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THE POTENTIAL OF MODIFIED TYPE 310 STAINLESS STEEL 
FOR ADVANCED FOSSIL ENERGY APPLICATIONS* 

R. W. Swindeman 

ABSTRACT 

An evaluation was undertaken to determine the potential of modified 
type 310 stainless steel for fossil energy applications. First, alloy perfomaxe 
criteria far components in several emerging technologies were identified. Then, 
a brief review of existing alloy technology was undertaken relative to 
performance criteria. Key issues were the tendency for type 310 stainless steel 
to embrittle due to the formation of intermetallic phases, the poor resistance of 
type 310 stainless steel to highly sulfidizing environments, the need to examine 
the strength and ductility of weldments, and the lack of a long-time data base and 
criteria for setting allowable stress at temperatures in excess of 8WC. An 
activity was outlined that would address several of the key issues. 

1. XNTRODUCTION 

In the last ten years, several competing advanced energy technologies have been 

developed to improve thermal efficiency and reduce emissions resulting from the combustion 

and conversion of c0al.l-3 As these technologies move toward the construction of 

demonstration plants, the selection of the structural materials becomes of paramount 

imponance.4 The temperatures, pressures, and environments under which the structural 

materials wil l  operate vary considerably from one concept to another, so one can expect a large 

range of materials to be utilized. Materials will range h m  steels, nickel-base alloys, cobalt- 

base alloys, and titanium alloys, to ceramics. hportant considerations in materials selection 

have always been the cost, availability, and depth of experience. The U.S. Department of 

Energy (DOE), Office of Fossil Energy, Advanced Research and Development (AR&TD) 

Materials Program addresses the materials needs of each technology and attempts, where 

possible, to develop or identify materials that could Serve as m y  applications as possible. 

Earlier, research was undertaken to examine alloys for the advanced steam cycle. 

Here, emphasis was on materials for superheater tubing. Alloy design and evaluation criteria 
were identified, and work was begun to examine four groups of alloys.5 These included lean 

*Research sponsored by the U.S. Department of Energy, Office of Fossil Energy, 
Advanced Research and Technology Development Materials Program, under contract 
DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc. 
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stainless steel (containing less than 20% chromium); higher chromium iron-base alloys; 

nickel-base alloys; and aluminum-bearing, high-temperature alloys. Most of the work on lean 

stainless steel and higher chromium iron-base alloys has been completed.6.7 During the six 
years of the activity, technological interests shifted from the pulverized-coal (pc) advanced 

steam cycle to combined cycles. Operational requirements changed accordingly, and higher 

operating temperature became of interest. Of the materials included in the research on 

advanced steam-cycle tubing, a modified alloy (8OOH); a modified type 310 stainless steel; and 

some aluminum-bearing, high-temperam alloys could be extended to the higher temperatures 

of interest. Type 310 stainless steel, which is relatively cheap, has been an alloy of preference 

in many high-temperature systems and, if properly modified, is judged to have potential as a 

structural material in several advanced energy systems. Experience has shown that some 

improvements to the steel could be of benefit in improving component life, and this report 

addresses research needs to accomplish this goal. 

2. ALLOY PERFORMANCE CRITERIA 

Alloy performance criteria are closely linked to applications, and Table 1 provides 

information regarding temperatures, pressures, and environments for several fossil energy 

technologies.8 These technologies cover a broad range, from life extension of existing fossil 

power plants to the second-generation, combined-cycle (CC) concepts. 

