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MATERIALS CORROSION IN AMMONIA/3OLID 
HEAT PUMP WORKING MEiDIA* 

D. F. Wilson, M. Howell, and J. H. DeVan 

Salt/ammonia complexes will undergo thermal cycles during use as working media for 
heat pumps. The interaction between container materials and complexes under thermal 
cyclic conditions was assessed to screen possible containment materials. Aluminum alloys 
3003, 1100, and 6063 and carbon steel A214 were tested against possible heat pump 
working media SrCl,/”,, CaBr2/NH3, and CaCl,/”,. None of the containment 
materials showed susceptibility to stress corrosion cracking. While all the materials 
demonstrated excellent general corrosion resistance to SrC1@IH3, only A214 displayed 
good general corrosion resistance to CaClflH,. The complex CaBrflH, was found to 
be subject to thermal cyclic instability and should not be used as a heat pump working 
medium. 

INTRODUCIlON 

Coordination complexes, oE use as heat pump working media, are formed from 

thermochemical reactions between a solid metai inorganic salt (adsorbent) and a refrigerant gas 

(adsorbate). The overall process can be written as: 

The adsorption (formation of the complex) process is an exothermic reaction, and the desorption 

process is an endothermic one. The proper cyclic combination of temperature and pressure 

differentials, and heat fluxes to drivc the complexhg reaction reversibly, allows for waste heat 

recovery or useful refrigeration. The operation of salt/gas systems with vapor pressures, 

*Research sponsored by the U.S. Department of Energy, Assistant Secretary for 
Conservation and Renewable Energy, Office of Industrial Technologies, Industrial Energy 
Efficiency Division, under contract DE-ACX)5-840R21400 with Martin Marietta Energy 
Sys tems, Inc. 
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independent of the gas concentration over wide ranges of gas concentrations,l allows for high 

temperature lifts and coefficient of performance in heat pumps. The performance oE an actual 

system i s  dependent not only on the surface sorption reaction, but also on the quantity of the salt 

that has complexed. 

Rocky Research Corporation is in the process of demonstrating the effectiveness of 

complex salt/ammonia systems for use as industrial heat pumps. In order to better project the 

cost and lifetime of the heat pump system, the compatibility of the proposed construction 

materials with the preferrcd complex salts/ammonia systems must be demonstrated. Rocky 

Research Corporation has selected three complexes (SrCI,/”,, CaBrflH,, and CaCl,/”,) and 

four materials of construction (aluminum alloys 3003, 1100, and 6063 and carbon stccl A214). 

Corrosion and stress corrosion testing were performed at the Oak Ridge National Laboratory to 

assess materials compatibility. 

rn NT 

‘The experimcntal equipment is shown in Fig. 1. Each cell, consisting of two interconnected 

stecl vesscls, allowed for the charging and discharging of the ammonia gas from one vessel into 

anothcr as the temperatures of the two vessels were cycled out of phase. The cells, as valved, 

allowed for thc addition of ammonia gas and venting for the release of excessive pressure. The  

steel vcssels were surrounded by clam-shell heaters and furnished with fans for forced cooling 

from below. Associated temperature control, over-temperature, and measuring thermocouples 

are also displayed in Fig. 1. Metallic shields, which are not shown, enclosed the heaters and €am. 

The heaters and fans were activated and deactivated via programmable controllers. As 

instrurncnted, the system allowed for continuous monitoring and recording of temperatures and 

prescurcs of four test cells (Fig. 2). 

Specimens 

The materials tested were aluminum alloys 3003, 1100, and 6063 and carbon steel A214 

Typical compositions of these materials are shown in Table 1. C-ring* test specimens were Inadc 

by Metal Samples Company Incorporated P from materials they had sourced. 

