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1. Introduction 

This users’ guide to I’VM (Parallel Virtual Machine) version 2.3 contains examples 

and information needed for the straightforward use of PVM’s basic features. Full doc- 

umentation of all PVM options and error conditions will appear in The PVbf Reference 

Marhual. (Documentation on all error conditions is presently included in the software 

distribution under pvm/doc.) 

PVM is a soft ware package that enables concurrent computing on loosely coiipled 

networks of processing elements. PVM may be implemented on a hardware base consist- 

ing of different machine architectures, including single CPU systerns, vector machines, 

and multiprocessors. These computing elements may be interconnected by onc or more 

networks, which may themselves be different (c.g. Ethernet, the Inixrnet, and fiber 

optic networks). These computing elements are accessed by applications via a library 

of standard interface routines. These routines allow the iiiitiation and termination of 

processes across the network as well as communication and synchronization between 

processes. 

Application programs are composed of components that are subtasks at a moder- 

ately large level of granularity. During execution, multiple instances of each component 

may be initiated. Figure 1 depicts a simplified architectural overview of the PVM sys- 

t em. 
Application I 

--.____.-.--.___.--....____..___. .____._.....___ 
Component instances : 

Application 2 
. . . - - . . . _ _ _ . . - . . . _ _ . . . - - . . _ _ _ _ _ _ _ _ _ I  

PVM System 

... ... ... 1 
Component instances : 

PVM System 

Application 2 
. - . . . _ _ _ . . . . _ . _ _ _ _ _ _ _ _ _ I  

... ....... ..... ...... 

LAN 2 Butterfly Cray LAN I 

Figure 1: PVM Architecture Model 
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Application programs view PVM as a general and flexible parallel computing re- 

source that supports a message-passing model of computation. This resource may be 

accessed at three different levels: the transparent mode in which component instances 

are autoriiatically located at  the most appropriate sites, the architectzlre-dependent 

mode in which the user may indicate specific architectures on which particular com- 

ponents are to  execute, and the low-level mode in which a particular machine may be 

specified. Such layering permits flexibility while retaining the ability to exploit par- 

ticular strengths of individual machines on the network. The PVM user interface is 

strongly typed; support for operating in a heterogeneous environment is provided in the 

form of special constructs that selectively perform machine-dependent data conversions 

where necessary. All communication done inside PVM uses the external data repre- 

sentation standard, XDIt [l]. Inter-instance communication constructs include those 

for the exchange of data structures as well as high-level primitives siich as broadcast, 

barrier synchronization, mutual exclusion, and rendezvous. 

Application programs under PVM may possess arbitrary control and dependency 

structures. In other words, a t  any point in the execution of a concurrent application, 

the processes in existence may have arbitrary relationships between each other and, 

further, any process may communicate and/or synchronize with any other. This is the 

most unstructured form of crowd computation, but in practice a significant number of 

concurrent applications are more structured. Two typical structures are the tree and 

the “regular crowd” structure. We use the latter term to  denote parallel computations 

in which all processes are identical; frequently such applications also exhibit regular 

commiinication and synchronization patterns. Any specific control and dependency 

structure may be implemented under the PVM system by appropriate use of PVM 

constructs and host language control-flow statements. 

2. Installation 

7‘he PVM package is composed of two parts. The first part is a daemon, called pvnid,  

that resides on all the computers on the network. Pvind is designed so any user with 

a valid login can install this daemon on a machine. When a iiser wants to run a PVM 

application, he executes one of the installed pvmds  which in turn starts up a user- 

defined subset of the installed pvmds. This collection of running pvmds then defines 
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the present PVM configuration for that user. Multiple users can configure overlapping 

PVMs and execute several PVM applications simultaneously. 

The second part of the package is a library of PVh'I interface routines. Application 

programs must be linked with this library to use PVM. Descriptions of the available 

routines are given in the next two sections. 

If you are responsible for installing PVM on your network, then the top level of the 

PVM distribution should be in your home directory, and named pvm. 

Check in the w/pvm/src directory for a subdirectory named for the architecture 

of your machine (ARCH). Table 1 contains a list of names currently in use in PVM 

version 2.3. If the correct one does not exist, you will have to  make a new directory. 

ARCH 
PMAX 
SUN3 
SUN4 
RIOS 
SYMM 
CRAY 
I860 
IPSC 
CMZ 
AFX8 
TITN 

Machine 
Dec/Mips arch (Ultrix) 
Sun 3 
s u n  4 
IBM/RSS000 
Sequent Symmetry 
Cray (UNICOS) 
Intel iPSC/860 
Intel iPSC/2 
Thinking Machilies CM2 
Alli an t FX / 8 
Star dent Tit an 

Table 1: Current names used in PVM. 

