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The major objective of this work is to demonstrate through simulations that 
advanced liquid-metal reactor plants can be  operated from low power to full power by 
computer control. Development of an automatic control system with this objective will 
help resolve specific issues and provide proof through demonstration that automatic 
control [or plant startup is fcasible. This paper presents an advanced control system 
design for startup of the Experimental Breeder Reactor-I1 (EBR-XI) located at Idaho 
Falls, Idaho. The design incorporates recent methods in nonlinear control with advanced 
diagnostics techniques such as neural networks to  form an integrated architecture. The 
preliminary evaluations arc obtained in a simulated environment by a low-order, valid 
nonlinear model. Within the framework oC phase I research, the design includes an 
inverse dynamics controller, a fuzzy controller, and an artificial neural network controller. 
These three nonlinear control modules are dcsigned to follow the EBR-I1 startup 
trajectories in a multi-input/output regime. They are coordinated by a supervisory routine 
to yield a fault-tolerant, parallel operation. The control system operates in three modes: 
manual, semiautomatic, and fully automatic control. The simulation results of the E3R-I1 
startup transients proved the effectiveness of the advanced concepts. The work presented 
in this paper is a prcliminary feasibility analysis and does not constitute a final design of an 
automated startup control system for EBR-XI. 

xi 





1.1 SCOPE OF ADVANCED CONTROL CONCEPT INTEGRATION IN MUCLEAR 
PLANT3 

Computerized plant status display, consideration of human factors issues in control 
room design, and plant monitoring based on advanced signal processing have gained 
increased applications in nuclear power plants. Developers of new, advanced reactors 
must consider thcse conccpts in the design phase. New and improved control strategies 
may be needed for efficient operation of multimodular plants, including plant startup, load 
following, and stcady-statc operation. Because of the complex nonlinear nature of 
multimodular nuclear reactor startup dynamics, a need exists for combining control 
strategies and plant monitoring schemcs. 

The objective of the present task under the Advanced Controls Program at Oak 
Ridge National Laboratory (OMNL) is to develop and integrale control algorithms and 
signal and command validation strategies and to dcmonstrate this approach with 
application to the startup of Expcrirnental Breeder Reactor41 (EBR-11). 

Current modular power plants do not have a fully automated startup control 
strategy. Automatic load lollowing control systems for pressurized water reactor (PWR) 
plants are being designed by Mitsubishi Atomic Power Industries (Nakakura and Ishiguro 
1988) in Japan. The primary objective is to control core axial power distribution by load- 
following control rods. Automation in Canadian heavy watcr reactors (CANDU) is the 
most advanced in the industry. The goal is to achieve 100% digital control and protection 
in new plants such as the Darlington units of Ontario Hydro (Carter and Uhrig 1990). 
The "operators provide information to the control system through this control pancl. 
Input includes startup rate and the power level to be maintained. The operators adjust 
automatic controller parameters and/or set points." This procedure is a Form of 
semiautomated control strategy. Musseiny et  al. (1990) proposed a two-level control 
model for operating a typical nuclear plant. One of the conclusions of the Hussciny study 
is that a high-levcl supervisory f u q  or rule-based controller provides a "strategy that can 
free the senior operator for important operational tasks other than vigilancc and 
attendance to details of equipment or subsystems operation." The operator would be 
responsible for monitoring plant performance and providing global control actions. An 
approach bascd on a "forward dynamic programming technique was developed and applied 
to the load following control of a boiling water reactor" by Lin et  al. (1989). These 
studies indicate a growing trend toward increased automation of power plant operations. 

1.2 StTMMlwY OF APPROACH-GENERAL FJ3WR.E 

The integrated control system consists of four major components: 

1. control module, 
2. signal validation module, 
3. command validation module, and 
4. system executive module. 

1 
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Figure 1.1 shows this general structure. Each module has multiplc approaches in its 
implementation. "he control module incorporates inverse dynamics control, fuzzy logic 
control, and neural network control. The objective of the signal validation system is to 
monitor outputs from sensors; detect and isolate faulty sensors; and if necessary, provide 
an estimation of control and protection system signals, %%e purposc of the command 
validator is to verify the control signals (input to actuators) and outputs of actuators. The 
system executive module serves as a high-level decision support tool. I t  analyzes the 
overall performance and selects appropriate modes of control. All these systems are fully 
integrated and provide appropriate information to the operator. 

in Sect. 3. The integrated system is currently implemented in a VAX 3100 cornputcr 
Work Station and uses the MATRXXx Softwarc for integration purpose. 

The definitions of the various componcnts of thc above "control engine" are given 

1.3 S OF SIGNIFICANT 

Several important milestones have been accomplished during this project. The 
following specific tasks have been completed. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

The integrated control system has been developed and demonstrated with application 
to EBR-II startup control. 

An archival of EBR-I1 startup data has been established, 

The signal validation modules-process empirical modeling, neural nelworks, and 
consistency checking-have been implemented. 

A new control methodology, called the reconstructive inverse dynamics control, has 
been developed. In addition, a fuzzy logic controller and a neural network controllcr 
arc available as alternatives, 

The command validation module developed in this projcct introduces a new idea-that 
of verifying control inputs and actuator outputs. 

The redundancy in each of the threc subsystems provides an effective method for 
switching from one technique to another, as demanded by the availability of process 
signals. This capability is also known as structural fault-tolerance bccause it 
ernphasizcs providing reliable control under structural anomalies. 

The signal and command validation represented in the SYSTEM-BUILD software as 
superblocks provides fast interaction with the control system module. 

The individual module, the EBR-XI model, and the integrated systcm tests are based 
on startup data from EBR-11. 
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1.4 QRGMMmBN OF REPORT 

Section 2 provides a bricf description of EBR-11, existing control systems, and steps 
in EBR-I1 startup. The concepts of advanced automation are presented in Sect. 3. The 
intcgration and implementation of control strategies, signal validation, command validation 
and system exccutive modules are described in Sect. 4. The results of demonstration using 
EBR-TI startup data are also presented. Section 5 presents the performance verification 
of the new control strategy, which uses a nonlinear- modcl of the EBR-I1 primary system, 
including the intermediate heat exchangcr. The various techniques such as neural 
ncbworks, fuzzy logic control, process empirical modeling, and others are described in 
Sect. 6. The summaq and concluding remarks are presented in Sect. 7. 



2 BACKGROUND 

The startup of EBR-I1 includes a complicated procedure for calibration, status 
verification, and configuration validation. Automation of the EBR-I1 startup therefore 
requires a computer-based information system as an operator aid. A recent study 
(Corcuera et  ai. 1990) presents a startup procedure-prompting system developed in an 
expert system environment. Once the procedure is appropriately followed, control of the 
EBR-I1 startup is a straightforward task. However, the plant nonlinearities over the 
startup range and the multitude of control variables indicate that the advanced, nonlinear 
multivariate control techniques may perform more efficiently than the conventional, linear 
methods. Furthermore, a supervisory, intelligent system is required to cope with abnormal 
equipment and process conditions to  maneuver around problems or provide safe routes to 
shutdown. 

21 DESCRIPTION OF EXPEXIMENTAL BREEDER REACTOR-Il 

EBR-I1 is a liquid-metal fast-breeder reactor located at the National Reactor 
Testing Station in Idaho. The original purpose of this facility was to demonstrate the 
feasibility of fast rcactors for central station power plant applications. The purpose was 
later redirected to provide irradiation services for the development of fuels and structural 
materials. Changes were made in the operating philosophy from that of an engineering 
test facility to that of a high-priority neutron produccr. 

The plant included a heterogeneous, unmoderated, sodium-cooled reactor 
[62.S MW(t)]; an intcrmediate sodium coolant loop; a steam plant that produces 20 MW 
of electrical power through a conventional turbine generator; and a fuel processing system 
consisting of subsystems for disassembly, decontamination, fabrication, and assembly of fuel 
elements and subassemblies. Both the reactor and the associated fucl recycle facilities 
wcre designed with the philosophy of providing a highly flexible installation that would 
permit the investigation and evaluation of various core configurations, fuel types, fuel 
element design, and proccssing techniques. The reactor, primary cooling system,, and fuel- 
handling system components are submerged in a large primary sodium tank. This concept 
is sometimes referred to as the pool-typc design (such as the Phoenix and Super-Phoenix 
liquid-metal reactors in France). A schematic of the EBR-I1 plant is shown in Fig. 2.1 

2.2 EXISTING CONTROL CAPAB AT E 
REACXOR-TI 

The EBR-I1 control systems are distributed over the subsystems and components 
mostly cmordinatcd from the central control room by plant operators. These controllers 
are designed to function locally, and the global control decisions arc made by operators. 
The following describes the local controllers of the EBR-11. 

EBR-I1 reactivity control is maintained by 12 control rod and 2 safety rod 
subassemblies. A computer-controlled rod-drive system is capable of controlling reactor 
power during steady-state and power change. An error signal from the reactor power 
reading is the input to the digital computcr. The on-line computcr implements a 
proportional control action to minimize the error reading. The permanent automatic 

5 



6 

low - 

MAIN WUP 

REACTOR MET PIPING 

,PRESSWE RCMM J HIGH-PRESSURE REM 



7 

control rod drive system (ACRDS) provides a fast-spccd automatic mode plus two slow- 
speed modes, manual and automatic. 

The primary sodium flow [loop between core and intermediate heat exchanger 
(IHX)] is controlled by the primary pumps, where the pumping rate is continuously, 
steplessly variable from 0 to 100%. No valves or  other control devices are included in the 
main sodium loop. The secondary sodium loop is controllcd by an electromagnetic (EM) 
pump, where the flow is adjustable from 0 to 100% of full flow capacity by varying the 
voltage applied to the pump windings. The actuation signal is adjusted manually from the 
sodium recirculating pump pancl. The control task of this actuator includes controlling 
reactor inlet temperature by controlling the bulk temperature in the sodium tank. Since 
the secondary sodium loop constitutes thc coupling between the primary and secondary 
systems, the flow adjustment also directly affects the steam prcssure and other systcm 
variables on the secondary side. 

The reedwater temperature is controlled by bypassing some feedwater around thc 
last heater, mixing a portion of 480°F feedwater with the 568°F water to maintain 550°F 
input. The bypass valve is manually controlled from the steam panel in the control room. 

