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ABSTRACT 

Learnability in Valiant’s pac-learning formalism is reformulated in terms of ex- 
pected (average) error instead of confidence and error parameters. A finite-domain, 
random set formalism is introduced to develop algorithm-dependent, distribution- 
specific analytic error estimates. Two random set theorems for finite concept-spaces 
are presented to facilitate these developments. Analyses are carried out for several 
illustrative problems with worst-case and semi-uriiform distributions of learning ex- 
amples. Analytic bounds on the sample size needed to achieve a specified average 
error axe established. Useful approximations for these bounds and a worst-case 
distribution are also derived. Conclusions are drawn about the potential value of 
average-error bounds in improving the stated efficiency of pac-learning algorithms. 
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1. INTRODUCTION 

This paper takes an alternative view of Valiant’s theory of learnability (Valiant 
1984, 1985) and the generalizations to it published by Blumer, et al., (1969). 
Valiant’s original approach defines a probabilistic basis for approximating concepts 
from a class of concepts that in many cases might otherwise be intractable to learn. 
For this reason, the theory has been termed pac-learning, an acronym for probably 
upprozzmutely correct learning. While this seminal theory has renewed interest in 
the field of machine learning, much of the work to date has been theoretical (see 
e. g. Haussler & Pitt 1988; Rivest, et al., 1989; Haussler 19SSa,b). Such efforts 
have focused primarily on the existential issue of establishing complexity bounds 
for algorithms which learn concepts from a class under worst-case scenarios. 

The major strength of the pac-learning formalism is in establishing algorithm- 
independent, distribution-free complexity bounds. This is also, we feel, one of its 
weakness. Since existential bounds are not algorithm-dependent or distribution- 
specific, pac-research results tend lack tight constructive proofs and can not be 
used to generate optimal algorithms for specific problem classes. In addition, the 
use of both error and confidence parameters to define learnability appears to be 
unnecessary and difficult to use in practice. Other, simpler performance measures 
are often the only ones that can be readily evaluated. The impact of some of 
these limitations on practical problem solving have been recognized and discussed 
in Haussler 1990. 

To address these problems, we take another look at the pac-learning formalism 
with an eye towards simplifying its basis. The broad perspective of information- 
based complexity theory (Traub, et al., 19SS) has shown that many levels of sp- 
proximation exist for “solving” computationally intractable problems. These levels 
are not just restricted to worst-case analyses. Often average-case scenarios make a 
deterministically intractable problem amenable to practical low-order algorithmic 
solution. The strong interest computer scientists have in distinguishing between P 
and NP problem classes has limited the impact these other methods might have on 
machine learning algorithm development. We suggest that better analytic tools and 
tighter bounds on sample complexity can be found more easily by studying other 
levels of approximation and distribution-specific methods (see e. g. Benedict & Itai 
1990 or Haussler 1990 for a first step in this direction). In addition, we feel the 
usefulness of pac-methods would also be improved by redefining learnability in a 
more practical fashion. 

For these reasons, we propose a definition of pac-learnability in terms of mo- 
ments of the probabilistic error distribution. In particular, a definition which uses 
only the first moment or average error has distinct advantages over the conventional 
pac-learnability definition. The average error is both easier to deal with analytically 
and can be readily estimated in practice. This simpler approach could be termed 
paca-learning (probabilistically approsimately correct on average). Valiant’s def- 
inition, which uses aconfidence measure approach tu the distribution of errors, is 
somewhat cumbersome and unneeded in practice (i. e. most problems appear to be 
insensitive to the confidence parameter the theory requires). To make maximum use 
of this rcforniulation we will adopt a finite, random set framework for our analysis. 
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2 INTRODUCTION 

This approach allows some powerful, yet simple, theorems to be used to generate 
useful algorithm-dependent , dis tribut ion-specific, analytic results. 

In the following sections of this paper, Valiant’s theory will first be reviewed 
and then redefined in random set terms. Two theorems for random set measures 
on finite concept-spaces will then be presented. These theorems will be used to 
determine analytic sample complexity bounds in some illustrative cases. Several 
sampling scenarios (i. e.semi-uniform and worst-case distributions) will be dealt 
with to highlight the practical applicability of this approach. All the developments 
will preserve the distribution-specific nature of the learning examples so that easier 
learning scenarios (i. e.  not worst-case, distribution-free) can be readily analyzed. 



2. LEARNABILITY THEORY 

To begin, we briefly review Valiant's pac-learning theory. Since this formalism 
has been generalized considerably in the years since its introduction, we use the 
more recent notation of Blumer, et al., (1989). In this exposition we will explicitly 
highlight the random set aspects of pac-learning theory. For the sake of clarity, the 
discussions will be restricted to finite concept-classes and sample-spaces. In this 
framework, we can more easily discuss learnability in set-theoretic terms. 

