: HUMAN FACTORS . 43

APPENDIX D: A LEVEL5 OBJECT KNOWLEDGE BASE 45

APPENDIX E: SYSTEM EVALUATION CRITERIA . 57

APPENDIX F COMPARISON OF KNOWLEDGE-BASED SYSTEM SHELLS FOR
T H E P C .. 61

APPENDIX G: STATEMENT OF FUNCTIONAL REQUIREMENTS 65

iv

LIST OF FIGURES

Figure 1 Learning and Classification Systems 23

Figure 2 Types of Decision Trees .. 25

Figure 3 A Proposed Incremental Learning Architecture . 28

V

This report presents recommendations relative to the use of expert systems and machine learning
techniques by the Bureau of Labor Statistics (BLS) to substantially automate product substitution
decisions associated with the Consumer Price Index (CPI). Thirteen commercially available, PC-based
expert system shelIs have received in-depth evaluations. Various machine learning techniques were
also reviewed. Two recommendations are given: (1) BLS should use the expert system shell
LEVELS OWECT and establish a software development methodology for expert systems; and (2)
BLS should undertake a small study to evaluate the potential of machine learning techniques to
create and maintain the approximately 350 ELI-specific knowledge bases to be used in CPI product
substitution review.

vii

1. INTRODUCTION

Each month, the Bureau of Labor Statistics (BLS) issues an update of the Consumer Price Index
(CPI). The CPI compares the prices of a fiied set of goods and services over time. However, as the
market changes so does the availability of the goods and services included in the CPI. In order to
track price changes over a period of several months, it often becomes necessary to substitute a new
product for one that was previously used in the index but which is not currently available. If a
substitution is judged to be non-comparable, that product must generally be excluded from the
reported data for one pricing period because the old and new products are not of equal quality or
value and therefore cannot be compared. Comparable substitutions can be used for price change
comparison through direct or adjusted comparison.

The Division of Price and Index Number Research, Consumer Prices and Price Indexes (DCCPI),
Price Statistical Methods, and Consumer Prices and Consumption Studies conducted a feasibility study
of expert system technology to assist DCCPI commodity analysts in determining the comparability of
CPI product substitutions. Pilot applications captured the expert knowledge used in the product
review process and encoded that knowledge in an expert system shell. The shell chosen for this pilot
was PC Plus, a rule-based shell developed by Texas Instruments. The team initially defined the
expert system to be successful if it demonstrated 100% correctness on non-comparable decisions and
was able to arrive at comparability decisions 50% of the time. The results of this study are
documented in an internal report entitled Feasibilitv of Using an Expert Svstem to Review Product
Substitutions.

In studying the applicability of expert systems for this task, members of that Expert System Research
Group selected twelve of 350 Entry Level Items, (ELI, Le., units used for product classification) for
study. In order to quantify their results, the team devised a measure of complexity based upon the
number and types of specifications for each ELI. Two approaches to designing the sample knowledge
bases were tried. A generic approach sought to devise production rules which were applicable to all
ELIs, and an ELI-specific approach dictated the creation of separate knowledge bases for each ELI.
From the studies, team members found a strong positive correlation between the measure of
complexity and the substitution rates. The more complex an ELI was, the more likely it was to have
a higher rate of product substitution. The team concluded that those knowledge bases constructed
for individual ELIs more frequently agreed with the decisions of commodity analysts and
recommended that this approach be followed. The team concluded that the results of the pilot were
sufficiently promising to warrant further study, but that a more rigorous approach to knowledge base
construction and testing was required to reach those objectives set forth by the team.

This report presents recommendations, with supporting documentation, prepared by Oak Ridge
National Laboratory (ORNL) to BLS for the next generation of expert systems for the review of CPI
product substitutions. The next section discusses the project goals in more detail. Section 3 outlines
the methodology used to generate the recommendations. Section 4 presents an analysis of expert
system shells that could be employed by BLS. Section 5 follows with a discussion of the potential for
using machine learning techniques to create ELI-specific knowledge bases for product substitution.
Section 6 gives the final recommendations.

1

The goal of this project is to develop recommendations for the next generation of expert systems
which review CPI product substitutions. Any proposed expert system should meet three criteria set
by the Bureau of Labor Statistics. First, it must be able to determine whether a set of product
specifications are complete and consistent. Second, it must provide a means of capturing and
retaining expertise in reviewing product substitutions. Third, it should reduce the time that
commodity analysts spend on routine product substitutions. This will allow them to concentrate on
more difficult substitutions and to improve product checklists. In the near term, any expert system
developed for this task wiil be a post-production research tool which allows commodity analysts to
critique its performance and to refine and expand its knowledge base as needed. In the long term,
a successful expert system would serve as a pre-production screening tool running in batch mode,
rejecting those substitutions which are clearly non-comparable and generating reports which would
assist commodity analysts in manually reviewing the remaining substitutions.

ORNL studied the CPI product substitution review process and the results of an earlier DCCPI study.
In the pilot study, several difficulties were encountered in developing expert systems for product
substitution review. In several cases, knowledge supplied to an expert system was insufficient and led
to the system making incorrect decisions. Further investigation determined that the expert's
knowledge had not been completely captured and encoded into production rules. Another problem
was the apparent need to create ELI-specific knowledge bases for each of the 350 ELIs. This
constitutes a major knowledge engineering effort. Still another problem was the difficulty in using
the expert system shell PC Plus. Commodity analysts disliked the tool as it severely limited their
ability to represent their expertise. This project addresses the resolution of these issues.

Our primary goal is to recommend tools and techniques which will promote the development of
expert systems by commodity analysts. To identify them, we

0 propose several approaches for implementing expert systems which review CPI product
substitutions and rank them according to their fit with BLS requirements,

for comparability, analyze hardware and software configurations used by commodity
analysts, and

e define criteria by which expert system shells can be judged and perform an
extensive tool evaluation based on these criteria.

A secondary goal is to explore the possibility of using machine learning techniques to automatically
generate knowledge bases for each of the 350 ELIS. We

0 determine the feasibility of using these techniques to produce knowledge bases from
large numbers of previously reviewed product substitutions, and

0 identify those techniques and tools which are the most appropriate for this task.

In Section 6 of this report, ORNL recommends an expert system shell for continued expert system
development by BLS and a course of action for integrating expert system technology into BLS
production activities in a timely and cost-effective manner.

3

The focus of this report on expert system technology should be viewed within the broader goals of
the Professional Review System (PRS). When completed, the PRS will provide BLS commodity
analysts with a full range of capabilities to review and work with commodity price data and quotes.
The strategic issue raised with respect to expert systems is not whether to provide automated support
for commodity analysts but the extent to which commodity analysts should be involved in the
automation process. Traditionally, systems such as the PRS are developed and maintained by a
separate computer system development team. Users are typically not allowed to alter the system, but
they can exercise system functions and prepare data inputs.

Extensive use of expert systems in the PRS requires a change in system development strategy.
Instead of being passive users, the commodity analysts will be responsible for developing and
maintaining a large component of PRS. The principal issue under consideration is whether to
empower the commodity analysts with the ability to create their own computer applications within
the PRS framework. This rcport helps answer this question by reviewing expert system and machine
learning technologies to determine the opportunities and limits that they place upon the
empowerment concept. The concluding paragraphs of Section 6 extend the discussion of
empowerment to include topics of quality assurance and other aspects of the PRS.

4

3. METHODOLOGY

As stated previously, our goals are (1) to recommend a commercially available expert system shell
which commodity analysts can use to develop ELI-specific knowledge bases and (2) to investigate the
use of machine learning techniques to generate these knowledge bases from historical data and user-
supplied test cases. In order to identify those shells which will most closely meet the requirements
for a powerful, user-friendly tool, we

0 proposed several approaches for implementing expert systems which review CPI
product substitutions and ranked them according to their fit with BLS/CPI
requirements,

analyzed the hardware and software configurations used by BLS/CPI commodity
analysts, and

0 defined criteria by which expert system shells can be judged and performed an
extensive tool evaluation based on these criteria (Appendix F).

In Section 5 we propose five system alternatives which cover the spectrum of expert system
development from traditional approaches to the induction of knowledge bases using machine learning
techniques. The first two proposals have commodity analysts using knowledge engineering techniques
to organize and represent their expertise in a user-friendly expert system shell. A comprehensive tool
survey identified products which could be used in this task and a too1 evaluation based on BLS/CPI
needs and resources determined which tools possess the necessary capabilities. The last three
proposals considered machine learning techniques to analyze large amounts of data as a means of
acquiring product substitution expertise.

By proposing a number of efforts with varied degree of complexity and risk, we thoroughly covered
the range of developmental techniques. As the knowledge engineering function becomes more
automated, the greater the risks are in achieving complete success; conversely, the success of such
ambitious projects constitutes a much greater return on investment as the need to conduct separate
knowledge engineering tasks for each ELI i s greatly reduced or eliminated altogether.

In an initial meeting BLS/CPJ staff provided the criteria by which a successful project might be
judged; these criteria are represented in a matrix shown in Appendix E. The system evaluation
criteria have been broken down into project goals and system requirements. Project goals were the
long-term shift of CA workloads, the checking of substitutions for completeness and consistency, and
the documentation of product substitution expertise. System requirements focused upon the ease of
use and basic functionality. These factors have been assigned numerical weights based upon their
perceived importance by BLS staff. Using these factors, we constructed the criteria matrix to allow
us to rank the proposals. Each cell in the matrix corresponding to an alternative (Le., a row entry)
was assigned a score based upon its applicability with project goals or system requirements (Le., a
column heading). These scores were multiplied by their respective weights and summed to obtain
a single numerical value. The numerical values for each alternative were then used to make the
recommendations in Section 6. Consulting with BLS staff, we clarified the criteria by which
alternatives are to be judged and identified the hardware and software configurations in use at the
Bureau of Labor Statistics (Appendix B). We also learned more about the product substitution task
and the backgrounds of the commodity analysts assigned to these tasks (Appendix C).

5

We presented the interim findings, including a tool matrix which was constructed using data obtained
by the tool survey and evaluation. We demonstrated a few of the expert system shells to give BLS
staff additional exposure to the tools we considered and to learn more about their perceptions of
which features in a product are user-friendly, which features they considered essential, and which
additional features might be beneficial. From this discussion, we modified and expanded the set of
criteria to be used in the tool matrix. We discussed the implementation of the “white bread”
knowledge base in a suite of selected tools (see Appendix D for the “white bread” example encoded
in the expert system shell which was ultimately recommended). This permitted us to contrast
knowledge representation and processing capabilities among a representative sampling of tools. We
looked principally at the knowledge representation, inference mechanisms and data management
facilities of the tools being considered. Display capabilities were not a primary concern because the
goal of the system is to produce an expert system that runs in batch mode and generates the
necessary reports. Interface capabilities, however, are important in employing this technology in
other areas which may require greater interaction with BLS staff.

A secondary goal was to explore the possibility of using machine learning techniques to automatically
generate knowledge bases for each of the 350 ELIs. We

e determined the feasibility of using these techniques to produce knowledge bases from
large numbers of previously reviewed product substitutions and user-supplied test
cases, and

e identified those techniques and tools which are the most appropriate for this task.

To accomplish this, we first characterized the product substitution process and contrasted it with
other applications that have used machine learning techniques. A literature search was conducted
to identify the most promising algorithms and any software implementations.

After a set of algorithms had been identified and the software which implements these algorithms had
been obtained, a small set of test data was used to obtain some preliminary results on the success of
learning techniques for this application. These results were used to predict the success of using
similar techniques for much larger and more complicated test data.

Upon completion of both the tool evaluation and machine learning studies, ORNL had the
information to evaluate the options available to BLS for developing expert systems. The
recommended strategy of expert systems development thoroughly considers the impact of expert
systems on CPI product substitution review, their development, and their ultimate integration into
BLS production activities in a timely and cost-effective manner.

6

4. TOOL SURVEY AND EWALUATION

In designing the tool matrix presented in Appendix F we have considered BLSKPI hardware and
software configurations and a set of capabilities that we believe are desirable, if not actually required,
for the CPI product substitution review and other candidate expert systems being considered by BLS.
We have evaluated only those PC-based tools which run under MS-DOS or OSE. We considered
the ease of integrating each tool into existing computer applications. To interact with other
programs, an expert system should be able to read and write data from one or more external file
formats and to call or be called from external programs. We have specified whether each tool can
handle directly the following types of files: ASCII, dBase, Lotus 1-2-3 and SQL. Most shells provide
the capability to call and to be called from external programs. Data exchange is then managed by
file creation or Dynamic Data Exchange (DDE) capabilities. Many tools provide callable libraries,
(Le., subroutines written in a conventional programming language which are called within other
computer programs). This allows ruled-based processing to be embedded into larger, conventional
processing, e.g. the Professional Review System (PRS). PRS programs can then access the expert
knowledge and conclusions generated by the expert system without performing file I/O. Instead, the
subroutines store data from the expert system in variables declared by the PRS source code. This
is a much faster means of passing data between an expert system and another program.

We evaluated each tool and its support for the three most widely used programming paradigms found
in the design of expert system: rule-based, procedural, and object-oriented processing. Rule-based
systems must support forward or backward chaining or both. In some cases, forward chaining rules
are called demons and are attached to object, frames or other data elements. Pattern matching is
seen as a necessary facility, particularly for searching through several specifications or processing free
text specifications. The ability to customize the ordering of rule-firing is considered important to tune
applications for better performance. Procedural processing is considered desirable since it will allow
commodity analysts to implement certain functions in a more straightforward manner than with rules
or objects. Central to this paradigm is the support for modular code. Language support for case
and else statements signify an expressive syntax €or code development. List or array processing is
needed to support any type of free text processing. The object-oriented paradigm is included because
its Eunctionality in most expert system shells represents an evolution from purely rule-based
paradigms. Object-oriented or frame systems provide a concise representation of hierarchical
concepts. Default properties and procedures can also be supported. We indicate the degree to which
each shell supports this paradigm. Most frame systems support a restricted version of encapsulation
and allow inheritance. This level of sophistication appears adequate for most BLS applications.

Other features have been considered. While BLS requires 100% confidence for screening non-
comparable substitutions, certainty or confidence factors can be used to perform conditional product
substitution reviews which are later confirmed by commodity analysts. The expert system must be
capable of justiwng its reasoning like any other analyst. Typically, explanations from expert systems
consist of how a conclusion was reached and which rules fired during an interaction. Commodity
analysts can analyze the rule-firing patterns to detect erroneous rules or to suggest more efficient
rule-firing strategies. Mathematical functions permit simple statistical analyses by the expert system.
User interface support for developers and end users should be good. Team members favor a
Microsoft Windows "look and feel." BLS conducts internal training classes on Windows and BLS staff
are confident that most commodity analysts will prefer the Windows interface to character-based or
non-standard interfaces.