The turbine gcncrator is controlled by two circuits. The primary circuit controls the 
speed and load of the turbine, and the secondary circuit controls thc turbine stop valve to 
trip the turbine when an abnormal condition occurs. 

The main control of the steam gencrator is performed by the steam drum level 
control. The control system is capable of single-element, four-elcment, or manual control. 
The controller accepts four analog signals: steam drum level, feedwater flow, steam flow, 
and blowdown flow. The actuator is the feedwater valve. 

2 3  EXPERIMENTAL BREEDER REACTOR-II STARTUP OPERATION 

The eleven identified modes of operation at the EBR-11 are classified as normal or 
nonroutine operations. The normal operations include plant startup, plant standby, 
reactor restart, steady power, changing power, plant shutdown, and fuel handling. Thc 
nonroutinc opcrations include reactor scram, anticipatory reactor shutdown, plant 
cooldown, and plant heatup. The startup of the EBR-I1 is performed in the two modcs 
(plant startup and reactor rcstart) that distinguish the conditions prior to startup. The 
terminology "reactor restart" emphasizes that the most recent shutdown was within the 
past 24 hours and that no reactor loading change has been made. In the plant standby 
situation, all auxiliary systems meet the prestartup requirements. Unless plant standby 
conditions exist, no startup is  allowed. 

The startup procedures (ANL 1985) include raising the safety rods into the core 
and moving thc control rods in the ordcr specified in the Reactor Run Plan and 
Authorization. The control rods in the EBR-I1 contain fuel at the bottom and poison at 
the top. The core is subcritical when the Euel section of the rods is rcmovcd fmm the 
core. Therefore, criticality i s  achieved by withdrawing the rods, whieb removes the poison 
section from the core and replaces the fuel from the bottom, After the control rods are 
calibrated at about 50 kW, power is incrcased incrementally until the desired power level 
is reached. The primary pumps operatc at full power throughout startup. The secondary 
pump flow is adjusted to maintain normal steam pressure in the drum, The stcam hcader 
is pressurized when the primary sodium reaches 620°F. Increase of reactor power is 
regulated to  maintain a 10"Fb rise in bulk sodium temperature. The secondary sodium 
flow adjustments also aim at maintaining the primary bulk sodium at 70Q"F. When the 
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reactor power is stable at 30 MW and adequate steam is available, the steam system is 
operated and the turbine-generator is started. A brief summary of the startup procedure 
including validity checks is shown in Fig. 2.2. Some of the important EBR-II startup 
transients are shown in Fig. 2.3 (personal communication, June 1987 data from 
E. E. Feldman, Argonne National Laboratory, Argonne, Illinois, to B. Upadhyaya, The 
University of Tennessee, Knoxville). Table 2.1 lists 154 measurements that are available 
for further analysis. These data were obtained during a startup following a standby 
condition. The data were sampled every 5 s. 
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Table 21. l:2qxxirnental B fft Reactor-ll pr(xxss signals 
(154 data channels, 4300 data saniples per channel, 

5.0-s sampling interval) 

Signal Sensor tag Signal description“ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

K 1-N LC-580 

Y1-NLC-581 

P1-NLC-582 

P I-BAM-594A 

P 1-BAM-594C 

P1-BAM-594D 

Pl-BAM-594E 

Pl-BAM-594G 

P1-BAh4-594K 

P 1-13AM-594L 

Pl-RhM-594M 

Pl-BAM-594N 

R1-FM-5 12B 

Rl-FM-513B 

R1-Fh4-541E 

Rl-l>P’T-521A 

Kl-DPT-521B 

K 1 -DIJ‘C-521A 

K 1 -DP1[’-521B 

R1-PT-522A 

R1-TC-540AR 

Kl-’K-S40AS 

R1-TC-540AV 

R 1-TC-540AA 

Rl-’K-S03AA 

R1-TC-50313 

R1-TC-503E 

K1-TC-503D 

Power level (%) 

Power level (%) 

Power level (%) 

Control rod 1 position (in) 

Control rod 3 position (in) 

Control rod 4 position (in) 

Control rod 5 position (in) 

Control rod 7 position (in) 

Control rod 9 position (in) 

Control rod 10 position (in) 

Control rod 11 position (in) 

Control rod 12 position (in) 

Primary pump 2 out flow (%) 

Imv-pressure plenum 2 flow (%) 

Primary total flow (%) 

Upper-plenum flow (96) 

Upper-plenum flow (96) 

Upper-plenum pressure (psia) 

Upper-plenum pressure (psia) 

Primary pump 2 pressure (psi) 

Lmv-pressure plenum sodium temperature (“F) 

Low-pressure plenum sodium temperature (“F) 

Iaw-pressure plenum sodium temperature ( O F )  

High-pressure plenum sodium temperature (“F) 

Reactor core exit temperature ( O F )  

Reactor core exit temperature ( O F )  

Reactor core exit temperature (“F) 

Rcactor core exit tempcrature (OF) 
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Table 2 1  (continued) 

Signal Sensor tag Signal description” 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

so 
51 

52 

53 

54 

55 

56 

R 1 -TC-S03P 

Rl-TC-SO3K 

R1-TC-503F 

Rl-TC-503C 

R 1-TC-503T 

R 1 -TC-SQ3G 

R1-TC-503AC 

R1-1’C-5031, 

R 1 -TC-S03V 

R1-TC-S03Q 

R1-TC-503Y 

Rl-TC-SQ3N 

R 1-TC-503AB 

R 1 -TC-S03AD 

R 1-TC-503R 

R1-TC-503X 

Kl-TC-503W 

R1-TC-503A 

R 1-TC-521 B 

R 1-TC-S21C 

R 1-TC-521D 

R1-TC-521E 

R1-TC-521F 

R 1-TC-521 G 

R 1 -TC-S2 113 

R1-TC-507CC 

Kl-TC-507UX 

R l-TC-SO7EF 

Reactor core exlt temperature (“E3 
Reactor core exit temperature (“F) 

Reactor core exit temperature (“F) 

Reactor core exit temperature (“I.‘) 

Reactor core exit temperature ( O F )  

Reactor core exit temperature (“F) 

Keactor core exit temperature (OF) 

Reactor core exit temperature (“F) 

Reactor core exit temperature (“F) 

Reactor core exit temperature (“F) 

Reactor core exit temperature (OF) 

Reactor core exit temperature ( O F )  

Reactor core exit temperature (“$3 
Reactor core exit temperature (OF) 

Reactor core exit temperature (“F) 

Reactor core exit temperature (“E3 
Reactor core exit temperature (“I?) 

Upper-plenum temperature (“F) 

Upper-plenum temperature ( O F )  

Upper-plenum temperature (“F) 

Upper-plenum temperature ( O F )  

Upper-plenum temperature (“F) 

Upper-plenum temperature (OF) 

Upper-plenum temperature (OF) 

Upper-picnu m temperature (OF) 

IHX orifice plate temperature (“F) 

IIlX orifice plate temperature (OF) 

IHX orifice plate temperature (“F) 
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Table 21 (continued) 

Signal Sensor tag Signal description” 

57 

58 

59 

60 

61 

62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

R1-TC-S07CA 

Rl-TC-SO7CG 

R1-TC-507AC 

R 1 -TC-S07AE 

R1 -TC-S4OAM 

K1-TC-540AP 

R1-TC-50 l’lr 

R1-TC-SOIX 

R 1-TC-SO 1AA 

R 1 -TC-50 1 D 

R 1-TC-SOlM 

R1-TCJOlV 

K 1 -TC-SOlH 

R1-TC-50113, 

R 1-TC-SO 1 N 

R1-TC-501 W 

R 1-TC-SO 1Z 

R1-TC-5O1F 

R1-TCSOlP 

R2-RT-533AA 

R2-RT-546A 

B2-TC-508A 

B2-TC-546Ii 

B2-TC-546T 

B2-TC-546L 

B2-TC-546K 

B2-TC-546N 

B2-TC-546P 

IHX orifice plate temperature (OF) 

IHX orifice plate temperature (OF) 

IHX primary outlet temperature (“F) 

IHX primary outlet temperature (OF) 

IHX primary outlet temperature ( O F )  

IHX primary outlet temperature (“Fj 

Bulk sodium pool temperature ( O F )  

Bulk sodium pool temperature (“F) 

Bulk sodium pool temperature (OF) 

Bulk sodium pl temperature (“E> 

Bulk sodium pool temperature (OF) 

Bulk sodium pool temperature (OF) 

Rulk sodium pool temperature (“1:) 

Bulk sodium pool temperature (“F) 

Bulk sodium pool temperature ( O F )  

Bulk sodium pool tempcrature (“F) 

Bulk sodium pool temperature ( O F )  

Bulk sodium pool temperature (T) 

Bulk sodium pool temperature ( O F )  

IHX secondary outlet temperature ( O F )  

IHX secondary outlet temperature (“F) 

Superheater sodium inlet header temperature (“F) 

Superheater sodium inlet header temperature (“F) 

Superheater sodium inlet header temperature (“F) 

Superheater 710 sodium inlet temperature (“IF) 

Superheater 710 sodium inlct temperature (“F) 

Supcrheater 712 sodium inlet temperature ( O F )  

Superheater 712 sodium inlet temperature ( O F )  
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TaWe 21 fcontinuedl 

Signal Sensor tag Signal description“ 

85 

a6 

87 

88 

89 

90 

91 

92 

93 

94 

9s 

96 

07 

98 

99 

100 

10 1 

102 

103 

104 

10s 

106 

107 

108 

109 

110 

111 

112 

R2-TC-546Q 

B2-TC-SSSB 

B2-TC-S46S 

I32-TC-546BB 

B2-TC-546U 

B2-TC-546BC 

B2-TC-546D 

RZ-TC-546AA 

B2-TC-546AB 

B2-TC-546AC 

H2-TC-546 HA 

B2-TC-546AE 

32-TC-546AK 

182-TC-546AI.’ 

