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ABSTRACT 

Given two subsets 5’1 and Sz (not necessarily finite) of Xd separable by a Boolcan 
combination of N halfspaces, we consider the problem of learning (in the sense of 
Valiant [23]) the separation function from a finite set of examples, i.e. we produce 
with high probability a function close to the actual separating function. Our solution 
consists of a system of N pcrceptrons and a single consolidator which combines the 
outputs of the individual perceptrons. We show that an o$-line version of this 
problem, where the examples are given in a batch, can be solved in time polynomial 
in the number of examples. We also provide an on-line learning algorithm that 
incrementally solves the problem by suitably training a system of N perceptrons 
much in the spirit of the classical perceptron learning algorithm. This solution 
constitutes an example of a composite system of N learners capable of accomplishing 
a task that is not achievable by a single learner, for a single perceptron is incapable 
of separating sets that are not linearly separable. 

Keywords and Phrases: computation learnability, N-learners problem, N- 
polyhedral separability, perceptron. 
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1. INTRODUCTION 

Two sets SI C X d  and S2 ?Rd (not necessarily finite) are said to be AT- 
polyhedral separable if there exists a Boolean combination of N half-spaces of %’ 
that separates SI and S2 1141. More formally, SI and S2 are N-polyhedral sepurable 
if there exist N hyperplanes H j  = { z  : (zj) z = xi}, (for z , z j  E %”, xi E 3, 
j = 1 ,2 , .  . . , N )  that separate SI and S2 through a Boolean formula as follows. 
Associate with each hyperplane H j  a Boolean variable [ j :  for any z E X d  the variable 
[j is true if (xj) z > xi and false if ( d )  z < xi. A truth value is not defined for 
points lying on the hyperplanes. A Boolean formula $ = 4(c1, 5 2 , .  . . , [ N )  separates 
the sets SI and S2 if 11 is true at every point of S1 and false at every point of Sp. 
Thus, 1c, defines a map f +  : Ed w (0, l}, called the separating func t ion  such that 
for x, y E 9‘ 

. T  

T T 

(a) f+(x) = f$(y) if both z and y belong to either SI or S2, and 

(b) f+(x) # f+(y) if one of x and y belongs to S I  and the other belongs to Sz. 

In this paper, we consider the problem of learning an “approximation” to f4()  
using a finite number of points from SI U S2 produced according to an unknown 
probability distribution Pslus2. Also, in the case where SI and S2 are finite, we 
are interested in an incremental algorithm along the lines of the classical perceptron 
learning algorithm [16]. Meggido [15] considers the cases where SI and Sz are finite; 
it is shown that for a constant N ,  the separating function $ can be computed in 
time polynomial in IS1 I + IS2 1, but, this problem is NP-hard for arbitrary values 
of N .  The populax case of Iinear-separability of SI and S2 (i.e. SI and S2 are 
separable by a single hyperplane) is a special case of N-polyhedral separability 
(when N = 1). In this case, if additionally SI and S;! are finite, the separating 
hyperplane can be incrementally learned by the well-known classical perceptron 
fixed increment  learning procedure ([16], [18], and [221). Also, the separating plane 
can be computed in a batch mode in time polynomial in IS11 + by using linear 
programming methods [13]. Several variants of this problem can be solved by posing 
them as quadratic programming problems as shown by Vapnik [24]. 

For any set A C Rd, we define an indicator func t ion ,  I A  : X d  H (0 , l )  such that 
for x E $Id ,  we have: IA(s) == 1 if z E A and IA(x) = 0 if x $ A.  A pair of the form 
< x, i >, for z E ?I?‘, and Is,.(x) = 1 for some i = 1,2 is called an esample and a 
sequence of l examples is called an l-sample. We consider the problem of learning 
the separation function f+ from an I-sample of S1 U Sa, produced according to 
PsIus2 such that each example is independent. We consider two formulations of 
this problem: on-line and 08-line.  In the former, the examples are produced in a 
sequence and we are required to update the separation function (if needed) after 
every example. In spirit, we are interested in a procedure analogous to the classical 
perceptron learning procedure [16]. Similar to the case of classical perceptrons, we 
assume that Sl and S2 are both finite in the on-line case. In the u$-line formulation, 
we are interested in learning the separation function, in sense of Valiant I231 which 
has received considerable attention in recent years (see Blumer et a1 [SI, Haussler 
[lo], Littlestone [14], Natarajan [17] for some of works on this topic). Under this 
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paradigm of computational learnabikty, given a sufficiently large sample, we are 
required to produce a close approximation to f+ with high probability, irrespective 
of the probability distribution PsIus2 used to produce the sample. 