Table 1. Operating conditions for structural materials in 
various fossil energy applications where modified 

type 310 stainless steel is of interest 

Application c h i n p e n t  Tctupam Pressure Environment 

Conventional supertreattrl 540 to 650'C 1oto25MPa steam, 
Pc plant rchcatel loo0 to 12WF 1.5 to 3.5 ksi coal ash 

Advanced superheater/ 600 to 7 w c  25to30MPa steam, 
Pc plant reheater ll00to1300'F 3.5to4.5ksi coalash 

cc ducts. tubes, 1475 to 1650'F 0.15 to 0.4 ksi dry ash, 
PFBC" cyclones, 800 to W C  lto3MPa oxidizing, 

heat exchangers, Sttam 
hot-gas cleanup 

IGCC heat exchangers. 800 to 980'C 2to l o r n  sulfidizing, 
hternals, 1475 to 18WF 0.3 to 1.5 ksi steam, 
hot-gas cleanup ash 

Fuel cells currentcollector 650'C atmospheric carbonate 
1200'F prtssure 

%ssurized fluidized btd combustor. 
htegnted gasification combined cycle. 
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In existing plants the burning of more corrosive coals in fossil plants has increased 

corrosion in superheaterhheater tubing. In the replacement of boilers, corrosion resistance 

and cost are the major considerations in the selection of the tubing. In at least one instance, a 

modified type 310 stainless steel was selected in pEference to type 347 stainless steel or alloy 
8OOH as replacement tubing in the reheater.9 

is sponsoring a project 

focused on a "state-of-the-art" power plant (SOAPP).lO These advanced PC plants are being 
designed to produce steam at temperatuxcs approaching 6oo'C (1 1 1279 and are constructed of 
high-performance materials and components, as sketched in Fig. 1. With cogeneration or 

topping cycles, these plants could operate at efficiencies nearing 50% (ref. 11). In the 

selection of materials for the superheater, strength and corrosion resistance are more 

signifcant than cost. Depending on the ash and chlorine content of the coal, either clad or 

bare tubing is being considered. Because of its excellent coal ash corrosion resistance, 

modified type 310 stainless steel has emerged as a strong candidate for the 

superheaterheheater tubing.9J2 

The atmospheric fluidized bed combustor (AFBC) and PFBC q u i r e  materials that can 

resist erosion/corrosion under conditions of oxidation where sulfur-bearing particulates are 
present. A schematic drawing of one of these second-generation PFBC units is shown in 

Fig. 2 (ref. 2). Here, corrosion-resistant alloys will be needed in the bed and freeboard 
regions of the combustor, filter units, and heat-recovery steam generator. Although pressures 

are low compared to PC boilers, temperatures are much higher, and structural materials in the 

gas stream are usually protected by refractory liners. Heat exchanger tubing cannot be 

insulated, however, and the structural materials in the hot-gas cleanup systems must operate: at 
gas temperatures that may be in the range of 800 to 9OO'C. Type 310 stainless steel and 
modified type 310 stainless steel have been found to be two of the betm ailoys for use in these 

systems in regard to corrosion resistance.a The low-creep strength and tendency toward 

embrittlement in type 3 10 stainless steel are issues of concern; hence, modification of the steel 

to improve strength and ductility is of intenst. 

Operating conditions in gasifiers are severe. High temperatures and sulfidizing 

environments have made it difficult to find a suitable material for vessel internals. The 
advanced IGCC concept, sketched in Fig. 3, will be no exception. 2 To date, the best metallic 

materials for gasifier internals appear to be cobalt-base alloys, but cyclones, heat exchangers, 
and hot-gas cleanup components could operate at lower temperatures, or less corrosion- 

resistant alloys could be protected by suKidation-resistant claddings such as iron aluminide. 14 

In the near term, the Electric Power Research Institute 
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modified type 310 stainless steel could be in the superheater/reheater tubing.)lO 
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Type 310 stainless steel has been found to be superior to many other high-temperature alloys 

as a heat exchanger material, and modifications to the steel have improved its corrosion 

re~istance.15~16 Hence, it seems likely that this steel could see service in IGCCs. 
Finally, corrosion is a problem in fuel cell technology. Molten alkali carbonates attack 

structural materials, and the extent of attack is related to both the carbonate composition and 

the gas composition. Modified type 310 stainless steel has been considered in this 

application.17 

Alloy performance criteria fur modified type 3 10 stainless steel cannot be as specific as 

those identified for superheater tubing in the advanced steam cycle application.5 However, 

there are a number of generic criteria that could be useful in guiding a design and evaluation 

program. These may be grouped into four categuries: Metallurgical Stability, Fabrication and 

