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ABSTRACT 

Many robotic operations, e.g., mapping, scanning, feature following, etc., require 
accurate surface following of arbitrary targets. This paper presents a versatile 
surface following and mapping system designed to promote hardware, software 
and application independence, modular development, and upward expandability. 
These gods are met by: a full, a p r i o r i  specification of the hardware and 
software interfaces; a modular system architecture; and a hierarchical surface-data 
analysis method, permitting application specific tuning at each conceptual level 
of topological abstraction. This surface following system was fully designed and 
implemented independently of any specific robotic host , then successfully integrated 
with and demonstrated on a completely a p r i o r i  unknown, real-time robotic system. 
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1. INTRODUCTION 

1.1 APPLICATION 

Many robotic operations require accurate surface following of arbitrary targets. 
Such operations include scanning, terrain mapping/surveying, feature following, 
target recognition, and target monitoring. Furthermore, surface following in a 
background mode can provide secondary benefit in object avoidance, relative motion 
reduction, and increased “tool” effectiveness. 

A surface following system provides demands which, when heeded, modify the 
robotic control commands to maintain a user specified distance between the end 
effector and the target. This ability requires the surface following system to predict 
the next target-offset distance based on the end effector’s current velocity vector, 
the extrapolation of recent target points, and a precise characterization of the 
sensor system, the input’s accuracy, and the surface’s inherent roughness. 

To be generally applicable, a surface following system must minimize its 
assumptions about the target and yet to be worthwhile, it must be attuned to the 
target’s particular surface character, i.e., the global applicability of local changes 
in slope. Hence, general applicability places tremendous demands on the surface 
following system, requiring both a reliable non-contact proximity sensor system, 
i.e., one unaffected by surface texture, color, orientation, size, composition, etc., 
and highly sophisticated data interpretation capabilities. 

1.2 DESIGN MOTIVATIONS 

considerat ions: 
The design of this surface following system is motivated by the following four 

1) Hardware Independence - Since surface following is required for a variety of 
applications, the hardware system is designed as a self-contained, “plug-in” 
module. The hardware system includes its own sensory system, a dedicated 
CPU, memory space for all its local and shared variables, and all necessary, 
specialized inter connect ions. 

2) Software Independence - Similarly, the software system is designed to maximize 
its compatibility with the application’s software environment by employing 
its own CPU and restricting communication to predefined use of absolute 
addressed, shared memory locations. These absolute addresses are determined 
at run-time based on user defined parameter settings indicating the hardware 
configuration. 

3) Application Independence - To enable the system to successfully follow an 
arbitrary surface: a robust sensor system is employed (capable of detecting 
most targets); the system is designed to operate in real-time, i.e., greater than 
the typical control system’s loop rate (> 150 Hz); and the forecasting algorithms 
are designed to accommodate a wide variety of surface textures and modalities. 

4) Upward Expandabilitv - The system is designed to readily accommodate future 
technical enhancements by its modular design, shared memory communication, 
and hierarchical organization. 

1 



2 INTRODUCTION 

The following section describes the hardware chosen for the system’s initial 
implementation. Section 3 details the specific software algorithms used for surface 
mapping and terrain forecasting and the system’s overall software architecture, 
while Section 4 presents general conclusions. 



2. HARDWARE 

2.1 SURFACE FOLLOWING SYSTEM 

Conceptually, this surface following system consists of four hardware modules: 
a sensor system, an A/D converter, a CPU and externally accessible memory. These 
modules were configured and implemented as shown in Fig. 2.1. 

TERRAIN FOLLOWING SYSTEM EXTERNAL 
I 

Sensor System N D  Converter 
MlZA R) 

I 

Fig. 2.1. Hardware configuration-development system. 