Our solutions to both the formulations consist of “suitably” employing a sys- 
tem of N perceptrons and a single consolidator. For the on-line version, we show 
a convergence theorem which is a generalization of the classical perceptron con- 
vergence theorem; each leasning step (in response to an example) will take time 
polynomial in the size of SI U S,. Note that the conventional perceptron can only 
separate two sets that are linearly-separable [16], but incapable of separating sets 
that are N-polyhedral separable. Here our contribution is two-fold: (a) an algo- 
rithm to separate classes inseparable by a single perceptron, and (b) a generalization 
of the conventional perceptron learning algorithm to two-layer perceptrons for this 
particular case. 

Coming to the machine learning aspects, we know of no off-line method that 
learns to separate SI and S2 by a Boolean combination of N half-spaces; in our 
case SI and S2 need not be finite (hence we cannot use the algorithm of Meggido 
[15]). The closest work to the present problem is that of learning a union of half 
spaces by Baum [3]; this method hinges on “cornering” the given examples by using 
a suitable convex hull, and it is unclear if this method can be directly applied to 
the problem of “separating” sets. We show that we can solve the off-line problem 
by using N perceptrons and a Boolean combination function on the output of the 
perceptrons. This work follows the spirit of the N-learners problem that deals with 
combining the outputs of N individual learners to produce results “better” than 
those of any individual learner [20]. 

The organization of this paper is as follows: We show the basic learnability result 
in section 2. The off-line version is solved in Section 3, and the on-line version is 
solved in Section 4. 



2. LEARNABILITY PROBLEM 

Let X be a set and C 5 2x denote a concept class. Then H C 2 y ,  for Y C X ,  
is called a hypotheses class. Let Px be a probability distribution defined on X. We 
restrict our attention to the case of X C !Rd. We say that the concept class C is 
learnable by H if for every Px and any concept f E C, there is some positive integer 
I < 00 suchthat givenasample <;cl,If(a:1)>,<3:2,If(52)>, ..., < x ~ , I f ( z l ) >  and 
E and 6, 0 < e , b  < 1, an approximation h E H can be produced such that 

Prob [ p ( f A h )  5 € 1  2 1 - 6 
where 

f A h  = (f - h )  U ( h  - f) 

and 

I J ( Z ) # I & 7 ( Z )  

Note that p ( f A h )  gives the probability that a randomly chosen 3: E X precisely 
belongs to f or h but not to both. 
The above condition is often also expressed as: 

Prob [ p ( f A h )  > E ]  5 6 . 
We refer to any of the above two conditions as the (e,b)-condition. We say 

that C is polynomially Zearnable by H if the number of examples needed to ensure 
the (~,b)-condition is a polynomial in 1/e and 1/S. Several variants of this basic 
problem have been studied by a number of researchers (see [l-4,10,14,17,23,24] for 
some important works). 

One of the important considerations for ensuring learnability is to make H 
satisfy certain conditions. A family H C 2x shatters a set X i  = ( ~ 1 ~ x 2 , .  . . , xi} 
C X ,  if { h  n X l ( h  f H) = 2x', i.e. for every subset of X I  there exists h E H 
that contains this subset but not its complement. The Vapnik and Chcrvonenkis 
d imens ion  of H ,  denoted by V C ( H )  is the maximum IXtl such that every subset of 
Xi is shattered by H .  The V C ( )  plays a very critical role in learnability in that if 
C 5 H ,  C is learnable if and only if V C ( H )  < cx, for several important formulations 
(see [6] for details). 

Let the hypothesis set H denote the set of possible Boolean combinations of at 
most N halfspaces. The VC-dimension of the set of all hyperplanes in ?Rd is d + 1 
[6] .  Let A be a concept class with a finite VC-dimension. It is well known that the 
VC dimension of the set of concepts obtained by taking the Boolean combinations 
N elements from A will also be finite [SI. 

