

ORNL/TM-11826

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A USERS’ GUIDE TO PVM

(PARALLEL VIRTUAL MACHINE)

Adam Beguelin
Jack Dongarra

A1 Geist *
Robert Manchek
Vaidy Sunderam **

Oak Ridge National Laboratory
Mat hem atical Sciences Section
P.O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

Emory University
Atlanta, GA 30322

** Department of Math 8.z Computer Science

Date Published: July, 1991

Research was supportcd by the Applied Matliematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, Tennessee 37831
managed by

Martin Marietta Energy Systems, Inc.
for the

U.S. DEPARTMENT OF ENERGY
under Contract No. DEAC-05-840R21400

Contents

1 Introduction . 1
2 Installation . 2
3 CRoutines . 5
4 FortranRoutines . 9
5 ObtainingPVM . 13
6 References . 13

... . 111 .

1. Introduction

This users’ guide to I’VM (Parallel Virtual Machine) version 2.3 contains examples

and information needed for the straightforward use of PVM’s basic features. Full doc-

umentation of all PVM options and error conditions will appear in The PVbf Reference

Marhual. (Documentation on all error conditions is presently included in the software

distribution under pvm/doc.)

PVM is a soft ware package that enables concurrent computing on loosely coiipled

networks of processing elements. PVM may be implemented on a hardware base consist-

ing of different machine architectures, including single CPU systerns, vector machines,

and multiprocessors. These computing elements may be interconnected by onc or more

networks, which may themselves be different (c.g. Ethernet, the Inixrnet, and fiber

optic networks). These computing elements are accessed by applications via a library

of standard interface routines. These routines allow the iiiitiation and termination of

processes across the network as well as communication and synchronization between

processes.

Application programs are composed of components that are subtasks at a moder-

ately large level of granularity. During execution, multiple instances of each component

may be initiated. Figure 1 depicts a simplified architectural overview of the PVM sys-

t em.
Application I

--.____.-.--.___.--....____..___. .____._.....___
Component instances :

Application 2
. . . - - . . . _ _ _ . . - . . . _ _ . . . - - . . _ _ _ _ _ _ _ _ _ I

PVM System

... 1
Component instances :

PVM System

Application 2
. - . . . _ _ _ _ . _ _ _ _ _ _ _ _ _ I

...

LAN 2 Butterfly Cray LAN I

Figure 1: PVM Architecture Model

- 2 -

Application programs view PVM as a general and flexible parallel computing re-

source that supports a message-passing model of computation. This resource may be

accessed at three different levels: the transparent mode in which component instances

are autoriiatically located at the most appropriate sites, the architectzlre-dependent

mode in which the user may indicate specific architectures on which particular com-

ponents are to execute, and the low-level mode in which a particular machine may be

specified. Such layering permits flexibility while retaining the ability to exploit par-

ticular strengths of individual machines on the network. The PVM user interface is

strongly typed; support for operating in a heterogeneous environment is provided in the

form of special constructs that selectively perform machine-dependent data conversions

where necessary. All communication done inside PVM uses the external data repre-

sentation standard, XDIt [l]. Inter-instance communication constructs include those

for the exchange of data structures as well as high-level primitives siich as broadcast,

barrier synchronization, mutual exclusion, and rendezvous.

Application programs under PVM may possess arbitrary control and dependency

structures. In other words, a t any point in the execution of a concurrent application,

the processes in existence may have arbitrary relationships between each other and,

further, any process may communicate and/or synchronize with any other. This is the

most unstructured form of crowd computation, but in practice a significant number of

concurrent applications are more structured. Two typical structures are the tree and

the “regular crowd” structure. We use the latter term to denote parallel computations

in which all processes are identical; frequently such applications also exhibit regular

commiinication and synchronization patterns. Any specific control and dependency

structure may be implemented under the PVM system by appropriate use of PVM

constructs and host language control-flow statements.

2. Installation

7‘he PVM package is composed of two parts. The first part is a daemon, called pvnid,

that resides on all the computers on the network. Pvind is designed so any user with

a valid login can install this daemon on a machine. When a iiser wants to run a PVM

application, he executes one of the installed pvmds which in turn starts up a user-

defined subset of the installed pvmds. This collection of running pvmds then defines

- 3 -

the present PVM configuration for that user. Multiple users can configure overlapping

PVMs and execute several PVM applications simultaneously.