B2-TC-546AG 

B2-TC-SSSE 

B2-TC-SSSF 

B2-TC-545AH 

B2-TC-5SSG 

B2-TC-SSSH 

B2-TC-546AD 

R1-TC-5SSK 

R l-TC-546AJ 

R1-TC-SSSE 

B2-TC-SSSP 

R2-TC-546AR 

R2-RT533RB 

132-€34-539 

Superheater 712 sodium inlet temperature (“F) 

Superheater 710 sodium inlet temperature (T) 

Superheater 710 sodium inlet temperature (“F) 

Superheater 710 sodium inlet temperature (“F) 

Superheater 712 sodium inlet temperature (“F) 

Superheater 712 sodium inlet temperature ( O F )  

Superheater 712 sodium inlet temperature (“F) 

Evaporator 701 sodium inlet temperature (“F) 

Evaporator 702 sodium inlet temperature (OF) 

Evaporator 703 sodium inlet temperature (“FJ 

Evaporator 704 sodium inlet temperature ( O F )  

Evaporator 705 sodium inlet temperature (“F) 

Evaporator 705 sodium inlet temperature (“F) 

Evaporator 707 sodium inlet temperature (“F) 

Evaporator 708 sodium inlet temperature (“E3 
Evaporator 701 sodium outlet temperature ( O F )  

Evaporator 702 sodium outlet temperature (“I.’) 

Evaporator 702 sodium outlet temperature (“F) 

Evaporator 703 sodium outlet temperature (“F) 

Evaporator 704 sodium outlet temperature (“F) 

Evaporator 704 sodium outlet temperature ( O F )  

Evaporator 705 sodium outlet temperature (“I?) 

Evaporator 705 sodium outlet temperature (“F) 

Evaporator 707 sodium outlet temperature (“F) 

Evaporator 708 sodium outlet temperature (“F) 

IHX secondary inlet temperature (“F) 

IHX secondary inlet temperature (“F) 

Superheater 710 sodium outlet flow (V) 
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Table 2 1  (continued) 

Signal Sensor tag Signal description” 

113 

114 

11s 

116 

117 

118 

119 

120 

121 

122 

123 

124 

12s 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 

137 

138 

139 

140 

B2-I’W -539 

B2-FM-538 

R2-FM-538 

S2-FM-516 

B2-PT-527 

P3-PT-SOlA 

P3-FT-587 

SS-LT-S% 

B3-PT-505 

P3-I.T-590 

BS-PT-594 

BS-PR-SO3 

PS-’TC-SS2 

BS-RTT- 1600 

BS-‘TC-SSSS 

BS-TC-SSST 

Rl-TC-SSSV 

BS-TC-SSSW 

B3-TC-546AZ 

R 1 -‘l’C-SSSX 

R 1 -‘TC-S46AS 

B3-‘K-S46AT 

Rl-’TC-SSSZ 

BS-‘rC-sssAA 

B3-TC-SSSAB 

R3-TC-SSSAC 

B3-TC-SSSAD 

B3-TC-SSSAE 

Superheater 712 sodium outlet flow (Vj 

Evaporator 704 sodium inlet flow (V) 

Evaporator 705 sodium inlet flow (V) 

Secondary pump inlet flow (%) 

Superheater sodium inlet pressure (psi) 

Turbine inlet pressure (psi) 

Blowdown flow (Ibfi) 

Steam drum level (in.) 

Steam drum pressure (psig) 

Stearn drum feedwater flow (Ibfi) 

Steam drum feedwater flow (Ib,/h) 

Steam drum feedwater pressure (psi) 

Steam drum feedwater temperature (“F) 

Steam drum feedwater temperature (OF) 

Evaporator 701 feedwater ternpcrature ( O F )  

Evaporator 702 feedwater temperature ( O F )  

Evaporator 703 feedwater temperature (OF) 

Evaporator 704 feedwater temperature ( O F )  

Evaporator 704 feedwater temperature ( O F )  

Evaporator 7115 feedwater temperature (“F) 

Evaporator 70.5 feedwater temperature (OF) 

Evaporator 705 feedwater temperature (“F) 

Evaporator 707 feedwater temperature (“F‘j 

Evaporator 708 feedwater temperature (OF) 

Evaporator 701 steam outlet temperature (OF) 

Evaporator 702 steam outlet temperature (OF) 

Evaporator 703 steam outlet temperature (“F) 

Evaporator 704 steam outlet temperature ( O F )  
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Tabk 21 (continued) 

Signal Sensor tag Signal description“ 
~ ~~ 

141 B3-TC-555AF 

142 B3-TC-SSSAH 

143 B3-TC-555AK 

Evaporator 705 steam outlet temperature (“F) 

Evaporator 707 steam outlet temperature (“F) 

Evaporator 708 steam outlet temperature (“F) 

144 B3-TC-546AU Superheater 710 steam inlet temperature (“F) 

145 B3-TC-546AV 

146 B3-TC-SMAW 

147 B3-TC-5SSAN 

148 B3-TC-546AX 

149 B3-TC-SSSAQ 

150 133-PT-520 

15 1 PS-FT-580 

152 P3-PT-588 

153 P3-PT-501 B 

Superheater 712 steam inlet temperature (OF) 

Superheater 710 steam outlet temperature (“F) 

Superheater 710 steam outlet temperature (“F) 

Superheater 712 steam outlet temperature (OF) 

Superheater 712 steam outlet temperature (“F) 

Superheater outlet pressure (psig) 

Superheater outlet flow (IbJh) 

Turbine inlet steam flow (Ib,/h) 

‘Turbine inlet steam pressure (psig) 

154 P3-TC-545 Turbine inlet steam temperature (“n 
~~ ~ 

”11-IX = intermediate heat exchanger. 



3. ADVANCED AUTOMATION CONCE 

Automatic control systems can improve overall performance as well as increase the 
reliability and availability in system operations. Recently, interest has increrased in 
automating nuclear power stations to reduce human involvement and operating errors 
during routine reactor operations. The existing commercial power plants make use of 
automatic control with applications continuously extending toward new goals. However, it 
has not yet been possible to implement an automatic control that can incorporate all of 
the routine modes of operation of a nuclear reactor. T h i s  limitation is due to the large 
variations in conditions and configurations among the different modes of operation and 
the complexity involved in the corresponding procedures. The available technology 
requires operator intervention €or discrete-event control between the different modes of 
continuous processes. 

mode of plant operation. The primary goal has been to develop an intelligent 
environment to integrate control, diagnostics and monitoring aspects. The proposed 
system, however, includes modules that require a set of specific knowledge of the 
operation (mode). Thus, it is a general design that can be tailored €or a specified task, A 
high-level decision-making system can be incorporated to supervise goal switching 
(i.e=, from startup to steady state) to enlarge the scope of operations. Section 3.1 
describes the details of the integrated control system, its general architecture, and its 
application to a particular task, namely the automation of EBR-II startup. 

The design presented in this paper has a general architecture applicable to any 

The conceptual environment including the necessaq €uPnctional blocks is shown in 
Fig. 3.1. This architecture is  called the Integrated Control System (ICs) which 
incorporates innovative concepts in rnoni toring, diagnostics, and control. The ICs i s  
equipped with artificial-intelligence (AI) methods for decision making, verification, and 
validation. Advanced control methods are used for a multivariate, nonlinear plant control. 

3.1.1 Signal Validation 

This function block contains multiplc methods for processing raw sensor data and 
geiicrating validated data prepared Cor specific use. It is envisioned that rnultiple 
validation techniques will be used concurrently to observe the data. An intelligent 
supervisor then evaluates the outcomes of the various techniques to arrive at a validity 
parameter. Data sample and validated parameter are broadcast to a specified destination. 

3.1.2 Command Validation 

The objective of the command validation block i s  t~ determine the accuracy of the 
command generated by the control system or by the operator and to validate the resulting 
output of the actuator system. A command validator as a distinct function is a relatively 
new concept to process control. It parallels, to some extent, sensor signal validation. The 
overall command validation involves verification of control signal input (to actuator) and 
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Fig. 3.1. G e m 1  architecture of the integrated control systm 
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actuator system output (plant response). For illustration, the classic example of a 
command validator is the conflict resolver circuit of a traffic-light controller. Should the 
timers and phase sequencers produce simultaneous green lights at an intersection, the 
conflict resolver overrides the situation to produce flashing red or yellow lights. 

A definition of the requirement for valid control strategy is that the controller’s 
output to the actuator and the actuator’s output must remain within certain bounds of a 
desired strategy or trajectory. The procedure for eornmand validation consists of 
(1) identifying faulty control signals, (2) isolating plant component malfunction, and 
(3) quantifying the control signal’s variation from the nominal value. 

This function block identifies the current plant mode and subsystem operability 
status. The data generated consists of current mode oE each subsystem, current status of 
each piece of equipment (e.g., in-operation, available/unavailable, undermaintcnance, and 
faulted), and look-ahead status ( i s a y  planned outage). 

3.1.4 Strategy Validator 

This function block determines whether the current strategy in use by the c ~ n t r ~ l  
system (or operator) is valid for the conditions of the plant and the desired objective. 
This form of validation answers questions such as (1) Does the current strategy suit the 
current configuration of the system? (2) Are there any expected critical points in the 
chosen strategy? (3) Are there any alternative strategies in case of anomalies? and (4) Are 
the future control actions appropriate for the current operation? 

3.15 Direct Conilrol Algorithm 

‘I’his function block h0use.s the continuous control algorithms for all systems 
employed during the operation. l’hc control algorithms must be robust to handle the wide 
range of conditions and parameter variations encountered during operation. This block 
contains algorithms that operate in parallel and use different sets of plant measurement to 
provide an alternative control solution in case of corrupted signals feeding into the on-line 
algorithm. Provided the outputs of all other control algorithms are valid and jump 
conditions exist, the on-line algorithm can be shifted to one that is not affected by the 
measurement corruption. ”his block also includes different algorithms for diflerent modes 
of operation (such as steady-state control and startup control). The dircct control block 
and the guidance block differs only between the manual and automatic rnodcs of control. 

3.1.6 M d e  Selector 

The mode selector controls the discrete changes required by the specifics of an 
operation(s). It can change the mode of the direct control algorithm block or the plant 
directly by actuating pumps, motors, aligning block, and isolation valves to distinct 
configurations. The mode selector’s task includes on-line manipulation of parallel-control 
algorithms in case of anomalies in the measurement o r  command set. 
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3.1.7 Performance A n a w r  

This lunction block identifies failures and deteriorating performance in the major 
components and subsystems of the plant. Performance of various systems is tracked and 
compared with tolerance limits. Various tests can be performed to detect long-lerm 
problems such as bearing wear, tube leak, and heatexchanger fouling. 