The sensor system is a separate module responsible for measuring the 
absolute distance between the target’s surface and the sensor’s face, regardless of 
ambient noise (li ht/sound conditions) or surface character (color, texture, sheen, 
conductivity, etc?. Due to the unconstrained character of the environment, the 
sensor system must be extremely robust and accurate. After a careful survey of 
the available sensor technologies and systems, high intensity LED triangulation was 
determined to be the best sensor technology for this application. A sample sensor 
system was obtained, the Spectronics Model 204-4,l and its performance empirically 
analyzed.2 This system was found to be extremely robust with respect to color, 
sheen, angle of incidence, ambient noise, and texture; and to be approximately an 
order of magnitude more accurate (< f 0.015”) than generally considered necessary 
for this application. The system’s shortcomings lie in its restricted handling of 
glossy black surfaces (only visible between a -10” and +20” angle of incidence), 
its relatively small 4” field of view (only accurate for targets between 2” and 6” 
from the sensor) and its non-monotonic nature for targets closer than 2”. This final 
attribute requires the system to be invoked only when the surface is known to be 
more than 2” away from the sensor and for the overall system to have a sufficient 
response rate to prevent inadvertent violation of this 2” lower bound. 

This sensor system has both analog and digital RS-232 output ports. We chose 
to directly connect its analog port to an A/D board in order to greatly increase 
the data acquisition rate; RS-232 is updated at 60 Hz, whereas the analog signal is 
updated at -250 Hz. This difference is extremely critical since the surface following 
system must be faster than the robotic control software’s 100 Hz. 

The A/D board chosen for this system is a MIZAR “M28605-2-00.”3 This board 
is VMEbus compatible with 16-bit addressing and provides 12-bit resolution on 8 
differential input channels at approximately 25 KHz. As such, this board provides 
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4 HARDWARE 

more than enough speed to permit multiple samplings per cycle (employed for 
statistical signal-noise reduction, see Section 3.2.1) and capability to accommodate 
multiple sensor systems (permitting eventual expansion of the surface following 
system). 

The CPU board chosen for the surface following system was a Motorola “MVME 
133XT.”4 This 25 MHz board is VMEbus compatible with 32 bit addressing and 
contains an MC68020 microprocessor, an MC68882 Floating Point Coprocessor, and 
4 megabytes DRAM. This board directly accesses the A/D board for sensor input 
and stores global information within its 4 Mb of externally addressable DRAM. 
This board was used for system development, testing and simulations. 

2.2 SYSTEM INTEGRATION 

The surface following system was integrated with an existing robotic control 
system for proof-of-principle testing and demonstration. Unfortunately, there were 
undocumented timing incompatibilities between the Motorola CPU board used in 
the surface following system and the FORCE CPU board (model “CPU-30 ZBE”)’ 
controlling the VMEbus in the demonstration system. These incompatibilities led 
to porting the surface following system to a FORCE-compatible CPU board. 

The CPU board chosen for surface following in the demonstrated system was a 
FORCE “CPU-33 B/4.”’ This 25 MHz board is VMEbus compatible with 32 bit 
addressing and contains an MC68030 microprocessor, an MC68882 Floating Point 
Coprocessor, and 4 megabytes DRAM. 

The FORCE “CPU-33 B/4” requires the support of a separate memory board 
to provide the necessary shared memory. (The surface following system’s external 
communication interface requires absolute addressing of its shared memory. The 
4 Mb of DRAM on the Motorola “MVME 133XT” could be easily partitioned to 
restrict its CPU to one portion of the memory while permitting absolute address 
accessing of the remainder. This feature was not available on the FORCE “CPU-33 
B/4.”) Hence, the configuration of the demonstrated surface following system was 
changed to that shown in Fig. 2.2. 

TERRAIN FOLLOWING SYSTEM EXTERNAL 
I 

A/D Converter 
MIZAR 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Shared Memory Access 

Fig. 2.2. Hardware configuration-demonstrated system. 
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On the demonstrated system, externally accessible shared memory was stored 
on a Chrislin “CI-VMEmory 8Mb.”6 As its name indicates, this board is VME 
compatible and has 8 Megabytes of DRAM. Furthermore, it has a 5 MHz typical 
access rate and 24/32 bit addressing modes, more than sufficient for this application. 
The switch to a separate memory board was completely indiscernible to the external 
accessing functions. 