We derive the VC-dimension of H based on a formula for the number of k- 
dimensional faces (k-faces) of an arrangement formed by N hyperplanes in !Rd in 
Edelsbrunner [9] (see also [7]). 
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4 LEARNABILITY PROBLEM 

Lemma 1. The VC-dimension of the set of all Boolean combinations of N hyper- 

planes of dimensionality d is 

Proof: The number of k-faces formed by N hyperplanes in !Rd is found in [9] to be 

d 

i=O 
(r) . 

Imagine the d-faces, i.e. d-dimensional cells, formed by the hyperplanes; each 
cell corresponds to a unique labeling by the hyperplanes, i.e. the Boolean vector 
([I, (2,., . , [ p ~ )  will yield the same value for each point in a cell. A set of points 
placed one to each cell will be shattered by a suitable Boolean function on the 
cells. Thus the maximum size of the set that can be shattered by H is f j (N)  = 

QED 
i=O i = O  

It has been shown that, if C = H ,  any hypothesis h E H C 2xd that is consistent 
with a sample of sufficiently large size, will be a close predictor of f with a high 
probability [SI. It has also been shown that given max (: log 2 gdlog F) examples, 
any consistent hypothesis h E H will satisfy the (E,&)-condition, where d is the 
VC-dimension of C [6]. Using Lemma 1 and Theorem 2.1 of [6 ] ,  we deduce the 
following theorem which establishes the existence of a learning algorithm for H .  

Theorem 1. Given m a  ($ log $, 8 (r) log y) examples of f E C, any h E 

H = C consistent with the examples will satisfy Prob [ p(hAf) > E ]  < & for m y  
given e and 6, for 0 < E , &  < 1. 

Based on the above theorem and the results of Blumer et al [6], which ensure 
the (E,&)-condition is satisfied, it suffices to pick m y  h E H = C that correctly 
classifies all the examples of the given sample. Now the computational feasibility 
of this method depends on how fast a consistent hypothesis can be computed. In 
the next section, we address this issue. 

s., f 

d 

i=O 



3. OFF-LINE VERSION 

We first discuss the special case of learning a single separating plane; we \vi11 
bring together several existing results on this problem to set up for the discussion 
of the general case. In this section, for ease of presentation we let S1 and S2 denote 
finite sets of examples produced according to the underlying distribution. 

3.1 LEARNING A SINGLE SEPARATING PLANE 

We first discuss two simple cases: (a) SI and S2 are linearly separable; and (b) 
H is a set of all half-spaces and SI and S2 are not linearly-separable. 

For case (a), since the VC-dimension of the set of all hyperplanes in 3' is d + 1 
[6] ,  given max (1 log $, ! (d  + 1) log 9) examples, we can produce a hyperplane that 
separates the given set of examples which ensures the (c,b)-condition (Blumer et 
a1 [6]). The time complexity of producing such a hypothesis is polynomial in the 
number of examples. This is shown by Megiddo [15], who reduces this problem 
to that of linear programming which can be solved in the polynomial time using 
the algorithms of Karmarkar [12] or Khachiyan [13]. More precisely, let h be the 
required separating hyperplane; each example defines a linear inequality, i.e. , for 
x E SI and y E S2, we have xTh > 0 and yTh < 0 by augmenting h with an 
additional last component. This problem can then be solved in polynomial time 
using the ellipsoid algorithm I131 (see [25] for more general applications of this 
algorithm). 

We can obtain another, rather obvious, algorithm to compute the separating 
plane of 5'1 and 5'2 as follows: 

(1) Compute the convex hulls of SI and Sz, denoted by Conv(S1) and Conv(Sz) 

(2) Compute the closest pair ( p , h )  such that p E Conv(S1) U Conv(S2) and h 

(3) Compute a hyperplane parallel to h and halfway between p and h. 

respectively; 

is a d-plane of the convex hull to which p does not belong, 

Note that the hyperplane h in step (2) supports the corresponding convex hull on 
one side, and contains on the other side the second convex hull; thus, the hyperplane 
computed in step (3) cas1 be imagined to be obtained by translating h towards p 
(in a direction normal to h) .  Let IS11 = nl and IS21 = n2 and n = n1 + n2. The 
complexity of step (1) is Q(n1ogn + nr(d+1)/21) in time and Q(nrdi21) in space 
using the algorithm of Edelsbrunner [9] (see also [ll]). Since each convex hull has 
O(nLd/21+1) d-faces and O(n)  points, step (2) can be carried out using a brute force 
method in O(nr(d+1)/21) time (this step can be solved in lesser time using a variant 
of the algorithm of Bentley and Shamos [5 ] ) .  The third step can be solved in O(d) 
time, Thus we have the following theorem. 

