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of a sphere i s  defined by an approximation to the variable by a truncated series of spherical 

where y JPT sin8, 19 is latitude, X is longitude, and P z ( p )  is the associated Legendre func- 
tion. State variables are approximated on an I x J longitude-latitude grid. Exact, unaliased 
transforms of quadratic terms are obtained if M is chosen to satisfy J 2 ( 3 M  + 1)/’2> and if 
I = 2 J ,  and N(7n) = M .  In this case the value of M characterizes the grid resolution, arid the 
term T T M ”  is used to denote a particular discretization. Thus, for example, the T85 case has 
M = $5, J - 128, and I = 256. In this work we use a fast Fourier transforill (FFT) algorithm 
that requires I to be a power of 2. 

Transforming from physical coordinates to spectral coordinates involves perforrnirig an F’FT 
line of constant latitude, followed by intcgration over latitude using Gaussian quadra- 

ture to  obtain the spectral coefficients, 

where trn is the rnth Fourier coefficient, and wj is the Gaussian quadrature weight corre- 
sponding to latitude p j .  In the parallel implementation, the fast Fourier transform and the 
integration over latitude, that together give the Legendre transform, define the problem. All 
other calculations are perfectly parallel and require no iiiterprocessor communication. 

3. Data Distribution 

In general, a one-dimensional array of data can be distributed (or decomposed)  among a set of 
processors by first arranging the data into non-intersecting subsets, and then uniquely assigning 
one subset to each processor. In many cases, the decomposition of arrays over more than one 
dimension can be expressed as the Cartesian product of one-dimensional decompositioris over 
each array dimension. 

The indices of a one-dimensional array of N items can be partitioned into Np subsets, J’i, 

as follows, 

for i = 0, I ,  . . . , Np - 1, where it has been assumed that array indices are non-negative and start 
at 0. Here %+ is the set of non-negative integers, and kmin and IC,,,, are integers satisfying, 

kmin(0)  = 0 

k r n i n ( i )  zz kma,(i - I) (i 1 , 2 , .  . . , Np - 1) (4) 
k,, ,a,(Np - 1) = Nc 

where Nc = [ N / N p l  * N p ,  and P( . )  is the par t i t i on ing  f u n d i o n  that reorders the index set 
{ 0 , 1 , .  . . , N - 1). Thus, the partitioning in Eq. (3) can be regarded as taking place in two 
phases. First the index set is reordered so that the integers P ( j )  form a sequence running from 
0 up to N - 1. ‘l’his ordering of the indices is then divided into blocks of contiguous items. The 
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in pairs, Thus, if i = J / N ,  is the number of latitudes per processor, and wc define 

then in the physical domain the partitioning function in the latitude direction is, 

if j < I/4 
if j 2 I / 4  I - 1 - b i ( j )  

The kmin and k,,, in Eqs. (3) and (4) are chosen so that ,  as nearly possible, each proecssor 
contains the same number of data points. 

A ring algorithm is used to perform the integration over latitude, and a Gray code assign- 
ment function is used in this direction, since this ensures that neighbors in the ring are directly 
connected by a cornrriunication channel. It should be notcd that this assignment function is 
appropriate only for a hypercube topology. For a mesh topology, for cxatmple, the identity 
function should be used in both the longitude and latitude directions. 

The partitioning of the longitude-latitude grid in the physical domain can be expressed as 
the Cartesian product of the one dimcnsionali partitionings in each direction. Thus, each subset 
of the data is labeled by two indices, ( i , j ) .  The assignment function can be written as, 

A ( i ,  j) i .-/- G ( j )  * N c ,  (i = 0,1 , .  . ., NX - 1, j = 0 , 1 , .  . . ,Ny  - 1) (9) 

where G(j) denotes the binary-reflected Gray code of j (see Eq. (6)). Note that here it has 
been assumed that blocks of contiguous bits in the binary representalion of the processor 
number have been ,assigned to each dimension. That is, the least significant log2 Nx bits of the 
processor number correspond to the longitude dimension, and the most significant log, Ny bits 
to the latitude dimension. In general, the partitioning of bits over dimensions can be done in 
any unique way, just as the items in a orne-dimensional array can be partitioned. 