2.1 PAC-LEARNING FORMALISM 

In Valiant's approach, the goal is to learn a target concept t which is a member 
of a class of target concepts 2'. For our purposes, T will be a finite class and its 
members will be defined in terms of sets of points x in a finite space of learning 
examples X .  In this set framework, T is a subset of the power set of X (i. e. 
T C Z X ) .  Any t E T will, therefore, be a particular subset of points t C X. The 
complement of t E X, denoted by i, will then be t̂  ZE X' - t .  

In order to analyze learnability probabilistically, a probability distribution 
p ( x )  is assumed to be defined over X. A sample of m instances, denoted by 
i j  = (51,. . . , xm), randomly drawn from X using this distribution to learn t 
or its complement t .  Each element of this sample is assumed to be labelled t or f 
[i. e. for any x E X, label Z(z) = 1 if z E t ,  otherwise l ( x )  = 01. This random, 
labelled m-sample, denoted by 5 = ([zl, E(z,)], . . . , [x,, Z(xm)]>, is an ni-s,ample in 
the Cartesian product space xm f X" x (0, l}m. 

A pac-learning algorithm A is defined as a function A(?) 

A(5) : [.i- E xm] -+ [h E H, 
H ]  , 

which takes as its input the m-sample Z and produces as its output a hypothesis 
h E H .  For our purposes, H is defined to be the class of sets H C 2x that can be 
generated from any A using any finite or countably infinite sample. H,, will be used 
to denote the subset of H that can be generated from A with any fixed sample size 
rn. In learning theory, any h E H is meant to be an approximation to any t E T .  

In more specific terms, 11 is said to probabilistically approximate t with error 
K. This error is defined by the probability measure associated with the error set 
'I' E X, defined as the symmetric difference between h and t .  That is 

ti E p ( r )  = p ( h  at)  , (3 
where the symmetric difference is defined by T = lint = ( t  - h )  U ( h  - t ) .  

The error thus represents the probability of erroneously classifying a randomly 
drawn example 5 E X using hypothesis h as an approximation to t .  The particular 
r E A" in this expression is clearly just a single instantiation of a class of random 
error sets that can generated from d(5). Other members of this class are generated 
by the other random m-samples Z f xm. 

The nunber of sampled instances rn is usually specified to be m( E ,  6): a function 
of two parameters E and 6, called the approximation erroT and conf idence,  respec- 
tively. Both of these parameters have values in the range ( 0 , l ) .  Given fixed values 

3 



4 LEARNABILITY THEORY 

for E and 6, learnability is defined in Valiant’s formalism to be the esistence of an 
algorithm d ( z )  whch produces a hypothesis h E H that has an error ~ ( 5 )  > 
with probability 5 6. The smallest sample size m ( ~ ,  6) which satisfies this criterion 
in a worst-case scenario over all t E T ,  is denoted by L ,  and called the sample  
complexi ty .  

For the finite concept classes and finite X we will deal with in this paper, 
Blumer, et al., (1989) have shown that for any consistent learning algorithm, L,, 
can be bounded from above with a sample size rng given by 

where IHI is the cardinality of the hypothesis class H and T 

2.2 RANDOM SETS 

In order to discuss learnability in random set terms, we must first reinterpret 
the pac-learning approach in random set terms. As a first step, it is sufficient at  this 
point to note the stochastic nature of two fundamental sets in Valiant’s theory, the 
hypothesis set h and the error set r .  Both are clearly random sets since they arise 
from a deterministic mapping A(%) of a random variable 2.  That is, for a given 
value of m and a particular target set t ,  each probabilistic realization of 5 gives rise 
to a particular h E H ,  and r E X as a result of the mapping given in Eq. (1). The 
probability of sampling any Z is determined by the probability [(z) of picking any 
random m-sample of points x from the probability distribution p ( x ) .  

In random set theory (see e. g. Kendall 1977 and Goodman & Nguyen 1985) 
each set has two measures of importance. The first measure is associated with the 
range and the second with the domain of a deterministic map. The traditional 
issue addressed in this framework is that usually many measures are available for 
formulating solutions to a particular problem. Invariance arguments are then used 
to unify these measures. This approach is the focal point of a field like stochastic 
geometry. 

In the learning case, invariance arguments are not needed. Both the domain and 
range measures are already defined uniquely. The domain measure, for example, 
is the probability [ (Z)  associated with each m-sample in (i.  e. a measure for 
each point 5 E A-’’’). The range measure is clearly ~ ( 5 ) .  We can, therefore, develop 
expressions for the moments of the measures of a random set (discussed later in 
the paper). The central point for us here is, that since both h and r are sets 
in A’, they both have probability measures in A‘. These measures, p ( x  E h )  and 
p ( x  E T ) ,  respectively, are both generated from p ( x ) .  Having measures defined over 
both the domain and the range of d(Z) allows us to  develop a random set basis for 
pac-learning. 

As far as practical benefits are concerned, we feel that an analysis of the mo- 
ments of a random set (specifically the error-set) is more useful than the standard 
pac-learning approach. In fact, average-error learnability is directly related to the 
problem of cstiniating learning curves. Ideally, a learning curve is a measure of an 
algorithm’s performance error at any stage in a learning procedure. In practice, 
this curve is usually constructed by keeping track of the number of errors made in 
a running window of examples. The difficulties of using the E and 6 parameters 

H .  