The second part of the package is a library of PVh'I interface routines. Application

programs must be linked with this library to use PVM. Descriptions of the available

routines are given in the next two sections.

If you are responsible for installing PVM on your network, then the top level of the

PVM distribution should be in your home directory, and named pvm.

Check in the w/pvm/src directory for a subdirectory named for the architecture

of your machine (ARCH). Table 1 contains a list of names currently in use in PVM

version 2.3. If the correct one does not exist, you will have to make a new directory.

ARCH
PMAX
SUN3
SUN4
RIOS
SYMM
CRAY
I860
IPSC
CMZ
AFX8
TITN

Machine
Dec/Mips arch (Ultrix)
Sun 3
s u n 4
IBM/RSS000
Sequent Symmetry
Cray (UNICOS)
Intel iPSC/860
Intel iPSC/2
Thinking Machilies CM2
Alli an t FX / 8
Star dent Tit an

Table 1: Current names used in PVM.

The name choice is arbitrary, but should be concise and accurate. PVM will be using

the name to identify the machine type it is running on.

Tf you need to make an architecture directory, copy Makef ile .generic to the new

directory and ciistomize it for your architecture. When customiziitg the Mukefile,

the only thing you definitely have to set is the ARCH definition. You may addi-

tionally need to define certain switches from the list given, or compiler/loader flags.

Make the YVM daemon (p v m d) and user library (l i bpvm.~) by typing “make” in the

architecture directory of the machine you are logged onto. Once pvmd is made for each

of the architectures on your network, p n z d needs to be installed as /tmp/pvm/pvmd on

every host machine. Typically, this is done by setting up “soft” links to a centralized

executable in N/pvm/src/ARG~~/pvmd, but if this is not possible, then p v m d must be

copied to /tmp/pvm/pvmd on each machine.

When a PVM application asks for an executable program to be started up on some

machine, p v m d looks in ~/pvm/Al2CH on that machine for this executable program.

Therefore, each user of PVM is responsible for having a directory N/pvm/ARC‘Ron

each machine he wishes to configure into PVM.

To configure a subset of machines into PVM, the user must first create a file con-

taining the host names, one per line. The host running the initially executed pvmd

must he the first one in the file. (Blank lines and lines in the host file beginning with

“#” are ignored.) Several options call be specified on each line after the hostname.

If pw follows the hostname, then PVM will ask you for a password for this machine.

Your default logiii name can be changed by specifying lo= login name. Using these

options allow$ users to configiire machines for which they have different login names

and or passwords. ‘l’he pw option is also needed for machines that do not allow the user

to set up a .rhosts file. There is a third option available to allow the user to specify

a nonstandard location for the p v m d executable on this machine. This option is dx=

locution of purlid,

‘l’he user starts the pvriids with the command “/tmp/pvm/pvmd filename”. This

pvrnd will automatically start up a pvmd on each of the other hosts, asking for pass-

words wliere appropriate. If pvmd is invoked with a “-i” flclg, i.e., “/tmp/pvm/pvmd -i

filename”, then this pvmd will run a command editor that allows the user to query

PVhi about the status of processes and the present configuration of PVM. Typing

“help” displays all the available commands.

The user can now run PVM programs. Currently, standard out and standard error

streams of the slave pvmds (and any client programs they initiate) are passed back to

the initial pvmd and then to its standard out. Hostnames are added to the beginning

of each output so that output from remote machines can be distinguished from local

output.

- 5 -

To stop PVM the user should kill the initial pvmd with the q u i t command in

interactive mode or with control-C otherwise. Doing this will kill all the other pvrnds

and all processes enrolled in this PVM.

3. C Routines

Table 2 describes the communication and PVM interface routines available to C pro-

grams.