7

Given the criteria established by BLS/CPI and our knowledge of the expert system market, we chose
over a dozen commercially available PC-based shells for our evaluation. Collectively, these shells
constitute an overwhelming (perhaps as high as 90%) portion of the overall market for these
products. Some are high-end tools which provide a migration path from PCs to workstations and
VAXes or mainframes. A few are research-oriented tools which provide complete programming
support for exploratory research and development efforts. Others are available only on the PC. By
covering the spectrum of shells running on numerous hardware platforms, we can present a thorough
tool evaluation. The following products, with the associated vendor, are included in this survey:

PRODUCT

Aion Development System (ADS)
ARTAM
CLIPS
EXSYS Professional
GURU
Intelligence Compiler
KBMS/PC and 1st Class HT
KES
KnowledgePro
LEVELS OBJECT'
NEXPERT Object
Kappa PC

VENDOR

Aion Corporation
Inference Corporation
NASA
EXSYS
mdbs, Inc.
Intelligence Ware, Inc.
AI Corporation
Software A & E
Knowledge Garden, Inc.
Information Builders, Inc.
Neuron Data
IntelliCorp

Material regarding these tools was gathered form several sources, including our own hands-on
experience with several of the products, since many of them have been used at ORNL. Vendors
have supplied us with their product literature, and this information has been supplemented by viewing
several product demonstrations held at the Ninth National Conference of Artificial Intelligence in
Anaheim, California. To contrast the features of a small suite of shells, the specifications of a small
knowledge base, (Le., BLS "white bread" example), have been supplied to team members. From the
PC Plus specification, we encoded the knowledge base into several shells. A sample knowledge base
has the following functionality:

e
e
e
e results are analyzed.

data are read into the system from either ASCII or dBase files,
objects, Le., frames represent the old and new specifications,
rules determine completeness and comparability of specifications, and

This is not meant to sewe as a detailed prototype of an expert system for the "white bread" ELI. It
is intended to demonstrate the differences between a selected suite of expert system shells in
representing the same problem. Emphasis has been placed upon the knowledge representation
facilities, the inference mechanisms, and the external file interfaces of each tool. Display screens
were minimal since some tool interfaces were character-based while others were Graphic User
Interface-based (GUT).

In its annual product survey, PC AI has compiled a less detailed survey of expert system tools from
vendor submissions to the magazine. Their survey is a reference to current vendor offerings and does
not compare the tools using standard criteria.

8

4.1 TRENDS

Several trends are emerging in the expert system shell marketplace. The capabilities matrix shown
in Appendix F can be used to identify those tools which are embracing some of the new technologies
or are emphasizing their compatibility with existing hardware and software environments.

Most commercial products are designed to run on more than one hardware platform. Software
developers can then prototype their designs on PCs and migrate the final product to larger platforms.
This is an important consideration when choosing an expert system shell.

Many vendors are integrating their product with Microsoft Windows 3.0. In this manner, an expert
system shell can use the GUI provided by Windows to provide a user-friendly development
environment. Developers and users familiar with Windows can begin using these shells more quickly
than products with their own custom interface. In addition, the expert system shells running under
Windows DDE and Dynamic Data Library (DDL) can transfer information without reading and
writing temporary ASCII files. With DDL, expert system shells can augment their set of functions
with additional functions that have been compiIed into the DDL. Since this represents a dramatic
improvement over other methods for accessing external data and functions, several vendors are
planning to support DDE and DDL in the near future.

Many tools support multiple programmingparadigms. Rule-based programming has traditionally been
the primary mechanism for representing and processing knowledge. However, other programming
styles may be more appropriate in certain settings, and many tools are accommodating these
approaches. Procedural programming, the conventional approach to building computer applications,
is available in an increasing number of shells. This permits developers to encode algorithms in the
shell using a high-level language. Earlier shells required all knowledge to conform to a rule-based
representation or forced developers to execute external programs. The former approach resulted in
convoluted representations because the rule-based paradigm was ill-suited for algorithmic design; the
latter involved complicated or time-consuming communications between computer programs.

Frame-based or object-oriented programming is another paradigm being supported in expert system
shells. Many of the products which claim to be object-oriented are actually frame-based, As
originally defined, frames are stereotypical situations which have default values and actions. Frames
can be thought of as data structures which can be manipulated by rule or procedural-based
programming. Similar to frames, objects are entities which are grouped together into higher
abstractions called classes which have default values and behaviors. Frame-based programming
consists of accessing one or more slots within a frame, thereby activating procedures attached to those
slots; object-oriented programming consists of objects requesting other objects to perform some
activity, (is., changing the values of one or more of its slots). As expert system shells mature, many
of the frame-based systems will include some type of message passing architecture.

The marketplace is constantly changing. Vendors are continually upgrading their products in the
highly competitive PC markets. Software costs for PC-based expert system shells have remained
stable or even decreased in the past few years as tool capabilities have increased. By continuing tu
assess PC-based expert system shells, the capabilities matrix can be revised and serve as a template
to be used in evaluating new and existing shells.

9

4 2 COMMERCIALLY AVAILABLE EXPERT SYSTEM SHELLS

We had hands-on experience with ten of the thirteen expert systems shells presented in this report.
We had experience with recent releases of seven of the thirtecn shells: ADS, ART/IM, CLIPS,
EXSYS Professional, KnowledgePro, LEVEL5 Object, and NEXPERT Object. For an additional
three shells, we had experience with earlier versions of the products: 1st Class HT, Intelligence
Compiler, and GURU. For these products we supplemented our knowledge by reviewing more
recent vendor literature, by discussing new features with vendor personnel, and by viewing later
versions of the product at conferences. Two shells were evaluated on the basis of lengthy product
demonstrations and discussions with vendor personnel at the Ninth National Conference on Artificial
Intelligence held in Anaheim, California: KBMS/PC and Kappa PC. Only ICES was evaluated solely
on the basis of vendor literature and interviews with vendor personnel.

Having identified those features which were of interest, we constructed the tool matrix shown in
Appendix E In some cases, we supplemented our knowledge of a tool with additional information
supplied by the vendor, either through product literature of interviews with technical personnel. The
descriptions given in the following sections are brief, but should serve to differentiate the various
products.

4.21 &on Development System

The Aion Development System (A D S) is a high-end expert system tool which supports the
procedural, rule-based and object-oriented programming paradigms. ADS supports both forward and
backward chaining. Rules can be declarcd to fire only once or as often as needed. Several system-
defined demons are provided so that rules can fire whenever data values referenced in their
antecedents change. The object-oriented paradigm is supported through class definitions and user-
defined methods. Objects are activated by sending messages to either an entire class or an individual
instance of that class. Class hierarchies can be viewed graphically using the function keys provided
in the development interface.

This product is one of the premier tools in the industry, but it is principally targeted for large IBM
mainframe systems. The PC version is fully compatible with its mainframe counterpart. To achieve
this compatibility, the PC version provides a character-based editing environment and display screens
which seem limited compared to that of other PC products. Data import facilities are limited to
DOS and IBM mainframe file formats. V M M S and UNIX versions of the product are scheduled
for later this year.

In order to access Lotus 1-2-3 file formats, the FIXEDREC program must convert the file into a file
of fixed-length records. This program is executed by defining the command to be an ADS process
object which is called at the appropriate time. To read a file from Lotus 1-2-3, an ADS record
definition must be declared and the spreadsheet columns must match the ADS record definition,
dates must be converted to integers or a DD-MMM-YY format. To create a Lotus 1-2-3 file, the
file must be imported and other commands put the file into the appropriate format.

A developer can represent uncertainty by using certainty sets and the functions which manipulate
them. Certainty sets are real numbers with a range of -1.00 to 1.00 inclusive. Values from -0.2 to
0.2 represent a value of UNKNOWN; this threshold can be modified by the developer. Those values

10

greater than or equal to 0.2 are interpreted as true for the purposes of rule processing; conversely,
all values less than -0.2 are interpreted as false.

ARTEM is a powerful expert system tool which supports rule-based and object-oriented
programming. An earlier version named ART was one of the first commercially available expert
system tools. An agenda manages the forward chaining in ARTDM. As the conditions of a rule
change, the rule is fired to determined whether its conclusion has been reached. A pattern matcher
allows the product to represent generalized rules. Rules are defined using a defrule construction in
place of if .. then statements; this syntax allows rules to be annotated with documentation and
certainty factors (called saliences in ARTDM terminology). Backward chaining is not directly
supported by ARTLIM, but can be implemented easily.

ARTLM, while powerful, has a very complicated syntax and does not lend itself to end-user
development. This tool can be used with a companion product, called CBR h p r e s s (CBR standing
for Case-Based Reasoning). With this technology, test cases can be entered into a database and the
best matches are simply retrieved. Case-based reasoning is a new paradigm for designing intelligent
systems and shows great promise in several areas. CBR Express is the first commercially available
product which utilizes this technology.

4.23 clips

CLIPS (C Language Integrated Production System) is an expert system tool modeled after ART. It
is developed and maintained by the Software Technology Branch at NASA Johnson Space Center.
Written in the C programming language, it is meant to be a portable tool which can be embedded
within conventional applications. It is patterned after ART because NASA personnel have worked
with ART and needed similar functionality on conventional hardware platforms. As stated in the
CLIPS Reference Manual, “the syntax of CLIPS was made to very closely resemble the syntax of a
subset of the ART expert system tool developed by Inference Corporation.” This was achieved
without any assistance from Inference and without access to ART source code.

The CLIPS distribution includes all source code. CLIPS is installed by compiling the source code on
the target platform. CLIPS can be embedded within procedural code, called as a subroutine, and
integrated with programming languages other than C, e.g., FORTRAN and ADA CLIPS can be
extended with user-defined functions. In fact, some extensions to the language have included
backward chaining and hypertext capabilities. These extensions are not distributed with the CLIPS
source code.

The CLIPS Object Oriented Language (COOL) is a hybrid language which provides additional
capabilities to the CLIPS kernel. An object in CLIPS can be one of the following: an integer or
floating-point number, a symbol, a string, a multifield value, or an instance of a user-defined class.
Instances of a user-defined class can only be manipulated with messages. CLIPS does not support
metaclasses. Pattern matching against the state of an instance of a user-defined class is not allowed.
This deficiency inhibits developers from using the multiple paradigms supported in CLIPS.

11

42.4 ExsllS Professional

EXSYS Professional supports both rule and frame-based processing. Confidence factors are
supported to permit inexact reasoning. EXSYS offers a "what-if" capability which allows users to
change some of the conditions during a consultation and rerun the consultation. EXSYS can then
compare the old and new results to determine what caused the changes. The "Why" facility shows
the trace of rules used to reach a conclusion. The rules, however, require that all data comparisons
are between EXSYS variables, (Le., the attribute-value pairs which are used to represent some
concepts in EXSYS cannot be compared directly).

Production rules in EXSYS are stored in two files with the extensions .RUL and .TXT. EXSYS
Professional provides a command language to control the execution of a knowledge base. The
command language provides control mechanisms for data input, execution of rules, looping, and
branching. These commands reside in the file c€ilename>.CMD.

Data are transmitted between the EXSYS and external programs using the ASCII files named
PASS.DAT and RETURN.DAT, respectively.

EXSYS Options is a toolkit which extends the functionality of EXSYS Professional. This includes
LINDO, a linear, integer and quadratic programming package to solve optimization problems, e.g.,
scheduling, routing, etc. INDUCEXS is an EXSYS front end that builds production rules from a
table of data. A forms front end and user interface allows users to create screens and a fill-in-form
version of the report generator. Another product, the Linkable Object Module Library, allows
EXSYS to be embedded in conventional data processing applications.

4.25 GURU

GURU is a rule-based tool which supports forward, backward and mixed rule processing. When
searching for the next rule to be fired, numerous search strategies can be defined for the application.
Rudimentary statistical analyses are available. GURU also supports a structured programming
language with else and case statements. This tool has no object-oriented capabilities. It supports
certainty measures and fuzzy reasoning. GURU has a direct interface to SQL Server.

GURU Solveur is a diagnostic tool. In this package, experts describe an observed problem, the
symptoms associated with the problem, the possible causes and solutions to the problem, along with
questions that need to be asked to arrive at a solution.

4-26 Intelligence Compiler

Intelligence Compiler is one of several products developed and marketed by Intelligenceware, Inc.
of Los Angeles, California. It permits both rule-based and frame-based programming. The product
has its own Window, Icon, Mouse, Pointer (WIMP) interface, and there are no immediate plans to
integrate Intelligence Compiler with Windows. The tool's editor provides a pull-down menu and rules
are entered in text. The product supports hypertext applications. Production rules can be given
uncertainty measures and rule firing can be based on adjustable thresholds. The tool cannot be
embedded into other applications.

12

Two complementary products, IXL and Auto-Intelligence, are available from the vendor. IXL
discovers rules from large amounts of data which can then be used by Intelligence Compiler. There
is no limit on the number of cases that can be supplied to IXL and a maximum of 64,OOO attributes
can be represented in each case. Learning can be influenced by placing weights on the various
attributes. While the system can infer attributes with intervals, continuous attributes are not
supported. IXL uses a proprietary learning algorithm that permits it to handle massive amounts of
data. Technical representatives from Intelligenceware stated that the algorithm was not designed
to address problems similar to product comparability, but felt confident that their product could be
modified to handle such a situation.

Auto-Intelligence is a knowledge elicitation system which interviews experts, and through a series of
questions develops a set of cases which can then be used to infer production rules. The results of
this activity can also be used by Intelligence Compiler.

While IXL and Auto-Intelligence are intriguing and products with these capabilities might serve to
broaden BLS knowledge of machine learning paradigms, it is unlikely that the results of these
programs could be used without significant customization according to the requirements of CPI
product substitution. However, the pricing policies for IXL and Auto-Intelligence are such that the
Bureau of Labor Statistics could study the efficacy of these products.

Like A D S , Knowledge-Based Management System for the PC (KBMSPC) is a high-end product
designed to run in a mainframe environment. KBMS supports forward and backward chaining,
hypothetical reasoning, and object-oriented programming. KBMS allows the procedural attachment
of rules (Le., demons) at the object and attribute level. The product supports pattern matching and
allows the developer to control the order in which rules are evaluated and fired. Active Objects is
the facility within KBMS that supports the development of GUIs. This facility allows developers to
create icons.

