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ABSTRACT

A Gaussian-elimination method for calculating classical periodic trajectories is formu-
lated for a two-dimensional system. Two variants of the theory are obtained, one assuming
that the period of the motion is fixed and the other assuming that the total energy is fixed.

Comparisons are made between various approaches.
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I. INTRODUCTION

A new algorithm was recently developed for calculating classical periodic trajectories.!

It is based on the Monodromy matrix!? and has been particularly useful in calculations
of nonintegrable, two-dimensional Hamiltonians.? "® This Monodromy method!? involves
4 x 4 matrices, and one might ask whether it is possible to solve the problem in a two-
dimensional space. Of course, the dimension of four in the method is just that of the phase
space; alternatively, for a second-order differential equation (in time) one needs initially to
specify two coordinates and two momenta. However, there is a certain amount of “overkill”
in this approach since the periodic boundary conditions should, in principle, allow one to
eliminate two degrees of freedom. In fact, for analogous one-dimensional problems (with
a two-dimensional phase space) in which the boundary conditions are fized, Gaussian
elimination in one dimension allows one to solve very efliciently the equations of motion.’

In Section I1 of this report we generalize this Gaussian-elimination method to two
dimensions and then, by introducing an additional recursion, treat the case of periodic
boundary conditions. Two variations of the method are developed, one in which the period
is fixed and the other in which the total energy is fixed. Also, in section II we compare
this new Monodromy formulation with the original one,! concluding that the latter is
probably preferable to the former, at least for most applications of interest. Nevertheless,
the 2 x 2 method is important since it may provide valuable insights into various extensions
of the theory, particularly when a large number of dimensions is required. Finally, another
2 x 2 method is being developed and it promises to be superior to any of the methods

mentioned.!"
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II. GAUSSIAN ELIMINATION IN TWO DIMENSIONS

As in ref. 1, there are two variants of the method for calculating periodic trajectories.
In the first one (MONOD.T) we fix the period of the trajectory, but the total energy
changes in an unknown way. In the second method (MONOD_E) the energy is essentially
fixed, but the period is unknown. We shall now discuss both methods and then compare

various Monodromy-type approaches.}

A. CONSTANT PERIOD FORMULATION (MONOD.T)
First, for a two-dimensional Hamiltonian system (with unit mass), the general equa-

tions of motion are
&+ Ve(e,y) =0
(2.1)
ﬂ + Vy(mvy) =0,

where a dot indicates time (t) differentiation and V.(z,y) and V,(z,y) are the partial
derivatives with respect to z and y, respectively, of the potential energy function. For a

trajectory with period v we have

z(t+7)=2a(t) ; y(t+7)=1y(t) (2.2)

We discretize Eqs. (2.1) and (2.2) with respect to time in the simplest possible way,

obtaining’
zje1 — 2zj +ajoq + € Ve(zj,y;) =0 23)
Yi+1 — 2yj + Y1 + € Vy(zj,y;) =0, .
zirN =) 5 YN =Y 7 =0,1,..N, (2.4)

and € is the time step assumed. There are N time steps, with 7 = Ne.

If we linearize Eqs. (2.3) in the vicinity of an approximate trajectory (with coordinates

(z%,4})), we find !

bxjyy - 28z + bxj 1 + ? Vior(z J,yj)ﬁaj + € Vaylz J,yj)ﬁy] =a;j 2.5)
2.5
6yj+] - Qéyj + ‘Sy,i--~l + € Vz‘u( ;sy})émj + 6 Vy ( 27y])6yj = bja

with the definitions ) |
~-aj:w1“ ~2x; +x; +E V(e J,yJ)

” ’ (2.6)
=bj =y — 2y, tyjg te V(e zj,95)-



Egs. (2.5) are rewritten as’

1Yj+1 '{“ XJ‘Al — PJ AXJ - 44]', (27)

where
and

are two-dimensional vectors and

2" 2V';r:r ,(! p - 21/11 "?7 ?
P (Pa ) ) (2.10)
—€ 1",y(:vj,yj) 2—¢€ Vyy(:cj,yj)

is a two-dimensional matrix.

Before considering the case of periodic trajectories, it is instructive to solve Egs. (2.7)

when we have zero boundary conditions, i.e.,

X, =0 (2.11a)
AXV_N_{_] == O (211b)
The solution to Eqs. (2.7) and (2.11) is a simple generalization of the Gaussian-elimination

method, as applied to one-dimensional problems.? From Eqs. (2.7) and (2.11) it can easily

be shown that
Xj = Qi Xju + Ty, (2.12)

where (J; is a two-dimensional matrix and 7} is a two-component vector, which satisfy the

recursions
Q; = (P~ @Qj1)" (2.13)
T; = Qi(Tj-1 — 4j). (2.14)

We solve for the Q’s and 7”s by forward recursion, starting with

Qn =0 (215&)

T, = 0, (2.15b)
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which follow from Eqs. (2.11a) and (2.12). (The right-hand-sides of Egs. (2.15a) and
(2.15b) are a null matrix and a zero vector, respectively.) Then, using Eq. (2.12), we eval-
uate the X’s by backward recursion starting from Eq. (2.11b). Of course, by rearranging
the above equations one can also solve for the @’s and 7"’s by backward recursion and
for the X’s by forward recursion. Moreover, the method can be applied to other types of
boundary conditions,? e.g., if X, and X are fixed (but not necessarily zero) vectors or if
all derivatives vanish on a boundary.