Joining, Mechanical Behavior, and Corrosion Behavior. Briefly, the following guidelines 

should apply: 

1. p ili . The steel shall be austenitic. Composition shall be adjusted to limit 

the precipitation of carbides, nitrides, and intermetallic compounds to levels that ensure 

reasonable ductility and toughness in the temperature range of interest. A target room- 

temperature elongation in the tensile test after aging or simulated service exposure shall be 
10% (or greater), and the Chazpy V toughness shall be set at 15 J (or greater). 

. .  
2. Fabrication and toin ing. The steel shall be capable of being fabricated as sheet, plate, 

tubing, and bar products by good steelmaking practice. Thicknesses up to 25 mm (1 in.) shall 

be required The capabiiity of co-extruding tubing with commercial fenitic and austenitic alloy 

shall be demonstrated. The steel shall be weldable, either autogenously or by means of a 

c o r n m y  available filler metal. 

3. Mechanical behavior. Useful strength levels shall be required at temperatures in the range 

of 760 to W C  (1400 to 1650’F). A target rupture strength shall be set at 10 MPa (1.4 ksi) 

for 100,OOO h at W C  (1650.F). 

4. Corrosion behavior The corrosion resistance of the steel shall be equivalent to, or better 
than, type 310 stainless steel for the service conditions outlined in Table 1. 
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3. DESCRIPTION OF CURRENT MATERIALS TECHNOLOGY 

Type 310 stainless steel is a highchromium, high-nickel steel that has been in service 

for decades. There are several modifications currently available, and typical chemistries are 

provided in Table 2. Wrought alloys include types 310, 310S, 314,31OCb, and a new steel, 

type 310HCbN stainless steel, developed by Sumitomo under the name HR3C (ref. 18). The 

standard-grade, type 310 stainless steel is quite simple in regard to its chemistry and allows 

the highest level of carbon (0.15% for tubing) of any 300 series stainless steel. Type 310s 

stainless steel is similar to type 310 stainless steel, except that the maximum carbon is set at 

0.0896. Type 314 stainless steel includes a higher level of silicon (1.5 to 3%). Type 31OCb 

stainless steel has a maximum limit of 0.08% on carbon and a 1.1% limit on niobium. The 

type 310HCbN stainless steel contains niobium and nitrogen with some resmctions on 

residual element chemistry. 18 More details of the chemical specifications can be found in the 

American Society for Testing and Materials (ASTM) standards for the applicable product. 

Table 2. Typical chemistries for 250-20Ni stainless steels 

Element* Type310 Type310S Type3100 Type310HCbN Type314 

C 
Mn 
Si 
P 
S 
cr 
Ni 
Nb 
N 

0.13 0.03 0.06 0.06 
1.4 1.1 1.2 1.2 
0.6 0.4 0.5 0.4 
0.03 0.03 0.03 0.01 
0.02 0.02 0.02 < 0.01 

25 .O 25.0 25.0 25.0 
20.0 20.0 20.0 20.0 
I -- 10 x c 0.4 

0.2 

0.14 
0.5 
2.2 
0.02 
0.0 1 

25.0 
20.0 

*Nb is niobium in the element column, but the ASTM and the American Society of 
Mechancial Engineers (ASME) use the symbol Cb. Mo is permitted to a level of 0.75% in 
type 3 1 0 0  and type 310s. The Nb value for type 31OCb is 10 x C but cannot exceed 1.1%. 
The N content of the type 310 steels is generally not reported but is typically around 0.02%. 
The S and P contents of recently melted steels are often well below 0.03%. 