3.1.8 Lifeboat System 

The lifeboat concept is that of a simple controller employing a simple algorithm 
designed to bring the specific system under its scope of control to a preestablished safe 
and stable state. The lifeboat system is implemented on separate hardware from the 
remainder of the startup control system. Thus, hardware (or softwarc) failures in the 
principal controller are captured by the lifeboat and not allowed to propagate through the 
process. Because the lifeboat is functionally upstream from the actuators, it is reasonable 
that the lifeboat module also functions as a local hand-automatic (H/A) station. 

3.1.9 Decision Support 

This block contains the information system to support the operator’s decision- 
making process. Included in the block are the procedure prompting system and an 
intelligent planning system. The decision support system provides also an advanced 
operator interface for monitoring the key variables of the plant and the status of each 
block of the ICs. 



This section describes a preliminary ICS design for the EBR-I1 startup operation. 
The ICs, as shown in Fig. 4.1, includes some of the major function blocks explained 
earlier. Detailed structurcs of these blocks are explained in thc following text. The 
control design and simulation studies use the software systems MATlEaIXx and SYSTEM- 
BUILD (IS1 1989). The ICS blocks are developed with the usc of SYSTEM-BUILD 
model building blocks. These details are also provided in the following sections. 

Recent accomplishments at EBR-I1 include automatic power increase capability 
between 20 and 62.5 MW(t) using Bailey digital controllers. However, no supenrisory 
approach exists to coordinate multi-inputhutput (MIMB) control, diagnostics, and 
validation for the startup o p ~ r a t i ~ n .  Some areas are reported to be potentially open for 
advanced methods (personal communication, 19% letter from G. Lentz, Argonne National 
Laboratory, Argonne, Illinois, and May 19% meeting with R. Kisne;, Oak Ridge National 
Laboratory, Oak Ridge, Tennessee). These areas are 

1. startup reactivity monitoring capability to determine control rod worth and 
movement and core cont&yxation (such systems must compare these 
measurements and calculations against limits); 

2. technical specification (tech spec) monitoring system that determines from 
measuremcnts whether a tech spec has been violated and to a limited extent 
whethcr the plant is approachiirg a tech spec limit; and 

3. any other system that leads improved performance, reduced cost, and improved 
safety. 

The objectives in designing an advanced control system may 

1. 
2. 

increase availability by reducing operator error and plant trips; 
reduce startup time [currently requires 1 week to bring balance-of-plant (BOP) from 
ambient to hot standby, 4 h to bring the reactor to zero power conditions, 4 h to bring 
reactor and BOP to power operation, and 9 h to bring thc turbine-generator on line 
(may be parallel with other BOP startup activities)]; 
decrease crew size [current crew size is -12, of which 8 arc actually active: 4 operators 
are requirsd for reactor startup (2 console, 1 plant watch, 1 helper), >4 operators are 
needed for BOP startup]; 

avoid penalties to help operators eliminate tech spec violations; and 
lower operator stress by implementing effective plant diagnostks and alarm priority 
systems. 

3. 

4. minimize highly repetitive operations; 
5. 
6. 

EBR-I1 startup is primarily controlled by two actuators, the control rod bank and 
EM punip (sodium loop between the secondary side of IHX and sodium side of the steam 
generator). Several discrete-event control actions are on the steam si c of the reactor, 
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Fig. 4.1. A- amlrd systcm for FZxpcrimental Breeder Keadw-II startup. Phase I systems in 
MATRIXx environment. 
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most of which consist of one-time actions, These actuators are not remotely controlled, 
and the control action is taken manually by a plant technician who, in some cases, walks to 
the physical location of the actuator. Therefore, the steam side of the ERR-TI reactor is 
by no means suitably equipped for automation. System upgrading for remote control on 
the steam side is  considered unneccssarily costly since EBR-I1 is a small-scale test reactor 
and the existing operations are verified to be efficient. Thus, the automation control task 
is reduced to a somewhat limited scale consisting of controlling only the two actuators as 
stated above. 

may become quite complicatcd or sometimes impossible, depending on the nature of 
subsystem couplings. Fortunately, the couplings between EBR-I1 subsystems do not 
impose difficulty for the startup task, in particular. The automation strategy €or the ICs 
implementation consists of imitating a previous startup that is  considered as the reference. 
The imitation simply means that the state variables of the EBR-I1 primary side should 
follow the trajectories of the rcference startup (desired behavior). In addition, the output 
from thc primary side to the steam side should agree with the demand (the reference 
trajectory) in the existence of a boundaiy condition(s) that represent the downstream 
effects on the primary system. 

The corresponding coupling in the EBR-I1 reactor takes place in the piping 
between the IlIX and steam generator. The IHX secondary outlet piping carrics liquid 
sodium to the steam generator. Accordingly, the requirement includes following the 
demand that represents the energy output of the primary system. Energy is characterized 
by temperature and mass flow rate. Thus, demand is stated in terms of the secondary 
sodium temperature and flow rate. Other important state variables include the reactor 
power, core exit temperature, bulk sodium temperature, IHX primary outlet temperature, 
and primary flow. According to the control technique, some of these variables are 
selected for trajectory following. Howcver, the controllers are expected to perform such 
that all state variables are within the desired boundaries. 

When the automation task is constrained to one part of the system, the control task 

Operational records of the EBR-11 indicate several measurement problems 
cncountered in the past. Especially nonredundant measurements such as the secondary 
sodium flow may sometimcs provide misleading information because of sensor degradation 
or additive noise. Thus, an on-line signal validation capability is necessary for a fault- 
tolerant control strate . Table 4.1 lists 16 different measuremernts that are important to 
design and implement thc ICs. Table 4.1 indicates the redundant and nonredundant 
mcasurements. This distinction plays a major role in the signal-validation strategy. 

The strategy consists of creating a set of base signals. Signals obtained from a 
redundant-measurement sct are called base signals. A generalized consistency-checking 
(GCC) routine verifies the validity of the base signals. In case of an abnormal reading in 
the set, the corresponding signal is disqualified. The output of the GCC is  a reading 
averaged over the redundant readings that are normal. 

Validation strategy includcs empirical models to estimate the measurements from 
the nonredundant sensors, The empirical models are devcloped off-line from a data set 
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Table 4.1. Selected signab Irom Experimental Breeder Reador-II data aquisith 
system (to implement intcgratea amtrol syetem far automatic startup) 

Tag Base signals Redundancy Used byb 

P 1-NLC 

R1-TC 

R1-TC 

R1-TC 

R1-TC 

B2-TC 

BZTC 

Reactor power 3 RID,Fuzzp,PA,SV,CV 

Core exit temperature 20 RID,Fuzzy,NNET, 
SV,Cv,PA 

IHX primary inlet temperature 5 SV,CV,PA 

IHX primary outlet temperature 4 RID,SV,CV 

Bulk sodium temperature 13 RID,SV,CV,PA 

SU sodium inlet temperature 5 PA 

EV sodium outlet temperature 7 PA 

Tag Signal" Redundancy Used byb 

Pl-BRM594M Rod position 1 CV 

R1-FM-512B Primary sodium flow 1 RID,PA 

R l-TC-544IAT HP plenum temperature 1 NNET 

R2-RT-533AA IHX secondary outlet 1 RID,Fuzz)r,NNET 

R2-TC-546AR IXH secondary inlet temperature 1 RID,PA 

temperature 

S2-EM-516 Secondary flow 

(no tag) EM pump voltage 

R3-PT-505 Steam drum pressure 

1 RII),CV,PA 

1 cv 
1 PA 

P3-FT-588 Turbine inlet flow 1 PA 

"Definitions (column 2): 
EM = electromagnetic. 
EV = evaporator. 
HP = high-pressure. 
IHX = intermediate heat exchanger. 
SU = superheater. 

bDefinitions (column 4): 
RID 
Fuzzy = fuzzy controller. 
NNET = neural network controller. 
CV = command validation block. 
SV = signal validation block. 
PA = performance analyzer block. 

= reconstructive inverse dynamics controller. 
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obtained during a previous startup at EBR-11. ‘This data set includes the base signals, 
Thus, the empirical models are developed by using only the base signals because the 
redundant nieasurcments are more reliable than the nonredundant ones. The base signals 
of this application are indicated in Table 4.1. 

The signal validation block (Sv1pI) shown in Fig. 4.1 includes two different routines 
that check the validity of the signals independcntly. The first routine uses a nonlinear, 
process empirical modeling (PEM) technique previously developed (Upadhyaya ct al. 
1987). The second routine uses a well-known artificial neural network paradigm called the 
backpropagation network (RPN). This routine was also prcviously developed for 
diagnostic purposes (Wpadhyaya, Eryurek, and Mathai 1989). Thus, the SVB includes two 
models (PEM and BPN) for each nonredundant measurcrnent. 

Development of the empirical models stated above includes off-line computations. 
The PEM routine uses a nonlinear cuwe-fitting method and is known to provide efficient 
rcsults. PEM is suitable for rapid updating since the development process takes relativejy 
short CPU time. BPN is a learning algorithm that requires off-line training. ‘fie training 
period can be long, thus it is not easily updated. However, BPN is robust against 
abnormal situations and is also known to be a powerful generalization tool. The different 
characteristics of the two methods cover a variety of anomalies so that the fault-tolerance 
can be handled by at least one of the two routines. More detailed information on 
empirical modeling techniques are given in Sect. 6. 

During the on-line implementation, the SVB rcceives the 16 selected signals. It uses 
the base signals as the inputs to the models to estimate the rest of the measurements. A 
comparison takes place between the estimated value and the actual reading. If the 
deviation exceeds a predefined band, the SVB disqualifies the corresponding signal. The 
estimation results obtained from the empirical models compared with the actual data are 
shown in Figs. 4.2a-4.2f. As can be seen from thesc figures, the SVB functions favorably. 