Sample programs are supplied with the software distribution. Figures 2 and 3 give

a template of simple host and node programs that use PVM routincs. In a host/node

model the host program initiates and directs some number of noclc programs which

perform computations. PVM is not restricted to this model. For example, any PVM

process can initiate processes on other machines. But a host/nodc model is a useful pro-

gramming paradigm and simple to illustrate. The host calls enroll0 to allow it to use

the PVM system and enable interprocessor communication. It then calls i n i t i a t e 0

to execute node program(s) on other machines in PVM. Each node program must also

call enroll 0 to enable interprocessor communication. Subsequently, s n d 0 and r c v 0

are used to pass messages between processes. The node program contains an example

of broadcasting messages in PVM. This is accomplislied by sending a message to an

enrolled name with the instance number set to -1. The message is sent to all instances

of enrolled processes with this name.

When finished, all PVM programs should call l e a v e 0 to allow tlic pvnzds to dis-

connect any sockets to the processes, and to allow the pvnzds to keep track of which

processes are running. In PVM the snd0 buffer remains valid until the next call to

i n i t s e n d o . Thus, the same message can be sent multiple tinics and can even be ap-

pended to with put*() commands between sends. On the receiving end, the processor

is idle (or blocked) from the time it issues the r c v 0 command until a message satisfy-

ing the request arrives and is copied into the specified user buffer. Note that a program

will not terniinate if a r c v 0 command is never satisfied by an arriving messagc of the

correct type. Moreover, only the type field distinguishes different messages in PVM. A

comInon mistake made by new users is not using enough distinct types in their snd()

arid r c v 0 calls to uniquely identify different messages in their program. This oftcn

leads to nondeterniinistic behavior of the user’s algorithm.

- 6 -

I i n t i n i t i a t e m (c h a r * o b j e c t f i l e , char *machine)
- initiate a process on the specified machine and returns instance number (>=O)

if successful or < 0 if error. If machine = “.”, then initiating machine is used.
...
void i i i i&Gid()

vo id le&&(j
__._I

- initializes send buffer

- process exiting PVM.

....

.......... ..___
i n t b a r r i e r (c h a r * b a r r i e r n a m e , i n t n u)

- blocks caller until num calls with same barrier name made. Returns < 0 if
error.

i n t e i i ro l l (char *component name)
- enrolls process in PVM and returns instance number (>=0) if successful or < 0

if error.

extracts nuin valiues of datatype [type] from received message and assigns it to
x , eg. getnfloat(x, 5). Returns -1 if buffer empty. [type] must be nint, nfloat,
ndfloat, ncplx, ndcplx, string, or bytes.

initiates a new process and returns instance number (>- 0) if successful or < 0
if error. If architecture is NULL, then PVM chooses an architecture.

.........
i n t g e t [t ype] ([type] +x * i n t num>

-

___ .-.-.. ~ ..____I
* o b j e c t f i l e , cha r *arch)

-

i n t p r o b e (i n t msgtype)
- probe for message arrival of specified type or ‘any’ if msgtype=-1. Returns

message type or --1 (not arrived).

same as probe, hut permits specifying an array of nurn message types.

inserts iium values beginning a t ptr into seiid buffer.
memory. [type] must be nint, nfioat, ndfloat, ncplx, ndcplx, string, or bytes.

i n t p r o h c m u l t i (i n t num, int-Gmsgtypes)

i n t put[type]-;(-C‘type] *ptT, i n t n u)

-
.___

- Returns -1 if out of

i n t r c v (i n t msgtype)
- receives a message of specified type or ‘any’ if msgtype=-1 (Blocking). Returns

actual message type.

returns the length, type, and sender of last rcv or probe. Returns -1 if rcv or
probe not called.

same as rcv, but permits specifying an array of nun1 message types.

sends sigrial with specified (abstract) name.

sends message in send buffer to the specified instance of component. If instance
= ---1, then broadcast t o all instances. Returns < 0 if error.

returns 1 if specified component is active, 0 otherwise.

i n t i n s t a n c e)
terminates a specified component. Returns < 0 if error.

suspends caller until specified signal name occurs.

returns component name and instance. Returns -1 if not enrolled.

-. ~

i n t r cv i i i fo (in t *by te s , i n t *msgtype, c h a r *component, i n t * i n s t a n c e)
-

....... .- ___
i n t r c v i n u l t i (i n t num, i n t *msgtypes)

vo id r e a d y (c h a r *evexlt<me)

i n t s n d (c h a r *component, i n t i n s t a n c e , i n tGGgtype)

-
.......... -.