The INTELLECT natural language system is embedded within KBMS, allowing easy access to data
and applications. This product is not embeddable, but a manual interface is available using the User
Defined Object facility. This allows developers to access proprietary databases, user-written routines,
and external devices.

KBMS objects support procedural attachments, or methods, that can be attached to entire object
definitions or individual attributes. Object attachments may be any combination of WHEN CREATED,
WHEN NEEDED, and WHEN DELETED; attribute attachments may be WHEN ASSIGNED and
WHEN NEEDED. WHEN NEEDED attachments can be used to gather data only when required for
processing.

1st Class HT is an expert system tool which allows users to enter test cases into a spreadsheet editor
or to speci@ production rules through the use of a menu-based interaction which represents the
entries as a decision tree. Backward chaining is supported, but forward chaining is emulated through

13

the chaining of knowledge bases. A single knowledge base in 1st Class HT is limited to 255 unique
examples.

This tool is designed for users with little or no experience with computer programming. While some
commodity analysts might like the simple user interface, others might be frustrated with the product’s
lack of expressiveness. The induction capabilities of 1st Class HT are too limited to handle CPI
product substitution because it can proms only 255 examples. The need for specialized induction
techniques has been discussed earlier.

4 2 9 KES

Knowledge Engineering System (KES) consists of two subsystems, Production Rule (PR) and
Hypothesize and Test (HT). The first subsystem represents expertise as production rules and objects;
the second takes several cases and tries to match the data with the new case. Since several matches
are possible, H uses certainty factors to rank alternative choices. This type of reasoning, known as
abduction, is very useful in diagnostic tasks where a large number of outcomes is possible.

KES is an embeddable product, which means that individual functions can be called and an external
program’s data structures can be used directly by the tool. Tight integration with the Professional
Review Systems (PRS) might require such capability at a later date. For the purposes of this study,
however, we have assumed that embeddability is not a required feature.

4210 KnowledgePro

KnowledgePro is a hypertext programming environment in which functions and production rulcs can
be represented. There are both DOS and Windows versions of the product. All instructions are
coded in a high-level programming language which provides window generation and other screen
functions. All knowledge in this tool is represented as one or more hierarchical concepts called
topics. These topics are processed in a top-down fashion or invoked using the do command.
Backward chaining is accomplished through the value-of command. Production rules can be
represented as topics o r as procedures within topics. There are no high-level explanation capabilities;
these must be implemented by the developer.

The data access capabilities of KnowledgePro seem inadequate for most applications. DOS text files
are read in using delimiters. External file I/O is geared primarily to reading and writing large text
files. The product does not support the storage of partial sessions to permanent media and their
resumption at a later date. This facility can be supplied by user-supplied code. A separate database
toolkit is required for KnowledgePro to access dBase and Lotus files. KnowledgePro is too limiting,
and its hypertext capabilities are not needed to perform CPI production substitution.

Memory management capabilities of the DOS version are limited. Large knowledge bases must be
segmented and removed from memory. Such performance tuning would hamper the ability of
commodity analysts to building knowledge bases.

14

LEVELS OELJECT is a frame-based tool which supports backward chaining. Frame-based systems
represent knowledge as stereotypes, (i.e. concept definitions with default values and procedures).
Some form of object-oriented and procedural programming is supported using this procedural
attachment. Attributes of objects represented in LEVEL5 OBJECT may possess rules, demons, or
methods.

Forward chaining is accomplished using demons; these demons can be declared using an IF THEN
ELSE syntax. Whenever a value referenced in a demon changes, that demon is invoked. A non-
trivial expert system can be developed using only demons to create a forward-chaining system with
no agenda. Pattern matching allows developers to find those objects which match a template
specified in a demon.

LEVEW OBJECT commands are case-sensitive. The developer interface exploits the Windows
capabilities to provide a point-and-click interface which is desirable for end user development.
Sophisticated screens can be generated by manipulating system-defined classes which represent
menus, text boxes, hypertext displays, etc.

The ACTIVATE and ESTABLISH commands allow the expert system to call external programs from
rules, demons, or methods. ACTIVATE is used when the external program will be called only once;
ESTABLISH is used to pass information between LEVELS OBJECT and an external program. When
used with these commands, SEND and RECEIVE statements allow a knowledge base to transmit
values to or accept values from an external program. Data values are passed via memory. The data
types of the parameters in the external program must match the attribute types referenced in these
statements. LEVEL5 OBJECT cannot be embedded within other programs.

LEVEL5 OEUECT provides a useful mechanism for importing dBase files into an expert system using
the external database class. Similar capabilities for LOTUS and SQL files are forthcoming.

LEVELS OBJECT represents certainty using confidence factors which are integer values ranging
from -2 to 100. A value of -2 or UNKNOWN indicates that an attribute cannot be assigned a value.
A value of -1 or UNDETERMINED indicates that an attribute has not been tested; consequently,
it has not been given a value. Values from 0 to 100 indicate the degree to which an attribute is
known. Zero indicates a completely false value while 100 indicates a completely true value. The
default confidence threshold is 50 and can be changed from within a rule, demon or method.

4212 NEXPERT/Objject

NEXPERT/Object is a visuai programming environment in which rules are defined using templates.
These templates do not permit an else statement. Backward chaining is the default inference
mechanism; forward chaining can be accomplished by "volunteering" data at the start of a session.
Pattern matching rules may be used to select those objects which have the desired charactcristics.
These rules only operate on that class specifically mentioned in the rules; any subclasses which would
logically be applicable due to inheritance are not recognized by the pattern matcher.

15

NEXPERT/Object has recently announced a new strategy for developing GUIs to knowledge-based
systems and porting this interface across different platforms. The NEXPERT Open Architecture
generates C source code which is then modified by the developer to include C subroutine calls to a
library of expert system functions. The use of NEXPERT/Object and its Open Architecture requires
an extensive knowledge of C programming.

4213 KappaPC

Kappa PC is a truly object-oriented expert system tool developed by Intellicorp of Mountain View,
California. It allows developers to represent and model processes and activities. It supports both
forward and backward chaining. It has direct interfaces between dBase 111, Lotus 1-2-3 and
Symphony file formats. An SQL interface is not included. The use of Windows simplifies the
development process since both developer and user can navigate through the tool and any
applications built from it in a straightforward fashion. Kappa PC can act as a Windows DDE client
or server. Error-handling capabilities appear to be a weakness of the tool.

The planned acquisition of Intellicorp by KnowledgeWare, Inc. has been announced. It is too early
to speculate on whether this development will impact future support for Kappa PC.

4.3 TOOL RECOMMENDATIONS

We have considered the capabilities of each tool, its ease of use, and its cost. We have evaluated the
tools against a number of desirable features (Appendix F), some of which are not required for the
particular application being studied, (Le., review of CPI product substitutions), but which are part of
a robust development environment. It is conceivable that other types of applications might be
developed using the tool chosen as a result of this evaluation. For example, both the post-production
review of product substitutions and the pre-production screening of product substitutions are basically
batch processes, with little need for sophisticated user interfaces or hypertext. However, other types
of expert systems might rely heavily upon such capabilities, e.g., training systems. Our
recommendations reflect a desire to select a product which provides the greatest functionality at a
reasonable cost.

43.1 External Data and Program Interfaces

Earlier generations of expert system shells were limited by their inability to access external data or
to execute external programs. Today’s business environment demands that expert system shells access
data from existing databases and communicate with conventional applications. Most PC expert system
shells can read dBase and Lotus 1-2-3 files as well as ASCII. Expert systems can create datafiles
which are used by other applications or can share data with programs through concurrent program
execution and inter-process communication, or linked subroutine libraries.

The only tool surveyed which had inadequate external data inteflaces was KnowledgePro. A database
toolkit for KnowledgePro is sold separately by the vendor. This toolkit allows KnowledgePro to
access dBase and Lotus files, but formatted ASCII files can only be read as character strings. A few

16

of the expert system shells have an SQL interface and other vendors plan to include this capability
in future releases.

Expert systems can be integrated into existing computer applications through the use of external
program interfaces. Conventional data processing systems can utilize the expertise represented in
expert systems; conversely, expert systems can obtain information using existing data collection
programs and analyze data using standard statistical packages. Call-idcall-out capabilities allow
expert systems to be called from and executed by external programs, respectively. Thk z5 the
minimum functionality required. Data are passed back and forth using datafiles or, less frequently,
common memory locations. Many vendors use or plan to use Microsoft Windows 3.0 DDE to
transmit data between applications. Embeddable expert systems are linked to conventional programs.
The inference engine is then activated by subroutine calls and expert knowledge can be referenced
directly by the conventional program. This approach yields tighter integration and faster processing
than achievable through call-in/call-out techniques, but often requires programming expertise to
implement the subroutine calls and to interpret the results. Embeddable systems introduce a level
of complexity unwarranted by the target application; however, they would facilitate the integration
of expert system capabilities into the PRS.

4.3.2 Support for Rule-based Processing

Production rules form the basis for most expert systems. An inference engine arrives at its decisions
by searching through the set of possible conclusions and finding those that are consistent with the
data provided to the system. This search is conducted by firing production rules according to a
particular search strategy. Forward chaining, or data-driven reasoning, fires those rules whose
a n t d e n t s (i.e., left-hand side of the rule) match the data provided to reach a conclusion (i.e., right-
hand side of the rule). Backward chaining, or goal-driven reasoning, starts with the conclusion of a
rule and determines whether those antecedents match the data. Mixed-mode rule firing denotes the
integration of forward and backward chaining. An example of mixed-mode processing would be the
use of forward-chaining rules to suggest conclusions for backward chaining. Some tools allow rules
to be prioritized to dictate the order in which rules are fired when more than one rule can be fired.

Forward chaining is best suited for those problems which may have a large number of possible
solutions. It requires that the information used to solve the problem be available. Forward-chaining
applications include process monitoring, configuration, scheduling, and simulation. Backward
chaining is preferable for those applications where a small number of possible solutions are known,
but the required data may be unknown. Backward chaining tries to determine what information is
available and whether it corroborates one of the possible solutions. The inference process is finished
when a solution has been obtained or has been ruled out. Backward-chaining applications include
diagnostic and classification problems. The problem of reviewing product substitutions has some
unique aspects; these are discussed in the next paragraph.

For product substitutions, product specifications and any associated free text will be available to the
commodity analyst and the expert system. While there is a single decision for determining whether
products are comparable, this decision relies upon several other decisions. Product specifications
could be incomplete or inconsistent, or pre-processing of free text specifications might be required
to compare specifications. A forward-chaining strategy will process each of these decisions, but a
backward-chaining strategy will stop processing these decisions when it has been determined that the

17

products are not comparable. The commodity analyst, however, might be interested in learning about
incomplete or inconsistent specifications that might not be identified by backward chaining. For this
reason, we conclude that the review process is best suited for a €orward-chaining application. Mixed
mode processing, (Le., both forward and backward chaining), might be advantageous in determining
the comparability of free-text specifications. Therefore, a recommended tool should support both
forward and backward chaining to provide a greater degree of fleribiliry to the developer.

Expert systems make decisions based upon available data, and some applications need to search
through this data for patterns. Pattern matching is the search for specific patterns within the data
residing in the system. For instance, a single pattern matching rule might detect all free text, (i.e.
‘W’), specifications. Without this capability, several rules might be required to examine each
specification. Pattern matching promotes more generalized production rules, thus simplifying the
expert system development process. Pattern matching should be considered an indkpensable feature
when discussing expert system shells. This eliminates the following tools from consideration: GURU,
fiowledgeho, and 1st Class HT.

433 Support for Frame-based or Object-orientcd Processing

Frames are another form of knowledge representation. Originally proposed by Minsky, they are
stereotypical situations or physical entities which have default values and actions. Frames are data
structures which can be manipulated by rule or procedural-based programming. They can inherit
properties from other frames. Frame-based programming consists of accessing one or more slots
within a frame, thereby activating procedures attached to those slots. Production rules can access and
modify slot values within frames, perhaps activating attached procedures in the process. Most expert
system shells are frame-based; however, as these shells mature, more of them will support the object-
oriented paradigm.

The object-oriented paradigm is more powerful than frame-based representations. Objects can be
grouped together into higher abstractions called classes which have default values and behaviors. The
paradigm is based on three principles: encapsulation, inheritance, and polymorphism. Encapsulation
defines an object as both data, (i.e., slots), and the procedures which manipulate that data, (Le.,
methods). Encapsulation encourages developers to restrict access to slot values and to enforce
consistent data manipulations. Inheritance allows objects to share data and procedures among
hierarchies of class objects, yet allows the inherited data and procedures to be extended through new
slot and method definitions. Polymorphism permits different procedures to be invoked using the
same function call by letting the type of object being processed specify which function should be
called. Object-oriented programming consists of objects requesting other objects to perform some
activity, e.g., changing the values of one or more of its slots. Although a more natural approach to
knowledge representation, the object-oriented paradigm represents a fundamentally different
approach to software development. As with all new technologies, some education will be required
to introduce this approach to commodity analysts and computer programmers at the Bureau of Labor
Statistics.

CPI specifications can be represented as either frames o r objects. More sophisticated applications
may require an object-oriented approach, but any new paradigm entails additional training. The
frame-based representation introduces many of the same concepts, e.g., inheritance, but is based on

18

a procedural view of programming. Any expert system shell chosen for BLS should support frame-based
or object-oriented processing.

Rule-based programming has traditionally been the primary mechanism for representing and processing
knowledge, but other programming paradigms may be more appropriate in some situations. Iterative
programming constructs such as for, while and case statements, violate the spirit of rule-based
processing because there is no separation of knowledge and its use. Several expert system shells have
their own programming language to accommodate these constructs. In this manner, developers can
use the paradigm which best fits the problem. Developers can use production rules to represent
expert knowledge and can encode algorithms in an expert system using a high-level language syntax.

Most expert system shells support some degree of procedural processing. Frame-based systems allow
procedures to be attached to slots. Two examples of these procedures are WHEN-NEEDED and
WHEN-MODIFIED. When slots with the applicable attached procedures are accessed, these
procedures are executed. Object-oriented programming allows developers to define procedural code
which implements the behavior of a group of objects. A few sophisticated tools permit program
modules and functions to be created independently of frames or objects. These modules are
processed sequentially. Production rules are arranged into rule sets, defined in one of the program
modules, and fired whenever that module is entered. Such capabilities are reserved for those
mainframe and workstation-based tools which have PC versions to accommodate system development.
A tool permitting procedural attmhments to frames should provide ample functionality for BLS.