4 3  c(9 I) VALIDATION 

As describcd in Sect. 4.2, the purpose of conimand validation is to provide an 
intermediate confirmation stage bcfore the commands are sent to the plant actuators. 
From the practical paint of view, the command validation is the same as the signal 
validation, except the signals to bc validated arc obtained from the operator, controller, 
and/or actuator. The concept of command validation covers the failure possibilities of the 
command-generating components such as the hardware, software and operator. 

signals, (1) control rod position and (2) voltagc applied to the EM pump (determines 
secondary sodium flow). The command validation block (CVB) shown in Fig. 4.1 uses two 
empirical models for each command. The routines used for the CVB are the S a m  as 
those used in the SVB. Similarly, the empirical models in CVB are developed off-line 
from the available EBR-I1 startup data. The strategy consists of using the base signals to 
estimate the commands, which are compared with the actual commands. When a large 
deviation occurs between the estimate and actual command, CVB disqualifies the 
corresponding command. Figures 4 . 3 a - 4 3  show the CVB estimates of the cominands 
used in the ERR-I1 startup. 

routine for the estimation of reactor power signal. A n  example to the BPW 

In application to the EBB-I1 startup, the command validation task includcs two 

Figure 4.4 shows the haPnTRIWSYSTEM-BUILD implemcntation of the PEM 
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Fig. 4-23. Process empirical model for power; input signals are reactor exit temperature and 
intermediate heat exchanger primary outlet temperature; modeling error is 2.1 1%. 
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El& 42b. Backprapagatkm network model for p<nver; input signals are reactor exit temperature and 
intermediate heat exchanger primary outlet temperature; modeling error is 2.14%. 
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Fig. 4.26 Backpropagation network noodel for intermediate heat arrchanger @LX) seoondary outlet 
temperature; input signals are reactor exit temperature and IHX primary outlet temperature; modeling error is 
0.07 1 %. 
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ebr2a2 S2-Fbl-516 S PUMP FLO 

Fig 4 2 .  Process empkical model of sexomhy sodium flow; input signals are reactor arit temperature 
bulk sodium tank temperature; modeling error is 4.54%. 
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Rg. 4 2  BacLpropagalion network d e l  of secondary sodium fknq input Signals are readoc erjt 
tempmature bulk sodium tempemlurc; modeling error is 2.23%. 
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ebr202 Pl-RAM-594M C ROD 11 

Eg. 4% Process empirical model fol: mntrd md pasilion; input signals are power and reactor outlet 
temperature. 
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Fig. 43b. BackprqgM actwork mhldel ftx amtrd rod tion; input signals are power and reactor 
outlet temperature. 
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BPN Secondary Sodium Flow F r e d F c t i o n  

Fii 4% Badqmpagatjon netwwt model of Iiacondary sodium input signats are elammagnetic 
(EM) pump vdtage and EM pump delta P. Thif model is used for actuator output validation. The detectable 
anomaly is the EM pump failure. 
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ebt4.202 EMP VOLTS I N 0  TAG n l  

Fig- 4 3 -  PNKFSS empirical model of eledromagaetic pump wftage; input signals are reactor exit 
temperature and bulk sodium temperature. 



44 

BFN EM Fump V o l t a g e  P r e d i c t i o n  
PREDICTED -- ACTUAL 

. . . .  

. . . . .  

..... 

. .  

. . . . . .  

. . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t , -+f " 

. . ,  .... 

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  . . . . . . . .  

. . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . ,  

I I I 1 
28 4s 60 80 

t4LMEER OF P B T r n S  

Fig. 43f- network anode1 of gnetic pump dtage; input signals are reactor 
exit temperature and bulk sodium tank temperature. 



45 

T 

penmodel POWER 

dscale-y power 

Y= -2.3206*Ul*Z + 37+907*U1 - 3.798PUZ - 88.68 

dscale,x2, 
IHX P n  Out T 



46 

implementation is also shown in Figs. 4.5a-4.5~. In this example, the BPN estimates the 
secondary sodium flow for command validation. 

The control guidance block (CGB) houses three different nonlinear controllers 
operating in the MIMO regime. The two actuating signals are the control rod position 
and the EM pump voltage that drives the secondary sodium Bow between the IHX and 
the steam generator. As described earlier, the three controllers operating in parallel 
provides a fault-tolerant opcration. Thc design differenccs among the controllcrs are 
made carefully to distribute the capabilities over the alternative control systems. This logic 
helps confine the anomaly propagation through only one controller, thus isolating others 
from the external disturbances. The design also aims at building robustness within each 
control system against abnormal situations. 

The ICs interface with the EBR-I1 actuators (including the operator) has three 
modes: (1) manual control, (2) semiautomatic control, and (3) full-automatcd contro1. In 
the manual mode, the control block directly interacts with the operator. It provides a set 
of suggestions €or the adjustment of the control variables. In the semiautomatic and full- 
automatic modes, the control block is manipulated by the operator to send the control 
signals directly to the plant actuators. The distinction between the semiautomatic and full- 
automatic modes is determined by the frequency of operator intervention. The scope of 
this work does not include the specifics of the full-automatic and semiautomatic modes. 

Parallel opcration of the three controllers includes thc use of three adaptivc models 
(on line) of the plant. In the parallel mode, all of the controllers are active including the 
two that arc fed back from the adaptive models and the one that interacts with the plant. 
Note that the adaptive models are capable of accurately representing the plant dynamics. 
Detailed information on adaptive modeling is given in Sect. 4. 

4.4.1 Rmmtructive Inverse ics Controller 

The background of the rcconstructive inverse dynamics (RID) control dcsign is given 
in Sect. 6. The underlying principle includes creating the inverse dynamics of the process 
from a model-based, adaptive paradigm (Bcrkan e t  al. 1989). RID is a nonlinear 
technique and yields accurate trajectory-following control. It is inherently robust against 
modeling errors and unknown dynamics. Thus, the instability problem often experienced 
in model-reference control techniques can be avoided provided such discrepancies are 
within the acceptable limits. The RID method can be enhanced with an adaptive routine 
that further reduces the effects of uncertainties. 

The EBR-I1 startup control task consists of a MIMO design with control rod position 
and secondaxy sodium flow as the actuating signals. The RID controller design uses two 
trajectories to be followed: (1) reactor power and ( 2 )  IHX secondary sodium outlet 
temperature. These trajectories are obtained from the available startup data. Figure 4.6 
shows the RID design of rod reactivity to E01l0w the reactor power and secondary sodium 
flow to follow the IHX secondary outlet temperature, and it illustrates the implementation 
in the MATIRIWSYSTEM-BUILD envirommcnt. 

In the RID techniquc, all available measurerments (that are adequate to represent the 
inverse dynamics) are used in the feedback Inop. An on-line model is incorpurated with 
the control system to provide estimates of the unmeasured state variables such as 
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Fig. 4.5~- Expanded view I>€ the output layer neuron. 
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precursor concentration, fuel temperature, cladding temperature, and 1HX wall 
temperature. The on-line model also provides corrections for the uncertainty in reactivity 
and heat transfer coefficients. The final design used in simulations does not include 
adaptive features, because the performance is satisfactory without complicating the control 
system (see Sect. 5). 

4-42 Fuzzy Controller 

Use of fuzzy logic in control is briefly presented in Sect. 6. Fuzzy control has become 
increasingly popular in industrial applications, mainly because of the simplicity in 
implementing a nonlinear control law that can handle imprecise information. In 
application to the EBR-I1 startup, the fuzzy paradigm is considered to provide a reliable 
control solution that does not rely on an on-line modcl. Also, it uses only three 
measurements from the plant: the reactor power, core exit temperature, and IWX 
secondary sodium outlet temperature. Because only the latter measurement is 
nonredundant, this control module is quite isolated from measurcment anomalies. 

Automation of the EBR-I1 startup procedure with a fuzzy controller requires a 
trajectory-following strategy for both rod reactivity and secondary sodium flow. Unlike the 
steady-state control of dynamic systems, the trajectory-following control presents some 
difficulties when employed within the fuzzy control paradigm. A new approach that 
employs fuzzy control in the feedback loop is used. The fuzzy control block includes a 
truth table identifying the state and control variables in a common phase plane. The table 
is constructed from a data set previously recorded during a successful startup of EBR-11. 
In the feedback loop, the fuzzy block shown in Fig. 4.7a provides correction to the startup 
commands (fixed trajectories) to ensure that the plant states remain within the phase 
plane of the table. Figure 4.7a shows the MATRIXx/SYSTEM-BUILD blocks 
representing the EBR-I1 modcl, fuzzy controllcr, and correction block "wire." The interior 
of the fuzzy block is shown in Fig. 4.7b, where input channels 1, 2 and 3 correspond to the 
on-line readings of the three measurements stated above. The outputs of fuzzy blocks are 
equally weighted to yield the final form of the control signal. 

4.4.3 Neural Network Controller 

A brief description of the artificial neural networks, particularly the backpropagation 
network (BPN), is given is Sect. 6. Recent advances in neural networks have made it 
possible to design control systems for dynamic systems. The BPN paradigm, when 
designed as a controller, does not use an on-line model. Thus, it providcs another reliable 
control solution after fuzzy controller. Development of the BPN module requires off-line 
training that can be compkdtcd, in general. It also requires data preparation and careful 
data operations. 

to provide a short-cut solution with a high degree of robustness. It is designed to use only 
three measurements, similar to the fuzzy controller. However, the measurement set is 
chosen differently to yield a maneuvering capability around the problems in power 
measurement that affect both fuzzy and RID controllers. The three measurements that 
the BPN modulc USES are the core exit temperature, IHX secondary sodium temperature, 
and high-pressure plenum inlet temperature. Note that it is impossible to avoid using 
nonredundant measurements from thc IHX to  implement startup control succcssfully. 

In application to the EBR-I1 automated startup task, the BPN module is considered 
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The use of neural networks for the trajectory-following control imposes a difficulty 
just like that in the fuzzy control paradigm. T%e problem is that the BPN controller can 
produce control output for only the current state of the plant but not the future state. 
Therefore, the desired future states of the plant must be introduced to the control system 
to drive the plant toward higher power lcvels by simply imitating the operator’s actions in 
a previous startup. The trajectories of the t w ~  control variables are introduced to the 
plant every fifth time point. During the remaining time pcriod, the plant states are fed 
back to the BPN controller to provide regulative (corrective) control action around the 
new futurc state. 