-
..........___I

-

.___
i n t s ta t ixs(char *component ~ i n t i n s t a n c e)

i n t t e rmi i sa t c (char *component

vo id wa i tun t i l (cha r *event.name)

i n t whoaiiii(char *component, i n t *instance)-’-

-
........ ~ ____ _I...____

-
.......... I_.___

-
~ .-.-.

-

Table 2: PVM C user routines

- 7 -

main (1
{

i n t i, nproc, msgtype, mynum, instC41, ...
double r e s u l t C41, dataClOOl . . .
/* Enro l l t h i s program i n PVM */
mynum = e n r o l l ("hostprogram" ;

/* I n i t i a t e nproc ins tances of node program */
nproc = 4 ;
f o r (i = O ; i<nproc ; i++)

i n s t [il = i n i t i a t e ("nodeprogram", NUL) ;

/ / ------- Begin use r program --------

/ * broadcast data t o a l l node programs */
i n i t s e n d 0 ;
pu tndf loa t (d a t a , 100) ;
msgtype = 1 ;
snd("nodeprogram", -1, msgtype) ;

/* wait f o r r e s u l t s from nodes */
msgtype = 2 ;
f o r (i = O ; icnproc ; i++){

r c v (msgtype 1 ;
getndf l o a t (& r e s u l t [i] 1) ;

3

/ / --------- End use r program --------
/ * program f i n i s h e d leave PVM before e x i t i n g */
l e a v e 0 ;

3

Figure 2: Simple host program template using PVhl routines.

- 8 -

m a i n 0

<
i n t mynum, hostnum, by te s , msgtype, ...
double r e s u l t , dataCl001 , . . .
char hostCl61, . . .

/* E ~ ~ o l l t h i s program i n PVM */
mynum = e n r o l l ("nodeprogram") ;

Begin use r program -------- * / / * -I-----

/ * Receive d a t a from hos t */
msgtype = 1 ;
r cv (msgtype) ;
ge tndf loa t (d a t a , 100 1 ;
rcvinf o (&bytes , &msgtype h o s t , & h o s t n u)

r e s u l t = user-rout ine(d a t a) ;

/ * Send r e s u l t t o hos t */
i n i t s end (1 ;
putt idf loat(& r e s u l t , 1 ;

snd(h o s t , hostnum, msgtyps) ;
msgtyps = 2 ;

3

End user program -------- */ /* ---------

/ * Program f in i shed . Leave PVM before ex i t i ng * /
l e a v e 0 ;

Figure 3: Simple node program template using PVM routines.

- 9 -

4. Fortran Routines

The Fortran routines are built on top of the C routines described above so their func-

tionality is identical, but their names and arguments differ. Their naming convention

is to prcpend an “f’ to the C routine name. The Fortran-to-C interface routines handle

the distinctions between C and Fortran.

Several problems arose during the development of this interface. The first problem

was the different calling conventions of C from Fortran by different compilers. For

example, some compilers prepend C routine names with underscores; others do not.

This problem was resolved by having ifdef’s for each of the different calling conventions

in the interface routines. A second problem, common to Fortan-to-C! interfaces, was

correct passing of arguments. Fortran passes arguments by reference and C passes

arguments by value. Because of problems on some supported machines with passing

values to Fortran functions, only subroutines are used in the interface. This causes the

user interface to PVM to be slightly different when programming in Fortran rather than

C. A third problem encountered was string termination. Several PVM routines pass

strings, such as program names and signals. C terminates strings with N ULLs, but this

is not a requirement in Fortran so some Fortran compilers do not terminate strings.

Instead, they keep track of the length of strings in an internal table. Sending a C

routine a pointer to the beginning of a nonterminated string leads to no~~determ~nistic

behavior a t best and a memory fault a t worst. The solution to this problem requires

that Fortran programmers manually append all the string arguments in their codes

with NULLS For example,

call f i n i t i a t e (’program\O’, instancenum 1.

Not all Fortrans recognize ’\O’ as NULL. One example is Cray’s cf77. For such

inachines there is a “NULFIX” switch in the interface makefile that causes the Fortran

interface routines to recognize ’\O’ as the end of a string.