. .. .. ... . 
“Specimen design conforms to American Society for Testing Materials (ASTM) standard 

‘Metal Samples Company Incorporated, Munford, AL 36368. 

rcxornmended practices as defined in AS’lM G 38-73. 
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Fig. 2. Test system showing four cells and associated control, measuring, and recording 
devices. 
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Table 1. Nominal chemical composition (wt %) 
of the materials tested 

Materialsa 
~ ~~ 

Element A 3 0 0 3  Al 1100 A l a 3  Steel A214 

Si 
Fe 
c u  
Mn 
Z n  

Cr 
Ti 
C 
P 
S 
AI 
Others 

Mg 

0.6 max 0.95 max 0.60 to 0.20 
0.7 max 0.35 max Remainder 
0.20 to  0.05 0.20 to 0.05 0.10 max 
1.5 to  1.0 0.05 0.10 rnax 0.420 
0.10 0.10 0.10 max 

0.9 to 0.45 
0.10 max 
0.10 rnax 

0.090 
0.005 
0.006 

Remainder Remainder Remainder 
0.15 rnax 0.15 max 0.15 max 

Source: Metals Samples Company Incorporated. a 

Procedures 

A stainless steel bolt fitted with ceramic insulators was inserted through the holes of the 

C-ring and tightened such that the outer diameter of the ring was reduced by 1.3 mm (0.050 in.). 

This procedure ensured that the material opposite the opening was stressed to  its yield point, thus 

providing the necessary stress for stress corrosion cracking if such was inherent to  the 

ma terial/complex salt/ammonia systems. One  C-ring of each material was stressed and archived 

in a desiccator as a control. 

Each vessel of a cell was loaded with two degreased, C-ring, stressed specimens and a 

predetermined weight of the same salt. The weight was chosen so as to completely cover the 

specimens and minimize the post ammoniation dead space in the vessels. The cells were 

evacuated [- 17.33 Pa (0.0025 psi)] and the vessels heated to the salt-ammoniating temperature. 

The vessels were maintained at temperature under dynamic vacuum overnight. The following day, 

the  system was pressurized with ammonia to a pressure slightly above the calculated equilibrium 

pressure for at least 4 h. Monitoring of the temperature changes (increasing and then decreasing) 

as complexing occurred provided a very good indication of the end of reaction. At the end of 

complexing, the cells were checked for leaks (wet p H  paper) and thermal cycling begun. 



6 

Each 9-h cycle consisted of: (a) heating to operating temperature, (b) holding at operating 

tcmperature, (c) cooling to room temperature, and (d) holding at room temperature. Since the 

vcssels were cycled out of phase, during the cool-down phase of one vessel, there is a secondary 

temperature spike due to ammonia charging from the other vessel, which is in its heat-up phase. 

Thc ammoniating temperatures and pressures and the operating temperatures of the salt 

complexes are presented in Table 2. 

Table 2 Test parameters used in this corrosion study 

Salt complexes 

Parameter SrCI, CaCI, CaBr, 

Ammoniating 
k in  pcrature 333 K (60°C) 323 K (50°C) 398 K (125" C) 

Ammoniating 
pressure 0.34 MPa (49 psi) 0.26 MPa (38 psi) 0.37 MPa (54 psi) 

Operating 
temperature 
t m a 4  389 K (1 16" C) 380 K (107°C) 462 K (189°C) 

Lcngth of test 2352 h 2496 h 2496 h 

Evaluation 

At the conclusion of testing, the specimens were cleaned and subjected to optical 

microscopic examination. 

RESULTS AND DISCUSSION 

There was corrosion failure of a silver-plated copper gasket in one of the reactors holding 

t h c  CaC12 complex, resulting in loss of ammonia. The greenish corrosion product observed was 

indicative of an ammonia/copper reaction and was the result of a pin hole in or  damage to the 

silvcr plate. After replacement of this gasket, the system was re-ammoniated and returned to the 

test mode. 