3. SOFTWARE 

The surface following software system is responsible for: maintaining an internal 
map of the observed surface’s topology and predicting the amount of vertical, end 
effector movement necessary to maintain a desired surface offset distance. The 
surface map is available offline and can be used for user display or additional 
target analysis. The required movement prediction is output in the form of a A2 
demand on the end effector’s desired position vector and hence, can be coupled 
with movement demands provided from other sources, e.g., object avoidance, reflex 
actions, path planning, etc. 

This chapter is divided into three sections. The first two describe the surface 
mapping and surface forecasting algorithms, respectively, while the third presents 
an overview of the system’s software architecture and functional components. 

3.1 SURFACE MAPPING 

3.1.1 Implementation 

A long term surface map is maintained in shared memory for eventual display 
and analysis. This rectangular map is composed of individual square grids and is 
implemented as a one dimensional array of grid pairs. The particular grid associated 
with a given world coordinate is determined at run-time, based on data stored in 
a map header structure. This implementation permits run-time specification and 
alteration of the map’s size, relative shape, resolution, and physical correspondence 
and permits reductions in both the map storage costs and access times. 

Each grid stores two pieces of information: the average height of the 
corresponding surface area and the number of readings represented in this average. 
Although storing the average rather than the sum introduces both round-off errors 
and additional execution time, the memory space savings more than justify the cost. 
The round-off error is negligible, due to the raw data’s high accuracy relative to 
the application’s requirements. Furthermore, the execution time is only increased 
by a single multiply and divide operation per map insertion, whereas the memory 
space required for each grid is reduced by the size of its count field (25% in our 
implement ation). 

The average height for each grid is stored as a two byte, integer number of “milli- 
inches.” This permits a 65 inch range of surface height values. A new average is 
determined by multiplying the current average value by the count, adding the new 
value, and dividing by the count plus one. The count field is stored as a single 
byte integer and thus permits counts of up to 255. After 255 samples are obtained 
which correspond to the same grid, each additional sample only affects the grid’s 
“average hei ht” field-the count remains 255. Thus, the impact of each sample on 
the “average value is described by the following: $7 

let Ave(N) = “average height” for a given grid after N samples, 
hi = grid height determined by sample i, and 

a;(N) = weighting of sample i on A v ~ ( ~ )  

then A v ~ ( ~ )  = CEl(ai(N)h;) and the individual weights of the samples are 

7 



8 SOFTWARE 

N 5 256 

(N > 256) A ( i  5 256) 
N-256 

L ( 2 5 5 j N - i  256 256 (N > 256) A (i > 256) 

The effect of the one byte limit on counts, 256, is clear and this equation could 
easily be generalized for arbitrary count sizes. From this equation, we see that for 
values of N less than 257, the function yields a simple average with all samples 
having an equal 1 / N  weight. However, for values of N greater than 256, the weight 
of a single sample is a function of its age relative to the 256 threshold. 

This averaging scheme provides many advantages: low execution time, low 
storage space requirements, simple averaging for all but the most heavily sampled 
grids, and slow data aging which gives greater impact to more recent samples while 
retaining significant historical inertia. 

This implementation requires only three bytes of memory for each grid, 
regardless of the number of samples taken. However, since memory is only accessible 
in multiples of the individual data types’ size, e.g., a two byte integer is only 
accessible on “even” byte boundaries, grids are stored as pairs-each six byte array 
element stores the information corresponding to two, adjacent grids. 

The fielded system has 3 Mb of memory available for the surfa.ce map. This 
provides space for a one million grid map or nearly 70 square feet of surface coverage 
with a grid resolution of 0.01 sq. in. 