Theorem 2.  The separating plane of two linearly separable sets with a total of n 
points in Sd citn be computed in O(n1ogn + time and Q(nrd/21) space. 

Moving to case (b), we find that a solution cannot be found that directly. In this 
case there will not, in general, be a hypothesis in H that is consistent with all the 
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examples. We, therefore, need to use the more general formulation of Vapnik [24], 
which requires us to choose a hypothesis with the minimum number of misclassified 
examples. We then need max (2 In 5 ,  ?( d + 1) In T) examples to ensure the ( E ,  6) 
bound. See Appendix A3 of B l u e r  [6] for a detailed derivation of this bound. Now 
the computational feasibility of this method depends on our ability to compute the 
separating hyperplane that minimizes the number of errors. 

We now present a method originally proposed by Vapnik [24] (Addendum I) 
whose complexity was not explicitly stated. Several problems dealing with comput- 
ing hyperplanes that separate two sets were proposed in [24]. All these problems are 
reduced to the quadratic programming problem. The general form of the quadratic 
programmin problem deals with minimizing z T Q x ,  subject to constraints Ax 5 b, 
where x E % , b is an integer vector, and Q and A are integer matrices. This prob- 
lem is NP-hard in general but can be solved in polynomial time in the special case 
where Q is positive definite [19, Problem 16, p. 3791; the polynomial time algorithm 
is based on the ellipsoid method for linear programming. This problem is reduced 
to at most n instances of a quadratic programming problem [24], and thus admits 
a polynomial time solution. 

% 

3.2 GENERAL CASE 

Now consider the case where S1 and Sz are N-polyhedral separable, and H is 
the set of Boolean combinations of N half-spaces. Based on Theorem 1, we need to 
ensure that the required hypothesis can be computed in polynomial time. Earlier 
Megiddo [15] presented a polynomial time algorithm for this problem; this algorithm 
runs in at least O ( ~ Z ~ ( ~ + ' ) )  time. We present an alterative algorithm that runs in 
o ( ~  r ( d f 1 ) / 2 1 + 2 )  time. 

Proposition 1. 1151 The hyperplanes H I ,  Ha, ..., H N  separate the sets SI and SZ 
in the sense of N-polyhedra2 separability through some Boolean formula if and only 
if for every pair of points, p E SI and q E S2 there exists an 1 (1 5 1 5 N) such that 
p and q lie on different sides of the hyperplane H I .  

Proposition 2. 1151 Suppose A and B are sets ofpoints in Rd with integer coordi- 
nates, and suppose there exists a hyperplane H = { z  E R Iy z = yo} that separates 
A from B. Assuming yTa < yo for a E A. Under these conditions, there exist a 
hyperplane H = { z  E R Iz x = zo}, a positive rational number r ,  and integers 
j ~ , j ~  ( j ~ , j ~  2 1, 

We now present propositions shown by Megiddo [15]. 

d T  

d T  

j~ + j ,  2 d + 1) such that: 

(i) For every u E A,  xTu 5 xo - r .  

(ii) For every b E B ,  s T b  2 xo -t- I". 
(iii) For at least j, points a E A,  xTa = 50 - r ,  and for at least j ,  points 

b E B , x T b =  xo f r .  

We briefly describe the algorithm of Megiddo [ 151. 
If two sets 5'1 and S2 are separable with N hyperplanes then there exists N 

pairs of complementary subsets A;, Bi 2 S1 U S2 and N hyperplanes H; such that 
Hi separates A; from Bi. From proposition 2, there exist such hyperplanes that 
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satisfy equalities stated there and, moreover, the separating hyperplanes can be 
chosen from a finite set. Each of the hyperplanes is determined by a set of at most 
d + 1 points [15]. All such hyperplanes are computed; there are at most O(nd+') 
such planes, and computation of each plane can be done in polynomial time. Each 
N combination of such planes is checked to see if it separates 5'1 and Sz; there are 
O( nN(d+l))  such combinations and the separability property of each combination 
can be checked in polynomial time. 

