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ABSTRACT 

A Gaussian-elimination method for calculating classical periodic trajectories is formu- 

lated for a two-dimensional system. T w o  variants of the theory are obtained, one assuming 

that the period of the motion is fixed and the other assuming that the total energy is fixed. 

Comparisons are made between various approaches. 
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I. INTRODUCTION 

A new algorithm was recently developed for calciilating classical periodic trajectories.’ 

It is based on the Monodromy niatrixl~’ and has been particularly useful in calculations 

of nonintegrabk, two-dimensional Hamiltonians.’ This Monodromy involves 

4 x 4 matrices, and one might ask whether it is possible to solve the problem in a two- 

dimensional space. Of course, the dimension of four in the method is just that  of the phase 

space; alternatively, for a second-order differential equation (in time) one needs initially to  

specify two coordinates and two momenta. However, there is a certain amount of “overkill” 

in this approach since the periodic boundary conditions should, in principle, allow one to  

eliminate two degrees o f  freedom. In fact, for analogous one-dimensional problems (with 

a two-dimensional phase space) in which the boundary conditions are f ized,  Gaussian 

elimination in one  dirnension allows one to solve very efficiently the equations of motion.9 

In Section 11 of this report we generalize this Gaussian-elimination method to  two 

dimensions and t lien, b y  introducing an additional recursion, treat the case of periodic 

boundary conditions. T n 7 o  variations of the method are developed, one in which the period 

is fixed and the other in which the total energy is fixed. Also, in section I1 we compare 

this new hlonodromy formulation with the original one,’ concluding that the latter is 

probably prt-ferablc to the former, a t  least for most applications of interest. Nevertheless, 

the 2 x 2 method is iniportant since it may provide valuable insights into various extensions 

of the theory, particularly when a large number of dimensions is required. Finally, another 

2 x 2 method is hcing developed and it promises to be superior to  any of the methods 

mentioned . I “  
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11. GAUSSIAN ELIMINATION IN TWO DIMENSIONS 

As in ref. 1, there are two variants of the method for calculating periodic trajectories. 

In the first one (MONOD-T) we fix the period of the trajectory, but the total energy 

changes in an unknown way. In the second method (MONOD-E) the energy is essentially 

fixed, but the period is unknown. We shall now discuss both methods and then compare 

various Monodromy-type approaches.’ 

A .  CONSTANT PER.IOD FORMULATION (MONOD-T) 

First, for a two-dimensional Hamiltonian system (with unit mass), the general equa- 

tions of motion are 
2 + V & C , y )  =o 

y + V&)y) -0, 

where a dot indicates timr ( t )  differentiation and VT(z,y) and Vy(z,y) are the partial 

derivatives with respect to 2 and y, respectively, of the potential energy function. For a 

trajectory with period 7 we have 

We discretize Eqs. 

obtaining’ 

( 2 . l )  and (2.2) with respect to time in the simplest possible way, 

2 
ZJ+l - 22j  + X j - . I  + E V T ( Z j ) Y j )  =o 

y j i - 1  - 2yj + yj-1 + E Vy(zj,yj) = O )  
2 

and F is the time s k p  assumed. There are N time steps, with T = N E .  

If we linearize Eqs. (2.3) in the vicinity of an approximate trajectory (with coordinates 

(x‘j,y!)), we find 
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Eqs. (2.5) arc rewritten as1 

where 

x j  = (;;;) 
and 

are two-dimensional vectors and 

(2.10) 

is a two-dimensional matrix. 

Before considering the case of periodic trajectories, it is instructive to  solve Eqs. (2.7) 

when we have zrro boundary conditions, i.e., 

s,, = 0 

&+] = 0. 

(2.11a) 

(2.11 b)  

The solution to Eqs. (2.7) and (2.11) is a simple generalization of the Gaussian-elimination 

method, as appl id  to onr-dimensional problems.9 From Eqs. (2.7) and (2.11) it can easily 

be shown that 

~ &, -Xj+l t T j ,  (2.12) 

where Qj is a two-dimensional matrix and Tj is a two-component vector, which satisfy the 

recursions 

(2.13) -1 Q .  J = (Uj -- Qj ...1> 

Tj Qj (Tj-1 - .4j). (2.14) 

We solve for the 4 ‘ s  a n d  7 ” s  by foruiard recursion, starting with 

(2.15a) 

(2.1.5 b) 
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which follow from Eqs. (2.11a) and (2.12). (The right-hand-sides of Eqs. (2.15a) and 

(2.15b) are a null matrix and a zero vector, respectively.) Then, using Eq. (2.12), we eval- 

uate the X’s  by backwiard recursion starting from Eq. (2.11b). Of course, by rearranging 

the above equations one can also solve for the Q’s and T’s by backward recursion and 

for the x”s by forward recursion. Moreover, the method can be applied to other types of 

boundary conditions,9 e.g., if XIl and X1y are fixed (but not necessarily zero) vectors or if 

all derivatives vanish on a boundary. 