Examination of the recorded temperature and pressure profiles revealed no changc in these 

profiles with time except for the CaBr, cxsmplex, indicating that the reaction vessels were properly 

sealed and that two of the salt complexes behaved in a reproducible manner. In the case of thc 

CaBr, complex, a trend oE increasing pressure with number of test cycles, as presented in Fig. 3, 

was observed. This increasing pressure, indicative of an unstable salt/ammonia complex) may 

preclude thc use of this complex in heat pump applications. Instability may be due to 

deactivation of surfacc sorption sites or compaction of the salt (decrease in the quantity of salt 

complexed). The differences in perccntage change in pressure shown in Fig. 3 are most likely 

due to slight differences in the amount of salt initially added to the vessels. 
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Fig. 3. Change in pressure for an ammcenia/CaBr2 complex 
€or two connected reactors that were sequentially heated to 189°C 
and coolcd to room tcmpcrature out of phase with each other. 
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Prior to post-test optical examination, all specimens were inspected to ensure that 

relaxation of tension by, €or example, failure of the stressing bolt or crevice corrosion under the 

bolt or  insulator, had not invalidated the test. No relaxation of tension was found. 

Optical microscopic examination was performed on  every specimen. None of the specimens 

showcd any indication of localized corrosion and/or cracking. Therefore, the lifetimes of these 

mntcrials should depend upon their general corrosion rates. While a rate was not specifically 

obtained in these tests, inferences about rates can be obtained from observations of the corrosion 

product. Differences in the appearance of the materials exposed to various salt complexes 

resulted in a corrosivity ranking (least to  most) as follows: SrCI,/”,, CaBr,/”,, and 

CaCl,/”,. The materials’ ranking and appearance are presented in Table 3. All the tested 

materials had excellent corrosion resistance to  SrC1,/”, with A214 and Al6063 showing slightly 

greater resistance than Al 3003 and Al 1100. While Al 3003, Al 1100, and A214 demonstrated 

Table 3. Appearance of materials after exposure to salt complexes. 
Materials and salt cornplaces are  listed in order of their 

corrosion resistance and mrrosMty, respectively. 

Complex Materialu Comment 

SrC1, A214 Bright 
Al 6063 Bright 

CaBr, 

4 3 0 3 3  Slight staining 
Al 1100 Slight staining 

AI 3003 Dull in appearance 
Al 1100 Dull in appearance 

A214 Black tarnish 

CaCl, 

Al 6063 White, powdery, thick film; 
etched appearance beneath 

film 

A214 Scattered red-brown stain 

A1 3003 
Al GO63 

Finely spalled, thick film 
Finely spalled, thick film 

Al 1100 Coarsely spalled, thick film 

aMaterials that are not separated by a horizontal line are of equal 
corrosion resistance. 
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good corrosion resistance to CaBrflH,, AI 6063 developed a thick, powdery film indicating poor 

rcsistance. All the tested matcrials demonstrated the lowest corrosion resistance to CaCI,/”, 

with A214 performing best. The finely spalled, thick films on AI 3003 and Al 4063 may be 

precursors to a more coarsely spalled, thick film as obscrved on Al 1100. l’hus, without the 

benefit of longer term testing and identification of corrosion products, the aluminum alloys are 

not recommended for use with CaCl,/”, complex. 

Based on  the results of thesc 2000-h thermal cyclic tests in salthmmonia heat pump 

working media, the following can be concluded. 

A214, A1 6063, AI 3003, and Al 1100 showcd excellent corrosion resistance to SrCI,/”, 

co m plcx. 

e A1 3003, Al 1100, and A214 demonstrated good corrosion resistance to CaBrflH, complex. 

e A21 4 displayed good corrosion resistance to CaCI,/”,. 

0 Thc CaBr,/NII, complex, which demonstrated thermal cyclic instability, is not rccornmendcd 

[or usc as a heat pump working medium. 

1. L. Kirol, R. Agamal, and U. Rockenfeller, Complex Salt Technology Applicution to 
Ii7dr/  Ytljnl Chemical Hetrt Pump, Final Report, Rocky Research Corporation, Boulder City, 
Ncvad a, Sep ternber 1983. 
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