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ABSTRACT 

This paper addresses the problem of time-optimal motions for a mobile platform 
in a planar environment. The platform has two non-steerable independently driven 
wheels. The overall mission of the robot is expressed in terms of a sequence of 
via points at which the platform must be at rest in a given configuration (position 
and orientation). The objective is to plan time-optimal trajectories between these 
configurations assuming an unobstructed environment. 

Using Pontryagin’s maximum principle (PMP), we formally demonstrate that all 
time optimal motions of the platform for this problem occur for bang-bang controls 
on the wheels (at each instant, the acceleration on each wheel is either at its upper 
or lower limit). The PMP, however, only provides necessary conditions for time 
optimality. To find the time optimal robot trajectories, we first parameterize the 
bang-bang trajectories using the switch times on the wheels (the times at which the 
wheel accelerations change sign). With this parameterization, we can fully search 
the robot trajectory space and find the switch times that will produce particular 
paths to a desired final configuration of the platform. We show numerically that 
robot trajectories with three switch times (two on one wheel, one on the other) 
can reach any position, while trajectories with four switch times can reach any 
configuration. By numerical comparison with other trajectories involving similar 
or greater numbers of switch times, we then identify the sets of time-optimal 
trajectories. These are uniquely defined using ranges of the parameters, and consist 
of subsets of trajectories with three switch times for the problem when the final 
orientation of the robot is not specified, and four switch times when a full final 
configuration is specified. We conclude with a description of the use of the method 
for trajectory planning for one of our robots, and discuss some comparisons of 
sample time-optimal paths with minimum-length paths. 

vii 





1. INTRODUCTION 

A variety of platform designs have been implemented for mobile robots. These 
can be classified in three major categories: 1. omnidirectional platforms, that utilize 
steerable wheels [e.g., see robots in Brooks (1990), Arkin (1990), or Koren and 
Borenstein (1991)], roller-equipped wheels [e.g., see Blaisdell (1991)] or orthogonal 
wheel assemblies [e.g., see Killough and Pin (1990)l; 2. car-like platforms that 
incorporate controlled steerable wheels on one axle and non-steerable wheels on 
another axle [e.g., see Vasseur, Pin, and Taylor (1991)l; and 3. skid-steer platforms 
that include two non-steerable independently driven wheels [e.g., see Giralt, Chatila, 
and Vaisset (1984), Kanayama and Hartman (1989), or Weisbin et al. (1989)l. 
This paper is concerned with skid-steer platforms. A typical mission for a mobile 
robot can be described by a sequence of via points at which the robot comes to 
rest in a given configuration (position and orientation) to perform a given task 
(manipulation, sensing, etc.). The problem considered in this paper is that of 
finding time-optimal motions of the robot in Cartesian space and the corresponding 
control trajectories that will move the robot from an initial configuration to a final 
configuration in an unobstructed environment. 

The proposed approach to find the control trajectories that lead to time-optimal 
motions of the platform involves utilization of Pontryagin’s maximum principle 
[Pontryagin et al. (1986)l. A variety of authors [Kahn and Roth (1971), Niv and 
Auslander (1984), Kim and Shin (1985), Weinreb and Bryson (1985), Nakamura 
and Hanafusa (1987), Bobrow (1988), Yamamoto and Mohri (1989)J have applied 
the maximum principle to the optimal motion planning of serial-link manipulators. 
For the time optimal motion of a manipulator with bounded control torques, the 
controls occur linearly in the Hamiltonian and the optimal values of the controls axe 
determined by the dual variables. When its dual variable is not zero, the optimal 
control is bang-bang (the optimal control is at its upper limit for a positive dual 
variable and at its lower limit for a negative dual variable). When its dud  variable 
is zero for a finite interval, the optimal control is singular and will be in the region 
between the bounds. An important issue is to determine when the optimal solution 
is bang-bang and when it is singular. A variety of authors [Ailon and Langholtz 
(1985), Wen (1986), Willigenburg (1990), and Chen and Desrochers (1990)] have 
addressed this issue and proven that there cannot be a finite time interval when the 
optimal control for a manipulator is singular for all the control torques. In other 
words, at least one of the controls is always bang-bang. Further work by Geering, 
et d. (1986) led to the determination of the parameter values for singular solutions 
for three types of manipulators: cylindrical, spherical, and two link planar. It has 
been demonstrated [Osipov and Formal’skii (1990), Formal’skii and Osipov (1990)] 
that the singular solution for the cylindrical case is not optimal. As discussed in the 
next section, the kinematics of a two-wheeled robot differ significantly from that of 
a serial-link manipulator and, to our knowledge, the time optimal trajectories for a 
two-wheeled robot have never been found. 

1 



2 INTRODUCTION 

In the following sections, we present the equations of motion for a skid-steer 
type of platform moving on a flat, horizontal plane. We then use the maximum 
principle to derive the conditions for time-optimal motions of the platform and 
demonstrate that the optimal controls are always bang-bang. Using this result, we 
show that, for a system with bounded wheel accelerations, control trajectories with 
three switch times (times at which one of the wheel’s acceleration changes sign) 
allow the robot to reach any point in Cartesian space while with four switch times, 
the robot can reach any configuration. We then show numerically that these paths 
are time-optimal. 



2. KINEMATIC EQUATIONS OF 
MOTION FOR THE PLATFORM 

A skid-steer type of platform must satisfy nonholonomic constraints and cannot 
follow an arbitrary path through configuration space. In this section, we develop 
a kinematic model of the platform, assuming that the wheels do not slip and that 
the wheel accelerations can instantaneously switch from their upper limit to their 
lower limit. The configuration of the platform is described by three coordinates: 
the Cartesian coordinates, 5 and y, of the midpoint of the wheel axle with respect 
to an absolute reference frame, and the orientation, 4, of the platform main axis 
with respect to the reference frame x axis (see Fig. 1). The joint variables are 
the wheels’ translational displacements, denoted by OR and Oh1 (representing the 
angular rotation times the radius of the right and left wheels), and axe measured 
in meters. The wheel velocities are denoted by W R  and W L  and are measured in 
meters per second. The control variables are the right and left wheel’s translational 
accelerations (UR and UL).  The kinematic model links the Cartesian variables to 
the control variables through the wheel velocities: 

w, = U L  ( 5 )  

eL = wL (7) 
where D is the distance between the centers of the wheels. 

Given a trajectory for the control variables, Eqs. (1) through (7) can be 
integrated to determine the Cartesian variables and the joint variables. Contrary 
to what is typically the case for serial link manipulators, the time sequence of the 
controls is necessary to determine the final position of a twwheeled platform. For 
example, if both wheels rotate together and move a meter, the platform will move 
straight forward a meter, while if the right wheel moves a meter first and then the 
left wheel moves a meter, the platform will move to the left to a point less than a 
meter away. Although the final values of the joint variables and the final platform 
orientation are the same for the two maneuvers, the final values for the platform 
position are not the same. 