LEARNABILIT Y TNEOR Y 5 

in pac-learning theory to estimate such a learning curve are well noted by most 
practical problem solvers and acknowledged by Haussler ( 1990). A moments-based 
approach to Valiant's theory is one way to remedy this situation. Several random 
set theorems will be developed to make this moment approach easier to work with 
both analytically and in a algorithm-dependent, distribution-specific framework. 

2.3 ERROR MEASURE MOMENTS 

To make practical use of the measure properties of the random sets h and r ,  
we propose a redefinition of learnability in the pac-formalism. Instead of using 
both error and confidence parameters, we drop the confidence (since it plays only a 
minor role in most analyses anyway) and work with moments of the measures of the 
random error sets. Specifically, we will be most interested in the first and second 
moments, the average error and its variance, respectively. Since the probability of 
making a misclassification error is defined in Eq. (2), the expectation (average) of 
the measure of the random set T is the average misclassification error resulting from 
hypothesis h. This expectation, for a given target t and a given sample size m, is 
defined in general as 

EIp(Tj] E r c =  1 p ( i z A t ) J ( h )  , (4) 
h E H ,  

where ( ( h ) ,  called the (-measure of h, is the probability of generating the randoni 
set h from A. It is defined as 

d ( Z ) = h  d ( 2 ) = h  

That is, e( h )  is the sum of the probabilities of all the m-samples, 

( 5 )  

2 ,  from which the 
algorithm generates h. 

over all m-samples of z is normalized by 
For fixed m, d can generate hypotheses only in the class H ,  , so the distribution 

( 6 )  
% €  f- h E H ,  

The higher moments of the error distribution for fixed rn and t are likewise defined 
by 

h € l l m  

Using these definition we can formally redefine learnability as the existence 
of an algorithm d(Z) which produces a hypothesis h that has an expected error 
E [ K ( z ) ]  < E. Higher moments can also be included in this definition, but we will 
forgo this added complication for the sake of simplicity. The smallest sample size m 
which satisfies this criterion in a worst-average error scenario for all targets t E T ,  
will be denoted as LE and called the average sample-complez i ty  for learning this 
class. 
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The usefulness of this redefinition will become clearer after we present some 
theorems for measures of random sets in certain problem classes. .4t this point, 
however, it is important to point out that in some cases there may be little difference 
between the traditional Valiant definition of learnability and the proposed random 
set version. The two may be comparable when 6 = 0.5. In this case, Valiant’s 
definition produces a median error while the random set approach produces an 
average error. While these two error measures can, in general, be very different, 
in some cases the differences are minimal. In any event, where the differences are 
great, the random set analysis can be carried to higher moments of the error-set 
measures to get results to compare with the traditional pac-approach. 



3. MEASURES OF RANDOM SETS 

The practical value of redefining learnability as we did in the last section is based 
to a large extent on the availability of several powerful random set theorems. These 
theorems go back at least to Robbins (1944) who derived general expressions for 
the moments of the measure of a random set. They provide the basis for developing 
analytic expressions for sample complexity in a number of important cases. Since 
we are primarily interested in finite-space learning, we will make use of Robbins’ 
results only for this more specialized class of problems. More general continuous- 
space analyses, however, are possible with the integral forms that are the basis of 
Robbins’ original theorems. 

3.1 RANDOM SET THEOREMS 

The two primary theorems presented by Robbins (1944) deal with the moments 
of the measures of a random set in continuous measure spaces. The finite-space 
counterparts of these theorems suitable for our learning work can be developed 
along the following lines: 

Definition 1. Let r be a random J-measurable set in the finite space S. Then 
2” is the space of 
belongs to any [- 

for every possible T 

all possible sets r ,  then this means that the probability that 
measurable subset S E. R is 

x’, there is a I-measure I{T). If R 

[(SI = t(r E S )  = s(r7 S > W  ? (8) 
rE R 

where g ( r ,  S) is the indicator function 

Definition 2.  Let x be a random p-measurable point in S. Then for every 
x E X there is a p-measure p( z). The probability that x belongs to any p-measurable 
subset r 5 S is then 

P ( d  = P b  E = S ( V ) P ( 4  (10) 
Z E X  

Definition 3. Given the product space X x R and a p,(-measure for every 
pair ( x , ~ ) ,  let S, be the space of all r E R that contain point z. Then, if z E r we 
have r E S, and if x r we have T 6 S,. Thus g ( r , S z )  = ~ ( J . , T ) ,  V ( s , r )  pairs. 