3.1.2 Usage 

To take advantage of the Spectronics sensor system’s high degree of accuracy 
(<0.01 in.) and extremely small foot-print size (<0.00008 sq. in.), the surface map 
capability was designed to permit extremely high precision and high resolution 
mapping. These qualities require the surface to be relatively stable and the sensor’s 
position data to be both accurate and precise. If either of these requirements 
fail, e.g., the surface changes or the position data is erroneous, then the map 
is defective and should be reinitialized. However, since high resolution mapping 
requires long-term map retention for sufficient topological data to be gathered to 
usefully characterize the overall surface, no automatic reinitialization of the map is 
provided. Rather, explicit user control functions for map reinitialization and storage 
are supplied: MapReset, MapRefocus, and UpLoadMap. 

MapReset and MapRefocus allow the user to reinitialize the map and specify 
its physical correspondence, based on the user’s “region of interest.” These functions 
maximally exploit the data space available for the surface map. The user’s region 
of interest is mapped at the finest resolution that both memory space and position 
accuracy will allow. (For this application, the finest resolution possible, based on 
available position accuracy, is expected to be 0.01 sq. in.) If additional memory 
space is available, the map is symmetrically expanded at this finest resolution. 

MapReset and MapRefocus only differ in their initial “average height” 
values for areas which were scanned by the previous map. MapReset clears 
all previous map data from memory and is used whenever the previous data is 
considered corrupt, e.g., the topology has changed, the world coordinates or sensor 
data was incorrect, etc. MapRefocus permits the system to exploit previous 
height information for regions common to both maps and is used whenever the 
user’s “region of interest,’ has changed. If this change permits an increase in the 
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resolution, the initial “average height” values for grids corresponding to previously 
mapped regions are taken directly from the earlier, coarser grid(s). If the resolution 
must decreased, these initial “average height” values are obtained by averaging the 
heights of the corresponding, finer grids, see Fig. 3.1. In both cases, the count field 
is set to zero and used as a indicator that the data was obtained under a different 
mapping scheme and should be replaced whenever new data is obtained. 

he igh t  
4 , 5 2 3  L) 

I 
I 
I 
I 
I 

N @ W  

I 
I 

To A Nner  Resoluflon I 
I 
I 
I 
I 

-- 
height helghl  
2 . 6 4 7  2 . 8 3 4  I 
helghf h e l g h f  
2 . 4 4 1  2 . 6 5 3  I 

- 
height 
2 . 6 4 4  

To A Coarser Resoluflon 

Fig. 3.1. MapRefocus-common grid initialization. 

Note that since grid boundaries and resolutions are based on the user’s “region 
of interest,” new grids may physically overlap previous grids. In such a case, the 
new grid’s initial height is based on the relative surface area contribution of the 
previous, overlapping grids, i.e., 

let G,(b) = grid a in mapping b 
= height of grid A 
= surface area of the region common to all grids in set X 

Note that this general equation provides for both forms of grid initialization shown 
in Fig. 3.1. 

The desire to maximally utilize the available memory space leads to an 
additional problem. The new map must be stored in the same memory space 
as the old map without overwriting any information necessary for the proper 
reinitialization of the map, regardless of any change in the “region of interest” or in 
the resolution. This “in-situ” reinitialization requires two passes of the map’s data 
structure. During the first pass, the overlapped region is scanned from beginning to 
end and moved to the top of the data structure. The second pass scans this region 
backwards and moves the data to its correct location. If the resolution is becoming 
finer, “e~pans ion~~ of the previous grids occurs during the second pass, while the 
data is being written to its final position, see Fig. 3.2. If the resolution is becoming 
coarser, “compression” of the previous grids occurs during the first pass, while the 
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data is being moved to the top of the data structure, see Fig. 3.2. This method 
ensures that the more compact version of the overlapped region is what is stored 
at the top of the data structure, thereby leaving sufficient memory space to avoid 
overwriting subsequently needed data. 