3 



4 KINEMATIC EQUATIONS OF MOTION FOR THE PLATFORM 
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Fig. 1. 
orientation (4). 

The configuration of the platform is defined by the position ( z , ~ )  and 



3. THE GENERAL FORM OF 
THE OPTIMAL CONTROLS 

Since its discovery in 1956, the Pontryagin maximum principle 
[Pontryagin (1986)I has been used to solve a wide variety of optimization problems. 
In this section we utilize the maximum principle to derive the conditions for time 
optimality of the platform motion between the initial and final configurations. For 
our problem, we can defhe five state variables: XI = x,x2 = y,x3 = #,x4 = WR, 
and 55 = W L  and rewrite the equations of motion (1) to (5) as: 

iz = fZ(s, u )  = ( 1 4  + xs) sin 23/2 (9) 

$5 = f&, 21) = u2 (12)  

where the two control variables me: 911 = UR and 912 = UL. 
In vector notation, the equations of motion for the state vector x are: 

2 = f ( 2 , 4  9 (13) 

and the optimization problem is to find a control vector [u] that will move the 
system from the initial state xo to the find state x1 while minimizing an objective 
functional. For our case, the god is to minimize the transition time, assuming that 
the wheel accelerations are bounded: 19111 5 amax itnd luzl 5 amax. 

Pontryagin introduces a system of d u d  variables [$] that satisfy: 

with initial conditions: 

+ i ( t o )  = X i  i = 1,2,. . . , n , (15) 

where, in our problem, n = 5. 
If we choose an admissible control and have the solution of Eq. (13), Eqs. (14) 

are linear and homogeneous and have a unique solution for given initial conditions, 
If the equations of motion and the dual variables are combined into a single 
Hamiltonian H :  

5 



6 THE GENERAL FORM OF THE OPTIMAL CONTROLS 

n 

~ ( $ 7  2, u> +jfj(x, 21) 7 (16) 
j=l 

then the PMP states that [see Theorem 2 in Pontryagin (1986)], if u is an admissible 
control that transfers the phase point from the initial state z(t0) = xo to the goal 
state z1 = z(t1) at some time t l ,  then u ( t )  and the trajectory z ( t )  are time-optimal 
if there exists a non-zero continous vector function (l(ll(t), . . . l(ln(t)) defined by 
Eq. (14), and such that u ( t )  maximizes the function H for all t ,  t o  5 t 5 t l .  

For our mobile platform problem defined by Eqs. (8) through (12), the 
Hamiltonian function H is: 

H ( $ ,  2, u, = $If1 + $2f2 + $3f3 + $4u1 + $5.2 (17) 
where the functions fi(z, u) are defined by Eqs. (8) to (12). The equations for the 
dual variables are: 

$5 = 4 5 3 )  + $3/D 

where g(x3) and g'(z3) are defined by: 

The platform moves from an arbitrary initial configuration to an arbitrary final 
configuration. We can choose the coordinate system such that the initial position is 
(0,O) and the initial orientation is 4 = 0. The boundary conditions corresponding 
to the robot being at rest at the initial state xo = z(t0) and final state z1 = z(tl), 
are 
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When the final state is fully specified (position and orientation axe given), 
the final d u e s  of the dual variables are arbitrary. When the final state is not 
fully specified, the transversality condition determines the final values of the dual 
variables [see Theorem 3 in Pontryagin (198611. For example, when the final state 
is a position (and the final orientation is not specified), the final value of the third 
dual variable ($3) must be zero. 

The optimal values for the control variables (211 and uz) are those that maximize 
the Hamiltonian. From Eq. (17), it is clear that when the dual variables T)4 and $5 

are not zero, the optimal control is bang-bang; when $4 is positive, ebl = amax and 
when $4 is negative, u1 = -amax, and similarly for & and uz. If $4 or $5 is zero 
for a finite time interval, the optimal control becomes singular. In the remaining 
of this section we will prove that all possible optimal solutions of the system are 
bang-bang. 

Theorem 

All optimal control solutions for the system defined by Eqs. (8) through (12), 
(25) and (26) axe bang-bang. 

Proof 

From Eq. (17), we know that when the d u d  variables $4 and $5 are not zero, 
the optimal control is bang-bang; and when $4 or $5 is zero for a finite interval, 
the optimal control is singular. To prove the theorem, we will investigate all the 
singular solutions and show that they are either impossible or bang-bang. 

When the optimal control is singular, $4 (or $ 5 )  is zero for a finite interval. If 
T)4 is zero for a finite time interval, [ t z , t 3 ] ,  all of its derivatives me also zero on the 
interval and l3q. (21) yields: 

The time derivative of Eq. (27) implies: 

where we have used the fact that = -9. 
Since the right sides of Eqs. (20) and (28) must be equal, we have: 

g(x3)3% = 0 (29) 
Both g(23) and x5 are continuous functions. If there is a point in [tz,t3] where 5 5  
is not equal to zero, then there is a finite interval where 2 5  is not equal to zero and 
on this subinterval g(z3) is zero. Similarly, if there is a point in [ t z ,  t 3 ]  where g ( x 3 )  
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is not equal to zero, then there is a subinterval where 2 5  is zero. Thus, we will 
consider two general cmes: 

Case 1. g ( 2 3 )  = 0 (30) 

Case2. 2 5 = 0  (31) 

To simplify the notation, we will continue to label the subintervals of [ t 2 , t 3 ]  where 
Eqs. (30) or (31) are valid [ t 2 , t 3 ] .  

Case 1 can be subdivided into four subcases: 

Case 1.2. = o $2 # 0. 

Case 1.3. $1 # 0 $z = 0. 

Case 1.4. $l = = 0 

For the first three subcases, 5 3  is a constant on the interval [ t 2 , t 3 ] :  

Case 1.1. tan 5 3  = $ 2 / $ 1  

Case 1.2. cos z3 = 0 

Case 1.3. sin 2 3  = 0 

Consider Cases 1.1, 1.2, and 1.3 

Since $1 and $2 are constant (from Eqs. (18) and (19)) and g ( 2 3 )  = 0, 2 3  is 
a constant and i 3  = 0 on the finite interval [ t 2 , t 3 ] .  Thus, these cases correspond 
to the robot moving along a straight line over a finite interval of time, (the angle 
q5 = 2 3  given by Eqs. (32)) (33), or (34)) and Eq. (10) requires that 5 4  = 5 5 ,  

i.e., that the controls on both wheels be equal, u1 = i 4  = i 5  = u 2 ,  over the interval 
[ t 2 , t 3 ] .  Now, since g = 0, 4 3  = 0 (using Eq. (20)), and $3 is a constant. Since 9’ 
is also a constant ($1, $2, and z 3  are constants in Eq. (24)), &5 is constant (from 

If $5 is a non-zero constant, then $5 varies linearly, and the optimal controls 212 

and u1 are equal and bang-bang over the interval [ t 2 ,  t 3 ] .  If $5 is zero, then Eq. (22) 
yields $3 = O g ’ ( 5 3 )  which, with Eq. (27), implies $3 = g ‘ ( 2 3 )  = 0. If both g = 0 
and g’ = 0, then $1 = $2 = 0. This violates the assumptions in Eqs. (32)) (33), or 

Eq. (22)). 
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(34) and consequently 4 5  = 0 is not a valid solution for these cases. Thus, €or cases 
1.1, 1.2, and 1.3, the only admissible controls are bang-bang. 