Robbins (1944) uses continuous versions of these definitions together with Fu- 
bini’s theorem to prove two integral theorems. For our purposes. we can use the 
simple relationship 

rERxEA’ z € S  r E R  

to state finite-space counterparts of these integral theorems. 
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Theorem I. Let r be a random measurable subset of a finite space X with [- 
measure [ ( r ) .  Let z be a random measurable point in X with pmeasure p ( r ) .  For 
any possible measurable pair (x, r )  E X x R, let [(z E T )  denote the [-measure of 
any point z E A' being a member of the random set r .  Then the expected p-measure 
of 7- will be given by 

E LP(79I = P(z>t(z  E 4 7 (12) 
X E X  

where, 

rER 

If we restrict ourselves to probability measures, then [(x E r )  is the probability 
that z is a member of a random set T .  This probability is clearly equivalent to the 
[-measure of those random sets r E X that contain 5. 

A suitable extension of this theorem allows higher moments of the p-measure of 
T to be calculated. 

Theorem 11. Let r be a random measurable subset of the finite space X with 
[-measure ((7'). Let z be a random measurable point in X with p-measure p ( r ) .  
For any possible measurable k + 1-tuple ( 2 1 , .  . . , x k ,  r )  E x R? let [(XI,. . . , x k  E 
T )  E [(z1,andz2,. . . andxk E r )  for a point ( z l r .  . . , zk) E X k .  Then the expected 
Ic-th moment of the pmeasure of r will be given by, 

where 

t(Zl,...,xk E .) = C9(.,SX,)...9(T,SZi)~(T) . (15) 
rEI l  

Here, when restricted to probability measures [(XI,. . . , xk E r )  is the probability 
that (z1 and x2 . . . and zk) are members of a random set r .  

The use of the relationship in Eq. (11) and the definitions provided makes the 
proofs of these theorems trivial in the finite-space case. For continuous-space prob- 
lems, Robbins (1944) provides simple, yet elegant proofs of both of these theorems. 
These latter proofs rely on the linear properties of the measures involved and Fu- 
bini's theorem to decouple and reverse the integration orders over the p ,  [-measure 
space. The key advantage of using these theorems in a pac-learning context is being 
able to more easily estimate the [-measures. In learning (as we will soon see), these 
measures represent the probability of any example(s) being a member of a random 
error set T .  They allows analytic estimates of average errors and variances to be 
made in some interesting classes of learning problems. 

3.2 ILLUSTRATIVE FINITE-SPACE PROBLEM 
To make practical use of the theorems just stated, we will focus our attention on 

one particular class of random hypothesis sets - disjoint covers of A-. For illustrative 
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t 

t 
- 

purposes, therefore, we assume that the hypothesis class H will be constructed from 
a fixed, finite partition of X' into s disjoint sets which completely cover X. Each 

then give rise to two component subsets of each b;, these being b: C t and b, i. 
Here, we adopt the common convention of calling samples drawn from t as posit ive 
examples (i. e. x E t EZ x+) and samples drawn from f as negative examples (i. e. 

Using this notation, the points 5 in each subset b; will then have a probability 

subset of this partition will be denoted by bi ,  i = 1,. ... s. .4ny specific t E T will 

- 
x E t % z-). 

of classification as t of p' and as t" of p ;  with 

... ... + 
P;' P; P:: P S  

... ... P ,  
- - - 

PI P2 P, 

These probabilities are suitably normalized so that 

i = l  

and 

S S 

i= l  i= 1 

A schematic table representing this partitioning is 

... ... 
bl b2 b3 b, 

Fig. 1. Partition probabilities. 

We now assume that the space of all possible hypotheses H generated by a 
learning algorithm A is the power set of these partition subsets. That is, if B E 
{ b l , .  - e ,  b S }  then H = 2" and /.HI = 2". In general, the target space will still be 
defined as T 2x, but in one case to be discussed, we will let H = T .  This latter 
class of problems is the counterpart of an infinite hypothesis class shattered by s 
points, making s the VC-dimension of the hypothesis class (see Blumer, et al., 1989 
and Vapnik 1982). 



10 M E A S U R E S  OF R A N D O M  S E T S  

With the general partition structure just defined, two subproblems will be dis- 
cussed in more detail. The first, is a problem class in which perfect learning is 
possible. In this case H = T ,  so that Vbl either p;  = 0 or p: = 0. The second, is a 
problem class in which only approximate learning is possible for some t E 7'. That 
is, t 4 H for some t E T ,  so that for this t both p: # 0 and p ,  # 0 in at least one 
subset of the partition. 

These two cases are usually distinguished by the asymptotic behavior of the 
errors made in performance. In the perfect learnin . case, the hypothesis space 

therefore, approaches zero. For this case, we will, in addition, assume that once an 
example is seen it will be classified correctly in all future selections (i. e. consistent 
learning). In the approximate learning case, the representation is inadequate and 
the error cannot be reduced to zero even if every example is seen. Depending on the 
representation and the stage of the learning process, errors are, therefore, possible 
for both seen and unseen examples. Both of these cases are discussed more fully in 
Blumer, et al., (1989). 

contains a perfect representation for t (i. e. t E 2 LF ) and the asymptotic error, 



4. ANALYSIS OF COMPLEXITY BOUNDS 

Using the random set formalism described in the last section, we can now derive 
analytic sample complexity bounds for several illustrative perfect and approximate 
learning problems. For each problem, two distribution-specific scenarios will be 
analyzed: (1) a worst-case scenario, in which the distribution of learning examples 
is such that a maximum average-error bound is achieved and (2) a semi-uniform 
scenario, in which learning examples will be uniformly distributed at the subset 
level in the partition structure. The first case, because it is a worst-case scenario, 
is equivalent to a distribution-free case. In the second case, we are dealing with a 
clearly distribution-specific problem. For this latter case, we will be assuming that 
what we call a semi-uniform distribution is uniform at the subset level. That is, 

(19) 
- 

p ,  = a / s  and p+ = (1 - a ) / s  , Vz , 
where a is the fraction of negative examples in the sample space. 