Now return to thc periodic boundary condition, Eq. (2.4), which gives the unknown 

vector 

x,, = x-jy, (2.16) 

and generalize Eq. (2.12) to 

where K,  is anuther 2 A 2 matrix. Then, from Eqs. (2.7), (2.16), and (2.17) we find 

that the  Q’s and T ’ s  again satisfy Eqs. (2.13), (2.14), and (2.15), while the K’s obey the 

recursion 

Kj  = Qj Kj-1, 

with the initial condition 

K,I = 1, 

(2.18) 

(2.19) 

whose right-hand-side is t,he unit matrix. Therefore, using Eqs. (2.13) (2.14), and (2.18), 

we constuct the Q, Y’, K by forward recursions, starting with the boundary relations (2.15) 

and (2.19). 

It is clear then that each S j  depends explicitly on the unknown Xx, i.e., 

where Sj is a matrix a.nd G,i is a vector. 

relations 

From Eqs. (2.17) and (2.20) we obtain the 

s .  j = $ .  j L j + 1  5’. + K j ,  (2.21) 



(2.22) 

and 

s-,- = 1 (2.23a) 

G.\- 7 0, (2.23b) 

which allow us to determine the S's and G's by backward recursions. We next examine Eq. 

(2.7) for j = N ,  namely 

SI\ $1 -1- Si\--l  .- P!y X;y E An-. (2.24) 

Then, after substituting Eq. (2.20) into Eq. (2.24) and recalling from Eq. (2.4) that  

Xly-+l = A-1, we find that  

Thus, with S\ finally determined, we can evaluate the remaining X's from Eq. (2.17) by 

recursing backwards. Since Eqs. (2.5) were obtained by a linearization, we can construct 

a new trajectory irom 
~ x:' $- Sx, 

Y J  == Y J  " + by, : 3 0,1 ,  ... N .  
(2.26) 

This trajectory can .  in turn, be used as a starting guess for the next iteration. For a 

reasonablr initial trajeciory, convergence is very rapid. Moreover, for each iteration this 

method gives rrsults which arc exactly the same as  those obtained using the Monodromy 

matrix,' so the two approaches are identical, Notice too, from Eqs. (2.3),  (2.6), and (2.8), 

that  once we have calculated a periodic trajectory that satisfies the equations of motion, 

A,  is a null vector. Then,  it is easily shown from Eqs. (2.14), (2.15b), (2.22), and (2.23b) 

that the vectors 7', arid G ,  also vanish whenever we achieve convergence. This vanishing 

of the corivergcrl vvc tors  is always a general feature of the Monodromy method.' 

The tntal energj, o f  the continuous Hamiltonian is, of course, conserved. However, 

because of our discrctizatiori. the energy is only approximately constant. Thus, it is useful 

to define an avcragv  c~ivrgy'  

(2.27) 
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where Ej is the energy of the jth “link”, 

We find that the maxinium deviation of a single link from the average value is less than 

1% for N 96 and for a relatively simple trajectory. As the trajectory becomes more 

complicated (particularly for period multiplying branchings), we must increase the N value 

in order to achieve comparable accuracy. 

B. CONSTANT ENERGY FORMULATION (MONOD-E) 

Next, consider the case in which the energy in Eq. (2.27) is essentially constant, but 

the period (or t) can change. We let t2 -+ e; + 6 ( c 2 ) ,  and Eq. (2.7) is modified as follows1 

where 

(2.30) 

is a vector and PI and A j  are defined as before with c2 replaced by e ; .  Therefore, Aj --f 

Aj + Bj 5 ( c 2 ) ,  and  if we explicitly include 6(e2) as an additional unknown in Eq. (2.17), 

we find that 

Xj = Qj  S j + 1  + Kj Xi\ + Tj + Rj 6(c2). (2.31) 

The two-component vector Rj satisfies 

Rj = Q j  (Rj-1 - B j ) ,  (2.32) 

which can be constucted by forward recursion from the initial condition 

Ro = 0. (2.33) 

The Q’s, T ’ s ,  and K ’ s  arc evaluated in exactly the same way as in the previous subsection. 