Table 3 lists the names and argument lists of the supported Fortran calls in PVM

version 2.3.

Figures 4 and 5 depict the same program as the previous section. Dut now the

examples are written in Fortran.

- 10 -

fbarrier(barrier-name, n, info)
fenroll(componentaame, instance-number. info)
fgetbytes(array, num, info)
fgetncplx(array, num, info)
fgetndcplx(array, num, info)

- ...
......... ___.___

fgetndfloat(- array, num, info)
fgetnfloat(array, num, info)
fgetnint(iarray, num, info)

I-._._. ___

fgetnlond iarray, num, info

- fgetnshort(iarray, num, info)
fgetstring(string, info)
fgetstringl(string, length, info)
finitiate(componentaame, architecture, instagLe..number)
firtitiatem(componentaame. machine. instance-number)

_____I.

.-__I_

___ fillitsend()
fleave()
fprobe(msgid, iflag)
fprobemulti(ill. num, id-array, msgid)
fputbytes(array, num, info)
fputncplx(array, num, info)
fputndcplx(GGy, num, info
fputndfloitt array, num, info)

_.__..__I_

.. ...

-

fputnfloat(.... array, num, info)
fputnint(iarray, num, info)
fputnlond iarray, num, info)
fputnshort(iarrav, num. info)

.........
fputstring(string, info)
fputstringl(string, length, info)
frcv(msg.id) .

frcvinfo(length, msgid, componentaame, instance-number, info)

fready(event-name)
fsnd(componentaame, instance-number, msgid, info)

.........- frcvrnulti(-n, types)
.____I

............

fstatus(componentdame, instance-number, istatus) __
fterminate(.... process-name, instance-number, info)
fwai t until(eventxame)
fwhoami(iproc, instance-number, info)

.... _______ -
......... __

Table 3: Routines in Fortran-to-PVM interface.

- 11 -

i n t e g e r i, i n f o , nproc, msgtype, mynwn, i n s t (4) . . .
double p rec i s ion r e s u l t (4 1 , da ta (l00) , . . .

C Enro l l t h i s program i n PVM
c a l l f e n r o l l ("hostprogram\O", mynun, i n f o

C I n i t i a t e nproc in s t ances of node program
nproc = 4
arch = fl \O1l
do 10 i= l ,np roc

c a l l f i n i t i a t e ("nodeprogram\O", a rch , i n s t (i))
10 cont inue

c - - e - - - - Begin use r program --------

C

C

20

broadcast d a t a t o a l l node programs
ca l l f i n i t s e n d o
c a l l fpu tnd f loa t (da t a , 100, i n f o)
msgtype = 1

c a l l f snd("nodeprogram\O", -1, msgtype , i n f o)

wait f o r r e s u l t s from nodes
msgtype = 2
do 20 i= l ,np roc

c a l l f r c v (msgtype)
c a l l f g e t n d f l o a t (r e s u l t (i) , 1, i n f o)

continue

End use r program -------- c ---------

C program f i n i s h e d leave PVM before e x i t i n g
c a l l f l eave (1
s t o p
end

Figure 4: Fortran host program template using PVM routines.

- 12 -

i n t e g e r mynum, hostnum, by te s , msgtype, . . .
double p rec i s ion r e s u l t , data(1001, . . .
character*16 hos t , . . .

C Enro l l t h i s program i n PVN
c a l l f e n r o l l ("nodeprogram\O" , mynum, in fo)

c ------- Begin use r program --------

C Receive d a t a from hos t
msgtype = 1

c a l l f r c v (msgtype)
c a l l f g e t n d f l o a t (d a t a , 100, i n f o)
call f r c v i n f o (by te s , msgtype, h o s t , h o s t n m , i n f o)

r e s u l t = user - rout ine(da t a)

c Send r e s u l t t o hos t
c a l l f i n i t s e n d o
c a l l fpu tnd f loa t (r e s u l t , 1, i n f o)
msgtype = 2
c a l l f snd ("hostprogram\O", hostnum, msgtype, i n f o)

End use r program -------- c -----1---

c Program f i n i s h e d , Leave PVM before e x i t i n g
c a l l f l e a v e 0
s t o p
end

Figure 5: Fortran node program template wing PVM routines.