Since this partition structure is simple, distribution-free bounds on sample com- 
plexity in the pac-learning definition of learnability can easily be stated. For any 
consistent learning algorithm, the sample complexity bound is given in Eq. (3) with 
IHI = 2’. Though useful from an existential point of view, such a result provides 
few clues as to how to actually construct a worst-case distribution or how to take ad- 
vantage of an easier learning scenarios (such as the semi-uniform case). We address 
these limitations in the analyses which follow. 

4.1 PERFECT LEARNING 

This problem 
can be solved using either positive or negative examples alone by analogy with 
Valiant’s consistent learning algorithm for k-DNF’s and k-CNF’s (Valiant 1984). 
The approach we present is discussed in detail in Oblow (1990) and Oblow (1991). 
Using the random set framework given in this latter work, a representative problem 
for the partition structure given in Eqs. 16-18 and Fig. 1 can be defined as follows 

The first problem we will study is the perfect learning case. 

. . .  b, b2 b3 

I I 

Fig. 2 .  Perfect learning partition probabilities. 

11 



12 ANALYSIS OF COMPLEXITY BOUNDS 

Since uniform learnability over the whole target class t E 2B is our concern, we 
only have to choose the hardest target in the class to learn. In Valiant's Boolean 
framework, clearly the elimination of all hypotheses to some probabilistic tolerance 
is the hardest learning problem. Thus, the target that is hardest to learn starting 
from the full hypothesis set is the null set. If we restrict our attention to algorithms 
that learn using only positive or negative examples alone (see e. g. Valiant 1984 or 
Oblow 1991), then a representative problem is generated by assuming that the target 
or its complement is the null set and it must be learned using only counterexamples. 
That is, if t = $, we have to learn t from negative examples starting with h = X FZ t ;  
if t = $, we have to learn tfroni positive examples starting with h = X ==: t'. Without 
loss of generality, the first of these two cases will be used as our generic illustrative 
example. In this case, we will drop the negative example superscript (i. e. p: I p ; )  
and let the partition table be: 

bl b2 

Fig. 3. Generic perfect learning with negative examples. 

With this representation, a consistent learning algorithm in which the hypoth- 
esis set always correctly classifies any examples that have already been seen can 
easily be developed. This algorithm starts with the default hypothesis h = X z t 
and eliminates as inconsistent any subset b, in which counterexamples (negative 
examples) are found. After seeing 7n examples, the algorithni returns an h which 
is the union of all subsets in which no counterexamples are found. If at least one 
counterexample is seen in each of the b,, the null set will be learned perfectly and 
the performance error for this algorithm will be zero. 

In such an algorithm, it is easy to see that the probability of any example being 
a member of the error set T = h A t = h ,  is the same as the probability that it is a 
member of a partition subset with no observed counterexamples. The union of all 
such subsets will be called the unseen set and be denoted by u. Since all subsets 
in the partition which have been sampled will by definition be correctly classified 
in this case, the only mistakes that can be made by this algorithm are in selections 
from u (i. e. from subsets with no observed counterexamples). 

In this way, the probability that a particular b, contains no counterexamples 
after rn samples is clearly (1 - p , )" .  This is also the probability that no 3: E b, will 
be selected in rn random samples from p ( z )  and, therefore, 6, will be n subset of u. 
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In random set terms, the probability that any arbitrary z E b; is a member of the 
random set u after m random trials is then 

t ( h )  = [(x E u )  = (1 - P i ) "  * (20) 

The simplicity of Eq. (20), coupled with the generality of Theorem I allows us now 
to produce a problem-specific, analytic expression for the average error in this case. 

Thus, for the hardest target case (i. e .t = 4), the expected measure of the 
random set r = h = u is given by 

3 

z=I 

This expression represents the average performance error for such an algorithm. 
It, therefore, also represents a learning curve for this case as a function of m. 
Clearly, the error uniformly decreases to zero as examples in each previously unseen 
subset b, are sampled. Since this expression holds for any probability distribution of 
examples p ( x ) ,  it also provides an analytic average-error estimate for any problem- 
specific distribution of examples in a worst-target scenario. 