Consider Case 1.4 

If $1 = $Jz = 0 over the interval [ t z , t 3 ] ,  they are also zero over the entire 
trajectory (from Eqs. (18) and (19)). Thus g = 9' = 0 and $3 = 0 (from Eq. (20)) 
over the entire trajectory. Furthermore, since $3 is a constant and $3 = 0 (from 
Eq. (27)) on the interval [ t 2 , t 3 ] ,  $3 = 0 over the entire trajectory. Consequently, 
$5 = 0 from Eq. (22), requiring the dual variable $5 to be constant over the entire 
trajectory. This is not an admissible case for our problem since the corresponding 
extremal controls u 2  would not change sign over the entire trajectory, leading to a 
linearly increasing or decreasing wheel velocity and making l3q. (26) impossible to 
satisfy. Thus case 1.4 does not lead to admissible controls for our problem. 

Consider Case 2 

If x5 = 0 over a finite time interval [ t 2 ,  i s ] ,  then the control 212 = 55 = 0 over the 
interval, and consequently its dual variable $5 and its derivative &, must be zero 
over the entire finite interval. Since $4 = $4 = 0, Eqs. (21) and (22) require $3 = 0 
and g ' ( x 3 )  = 0 over the entire interval, and consequently $3 = 0. Equation (20) 
thus requires either that 5 4  = z5 = 0, which is an inadmissible case (since, from 
Eqs. (8) through (12), no motion of the robot would take place over a finite time 
interval during the trajectory, which consequently can not be time optimal), or that 
g ( 5 3 )  = 0 over the finite time interval. If both g and g' are zero over the finite time 
interval, then $1 = $2 = 0. Since $1 and $2 are constant over the entire trajectory 
(from Eqs. (18) and (19)), they must be zero over the entire trajectory and Eq. (23), 
(24), and (20) lead to g = g' = $3 = 0 over the entire trajectory. Consequently, 
since $3 = 0 over the finite time interval and $3 = 0 over the entire trajectory, 
$3 = 0 and $4 = $5 = 0 (from Eqs. (21) and (22)) over the entire trajectory. 
Therefore, since $4 = 0 and $5 = 0 over the finite interval, they also are zero on 
the entire trajectory. Thus this case is not admissible since all dual variables $Ji are 
zero over the entire trajectory. 

Since the equations for $4 and $5 have the same structure, similar arguments 
demonstrate that singular solutions corresponding to the dual variable $5 being 
zero over a finite time interval lead to optimal controls that are bang-bang, or are 
inadmissible. 

If $4 = $5 = 0 over a finite interval [ t z ,  t 3 ] ,  then $4 = 4 5  = 0 over the intend 
and Eqs. (21) and (22) require that g' (x3)  = $3 = 0 over the interval. Since $1 

and $2 are constant, g ' ( s 3 )  = 0 implies that 5 3  is constant over the entire interval. 
Thus 5, = 0 and, from Eq. (lo), 5 4  = z5 over the entire interval. On the other 
hand, $3 = 0 over the entire interval implies $3 = 0, and Eq. (20) requires either 
2 4  = - 2 5  which, with the conclusion of the previous sentence, leads to x4 = z5 = 0 
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(;.e., the robot does not move during the entire interval), which is not an admissible 
solution; or g ( x 3 )  = 0, which has been treated as Case 1 above and shown to lead 
to bang-bang or inadmissible controls. Thus, all optimal control solutions for the 
system defined by Eqs. (8) through (12), (25), and (26) axe bang-bang. 

A similar result was recently outlined by Jacobs, Laumond and Rege (1991), 
however, without consideration given to cases 1.2, 1.3, 1.4, and $4 = $5 = 0 in the 
demonstration. 



4. PARAMETERIZATION OF THE 
BANG-BANG TRAJECTORIES 

The Pontryagin maximum principle converts the problem of time-optimal path 
planning from a problem involving trajectories in state space and time to a static 
optimization problem in parameter space. Two sets of parameters are available: 
the initial conditions for the dual variables [Xk] and the switch times. Using either 
set of parameters, nonlinear search techniques can be used to determine bang-bang 
control trajectories that move the robot from the initial state to the final state. In 
the remainder of this paper, we will use the switch times to parameterize the control 
trajectories and the corresponding robots paths. The PMP provides necessary (but 
not sufficient) conditions for an optimal trajectory. In the following sections, we 
will indeed find trajectories that satisfy the necessary conditions but are not time- 
optimal. To show that a bang-bang trajectory is time-optimal, we must show that 
it satisfies the necessary conditions and that the corresponding robot path is faster 
than all alternative paths. 

To show that a bang-bang trajectory satisfies the necessary conditions, we will 
numerically integrate the controls of the wheels to calculate the Cartesian path 
of the robot and some auxiliary variables, use the auxiliary variables to calculate 
the initial conditions for the dual variables, numerically integrate to calculate the 
dual variables, and verify that the necessary conditions are satisfied by showing 
that the dual variables are consistent with the bang-bang controls. In this section, 
we parameterize the trajectories, define the auxiliary variables, and show how to 
calculate the initial conditions for the dual variables. In the next two sections, we 
will explore the space of bang-bang trajectories and uniquely identify those that are 
t ime-opt imal. 

We have proven that the optimal controls are bang-bang. Thus, each wheel 
is always either accelerating or decelerating at the maximum rate (amax), and the 
wheel velocity trajectories consist of successive segments of linearly increasing or 
decreasing velocity. The wheel acceleration changes sign at a switch time. We can 
characterize a wheel control trajectory by its number of switch times, and a robot 
path by its total number of switch times and their distribution on either of the two 
wheels. We will find that, for given total trajectory times, a specific set of robot 
paths with a small number of switch times reach farther (and therefore are faster) 
than all paths with a larger number of switch times. At the lower bound, the path 
with the smallest number of switch times has two (one for each wheel). However, 
there are only two paths with two switch times: a translation straight forward and 
a pure rotation. On the other hand, we know that the minimum length paths for 
a skid-steer platform consist of sequences of translations and rotations. A rotation 
followed by a translation can reach any position and requires five switch times, 
while a path consisting of a rotation, a translation, and a rotation can reach any 
configuration and has eight switch times. In the next section, we will show that the 
robot can reach any position in the plane using specific paths involving a total of 
three switch times (one on one wheel, two on the other), and does so faster than 

11 



12 PARAMETERIZATION OF THE BANG-BANG TRAJECTORIES 

with a greater number of switch times. Similarly, we will show that, using specific 
paths with four switch times, the robot can reach any configuration faster than with 
paths involving a greater number of switch times. 