The name choice is arbitrary, but should be concise and accurate. PVM will be using 

the name to  identify the machine type it is running on. 

Tf you need to make an architecture directory, copy Makef ile .generic to the new 

directory and ciistomize it for your architecture. When customiziitg the Mukefile, 

the only thing you definitely have to  set is the ARCH definition. You may addi- 

tionally need to define certain switches from the list given, or compiler/loader flags. 



Make the YVM daemon ( p v m d )  and user library ( l i bpvm.~)  by typing “make” in the 

architecture directory of the machine you are logged onto. Once pvmd  is made for each 

of the architectures on your network, p n z d  needs to  be installed as /tmp/pvm/pvmd on 

every host machine. Typically, this is done by setting up “soft” links to  a centralized 

executable in N/pvm/src/ARG~~/pvmd, but if this is not possible, then p v m d  must be 

copied to  /tmp/pvm/pvmd on each machine. 

When a PVM application asks for an executable program to be started up on some 

machine, p v m d  looks in ~/pvm/Al2CH on that machine for this executable program. 

Therefore, each user of PVM is responsible for having a directory N/pvm/ARC‘Ron 

each machine he wishes to  configure into PVM. 

To configure a subset of machines into PVM, the user must first create a file con- 

taining the host names, one per line. The host running the initially executed pvmd  

must he the first one in the file. (Blank lines and lines in the host file beginning with 

“#” are ignored.) Several options call be specified on each line after the hostname. 

If pw follows the hostname, then PVM will ask you for a password for this machine. 

Your default logiii name can be changed by specifying lo=  login name. Using these 

options allow$ users to  configiire machines for which they have different login names 

and or passwords. ‘l’he pw option is also needed for machines that do not allow the user 

to set up  a .rhosts file. There is a third option available to  allow the user to  specify 

a nonstandard location for the p v m d  executable on this machine. This option is dx= 

locution of purlid, 

‘l’he user starts the pvriids with the command “/tmp/pvm/pvmd filename”. This 

pvrnd will automatically start up a pvmd on each of the other hosts, asking for pass- 

words wliere appropriate. If pvmd is invoked with a “-i” flclg, i.e., “/tmp/pvm/pvmd -i 

filename”, then this pvmd  will run a command editor that allows the user to query 

PVhi  about the status of processes and the present configuration of PVM. Typing 

“help” displays all the available commands. 

The user can now run PVM programs. Currently, standard out and standard error 

streams of the slave pvmds (and any client programs they initiate) are passed back to  

the initial pvmd  and then to  its standard out. Hostnames are added to  the beginning 

of each output so that output from remote machines can be distinguished from local 

output. 
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To stop PVM the user should kill the initial pvmd with the q u i t  command in 

interactive mode or with control-C otherwise. Doing this will kill all the other pvrnds 

and all processes enrolled in this PVM. 

3. C Routines 

Table 2 describes the communication and PVM interface routines available to C pro- 

grams. 

Sample programs are supplied with the software distribution. Figures 2 and 3 give 

a template of simple host and node programs that use PVM routincs. In a host/node 

model the host program initiates and directs some number of noclc programs which 

perform computations. PVM is not restricted to this model. For example, any PVM 

process can initiate processes on other machines. But a host/nodc model is a useful pro- 

gramming paradigm and simple to  illustrate. The host calls enroll0 to  allow it to use 

the PVM system and enable interprocessor communication. It then calls i n i t i a t e  0 

to execute node program(s) on other machines in PVM. Each node program must also 

call enroll 0 to  enable interprocessor communication. Subsequently, s n d 0  and r c v 0  

are used to  pass messages between processes. The node program contains an example 

of broadcasting messages in PVM. This is accomplislied by sending a message to an 

enrolled name with the instance number set to -1. The message is sent to all instances 

of enrolled processes with this name. 