The tool should handle lbts or arrays. Since natural language analysis of free text is an open research
problem, processing free text associated with ‘99’ specifications may require look-up tables containing
frequently-used terms or phrases.

4 3 5 Uncertainty Measures

Humans are capable oE making decisions with incomplete or uncertain information. Some expert
system shells use numerical weights to represent the degree to which a piece of data is to be believed.
Rules can then be fired when all its antecedents exceed the threshold value representing sufficient
belief in a data item to warrant further processing. This form of inexact reasoning permits expert
systems to process uncertain information, but can lead to erroneous conclusions.

Some at BLS feel that there must be no uncertainty in decision making, (Le., there must be 100%
accuracy). However, the use of inexact reasoning in a pre-production tool might grade those product
substitutions which can not be categorically rejected. These grades could then serve as a decision tool
to assist commodity analysts with their own decision-making processes. Consequently, a desirable
featw-e of a tool is to allow the assignment and processing of uncertainiy measurements.

19

43.6 Induction Capabilities

Induction is the process of forming generalizations based upon specific instances. Few shells induce
production rules or decision trees from data, but several have companion products which perform
induction and represent the results using data structures provided by that tool. 1st Class HT allows
users to enter data using a spreadsheet layout and generates decision trees from the spreadsheet
while EXSYS Professional, Intelligence Compiler, KnowledgePro and NEXPERT Object have
companion learning tools. When discussing learning systems, it is important to differentiate between
general-purpose and domain-specific induction algorithms. General-purpose algorithms learn decision
rules based on analysis of attributes and the values that they may take; domain-specific algorithms
have some knowledge of the problem which they can use to simplify the recognition of data
relationships that represent knowledge and the arrangement of that knowledge in a meaningful
representation. Commercial learning systems use general-purpose algorithms to solve the widest
range of problems for the largest number of potential customers. These general techniques are
ineffective for specialized problems such as product comparability. See Section 5 for a more detailed
discussion of machine learning and induction algorithms.

4.3.7 Mathematical Functions

BLS needs to compile decision statistics which gauge the effectiveness of any screening tool for
reviewing product substitutions. With the exception of Khowledgefio, all the expert system shells listed
in the capabilities matrir have sufficient mathematical functions to perform rudimentary analysk. More
sophisticated statistical analyses would need to be conducted using a statistical package, e.g. SAS.

43.8 Developer and User Interfaces

The developer and user interfaces for any expert system shell are among the most important
considerations when selecting a tool. The developer's interface should he evaluated on the basis of
how easy it is for the developer to represent the knowledge. Since commodity analysts will be the
developers of any expert systems built for BLS, tools with a WIMP interface should be easier for the
analysts to learn and use. In discussions with several staff members at BLS, we concluded that a
"windows look and feel" was desirable. Using a tool that uses Windows to provide the developer and
user interfaces was considered ideal because a developer or user familiar with Windows would be
comfortable with the expert system interface. While recognizing that Windows might be difficult for
some analysts, we feel that standard interfaces are preferable to proprietary WIMP interfaces or
programming languages.

Developers should be able to build and test user interfaces as they build their system, yet most tools
do not allow this. NEXPERT Object requires a separate user interface generator, the Open
Interface toolkit, to create sophisticated WIMP interfaces. This toolkit allows developers to generate
GUIs using a WIMP interface and generates C language templates to produce the user interface.
Developers must then modify these templates by including C language subroutines calls to the
NEXPERT inference engine. This approach requires too much programming expertise. Another
expert system shell with limited user interface capabilities is CLIPS. Its interface-building capabilities
are those of the C Programming language itself. Due to the difficulty in building user integaces,
CLIPS and NEXPERT Object can be eliminated from further consideration.

20

43.9 Cost and Licensing Issues

BLS plans to purchase four or five development copies of an expert system shell and will need thirty
or more runtime copies. All purchases are to be made at the same time. Their budget for both the
tools, and the training required to use these tools, is modest. Considering vendors’ pncingpolicies,
we can eliminate several tools from consideration: ADS, ARTIIM, GURU, lijlppa PC, IBMSIPC, KES
and NEXPERT Object. These products are ail priced in the $3,OOO to $8,000 price range for a single
development copy. Volume discounts and special pricing agreements might reduce costs for
development software, but there would be no monies for runtime copies. Each of these vendors
requires separate runtime pricing, which averages $500 to $loo0 a copy. In addition, there would be
no monies available for training. Several of these tools would warrant further consideration if and
when BLS wanted greater functionality and migrated to larger hardware platforms. In each case,
these products are PC-based versions of mainframe or multi-user workstation development
environments. The vendors’ pricing strategies are to charge $20,000 to $lOO,OOO for these products
and provide less expensive PC versions to facilitate software development.

There are less-expensive tools targeted for the PC environment that meet the current needs of BLS
and can be used to review CPI product substitutions. PC pricing of expert system shells should
reflect the nature of PC-based systems. There may be widespread or even unlimited distribution of
runtime copies, consequently, runtime licensing should be royalty-free. Of the remaining shells we
considered, only KnowledgePro, LEVELS OBJECT, and IntelligenceICompiler have free runtime
copies. According to a marketing representative, IntelligenceWare is instituting a runtime pricing for
Intelligence Compiler in the near future.

43.10 Final Assessment

Our assessment of the expert system shell marketplace is that PC versions of ADS and Kappa PC
offer the greatest functionality. Both are truly object-oriented with message passing and specialized
methods, and both require significant programming expertise. These products are targeted at high-
end computing platforms, and have sophisticated features which are not required for many PC-based
applications. Furthermore, their pricing structure is not compatible with other sectors of the PC
marketplace. Frame-based shells offer the next highest level oE functionality. ART/IM, EXSYS Pro,
Intelligence Compiler, KBMSPC, LEVELS OBJECT, and NEXPERT Object are considered to be
frame-based. Of these products, LEVEL5 OBJECT is considered the most user-friendly. Among
frame-based or object-oriented systems, only EXSYS Pro, Intelligence Compiler, and LEVEL5
OBJECT have not been eliminated from consideration.

We have evaluated other tools which we believe offer insufficient functionality. CLIPS and KES are
tools ideally suited for building embeddable expert systems, but they require sophisticated
programming skills. GURU does not offer frame-based or object-oriented processing at this time.
Niche systems such as 1st Class HT and KnowledgePro do not provide the broad range of features
needed for successful expert system development. Each lack sufficient external data or program
interfaces, support for multiple programming paradigms, and robust user interface support. These
tools are targeted to those applications which will benefit from inductive inferencing techniques or
hypertext capabilities. Purely rule-based systems do not offer sufficient functionality; therefore all
such systems have been eliminated from consideration.

21

Through a process of elimination, we are left with three candidate systems: EXSYS Professional,
Intelligence Compiler, and LEVEL5 OBJECT. All other tools are either too expensive, require too
much programming expertise, or offer too little functionality. Of these three remaining products,
LEVELS OBJECT has the best developer and user interfaces and has integrated procedural and
frame-based processing. Furthermore, while our evaluation considers only tool functionality and
price, we have been impressed by the level of customer support for LEVEL5 OBJECT. Their
training courses have been recommended to us by attendees and appear to be offered more
frequently and in more locations than that of the other two vendors. We have concluded that
Information Builders, Inc. has greater financial resources than the other two vendors because it offers
a wide range of software products, e.g., FOCUS, while the other two vendors are principally limited
to expert system software.

Ow recommendation is that BLSpurchase LEKYL.5 ORlECTto w- their study of expert systems.
LEVELS OBJECT is priced considerably lower than other expert system shells with comparable
functionality. The vendor, Information Builders, Inc., offers excellent training courses in developing
expert systems with their product. The vendor seems stable, having sufficient financial resources and
a corporate commitment to advanced information technologies. However, the maturity of this field
should be reassessed periodically to ensure that Bureau personnel are benefitting from market trends.
The selection of LEVEL5 OBJECT does not prevent BLS from using other shells in the future.
Since it supports multiple programming paradigms, the knowledge in LEVELS OBJECT knowledge
bases can be migrated to other tools which support the same programming paradigms. However,
moving from LEVEL5 OBJECT to a purely object-oriented environment might present some
difficulties since a shift in paradigm would require some modification. In addition, LEVELS OBJECT
does not preclude the use of machine learning algorithms to generate knowledge bases as long as the
induced representation is given as, or can be converted to, production rules.

22

5. MAcf-IINE LEARNING APPROACHES

Weiss and Kulikowski (1991) define a learning system as “a computer program that makes decisions
based on the accumulated experience contained in successhlly solved cases.” Most learning systems
are used to generate decision rules which will predict the outcome of new cases based upon historical
data. In this context, learning consists of choosing those characteristics (or features) of a case which
will best classify new cases. The learning system takes as its input a set of cases and their correct
classifications. It gives as its output a set of decision rules which will classify new cases. The learning
system creates a classifier which can solve new classification problems. The classifier takes as its input
a set of features which describes a new case and gives as its output the class to which the new case
belongs. Figure 1 depicts the relationship between the learning system and the classifier(s) it
produces. For the comparability of CPI product substitutions, cases corresponding to
(non)comparable product substitutions would be supplied to the learning system €or one or more
ELIs. The learning system would extract the decision rules necessary to predict the comparability of
products. We discuss the motivation for using machine learning techniques in the CPI product
substitution task, contrast the various approaches to learning, and describe the most promising
algorithms for product substitution.

Tralnlng examples CIZl

Figure 1 : Learning and Classification Systems

The process of capturing and organizing the domain expertise to be represented in a knowledge-based
system is called knowledge engineering. Traditional approaches to developing knowledge-based
systems consist of having either the domain expert encode his knowledge into the appropriate
representation or having a knowledge engineer interview the expert to determine the decision rules.
While these approaches have worked reasonably well, there can be problems associated with them.

23

In the former, the expert must spend valuable time learning an expert system tool and representing
his (or her) expertise in the appropriate form; in the latter, a knowledge engineer (i.e., systems
analyst) must elicit, and encode correctly, the expertise. Difficulties in communication between the
expert and analyst, lack of participation by the expert, and incompletely specified knowledge are only
three examples of inherent problems. Learning systems can complement expert system development
by automating much of the knowledge engineering process.

In the case of CPI product substitution, there are more than three hundred ELIs for which some
form of product substitution review is required. Building a knowledge-based system for each ELI will
be time consuming. Since different commodity analysts will be creating the knowledge bases for each
system, it is unlikely that they will use the same design techniques or develop systems with the same
degree of expertise. A more promising approach is to learn the initial knowledge bases which are
then reviewed and refined by commodity analysts. This would lessen the time required by each
analyst to construct an expert system by screening the more obvious cases.

Another problem may be the articulation of expert knowledge by the commodity analyst. Although
commodity analysts may be quite skillful at reviewing CPI product substitutions, they may be less
adept at describing the reasoning behind their decisions, especially since the analyst is expected to
be both the expert and the knowledge engineer. The analyst may tend to oversimplify the decision-
making process by omitting steps which may seem obvious but which must be explicitly defined in the
knowledge base. It may be that the analyst does not consider exceptions which are a common
occurrence. Learning systems can identify this implicit knowledge and make it explicit. The analyst
can then refine the knowledge base.

Some learning systems can adapt to handle new cases. Learning is generally classified as being
supervised or unsupervised. Supervised learning requires a set of examples which are used to guide
classification; unsupervised learning forms classes solely on the basis of shared characteristics in its
observations. In the case of CPI product substitution, a supervised learning system would take a set
of examples for (non)comparable cases and derive decision rules for comparability. Commodity
analysts could then critique the rules by using additional cases, reclassifying erroneous classifications,
and resupplying these to the system. Clustering algorithms represent unsupervised learning
techniques. It must be noted that there are no learning systems which presently function at the same
level as humans. Learning systems excel at handling large amounts of data; the more creative aspects
of learning remain beyond the capabilities of these systems.

There are several approaches to machine learning, e.g., statistical pattern recognition (Duda and Hart,
1973), neural networks (McClelland, Rumelhart et al, 1986a, 1986b), and symbolic approaches to
learning (Quinlan, 1986; Michalski, 1980). Our efforts have concentrated upon symbolic approaches,
i.e., tree and rule induction techniques, because they are more compatible with the CPI product
substitution process and BLS goals for expert system technology. Machine-generated production rules
can be augmented by commodity analysts as needed. Symbolic techniques, in general, provide better
explanations than their statistically-based counterparts. In addition, the generation of production
rules permits comparison with manually-derived knowledge bases. Case-based reasoning is another
promising technique for utilizing historical data to solve new problems (Slade, 1990; Kolodner, 1991).
However, there are few case-based reasoning systems available, either public-domain or commercial,
and they do not integrate with conventional rule-based expert systems. Perhaps as this technology
matures it will warrant further investigation.

24

All decisions are based on the features of each case and their correct classification. A basic
assumption of all learning systems is that there is sufficient information upon which to base a
decision. In reality, most of the information associated with cases is not used. Humans, and the
learning systems which attempt to emulate their reasoning, use generalizations to reduce the amount
of information needed to make a decision. Learning systems could search through vast amounts of
information to arrive at a previous decision; this requires an exact match to be present in the data.
However, such exact matches are rare. Successful learning systems generalize, but do not over
generalize. Sophisticated testing procedures ensure that the learning sys tems perform adequately.

/ 4 % ' false x2 %
false tNUe

C >

c 2 c3 c 2 c1 c3

a. Binary declslon tree b. Nonbinary declsion tree

We consider two distinct representations for the decision rules used by the classifier: decision trees
and production rules. The methods for inducing each type of structure are slightly different. As is
discussed in greater detail, decision trees can be easily represented as production rules, but
production rules cannot be directly transformed into decision trees. Although the most popular
induction techniques generate decision trees, production rules are the preferred representation. The
most common technique: is to generate decision trees, convert them to production rules, and eliminate
redundant rules.

A decision tree consists of nodes and branches where each node represents a single test or decision.
The starting node is called the root node. Depending upon the result of a test, the tree will branch
to other nodes. When a terminal node, or IeaJ is reached, a decision is made on the class
assignment. Decision trees may be either binary or nonbinary. The nodes of a binary decision tree
can process only true or false test results. Two branches leave each node, and only one branch may
enter a node. Typically, decision trees show true decisions branching right and false decisions
branching left. Nonbinary trees allow more than two branches to leave the node, but retain the
restriction of one entering node, In this tree, each decision results in a partition of two or more
disjoint sets. Figure 2(a) presents a binary tree, Figure 2(b), a nonbinary tree. For any tree, all paths
lead to a terminal node corresponding to a decision that is a conjunction (i.e., AND) of various tests.
If there are multiple paths for a given class, then the paths represent disjunctions @e., OR). All
paths in the decision tree are mutually exclusive. For any new case, only one path in the tree will
be satisfied.