Previous Map 
First Pass: 

Move 
Second Pass: 

Expand & Position 

First Pass: 
Compress & Move 

Second Pass: 
Posi t  i o n  

Fig. 3.2. MapRefocus-in-line reinitialization. 

UpLoadMap provides long-term storage of maps to disk. This function writes 
the map header structure and all map data to a text file for subsequent analysis 
or display. Conceivably, this capability could be used to display composite, high 
resolution maps of larger surfaces or to reinstall a previous map when rescanning a 
surface. 

3.2 SURFACE FORECASTING 

Surface forecasting analyzes recent sensor data and end effector positions to 
characterize the target’s surface, predict subsequent target points, and present 
necessary demands on the end effector’s movement to maintain a constant sensor- 
to-surface stand-off distance. The system was designed to be generally applicable 
to many different types of surfaces from smooth, man-made targets, e.g., floors, 
containers, tools, etc., to rough, natural terrain, e.g., sand, gravel, turf, etc. 
However, since exploiting specific knowledge of a given target’s relative smoothness 
and the global relevance of its local slopes can have a tremendous impact on 
a system’s forecast efficiency, accuracy and responsiveness, the system permits 
inclusion of such surface characteristic knowledge through user definable tuning 
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parameters and employs a hierarchical data processing and representation scheme 
to isolate the handling and tuning of signal noise, textural sensitivity, local 
responsiveness, and forecast stability. Each of these hierarchical levels and their 
respective tuning parameters are presented in the following four sections. 

3.2.1 Signal Noise 

The surface following software system requires as input both the sensor’s 
distance measurement and the end effector’s position and orientation values. From 
this data, the absolute coordinates of the sensor’s footprint are calculated and used 
for both surface mapping and surface forecasting. Inaccuracies in these input values 
due to signal noise can be reduced by averaging across multiple samples. Since these 
input values are from independent sources and available at different rates, separate 
tuning algorithms and parameters are employed. 

Sensor data is available from the A/D board at -25 KHz, see Section 2.1. Hence, 
we assume successive readings are measuring the same physical target point and 
can be directly averaged. The tuning parameter, Sensor-Readings, defines the 
number of successive readings across which to average. Based on a detailed empirical 
analysis of our particular hardware system’s noise level, a value of seven (7) was 
chosen for the Sensor-Readings parameter. 

The end effector’s position and orientation values are provided by a completely 
external process at -32Hz. Since the surface forecast must be updated at >lOOHz, 
the system cannot wait for multiple readings to be available. Instead, the noisy 
readings are used with the smoothed sensor data (described above) to approximate 
the coordinates of the target point, and a rolling average of the more recent such 
coordinates is used as the current value. The sample size for this rolling average 
is set by the user’s parameter EE-Readings. While this method effectively 
reduces signal noise, it also delays the system’s response to end effector movements. 
EE-Readings should be set with this trade-off in mind. (Clearly, a better solution 
to this problem is to average across multiple encoder readings before calculating the 
end effector’s position and orientation values. Unfortunately, that solution could not 
be implemented without access to the external process making those calculations.) 

3.2.2 Textural Sensitivity 

Due to the sensor’s high degree of accuracy (<0.01 in.) and small footprint 
size (<0.00008 sq. in.), minor surface changes commonly considered texture or 
granulation are measurable and could be used to alter the topological forecasting. 
For the system to be useful for many different applications and surface types, the 
level of textural sensitivity must be adjustable. 

Textural sensitivity is controlled by dividing the target space into “intervals” 
within which all data is averaged together, much like the grids in surface mapping. 
These “intervals” correspond to cylindrical volumes of the target space, with 
radius Interval-Size and axis parallel to the 2 (height) axis. Thus, the user’s 
specification of Interval-Size alters the perceived resolution of the physical world, 
see Fig. 3.3. (This implementation has the secondary benefit of greatly reducing 
the storage space requirements necessary to make meaningful forecasts at the end 
effector’s physical scale.) 
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Fig. 3.3. Adjusting sensitivity-data averaged into intervals. 