When finished, all PVM programs should call l e a v e 0  to allow tlic pvnzds to dis- 

connect any sockets to  the processes, and to allow the pvnzds to keep track of which 

processes are running. In PVM the snd0 buffer remains valid until the next call to 

i n i t s e n d o .  Thus, the same message can be sent multiple tinics and can even be ap- 

pended to with put*() commands between sends. On the receiving end, the processor 

is idle (or blocked) from the time it issues the r c v 0  command until a message satisfy- 

ing the request arrives and is copied into the specified user buffer. Note that a program 

will not terniinate if a r c v 0  command is never satisfied by an arriving messagc of the 

correct type. Moreover, only the type field distinguishes different messages in PVM. A 

comInon mistake made by new users is not using enough distinct types in their snd()  

arid r c v 0  calls to uniquely identify different messages in their program. This oftcn 

leads to  nondeterniinistic behavior of the user’s algorithm. 
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I i n t  i n i t i a t e m ( c h a r  * o b j e c t f i l e ,  char  *machine) 
- initiate a process on the specified machine and returns instance number (>=O) 

if successful or < 0 if error. If machine = “.”, then initiating machine is used. 
... 
void i i i i&Gid()  

vo id  le&&(j 
__._I 

- initializes send buffer 

- process exiting PVM. 

.... 

.......... ..___ ........ 
i n t  b a r r i e r (  c h a r  * b a r r i e r n a m e ,  i n t  n u )  

- blocks caller until num calls with same barrier name made. Returns < 0 if 
error. 

i n t  e i i ro l l (char  *component name) 
- enrolls process in PVM and returns instance number (>=0) if successful or < 0 

if error. 

extracts nuin valiues of datatype [type] from received message and assigns it to  
x ,  eg. getnfloat( x,  5 ). Returns -1 if buffer empty. [type] must be nint, nfloat, 
ndfloat, ncplx, ndcplx, string, or bytes. 

initiates a new process and returns instance number (>- 0) if successful or < 0 
if error. If architecture is NULL,  then PVM chooses an architecture. 

......... ...... 
i n t  g e t  [ t ype ]  ([type] +x * i n t  num> 

- 

___ .-.-.. ~ ..__ .........__I 
* o b j e c t f i l e ,  cha r  *arch)  

- 

i n t  p r o b e ( i n t  msgtype) 
- probe for message arrival of specified type or ‘any’ if msgtype=-1. Returns 

message type or --1 (not arrived). 

same as probe, hut permits specifying an array of nurn message types. 

inserts iium values beginning a t  ptr into seiid buffer. 
memory. [type] must be nint, nfioat, ndfloat, ncplx, ndcplx, string, or bytes. 

i n t  p r o h c m u l t i (  i n t  num, int-Gmsgtypes) 

i n t  put[type]-;(-C‘type] *ptT, i n t  n u )  

- 
.___ 

- Returns -1 if out of 

i n t  r c v ( i n t  msgtype) 
- receives a message of specified type or ‘any’ if msgtype=-1 (Blocking). Returns 

actual message type. 

returns the length, type, and sender of last rcv or probe. Returns -1 if rcv or 
probe not called. 

same as rcv, but permits specifying an array of nun1 message types. 

sends sigrial with specified (abstract) name. 

sends message in send buffer to  the specified instance of component. If instance 
= ---1, then broadcast t o  all instances. Returns < 0 if error. 

returns 1 if specified component is active, 0 otherwise. 

i n t  i n s t a n c e )  
terminates a specified component. Returns < 0 if error. 

suspends caller until specified signal name occurs. 

returns component name and instance. Returns -1 if not enrolled. 

-. ......... ....... ........ ~ 

i n t  r cv i i i fo ( in t  *by te s ,  i n t  *msgtype, c h a r  *component, i n t  * i n s t a n c e )  
- 

....... .- ___ ........ 
i n t  r c v i n u l t i ( i n t  num, i n t  *msgtypes) 

vo id  r e a d y ( c h a r  *evexlt<me) 

i n t  s n d ( c h a r  *component, i n t  i n s t a n c e ,  i n tGGgtype )  

- 
.......... -. ........ 

- 
.......... .........___I 

- 

.___ ......... ......... 
i n t  s ta t ixs(char  *component ~ i n t  i n s t a n c e )  

i n t  t e rmi i sa t c (  char *component 

vo id  wa i tun t i l ( cha r  *event.name) 

i n t  whoaiiii( char  *component, i n t  *instance)-’-  

- 
........ ~ ......... ____ ......... _I...____ 

- 
.......... I_.___ 

- 
~ .-.-. 