First, we derive an analytical expression for the displacement of a single wheel 
with four switch times. By adjusting parameters, the expression will yield the 
displacement for motions with one, two, or three switch times. We assume that 
the initial value for the wheel displacement (6) is zero. Since the initial and final 
values for the wheel velocity are zero, the wheel will accelerate during half of the 
trajectory time, and it will decelerate during the other half. We will denote by T 
half of the total trajectory time. 

A control trajectory with four switch times has five time segments denoted by 
(7,). For two wheels, we can define ten segments; our notation for the right segments 
will be (71 ,  73, 7 5 ,  7 7 ,  ~ g ) ,  while the left segments will be (72, 74,  76, 78, 710). Let U R  

be the initial acceleration on the right wheel. The control trajectory for the right 
wheel will be: U R  for [0, 7-11, -UR for [T I ,  71 + 731, U R  for [TI + T 3 ,  71 + 73 + 751, - U R  

for [TI + 73 + 7 5 ,  71 + 73 + 7 5  + 771, and U R  for [TI + r3 + 7 5  + 77, 2T]. Since the 
wheel will accelerate during half of the trajectory, and it will decelerate during the 
other half 

Integrating Eqs. (4) and (6), we can calculate the final value of the right wheel 
displacement for a four-switch-time trajectory of that wheel: 

d ~ ( 2 T )  = UR[-27375 + 2(71 + 75)T - T2] (38) 

Equation (38) relates the wheel displacement to the first three segments. Using 
Eqs. (36) and (37), we can relate the wheel displacement to the last three segments: 

The similar expressions for the displacement of the left wheel are: 

6 ~ ( 2 T )  = U L [ ~ T ~ T ~  - 2(76  + 71O)T + T2] (43) 

with U L  representing the initial acceleration of the left wheel. 
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4.1 ANALYTICAL RELATIONSHIP BETWEEN THE SEGMENTS 
AND THE FINAL ORIENTATION 
Although the equations of motion for the Cartesian position variables (x,y) 

do not have general analytical solutions, a solution for the Cartesian orientation 
variable q5 can be derived analytically, Using Eqs. (6) and (7), Eq. (1) may be 
written: 

4 = ( 6 R  - d,)/D (44) 

Since the initial conditions for the wheel displacement joint variables me zero, 
Eq. (44) can be integrated to yield: 

4 = 4 0  + ( @ R  - BL)/D (45) 
where +o is the initial value of the robot’s orientation. 

Equations (38), (39), (42), and (43) relate the segment lengths to the wheels’ 
displacement, while Eq. (45) relates the wheels’ displacement to the change in 
orientation. Given segment lengths for both wheels, the final change in orientation 
can be calculated. Alternatively, given the desired final orientation of the robot, 
Eq. (45) provides a constraint on the segment lengths. 

Consider a robot path involving three switch times; one on the right wheel 
and two on the left wheel (the segment lengths are: 71 = 73 = 74 = T, and 
7 5  = 77 = 78 = 79 = 710 = 0). Since 7’ + 76 = T, this path is defined by two 
parameters (72 and T ) .  Using Eqs. (39) and (43), the final wheel displacements are: 

6~ = U L [ T ~  - 276T] (47) 
Since the initial value of the robot’s orientation is zero, the find change in 
orientation is: 

If U R  = u~ = u,  the final orientation is: 

while if U R  = -UL = u, the final orientation is: 

4D = 2U72T (50)  

If the final orientation is specified and is positive (negative), then u must be positive 
(negative). Moreover, if a final orientation is specified for a three-switch-times path, 
Eqs. (49) and (50) may not have acceptable solutions for small values of T, since 
0 5 ~i 5 T. On the other hand, if no constraint on the final orientation is specified 
for a path, Eqs. (49) and (50) show that as 7 2  or 76  varies from zero to T, the 
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change in orientation varies continuously from zero (the motion is a translation 
straight forward) to 2uT2/D (the motion is a pure rotation). 

4.2 CALCULATION OF THE DUAL VARIABLES 

To verify that a bang-bang trajectory satisfies the necessary conditions, we must 
calculate the dual variables and show that they are consistent with the control paths 
[;.e., that u 1  is positive (negative) when $4 is positive (negative), etc.]. The dual 
variables satisfy Eqs. (18) to (22), with initial conditions given by Eq. (15). Since 
this set of equations is linear and homogeneous, it has a unique solution for any 
set of initial conditions (Xi) .  Thus, the initial conditions determine the trajectories 
of the dual variables. From Eqs. (18) and (19), the first two dual variables are 
constants ($1 = A1 and $2 = A,). Using Eqs. (8), (9), (20), and (23), the third 
dual variable satisfies: 

4 3  = $ l i 2  - $ 2 5 1  

Since the initial position is (O,O), Eq. (51) can be integrated: 

$3 = A 1 2 2  - X 2 Z l +  A3 (52) 
The fourth and fifth dual variables satisfy Eqs. (21) and (22). The right sides of 

these equations depend on the first three state variables. To integrate the equations, 
we define four auxiliary variables ( z i )  by: 

i l  = sin(z3) Z I ( 0 )  = 0 (53) 

i 2  = COS(Z3) 4 0 )  = 0 (54) 

i 4  = 2 2  z4(0) = 0 (56) 
Using the auxiliary variables, the solutions for the fourth and fifth dual variables 

axe: 

'$5 X l ( Z 4 / D  - 22/2) - X 2 ( z 1 / 2  + z3/D) + A 3 ( 7 / 0 )  + A5 ( 5 8 )  

Since the switch times of a trajectory correspond to times when either $4 or $5 
changes sign, one of the dual variables must be zero at the switch time. Thus, the 
initial conditions for the dual variables can be determined by solving the matrix 
equation: AX = 0, where AT = ( X I ? .  . . ?  A,) and the rows of the matrix A are 
defined by either Eqs. (57) or (58) applied at the switch times. If the switch time 
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is for the right wheel, $4 is equal to zero and Eq. (57) defines a row of A. If the 
switch time is for the left wheel, $5 is equal to zero and Eq. (58) defines a row of 
A. It is interesting to note here that, in the general case, a control path with n 
switch times will produce a matrix with n rows. For the vector X to be nonzero, 
the rank of A must be four or less. In other words, if a control path has less than 
five switch times, a nonzero solution is possible. If the control path has more than 
four switch times, the columns of the A matrix must be linearly dependent. Thus, 
in the next section, we will first explore the space of robot paths involving four 
switch times in order to investigate general solutions of our problem when the final 
configuration (position and orientation) is specified. A particular case occurs when 
the final state is a position (and the final orientation is not specified). In that case, 
the transversality condition [see Pontryagin (1986) Theorem 3, page 501 requires 
that the final value of the third dual variable be zero and Eq. (52) defines a row of 
A. Thus, when the final state is a position, a path with three switch times would 
produce a four row matrix. In the next section, we will therefore explore the space 
of robot paths involving three switch times to investigate general solutions of the 
problem when the final orientation is not specified. 