‘l’he Fourier domain can he regarded a s  a wavenumber-latitude grid, so like the physical domain, 
the Fourier doisn is two-dimensional. However, a different decomposition is used. The differ- 
mce3 arise because of the way in which the FFT algorithm permutes the ordering of the output 
Fourier coeficients. The one-dimensional FF‘T produces Fourier coefficicnts in “bit-reversed” 
order. That is, if the number of data points to be transformed is I = 2k, then the array index 
of the mth Fourier coefficient is given by the E bits of ni written in reverse order. Denoting 
this quantity by B k ( r n )  then, for exauiyle, B4(12) = 3 since if the 4 bits in thc binary represen- 
tation of 1’2 are written in rcverse order we get 0011, the decimal represcntation of which is 3. 
A second factor also influences the partitioning in the Fourier domain. As described in Section 
4.1, a version of the FF‘r algorithm designed for transforming real functions is used. Having 
performed the FFT on the half-length complex array, t,he Fourier coefficients of the original 
real data are found by combining data for indices m and 1 / 2  - m. In general, cornriiuriication 
is needed to bring these points into the same processor. This i s  done by reordering the data so 
that data points to  be combined differ by 1 ill their array indices. Thus, in the Fotxrier domain 
the partitioning function, P( . ) ,  in the wavenumber direction includes the combined effects of 
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lati tude 
index 

0 1 2 3 4 5 6 7 8 9 10111213141516171819292122232425262728293031 
longitude index 

(b) FOURIER DOMAIN 
Figure 1. The decomposition of (a) the 
physical, and (b) the Fourier domains over 
a 4 x 4 grid of processors. The assignment 
of processors to data subblocks is aypropri- 
ate for a hypercube topology. Each small 
cell represents a data item. The thicker 
lines show the boundaries betweell proces- 
sors. The numbered circles show the pro- 
cessor numbers. 

latitude 
index 

0 8 4 1 2 2 1 4 6 1 0 1  1 5 5 1 1  3 1 3 7  9 
wavenumker index 

is applied in the longitude direction leaving the ordering of the longitiide indices unchanged. 
In the latitude direction the partitioning function given in Eq. (8) is used in order to pair up 
corresponding latitude lines in the north and south hemispheres. Since there are 4 processors 
in each direction, each processor is responsible for a subblock of 8 x 4 data points. 'I'his is 
shown in Figure l(a), in which. the thicker lines show the divisions between processors, and 
each small cell represents one data point. The assignment given in E¶. (9) is used to uniqiiely 
associate each data subblock with a processor. A linear assignment function is applied in the 
longitude direction, while in the latitude direction a Gray code assignment function is used. 
This assignment is shown in Figure l(a) by the Ii-barnbered circles, which indicate the number 
of the processor assigned to each data subblock. 

Since we evaluate the Fourier coefficients of read functions in the longitude direction, only the 
coefficients, tn8, for n2 = 8,1 , .  . . , I / 2 ,  need be explicitly stored, Also, the imaginary parts of to 
and <'I2 are identically zero, so the real part of can be stored as the imaginary part of to. 
The Fourier domain, therefore, is only half thc size of the physical domain, as shown in Figure 
l (b) ,  with each processor containing a 4 x 4 subblock of Fourier coefficients. However, sirice 
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Figure 2. The decomposition of the spectral do.- 
main over a 4 x 4 grid of processors. The shaded 
cells in figure (a) represent the spectral coeffi- 
cients to be included in the spectral transform, 
and how these are decomposed over processor 
columns. Figure (b) shows the actual decompo- 
sition within each processor column. 

n 
in&x 

0 8 4 1 2 2 1 4 6 1 0 1 1 5 5 1 1 3 1 3 7  9 
wavenumber index 

0 

1 
2 

3 

The computational complexity can be reduced by a factor of two if we seek the FFT of a 
real function, rather than that of a complex function. The method followed was that given in 
Numerical Reczpes [7 ] ,  which for completeness we shall now outline. Given the real array, fj 
for j = Q,1 , .  . . , I - 1, to be transformed, we gencratc a complex array, h ,  of length 1 / 2 ,  the 
real and imaginary valixes of which are the even and odd points in f, respectively. Thus, 