Now return to the periodic boundary condition, Eq. (2.4), which gives the unknown
vector

XU = X]\', (216)

and generalize Eq. (2.12) to
Xj=Q; Xjp1 + K; Xn +Tj, (2.17)

where K is another 2 x 2 matrix. Then, from Eqs. (2.7), (2.16), and (2.17) we find
that the Q’s and T's again satisfy Eqgs. (2.13), (2.14), and (2.15), while the K’s obey the

recursion

Kj=Q; Kj1, . (2.18)

with the initial condition

K(] — 1, (2.19)

whose right-hand-side is the unit matrix. Therefore, using Eqgs. (2.13) (2.14), and (2.18),
we constuct the Q, T, K by forward recursions, starting with the boundary relations (2.15)

and (2.19).

It is clear then that each X; depends explicitly on the unknown Xn, i.e.,
Xj=58;Xn+ Gy, (2.20)

where S; is a matrix and G is a vector. From Eqs. (2.17) and (2.20) we obtain the

relations

S;=Q; 5+ + Kj, (2.21)
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Gj=Q;Gjr1 +1Tj, (2.22)

and
Sx =1 (2.23a)
Gy - 0, (2.23b)

which allow us to determine the S’s and G’s by backward recursions. We next examine Eq.
(2.7) for 7 = N, namely
Xag1 + X8y - P XN = Apn. (2.24)

Then, after substituting Eq. (2.20) into Eq. (2.24) and recalling from Eq. (2.4) that

Xni1 = Xy, we find that
Xo= Xy =(5 +Sv.1 - Pv) (AN — Gy ~ Gny). (2.25)

Thus, with X'~ finally determined, we can evaluate the remaining X’s from Eq. (2.17) by
recursing backwards. Since Eqs. (2.5) were obtained by a linearization, we can construct

a new trajectory from
0
zj= T+ bz

“ | (2.26)

This trajectory can, in turn, be used as a starting guess for the next iteration. For a
reasonable initial irajectory, convergence is very rapid. Moreover, for each iteration this
method gives results which are exactly the same as those obtained using the Monodromy
matrix,' so the two approaches are identical. Notice too, from Egs. (2.3), (2.6), and (2.8),
that once we have calculated a periodic trajectory that satisfies the equations of motion,
A;j is a null vector. Then, it is easily shown from Eqgs. (2.14), (2.15b), (2.22), and (2.23b)
that the vectors 7, and (; also vanish whenever we achieve convergence. This vanishing
of the converged vectors is always a general feature of the Monodromy method.?

The total energy of the continuous Hamiltonian is, of course, conserved. However,
because of our discretization, the energy is only approximately constant. Thus, it is useful

to define an average cnergy!

Eyw = — Z Ej, (2.27)



where E; is the energy of the 7™ “link”,

1 1
Ej = g5 [(zia1 — 2)" + (i1 — 25)° 1+ 5 Viesin,4501) + Viwsr95))- (2:28)
We find that the maximum deviation of a single link from the average value is less than
1% for N = 96 and for a relatively simple trajectory. As the trajectory becomes more
complicated (particularly for period multiplying branchings), we must increase the N value

in order to achieve comparable accuracy.

B. CONSTANT ENERGY FORMULATION (MONOD_E)
Next, consider the case in which the energy in Eq. (2.27) is essentially constant, but

the period (or €) can cha,ngcr‘. We let €2 — € + 6(€?), and Eq. (2.7) is modified as follows!
Xjp1 +Xjo1 — PjX; = A; + B;j 8(€%), (2.29)
where

| B; - (*VT(“’i’y}’)> (2.30)

_Vy(‘l’py'j’)
is a vector and P; and A; are defined as before with ¢ replaced by €2. Therefore, A; —
A; + Bjé(€?), and if we explicitly include §(e’} as an additional unknown in Eq. (2.17),
we find that

X;=Q; Xju1+ K; Xn + T + R; 8(%). (2.31)
The two-component vector R; satisfies
R; =Q;(Rj-1 — Bj), (2.32)
which can be constucted by forward recursion from the initial condition
R, =0. (2.33)

The Q’s, T’s, and K's are evaluated in exactly the same way as in the previous subsection.