5. BANG-BANG TRAJECTORIES 

Our objective is to move from an arbitrary initial configuration to an arbitrary 
final configuration in minimum time. Each configuration is described by three 
coordinates (z,y,$), where (x,y) is the location of the midpoint between the two 
wheels and 9 is the orientation of the robot. We can choose the coordinate system 
such that the initial configuration is (O ,O,O) .  The initial and final values for the 
wheel velocities (OR and W L )  are zero. 

We will first explore the spaces of paths with three and four switch times. With 
the parameterization described in the previous section, we can vary the available 
parameters over the entire range, and for each set of parameter vdues, we can 
numerically integrate the equations of motion using a fourth-order Runge-Kutta 
method [Press (198S)l to determine the Cartesian path of the platform and its final 
position and orientation. To produce the example figures in this section, we have 
used amax = 0.5 meters/second* for the acceleration bound on the wheels, and 
D = 0.76 meters for the wheels’ spacing. 

5.1 TRAJECTORIES TO A POINT 

When the goal is to reach a given point with no specified orientation, the 
problem is symmetrical and can be solved considering only the first quadrant. If 
any point in the first quadrant can be reached, symmetrical points in the other three 
quadrants can be reached by changing the sign of the wheels’ controls, i.e., changing 
the initial direction of motion (symmetry about the y axis) or by exchanging the 
trajectories for the two wheels (symmetry about the x axis). Given the symmetry 
conditions, we are exploring three switch times trajectories involving one switch time 
for the right wheel and two for the left wheel. As mentioned previously, the three 
switch time trajectories with no specified final orientation can be parameterized 
using two parameters and can be of two types, which we refer to as: Type ++ (on 
the initial segment, PLR = U L  = u )  and Type +- ( U R  = -UL = u). 

Figure 2 shows the find locations of the platform for the two types of solutions 
when one of the parameters, the half timeT of the trajectory, is kept at a fixed 
value, T = f i  sec. The Type ++ trajectories initiate with a translation and end 
with a rotation, while the Type +- trajectories initiate with a rotation and end 
with a translation. As the parameter ( r  = 72 or 7 6 )  increases &om zero to T, the 
final positions of the robot for both types of trajectories describe a curve from the 
point (5,O) to the origin, with the motion varying from a pure translation reaching 
the point (5,O) for r = 0, to a pure rotation of the robot at the origin for r = T. 

Considering the first quadrant and all symmetries involved in the problem, 
it is clear that the trajectories of Type +- that end on the arc AB, which we 
thereafter call “first ax,” can reach points further away from the origin than the 
other trajectories of Type +- and all trajectories of the Type ++. In Fig. 3, the 
final platform locations which correspond to first arcs are plotted for several values 
of T. Since for pure translation, the platform moves a distance 5 along the x-axis: 
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x = u T 2  , (59) 
we have used the values T2 = 2 , 4 , 6 , 8 ,  and 10 (consequently, x = 1 , 2 , 3 , 4 ,  and 5 
when y = 0 and u = amax = .5 m/sec). From Figs. 2 and 3 it is clear that, for 
a constant value of T, the final location of the platform sweeps through the first 
quadrant on a first arc as the parameter T increases from zero and, for increasing 
values of T, the first arcs continuously expand toward higher values of (5, y). Thus, 
each point in the first quadrant can be reached by a three-switch-time trajectory 
ending on a first arc, and there is a one-to-one relationship between the points in the 
first quadrant and the parameter set (T, r )  which uniquely defines the trajectories 
reaching the first arcs. 

Each first arc is uniquely defined by its value of T and the range of the parameter 
r required to sweep the first quadrant: 0 5 r 5 T", where the value r"(T) 
corresponds to the intersection with the y axis. The ratio of r m  and T is displayed 
in Fig. 4 as a function of T. As discussed previously with Eqs. (49) and (50) ,  there is 
a minimum half time Tmin required to rotate 90 degrees. For the robot parameter 
values used in the figures, Tmin = 1.095. When T is less than 1.095, T" is not 
defined. When T is equal to 1.095, r m  = T and the ratio is 1.0. As T increases, the 
ratio decreases as expected, reaching 0.35 when T = 2.0 and 0.09 when T = 4.0. 
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Fig. 2. Points that can be reached by trajectories with three switch times for a 
constant value of T = sec. 
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0 1 2 3 4 5 

X 

Fig. 3. Curves showing the location of the furthest points in the first quadrant 
that can be reached by trajectories with three switch times for several values of 
T (T2 = 2,4,6,8, and 10). 

0 2 4 

T 

Fig. 4. Curve showing the ratio of rm and T. The sets (tm,T) define the 
intersection of the first arcs with the y axis. 
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Based on the above considerations, the remaining set of three-switch-time 
trajectories that are candidates for time-optimal trajectories to a point, is the 
uniquely defined set of trajectories reaching points on first arcs. Sample Cartesian 
paths of the robot for the candidate three-switch-time trajectories are displayed in 
Fig. 5 for the case where T2 = 10. Note that, at the end of all paths, both wheels 
have the same velocity and the Cartesian paths are line segments. 

5 

Y 

0 1 2 3 4 5 

X 

Fig. 5. Cartesian paths of the robot for three-switch-time trajectories ending on 
the first arc defined by T’ = 10. 

5.2 TRAJECTORIES TO A CONFIGURATION 

In a similar manner, and based on the discussion of Section 4.2, we can use 
the parameterization developed in 4.1 to explore the space of four-switch-time 
trajectories when the goal is to reach a given configuration. In this case, the 
problem is not symmetrical about the 2 and y axes and the four quadrants have to 
be explored. 

A four-switch-time trajectory can have either two switch times for each wheel 
(Type 22) or one switch time for one wheel and three switch times for the other 
wheel (Type 13). For the Type 22 trajectories, the segment lengths satisfy: r3 = 
r4 = T, ~7 = 78 = rg = 7-10 = 0, 71 +7j = T and r2+r~ = T. With these conditions 
and the constraint on the final orientation given by Eqs. (38), (42), and (45), these 
trajectories can be defined with two parameters, e.g., 71 or 7 2 ,  and T. Similarly, 
for the Type 13 trajectories, the segment lengths satisfy: 7-1 = r3 = T, 7-5 = r7 = 
rg = 7-10 = 0, 72 4- 7 6  = T, and r4 + 78 = T (one switch time on the right wheel 
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and three on the left), or: 7 2  = 74 = T, 7-6 = 78  = TQ = 710 = 0,  71 -4- 7 5  = T, and 
r3 + r7 = T (three switch times on the right wheel and one on the left). With the 
constraint on the final orientation, these trajectories can also be defined with two 
parameters 72 or 74,  and T; or 71 or 73,  and T. 