25

The process of learning the structure of a decision tree or the equivalent rule set from data is known
as induction. A popular method of tree construction is to split all nodes into disjoint groups of
distinct values for the test represented by a node. A tree is induced by selecting a starting feature
or test, splitting that feature into disjoint sets, and then repeating the process. This is known as
recursivepartitioning When all members of the sample belong to the same class, no further splitting
is performed, forming a terminal node. Alternately, terminal nodes are formed when the number of
remaining cases falls below some minimum threshold value. In this case, the node is assigned to the
class having the greatest frequency at that node.

The simplest technique for splitting the nodes into disjoint partitions is to partition the data by the
values of the feature being tested. Splitting by feature value can always be made to result in terminal
nodes that consist of members of a single class, unless an identical case in the data is assigned to two
or more different classes. In the worst case, each path to a terminal node will correspond exactly to
one of the cases in the sample. There are some weaknesses in splitting by attributes. An obvious
difficulty arises in splitting continuous variables. Since there may be an infinite number of possible
splits, a more reasonable method for handling continuous variables is to assign them a small set of
discrete intervals. Unfortunately, there is no technique for knowing in advance the number of
intervals required or their ranges. In general, the use of intervals and arithmetic operators can cover
more effectively the range of numerical values and help improve predictive power of the classifier.

Another problem with splitting the tree is that it tends to fragment the tree into many smaller groups.
Parsimonious trees have fewer tests to perform and thus have larger samples supporting the terminal
nodes. With a limited sample, the tree should not be required to consider a complete range of values
for a feature when a much smaller set of numbers would serve as well. However, trees that are split
by value for other types of attributes are more natural and understandable. This is particularly true
for categorical values which have been defined after having considered the data.

The determination of which node to split next is handled in several ways. Variables can be selected
at random, but trees formed in this manner would be larger and more error-prone. Most learning
features must concern themselves with noise; noise can be characterized as those features which have
no more predictive capability than random selection. Since most features are noisy, random selection
can split on useless nodes. Some heuristic must be used to determine the next node.

The basic approach to selecting a variable is to evaluate its likelihood for improving the performance
of the tree. Several splitting evaluation functions perform quite well. The underlying concept behind
these splitting functions is to select that variable and cutoff that will select the best tree. These
evaluation functions predict solely on the basis of splitting a single node, without testing possible splits
of successor nodes. This heuristic tends to make good judgements with incomplete information. The
most widely used splitting functions reduce the degree of randomness in the current node. The most
popular functions are the entropy function and the gini function (Quinlan, 1986). Different splits are
examined, and the variable selected for splitting is the one with the greatest reduction in impurity.
Once a decision tree has been constructed, it must be validated. Ove$fhg occurs when the decision
tree has been split to completely predict the sample cases. An obvious case of overfitting is to use
the test cases as the dccision rules for new cases; unless the sample is exceptionally representative
of the true population, the resultant tree will perform poorly on new cases. An apparent error rate
of zero for the test cases may translate to a high error rate on new cases. The true error rate must
bc estimated by resampling or by estimating the performance of the tree with independent test cases.
Standard statistical testing, e.g., chi-square test, can measure the significance of features. When the

26

statistical test indicates that further splitting is not significant, no further splitting is performed on that
node. This approach is sucGessful in applications with large samples, but can result in the tree
induction process terminating too quickly. The risk of underfitting the data is worse than overfitting.
Empirical evidence suggests that pruning techniques are superior.

Pruning techniques start with the fully-expanded tree. The weakest branches are identified and
eliminated. Reduced-error pruning breaks the samples into a training and test set. If the error rate
on the test cases improves by pruning it, the subtree is removed. The process continues until there
is no improvement in the tree.

While tree-based learning systems are effective, they have some limitations. Current tree induction
methods are not optimal; the combinatorics involved with tree optimization would render such
algorithms impractical for most large problems. Linear and boolean combinations may require more
complex tree structures than would normally be desired. Some subtrees are replicated.

Since most expert systems are based on production rules, learning systems should be capable of
generating rules. Two key variations on rule induction have emerged. In the first strategy, a decision
tree is rewritten as a collection of production rules, and the rule set is pruned. Quinlan (1986)
describes an approach in which a covering tree is induced, but pruning on the rule set is performed
by rule and component deletion. This results in a simplified set of potentially nonmutually exclusive
rules. In the second rule induction strategy, a single best rule is found, the cases covered by that rule
are removed from the training set, and the process is repeated until all cases have been exhausted
(Michalski, 1983). The set of covering rules can be refined further by pruning or by applying some
statistical test. These methods work directly with nonmutually exclusive rules in disjunctive normal
form (DNF). They expand only a single rule €or a given class by specializing the rule, as if they were
evaluating a single branch of a decision tree.

AQ is a series of learning systems developed by Michalski which have been used to learn decision
rules in agricultural and medical domains (Michalski and Chilausky, 1980; Michalski and e t al., 1985).
AQ uses an iterative approach by selecting a new feature at each stage, starting with a null
description. A new training event is chosen. A conjunction of terms is generated, (Le., a star), by
extending a description to cover as many positive examples as possible while including as few negative
examples as possible. The simplest description is retained according to pre-defined criteria. When
all relevant events have been covered, the description is kept; otherwise the process is repeated.
When a single conjunctive description cannot cover all positive cases (which is often the case), AQ
will generate several conjunction expressions, (Le., a disjunction of conjunctive expressions). This
algorithm is not incremental, (Le., new cases cannot be processed once the descriptions have been
produced). Another example of a general technique for direct rule induction is the CN2 algorithm
devised by Clark and Niblett (1989); it too is nonincremental.

Learning algorithms can be consider to be non-incremental or incremental. Most of the earlier rule
induction techniques, e.g., ID3, were non-incremental. While these systems produced good decision
trees, they were unable to modibing their structures based on new, contradictory cases. Clearly, any
robust learning algorithm would need to be adaptable. Several new algorithms have been introduced
to permit the incremental construction of decision trees and rule sets. Utgoff (1989) has produced
IDSR. COBWEB is another incremental learning system which performs unsupervised learning
(Fisher, 1987). Intuitively, learning systems should not be required to relearn all of their concepts

27

when new information is supplied. This new information, however, can greatly impact the existing
representation. A great deal of research in this area is currently underway.

KB i+1

Inltlallzatlon t €3-
revlslon i
h 1st odes

*

There are limitations of learning systems. Some representations do not handle inequality very well,
(Le., comparing product specifications). These algorithms would not be suitable for generating
knowledge bases for product substitution review. As stated earlier, most techniques do not handle
continuous variables very well; however, ranges of discrete intervals identified by either the learning
system or commodity analysts could be substituted €or continuous variables. Lastly, combinations of
variables may require special heuristics. This would necessitate some understanding of the problem
domain prior to generating the production rules. It is unclear whether this difficultly would be posed
by CPI product substitution or other tasks within BLS.

BLS should consider learning systems as one approach to collecting and maintaining expertise on CPI
product substitution. Learning techniques will become more prevalent as they continue to mature
and improve. Some exploratory studies could be conducted to determine the feasibility of this
technology. An additional approach would be to compare the knowledge bases generated by learning
systems with those developed by commodity analysts. A sufficiently complex example should be
selected so that both the learning system and the analysts are challenged.

It is relatively simple to envision the generation of ELI-specific knowledge bases using historical data.
Information would be supplied to a learning system along with a set of initial conditions outlining
those specifications which must be complete and any inconsistent combination of specifications. The
learning system would be required to test its classifier against the initial knowledge base designated
KB, in Figure 3. An incremental approach would be used to reflect the constantly changing
considerations in CPI product substitution.

t

Figure 3: A Proposed Incremental Learning Architecture

28

6. FINALRECOMMENDATIONS

A criteria matrix has been devised to serve as a decision tool in selecting the approach or approaches
most compatible with the needs of BLS (see Appendix E). BLS/CPI staff specified the criteria by
which each approach can be judged and assigned numerical weights to these criteria. Initially, each
alternative was graded using a relative scale from one to five where a score of one signifies that the
alternative provides the minimum level; a score of five signifies that the alternative is the most
satisfying of the available choices. There may be alternatives which have identical scores for the same
criterion. This signifies that these alternatives are not materially different for that particular criterion,
e.g., developers will use the same capabilities of LEVELS OELJECT whether or not they are following
any development methodology. Each score was multiplied by the weight of their respective criteria;
in those cases where two weights were provided, two values are computed and averaged. This
method of calculation reflects a desire to consider both near- and long-term implications of selecting
a particular alternative. The scores were totaled and the overall scores, which are discussed at the
end of this section, serve as the basis for our final recommendations.

We have arranged the five alternatives presented in the criteria matrix into two tiers, The first tier
consists of those alternatives which employ traditional methods of acquiring and representing
knowledge in an expert system; the second consists of those which automate much of the knowledge
capture and organization necessary to build expert systems. Within the first tier, there are two
approaches which involve the manual elicitation of expert knowledge and representation of that
knowledge. The principal difference between these two alternatives is that one emphasizes a well-
structured methodology for constructing expert systems. Expert systems are a form of computer
software, and traditional methods of software development can be adapted to reflect those unique
aspects of the development process. Furthermore, these methods can be further tailored for the CPI
application. The second tier is comprised of more sophisticated alternatives which are predicated
upon the success of using machine learning techniques to generate ELI-specific knowledge bases.
Those alternatives in the first tier offer the greatest hope of near-term success with limited risk of
failure; those in the second tier involve more uncertainty but promise a greater return on investment
over the long-run in the form of more consistent knowledge bases and shorter development
schedules.

We describe each approach and assess its prospects for success:

Tier One: Traditional Knowledge Engineering.

I . Use LEVELS OHECT. Provide training for developers.

Give commodity analysts development copies of LEVELS OFUECT and train them on its use.
Provide additional training which covers issues in expert system development, e.g., knowledge
acquisition and representation, life-cycle development, to supplement tool-specific courses. Establish
a small core team to introduce the technology into the larger organization.

LEVEL5 OBJECT training can be provided by the vendor, Information Builders, Inc. Depending
upon the number of employees to be trained, it may be cost-effective to have the vendor give courses
onsite. Another means of training commodity analysts would be to have BLSICPI staff who have
taken the vendor training and have some hands-on experience with LEVEL5 OBJECI' teach wurses
to other commodity analysts. The core team studying the use of expert systems within BLS is the

29

obvious choice for championing the technology within the organization. Success depends heavily
upon the ability of commodity analysts to learn how to identify and capture expert knowledge and
how to organize and maintain that knowledge in LEVELS OBJECT. Representing knowledge in
LEVELS OBJECT may be difficult for some analysts; however, our experience with expert system
technology suggests that knowledge capture will be more difficult than expected for a variety of other
reasons. For example, in their initial study of expert systems, the core team within BLS documented
cases whcre highly knowledgeable analysts omitted expert knowledge critical to the success of the
resulting expert system.

2. Use LEVELS OBJECT. Devise and document a methodology for expert system development.

Study existing software development methodologies for expert systems. Compare these
methodologies to existing in-house procedures for developing end-user computer applications. Devise
a methodology for expert system development which is compatible with current procedures. Instruct
commodity analysts on the use of such a methodology.

There is a great deal of literature covering various techniques for knowledge elicitation and
organization (cf. International Journal of Man-Machine Studies and Knowledrre Acquisition). A
methodology should make it easier for commodity analysts to build, test, and maintain expert systems.
It should provide guidelines on collecting and organizing product comparability knowledge. These
guidelines would presumably address issues of knowledge collection that are critical to expert system
development. For this reason, a methodology which gives commodity analysts procedures to follow
in constructing knowledge bases is viewed as preferable, if not essential, to simply providing the
analysts with training on LEVEL5 OBJECT. A methodology might also suggest or enforce consistent
user and external data interfaces. With these design decisions largely resolved, commodity analysts
could then concentrate on the knowledge within the system. This would make it easier to both use
and maintain a large number of expert systems.

Tier Two: Machine Learning Techniques (See Section 5 for definitions).

3. Apply non-incremental machine learning to infer knowledge bases. Conduct pilot project.

Select a suite of ELIs which represents the spectrum of complexity, i.e, easy, medium, or hard. Use
existing machine learning algorithms to generate knowledge bases from actual comparability decisions;
in addition, have commodity analysts build knowledge bases for these ELIs. Compare the knowledge
bases for each ELI using several criteria (e.g., accuracy, maintainability). Extrapolate results to
determine whether to pursue machine learning techniques.

Due to the nature of the domain, off-the-shelf learning systems cannot infer rules for product
comparability without modification. Product substitution review entails a comparison of two o r more
sets of features, (Le., vectors), to determine comparability. Most learning algorithms concentrate
upon a single set of features which can predict o r class@ membership in a particular class.
Identifylng relationships between two feature vectors and their values is more challenging; howevcr,
we can simplify this learning process by recognizing the domain-specific characteristics oE product
comparison. A non-incremental learning algorithm can be selected and modified to generate rules
by analyzing multiple feature vectors and the relationships between features in the vectors. Initial
conditions, e.g., complete and consistent ELI specifications, can further simplify the learning process
and improve the accuracy of the generated knowledge base. While success cannot be guaranteed,

30

benefits are enormous considering the number of ELI-specific knowledge bases that may be required
for product substitution review. Currently, all off-the-shelf learning systems, e.g., IXL and
INDUCEXS, use non-incremental algorithms.

4. Apply incremental machine learning to infer knowledge bases. Conduct pilot project.

Use the same approach described to study non-incremental machine learning algorithms. Determine
whether the added complexity of incrementally revising knowledge bases is offset by a decrease in
maintenance costs.

Incremental machine learning algorithms are seen as a more advanced solution to the problem of
inductive inference and maintaining knowledge bases through automated inspection of historical data
and user-supplied training cases. Incremental learning is attractive because it permits existing
knowledge bases to be refined based upon new data. Non-incremental approaches require that
knowledge bases be regenerated from the complete set of data. Obviously, incremental approaches
offer tremendous time savings. However, there appear to be no off-the-shelf incremental learning
systems. Some research and development activilies would be required to produce the incremental
machine learning algorithm. First, a pilot project would need to demonstrate success in learning
comparability rules. Then, the algorithm used to generate comparability rules would be revised to
permit incremental updates to the knowledge base. Success cannot be measured precisely without
knowing the viability of machine learning techniques for product substitution review.