Again, because of the simplicity of Eq. (20), we can extend this analysis to 
include higher moments of the error measure. In this manner we can completely 
characterize the probabilistic distribution of error measures through its moments. 
In this perfect learning case, Theorem I1 can be used to give higher moments as 

where 

t(xi1,...,xik E T ) = [  l - p ( ~ i ,  ~ r o r  * * *  orxi ,  ~ r ) ] *  . 
Simplifying this expression, gives the final result that 

x [ 1 - p(zi, E b j ,  or - - - or xi, E b j , )  1" 
S 3 

j,=l j,=l 

where, because of the or operation, the probabilities can only be summed if the j ' s  
are distinct. We thus artificially define 
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p j  + p j l  = p j  if j = j’ , V j :  j ’  (25) 

This expression completely characterizes the distribution of error measures that 
arises from randomly sampling examples from p(x). The fact that this result is 
simple, allows some interesting analyses to be carried out for specific sampling 
distributions ~ 

4.1.1 Semi-uniform Distribution Case 

For the semi-uniform case defined as pi = l / s , V i ,  it is easily seen from Eq. (21) 
that 

m 

E =  (1 - ;) 
The average performance error at any stage in this consistent learning procedure is 
thus O( 

Solving for sample size using this result, we see that the sample complexity 
bound for average-error learnability to within E is 

1 
e s l n -  . ln€ 

L,  = 
In(1 - $) E 

This expression is linear in 5 ,  as is Blumer’s result in Eq. (3) with /HI = 2’, but i t  
is logarithmic in 1 / ~  as opposed to linear in Blumer’s case. 

The second moment of this distribution can likewise be evaluated. Using The- 
orem I1 we see that 

This expression allows the variance in the error distribution to be expressed as 

- 
-2 

V ( K )  = K2 - K 

=L( l - ; )m+T( l - ; )m-  5 - 1  (1-5) 2 m  , (29) 

5 

which for large 5 is 

In this case, we see that the variance is clearly O(X/5), yieldmg high confidence in 
ri for large 5. 
- 
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4.1.2 Worst-case Distribution 

The more interesting scenario for perfect learning is the worst-average distri- 
bution problem, which is equivalent to a distribution-free case by definition. For 
this case we can also get analytic results and bounds on sample complexity. To 
obtain such results, we first have to find the probability distribution that yields a 
worst-average error for any arbitrary sample size m. 

We first observe that since the individual maximum for any term in the sum 
over i in Eq. (21) is given by 

the maximum average-error can be bounded by 

To determine the distribution that actually produces the maximum average- 
error, we let p l  be a normalization constant and differentiate Eq. (21) with respect 
to each pi ,  i = 2 , .  . . ,5. Setting all these derivatives equal to zero, we get 

subject to the normalization condition 

(34) 

8 

P 1 = 1 - C P i  * 

i=2 

Since each pi term is equal to the same constant, the worst-average distribution 
can be seen to be a member of a family of distributions with a single parameter /? 

For the case of m > s, the system of equations given in Eq. (33) can be solved 
with an approximation O [ ( ~ / r n ) ~ ]  to find the /? giving the maximum average-error. 
This result is 

The worst-average error is thus approximately 

- s - 1  
Smax ==: - , 

em 

and the worst-average sample complexity is, therefore, given by 

s - 1  
e€ 

L z z s -  . 

(37) 
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This expression should be compared to Blumer’s bound with b = 0.5 given in Eq. (3) 
(i. e. the worst-median sample complexity). 

4.1.3 Test Results 

To illustrate some distribution-specific results, the specific family of distribu- 
tions given in Eq. (35) was used to test the analytic results given in Eq. (38). For 
comparison purposes, a simple computational algorithm was written to stochasti- 
cally estimate a pac-learning complexity bound L ,  for the ,&family, given s ,  E, 5. 
The estimation program uses samples from any member of the @-distribution family 
to find the sample size mp which satisfies the condition that the error be less than 
E with probability less than 6. It steps through m and integrates the actual error 
distribution to arrive at its results. For each @ value, each rn-sample is repeated 
several thousand times to get adequate statistics (i. e. accuracy to within a few 
percent). I;, is then defined as the smallest value of mp over the whole @-family. 
Coniparisons were then made with the analytic values of LE which we derived and 
Blumer’s bound rng.  

Results for several selected cases are given in Tables 1. The table covers a range 
of s values from 16 to 256 and a large case of 2048. Bounds are given for an error 
value of E = 0.1 and (for pac-results) a confidence value of 5 = 0.5. Blumer’s bound 
mg and Lff;- are given for each case for comparison purposes. 

I 

S 

16 
32 
64 

128 
256 
048 

55 60 
114 119 
232 237 
468 472 
939 945 
532 7,557 

112 
217 
428 
849 

1,690 
3,476 

Table 1. Bounds for several problems with c = 0.1 and 6 = 0.5. 

The results in this table show clearly that the worst-average errors computed 
from Eq. (38) are a good approximation to the pac-learning worst-median sam- 
ple complexity for the @-family of distributions used. .4t worst (for s = IS), 
the largest disagreement between the worst-median sample complexity L ,  and the 
worst-average value L c  is only 10%. The analytic expression for L ,  should, there- 
fore, provide useful information in practical problem solving. Since Blumer’s bound 
mg is about a factor of two higher than the L E  bound in all of these cases, L x  
appears to be a useful lower bound to sample complexity even in the pac-learning 
forrnali sm. 