Figure 6 displays the points that can be reached by four-switch-time trajectories 
when the orientation is 4 = 0.8 radians and T2 = 10. Since we have two types of 
trajectories and four combinations of initial acceleration (++, --, +-, -+), there 
are eight curve segments displayed in Fig. 6. There are four significant intersection 
points (C, D, E ,  F) in the figure. These are points where the four-switch-time 
trajectories become three-switch-time trajectories of the Type 12, Le., where one 
of their segment 7; vanishes. For example, the two points, C and 13, in the first 
quadrant me where the two curves in Fig. 2 reach an orientation of 0.8 radians (at 
the points, Eqs. (49) and (50) are satisfied). All of the eight curve segments start at 
one of these four points and end at another. The same pattern is observed in Figs. 7 
and 8 which display the points that can be reached by four-switch-time trajectories 
when the final orientation is qh = 1.57 radians and qh = 3.14 radians (and T2 = 10). 
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Fig. 6. Points that can be reached by trajectories with four switch times for a 
constant value of T(T2 = 10) when the final orientation is 0.8 radians. 
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Fig. 7. Points that can be reached by trajectories with four switch times for a 
constant value of T(T' = 10) when the final orientation is 1.57 radians. 
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Fig. 8.  Points that can be reached by trajectories with four switch times for a 
constant value of T(T' = 10) when the final orientation is 3.14 radians. 
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Figures 6 and 7 are not symmetrical about the x or y axis. However, we can 
show that the two axes of symmetry are rotated by 4 / 2  (thus, Fig. 8 is symmetrical 
about the x and y axis) and identify the location of the points G and H. Consider an 
arbitrary bang-bang trajectory that starts at (O,O,O) and reaches (d, y', 4). Suppose 
that a second trajectory leaves (O,O,O) with the time reverse control trajectory (the 
length of the initial segment of the second trajectory will be equal to the length of 
the final segment of the first trajectory but the signs of the control variables will 
be reversed). The holonomic variables (wheel rotation and final orientation) will 
be the same for the two trajectories but the nonholonomic variables (5, y) will be 
different. Thus, the second trajectory will reach (z2, y2, #). 

If we let time run backwards, the second trajectory is identical to the first and 
we can derive a mapping from (zl, y') to (z2, y2): 

The mapping applies to any arbitrary bang-bang trajectory. On the first line of 
symmetry, the second point is the same as the first [(x', yl) = (x2, y2) = (5, y)]: 

Thus, the direction of the fist line of symmetry is 4/2. On the second line of 
symmetry, the second point is reflected through the origin [(xl, y') = ( -x2, -y2) = 
(5, y)l: 

Y/X = -(I + cos$)/sin# =   sin#/(^ - cos#) = tan[(.lr + 4)/2] (63) 

Thus, the direction of the second line of symmetry is ( R  + q5)/2. 
We can move the final configuration across the first line of symmetry by time 

reversing the control trajectory. We can move the final configuration across the 
second line of symmetry by reversing the control trajectory between the wheels and 
by changing the signs of the controls (if we do not reverse the signs of the wheel 
rotations, the sign of the final orientation will be reversed). 

Just as in Section 5.1, we can define a set of candidates for time-optimality its 
the set of trajectories reaching furthest in the plme for a given value of T. Rom 
Figs. 6 to 8, it can be seen that the envelop (C D W E F G C) is reached by 
trajectories of Type 13+-, 13-f, and some of the Type 22+- and 22-+ that are 
uniquely defined by the points G and H .  
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Just like in Section 5.1, we can also show that the candidate four-switch-time 
trajectories can reach any configuration by varying the half time parameter T. 
Figures 9 and 10 illustrate the continuous sweeping through all of the points in 
the plane as the parameter T increases. In Fig. 9 the final orientation is = 
0.80 radians, while in Fig. 10 the final orientation is q5 = 3.14 radians. In both 
figures, the curves are for T2 = 2,4,6,8, and 10, and amax = 0.5 meters/second.2 
Figure 10 includes only four sets of curves (rather than five like Fig. 9) because the 
time required for a pure rotation of 3.14 radians (T2 = 2.4) is longer than the first 
value for the parameter T(T2 = 2). 

Sample Cartesian paths of the robot for some of these candidate time-optimal 
four-switch-time trajectories to a configuration are displayed (for the case where 
T2 = 10) in Figs. 11 and 12 for final orientations of q5 = 0.8 radians and 
4 = 3.14 radians, respectively. Note that, as the control trajectories evolve from 
Type 22-+ to 13+- to 22+-, the Cartesian trajectories change continuously. 
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-5 4 
-5 -3 -1 1 3 5 

X 

Fig. 9. Curves showing the location of the furthest points that can be reached by 
trajectories with four switch times for several values of T(T2 = 2,4,6,8, and 10) when 
the Anal orientation is 0.8 radians. 



BANG-BANG TRAJECTORIES 25 
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Fig. 10. Curves showing the location of points that can be reached by trajectories 
with four switch times for several values of T(T’=4, 8,8, and 10) when the final 
orientation is 3.14 radians. 
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X 

Fig. 11. Cartesian trajectories for paths with four switch times for a constant 
value of T(T’ = 10) when the final orientation is 0.8 radians. 
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Y 

Fig. 12. Cartesian trajectories for paths with four switch times for a constant 
value of T(T’ = 10) when the final orientation is 3.14 radians. 



6. OPTIMAL TRAJECTORIES 

In this section, we show that the candidate three-switch-time trajectories 
identified in the previous section provide time optimal paths to a position, 
and the candidate four-switch-time trajectories provide time optimal paths to a 
configuration. 

The maximum principle provides necessary (but not sufficient) conditions for 
an optimal trajectory. To show that a bang-bang trajectory is optimal, we must 
show that it satisfies the necessary conditions and that it is better than alternative 
paths. Indeed, we will find that some trajectories satisfy the necessary conditions 
but are not optimal. Since the candidate sets of trajectories have been identified 
through comparisons with trajectories involving the minimum needed number of 
switch times, we show that they are better than alternative paths by comparing 
them to trajectories with greater numbers of switch times. 

To verify that a bang-bang trajectory satisfies the necessary conditions, we must 
cdculate the dual variables and show that they are consistent with the control paths 
[that u1 is positive (negative) when $4 is positive (negative), etc.]. In Section 4, 
we defined four auxiliary variables (2;) that can be used to calculate the initial 
conditions for the dual variables. Following the procedure described in section four, 
we can calculate the dual variables for any bang-bang solution. 