Let O(nP) be the time complexity of the linear programming problem. The cost 
of computing the required hyperplanes is given by O(nd+P+'). Given N hyperplanes, 
its N-polyhedral separability c m  be checked in O ( n 2 N )  time using the proposition 
1. Thus the complexity of the above algorithm is O(nd+p+' + = 
O(IVYZ~(~+ ' )+~) ,  by treating d as a constant. We now present an algorithm that 
has a smaller exponent for n. Our algorithm works as follows: 

(a) Compute the Voronoi diagram of the n points of SI U Sz; 
(b) Compute the d-faces of the Voronoi diagram that are shared by points from 

both SI and S,. These faces partition X d  such that each partition contains 
points from only Sl or only from S2- 

(c) Compute the convex hull of points of each of the partition of (b). 

(i) For each pair of non-intersecting hulls compute a separating hyperplanes as 
described in Section 3.1. 

(ii) For each pair of intersecting hulls compute a set of hyperplanes correspond- 
ing to each 0-face in step (a). Note that each set of this 0-face is generated 
by d + 1 points from S1 U S2 with at least one point from each of SI and Sz. 

(d) For every set of N hyperplanes chosen from step (c), check if this set correctly 
separates SI and S2. 

The steps (a) and (b) are computed using the algorithm of Edelsbrunner [9] 
that runs in O(n1ogn) time if d 5 2 and in O ( Y Z ~ ( ~ + ' ) / ~ ~ )  time for d > - 2; For step 
( c ) ,  we note that there are O(nrdj21) 0-faces in the Voronoi diagram. It is direct 
to show that the Complexity of this step is O(nr(d+1)/21). By noting that there will 
be a set of size O(nr(d+1)/21) from which N hyperplanes are chosen in step (d), we 
have the complexity of this step given by O ( r ~ ~ r ( ~ + l ) / ~ l + ' ) .  

Theorem 3. The separating function for two N-polyhedral separable half-spaces 
can be computed in ~ ( n  r (d+1) /21  ) time. 

Thus we have the following theorem. 



4. ON-LINE VERSION 

Now we address the problem of training the N perceptrons as the examples 
come in, i.e. on-line, much in the spirit of perceptron learning procedure of Nilsson 
[MI. In this section we present an analogous learning procedure for the case of 
N-per cep t rons . 

4.1 MULTI-PERCEPTRON THEOREM 
Let the training sequence be denoted by Sx : xl ,  2 2 ,  ... such that x; is specified 

to be either in SI or in S2. Each x E Si is infinitely repeated in Sx (as assumed in 
the case of classical perceptrons formulation [HI). We initiate N-perceptrons with 
arbitrary weights. Let W: denote the weight of the ith perceptron after the kth 
step, let Hf : 8' I+ (0 , l )  denote classification function of the ith perceptron at 
kth step. i.e., H:((.> = sign ((W:)>'x) for z E X', where sign : 8 I-+ ( 0 , l )  such 
that sign(a) = 1 if a > 0 and sign(a) = 0 if a < 0. Recall that N hyperplanes (the 
classification functions of perceptrons) partition iRd into cells such that in each cell 
Hi" is invariant at all points of the cell. 

The outline of the training procedure is as follows: Given x k  E SI (the case 
xk E 5'2 is similar), we obtain the Boolean vector 

P " X >  = (~lk(.), H,k(z), * * - 7 fim) 

of the outputs of the N-perceptrons. 

have the following cases: 
Recall that each Boolean vector of the form p k ( x )  defines a cell in @. Then we 

(a) For all y f SZ that have been encountered in the sample, p k ( x k )  # ,Bk(y); 
for each y E S2, there exists at least one hyperplane that yields a different 
component of pk() for y and sk; 

(b) There exists y E S2 encountered in the training sample such that pk(y)  = 
p k ( s k ) ,  i.e. every perceptron is unable to distinguish between y and zk. 

We then have the following learning algorithm: 

For case (a) W;+' = W: for i = 1,2,. . . , N .  