- 13 -

5. Obtaining PVM

PVM is available from netlib. For information about this package send the following

message to netlibQorn1 .gov.

send index from pvm

A short description of PVM and a list of available files in the package will be returned.

The source files, which consume less than 350Kbytes, are available in the sliar file

pvm-shar. To receive this file send the message:

send pvm-shar from pvm

The space requirement for PVM depends on the number of architectures for which

it is built. A set up for five different architectures requires about 1 Mbyte of disk

space.

6. References

[l] SUN Network Programming Manual Part Two: Protocol Specification, (1988).

- 1s -

ORNUTM-11826

INTERNAL DISTRIBUTION

1.
2-6.
7-8.

9.
10-14.

15.
16-20.

21.
22-26.

27.
28.
29.

30-34.
35.

36-40.

B. R. Appleton
A. Beguelin
T. S . Darland
E. F. D’Azevedo
J. J. Dongarra
T. I-I. Dunigan
G. A. Geist
E. R. Jessup
R. Manchek
E. G. Ng
C. E. Oliver
B. W. Pcyton
S. A. Raby
C. €1. Rotnine
V. S. Sunderam

41-45.
46.
47.
48.
49.
SO.
51.
52.
53.
54.
55.
56.
57.

58-59.

R. C. Ward
P. H. Worley
A. Zucker
R. W. Brockett EPMD Advisory Committee)
J. J. Doming (EPMD Advisory Committee)
J. E. Le i s (EPMD Advisory Committee)
N. Moray @PMD Advisory Committee)
M. F. Wheeler (EPMD Advisory Committee)
Ccntral Research Library
ORNL Patent Office
K-25 Applied Technology Library
Y-12 Technical Library
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

60. Clevc Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA

61. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von Neu-
mann Drive, Beaverton, OR 97006-1999

62. David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffett Field, CA
94035

63. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
Univcrsity Park, PA 16802

64. Edward H. Barsis, Computer Scicncc and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerquc, NM 871 85

65. Eric Barszcz, NASA Ames Research Centcr, MS T045-1, Moffett Field, CA 94035

66. Robert E. Benner, Parallel Processing Div. 1413, Sandia National Laboratories, P. 0.
Box 5800, Albuquerque, NM 871 85

67. Donna Bergmark, Cornel1 Theory Center, Engineering and Theory Center Building,
Ilhaca, NY 14853-3901

68. Chris Bischof, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

98124-0346

- 16 -

69. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkoping,
Sweden

70. Jean R, S. Blair, Department of Computer Science, Ayres Hall, University of Tennes-
see, Knoxville, TN 37996-1301

71. Daniel Bolcy, Dcpartmcnt of Computer Science, Univeisity of Minnesota, 200 Union
Street, S.E. Rm.4- 192 Minneapolis, MN 55455

72. James C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

73. Bill L. Ruzbce, Scicntific Computing Div., National Center for Atmospheric
Research, P.O. Box 3000, Boulder, CO 80307

74. Donald A. Calahan, Department of Electrical and Computer Engineering, University
of Michigan, Ann Arbor, MI 48 109

75. John Cavallini, Office of Scicntific Computing, Office of Energy Research, ER-7,
Germantown Building, US. Department of Energy, Washington, DC 20545

76. Ian Cavers, Dcparhnent of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1 W5, Canada

77. Tony Chan, Dcpamnent of Mathematics, University of California, Los Angeles, 405
Hilgard Ave., Los Angela, CA 90024

78. Jagdish Chandra, Army Rcscarch Office, P.O. Box 1221 1, Research Triangle Park,
NC 27709

79. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

80. Melvyn Ciment, National Scicncc Foundation, 1800 G Street N.W., Washington, DC
20550

81. Thornas Coleman, Dcpartrncnt of Computer Science, Cornell University, Ithaca, NY
14853

82. Paul Concus. Mathematics and Computing, Lawrcnce Berkeley Laboratory, Berkeley,
CA 94720

83. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

84. George Cybcnko, Center for Supercomputing Research and Development, University
of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