We will consider first the three switch time trajectories to a position. Consider 
the results shown in Fig. 2. Our subset of candidate time-optimal-trajectories 
includes the trajectories of the Type 12+- that end on the first arc, i.e., the portion 
of the curve that lies in the first quadrant. We have calculated the dual variables 
for a wide range of trajectories and found that all 12+- trajectories that end on 
first arcs satisfy the necessary conditions. Typical results for a trajectory defined 
by (T, 7) = (a, .4) are displayed in Fig. 13. The trajectory reaches the point 
(0.66, 4.03). For the right wheel, the acceleration is positive for (0.0 to 3.16) and 
negative for (3.16 to 6.32). The corresponding dual variable ($4) is found positive 
for (0.0 to 3.16) and negative for (3.16 to 6.32). For the left wheel, the acceleration 
is negative for (0.0 to 0.40), positive for (0.40 to 3.56) and negative for (3.56 to 
6.32). The corresponding dual variable ( $ 5 )  is found negative for (0.0 to 0.40), 
positive for (0.40 to 3.56) and negative for (3.56 to 6.32). Finally, the trmsversality 
condition requiring that $3 = 0.0 at the end of the trajectory is seen to be verified. 

We have also calculated the dual variables for the other 12f- trajectories, and 
it is interesting to note that they, too, satisfy the necessary conditions except for 
those that reach points on the spiral after it reenters the first quadrant (and the 
12+- trajectories cross the 12++ trajectories). On the other hand, none of the 
12++ trajectories satisfy the necessary conditions. 

27 
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Fig. 13. 
(0.66, 4.03). 

Dual variables for a three-switch-time trajectory leading to the point 

In a similar fashion, we have calculated the dual variables for a wide range of 
candidate time-optimal trajectories to a configuration, i.e., those four-switch-time 
trajectories that end at a configuration laying on CDHEFG envelops of the type 
shown in Fig. 6, and have found that they satisfy the PMP necessary conditions. 
Typical results are displayed in Fig. 14 for a 22+- trajectory corresponding to 
q5 = 0.8 radians, T* = 10 and TI = 2.84. The trajectory reaches the configuration 
(x,y,q5) = (0.20, 3.43, 0.8). For the right wheel, the acceleration is positive 
for (0.0 to 2.84), negative for (2.84 to 6-00>, and positive for (6.00 to 6.32). 
The corresponding dual variable ($4) is found respectively positive, negative, and 
positive on the same interval. For the left wheel, the acceleration is negative for 
(0.0 to 0.52), positive for (0.52 to 3.68) and negative for (3.68 to 6.32), and the 
corresponding dual variable ( $ 5 )  is found appropriately negative, positive, and 
negative on the same intervals. 

In the remainder of this section, we numerically demonstrate that the 
trajectories of the candidate sets are time-optimal by showing that they are faster 
than trajectories with more switch times. If the total trajectory time (T) is fixed, 
an optimal trajectory will reach further from the origin than any other trajectory. 
We demonstrate numerically that the “best” trajectories with TI switch times are 
longer than the “best” trajectories with n + 1 switch times. 
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Fig. 14. Dual variables for a four-switch-time trajectory leading to the 
configuration (0.20, 3.43, 0.80). 

A trajectory with a total of n switch times ( n ~  2 1 on the right wheel, n L  2 1 on 
the left wheel, n R  + n~ = n)  involves n + 2 time segments, q, which are distributed 
on the two wheels with at least two segments on each wheel. Any n-switch-time 
trajectory (with n + 2 segments) of type n R n L  can be considered as an n + l-switch- 
time trajectory (with n + 3 segments) of type ( n R  + 1)nt  or type n R ( n L  + 1) in 
which the additional time segment is set to zero. If we denote this additional time 
segment by p and use it as an additional trajectory parameter that can m y  over 
its entire feasible range within [0, TI, then all n + 1-switch-time trajectories can be 
evolved from their parent n-switch-time trajectory. These can then be compared 
to ascertain that the parent trajectories always reach further than their “offspring” 
for a same total trajectory time. 

First consider the special case when n = 2. The “best” trajectories with two 
switch times are pure translation (as opposed to the pure rotation trajectories which 
do not leave the origin). These trajectories axe part of the candidate sets, although 
they only reach points on the 5 axis. However, it is clear from Fig. 2 that when the 
parameter is varied, the two-switch-time trajectories reach further than any three- 
switch-time trajectories (or trajectories with any greater number of switch times) 
that end on the x axis. Thus, to reach points on the x axis, these two-switch-time 
trajectories clearly are the time-optimal ones. 
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Type 22 

Consider the case when n = 3. The three switch trajectories in Fig. 2 have one 
switch time on the right wheel and two switch times for the left wheel, i.e., they 
are of Type 12. They have two types of offspring trajectories which are the only 
two types of four-switch-time trajectories: Type 22 and Type 13. In this case, the 
parameter p becomes either the third time segment on the right wheel or the fourth 
time segment on the left wheel. When the parameter is zero, the four-switch-time 
trajectories reduce to the three-switch-time trajectories. As the parameter increases, 
the offspring trajectories spanned the space of four-switch-time trajectories. 

Offspring four-switch-time trajectories are compared to the parent three-switch- 
time trajectories in Fig. 15, for Type 22, and Fig. 16 for Type 13. In both cases, 
results for the parameter increasing from 0.0 to 0.3 are displayed. As the parameter 
increases, the end points of the four-switch-time trajectories move monotonically 
toward the origin. Thus, the best three-switch-time trajectories always reach further 
from the origin than the best four-switch-time trajectories and the distance between 
the end points increases as the four switch paths become less like the three switch 
paths. 
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Fig. 15. Comparison of four-switch time trajectories of Type 22 and three-switch- 
time trajectories. 
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Fig. 16. Comparison of four-switch-time trajectories of Type 13 and three-switch- 
time trajectories. 

Consider the case when n = 4. There are four types of five-switch-time 
trajectories: Type 14, Type 23, Type 32, and Type 41, which can all be found 
from the parents four-switch-time trajectories of Type 13 and 22, and compared to 
them to show that they are not time optimal. Examples of the comparison results 
are illustrated in Figs. 17 to 21. The Type 23+- trajectories are compared to 
the Type 22+- trajectories in Fig. 17. As the parameter increases from 0.0 to 
0.3, the end points of the Type 23+- trajectories in the upper half plane move 
monotonically toward the origin. They dso move toward the x axis in the first 
quadrant, but they always remain inside the Type 13+- and Type 22++ curves. 

The Type 23+- trajectories are compared to the Type 13+- trajectories in 
Fig. 18. As the parameter increases from 0.0 to 0.3, the Type 23+- trajectories 
move monotonically toward the origin. They also move radially but they always 
remain inside the Type 22+- and Type 22++ curves. 