The BPN controller is trained by using the startup data shown in Fig. 2.3. Training 
requires normalization of the data. Each of two BPN algorithms is trained to predict one 
control variable. The training data set includes normalized signals from the core cxit 
temperature, IIIX secondary sodium outlet temperature, and high-pressure plenum inlet 
temperaturc, 

The choice of a proper network architecture constitutes a major problem in neural 
network applications. The number of hidden-layer neurons determines the prediction 
capability of the network. The optimal number of hidden-layer neurons i s  an unknown 
that can be determined through only intuition. A large number of neurons slow down the 
training, and sometimes solutions may never converge. Thus, the BPN architectures are 
designed to contain a minimum numbcr of hidden-layer neurons, provided the 
performance is acceptable. Another difficulty in handling largc networks appears in the 
implementation stage. The MATRTXdSYSV,N-BUILD environment is not designed 
particularly to contain networks with a large number of connections. Thus, the design 
philosophy in this application is to obtain a neural network controller with reasonable size 
and performance. The BPN algorithms include three hidden-layer neurons for the 
reactivity control and five hidden-layer neurons for the secondary sodium flow control (as 
shown in Fig. 4.8). Off-line training results indicate that the BPN controllcr efficiently 
produces thc expected control actions given the plant states. The simulation results are 
given in Sect. 5. 

4.5 PERFORMAN@E ANALYZER 

The performance analyzer shown in the general architecture of Fig. 3.1 includes 
several vitally important diagnostics tasks. In this application, its function is concentrated 
on the recognition of plant behavior. Because the work presented in this report is based 
on computer simulations only, additional functions of the performance analyzer are 
omitted. ‘fie omitted functions include determining the component status and wearing 
effects. 

subject to unanticipated transients. During scheduled normal operations, the bebavior- 
recognition task determines the degree of consistency in following the planned operation. 
The ICs design includes a performance-analyzing routine to determine whether the 
startup trajectories are followsd properly by the ICs control actions. The routine uses a 
data set previously recorded during a successful startup opcration. A multidimensional 
phase plane is developed to correlate all state variables of the plant for a given power 
level. Figure 4.9 illustrates the phase plane for only three statc variables. The minimum 
distance between the current plant state R’ and the desired state R determines the quality 
of performance. Recognition of thc current operation is calculated pcrccntagewise from 

Recognition of the plant behavior is an important diagnostics task when the plant is 
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the normalized distance. When the minimum distance is  zero, recognition is 100%. The 
lower bound of this measure i s  1 to correspond to a 0% recognition. 'fiis calculation is 
repeated every time point the measurements become available. The ring shown in Fig. 4.9 
is a linguistic evaluator and can be adjusted through experience. In this application, the 
recognition level below 90% is considcred to be mcdiuni performance. When 
performance is in the medium range, the mode selector intervenes the control system and 
evaluates the candidate controllers for continuation of the ICs implementation. Note that 
this function provides an anticipatory trip-avoidance capability, mainly because of the 
recognition of a deteriorating range that may drag the plant into abnormal regimes during 
later stages of the operation. 

As stated previously, the integrated control system shown in Fig. 4.1 is a simplified 
version of the general design shown in Fig. 3.1, which is appropriate for determining the 
feasibility of the conceptual design at a preliminary level. The rnode-selector block of the 
ICs system shown in Fig. 4.1 also includes the performance-analyzer block. 

controller since this tcchnique yiclds accurate trajectory-Eollowing control (see Sect. 5). 
The rnode-selecting logic is constructed on top of this initial status- The causes for a 
mode change from the initial status, described by Nakakura and Ishiguru (1988), are 

In this application, the tnode-selecting logic is designcd to initially activate the RID 

l k  input measuretnent(s) is/are corrupted, 
1B. command(s) is/are unacceptable, 
1C. performance is low, 
1D. operator intervenes (not applicable in manual control), 
1E. emergency system intervenes (not applicable in manual control). 

Note that 1% lB, and 1C are obtained from the signal validator, command 
validator, and performance analyzer respectively. These causes are connected by an OR 
gatc. Intervention by the emergency system or operator is not applicable in manual 
control where the ECS output is observed by only the operator as guidance. Thus, such 
intervention capability already exists and the ICs does not need to process this 
information. 

the logic tree. The two remaining control systems are to be checked for their availability. 
The availability check includes the following verifications: 1s the candidate controller 

The transition to any secondary inode due to an anomaly requires a broadening in 

2 k  
2B. generating acceptable commands? 
2C, 

affected by the detected signal anomaly? 

able to take over (jump condition)? 

If the measuremcnt anomaly is unavoidable by both remaining controllers, the ICs 
enters into the iiivalid range: a halt condition is declared. An identical reasoning applies 
to the commands being geiierated by the two candidate controllers at thc time of anomaly 
detection. The verification 2C determines the magnitude of the disturbancc that will 
affect the system when the controllers are switched. ,Uthomgh the candidate controllers 
generate acceptable commands at the time of anomaly, the transition is not allowed in 
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case of anticipated unacceptable jumps, When the secondary verifications are satisfied by 
the two candidates, the closeness becomes the criterion. 'Ile closeness i s  calculated from 
the jump condition, which i s  a nieasure of distance between the control variables and their 
expected values. 

In casc of continuing anomalies, the third and other transitions are possible. 
However, the third and other transitions are contined within the fuzzy and neural network 
controllers, When the abnormality is detected through the command validator and 
performance analyzer, but not by the signal validator, the third and higher transitions can 
include the RID controller since thc on-linc model will not be affected. 

It is important to note that the error margins (acceptable band of signals) can be  
kept small to enhance the anticipatory failure detection. However, the band thickness, if 
not properly chosen, may cause several unnecessary transitions between the controllers. 
Thus, adjustment of the band thickness plays an important role in building fault tolerance. 

MATRIXx/SYSTEM-BUILD environment. Figurc 4.10a shows thc details of the super 
block "command logic" shown in Fig. 4.10b. 'I'he rod reactivity and sodium flow control 
signals arc evaluated in the upper and lower parts of Fig. 4.10a respectively. For every 
controller, a corresponding "command-logic" superblock exists. The output of the 
command-logic superblock is 1, indicating abnormality and zero for normal operation. In 
Fig. 4.10b, the outputs from these blocks are connccted to art OR gate. The OR gate's 
second input comes from the perlormance analyzer. Thus, the performance analyzer itself 
has the capability of disqualifying the on-line control implementation. The superblock 
"mode" provides a signal transmission path for the control signals to reach actuators. 
Other inputs to superblock "mode" include similar signals from the signal validator block. 
The signal validator has an equal weight in disqualifying the on-line controller. The 
superblock "final control" receives control signals €rom the controllers and functions as a 
bridge to the actuation channel. The superblock "on-line modell" chose the coupling of 
the on-line model with the two standby controllers, and the third one is coupled to the 
plant. 

Figures 4.lOa and 4.dOb show the implementation of mode-selecting logic in the 

4.7 FAULT TOLERANCE 

The ICs architecture shown in Fig. 3.1 represents a fault-tolerant strategy to 
maneuver around those problems that may cause reactor trips in conventional systems. 
Trip avoidance is an important issue because the availability of the power output must be 
maximized for economy. The fault-tolerant capability in ICs is designed such that the 
problems arc solved in an anticipatory fashion before their effects reach to the point of 
reactor trips. I t  is important to note that the definition of fault tolerance does not include 
avoidance maneuvers in the vicinity of the prcscribed safety limits. 

special attention, mainly because the startup operation i s  quite complicated compared with 
other modes of operation. An average startup at EBR-HI requires 8 h. An automated 
control system at EBR-I1 subject to the full load of control and diagnostics tasks is 
required to maintain high performance throughout the startup and transition to steady 
state at full power. The duration of the normal startup transient is  long enough for the 
plant abnormalities to build up. Furthermore, the startup mode represents the case where 
the actuators are used extensively. In the most dynamic mode such as startup, component 

In application to EBR-I1 autostartup control, the fault-tolerance strategy deserves 
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failure possibilities are higher than in steady-state or standby conditions. Thus, the ICs 
design concept includes a fault-tolerant logic to resolve some of the likely problems. 

to the fault-tolerant strategy is the fault-detection capability. In addition, such a capability 
can be  performed fast enough that the anomalies are not allowed to propagate. For 
example, the signals used in control systems are analyzed on-line to check their validity. 
Anomalies are detected promptly, and the relevant systems are warned. The lack of such 
a capability often causes plants to operate under abnormal regimes without detection up 
to  the point where the severity of the anomaly requires emergency systems to intervcne. 
A similar logic holds €or the command validation task. Bad commands are not allowed to 
affect thc system. Thus, the validation blocks function like an early-Eailurodctection 
system. However, early detection does not complete the fault-tolerant Logic since the 
question of "what to do next" must be answered. 

The decision of what to do after anomaly detection constitutes one of the most 
significant issues. This problem is solved in the ICs  design by creating a redundancy in 
control systems that operate in parallel. The redundanq built into the ICs not only 
introduces a software-fault tolerance but ofkrs  a number of solutions in case of anomalies. 
The control block houses three different controllers that (1) use different sets of plant 
measurements, (2) use different control laws, and (3) havc differcnt robustness 
characteristics. A signal anomaly can be bypassed by activating one of the controllers that 
does not use the corrupted signal. This solution holds if the anomaly is caused by the 
measurement system. Similarly, if the on-line controller starts generating unacceptable 
commands, the alternative control systems takes over. A safety measure is also built into 
this type of implementation. This measure indicates whcther the jump condition from one 
controller to the other is acceptable. The ICs fault-tolerant logic cannot resolve 
equipment malfunctioning, because it is not generally an expected capability from any 
control system. In addition, the multiple anomalies occurring simultaneously may not be 
avoidable. The ICs is designed to declare a halt situation when the severeness of the 
anomaly exceeds the designed tolerance capacity of the ICs. In such cascs, the operator 
and the emergency systems are warned. Note that the emergency systems and the ICs 
operate independently with an overriding protocol that disqualifies ICs under any 
conflicting situation. 

Figure 4.1 1 shows the fault-tolcrant feature of thc parallel control system intcracting 
with the validation blocks. The three controllers use different sets of measurements. The 
mode selector continuously receives status information from the signal and command 
validators. In case of anomalies, the destination of the corresponding signals are 
inactivated. Tbe U/N flags in the figure correspond to  permissions to activate/inactivate 
the controllers. The performance analyzer is also linked to the network Its oLitput 
dctcrmines the overall recognition of the operation. When no signal or command 
anomaly is present, the ICs is expected to drive the plant around the predetermined 
trajectories. These trajectories are obtained from the previous startup data. If thc plant 
responsc shows unrecognizcd behavior, the performance analyzer can dcclarc a haft 
situation. 