9 

3.1 METALLURGICAL CONSIDERATIONS 

Type 3 10 stainless steel solidifies as austenite and remains austenitic at usual working 

temperatures, say at 11OO'C (2000'F), as shown in the ternary diagram in Fig. 4(a) 
[refs. 19,201. The steel enters the austenite plus sigma phase field somewhere below 98O'C 

( l W F ) ,  as shown in Fig. 4(b) for 650'C (12WF). The amount of sigma phase formed and 

the kinetics of the sigma phase precipitation process, however, are influenced by various 

element additions. The development of sigma phase in type 310, type 314, and type 310Cb 
stainless steels was examined by Menard in 1952 (ref. 21), and more recently Barcik 

examined sigma phase in type 310, type 314, and type 310s stainless steels3 Figure 5 

shows the time-temperame-precipitation (TW) diagrams constructed for the three steels by 

Barcik. In type 310 stainless steel, sigma phase developed at 950'C (1750'F) in less than 

200 h and reached 5% after 10,OOO h. The nose of the TIT curves was near 8WC (1500'F) 
where sigma phase started in less than 10 h and reached 5 8  in approximately 100 h. At 

6oo'C (1 1OOT) sigma appeared in less than loo0 h. Type 314 stainless steel exhibited a lTP 

diagram that was similar to type 310 stainless steel. Near 8 W C  (15WF) approximately 

5% sigma precipitated within 100 h at 950'C. In type 310s stainless steel, sigma phase 
formed more slowly and less precipitated. For example, less than 0.2% formed after lo00 h 

at 8WC (15oo'F). Menard found that the addition of niobium in type 316Cb stainless steel 

shortened the time to precipitate sigma phase.21 

The precipitation of the M U G  carbide is also important to the development of sigma 

phase. Carbide precipitation was found to promote the formation of sigma, since it depletes 

the matrix of carbon that helps to stabilize austenite relative to sigma phase.2123 The TTP 
diagram for the MBQ, carbide in type 310 stainless steel was constructed by Binder, Brown, 
and Franks2 from intergranular comtsion sensitization data, and their diagram is provided in 

Fig. 6. For a steel with 0.028% carbon, the nose of the curve occurs around 750'C in less 

than 0.1 h. The appearance of the carbide also results in embrittlement of the 

type 310 stainless steel. 

Bungart and coworkers19 examined the influence of nitrogen on the stability of steels 

whose compositions bracketed type 310 stainless steel, as shown in Fig 7. They found that 

the solubility of nitrogen diminished with increasing nickel content and decreasing 

temperature. The sigma phase was observed in alloys aged at 750'C and lower, regardless of 
the nitrogen level, but the amount of sigma phase, relative to M23Gr decreased with 

increasing temperatm. Sigma phase was not observed at 850'C and higher, Iegardess of the 
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Fig. 5. lTP curves for sigma phase in 

stainless steel, (b) type 310 stainless steel, and 
(c) type 310 stainless  steel.^ 

three 25Cr-2ONi stainless Steels: (u) type 314 
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nieogen content (either 0.02 or 0.2%). A nitride phase (Cr2N) was observed in alloys 

containing 0.2% nitrogen, and there was some evidence that the amount of sigma phase was 
less at 8WC in the steels with 0.2% nitrogen. 

Yoshikawa and coworkers 18 examined the stability of type 3 lOHCbN stainless steel at 

temperatures in the range of 600 to 8 W C  for times to l0,OOO h. They observed MUG and 

NbCrN precipitation. Precipitates increased with increasing time and temperature, but most 

nitrogen remained in solid solution. They observed that sigma formed when the steel 

contained less than 20% nickel and less than 0.2% nitrogen. They observed the precipitation 

of Cr2N phase when the steel contained more than 22% nickel and 0.25% nitrogen. The 

appearance of either phase produced lower toughness. Hence, the composition range of type 
3 1OHCbN was selected to minimize the quantity of sigma and CrzN phases. 