The Type 23++ trajectories are compared to the Type 13++ trajectories in 
Fig. 19. As the parameter increases from 0.0 to 0.3, the end points of the Type 23++ 
trajectories move monotonically toward the origin. They also move radidy but they 
always remain inside the Type 22+- and Type 22++ curves. 
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Fig. 17. Comparison of five-switch-time trajectories of Type 23+- and four- 
switch-time trajectories of Type 22+-. 
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Fig. 18. Comparison of flve-switch-time trajectories of Type 23+- and four- 
switch-time trajectories of Type 13+-. 
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Fig. 19. Cornparison of five-switch-time trajectories of Type 23++ and four- 
switch-time trajectories of Type 13++. 
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Fig. 20. Comparison of five-switch-time trajectories of Type 14+- and four- 
switch-time trajectories of Type 13. 
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Fig. 21. Comparison of five-switch-time trajectories of Type 14++ and four- 
switch-time trajectories of Type 13. 

The Type 14+- and Type 14++ trajectories are compared to the Type 13+- 
and Type 13++ trajectories in Figs. 20 and 21. The end points of the Type 14 
trajectories occupy the inside of the lens shaped region defined by the Type 13 
trajectories. As the pa.rameter increases from 0 to 1.0, the end points of the Type 14 
trajectories sweep the interior of the lens with a upper left fixed point for the case 
of Fig. 20, and a lower right fixed point for the case of Fig. 21. 

Similar families of curve can be easily generated to compare parents and 
offspring trajectories with five switch times and greater. The important general 
result of such an exercise is that the best offspring trajectories never reach further 
than their parent best candidate for a same allowed total trajectory time. 

In summary, any point in the plane can be reached by a three-switch-time 
trajectory which has been uniquely defined in Section 5.1 and shown to be time- 
optimal by reaching the desired (5, y) position faster than other three-switch-time 
trajectories or trajectories with a higher number of switch times. Similarly, any 
configuration in the plane can be reached by a four-switch-time trajectory which 
has been uniquely defined in Section 5.2 and shown to be time-optimal by reaching 
the configuration faster than other four-switch-time trajectories or trajectories with 
a greater number of switch times. 



7. USE OF THE METHOD FOR 
ROBOT TRAJECTORY PLANNING 

Given the results of the previous sections, the implementation on our robots 
has focussed on developing the driver module for the robots, i.e., the module which 
determines the control trajectories necessary for a time optimal motion of the 
platform between given subgoals in a sequence provided by the route planning 
module [e.g., see Vasseur, Pin and Taylor (1992) or Andersen et al. (1992)]. 
Each subgoal is specified as a given configuration where the platform must stop 
for the robot to perform some sensing, manipulation, or other tasks. In the first 
step of the algorithm, the arrival configuration is expressed as a relative position 
and orientation with respect to the starting configuration. If a final orientation 
is not specified, then the time-optimal three-switch-time trajectory to a point is 
sought which, as explained in Section 5.1, is characterized by two parameters. If 
a desired final orientation is specified, the time-optimal trajectory is a four-switch- 
time trajectory to a configuration and, as discussed in Section 5.2, Eq. (40) is first 
used to reduce the number of unknown parameters from three to two. In both 
cases, the same numerical search technique [Powell’s method (Press (1988))], can 
thus be used to determine the two parameters ( T , T )  for the given final location 
(x,y) making use of the symmetries with respect to the x and y axes or 4/2 and 
(r + #/2) axes as appropriate. From (T,T) the switch times are easily calculated 
and the controls directly sent to the robot actuator servos. 

As an example of the gain obtained with the time-optimal trajectories compared 
with minimum-length paths to a configuration (;.e., rotate, translate, rotate), 
Table 1 shows the total trajectory times required to reach the point (3,3) at several 
orientations. T,,t represents the optimal trajectory time, while Trtr is the time 
required to execute the RTR (rotate, translate, rotate) strategy with bang-bang 
controls. As the orientation increases from 0.80 to 3.14 radians, Topt increases 
from 6.18 seconds to 7.15 seconds and the ratio, R = Topt/Trtr, varies from .81 to 
.71. These results are typical of the gains obtained with optimal paths over RTR 
paths, and average about 25% for trajectories to near configurations (less than 
5 meters away from the start point). The gain, of course, decreases as the distance 
separating the two configurations increases, as well as for trajectories approaching 
pure translations on the x axis (for which R = 1). 

One of the concerns which usually arises when implementing time-optimal 
controls on a robot relates to the capability of the controller to closely approximate 
the bang-bang demands on the controls. For our 2,000 lbs. HERMIES-I11 robot, the 
results of well-tuned conventional PID wheel controllers (see Reister, 1992) proved 
extremely satisfactory, as illustrated in Fig. 22. In the figure, the velocity target 
on one of the wheels and the actual velocity profile obtained during experiments 
with the robot are displayed by the plain and dotted lines, respectively. The 
velocity target is a three-switch-time trajectory of the wheel with a value of 
amex = .2 m/sec2. With this very good behavior of the controller, time-optimal 
motions of the robot were realized with much less than 1% error. 
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Fig. 22. Measured velocity profile for the HERMIES-III robot as it follows a 
bang-bang velocity target. 



8. CONCLUSIONS 

Our objective has been to plan time-optimal motions for a mobile robot with 
two independently-driven non-steerable wheels from one static configuration to the 
next in an unobstructed planar environment. We have used Pontryagin’s Maximum 
Principle to prove that, when the maximum acceleration on each wheel is bounded, 
all optimal trajectories are bang-bang. Using this result, we have proposed a 
parameterization of the bang-bang trajectories which allows us to span the space 
of trajectories and to show that any position in the plane can be reached by a path 
with three switch times while any configuration can be reached by a path with four 
switch times. With these results, we have identified two uniquely defined subsets 
of paths as candidates for time-optimdity. 

We have then followed a numerical procedure to verify that the paths in these 
subsets are the time-optimal ones: we use the unique two parameters defining 
each path to calculate the switch times for that path, numerically integrate the 
control trajectories to calculate the Cartesian paths and some auxilary variables, 
use the auxilary variables to calculate the initial conditions for the dual variables, 
numerically integrate to calculate the dual variables, and verify that the Cartesian 
paths are consistent with the bang-bang controls as required by the maximum 
principle. We then numerically showed that the paths in the subsets are time- 
optimal by comparing them with other possible paths with larger numbers of switch 
times. Being numerical, the procedure required an extensive examination of many 
cases; however, it has allowed us to precisely identify and parameterize the set of 
trajectories and associated controls that allow a robot to reach any configuration 
in the plane in a time-optimal fashion, a problem which had eluded many efforts to 
date. 

With the set of time-optimal trajectories identified and parameterized, we have 
then discussed how the results can be utilized in conjunction with a simple search 
technique to implement the time-optimal controls on a mobile robot. For an 
illustrative value of 0.5 m/sec2 for the bound on acceleration, comparative examples 
indicate that the time-optimal paths can be up to 30% faster than rotate-translate- 
rotate paths that use bang-bang controls. 
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