For case (b), we have two subcases for W:, one for each Hf  that corresponds 
to the cell containing both xi and y: 

where c is a constant. 
We now establish that the above learning procedure converges in that there 

exist some ko < 00 such that WkO = Wrko+l = Wk0+2 = . a ., and for z E S1 and 
y E 5'2, we have , B k ( x )  # Pk(y) for k 2 Ico. 

8 
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Theorem 4. The separating function for two finite N-polyhedral separable sets 
S1 and Sz computed by the incremental algorithm converges to  the actual one in a 
finite number of steps; each step has a complexity polynomial in [SI U S‘Z I. 

Proof: We show that the learning problem for N-polyhedral separability is 
equivalent to that of linear containment in a higher dimensional space. We say 
that a set S E 32’ is linearly contained if there exists a hyperplane H such that for 
every x E S, we have H T x  > 0. It is direct to see that if SI and S2 are linearly 
separable, then we can augment them with a last component such that there exists 
a hyperplane H such that H T x l  > 0 for all x1 E SI, and WTx2 < 0 for all 5 2  E Sz. 
Let -S = { - Z ~ X  E S } .  If SI and S2 are linearly separable then SI U -Sz is linearly 
contained. 

Now consider that S1 and Sz are N-polyhedral separable. S1 (S2) can be parti- 
tioned into N blocks AI, A2, . . . , AN (B1, Ba, . . . , B N )  such that every pair Ai and 
Bj is linearly separable. Moreover the elements of SI and SZ can be distributed 
into cells formed by the hyperplanes HI, Ha,.  . . , H N  such that each cell contains 
only elements of 5’1, or only elements of Sz, or no elements from S1 U S2 . We now 
generate a set z c WVfj(N), 

such that 2 is linearly contained in SfZdNfi(N). 
For each x E SI7 we generate vectors of the form z E Z as follows: Recall 

that the N hyperplanes partition 32’ into f j ( N )  cells. Imagine that z E 2 as 
juxtaposition of vectors of size Nd for each cell; each cell C is represented by a 
vector C, of size Nd such that the first d components correspond to HI and form 
lSt block; next d components correspond to H2, and form Znd block; and, so on. 
Consider the cell C in which X k  is contained. The N blocks of cell C correspond to 
each of H,. The vector z& corresponding to Hi is formed by storing xk or -zk in 
the zth  block of C,. Corresponding to H 3 ,  we store xk if ( H j ) T x k  > 0 and store --3c 

if (Hj)Tzk < 0. We store 0’s in all other components components of z .  We repeat 
the sitme process for x E S2. 

Now SI and Sz are N-polyhedral separable if and only if 2 obtained as above is 
polyhedrally contained such that the plane containing t is obtainted by juxtaposing 
an (Nd)-vector f f ( N )  times. To see this, consider that S1 and S2 are N-polyhedral 
separable, and H I ,  Hz, . . . H N  be the corresponding separating planes. Then con- 
sider the vector i E RdNfi(Nf formed by concatenating the sequence of separating 
planes for each cell, i.e. i is concatenation of < H I ,  H z ,  . . . , H N  > for fj(lV) times. 
It is clear that this plane will contain all the vectors of 2. On the other hand, the 
required plane containing 2 c m  be decomposed into suitable parts to obtain the 
separating surfaces for 5’1 and S2. 

The proof is complete by noting that the classical perceptron learning algo- 
rithm of 2 exactly corresponds to the above proposed learning algorithm for N -  
perceptrons. &ED. 



5 .  CONCLUSIONS 

Given two subsets SI and S, (not necessarily finite) of XFz" separable by a Boolean 
combination of N halfspaces, we consider the problem of learning (in the sense of 
Valiant) the separation function from a set of finite number of examples, i.e. we 
produce with high probability a function close to the actual separating function. 
Our solution consists of a system of N perceptrons and a single consolidator which 
combines the outputs of the individual perceptrons. We show that an off-line ver- 
sion of this problem, where the examples are given in a batch, can be solved in 
polynomial time. We also provide an on-line learning algorithm that incrementally 
solves the problem by suitably training a system of perceptrons in the spirit of clas- 
sical perceptron learning algorithm. Our solutions to the above problems constitute 
examples of a system of N-learners (discussed in [21]) capable of accomplishing a 
task that is not achievable by a single learner, for a single perceptron is incapable 
of separating sets that are not linearly separable. 
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