After performirig a complex I/2-point FFT on the array h,  to give the Fourier transform, H ,  
the transhri-11, F ,  of the original red  function f can be extracted as follows; 

where x* denotes tltae complex conjugate sf 2, and E = &Z. Since pfmrn -- F ~ ~ ,  in general we 
need store only the spectrum for in I- 0 to m =1 1 / 2 .  For the spectral method used in this work 
the spectrum is truncated at  some value M satisfying I 2 3M f 1, so the upper half of the 
spectrum i s  not needed in any case. To perform the inverse transform, the complex transform 
N can be recovered from Eq. (14), and an  I/2-point inverse FFT is performed on this array, 
leading directly to the real-valued array, f. 
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Having performed t,he F F T  on the complex array, H ,  it is still necessary to  combirae the 
data items at array indices rn and f / 2  - m for rn = 1,2, e " .  , I/4 - 1 in order to get the FFT 
of the original real array (see Eq. (14)). To do this the data  to  be combined need to be in the 
same processor, and this requires that the partition function be further modified to  the form 
given in Eq. (10). 

4.3. Integration ovcr latitude 

Having evaluated the Fourier coefficients, cT(pj)> along each latitude line, p j  the spectral 
coe%cient,s are found by summing over latitude, 

where .Ci is the ith index subset in the partitioning over latitude. The partial sums, 'TAn(i), can 
be evaluated withiii each processor with no communication. l'hus, the evaluation of the spectral 
coefficients, (r, requires the summation of Ny partial sums. This summation is performed 
independently in each column of the processor grid using a ring algorithm, and is described in 
detail in [Ill. The ring algorithm procccds in Ny - 1 steps. Initially each processor evaluates 
the partial sums, TF,  for the spectral coefficients assigned to  its neighbor iri the decomposition 
of the spectral domain. In the first step of the ring algorithm each processor passes these partial 
SUMS one step around the ring. Each processor receives a set of partial sums, and evaluates its 
contribution to cach. The contributions are then addcd to the partial sums. After Ny - 1 such 
steps all contributions have been summed, and the decomposition of the spectral coeficients is 
as described in Sections 3.3 and 3.4. 

5 .  Results and Discussion 

We shall first describe the incremental steps taken in developing the coiicurrent code for solving 
the shallow water equations, and then results for the optimum implementation will be presented 
arid discussed. In all cases the code was compiled with release 1.1 of The Portland Group 2360 
Fortran compiler, with the default optimization level of 1. 

The process of irnplenieriting the shallow water equation code on the 128-node Intel iPSC/860 
hypercube began with a sequential version suitable for executing on a Uriix workstation. In 
the first phase of the concurrent implementation the data were decomposed only over the y 
direction, which corrcsyonds to latitude in the physical and Fourier domains and to spectral 
coeficient index in the spectral domain, The data were not decomposed over the cc direction 
(the latitude/a%raveniimler direction). This allowed the original FFT routines in the sequential 
code to be used, and effort was focused QI-~ optimizing the parallel slimmation over latituclcs 
in Fq. (2). In the second phase of the implementation, decomposition over both the y and z 
directions was investigated. 

5.1. Parallel Slammation 

Results for the parallel summation in Section 4.3 have bccn presented and discussed at length 
in Part  I [ll], so we shall just summarize these results here. In Part I the problem domains were 
partitioncd in only the y direction, so NS = 1. In the physical and Fourier domains each pro- 
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by Walker [9], if the communication is performed in the outer loop the butterfly calculations 
in a single F F T  cannot be overlapped with communication. The evaluation of the complex 
exponentials can be overlapped with communication, but since wa: are using a lookup table 
this is not an option. We could put the communication back inside the inner loop, which 
does permit the butterfly calculation to be overlapped with communication. This may be a 
good approach on some machines, however, for the Intel iPSC/$SO any gains from overlapping 
communication and calculation would be swa ped by the higher latency overhead. 