However, unlike the grids in surface mapping, the intervals are dynamically 
positioned based on the actual path of the sensor's footprint and intentionally 
overlapped to prevent possible oscillation between adjacent intervals. This dynamic 
positioning ensures the intervals have a relatively uniform sampling base and reflect 
a similar span of the footprint's travel path, see Fig. 3.4. This, in turn, permits 
the intervals to be used with equal weight when extrapolating the target's surface 
during surface forecasting. 

I n t  e r v a  I.-' 
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% I . -- 
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1 * 
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Fig. 3.4. Physical correspondence of intervals. 

While the sensor's footprint remains within Interval-Size inches in the X-Y 
hyperplane from the center of the current interval, the target point is associated 
with that interval. However, whenever the path of the sensor's footprint exceeds 
Interval-Size inches from the center of the current interval, a new interval is 
created, centered at the current point, see Fig. 3,4, (The arrows indicate the path 
of the sensor's footprint and their boldness indicates the interval with which the 
data corresponds.) 
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If the next sensor reading occurs more than one interval from the previous 
interval’s range, i.e., the current sensor’s footprint exceeds 2 * Interval-Size 
inches from the center of the current interval, the unsampled, intervening path is 
interpolated and the appropriate intervals created and positioned along the route, 
see Fig. 3.5. This condition results whenever the sensor’s footprint moves too 
swiftly, relative to the Interval-Size, or there is an intermittent loss of sensor 
data, e.g., when the target suddenly drops out of range. This path interpolation 
permits smooth forecasting across difficult target surfaces and sustains the constant 
positional relationship between successive intervals. 
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Fig. 3.5. Interpolation of intervals-position and height. 

3.2.3 Local Responsiveness 

Responsiveness at this level of the hierarchy refers to the degree of impact that 
individual interval heights have on the overdl forecast. If the impact is too great, 
non-globally relevant changes in slope will erroneously alter the forecast. However, 
if the impact is too low, adaptations to significant surface changes will be excessively 
delayed. As with textural sensitivity, the desired level of responsiveness is dependant 
on the particular application involved. Hence, for the surface following system to 
be generally useful, the system’s responsiveness to local changes in slope must also 
be adjustable. 

Control of the system’s responsiveness is provided by combining disjoint groups 
of contiguous intervals into “ranges,” where each range consists of Range-Size 
number of intervals and has a height equal to the average height of its constituents, 
see Fig. 3.6. (Note the effect of Range-Size on the handling of the aberrant 
interval (fourth from the left) and the change in background slope.) 

As new intervals are created, the ranges are dynamically redefined to use the 
most recent interval data. Hence, the current range always incorporates the most 
recent Range-Size intervals. This method ensures the use of the most relevant 
target data and a uniform sampling base for each range. For efficiency, all active 
intervals are stored in a single ring data structure with pointers indicating the head 
of each range. This implementation permits easy range shifting when new intervals 
are created. 
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Fig. 3.6. Local responsiveness-intervals averaged into ranges. 

3.2.4 Forecast Stability 
Forecast stability, or non-volatility, is provided in three ways: by basing the 

forecast on numerous, widely spaced samplings, through the use of intervals and 
ranges; by masking the forecast output to permit user control of its precision; 
and by extrapolating the target’s surface during periods of sensory depravation, 
and thereby increasing the system’s overall target applicability. The following 
paragraphs individually detail these three stabilizing techniques. 

First, surface forecasting linearly extrapolates the two most recent range heights 
to predict the target’s underlying slope, <p. This slope is used in conjunction with 
the most recent measure of the sensor’s footprint’s lateral speed to estimate the 
change in target height, AH, since the previous sensor reading. The vertical demand 
placed on the end effector, AZ, is then the sum of AH and the difference between 
the desired and previous actual surface offset distances. 