5. Apply machine learning techniques. Develop front-end to ass& in reviewing, testing, and revising
knowledge bases.

Use the same approach described for the machine learning algorithms. Develop an intelligent
interface to the automatically generated knowledge bases which will allow commodity analysts to
examine the knowledge extracted from comparability data, supplement it with knowledge not explicitly
represented in the data, and test for inconsistencies between it and knowledge supplied by commodity
analysts.

An intelligent tool to automate much of the expert system development process is a significant goal
of the artificial intelligence community. The knowledge acquisition bottleneck has long been seen
as a major impediment to the development of expert systems. Unfortunately, there is no such public
domain or commercially available tool for general-purpose expert system development. Some domain-
specific knowledge acquisition systems have been developed (Marcus, 1988), but these tools generally
do not employ learning techniques. Development of such a tool would represent a fundamental
breakthrough in the development of expert systems. Significant research and development activities
would be required to produce the intelligent interface envisioned. Such an ambitious research
initiative as this would entail both significant development efforts and risk of failure. This alternative
should not be considered without considerable evidence that learning techniques, in particular
incremental approaches, are viable technologies for learning rules to be used in product substitution
review.

31

Using these definitions of the five alternatives presented in the matrix, and their prospects for
success, we can discuss the scores presented in the criteria matrix:

Score
Tier One: Traditional Knowledge Engineering.

1. Use LEVEL5 OBJECT. Provide training for developers.
2. Use LEVEU OBJECT. Devise and document a methodology for expert system development.

Tier Two: Machine Learning Techniques.

394.5
425

Score

3. Apply machine learning techniques for inferring knowledge bases. Conduct pilot project.
4. Apply incremental approaches to machine learning. Conduct pilot project.
5. Apply machine learning techniques. Develop frontend to review, test, and revise knowledge bases.

397.5
369
433

Looking at tiers one and two, we see that the alternatives with the highest scores are #2 and #5,
respectively. Given its reliance upon machine learning techniques for success, #5 has an
unreasonably high score. This can be attributed to two factors: the attractiveness of using an
intelligent tool to support and guide the expert system development process, and the relatively low
weights assigned to those criteria which predict developmental effort and risk of failure. It is
unrealistic, therefore, to suggest that alternative #5 be pursued at the present time. However, the
promise of automating knowledge collection and organization should not be overlooked. To some
extent the potential benefits of using these advanced technologies are reflected by the scores in the
second tier exceeding those of the first. This suggests that machine learning techniques and
intelligent tools for expert system development could provide productivity gains in the future. At a
minimum, these newer technologies should be closely monitored and evaluated for future use in BLS
operations.

We recommend that BLSpursue altemativesji-om both tiers. This approach permits BLS to judge the
efficacy of newer technologies while continuing to investigate traditional expert system developmcnt.
We believe that the most prudent approach at this time is to use the recommended expert system
shell, LEVELS OBJECT, and follow a methodology for expert system development. BLS/CPI can
adopt an existing methodology and adapt it as needed, or devise one uniquely suited to their needs.
In addition, we recommend that a pilot study be conducted to determine the feasibility of machine
learning techniques for inferring ELI-specific knowledge bases. Currently, there are no off-the-shelf
machine learning algorithms which can learn rules for product comparability. It is our opinion that
product comparability is such a specialized domain that it will not provide sufficient incentive for
software vendors to produce the domain-specific software which would solve the problem. A pilot
project could conclude whether ELI-specific knowledge could be learned by systems using algorithms
designed specifically for comparison tasks.

The analyses presented in Sections 4 and 5 and the recommendations presented above support the
evolving strategy of empowering commodity analysts to accept an active role in the development and
administration of the PRS. An expert system shell, LEVEL5 OBJECT, was identified that possesses
the requisite technical features and user-oriented facilities to allow commodity analysts to develop
expert system which render non-comparability decisions. It is also recommended that an expert
system development methodology be tailored for this application in order to provide commodity
analysts with structured guidance in knowledge base development.

32

Providing commodity analysts with an expert system shell and a knowledge base development
methodology is only one component of an overall strategy. 'It is recommended that machine learning
be explored in order to determine whether development of the howledge bases can be partially
automated. This is an important consideration because there are approximately 350 ELIs for which
knowledge bases may be developed. It is envisioned that commodity analysts would provide machine
learning algorithms with training examples to build initial knowledge bases. After evaluating the
performance of these initial knowledge bases, commodity analysts could either develop more training
cases or manually enhance the knowledge bases.

As part of a larger strategy, it is recommended that expert systems be developed for every ELI,
regardless of its complexity and prevalence of comparability decisions. This effort will help reinforce
the change in view From passive users to end-user system developers amongst the commodity analysts.

As a first step, attempts should be made to check For completeness and consistency. Developing
machine learning systems to perform these tasks, especially consistency checking, could be quite
cumbersome for ELIs with complicated product descriptions. It is recommended that completeness
be approached first because it is a more tractable concept. An initial approach to consistency would
be to develop rules which spot common errors.

It is recommended that at first the expert systems only make noncomparability decisions and only in
those cases where there is no uncertainty. Given the check list methodology, it should be possible
to develop stringent noncomparability rules for each ELI. Next, the expert systems should be
enhanced to make comparability decisions, but only when there is no uncertainty. Cases which
cannot be classified with absolute certainty should be referred to the commodity analysts for review,
It is expected that expert systems built for ELIs whose checklists rarely include Eree text will make
a higher percentage of decisions than those systems built for ELIs whose checklists typically include
one or more free text entries.

Before expert systems are allowed to make decisions that will not be reviewed by commodity analysts,
a rigorous quality assurance process must be developed and implemented. One component of the
assurance process will be to review the knowledge bases for conformity to the development guidelines
and establish the quality of their documentation. These checks are essential to establishing an
efficient knowledge base maintenance program and transferring knowledge bases to new personnel.

A second component should focus on testing the knowledge bases. The expert systems should be fed
a comprehensive set of test cases and their decisions should be reviewed. A third component should
involve an independent review of the knowledge bases from a technical standpoint. Commodity
analysts and their supervisors should review the knowledge bases For logical integrity and internal
consistency. Problems in developing the knowledge bases may be discussed and lead to new ways of
conceptualizing comparability and designing checklists.

Experiences with empowering commodity analysts to extend the development of the PRS could be
used to entertain further activities. For example, commodity analysts could be given tools to
automate the process of changing checklists and to explore the sensitivity of the CPI to checklist
changes. The commodity analysts would then need methods to manage the adaption of knowledge
bases from one checklist to another. Commodity analysts could also be given the opportunity to
influence system development with respect to data collection in the field and data archival. They may
also be interested in the automated access, to and report generation from, external sources.

33

We wish to acknowledge the time and support provided by BLS staff on this project. Members of
the BLS expert system study team met with us several times to share their experiences and their goals
for the project. Members of this team include Richard Kamalich, Bob Adkins, Dave Barry, Joe
Chelena, Fred Conrad, Karen Flynn Huff, Jim Longacre, and Jerome Watters. We also wish to thank
Marybeth Tschetter for her assistance in establishing and managing the project.

We would also like to recognize the efforts of several individuals at the Oak Ridge National
Laboratory who have assisted us. We wish to thank Rick Goeltz, Ho-Ling Hwang, and Tai-Lun
Chiang for reviewing the report and Sheila Moore for her assistance in preparing this report.

35

REFERENCES

P. Clark and T. Niblett, 1989. "The CN2 Induction Algorithm," Machine Learning, Vol. 3, pp.
261 -283.

R. Duda and P. Hart, 1973. Pattern Classification and Scene Analvsis, John Wiley and Sons, New
York.

D. Fisher, 1987. "Knowledge Acquisition via Incremental Conceptual Clustering," Machine Learning,
Vol. 2, pp. 139-172.

Kolodner, J., 1991. "Improving Human Decision Making through Case-Based Decision Aiding,"
Magazine, Vol. 12, No. 2, pp. 52-68.

S. Marcus (ed.), 1988. Automating KnowledPe Acquisition €or b e r t Svstems, Kluwer Academic,
Boston.

R. Michalski and R. Chilausky, 1980. "Learning by Being Told and Learning by Examples: An
Experimental Comparison of the Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for Soybean Disease Diagnosis," Policv Analvsis and
Information Svstems, Vol. 4, pp. 125-160.

R. Michalski, 1983. "A Theory and Methodology of Inductive Learning," Artificial Intellieence, Vol.
20, NO. 2, pp. 111-161.

R. Michalski, I. Mozetic, 3. Wong, and N. Lavrac, 1985. "The Multi-purpose Incremental Learning
System AQl5 and its Testing Application to Three Medical Domains," Proceedinp;s of the
Fifth National Conference on Artificial Intellipence, - pp. 1041-1045, Philadelphia, PA, Morgan
Kaufmann Publishers.

J. Qunilan, 1986. "Induction oE Decision Trees," Machine Learning, Vol. 1, pp. 81-106.

D. Rumelhart and J. McCelland eds., 1986. "Parallel Distributed Processing: Explorations and the
Microstructure of Cognition," Vol. 1, Psychological and Biolorical Models, MIT Press,
Cambridge, Mass.

S. Slade, 1991. "Case-Based Reasoning: A Research Paradigm," AI Magazine, Vol. 12, No. 1,
pp. 42-55.

P. Utgoff, 1989. "Incremental Induction of Decision Trees," Machine Learning, Vol. 4, pp. 161-186.

S. Wiess and C. Kulikowski, 1991. Computer Svstems that Learn, Morgan Kaufmann Publishers, Palo
Alto, California.

37

APPENDIX A: DEFINITION OF TERMS FXOM THE TOOL MATRIX

Call-in/
Callaut

The expert system can be executed by application programs and data passed to the
expert system via data files or other mechanisms. Conversely, the expert system can
execute external programs by calling them during an expert system interaction.
Contrast with Embeddable.

Embeddable The expertise represented in a knowledge base (e.g., productions rules) and the
inference mechanism @e., forward and backward chaining) can be invoked directly by
function calls from a traditional programming language. Contrast with Call-in/Call-out.

Encapsuiation The process of incorporating data and procedures. The ability to define an
object.

Inheritance The ability to build a hierarchy of objects in which a child inherits the
attributes and properties of its parent(s).

Polymorphism The ability to use the same function-calling mechanism for a hierarchy of

Functions

States/
Rule sets

Pattern
matching

Prioritization

Hypertext

Induction

Abduction

objects such that each object responds to the call in an appropriate manner.

Same as for procedural programming.

The ability to organize procedural code or production rules into modules (not to be
confused with separate knowledge bases).

Firing production rules which contain a specified pattern, e.g., all specifications with
a value of ‘99’.

The use of numerical weights which cause the inference engine to fire one rule
before another when both are waiting to fire.

Text and graphics which are linked to related textual information. Users can retrieve
this supplementary information as needed.

The process of generalizing several examples into one or more concepts.

The process of using domain knowledge to explain the Occurrence of a particular
situation.

39

APPENDIX B HARDWARE AND SOFIWARl3 REiQ-

Commodity analysts (CAS) have PCs which will be connected to a Sharebase SB 8000 via Ethernet
and will typically access CPI data residing on the SB SOOO. They can also access an IBM mainframe
located at the Boeing Information Center via 3270 terminal emulation. The ISM mainframe
performs batch processing, generates hardcopy reports, and sewes as an offsite backup. Metaphor
workstations provide ad-hoc query processing to databases using a connection between the SB 8OOO
and a MicroVAX 11. The Metaphors are connected to the MicroVAX and control several Apple
Laserwriten.

Most CAS have an IBM PS2/70 (16 MHz 386) with 2 MB of memory and a 60 MB hard disk, running
DOS 3.3. Some of these machines will be replaced over the next three years by a GRID (20-25 MHz
386) machine with 8 MI3 of memory and a 100 MB hard disk, running DOS and WINDOWS 3.0.
These PCs are tied into a 3COM 3+ LAN which takes up a substantial amount of PC memory. The
LAN has several Postscript printers connected to it. In the next few years, BLS is moving towards
the MicroSoft LAN Manager. Each PC uses QEMM software and has a math coprocessor.
Presently, there are four development PCs; each section could revise knowledge bases on its
development machine. There are over thirty CAS in the four sections, all of whom need a run-time
version. A network licensing arrangement with the expert system vendor is an attractive fielding
option.

BLS is currently developing the Professional Review System (PRS) using Microsoft C, MicroSoft
PASCAL, MicroSoft linker, internally-developed software to access data on the SB 8000, and
Vermont Views, a screen generator. PRS is scheduled to be in use by CAS on their PCs by late 1993.
It will allow CAS to access quotes or listings, decide on actions, and make changes on-line. Printouts
will be generated only at the request of an analyst. PRS may be capable of putting a day’s worth of
work on the hard disk. Currently, data is downloaded from the database machines by IDM LIB, a
callable library embedded in PASCAL, programs and placed in main memory on the PC. Data can
also be downloaded and converted to dBase formats, if necessary, using a library of C routines called
APEX. Ultimately, the expert system should use the same procedures/data as PRS to collect
information from the SB 8600.

It appears that any expert system fielded in this environment will reside on the CA PCs. Those IBM
PS2s with 2MB of memory may need to be upgraded to between 4MB and 8MB of memory to
facilitate both network and expert system software, to permit downloads from the database machines,
and to accelerate processing. The BLS budget of PC hardware and software was given as $25,000,
a portion of which would be available for expert system tools. This budget limitation may influence
the decision of a PC-based tool since some are relatively expensive (i.e., $5,000-$10,000). IC machine
learning programs are used to generate knowledge bases for the various ELIs, those programs should
be located on a dedicated 386 machine or workstation which is connected to the Ethernet.

From these hardware and software configurations we have narrowed our consideration of tools to
those PC-based products which run under MS-DOS or OSD. Given this and those factors listed in
the matrix, we developed another matrix which described PC-based products in terms of several
capabilities we felt a robust product should possess. This matrix looked at several factors.

41

APPENDKC HUMANFACTORS

Each commodity analyst (CA) has a degree in Economics and uses his or her knowledge of market
conditions to determine (non)comparable substitutions. The CAS are using regression analysis more
and more in the substitution process. The CAS must incorporate pricing and quality adjustments. The
CAS have extensive knowledge of the commodities and brand comparability; each commodity area
has its own characteristics. In the near term, CAS would utilize an expert system as part of a review
process. If the prototype system is successful, then pre-production screening could reduce the
number of routine cases handled by the CAS.