The fault tolerancc built into the ICs system can also include tbc softwarehardware 
failures which, in a simulated environment, requires isolating redundant control algorithms 
from each other by using different computers. This feature is not includcd in the scope or 
this work. 

Thc ICs includcs signal and command validation blocks, whose major contribution 
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To ACTUATORS From SENSORS 



The 1CS design is performed entirely in the MATRIXjdSYSTEM-BUILD 
environment with a VAX 3100 machine. The simulation environment includes a 
nonlinear, valid model representing the EBR-I1 plant. The EBR-I1 model is coupled to 
the ICs to test the startup capability. First simulation includes the RID controller to start 
up the reactor. The diagnostic systems continuously evaluate the performance and the 
validity of commands. The simulation results show that the RID performance is  
outstanding, with an average rccognition of -97%. During the simulation, all the 
commands are validated, and the mode selector remained silent. The candidate controllers 
(fuzzy and neural network controller) are tested for the same task. The startup responses 
show that the fuzzy controller (with 96% recognition) and the neural network controller 
(with 93% recognition) also yield satisfactory trajectory-following, while the mode selector 
remains silent during each separate simulation. The simulation results in the range of 
0-35% power level, compared with the operator-driven EBR-I1 data (dotted lines), are 
shown in Figs. 5.la-S.lg. 

Figure S.la shows the power response controlled by three different controllcrs and 
by the operator during startup. The figures include the core exit temperature (Fig. S.lb), 
bulk tank temperature (Fig. 5.1~1, IHX secondary sodium outlet tcmperature (Fig. S.ld), 
in-core sodium temperature (Fig. 5.le), control rod motion (Fig. 5.19 and secondary 
sodium flow (Fig. 5.lg). 

5.1 QUALITATIVE EVALXJATION 

The responses shown in Figs. 5.la-5.lg indicate that the three controllers 
accomplish the startup task quite efficiently. However, the differences in their 
performances as well as their advantages should be mentioned. 

The RID controller is designed to follow two trajectories (core exit and IHX 
secondary outlet temperatures). These trajectories are taken from the operator-driven 
startup data shown in the figures by dotted lines. Figure 5.1b and 5.ld indicate that the 
trajectories are followed so closely that they cannot be  distinguished in these figures. The 
other statc variables also strongly agree with the actual data. Note that thc control rod 
motion taken by this controller in Fig 5.lf is almost identical to the operator’s actions. 
However, the secondary sodium flow in Fig. 5.1g is controlled more abruptly. The 
difference in flow control between the operator and RID controller exhibits itself in the 
power response as a small delay because of the deviation in reactor inlet temperature (and 
tank temperature of Fig. 5 .1~) .  It is important to notc that the RID controller is tuned 
extra tightly to accomplish efficient trajectory following. 

The fuzzy control results show a strong agreement with the RID and opcrator 
actions. The system responses are also consislent with Lhe startup data, The trajectory of 
the IEIX secondary outlet temperature is followcd with more error when compared with 
the RID performance. However, this error is negligible for all practical purposes. The 
fuzzy controller is not dependent on a model, and it is very simple to implement. Thus, 
the trade-off between the RID and fuzzy controllers represents a bargain between the 
performance and complexity. 

deviations in system responses with respect to the desired behavior. However, the neural 
The neural network controller yields the least preferable strategy because of 
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network design was restricted to a simple structure because of the difficulty in 
implementing control design in this particular simulation environment. Although the 
performance is the poorest among the others, the commands generated by this controller 
lie in the valid region, and the overall performance is reasonable. Note that the network 
lor the rod reactivity control includes only three hidden-layer neurons. Similarly, the 
network for the secondary sodium flow control includes five hidden-layer neurons. 
Increasing the number of neurons in these networks will most likely improve the 
performance. Fuzzy controller is relatively easier to update compared with the neural 
networks approach. Depending on the changes in operational conditions or system 
configuration, new fuzzy rules can be added or old ones can be removed. With neural 
networks, updating may require challenging off-line training. 



6. DESIGNTOOLS 

6.1 PROCESS EMPIRICAL MODELING 

One of the common techniques for signal estimation is based on empirical modeling 
of the process provided all the important measurements are available. The signal 
validation capability embodied within the IC§ is taken from a previous work (Upadhyaya 
et  al. 1987) that provides an algorithmic method for nonlinear, empirical modeling. ?The 
empirical model represents a critical signal as a function of a set of other measurements 
that influence the behavior of the variable undcr consideration. The functional form of 
the fit is, in general, nonlinear and has the form 

where yi is the state variable to be monitored, and x = &, x2, + 

subsystem variables that influence y;. A previously developed software system (Upadhyaya 
e t  al. 1987) uses a modified version of the nonlinear curve-fitting technique first proposed 
by Desrochers and Mohseni 1984. 

, x,,) is the vector of 

The general nonlinear steady-state system predictor has the form 

M e r  choosing the functionals $,(x), the coefficients (Co, C,, - - , CN) arc 
calculated by the least-squares procedure. Each (p; is a nonlinear term or cross product of 
the components ofx. The aumber of possible csoss-product terms is a function of the 
polynomial order and the number of components in x. To handle the nonlinear models 
and reduce the number of terms or even the order of the model, several theories exist. 
Desrochers and Mohseni's method (1984) is used for these purposes. Detailed 
information about the analytical development and the algorithm is given in Upadhyaya 
e t  al. (1987). 

6.2 NEURAL NETIWORKS: BACKPROPAGATION P IGM 

Thc use of ncinral networks for signal validation o r  control has several advantages. 
Defining a functional form relating a set of process variables is not required. The 
functional form employed in neural network paradigms is nonlinear. Once the network is 
coniplctely trained, the estimation of the dcsired variable is efficiently interpolated during 
implementation. Both steady-state and transient system behavior can be predicted. ?'he 
state estimation is less sensitive to measurement noise compared with model-based 
techniques. 

One of the analog neural networks, the backpropagation network (BPN), i s  
obtained from a previous work (Upadhyaya, Eryurek, and Mathai (1989). BPN is a 
multilayer, fully connected heteroassociative network. A typical network configuration for 
signal validation is shown in Fig. 6.1. The number of processing elements (PES) in the 
input layer corresponds to the numbcr of input signals. In this case, the output layer has 
only one element, the signal to be predicted. The number of PES in the intermediate 
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layer depends on thc problem. The BPN algorithm computes the weights between pairs 
of processing elements such that the difference bctween the actual output and thc 
network output is minimized in a least-squares sense. 

Eryurek, and Mathai 1989). The algorithm is outlined below. 
The algorithm used to train the network uses the generalized delta rule (Upadhyaya, 

1. Assign a random valuc r in the range [+l, -11 to all the connection weights a$, 
and bias 07 to all processing elements. 

2. Present the normalized input vector x to the first layer of the network and 
propagate it to the output layer as 

1 
X P  = 

I +(ciWij p-1 x i  p-1 + e;) ' 
1 +e 

(3) 

after which, each PE in the network will have an associated value. 

3. For each PE at the output layer, the local error between the desired value and 
the actual value is computed by 

6P I = XF(1  J -xi')(fi -xi') , (4) 

whcrep denotcs the output layer. 

4. For each PE in the hidden layers, starting at the layer bclow the output layer 
and ending at thc layer above the input layer, the local error is found by 

5. Compute all the connection weight correction as 

P P-1 = a dj xi 

and the bias correction as 

A0; = ad; . (7) 

6. Update all the weights by adding the weight corrections to the old weights. 

7. Update all the PE bias values by adding the bias corrections to the previous bias 
values. 

8. Repeat step 2 until the error between the desired and actual value of thc 
output is sufficiently small. 
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In actual practice, system operations often deviate from prescribed definitions and 
set points. Many control problems arise from this mismatch between design and practice. 
Actual solutions require an appropriate interpretation of the inexactness and the 
uncertainty that abounds the real systems. Fuzzy logic is descriptive, relies on emulating 
the operator of a process, and provides a framework for integrating artificial intelligence 
with control. Most important, it uses uncertainty as a tool to handle uncertainty. 

The central notion in fuzzy logic (Zadeh 1983) is that of a linguistic (fuzzy) variable 
whose values are words or sentences in a synthetic language, appropriately represented by 
membership functions. A linguistic variable includes an adjective-like term (and its 
antonym), a modifier and a connective. The fuzzy control policy is represented as a finite 
collection of rules, called fuzzy productions (Fp). FPs describe the dependence of one 
fuzzy variable on another. Thcir canonical form of the ith rule R is 

if * (x, i s ~ i ) ,  a ,  (x, i s ~ 6 )  , (81 

where R' is the ith rule; A{ is a linguistic value of 3. in R; Y' is the control variable, and af 
are adjustable parameters. The truth value of the antccedent of R is given as 

where Aj(3) is the grade of membership of X, in A;. The aggregated value of control Y is 
a normalized linear combination given by 

The equation above suggests a weighted vote in the control logic. Generally, in a 
fuzzy production system, all rules are considered to be "fired with different strengths. 
Rules that fire strongly contribute significantly to the final conclusion. 

6.4 INVERSE D m M a  AND CONTROL 

Consider a plant dynamics described by 

x = F ( x ,  u )  , 

where x and u are state and control variables respectively. The control is solved from 
Eq. (12) to yield 

u = F ( X ,  i )  , (13) 

where F' indicates the inverse dynamics with respect to the solution of control u. The 
dynamic equilibrium of control is defined as 
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= F ’ ( x ,  x = 0) 
ufq 

. 