Second, since for some applications one may prefer stability of end effector’s 
movement over its extreme accuracy, a hysteretic function is placed on the A2 
values actually output. The user parameter Permitted-Variance specifies the 
amount by which A2 must change before any demand is relayed to the end effector. 

Third, forecast stability is provided during intermittent periods of sensor data 
loss, e.g., when the target is out of detection range. During these periods, AH is 
extrapolated based on @, the most recent lateral speed estimation, and the elapsed 
time. 

Although this system uses two-point linear extrapolation to estimate @, it can 
readily be extended to higher order techniques and/or the use of additional ranges. 
Twc>-point linear extrapolation was determined to be sufficiently sophisticated for 
this application (soil), since the benefit of higher order extrapolation techniques 
requires the existence of a greater degree of local surface information content than 
is present in this application. 
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3.2.5 Usage 

Four external access functions communicate with the surface forecasting 
algorithms: SFReset, DevVector, RawDistance and EEPos. 

SFReset allows the user to reinitialize surface forecasting and the desired 
surface offset distance. This function writes its single parameter value (the desired 
surface offset distance) to shared memory and triggers the surface following system 
to reset all local surface forecasting variables, e.g., interval positions and heights, 
range heights, previous AZ value, etc. 

DevVector returns a 6x1 vector indicating the surface following demand to 
be placed on the end effector. This vector permits inclusion of both positional and 
orientational demands, though only the AZ value is currently being prescribed. 
Returning the 6x1 vector rather than only a A2 permits direct expansion of 
the system to 3-dimensional surface following without having to modify the user- 
interface. 

RawDistance returns the most recent sensor-to-target distance measurement 
used by the surface following system. This value is obtained by averaging multiple 
sensor readings to reduce the signal noise, see “signal noise” above. 

An external process is responsible for calculating the end effector’s most recent 
position and orientation data in world coordinates and passing these values as a 
parameter to EEPos. The external access function EEPos then updates shared 
memory accordingly. 

3.3 ARCHITECTURE 

The surface following system uses a modular, top-down approach to facilitate 
the individual development, verification, and extension of its capabilities. All 
complex and globally accessible data structures, physical hardware constants and 
user defined parameters are externally defined to permit their use by other processes, 
e.g., those executing the external access functions, and their rapid adaptation to 
hardware or application specific changes. This design permitted the previously 
described hardware configuration change, see Section 2.2, to be software realized in 
a matter of minutes. 

The surface following software is designed to be a robust, stand-alone system, 
completely independent of the operating system environment used to control the 
actual robot. Furthermore, since the software must operate in real-time, it 
is executed on a dedicated processor rather than risk the unpredictable delays 
associated with time-shared environments. For these reasons, the system exclusively 
communicates through absolute addressing of shared memory and provides all 
shared memory management. 

Conceptually, this system passes through three basic phases: initializing 
memory, responding to external requests, and processing input data, see Fig. 3.7. 
The primary functional components of each of these phases will be detailed in this 
section. 
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Fig. 3.7. Surface following-functional breakdown. 

3.3.1 Initialization 

This first phase of the system is responsible for partitioning and initializing the 
shared memory and creating and initializing all surface forecasting data structures. 
Initial d u e s  for physical hardware constants are defined in a single header file. 
These constants include the absolute starting address and size reserved for shared 
memory. Default values for user defined tuning parameters are encoded in a single 
function, Initialize-Constants, which permits their values to be calculated at 
run-time. 

Three separate functions are responsible for initialization. 
Initialize-Memory partitions the shared memory space and sets-up absolute 
addressed pointers to each of its internal structures, including the surface map 
and data logging arrays, see Fig. 3.8. Initialize-Constants fills shared memory 
with the default values of the non-local variables, i.e., shared and user defined 
variables, and Initialize-Forecasting creates and/or initializes the local data 
structures used in surface forecasting, e.g., intervals, ranges, etc., based on position 
and sensor input data. (Note that the surface map is not automatically reset during 
initialization, see Section 3.1.2.) 