The volume of transactions is high. There are three pricing periods each month with each period
taking 7 to 10 days. All changes to the quotes are due in by 1190 of the cutoff date. Extraordinary
circumstances (i.e., freezes, turmoil in Persian Gulf) can influence the number of incoming price
quotes which must be considered. Tolerances are built into the system so that the CA often looks
only at the outliers. There are 1 1/2 to 2 1/2 days at the end of the cycle when CA reviews quotes
and can make changes.

The CAS are confident that they can program knowledge-based systcms. This must be studied further
to determine whether all CAS have the same level of computer and expert system literacy as those
on the team. Team members have suggested that they and other knowledgeable CAS would assist
those CAS having difficultly with the concept of expert systems. In any event, some procedure would
need to be established in order to modify a knowledge base.

Team members have mixed feelings about using expert systems to evaluate CA performance. They
feel that this approach might be looked upon as interference. Commodity and/or economy may have
changed; single expert is being reviewed by "less experienced" manager; manager would identify
quality differences in CAS; less time spent justifying actions by CAS; maintain consistency over time,
i.e., shift of procedures detected; Change of rules only with approval and documentation.

Any tool that BLS uses to create, maintain or revise expert systems must be user-friendly. CAS will
be expected to maintain those knowledge bases relating to their area of expertise. Consequently, the
tool must provide straightforward procedures for adding, deleting or modiljring production rules. The
rule syntax should permit IF .. THEN .. ELSE constructions. In addition, the run-time versions
should be easy to use and provide adequate explanatory capabilities so that the CA can verify the
expert system's reasoning. Since the CAS expect to document their expertise using the expert system
tool, the expert system should permit comment fields in the knowledge base, should allow readable
rules, and should allow for hardcopy capabilities. Since BLS is moving towards a Windows
environment for standalone work, the user interface might benefit from a Windows "look and feel."
The tool may need both DOS and Windows versions as production work is scheduled to remain non-
Windows indefinitely.

Although most CAS will be computer literate, most will not have time to read a great deal of
computer literature. In addition to user documentation, the selected tool should have a set of
tutorials so that the CAS can quickly learn the product. Inexpensive training would be ideal.

43

APPENDIX D: A LEWEXS OaTEcT KNOWLEDGE BASE

CLASS dB3 bls SINGLE EXTERNAL "dBASEI11 C:\bls.DBF"
WITH outlet number STRING

WITH quote code STRING

WITH old A spec NUMERIC

WITH old C spec NUMERIC

WlTH old D spec NUMERIC

WITH old F spec NUMERIC

WITH old H spec NUMERIC

WITH old J spec NUMERIC

WITH old K spec NUMERIC

WITH old size NUMERIC

WITH new A spec NUMERIC

WITH new C spec NUMERIC

WITH new D spec NUMERIC

WITH new F spec NUMERIC

WITH new H spec NUMERIC

WITH new I spec NUMERIC

WITH new J spec NUMERIC

WITH new K spec NUMERIC

WITH new size NUMERIC

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

SEARCH ORDER CONTEXT

INSTANCE bls ISA dB3 bls
WITH access IS write
WITH action IS open
WITH filename : = "C:\bls.DBF"

ATTRIBUTE start button pushed SIMPLE

45

ATTRIBUTE read DB SIMPLE
ATTRIBUTE record button pushed SIMPLE
ATTRIBUTE A is complete SIMPLE
ATTRIBUTE A is comparable SIMPLE
ATTRIBUTE C is comparable SIMPLE
ATTRIBUTE D is comparable SIMPLE
ATTRIBUTE F is comparable SIMPLE
ATTRIBUTE H is complete SIMPLE
ATTRIBUTE H is comparable SIMPLE
ATTRIBUTE I is complete SIMPLE
ATTRIBUTE J is complete SIMPLE
ATTRIBUTE J is comparable SIMPLE
ATTRIBUTE K is complete SIMPLE
ATTRIBUTE Products are comparable SIMPLE
ATTRIBUTE exit button SIMPLE

INSTANCE the application ISA application
WITH unknowns fail : = TRUE
WITH threshold := 50
WITH title display := introductory screen
WITH ignore breakpoints := FALSE
WITH reasoning on := FALSE
WITH numeric precision := 8
WITH simple query text := "Is it true that: *

is
*If

WITH numeric query text := "What is(are): *
of

*II

WITH string query text := "What is(are): *
of

*,I

WITH time query text := "What is(are):
*

of
*II

WITH interval query text := "What is(are): *
of

*II

WITH compound query text := "What is(are): *
of

*If

WITH multicompound query text := "What is(are):

46

*
of * 11

WITH demon strategy IS fire all

INSTANCE introductory screen ISA display
WITH wait := FALSE
WITH delay changes := FALSE
WITH items [l] := textbox 9
WITH items 121 := start button

INSTANCE comparison screen ISA display
WITH wait := FALSE
WITH delay changes := TRUE
WITH items [l f : = conclusion screen title
WITH items [2] := textbox 1 1
WITH items [3] := valuebox 1
WITH items [4] := valuebox 2
WIT" items [5] := textbox 12
WITH items [6] : = textbox 13
WITH items [7] := valuebox 3
WITH items [8] : = textbox 14
WITH items [9] := textbox 15
WITH items [lo] : = textbox 16
WITH items [l 1] : = textbox 17
WITH items [l 21 : = valuebox 4
WITH items [13] : = textbox 18
WITH items [14] : = valuebox 5
WITH items [15] := valuebox 6
WITH items [16] := valuebox 7
WITH items 11 71 : = textbox 19
WITH items [18] := textbox 20
WITH items [19] := valuebox 8
WITH items [20] := textbox 21
WITH items [21] := textbox 22
WITH items [22] := valuebox 9
WITH items [23] : = valuebox 10
WITH items [24] : = valuebox 1 1
WITH items [25] : = valuebox 12
WITH items 1261 : = valuebox 13
WITH items 1271 := textbox 23
WITH items [28] := textbox 24
WITH items 1291 := textbox 25
WITH items 1301 := textbox 26
WITH items [31] := textbox 27
WITH items [32] := textbox 28
WITH items [33] := textbox 29
WITH items [34] := textbox 30

47

WITH items [35] := pushbutton 2
WITH items [36] := textbox 32
WITH items [37] := valuebox 14

INSTANCE final screen ISA display
WITH wait := FALSE
WITH delay changes := FALSE
WITH items [l] := textbox 31
WITH items [2] := pushbutton 3

INSTANCE start button ISA pushbutton
WITH location : = 229,187,405,237
WITH label := "Press to start"
WITH attribute attachment := start button pushed

INSTANCE pushbutton 2 ISA pushbutton
WITH location : = 235,389,386,420
WITH label := "read next record"
WITH attribute attachment := record button pushed

INSTANCE pushbutton 3 ISA pushbutton
WITH location : = 234,271,381,335
WITH label := "Press to exit"
WITH attribute attachment := exit button

INSTANCE textbox 9 ISA textbox
WITH location : = 191,34,442,148
WITH pen color := 255,255,255
WITH fill color := 0,0,255
WITH justify IS center
WITH font := "System"
WITH font style IS bold
WITH frame := TRUE
WITH text := 'I

Bureau of Labor Statistics
Consumer Price Index

ELI 0201 1 - White Bread
Expert System"

INSTANCE conclusion screen title ISA textbox
WITH location : = 6,7,235,34
WITH justify IS center
WITH font : = "System"
WITH text := "Results of product comparison"

INSTANCE textbox 11 ISA textbox
WITH location : = 181,55,288,78

48

WITH justify IS left
WITH font : = "System"
WITH text := "A specification"

INSTANCE textbox 12 ISA textbox
WITH location : = 103,82,174,100
WITH justify IS left
WITH font : = "System"
WITH text := "complete?

U

INSTANCE textbox 13 ISA textbox
WITH location : = 31 3,243,404,269
WITH justify IS left
WITH font := "System"
WITH text : = "comparable?

II

INSTANCE textbox 14 ISA textbox
WITH location : = 183,129,281,148
WITH justify IS left
WITH font : = "System"
WITH text := "C specification"

INSTANCE textbox 15 ISA textbox
WITH location : = 86,154,175,171
WITH justify IS left
WITH font : = "System"
WITH text := "comparable?

II

INSTANCE textbox 16 ISA textbox
WITH location : = 188,206,188,207
WITH justify IS left
WITH font : = "System"
WITH text := "D specification

I,

INSTANCE textbox 17 ISA textbox
WITH location : = 185,182,284,202
WITH justify IS left
WITH font := "System"
WITH text := "0 specification

II

INSTANCE textbox 18 ISA textbox
WITH location : = 87,205,176,230
WITH justify IS left

49

WITH font : = "System"
WITH text : = "comparable?

I1

INSTANCE textbox 19 ISA textbox
WITH location : = 187,237,294,254
WITH justify IS left
WITH font : = "System"
WITH text : = "F specification

I1

INSTANCE textbox 20 ISA textbox
WITH location : = 89,261,174,280
WITH justify IS left
WITH font : = "System"
WITH text : = "comparable?

II

INSTANCE textbox 21 ISA textbox
WITH location := 406,133,535,154
WITH justify IS left
WITH font : = "System"
WITH text : = "I specification"

INSTANCE textbox 22 ISA textbox
WITH location : = 402,57,500,74
WITH justify IS left
WITH font : = "System"
WITH text : = 'OH specification

II

INSTANCE textbox 23 ISA textbox
WITH location : = 401,190,538,211
WITH justify IS left
WITH font := "System"
WITH text : = "J specification

II

INSTANCE textbox 24 ISA textbox
WITH location : = 401,272,531,292
WITH justify IS left
WITH font : = "System"
WITH text : = "K specification

II

INSTANCE textbox 25 ISA textbox
WITH location : = 31 9,84,390,102
WITH justify IS left

50

WITH font : = "System"
WITH text := "complete?

,I

INSTANCE textbox 26 ISA textbox
WITH location := 82,102,171,127
WITH justify IS left
WITH font : = "System"
WITH text := "comparable?

II

INSTANCE textbox 27 ISA textbox
WITH location : = 325,219,396,237
WITH justify IS left
WITH font : = "System"
WITH text := "complete?

It

INSTANCE textbox 28 ISA textbox
WITH location : = 329,295,400,313
WITH justify IS left
WITH font := "System"
WITH text := "complete?

tl

INSTANCE textbox 29 ISA textbox
WITH location : = 307,105,394,129
WITH justify IS left
WITH font : = "System"
WITH text : = "comparable?

II

INSTANCE textbox 30 ISA textbox
WITH location := 31 8,163,389,181
WITH justify IS left
WITH font := "System"
WITH text : = "complete?

II

INSTANCE textbox 31 ISA textbox
WITH location : = 138,59,465,155
WITH pen color := 255,255,255
WITH fill color := 0,0,255
WITH justify IS center
WITH font := "System"
WITH frame := TRUE
WIJH text := 'I

51

This concludes the White Bread example
,I

INSTANCE textbox 32 ISA textbox
WITH location := 140,356,320,387
WITH justify IS left
WITH font : = "System"
WITH text : = "Products are comparable?

I 1

INSTANCE valuebox 1 ISA valuebox
WITH location : = 177,78,292,97
WiTH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := A is complete

INSTANCE valuebox 2 ISA valuebox
WITH location : = 177,104,292,124
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := A is comparable

INSTANCE valuebox 3 ISA valuebox
WITH location : = 181,152,296,175
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := C is comparable

INSTANCE valuebox 4 ISA valuebox
WITH location : = 183,206,297,228
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := D is comparable

INSTANCE valuebox 5 ISA valuebox
WITH location : = 242,6,356,29
WITH justify IS left
WITH font := "System"
WITH frame := TRUE
WITH clipped := TRUE

52

WITH attachment := outlet number OF dB3 bls

INSTANCE valuebox 6 ISA valuebox
WITH location := 381,6,496,29
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := quote code OF dB3 bls

INSTANCE valuebox 7 ISA valuebox
WITH location : = 1 84,259,306,280
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := F is comparable

INSTANCE valuebox 8 ISA valuebox
WITH location := 399,160,519,184
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := I is complete

INSTANCE valuebox 9 ISA valuebox
WITH location : = 397,7831 7,99
WITH justify IS left
WITH font := "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := H is complete

INSTANCE valuebox 10 ISA valuebox
WITH location : = 398,103,516,126
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH dipped := TRUE
WITH attachment := H is comparable

INSTANCE valuebox 11 ISA valuebox
WITH location : = 404,216,521,239
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE

53

WITH attachment := J is complete

INSTANCE valuebox 12 ISA valuebox
WITH location : = 404,241,519,265
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := J is comparable

INSTANCE valuebox 13 ISA valuebox
WITH location : = 405,293,522,317
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment := K is complete

INSTANCE valuebox 14 ISA valuebox
WITH location : = 327,351,429,379
WITH pen color := 255,255,255
WITH fill color := 0,0,255
WITH justify IS left
WITH font : = "System"
WITH frame := TRUE
WITH clipped := TRUE
WITH attachment : = Products are comparable

INSTANCE main window ISA window
WITH location : = -1 ,-1,-1,-1
WITH full screen := TRUE
WITH style IS moveable, sizeable, closeable
WITH title : = "(Untitled)"
WITH visible := TRUE
WITH visible OK button := TRUE

DEMON A comparability
IF new A spec OF bls c> old A spec OF bls
THEN A is comparable := FALSE
ELSE A is comparable := TRUE

DEMON C comparability
IF new C spec OF bls <> old C spec OF bls
THEN C is comparable := FALSE
ELSE C is comparable := TRUE

DEMON 0 comparability
IF new D spec OF bls c > old D spec OF bls

54

THEN D is comparable := FALSE
ELSE D is comparable := TRUE

DEMON F comparability
IF new F spec OF bls <> old F spec OF bls
THEN F is comparable := FALSE
ELSE F is comparable := TRUE

DEMON H comparability
IF new H spec OF bls <> old H spec OF bls
THEN H is comparable := FALSE
ELSE H is comparable := TRUE

DEMON J comparability
IF new J spec OF bls <> old J spec OF bls
THEN J is comparable := FALSE
ELSE J is comparable := TRUE

DEMON A completeness
IF new A spec OF bls = 0
THEN A is complete := FALSE
ELSE A is complete := TRUE

DEMON H completeness
IF new H spec OF bls = 0
THEN H is complete := FALSE
ELSE H is complete := TRUE

DEMON I completeness
IF new I spec OF bls = 0
THEN I is complete := FALSE
ELSE I is complete := TRUE

DEMON J completeness
IF new J spec OF bls = 0
THEN J is complete := FALSE
ELSE J is complete := TRUE

DEMON K completeness
IF new K spec OF bls = 0
THEN K is complete := FALSE
ELSE K is complete := TRUE

DEMON 1
IF start button pushed
THEN read DB
AND action OF dB3 bls IS open

55

DEMON 2
IF read DB AND NOT eof OF dB3 bls
THEN output OF main window := comparison screen

DEMON 3
IF record button pushed
THEN action OF dB3 bls IS advance

DEMON 5
IF A is complete
AND A is comparable
AND C is comparable
AND D is comparable
AND F is comparable
AND H is complete
AND H is comparable
AND I is complete
AND J is complete
AND J is comparable
AND K is complete
THEN Products are comparable := TRUE
ELSE Products are comparable := FALSE

DEMON 6
IF exit button
THEN exit OF application := TRUE

END

56

APPENDIX E SYsLaM EVALUATION CRITERIA

3 3 2 3 1

Exptsnatay
capabilities

(9)

2

2

2

2

5

57

system Requirements
@. 2 of 3)

Handling
of free

text

code

cast
development

T i to
develop

prototype

Tm to
implement
system

Aazss
to data
base

machjIK

uSem.Is OlXJJxr.
Provide training for
developers

U s e L E V E L s O ~ .
Devise and document
methoddogvforsystem

Applymachinelearning
t&xhnipa for inferring

conduct pilot projea

appmacbtomachine
Learning. cooductpilot

p r o w

---E
techniques Develop

reviewing, testin& and

-dcvebpment

k n o w l e d g e bases .