Fortunately the shallow water equation code contains ansther outer loop that we have so far 
ignored. Namely, the loop over the latitudes iii each processor. By making the loop over latitude 
the inner loop (rather than the outer loop) we can perform the communication necessary at a 
given step of the F'FT for all latitudes at the same time. This approach requires data to be 
packed in to and unpacked out of communication buffers, and the coiiiriiunication buffers require 
memory of order the size of the original data, however the communication latency is reduced by 
a further factor of nl,t, the number of latitude lines per processor. Essentially, exchanging the 
order of the outer two loops has allowed us to push the communication to the next outermost 
level of the loop hierarchy, and that i s  why latency is reduced. 

Since the F'FTs over different latitude lines are independent we can now also overlap corn- 
munication and calculation. This is done by dividing the latitude lines in each processor into 
two equally-sized sets. While the calculations €or the fir3t set arc being performed the commu- 
nication for the second set i s  done, and vice versa, We refer to the code that incorporates these 
modifications as version 3. 

In 'I'able 1, we present results for the T85 case for versions 1, 2 and 3 on up to 128 nodes 
of the Intel iPSC/860 hypercube. Version 3, in which latency is  lowest and communication is 
overlapped with computation, is clearly the best algorithm. In version 2, decomposing over the 
x-direction for a fixed niumbcr of processors always results in poorer performance. Ilowever, 
in version 3 the performance at  first improves as N ,  increases, and then falls off when it is 
increased further, as shown in Figure 3. This behavior arises because as NG increases the time 
to do the FF'ls also increases due to the higher concrirrent overhead. However, for a fixed 
number of processors an increase in N ,  reduces Ny, so the concurrent summation described 
in Section 4.3 will be performed more efficiently. An increase in N,: also increases the load 
imbalance in the sumination phase. The net effect of these conflicting trends is to produce 
a shallow minimum in the plot of processing time versus N,.  However, if the grain size in 
bot)h directions is large enough, then both the FFT and summation phases will be computed 
efficiently, arid load imbalance will result in a monotonic rise in the processing time as N ,  
increases, as may be seen in some of the entries in Table 2 (for example, T85 on up to 16 
processors). 

Having determined that version 3 gives reasonably good performance, we then went on 
to use version 3 for problem sizes 7'21, T42, T85, T169, mid T340, for processor grids with 
different sizes and shapes. 'rhe results are presented in Table 2. 

Figure 4 illustrates how the shape of the processor mesh affects performance. In Figure 4 the 
time for 10 time steps of the T85 case is plotted as a function of the total number of processors 
for a purely latitudinal decomposition ( N ,  - I), a purely longitudinal decomposition (Ny = l), 
and for the mixed decomposition that gives the best performance. Both Figures 3 arid 4 show 
how a mixed decomposition results in better performance, particularly for smaller grain sizes. 
Figure 4 also shows that for a mixed deconiposition 128 processors can be used, whereas for a 
pure longitudinal (latitudinal) decoiiipositioir only up to 64 processors can be used. due to an 
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T85 timings for 10 time steps 
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Version 3 timings for 10 time steps 
T340 T 2 1  I T42  'r85 T169 

NEM' 1 x 1  1.13 6.21 48.83 NEM 

NEM 
NEM 

NEM 
NEM 
NEM 

- - - . ~  

1 x 2  
2 x 1  

0.61 
0.81 

3.06 
3.72 

20.43 
22.55 

NEM 
NEM 

1 x 4  
2 x 2  
4 x 1  

10.41 
11.42 
12.10 

NEM 
NEM 
NEM 

1.62 
1.91 
2.12 

0.94 
1.05 
1.17 
1.34 

0.36 
0.48 
0.61 
0.24 
0.33 
0.44 
0.51 

30.39 
31.25 
NEM 
NEM 

NEM 
NEM 
NEM 
NEM 

1 x 8  
2 x 4  
4 x 2  
8 x 1  

5.43 
5.86 
6.19 
6.66 

1 x 16 
2 x 8  
4 x 4  
8 x 2  

16 x 1 

0.21 
0.28 
0.37 
0.42 
0.49 

3.10 
3.14 
3.25 
3.48 
3.90 

16.15 
15.94 
16.42 
NEM 
NEM 

NEM 
NEM 
NEM 
NEM 
NEM 

0.61 
0.64 
0.71 
0.80 
0.92 
0.55 
0.52 
0.57 
0.61 
0.69 
0.82 

0.15 
0.45 
0.46 
0.50 
0.58 

LAL' 