We also modify Eq. (2.20) to include the §(¢?) dependence, obtaining

‘\rj = Sj Xn + Gj +- I/Vj 5(62) . (2.34)
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The S’s and G’s are calculated precisely as before, and W; is a vector satisfying the
relations
W, =Q; W1 + Rj, (2.35)
and
Wn = 0. (2.36)

Thus, we recurse backwards to construct the 17’s from Eqgs. (2.35) and (2.36).

We now have to determine three unknowns (6§zx, éyn, 6€?), which means that we need
to solve three linear, simultaneous equations. From Eq. (2.29) (for j = N) and Eqs. (2.4)
and (2.34), we obtain

(S] 4+ Sn_y — P‘\') Ny + (W’l + Wno1 — BJ\')(S(EZ) = An — Gy — GN»I, (237)

which gives two conditions. The third equation is obtained by demanding that the energy
has a fixed value. In particular, we shall assume in Eq. (2.27) that the link E, is a
constant.’ (As remarked previously, this guarantees that £\ &~ F,.) Then, we linearize
Eq. (2.28) for 3 = 0 to obtain
en [Vao(z'v,y0) drn + V(2o yn) dyn + Vil yy) 620 + Vy (2, 97) 6
+2(2) - w\) (8zy - den) 20y — yn) (6yr - yn) (2.38)
H[=2Ey + V(2] y)) + V(zk,ux)] (") = n,

with

=26 Be (2 - 2x ) - (5 - ya)t - @ [V(Lyl) + Viek,yn)l (2-39)

We rewrite Eq. (2.38) as
aX, +BX~ +rb8(E) =7, (2.40)

where

k= —2E, + I"(:B‘ll,y‘l') + ‘(m'l\vyg)v (2.41)

and & and 3 arc the row vectors
6 (1265 ) = @Vl L 20 - vk - € V), (2.42)

B (120 2 @R 2 wh) AV ERuR)). (243)
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Finally, we combine Eqgs. (2.34), (2.37), and (2.40) to obtain the 3 x 3 representation

F ¢ XN J
B T Sa—— —— =1 -=1, (2.44)

5 | ¢ é(¢*) X

with the definitions

F = Sl + Sn-1 — Pa (2.45&)
(=W + Wy — Bx (2.45b)
y=ab +8 (2.45¢)
p=aW; +k ' (2.45d)
J=An —G; - Gn_; (2.45¢)

Eq. (2.44) can be easily inverted to evaluate Xx and 8(e?), which are used to construct a
new trajectory using the recursion (2.31) and then Eq. (2.26). The period of the trajectory
1s given by

=N 6(2, + 8(€?). (2.46)

As before, we iterate until we obtain convergence.

C. COMPARISONS OF THE VARIOUS METHODS

MONOD.T and MONOD_E converge equally well for most cases of interest.! Le., it
usually doesn’t matter very much whether we fix the period and let the energy come out
of the calculation, or vice versa. In practice, in either method we have found that, for a
reasonable starting trajectory, 4 — 10 iterations are required in order to achieve 8-figure
accuracy for the final coordinates. However, In general MONOD T works somewhat better
than MONOD .E for cases in which the period is changing more rapidly than the energy,
while MONOD _E is superior for the reverse situation.! In particular, if we are constructing
a family (or sets of families) on a plot of the energy vs the period (£ -- 7 plot), MONOD_T

is better to use near horizontal tangents while MONOD_E is more useful near vertical
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tangents. Also, it 1s important to use MONOD_E near the region of small oscillations
about an equilibrium point,’ where the period is almost constant over a range of energies.
(In fact, there are many examples of families, originating from small oscillations, for which
the period remains constant for all energies.?-?)

The most important result is that the 2x2 methods (MONOD_T and MONOD _E) give
exactly the same results as those obtained using the analogous 4 x 4 Monodromy methods.*
Thus, the 2 x 2 (“half-space”) formalism is completely equivalent to the earlier 4 x 4 (“full
space”) theory. However, it is not very clear how to relate the two formalisms since the
recursions are different in the two approaches. Moreover, there are major differences in the
algorithms involved which may be significant numerically in various extensions of the work.
(E.g., in nuclear TDHF studies.!! 7!%) The full-space method involves only one recursion
(“once around the track”'), while in the half-space method we must first recurse forward
and then again backwards. Also, in the 2 x 2 method there is an inversion at every time
step. In both methods, after we obtain the “end points” of the trajectory, we must perform
an additional recursion in order to calculate the remaining coordinates.

A major disadvantage of this half-space approach is that it appears to give no informa-
tion about stability , whereas in the full-space formalism the eigenvalues of the Monodromy
matrix uniquely determine the stability of a trajectory.! ™® Also, the eigenvectors of the
Monodromy matrix (for its nonunity eigenvalues) are crucial for computing new families

of trajectories which bifurcate from a parent family.!2
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