- 

Table 2: PVM C user routines 
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main ( 1 
{ 

i n t  i, nproc,  msgtype, mynum, instC41, ... 
double r e s u l t  C41, dataClOOl . . . 
/* Enro l l  t h i s  program i n  PVM */ 
mynum = e n r o l l (  "hostprogram" ; 

/* I n i t i a t e  nproc ins tances  of node program */  
nproc = 4 ; 
f o r (  i = O  ; i<nproc ; i++ ) 

i n s t  [il = i n i t i a t e (  "nodeprogram", NUL ) ; 

*/ /* ------- Begin use r  program -------- 

/ *  broadcast  data t o  a l l  node programs */ 
i n i t  s e n d 0  ; 
pu tndf loa t (  d a t a ,  100 ) ; 
msgtype = 1 ; 
snd( "nodeprogram", -1, msgtype ) ; 

/* wait f o r  r e s u l t s  from nodes */ 
msgtype = 2 ; 
f o r (  i = O  ; icnproc ; i++){ 

r c v (  msgtype 1 ; 
getndf l o a t  ( & r e s u l t  [i] 1 ) ; 

3 

*/ /* --------- End use r  program -------- 
/ *  program f i n i s h e d  leave PVM before e x i t i n g  */  
l e a v e 0  ; 

3 

Figure 2: Simple host program template using PVhl routines. 
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m a i n 0  

< 
i n t  mynum, hostnum, by te s ,  msgtype, ... 
double r e s u l t ,  dataCl001 , . . . 
char  hostCl61, . . . 

/*  E ~ ~ o l l  t h i s  program i n  PVM */ 
mynum = e n r o l l (  "nodeprogram" ) ; 

Begin use r  program -------- * /  / *  -I----- 

/ *  Receive d a t a  from hos t  */  
msgtype = 1 ; 
r cv (  msgtype ) ; 
ge tndf loa t (  d a t a ,  100 1 ; 
rcvinf  o ( &bytes ,  &msgtype h o s t ,  & h o s t n u  ) 

r e s u l t  = user-rout ine(  d a t a  ) ; 

/ *  Send r e s u l t  t o  hos t  */ 
i n i t s end  (1 ; 
putt idf loat(  & r e s u l t ,  1 ; 

snd( h o s t ,  hostnum, msgtyps ) ; 
msgtyps = 2 ; 

3 

End user program -------- */ /*  --------- 

/ *  Program f in i shed .  Leave PVM before  ex i t i ng  * /  
l e a v e 0  ; 

Figure 3: Simple node program template using PVM routines. 
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4. Fortran Routines 

The Fortran routines are built on top of the C routines described above so their func- 

tionality is identical, but their names and arguments differ. Their naming convention 

is to  prcpend an “f’ to the C routine name. The Fortran-to-C interface routines handle 

the distinctions between C and Fortran. 

Several problems arose during the development of this interface. The first problem 

was the different calling conventions of C from Fortran by different compilers. For 

example, some compilers prepend C routine names with underscores; others do not. 

This problem was resolved by having ifdef’s for each of the different calling conventions 

in the interface routines. A second problem, common to Fortan-to-C! interfaces, was 

correct passing of arguments. Fortran passes arguments by reference and C passes 

arguments by value. Because of problems on some supported machines with passing 

values to  Fortran functions, only subroutines are used in the interface. This causes the 

user interface to PVM to be slightly different when programming in Fortran rather than 

C. A third problem encountered was string termination. Several PVM routines pass 

strings, such as program names and signals. C terminates strings with N ULLs, but this 

is not a requirement in Fortran so some Fortran compilers do not terminate strings. 

Instead, they keep track of the length of strings in an internal table. Sending a C 

routine a pointer to the beginning of a nonterminated string leads to  no~~determ~nistic 

behavior a t  best and a memory fault a t  worst. The solution to  this problem requires 

that Fortran programmers manually append all the string arguments in their codes 

with NULLS For example, 

call f i n i t i a t e (  ’program\O’, instancenum 1. 

Not all Fortrans recognize ’\O’ as NULL. One example is Cray’s cf77. For such 

inachines there is a “NULFIX” switch in the interface makefile that causes the Fortran 

interface routines to recognize ’\O’ as the end of a string. 

Table 3 lists the names and argument lists of the supported Fortran calls in PVM 

version 2.3. 

Figures 4 and 5 depict the same program as the previous section. Dut now the 

examples are written in Fortran. 
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fbarrier( barrier-name, n, info ) 
fenroll( componentaame, instance-number. info ) 
fgetbytes( array, num, info ) 
fgetncplx( array, num, info ) 
fgetndcplx( array, num, info ) 

- ... 
......... ___.___ 

fgetndfloat( - array, num, info ) 
fgetnfloat( array, num, info ) 
fgetnint( iarray, num, info ) 

I-._._. ......... ___ 

fgetnlond iarray, num, info 

- fgetnshort( iarray, num, info ) 
fgetstring( string, info ) 
fgetstringl( string, length, info ) 
finitiate( componentaame, architecture, instagLe..number ) 
firtitiatem( componentaame. machine. instance-number ) 

_____I. 

.-__I_ 

___ fillitsend( ) 
fleave( ) 
fprobe( msgid,  iflag ) 
fprobemulti( ill. num, id-array, msgid ) 
fputbytes( array, num, info ) 
fputncplx( array, num, info ) 
fputndcplx( GGy,  num, info 
fputndfloitt array, num, info ) 

_.__..__I_ 

.. ... 