LON 

CAT? 
0.22 
0.24 
0.26 
0.30 
LON$ 

LA" 
LAT 

___II___.____ 

0.25 
0.25 
0.27 
LON 
LON 

2.02 
1.82 
1.78 
1.85 
2.05 
2.32 

9.14 
8.75 
8.66 
8.78 
NEM 
NEM 

NEM 
NEM 
NEM 
NEM 
NEM 
NEM 

1 x 32 
2 x 16 
4 x 8  
8 x 4  

16 x 2 
32 x 1 

1.59 
1.30 
1.18 
1.17 
1.25 
1.38 
1.70 

5.95 
5.02 
4.70 
4.68 
4.92 
NEM 
NEM 

31.22 
NEM 
NEM 
NEM 
NEM 
NEM 
NEM 

1 x 64 
2 x 32 
4 x 16 
8 x 8  

16 x 4 
32 x 2 
64 x 1 

1 x 128 
2 x 64 
4 x 32 
8 x 16 

16 x 8 
32 x 4 
64 x 2 

128 x 1 

I, AT 
LAT 
LAT 
0.27 
0.27 
LON 
LON 
LON 

LAT 
LAT 
0.38 
0.33 
0.33 
0.36 
LON 
LON 

LAT 
1.03 
0.88 
0.80 
0.81 
0.87 
1.04 
LON 

4.52 
3.33 
2.39 
2.62 
2.68 
2.84 
NEM 
NEM 

20.20 
16.20 
NEM 
NEM 
NEM 
NEM 
NEM 
NEM 

tNot enough latitudes. $Not enough longitudes. *Not Enough Memory 
Tahle2. 'P'iinings for the version 3 code on up to  128 iiodes of the Intel iPSC/860 hypercube 
for a range of problem sizes. 
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Figure 4. Performance of the "85 case as a function of the number of processors for pure 
latitudinal and longitudinal decoiiipositions, and for the best mixed decomposition. 

cles in which the comrnuiiication phase imposes a degree of synchronization on the processors 
[3]. In the computational phase between: commiirrications the processors can rim completely 
aTynchronoiisly. Each cycle can be labeled by a global counter. Typically a cycle begins with 
each processor receiving data from one or more processors. The processors then independently 
perform some computation using the data received, and send the results to some set of yroces- 
sors for use in the next cycle. We shall refer to the work done by a single processor in a cycle 
as a subtask, and the process of transforming some initial data through a series of subtasks 
to prodiicc some desired output will be referred to as a t a sk ,  In general the compute phase 
of a subtask can be divided into a critical phase  in which the computation depends on data 
from the preceding subtask(s), arid a non-critical phase that  i s  independent of the preceding 
subtask(s). The effective use of concurrent computers characterized by high communication 
overhead, such as the Intel iPSC/860 hypercube used in this work, requires communication 
costs to be masked by overlapping communication and computation. Two approaches used in 
this work are to overlap the communication phases of a task with (1) the computation phases 
of another task, and (2) the non-critical cornpiitation phases of the same task. 

A pipcline can be used to perform a set of independent tasks, the number of subtasks in each 
of which equals the number of processors. In a linear p ipe l ine  the processors are arranged in a 
line, and the ith subtask for each task is assigned to the processor at position i in the line. Each 
task i s  initiated in the processor a t  the beginning of the line, and t,he results are accurnulated 
in the last procwsor, as shown in Figure T(a) .  If all the subtasks take approximately the 
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Figure 6. Load imbalance, e , ,  as a function of number of processors, N p ,  when N y  = 1. 

algorithm overlaps these trees, as shown in Figure 7(c). On a hypercube multiprocessor a 
dimensional exchange algorithm involves exchanging data o v a  each communication channel in 
turn. The parallel phase of a FFT is an example of a dimensional exchange algorithm. 