85. George J. Davis, Department of Malhematics, Georgia State University, Atlanta, GA
30303

86. Ian S. Duff, Atlas Centre, Rutherford Appleton Laboratory, Chilton, Qxon OX1 1 OQX
England

87. Patricia Eberlcin, Depamncnt of Computer Science, SUNY at Buffalo, Buffalo, NY
14260

- 17-

88. Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, C T 06520

89. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

90. Howard C. Elman, Computer Science Department, University of Maryland, College
Park, MD 20742

91. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M / S 7L-21, Seattle,

92. Ian Foster, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439

93. Geoffrey C. Fox, WAC, 111 Collcge Place, Syracuse University, Syracuse, NY

94. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M/S TO45-1 Moffett
Field, CA 94035

95. Fred N. Fritsch, Computing & Mathematics Research Division, Lawrence Livennore
National Laboratory, P. 0. Box 808, L-316 Livermore, CA 94550

96. Robert E. Funderlic, Department of Computer Science, North Carolina Slate Univer-
sity, Raleigh, NC 27650

97. Dennis E. Cannon, Computer Sciencc Department, Indiana University, Bloomington,
IN 47405

98. David M. Gay, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

99. Charles W, Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ 08540

100. W. Morven Gcntlcman, Div. of Electrical Engineering, National Research Council,
Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada KIA OR8

101. J. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3Gl

102. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto,
CA 94304

103. Gene H. Golub, Department of' Computer Science, Stanford University, Stanford, CA
94305

104. Joseph F. Grcar, Div. 8331, Sandia National Laboratories, Livermore, CA 94550

105. Sven Hammarling, Numerical Algorilhms Group Ltd. Wilkhson House, Jordan Hill
Road Oxford OX2 8DR, United Kingdom

106. Per Christian Hansen, UNI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

107. Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Boulevard,
Houston, TX 77042-3020

WA 98 124-0346

13244-4 100

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

12s.

126.

M. T. Hcath, Center for Supercomputing Research and Development, 305 Talbot
Laboratory, University of Illinois, 10.1 South Wright Street, Urbana, IL 61801-2932

Don E. Heller, Physics and Computer Science Department, Shell Development Co.,
P.Q. Box 48 1, Houston, TX 77001

Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt Man-
chester, h113 9PL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling '4ir
Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Department Lawrence Livermore National
Laboratory, P.0, Box 808, Livermore, CA 94550

Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Lennait Johnson, Thinking Machincs Inc., 245 First Street, Cambridge, MA 02142-
1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
IJmea, Sweden

Malvin H. Kalos, Cornell Theory Center, Engineering and Theory Center Building,
Cornell University, Ithaca, NY 14853-3901

Hatis Kaper, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439

Robert J. Kee, Applied Mathematics Div. 833 1, Sandia National Laboratories, Liver-
more, CA 94550

Kenneth Kennedy, Depanmcnt of Computer Science, Rice University, P.O. Box
1892, Houston, 'I'X 77005

Thomas Kitchens, Dcparlriient of Energy, Sciennific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

Richard Lau, Office of Naval Kesearch, Code 11 1 IMA, 800 N. Quincy Street, Boston
Tower 1, Arlington, VA 222 17-5000

Alan J. Laub, Departmcnt of Electrical and Computer Engineering, University of Cal-
ifornia, Sarita Barbara, CA 93106

Robert L. Launer, Army Rcsearch Office, P.Q. Box 12211, Research Triangle Park,
North Carolina 27709

Charles L.awson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91 109

Pcter D. Lax, Courant Institulc of Mathcmatical Sciences, New York University, 251
Mercer Street, New York, NY 10012

-19-

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Boulevad, Houston,

Joseph Liu, Departmcnt of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

Franklin Luk, School of Electrical Engineering, Cornell University, Ithaca, NY 14853

Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Denver, CO 80202

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali-
fornia Boulevard, Pasadena, CA 91 125

James McGraw, Lawrence Livcnnore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Cleve Molcr, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Leary, Computer Science Department, University of Maryland, College
Park, MD 20742

James M. Ortega, Department of Applied Mathematics, Thornton Hall University of
Virginia, Charlottesville, VA 22903

Chris Paige, OADDR, McGill University, School of Computer Science, McConnell
Engineering Building, 3480 University Street, Montreal, PQ Canada H3A 2A7