Ductility and toughness vary significantly in the 250-20Ni stainless steels. 

Generally, the formation of sigma phase reduces room-temperature ductility with modest 

increases in hardness and strength, while the precipitation of carbides and nitrides may 

increase strength significantly with a corresponding decrease in ductility and toughness. Data 

are available in the literature that reveal the effect of high-tempemure exposure on the ductility 

and toughness of type 3 10 stainless steel.21.24-26 The effect of time-tempemture exposure on 
the Charpy keyhole impact toughness of type 310 stainless steel has been summarized by the 

diagram shown in Fig. 8. Here, it may be Seen that very low toughness values are likely at 

temperatures of interest in advanced energy system components after 10,000-h exposures. 

The Charpy V toughness values were around 7 J (5 ft-lbs) for aging l0,OOO h at temperatures 

in the range of 649 to 732'C (1200 to 1350'F) [ref. 271. Cold work prior to aging produced 

values as low as 4 J (ref. 25). Similarly, type 31OCb and type 314 stainless steels suffer 

degradation, as shown in Fig. 9 (ref. 21). Both of these steels embrittled more rapidly than 

type 310 stainless steel, and type 314 produced the lowest toughness at 10,OOO h. Charpy 

keyhole toughness numbers were roughly half those observed for type 310 stainless steel. In 

contrast, the type 310HCbN stainless steel exhibited good toughness after long-time 

exposures to 750'C, as indicated in Fig. 10 (ref. 18). Here, Charpy V toughness values 

exceeded 40 J (- 30 ft-lbs) for times to 10,OOO h and aging temperatures in the range of 
600 to 8WC. It would appear, therefore, that a range of chemistries can be found for which 

modified 250-20Ni stainless steel can maintain acceptable toughness values. 

Room-temperature tensile ductilities diminished in a pattern similar to impact energy 

values. The type 310 stainless steel exhibited elongation values less than 10% for some 

combinations of aging temperatures and times,u927 while type 3 lOHCbN stainless steel 

retained at least 30% tensile ductility for times to 10,000 h at temperatures to 800°C. 

(See Fig. 11.) 
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A more complete understanding of the metallurgical factors that 

contribute to strengthening and embrittlement of modified type 310 stainless 

steel is judged to be a worthy research undertaking. 

3.2 FABRICATION AND JOINING 

As mentioned above, type 310 stainless steel solidifies as austenite, and the absence of 

delta ferrite may cause cracking during the breakdown and hot working of ingots. The steel 

behaves like a high-strength nickel-base alloy, not an iron-base alloy that is at least partly 

ferritic, and for best fabricability requires special attention in regard to melting practice.28 A 

fairly detailed evaluation of the chemistry, melting, and working considerations of high-nickel- 

equivalent steels was undertaken by Dornian and LeBeauP and their findings were 

summarized in previous reports.47 Essentially, a clean steelmaking process is necessary to 

minimize the content of embrittling elements such as lead, bismuth, tin, antimony, and 

arsenic. Following such practice, a high-quality type 310HCbN stainless steel has been 

produced, and it seems likely that other modified type 310 stainless steels could be produced 

without great difficulty. 

In the United Kingdom, both type 310 and type 310Cb stainless steels have been used 

as cladding materials over carbon steels and lean austenitic stainless steels.30 Boiler tubes 

were produced by co-extrusion, and the overall experience has been satisfactory. Kubo 

et al.31 also examined type 310 stainless steel as a corrosion-resistant, CcKxtruded cladding on 
a strong but lean austenitic stainless steel. Thus, current technology can produce eo-extruded 

duplex tubing of type 310 stainless steel (or modified type 310 stainless steel) on ferritic or 

austenitic alloys. A more challenging technology is the production of an iron-aluminide 

cladding on type 310 stainless steel. Here, a highly sulfidation-resistant cladding could 

protect an oxidation-resistant pressure envelop material that could be exposed to temperatures 

exceeding 760'C (1400'F). Hence, the cladding of a 250-20Ni  stainless steel 

with iron aluminide is judged to be a worthy research objective. 