We also modify Fq. (2.20) to include the S(t’) dependence, obtaining 

(2.34) 
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The S’s and G‘s are calculated precisely as before, and 1.13 is a vector satisfying the 

relations 

w, = Q )  + rz, , (2.35) 

and 

IT-’\- = 0. (2.36) 

Thus, we recurse backwards to construct the 11”s from Eqs. (2.35) and (2.36). 

We nutv h a w  to determine three unknowns ( b z . ~  ,by.\-, b e 2 ) ,  which means that we need 

to solve three linear, simultaneous equations. From Eq. (2.29) (for j = N )  and Eqs. (2.4) 

and (2.34)’ wc obtain 

which gives two conditions. The third equation is obtained by demanding that the energy 

has a fixed value. (2.27) that the link E, is a 

constant.’ ( A s  remarked previously, this guarantees that E-11 E,,.) Then, we linearize 

Eq. (2.28) for j - 0 to obtain 

In particular, we shall assumt in Eq. 

e; [L(z’\,!/I\ ) h a , \  + L,(&,y: ; )6y\  + T;(z;,y;)621 t q / ( 4 , Y ; ) 6 Y l I  

+ 2 ( 4  r ’ \ ) ( 6 2 ,  6x1)  1- q7J; - y;-)(byI - by,\) (2.38) 

+(-2& t \ - ( r y . y y )  + l - ( d \ J ~ ) ] b ( € 2 )  = 7 )  

with 

We rewrite Eq. (2.38) a s  

(2.41) 

and 6 and p arc thc row vectors 
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Finally, we combine Eqs. (2.31), (2.37), and (2.40) to obtain the 3 x 3 representation 

with the definitions 

(2.454 

(2.45b) 

(2 .45~)  

(2.45d) 

(2.45e) 

Eq. (2.44) can be easily inverted to evaluate X;Y and S ( e 2 ) ,  which are used to construct a 

new trajectory using the recursion (2.31) and then Eq. (2.26). The period of the trajectory 

is given by 

As before, we iterate until we obtain convergence. 

C. COMPARISONS OF THE VARIOUS METHODS 

MONOWT and MONOD-E converge e p 4 l y  well for most cases of interest.' I.e., it 

usually doesn't matter very much whether we fix the period and let the energy come out 

of the calculation, o r  vice versa. In practice, in either method we have found that, for a 

reasonable starting trajectory, 4 - 10 iterations are required in order to achieve 8-figure 

accuracy for the final coordinates. However, In general MONOD-T works somewhat better 

than MONOD 15 for  cases in  which the period is changing more rapidly than the energy, 

while MONOD E is superior for the rcverse situation.' In particular, if we are constructing 

a family (or sets o f  fandias )  on a plot of the energy vs thc period ( E  - T plot), MONOD-T 

is better to iise near horizontal tangents while MONOD-E is more useful near vertical 



1.0 

tangents. Also, i t  is important to use MOIVOD-E near the region of small oscillations 

about an eqiiilibriurn point,’ where the period is almost constant over a range of energies. 

(In fact, there arc many examples of families, originating from small oscillations, for which 

the period remains constant for all energies.’ ’) 

The most important result is that the 2 x 2 methods (MONOD-T and MONOD-E) give 

exactly the samr rrsiilts as those obtained using the analogous 4 x 4 Monodromy methods.’ 

‘rhus, the 2 x 2 (“half-space”) formalism is completely equivalent to  the earlier 4 x 4 (“fidl 

space”) theory. IIowever, it is not very clear how to relate the two formalisms since the 

recursions are diffwent in the two approaches. Moreover, there are major differences in the 

algorithms involved which may be significant numerically in various extensions of the work. 

(E.g., in nuclear 7’DFIF studirs.11-’9) The full-space method involves only one recursion 

(“once around t h e  track”’) ,  while in the half-space method we must first recurse forward 

and then again backwards. Also, in the 2 Y 2 method there is an inversion at every time 

step. In both rnethods, after wc obtain the “end points” of the trajectory, we must perform 

an additional recursion in order to calculate the remaining coordinates. 

A major disadvantage of this half-space approach is that it appears to give no informa- 

tion about stability , whereas in the full-spacr formalism the eigenvalues of the Monodromy 

matrix uniquely determine the stability of a t r a j e~ to ry . ’ -~  Also, the eigenvectors of the 

Monodromy matrix (for its nonunity eigenvalues) are crucial for computing new families 

of trajectories which hifurrate from a parent family.’,’ 
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