After initialization is complete, the system infinitely cycles through the following 
two phases. 
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Fig. 3.8. Shared memory-conceptual breakdown. 

3.3.2 Process External Requests 

There are two types of external requests handled by the surface following system, 
requests for reinitialization or for shared memory access. All external requests are 
communicated to the surface following system through specialized flags defined 
in the shared memory. The surface following system inspects these flags before 
processing the data for each cycle. 

Reinitialization requests permit the user to invoke a controlled restart of either 
surface mapping or surface following. The user can restart surface mapping by 
calling either of the external access functions: MapReset or MapRefocus, see 
Section 3.1.2. The user can restart surface forecasting by calling SFReset, see 
Section 3.2.5. The SFReset function reinitializes all of the intervals, ranges, and 
local variables associated with surface forecasting and is, in fact, the same function 
executed during system initialization described above. These three access functions 
modify appropriate shared memory values, e.g., MapRefocus downloads the user’s 
new “region of interest,” before flagging the surface following system into action. 

Memory access requests provide the user with exclusive access to the shared 
memory. This is necessary to ensure data integrity, since most of the data stored 
in shared memory cannot be accessed in a single cycle. Shared memory access is 
controlled and communicated through a four-step flagging protocol: 

Flag Value Interpretation 

External request for access 
System acknowledges and waits 
External access completed 
System acknowledges and proceeds 

(Note that a four-step protocol is necessary since the communicating systems may 
be restarted independently and must then determine the status of shared memory 
access to prevent its corruption.) 
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3.3.3 Process Data 

During each cycle in which sensor data is obtained, the world coordinates of the 
current target point are approximated (Calculate-Next-Target_Point) based 
on the most recent end effector position and orientation data and smoothed sensor 
data stored in shared memory. (Note that the sensor’s position and orientation with 
respect to the end effector’s origin is a constant, stored in shared memory during 
system initialization.) This target point is then used to update both the surface 
map (Update-Map) and forecasting data structures (Update-Intervals, 
Update-Ranges, Update-Fore-cast), see Fig. 3.7. These various functions are 
modularized to permit independent analysis of different approaches, e.g., alternative 
methods of combining intervals to control local responsiveness can be analyzed 
without effecting the other levels of the forecasting hierarchy. During cycles in which 
sensor data is unavailable, only surface forecasting is performed, see Section 3.2.4. 



4. CONCLUSIONS 

The surface following system described in the preceding chapters was 
successfully tested and demonstrated in the FY91 Hanford Demo. The target 
surface used in this demonstration was a natural, rolling terrain of finely crushed 
clay stones with randomly scattered, man-made objects and ramps. Although 
full integration with the robotic system at Hanford required several hardware and 
software changes, e.g., porting the system to a FORCE CPU and the use of a 
separate memory board, see Section 2.2; the extension of signal noise reduction 
methods to the end effector’s position and orientation values; see Section 3.2.1; etc., 
the overall design of the surface following system permitted rapid compliance with 
those requirements. Furthermore, the system provided effective, real time surface 
forecasting for both the rough clay and smooth objects, despite their extremely 
different surface character. (Note that the drastic contrast in both the surface 
textures and the global relevance of local slopes prevented the use of optimal tuning 
parameter values within any given region, i.e., target inconsistency mandated the 
use of (sub-optimal) general purpose, parameter values.) 

Superior performance in an unconstrained environment will ultimately require: 
1) automatic adaptation to the topological surface characteristics currently 
addressed by user-defined, tuning parameters; and 2) incorporation of multiple 
sensor systems to provide orientational demands for 3-dimensional surface following. 
Development and validation of these new capabilities will require extensive empirical 
analysis of the system’s behavior over a broad range of target types, slopes, and 
transitions. Hence, for convenience and efficiency, the surface following system must 
be implemented on a readily accessible robotic control system, e.g., HERMIES-IIL7 
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