- 

fputnfloat( .... array, num, info ) 
fputnint( iarray, num, info ) 
fputnlond iarray, num, info ) 
fputnshort( iarrav, num. info ) 

......... 
fputstring( string, info ) 
fputstringl( string, length, info ) 
frcv( msg.id ) . 

frcvinfo( length, msgid, componentaame, instance-number, info ) 

fready( event-name ) 
fsnd( componentaame, instance-number, msgid, info ) 

......... ......... .- frcvrnulti(-n, types ) 
.____I ............... 

............ 

fstatus( componentdame, instance-number, .......... istatus ) __ 
fterminate( .... process-name, instance-number, info ) 
fwai t until( eventxame ) 
fwhoami( iproc, instance-number, info ) 

.... .......... ... _______ - 
......... ........ __ 

Table 3: Routines in Fortran-to-PVM interface. 
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i n t e g e r  i, i n f o ,  nproc,  msgtype, mynwn, i n s t ( 4 )  . . . 
double p rec i s ion  r e s u l t ( 4 1 ,  da ta ( l00)  , . . . 

C Enro l l  t h i s  program i n  PVM 
c a l l  f e n r o l l  ( "hostprogram\O", mynun, i n f o  

C I n i t i a t e  nproc in s t ances  of node program 
nproc = 4 
arch = fl \O1l 
do 10 i= l ,np roc  

c a l l  f i n i t i a t e (  "nodeprogram\O", a rch ,  i n s t ( i )  ) 
10 cont inue 

c - - e - - - - Begin use r  program -------- 

C 

C 

20 

broadcast  d a t a  t o  a l l  node programs 
ca l l  f i n i t s e n d o  
c a l l  fpu tnd f loa t (  da t a ,  100, i n f o  ) 
msgtype = 1 

c a l l  f snd( "nodeprogram\O", -1, msgtype , i n f o  ) 

wait f o r  r e s u l t s  from nodes 
msgtype = 2 
do 20 i= l ,np roc  

c a l l  f r c v (  msgtype ) 
c a l l  f g e t n d f l o a t (  r e s u l t  ( i )  , 1, i n f o  ) 

continue 

End use r  program -------- c --------- 

C program f i n i s h e d  leave PVM before e x i t i n g  
c a l l  f l eave  (1 
s t o p  
end 

Figure 4: Fortran host program template using PVM routines. 
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i n t e g e r  mynum, hostnum, by te s ,  msgtype, . . . 
double p rec i s ion  r e s u l t ,  data(1001, . . .  
character*16 hos t ,  . . .  

C Enro l l  t h i s  program i n  PVN 
c a l l  f e n r o l l (  "nodeprogram\O" , mynum, in fo  ) 

c ------- Begin use r  program -------- 

C Receive d a t a  from hos t  
msgtype = 1 

c a l l  f r c v (  msgtype ) 
c a l l  f g e t n d f l o a t (  d a t a ,  100, i n f o  ) 
call f r c v i n f o (  by te s ,  msgtype, h o s t ,  h o s t n m ,  i n f o  ) 

r e s u l t  = user - rout ine(  da t a  ) 

c Send r e s u l t  t o  hos t  
c a l l  f i n i t s e n d o  
c a l l  fpu tnd f loa t (  r e s u l t ,  1, i n f o  ) 
msgtype = 2 
c a l l  f snd (  "hostprogram\O", hostnum, msgtype, i n f o  ) 

End use r  program -------- c -----1--- 

c Program f i n i s h e d ,  Leave PVM before  e x i t i n g  
c a l l  f l e a v e 0  
s t o p  
end 

Figure 5: Fortran node program template wing PVM routines. 
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5. Obtaining PVM 

PVM is available from netlib. For information about this package send the following 

message to netlibQorn1 .gov. 

send index from pvm 

A short description of PVM and a list of available files in the package will be returned. 

The source files, which consume less than 350Kbytes, are available in the sliar file 

pvm-shar. To receive this file send the message: 

send pvm-shar from pvm 

The space requirement for PVM depends on the number of architectures for which 

it is built. A set up for five different architectures requires about 1 Mbyte of disk 

space. 

6. References 

[l] SUN Network Programming Manual Part Two: Protocol Specification, (1988). 
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