4.2 APPROXIMATE LEARNING 

The more difficult problem we address now is approximate learning. This case 
can arise in practice in several different ways, the two most important ,being: 1) 
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t 

t 
__- - 

perfect learning with noise and 2) learning with an inadequate representation (i. e. 
t H for some t E T ) .  The inadequate representation case will be assumed in 
the developments to follow simply because it is slightly more general. For our 
illustrative example, this means that the partition structure will be inadequate to 
exactly represent the target. A probabilistic approximation to any target t E T 
is then the best solution possible. A schematic way of looking at this general 
approximate learning problem is given in Fig. 4. 

... ... P1 p: Pi- P: 
+ 

- ... ... P ,  
- - - 

Pl P2 P3 

... ... bl b2 b3 

Fig. 4. Approximate learning partition probabilities. 

This is the same format as given in Fig. 1, except for the stipulation that 
because t 4 H for some t E T ,  we will have both p;' > 0 and p: > 0 in at least one 
subset b,. Under these conditions, the best any learning algorithm can do with this 
representation is produce an approximate error (i. e. X > 0). To discuss this case in 
a useful manner, we note that in each partition subset b t ,  the smallest asymptotic 
error for any target can be generated by choosing the subset label (i. e. t or i) that 
has the hi hest probability. That is, the best approximate label in each b,  is the 
larger of 3 or p , .  This does not necessarily produce the best set representation 
of the target, only the smallest performance error. Since these probabilities are not 
known beforehand, the learning problem will be to empirically approximate this 
best asymptotic solution. 

Several useful algorithms can be constructed to approximate the solution of this 
class of problems. Learning t from negative examples or learning t from positive 
examples will be discussed first. An algorithm using both positive and negative 
examples will then be presented to produce the best approximation possible. Using 
either positive or negative examples alone will only approach this best solution 
under special conditions. As for scenarios in this case, it is not useful to analyze 
a worst-case scenario if both positive and negative examples are used in learning. 
It is obvious that a worst-case error of E,,, = 0.5 is achieved for a target and 
distribution in which p;' = p ,  = 0.5, Vi. For this reason we will just analyze the 
semi-uniform distribution scenario and bound all errors by 0.5. 

I 

4.2.1 Positive Or Negative Examples Oiily 

To illustrate learning with positive or negative examples alone, we use the same 
problem developed for perfect learning. That is, the target will be such that all 
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subset probabilities are non-zero and we will learn t from negative examples alone. 
For this approximate learning scenario, however. we let 0 < p: 5 p - .  Vz, to 
insure an upper bound to the error of 0.5 for comparison purposes. In this fashion 
the positive examples can he viewed as noise or a poor representation of the null 
set in the perfect learning framework. While only negative examples will be used 
for learning, we will measure performance error using both positive and negative 
examples. 

To solve this problem we can use the same consistent learning algorithm dis- 
cussed before. That is, we start with h = X M t and each subset is labeIled t 
until a negative (counterexample) is chosen, at which time the subset is labelled i. 
The error set under these conditions is composed of two subsets. The first subset 
consists of all xCs E b,, Vb, that have counterexamples. The second subset consists 
of all z+ E b,, Vb, with no counterexamples. Because of the complementary nature 
of the b, with and without counterexamples, the results of interest can be written 
in terms of the random set u., the set with no counterexamples. 

In this case, the probability of any 2 E b, is a member of the random error 
set T after rn selections from p(xc-) is composed of the probabilities of 2 ,  being a 
member of u 

(39) 
- r n  

<(x; E 7') = [ (XJ  E u )  = (1 - p ,  ) , 
and 2;  not being a member of u 

Applying Theorem I to this problem we get 

3 

x = p( . )< (x  E T )  

i = l  ZEbl 

s r  1 
= I p(z-)J(x- E T )  + p( .+)<( .+  E 791 . 

and the final result is, therefore, 

This expression is similar to the one given for perfect learning in Eq. (21), except 
for the additional error term arising from the approximation inherent in the subsets 
already having counterexamples. That is, even after seeing a counterexample from 
a subset in this approximate learning case, errors will still be made in the fraction 
of the samples in the subset labelled t . 

We now specialize the result for a semi-uniform distribution of positive and 
negative examples (only the negative ones being used for learning) of the form 
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with a > 0.5. 
The average error for this case is then given by 

(44) T i = l - a + ( 2 c r - l )  1 - -  ( :Irn . 
The asymptotic value for this average error is thus 1 - a ,  the fraction of the total 
number of examples that axe positive. The initial (n2 = 0) average error is clearly 
a. For a = 1, we get the perfect learning result given in Eq. (21), as expected. 