Welding of 25Cr-20Ni stainless steels could involve the resolution of major 

technological problems. As with castings, the steel solidifies from the weld pool with little or 

no ferrite and is susceptible to hot cracking, as illustrated in the diagram (Fig. 12) constructed 

by Kujanpa and coworkers.32 Many types of weldability tests have been developed to assess 

and quantify hot-cracking tendencies in stainless steels, and these are too numerous to be 

covered here. Many of these weldability evaluation methods have been reviewed by Lundin 
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welding of the steel. FiUer metals that they successfully used included alloys 625 and 82. 
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may be clad with an iron aluminide is considered to be a very important 
research objective. 
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3.3 MECHANICAL BEHAVIOR 

Type 310 stainless steel is a relatively high-stacking fault energy stainless steel34 

and does not develop the creep strength of steels containing lower chromium contents. 

Figure 13 compares the strength of type 310 stainless steel to strengths for several other high- 

temperature alloys used in the temperature range of 600 to 815'C (1 112 to 1500°F). Leaner 

(less chromium) stainless steels, such as type 347, type 316, and specialty steels, such as 
253MA@ stainless steel and FtA85H@ stainless steel, are stronger at temperatures around 

800'C (1472'F) but may not be suitable for those advanced energy system components that 

require higher chromium content for corrosion resistance. A further problem is the limitation 

on service temperatures for all these stainless steels. Type 310,31OS, 347, and 316 stainless 

steels are approved for use to 815'C (1500'8 in the ASME Boiler and Pressure Vessel (BPV) 

Code, Sect. I. Type 310HCbN stainless steel is currently approved for use to only 730'C 

(1350'F), and M85H has yet to be approved. Only 253MA has stress levels for 

temperatures above 815'C (1500'F) in the ASME BPV Code. 

ORNL-DWG 92-5099 
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-- Fig. 13. Comparison of stress allowables as a function of 
temperature for several stainless steels. (Data are based on ASME 
Boiler and Pressure Vessel Code, Sect. XI, except for RA85H 
stainless steel.) 
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Potential applications for the steels in advanced fossil energy applications may require 

temperatures as high as 9OO'C (1650'F). Above 815'C (1500'F) the data base for all of the 

stainless steel is quite limited in terms of number of heats and duration of testing. Some 

supplementary testing of type 310 stainless steel was recently undertaken to aid in the 

re-examination of the allowable smsses in the ASME (BPV) M e .  Additional data to 870'C 
(1600') w m  produced.35 Existing strength data for type 310 stainless steel at temperatures 

above 815'C (1500'F) indicate a high degree of variability, and some data indicate that the 

alloy is quite weak relative to heat-resisting steels such as 253MA and RA85H stainless steels. 

A comparison of the rupture strength for l0,OOO h versus temperature is shown in Fig. 14 for 

several steels. These data were obtained from the compilation of Simmons and Van Echo,% 

vendors,37-39 and the literature.@ Included is an extrapolation of data for type 310HCbN 

stainless steel that was based on a stress versus Larson-Miller parameter constructed by 

Sumitom Steel29 The strength of type 310HCbN stainless steel appears to be better than the 
other steels to 870'C, and the steel may be slightly stronger than 253MA at 900°C. More data 
are needed to establish the improved strength and ductility of modified WCr-2ONi steels for 

long times at the higher temperatures. The evaluation of the strength of modified 
type 310 stainless steel, type 310HCbN, and MA253 for service in the range 

of 800 to 900°C (1472 to 1650°F) is judged to be a worthy research objective. 