In summing the contributions to the Legendre transform the non-critical phase is the eval- 
uation of thc local contributions to a spectral coefficient, referred to as in Kq .  (15). The 
critical phase i s  simply the summation of the local contribution with the running sum received 
from the preceding subtask. In the FV‘T algorithm the critical phase is the evaluation of but- 
terfly pairs, and the non-critical phase is the determination of the complex exponential in the 
“twiddle factor”. The ratio of the time spent communicating between two subtasks and the 
time for a non-critical computation determines the extent to which communication arid calcu- 
lation can be overlapped. In the evaluation of the spectral coeficicnts in Eq. (15) the time for 
the non-critical phase is proportional to the number of latitudes per processor, and hcnce the 
amount of overlap (and the concurrent efficiency) increases as the grain size increases in the 
latitude direction. In the F F T  algorithm a lookup table is used to find the twiddle factors, 
resulting in a short non-critical phase. Thus, there is little overlap of communication and com- 
putation within a single FFT. If several FFTs need to be evaluated, as i s  the case in the shallow 
water equation code, communication and calculation can be overlapped. Taking the FFTs in 
pairs, the calculation in one step of one FFT car1 be overlapped with the communication in the 
other VFT, and vice versa. Thus, the communication and calculation phases of the two FFTs 
are interleavcd, and we refer to this technique as interleaving. 

Communication latency also often significantly degrades concurrent performance, and should 
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incurs a lower latency cost. On the other hand, in the fold algorithm less of the rion-critical 
computation is available for overlap with communication since half of it must be done before 
the first communication phase. ’rhe optiinum method for performing thc summation is, thcre- 
fore, machine-dependent, and further work i s  required to determine the best method on the 
Intel iPSC/860 hypercube, aiid similar machines. ‘lhese issues will be pursued further in a 
subsequent paper. 

6. Suinrnaa-y and Conclusions 

In the climate modeling comriiunity problem sizes of intcrest range from T85 to T340, corre- 
sponding to grid resolutions from about 1.5 degrees to less than half a degree. For these types 
of problem the spectral method can be parallelized efficiently on MIMlCd distributed memory 
coiiiputers with hundreds of processors. The Intel iPS@/SSO hypercube used in this work only 
had 8 Mbytcs of memory on each processor, and this prevented a thorough investigation of the 
‘1’340 case. Of the ‘1’340 runs that were performed, a 2 x 64 processor mesh gave the highest 
performance of approximately 560 Mflops. If more memory had been available we expect the 
performance would have been greatxr for less elongated processor meshes. This expectation is 
based on the results for T85 and T169 cases running on 128 nodes. 

It was found that in all cases of interest parallel performance is significantly improved by 
decomposing over both coordinate directions, rather than over just one or the other. Using a 
mixed decomposition resulted in perfoririance improvements of up to 42%. In addition, a mixcd 
decomposition allowed more processors to be brought to bear on a given problem. 

The Intel iPSC/860 hypercube, and similar multiprocessors, have high communication la- 
tency and throughput costs, and acceptable levels of performance are achievable only if spe- 
cialized programming techniques are used. In this work, we have emphasized the importance of 
reducing latency by moving communication to  the outermost loop possible. Another important 
factor is the need to overlap communication and computation. This can be done by identifying 
the non-critical part of each phase of computation, and overlapping this with communication. 
The communication must be performed using non-blocking reads and writes. Some additional 
buffers are required to maintain data integrity, but we have found the cost of this extra memory 
to be small in comparison with the benefits gaincd. 

In the FFT algorithm the time for the non-critical computation is very short compared with 
the communication time, so there is no  opportuiiity to overlap communication and computation 
in a single FFT. ‘l’o achieve overlap we have introduced the concept of task interleaving. By 
alternating the cornpiitation and communication phases of a pair of independent tasks the 
critical computation of one task can be overlapped with the communication in the other, and 
vzee versa. 

If no attempt is made to reduce latency and overlap communication and computation, 
many of the distributed memory multiprocessors currcritly availablc are only capable of running 
efficiently on embarrassingly parallel problems. The techniques that have been used in this work 
to reduce communication costs demonstrate that it is possible to use this type of multiprocessor 
to effectively exploit parallelism in a much larger class of applications. 

We intend to incorporate what we have learned from parallelizing the shallow water equa- 
tions code into the design of a parallel version of CCM2. This will require addition issues to 
be addressed. In particular, in CCM2 a semi-Lagrangian method will be applied in the phys- 
ical domain. ‘l’his will result in load imbalance since the polar and equatorial regions must 
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