Apply incremental

f h l t e n d t o a s i s t i n

5 1 5 5 5 5

5 2 5 4

2 3 3 3

2 2 2 2 2 2

1 3 1 1 1 1

58

System Requirements
(P- 3 of 3)

59

APPENDIX F: COMPARISON OF KNOWWEDGECBASED SYSIEM SHELfs FOR THE PC

Comparisoa

Product
VenQr

MardwaFeRequitemenls
Extended Memory
Hard Disk Space

stdtware Requireme&
MS-DOS
MS-DOS and WINDOWS 3.0
os2

FkandI)atabaseSUpport
ASCII/dBase/Lotus
SQL

ApPlmtKmpr0gram~-
Call-in/Call-ou t
Embeddable

-~

Objed-Qriented Features

Inheritance
Encapsulation

Polymorphism

procedural Features
Functions
States or Rule sets
IF .. THEN .. ELSE syntax

certaintymeawes

Ofknowledgc’sssed system !%e& for the Pc (p. 1 of 3)

ADS ARTIM CLlfs CYSYS Pro GURU
k o n Inference NASA EXSYS mdbs

2 MB 4 MB 64oKB 640 KB 64oKB
2 MI3 8 MB 1 MB lMB 5m

Y Y Y Y Y
N N N N N
Y Y Y Y Y

Y” Y N N YININ Y N N YNIN
Y N N N Y

Y Y Y Y Y
N N Y Y N

Y Y Y Y Y
Y Y Y Y N
Y Y Y N N

Y Y Y Y Y
Y Y N Y Y
Y Y Y Y Y

Y Y Y Y Y

Rule Prooesun ‘ g
Fonvard/Backward/Bidirectlonal Y N N Y N N
Pattern matching Y

J N N Y N’

Y” Y N N Y N N

Prioritization

Programmable using existing language constructs
Interface to LINDO Moving to runtime licensing Abductive reasoning

’ Toolkit(s) available from vendor Available thru demons

Y

61

Y
Y

Y

Y

Y2

Y Y N
Y Y Y

Y Y4 Y

N Y Y

N Y2 Y6

MathematicalFFwQions

Etphnatorycapabjlities

Abduaiooflnd uaion features

user JnterEace support

Graphics
Hypertext

PC Development

Network Licensing

WIMP
WINDOWS 3.0

PriQ

PC Runtime

Y

Y

N
~

Y
Y
Y
N

$8,500
$900

Y

$8,000
$1,600
Y

$300 starts at S995 $7,000
Free starts at $1300 $500

N N Y

Comparison of Koowiedge-Based systcrn shells for the PC (p. 2 of 3)

product
Vendor

Intelligence
Compiler

Intelligence Ware

Kappa PC
IntelliCorp

KBMS/PC KFS Kn-lF
AICorp Software Pro

A&E Knowledge
Garden

Hardware Kquirements
Extended Memory
Hard Disk Space

64oKB
3 M B

64oKB
2 MB

SoRware Kquirements
MS-DOS
MS-DOS and WINDOWS 3.0
os2

Flk and Database support
ASCII/dBase/Lotus
SOL

Y
Y
N

Y
Y
N

Y Y Y
N Y Y
Y Y N

Y N N N'/N'/N' Y/N2/NZ
Y N N

Y N N
N

Y N N
Y

nppllcatianprogramInte*
Call-in/Call-out
Embeddable

I I

y I : N : I :
I

Y
N

Y
Y

ObjoCt-Oriented Features
Encapsulation
Inheritance
Polymorphism

Y
Y
Y

Y Y

Y Y I F I :
Procedural Features
Functions
States or Rule sets
IF .. THEN .. EISE syntax

Y
Y
Y

Y Y Y
Y Y Y
Y Y Y

I I

Y Y N

Y N N Y'NIN NN/N
Y Y N
Y Y N'

Y Y N

Rule processln ' g
Forward/nackward/Bidirectional
Pattern matching
Prioritization

Y N N
Y
Y

Y N N
Y
Y

Mathematical Functiom 1 Y

ExDlanatory Capabilities Y N

Abdubioo/Lndubioo features Y N

user InterfiKc support
WIMP
WINDOWS 3.0
Graphics
Hwertext

Y
Y
Y
Y

Y
Y
Y
N

$3500
$450

N

Y Y Y
Y Y Y
Y Y Y
Y N Y

price
PC Development
PC Runtime
Network Licensing

$495
Free*

N

to $8,500 $4,000 $495
to $600 $400 Free

OS2 only Y N

' Programmable using existing language constructs 'Ibolkit(s) available from vendor Available thru demons
Interface to LINDO Moving to runtime licensing Abductive reasoning

62

canparisan OfgmrWledge-Based system sbclls for the PC (p. 3 of 3)
I I

NEXPERT/Object
Neuron Data

HardapareRequirements
Extended Memory
Hard Disk Space

1stClasHT
AICorp

Software Requirements
MS-DOS
MS-DOS and WINDOWS 3.0
os2

Fh and I)atabase Support
ASCIUdBase/Lotus
SQL

ApptrcatrOnpr0gram~-
. .

Call-in/Call-out
Embedda ble

Object-orieoted Features
Encapsulation
Inheritance
Polymorphism

procedural Features
Functions
States or Rule sets
IF .. THEN .. ELSE syntax

CertaintymfxLWes

Rule Prooessin g
Forward/Backward/Bidirectional
Pattern matching
Priontlzation

3 MB
4 to 12 MB

NAWudionlInd UQiOa featlms

512 KB
1 MB

user Iaterface support
WIMP
WINDOWS 3.0
Graphics
Hypertext

Price
PC Development
PC Runtime
Network Licensing

Y

Y3rYIN
Y3
Y

Y

LEVEISOBJECX
Information

Builders

N' Y

YN/Y Y/YE
Y N
Y N

Y Y

Y

N

Y
Y
Y
Y

2 MB
4 MB

Y Y

Y2 Y

Y Y
Y Y
Y Y
N Y

N I Y I

Yflm
N

Y I Y I N
Y
N

N I N I N
Y
N

Y I N I N

$495
Free

N

$S,OOO
%1,OOO
Y

$995 to $2,495
Free

Y

Programmable using existing language constructs
Interface to LMDO Moving to runtime licensing Abductive reasoning

* Toolkit(s) available from vendor Available thru demons

63

APPENDIX G: STATEME" OF FUNCIlONAL REQ-

PROJECT GOALS

Reduce workload Near-termKang-term:
Development and refinement of the expert system will probably increase rather than decrease CA
workload in the near-term, with a post-production comparability research tool. In the long-term
the system should reduce CA time spent on substitutions by elimination of the need to review
straight-forward substitutions. This will free time to give additional attention to more difficult
substitutions, improve checklists, and in general use time more effectively. This will improve the
quality of data, which represents the ultimate goal.

consistent Substitutions:
The CA, with the help of the expert system, should be able to reach the same conclusion in terms
of completeness, consistency, and comparability for a given rule base, given similar spec-data
relationships for reported substitutions. Improved data quality will result.

Documentation of F3pertk
The interaction between the CA and the system will produce clearly defined written
documentation on ELI specific rules a commodity analyst considers when making a substitution
comparability decision including specification completeness and consistency within the
specifications. The criteria should be sufficiently detailed to enable a new or back-up analyst to
make the same comparability decisions as the regular analyst. Again, improved data quality will
result.

NEAR-TERM

User Friendly Interface:
The system needs to be relatively easy for a user (commodity analyst) to interact with in terms
of obtaining any information required. The analyst should be able to interface with the system
and negotiate hisher way through the system without having to refer to a manual.

Explanatory Capabilities:
The expert system shell should have the ability to fully explain its decisions. It should be clear
from this reporting which rules were used and in what order. This explanation should be
recorded in some form, allowing later review and perhaps aggregation.

ProcesSing Speed Development Mode:
Based on experiences with some expert systems it was found that during the rule development
phase that the systemlcomputer can slow to unacceptable levels when running tests. In some
cases simple operations took over a minute to finish. The response time in entering rules and
other parameters, and changing and testing the rule base, should be minimized.

Handling of Free Text:

65

Bccause most ELIs contain free text specifications, it is important that the expert system have the
ability to differentiate and/or categorize the free text entries.

Time to Develop Prototype:
The expert system package should be easy to use so that a working prototype could be developed
by the BLS expert system group within 5 months.

Analysts’ Tiie for Development Near-term:
The expert system package should allow for the development of a prototype generic rule base.
A commodity analyst should be able to adapt the generic rule base to their ELI and adjust or
expand the rule base to the specific needs of that ELI.

Analysts’ Time for Maintenance Near-term:
The expert system package should be flexible.
entedprogram and must be easy to retest.

Changes to the rules must be easy to

Commercial Software Costs:
The cost of the expert system shell (shells) selected for the near-term project, along with any
necessary licensing fees or other incurred expenses including training, should not exceed the
project’s budget. A reasonable ceiling to use is $12,500, including training.

Access to Data Base Machine:
The expert system should have interface capability with the CPI’s production hardware and
software as well as the PCs utilized by the CAS. A format for which there is an easily available
linking option would be acceptable.

System code Development Cost:
The cost required to acquire a computer program (either developing in-house, through external
contract, or off-shelf package) that will enable the expert system to process the necessary
production data should be minimized.

Interactive Processing Sped:
The lapse of time between when a commodity analyst hits a computer key until the program will
accept input again, using an IBM PSn 386 16 Mhz PC, should be minimized.

LONG-TERM

Batch Processing:
The system should have the ability to automatically process many quotes and save the decisions
reached along with the associated information about how and why each decision was made for
later use (possibly interactively on a quote-byquote basis); no input would be necessary from the
C k Ideally, there would be a way to eventually incorporate the decisions into the PRS.

Tiie to System Implementation:
The time required for the long-term pre-production system to become operational should be
minimized.

Analysts’ Time for Development Long-term:

66

The expert system shell should allow for analysts to apply the process to a new ELI without a
significant time burden. In the long-term, the product should be more automated and therefore
less labor-intensive.

Analysts’ Time for Maintenance Long-term:
Because the main responsibility of a analyst is the daily production work needed for the index
calculation and production, time spent on maintenance should be minimal. Changes to the rules
must be easy to enter/program. For example, in cases of checklist revision it is possible that all
rules may have to be changed. This requirement is particularly important in the long-term,
because the system would be a part of production and therefore changes would of necessity be
timely.

Tracking of Decision Statistics:
The expert system must keep records of atl decisions it makes to enable review at a later time.
This should include what decisions were made, how they compared to production decisions, and
which rules fired. The last measure is distinguished from explanatory capabilities in that this is
an aggregate measure on a rule-by-rules basis, rather than relating to specific quote decisions.

CONSIDERATiONS

Project Risk
The risk that the project may fail, leaving us with nothing to show for our money and effort,
should be considered. This is to be weighed against the possible gains that may be achieved using
each approach. This requirement should be interpreted in terms of the optional approaches for
a long-term system.

67

DISITUBUTION

1-10. L. E Arrowood
11. R. T. Goeltz
12. R. K Gryder
13. E. L. Hillsman
14. H. L. Hwang
15. J. 0. Kolb
16. M. A. Kuliasha

17-26. B. E. Tonn
27. Central Research Library
28. Document Reference Section
29-30. Laboratory Records
31. Laboratory Records - RC
32. ORNL Patent Office

33.

34.

Dr. Bruce G. Buchanan, Department of Computer Science, University of Pittsburgh, 206
Mineral Industries Building, Pittsburgh, PA 15260.
Dr. Allan Hirsch, Vice President, Environmental Sciences and Director, Washington
Operations, Midwest Research Institute, 5109 Leesburg Pike, Suite 414, FaIls Church, VA
22041.

35. Dr. Helen M. Ingram, Director, Udal1 Center for Studies in Public Policy, The University of
Arizona, 803/811 b s t First Street, Tucson, Arizona 85719.

36-43. Mr. Richard Kamalich, Bureau of Labor Statistics, 600 E Street, N.W., Room 3307,
Washington, DC 20212.

44. Mr. Calvin D. MacCracken, President, Calmac Manufacturing Corporation, 101 West
Sheffield Avenue, Englewood, NJ 07631.

45. Ms. Jacqueline B. Shrago, Director, Office of Technology Transfer, 405 Kirkland Hall,
Vanderbilt University, Nashville, TN 37240.

46. Dr. Martin Williams, Professor, Department of Economics, Northern Illinois University,
DeKalb, IL 60115.

47. Office of Assist Manager for Energy Research and Development, DOE/ORO, P.O. Box 2001,
Oak Ridge, T N 37831-8600.

48-49. Office of Scientific and Technical Information, U.S. Department of Energy, P.O. Box 62, Oak
Ridge, TN 37831.

69