3.4 CORROSION BEHAVIOR 

A major effort has gone into a search for alloys that will resist corrosion in the hostile 

environments expected in advanced fossil energy systems.8 For fluidized bed combustion 

alone, over 30 alloys have been examined by Natesan and Podolski.~ Similarly, a large 

number of alloys have been examined for use in PC combustion by Blough and Beer41 and 
Van Wed& and for use in gasification applications by Natesan and coworkers.43 

As temperames increase in a coal ash environment, increasing chromium is needed for 

corrosion protection. The trend observed by Van Weelea is indicated in Fig. 15, which 

shows the thickness loss rate versus alloy chromium content for alloys ranging from nil to 

48% chromium. Two levels of sulfate ash were examined along with two levels of 
sulfur dioxide introduced in the combustion gas. Generally, the corrosion rate diminished 

rapidly with increasing chromium, but near 25% the rate tended to level off. Thus, an alloy 

near 25% chromium could be optimum. 
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In sulfidizing atmospheres with no ash, the cobalt-bearing alloys tend to be superior, 
and high-nickel alloys perform poorly. Typical results produced by Haynes are provided in 

Fig. 16 (ref. 44). Here, the attack (mildyear) is shown on the abscissa for a number of 

alloys. Alloys at the bottom contain cobalt, while those at the top are high in nickel. 

Type 310 stainless steel falls in the middle. Some additional corrosion resistance in type 310 
stainless steel can be produced by the addition of zirconium or niobium,42 and further studies 

would be of interest. The examination of bare and clad modified type 310 
stainless steel in sulfidizing atmospheres is judged to be a worthy research 
undertaking. 

4. OUTLINE OF AN EVALUATION PLAN 

The plan below is designed to address several of the issues that must be favorably 

resolved in developing advanced fossil energy concepts for commercialization in the early 
21st century. The alloy performance criteria indicated in Sect. 2 of this report will be 

addressed by the evaluation plan. Focus is narrow in regard to the material selection since it 

only concerns modified type 310 stainless steel, but this n m w  focus will permit a better 

control of cost and time schedule. The plan consists of thrusts in the categories indicated 
above, narnely fabrication and joining, microstructural optimization, mechanical behaviar, and 

corrosion behavior. However, additional activities involving codes and standards 

development must be added later to ensure that the material can be commercially available 

when needed. 

4.1 FABRICATION AND JOINKNG 

The f i t  activity to be undertaken will be the procurement of materials. It is expected 

that quantities of type 310 and type 31OHCbN stainless steels will be obtained from 
commercial sources. While these materials are being procured, several laboratory heats of 

modified type 310 stainless steel will be produced. At least two rypes of elemental additions 

will be considered in the laboratory heats: one element (a high-melting-point element) to 

produce solid solution hardening at temperatures above 760'C (14OO'r;) and one element 

(a rare earth) to improve cyclic oxidation resistance. The fabricability will be examined in 

small laboratory heats to establish the hot- and cold-rolling characteristics. Thermal- 

mechanical processing studies will identify the schedules needed to produce optimum grain 
size for strength and corrosion resistance. 
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All materials will be rolled in sheets and provided to a university subcontractor to 

examine the weldability by means of the varestraint test Tendencies toward hot cracking in 

the weld and HAZ will be established for both commercial and developmental steels. 

Butt welds will be made in restrained tubes or plates using commercially available filler 

metals. Working with industrial contractors, welding consumables will be obtained to more 

Type 310 stainless steel and promising modified type 310 stainless steels will be 
overlay clad with iron aluminide by an industrial subcontractor. If the cladding of type 3 10 

stainless steel is successful, techniques for butt welding composite tubes and plates will be 

examined under a university subcontm~. 
Flare tests, side bend tests, tube bend tests, and other techniques for evaluating the 

inte@ty of weldments and claddingbase metal interface will be undertaken by university and 

industrial subcontractors. 