If a prescribed error E is in the range 1 - Q < E 5 a ,  then a useful sample 
complexity can be defined for this case. This result is 

To be comparable to the perfect learning results given in Eq. ( 2 T ) ,  it is instruc- 
tive to rework this sample complexity in terms of probabilistic convergence of the 
average error to its asymptotic value. This special case is useful if decisions need 
to be made about the rate at which an approximate algorithm learns. Thus, if we 
subtract the asymptotic value from the average error and define this shifted error 
as 

( -yz 7 

- - 
fca E5 fc - (1 - a )  = (2a - 1) 1 

we then can find the sample complexity for which Ea = e as 

Lz, = - In- +ln(2cr - 1) , 
Q " [  t 1 (47) 

which is now comparable to Ey. (27). 

4.2.2 Positive and negative examples together 

The most general approximate learning problem we will discuss is the case wherc 
both positive and negative examples are used in learning. The essential aspects of 
this problem are captured in an algorithm that learns the best classification label 
for each subset of the partition structure separately. We will again assume, for the 
sake of comparison, that all subset probabilities are nonzero and that pr > p:, 
Vi .  Clearly, the best that can be done empirically in any subset, is to select as the 
hypothesis, thelabel that has the highest empirical number of examples. 
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Given that the partition results for this empirical problem are 

. . .  . . .  bl b2 b3 b3 

Fig. 5. Approximate learning empirical partition results. 

an optimal algorithm for each subset b; of the partition is 

t if n: > n y  ; 
t if n; >n+ . hi = 

Here, n;' and n f  are the observed numbers of positive and negative examples 
recorded in the ith-subset b;,  respectively, and h; is the hypothesis label to be 
given to that subset. In this case, to be consistent with the previous illustrative 
cases presented, we have explicitly defaulted to a t label if the observed numbers of 
examples in any bi are equal. 

In the asymptotic limit, the empirical frequencies of examples in each subsct 
will approach the probabilities p;' and p i .  The worst error in performance, for the 
stated condition that p ;  > p: ,  will then be given by 

3 

- 
Km,, = c p ;  . 

i= 1 
(49) 

Since the empirical results in each subset are probabilistic, Theorem I can again 
be used in this case to determine the average error on a subset-by-subset basis. The 
error set r ,  for each b, is again composed of two subsets T,- and 7.:. The first subset 
T ,  is the set of all 2- E b,, if a t label is chosen for b,. This error set is realized 
when n: 2 n,. The second subset T;' is the set of all zs E b,, if a t label is chosen 
for b,. This error set is realized when n,  > n:. 

The complementary nature of the two components of the error subset T ,  in each 
b,, allows us to write the resulting overall error in terms of only the conditions which 
give rise to r,. This result is 

- 
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9 

= [ P f G i  + ~ , + ( 1 -  ~ i ) ]  7 

i= 1 

where Gi is the probability of an example b; being labelled t thus realizing random 
error set T ; .  That is, in any m-sample 

G, z [ ( n t  2 n i )  . (51) 

For the finite-space problems we are dealing with, the function G, can be eval- 
uated analytically from the multinomial distribution describing the probabilistic 
rn-sample outcomes. 'This evaluation can be broken up into two components: 1) 
the probability of picking n, examples in b, and 2) the probability that, given 72, 

examples in b , ,  we then get ri: 2 n,. The result is that G, can be written as 

The simplest case that can be analyzed in closed form in this framework is again 
the semi-uniform distribution scenario given in Eq. (19). Under such conditions, 
the worst-average error is given by 

where 

Any further analysis of this class of problems requires riumerical methods. 



5 .  CONCLUSIONS 

In summary, we were able to develop improved analytical tools for studying pac- 
leaniability using a random set formalism. The major advantage of this approach 
was found to be the availability of two powerful random set theorems for analyzing 
performance errors and sample complexity in a algorithm-dependent , distribution- 
specific framework. To use these theorems we first had to redefine learnability in 
terms of moments of the measures of the error set, a departure from the error 
and confidence approach first proposed by Valiant. The moment approach allowed 
analytic expressions to be developed for performance errors in several important 
problem classes. It also provided tools for studying learning in a problem-specific 
environment 

Several illustrative examples were worked out in detail. These included perfect 
and approximate learning problems in a disjoint-partition concept space. For most 
of the cases studied, analytic expressions were presented for the average error in 
learning performance and an associated sample complexity. In one case the sec- 
ond moment of the error distribution was presented in analytic form as well. The 
expressions derived were algorithm-dependent and distribution-specific, in that the 
results were explicitly dependent on the algorithm analyzed and the probability 
distribution of learning examples. 

The major conclusions that can be drawn from this work are that the random 
set approach makes pac-learnability analysis more amenable to practical problem 
solving. The problem-specific nature of the results show that for many problems, 
worst-case analyses can greatly overestimate the number of random examples needed 
to meet a given performance criterion. The average-error expressions developed us- 
ing this approach are also more amenable to experimental verification whilc learning 
is taking place. That is, analytic average-error expressions can be directly verified 
by a learning curve estimated incrementally while learning. 

opposed to Valiant’s worst-case, distribution-free approach. 
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