Roy P. Pargas, Department of Computer Science, Clemson University, Clernson, SC

Beresford N. Parlett, Department of Mathematics, University of California, Berkeley,
CA 94720

Merrell Patrick, Dcpartmcnt of Computer Science, Duke University, Durham, NC
27706

Robert J. Plcmmons, Departments of Mathematics and Computer Science, North
Carolina State University, Raleigh, NC 27650

Jesse Poore, Department of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Michael J. Quinn, Computcr Science Department, Oregon State University, Cowallis,
OR 97331

Noah Rhee, Department of Mathematics, University of Missouri-Kansas City, Kansas
City, MO 641 10-2499

98 124-0346

TX 77042-3020

29634-1906

- 20 -

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton T,aboratory, Didcot, Oxon OX1 1 OQX, England

Werner C. Rhcinboldt, Dcpartment of Mathematics and Statistics, University of Pitts-
burgh, Pittsburgh, PA 15260

John R. Rice, Computer Sciencc Department, h r d u e University, West Lafayettc, IN
47907

Gany Rodrigue, Numerical Mathematics Group, Lawrence Livennore Laboratory,
Livermore, CA 94550

Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Ahrned H. Sameh, Computer Scicnce Department, University of Illinois, Urbana, IL
61801

Michael Saunders, Systems Optimization Laboratory, Operations Research Depart-
ment, Stanford University, Stanford, CA 94305

Robert Schrciber, RIACS, Mail Stop 230-5, NASA Ames Rcsearch Center, Moffet
Field, CA 94035

Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, Ncw Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaverton,
OR 97006

Lawrence F. Shampinc, Mathcmatics Department, Southern Methodist University,
Dallas, TX 75275

Kermit Sigmon, Departlncat of Mathematics, University of Florida, Gainesville, FL
3261 1

Horst Simon, Mail Stop 258-5, NASA Ames Rescarch Center, Moffett Field, CA
94035

Larry Snyder, Dcpar-tment of Computer Scicncc and Engineering, FR-35, University
of Washington, Seattle, WA 98195

Danny C. Sorenscn, Department of Mathematical Sciences, Rice University, P . 0.
Box 1892, Houston, TX 7725 1

Rick Stevens, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

G. W. Stcwart, Computer Scicnce Department, University of Maryland, College Park,
MD 20742

Quentin F. Stout, Dep:rrtment of' Electrical and Computer Engineering, University of
Michigan, Ann Arbor, MI 48109

Danicl B. Szyld, Dcpanmcnt of Computer Science, Duke University, Durham, NC
27705-259 1

-21 -

166. W.-P. Tang, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

167. Michael Thomason, Department of Computer Science, Ayres Hall, University of
Tennessec, Knoxville, TN 37996- 1301

168. Bernard Tourancheau, LIP ENS-Lyon 69364 Lyon cedex 07, France

169. Charles Van Loan, Department of Computer Science, Cornell University, Ithaca, NY
14853

170. James M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1 W5, Canada

171. Udaya B. Vemulapati, Department of Computer Science, University of Central
Florida, Orlando, I% 328 16-0362

172. Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

173. Michael Vose, Department of Computer Science, Ayes Hall, University of Tennes-
see, Knoxville, TN 37996- 1301

174. Phuong Vu, Cray Research Inc., 1408 Northland Drive, Mendota Heights, MN 55120

175. E. L. Wachspress, Department of Mathematics, University of Tennessee, Knoxville,

176. Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall, Clem-
son University, Clemson, SC 2963 1

177. D. S . Watkins, Dcpartment of Pure and Applicd Mathematics, Washington State
University, Pullman, WA 99164-2930

178. Andrew B. White, Computing Div., Los Alamos National Laboratory, Los Alamos,
NM 87545

179. Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumann Drive, Beaver-
ton, OR 97006

180. Margaret Wright, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

181. David Young, University of Tcxas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

182. Office of Assistant Manager for Energy Research and Development, U.S. Department
of Energy, Oak Ridgc Opcrations Office, P.O. Box 2001, Oak Ridge, TN 3783 1-8600

183-192. Office of Scientific Tcchnical Information, P.O. Box 62, Oak Ridge, TN 37831

TN 37996-3 300