Depending on the results of the research, a decision will be made as to the potential of 

the developmental alloys relative to commercially available type 3 lOHCbN stainless steel. If 

the developmental alloys are sufficiently attractive, larger heats will be procured, working in 
collaboration with industrial sponson, and further development will be undertaken. 

closely match base metal Perfonmance criteria. 

4.2 METALLURGICAL STABILITY 

Specimens of the candidare alloys and their weldments will be aged at temperatures in 

the range of 650 to 9OO'C for times to l0,OOO h. Mimsrructuraf analysis, hardness, tensile, 

and Charpy V impact testing of the coupons will be performed to examine the influence of 

phase instability on ductility. A university will be subcontracted to perform detailed 

characterization of microstrucnuts, and TI'P diagrams will be cons- for both commercial 
and developmental steels. 

Aging studies will be performed to examine the interface between the cladding and the 

base metal for diffusion interactions and compatibility resulting from long times at high 

temperatures. 

4.3 CORROSION 

Coupons of commercial and developmental steels will be exposed to the various 
environments of interest in advanced fossil energy components. These will include, but not 

be limited to, PC combustion, PFBC, and gasification. Some of these exposures will be 

laboratory simulations and will be undertaken by participants currently involved in the 
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AR&TD Materials Program. Other exposures will be in operating systems such as the Tidd 

PFBC hot-gas cleanup vessel and the Tennessee Valley Authority Gallatin PC-fired boiler. 

Indwmal collaboration will be sought for some of this testing. Other work will be undertaken 

through subcontracts. 

Clad and unclad specimens will be evaluated for times up to 10,OOO h and at 

temperatures that encompass the anticipated service temperatures for the advanced energy 

systems identified in Table 1. Corrosion rates will be determined from weight loss (or gain), 

thickness loss, and metallographic measurements of the penetration of oxides and sulfides. 

The influence of stress on corrosion rates will be examined in laboratory tests. The influence 

of environment on creep and fatigue-crack growth will be examined. 

4.4 MECHANICAL BEHAVIOR 

Tensile and creep testing of commercially available type 310HCbN steel will be 

extended to 95O'C (1740'F). Similar testing will be undertaken if a promising developmental 
steel is found. Mechanical testing will include an examination of strain-rate effects, cyclic 

effects, fatigue, creep fatigue, thermal fatigue, and dimensional stability under varying 

temperatures. Times will extend to beyond 10,OOO h. 

Compatibility of cladding and base metal will be examined under mechanical loadings, 

such as those produced by fatigue, thermal cycling, and restrained thermal cycling. 

Weldment strength will be determined in tensile, stress-rupture, and fatigue loadings. 

Included will be stress-rupture testing of full-size tubing and longitudinally welded plates. 

Notched-bar tensile tests and creep-crack growth testing of weldments will be included. 

Charpy V impact tests will be perfmd 
Working with industry and consultants, the principles of a design methodology will be 

outlined for components operating in the temperature range of 760 to 9OO'C 

(1400 to 1650'C). The materials data requirements will be specified. Requirements for the 

development of an ASME code case permitting the use of a candidate material will be 

identified. Included here will be the need for any structures or basic component testing. The 
high-temperature extension of ASME Code Case N-47 will form a basis for the development 

of rules for design.45 

Working with industry, the collection of engineering design data for a candidate steel 
will begin. If a new steel is selected, an ASTM specification will be obtained. 
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5. SUMMARY 

This report briefly reviews the fabricability, weldability, metallurgical stability, high- 

temperature strength, and corrosion resistance of type 310 stainless steel and modifcations of 

type 3 10 stainless steel. A nitrogen-niobium Mid steel, namely type 3 lOHCbN stainless 
steel, shows potential for use in advanced energy system components that may operate in the 

temperature range of 760 to W C .  However, a number of issues need to be resolved befon: 

such a steel can be used for pressure containment. An experimental program is outlined that 

would address these issues. 
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