The definition of the reconstructive control is given by 

urc I‘ x = - k ( x  - x d )  , (15) 

where k is a tunable gain and xd is the demand. The dynamic equilibrium of control given 
by Eq. (14), when appended to the opcn-loop system of Eq. (12), cancels the forward 
dynamics denoted by F. The second segment of the total control given by Eq. (15) 
reconstructs the forward dynamics in the desired form. Following the definitions in 
Eqs. (14) and (15), the total control given in Eq. (13) can be rewritten as 

An alternative way of constructing the RID law includes the definition of a 
performance error E(t) given by 

E ( t )  = k u [ W  - U , , ( f ) I  9- k x [ x ( t )  - x , ( t ) l  9 (17) 

where k, and k, are weights for the crmr terms. The control u i s  then solved from the 
above to satisfy the dynamic condition o fE( t )  = 0 at all times. Note that the dynamic 
equilibrium u,(f) always works in the opposite direction with respect to the state variable 
x(t); thus, the condition E(t) = 0 can be satisfied only if x( t )  - xd(t) = 0. By letting 
E(t)  = 0 in Eq. (17) 

~ ( t )  = ueq(t )  - - k [ x ( t )  - x , ( t ) ]  = ~ , ( t )  + urC( t )  . (18) 

The paranneter k is an adjustable quantity. Thc RID control is specifically designed 
for trajectory-following control applications. Thus, it is assumed that the open-loop system 
operating at steady state is in stable condition, that is, u(0) = iiI,(0) and x(0)  = Xd(0) at 
the beginning of the transient. 

according to the distribution of demands and control variables. Each control variable is 
designed to follow one demand. Thus, for every control-demand pair, a corresponding 
subsystem is dcfined. In case of MIMO systems, the control-demand pairs (and their 
corresponding subsystems) are selccted according to the best strategy determined by the 
nature of the physical system. Among the many possibilities, the control-demand 
couplings fit one of the following most frequently encountered subsystem definitions. 

The RID design is performed in the subsystem level. A given system is decoupled 

A Control law of 
Consider the following coupled nonlinear systems. 

where 

x1 = state variable of subsystem 1, 
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X = F(X,  xl, U )  , 

u1 = control variable of subsystem 1, 

x = state vector of the coupled subsystem, 

- 
U = control vector of the coupled subsystem. 

Note that the control vector 

The control law of the direct path defined for a given demand d ,  on the state 

does not include ul. 

variable x1 is given by 

where 

and f' denotes the inverse dynamics. 

B. Control law of indirect path 
Consider the following coupled nonlinear subsystems. 

- I  k = F(xl ,  x2, x, U )  , 

As it can be seen from Eq. (23), a demand on x I  can be satisfied only through the 
control of a coupled subsystem provided the combined subsystem is controllable. Suppose 
that the controllability condition exists for the combined subsystem given by Eys. (23) and 
(24), then the control law of the indirect path for the control-demand pair of (u2, d,)  is 
given as follows. 



i1 = -k , (x ,  - d l )  , 

2, = -k2(x2 -x;) . 

As seen from Eqs. (26-29), the control u2 forces the solution of state x2 to match 
the dummy state xi. The dummy state x i  is  defined as the inverse dynamics of the state 
equation (23) where x1 follows the demand d,. 

The term "indirect path" indicates that the control and demand arc distributed over 
more than onc state equation. Several different ways of defining the dummy state(s) can 
be used. The demand inay also be assigned to an output equation where the control 
appears in the statc equations. Thus, the generalization of the indirect path control law 
cam not be carried out any farther than the above unless the system equations are 
explicitly defined and the strategic choices of dernand-control pairs have already been 
made. 

C. Adaptive phase:, on-line 

The abovc derivation i s  based on the awmption that the open-loop dynamics i s  
well defined through the system equations used to derive the RID control law. Once the 
control law is derived, the controller uses the plant state (measurements from the plant) in 
a feedback arrangemcret. 

In general, not all the plant states used in the controller are measurable. The 
missing state variables are estimated by easing an on-line model. However, the state 
estimation using models often includcs errors that may significantly degrade the controller 
pcrformance. Besides the estimation errors, the system equations used 10 design the 
control law, may not be adcquate either.. Thus, the RID design includes an adaptive 
design phase wlaere a correction term is added in the control to compensate for the 
mismatches between the plant and model. In case of uncertain dynainics, tuning the 
adaptive controller before the on-line iniplcmelmtation requires testing where the available 
plant measuremcnis are used- If of the plant states used in the RID control law are 
available as measurements, the adaptation cannot be accomplished (the system is not 
observable). The adaptive control can be designcd in numerous ways depending on the 
properties of the system under consideration. The following section describes the 
treatment of mismatches between the plant and model dynamics. 

Assume that the given system dynamics is known to be partially unknown and the 
modeling effort does not yield accurate results. Consider a subsystem given by 
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where xis the coupling state vector and g, is the unknown dynamics. A model describing 
the same subsystem is given by 

where gm is the correction to the unknown dynamics g, The RID design for the control 
u1 is 

where s;'indicates the inverse dynamics of the model. Assume that the plant states are 
measured. Then the control given above will be implemented in the following form. 

(33) 

Note that the inverse dynamics is denoted by hi'because an estimate g, is wed, The 
design also includcs 

"1 = -w, - d,) , (34) 

where d ,  is the dcmand. The design is completed by the prediction ofg,,,. The unknown 
dynamics can also be treated as another control variable. The inverse dynamics solved 
from Eq. (31) is 

where ni, is replaced by proportional and integral error 

(36) 

The integral error takes care of the accumulativc error and can bc omitted, 
according to the problem. 

The adaptive design can also be derived for the indirect path designs. It is 
important to note that the sensitivity oE gains k, , k,,, , and kj , with respect to the unknown 
dynamics, strictly depends on the nature of the uncertainty. The above derivation may 
also be used for parameter tracking. Figure 6.2 shows a block diagram of the RID 
control. 



A previously developcd linear model of EBW-II (Upadhyaya e t  al. 1989) is modified 
to take into account the nonlinearities. Thc modified model inclridcs only the primary 
system. The primary system niodcl consists of the reactor core, sodiiim tank, and 
intermediate heat cxchanger. The model employs the state-space technique using 18 state 
variables. 

Figure 5,3a shows the implementation using SYS'L'EM-BUILD blocks. The three 
superblocks (core2, i M ,  and tank) are connected to another superblock called "adapt." 
This block indudes five adaptive routines ta match the modcl dynamics with the plant 
respomse. Tlae five outputs from the adaptive block provide corrections to tkc reactivity 
and heat transfer coefficients of the model. The adaptive model uses on-line 
measurements from the plant. A second, entirely isolated, version of this model. is also 
dcvelopcd to provide the same corrections. Thc second model does not use any on-line 
mcasurernent; instead, it uses a set of look-up tables. These tables inc1mde pkase-plane 
relationships between the carrcctions and state variables. Thc tables are developed from 
data from thc previous EBR-I1 startup. The validation of the model can be seen in 
Figs. 5la-5lg.  

Figures 6.3b and 6 . 3 ~  show the corc and IIXX models respectively. The interior OF 
the adaptive block is shown in Fig. 4.3d, The adaptive routines are devcloped by using 
the RIB method for unknown dynamics. The isolated adaptive model is generated after 
an operator-driven simulation, where the corrections are obtaincd and tabulated. 

The HCS design introduced in this work uses several logical prepositions to yicld 
fadt-tolerant operation. In its prescrat form, the ICs also makes use of heuristic 
krsowledge at the preliminary level. Although an expert system devyeloprncnt is not in the 
scope of this work, the foilowing discussion clarifies the areas where an expert system 
would bc useful. 

routine that monitors the plant status in a wider range h n  the cuirent PCS design. T h i s  
enhancement requires an expert system environmrcnt in which the hcuristic knowledge can 
be processed appropriately. As a supervisory routine, the expert system can also provide a 
link between the continuous cornirol and statup procedure (or to the procedure 
prompting system). Note that several verifications in the standard procedure must be 
performed during startup. 

The capacity of such a super~isory system can bc extended to include more detailcd 
tasks- FOP example, the signal and command validation blocks include routines developed 
off-line. mess: routines may have to be modified lsecause of new plant conditions. The 
sopewisory routine can be de5igiied to conduct on-linc training of the BPN and PEM 
modules and to modify the mernbcrslnip functions of the fuzzy controller. One of the irisst 
important capabilities an expert system can providc i s  the anticipatoky control (Tsoukalas, 
Y ~ e e ,  and Ragheb 1989) that further cnhances the fault-tolerance capability of the control 
system. 

The implemei.ntation of the fault-tolerant logic can be enhanced by a supervisory 
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In response to the increasing interest. in autoniatcrl nuclear reactor operations, a 
collection of advanced methods in diagnostics and controls as well as ~ e ~ ~ l ~ ~ ~ ~ e ~ ~  of an 
integrated environment for autoination is presented in this report. 'I"rmi: integrated control 
system (ICs) architecture is a new concept within this contcxt. I t  offers validation of plant 
information before and aftcr it is  processed for control purposes. The ICs concept also 
includes ncw control techniques that are easier to implement on-line compared with 
conventional teclmiqucs. 

A particular application of the ICs is considered for automation of the EBB-I1 
startup opcration. Thc IC3 design includes signal and comtnand validation t a s b  that use 
artificial neural nchworks and process cmpirica'r nnrdeling techniques. The control module 
of the XCS houses three different controllers running in pasallcl. 'rhcse controller designs 
use reconstructivc inverse dynamics, fuzzy logic, and neural network paradigms in a 
MIMO regime, Another diagnostic module provides a measure of the performance 
(performance analyzer). A mode selector unit facilitatcs the choicc of appropriate 
techniques from the control, signal validation, and cornnmand validation modules. The 
msde selector evaluates the outputs produced by four other modules to determine the 
best strategy for startup control. Its primary function is to maximize the performance by 
safely maneuvering around the problems. The primary function of the mode selector is 
often referred to as fault tolerance. A subset of the in uts received by the mode selector 
contains information about the anticipated events of the plant. Thus, the anomalies arc 
not allowed to propagate in time without detection, and the preventive actions are taken 
well before the plant enters an undesired regime. 

The simulations presented here use a valid nonlinear model of EBR-11. The range 
of thc startup transients is choscin long enough to show the nonlinear effects, The results 
indicate that each controller of the ICs is capable of performing automated startup at 
EBR-11. This coiielusisn can be verified by comparing the (operator-driven) actual plant 
data with the simulation results (Figs. 5.h-5.lg). 'HIC simulations included all logical 
interactions of the command validator and performance analyzer. None of the cmimands 
are rejected by the command validator during simulations. The simulations do not include 
hypothetical sensory failures becamsc of an infinite number of hypothetical cases. Tine 
prediction capability of the signal validator is found to be very effective, as illustrated by 
separate runs (Figs. 4.2a-4.2f). The implementation using the MATRIXx/SYSTEM- 
BUILD software package imposes no real-time problems. This application is Q ~ S ~ M X ~  to 
bc faster than the actual startup at the EBR-I1 by a factor of 24. 

design for the EBR-!I automated startup. The proposed concept is potentially open for 
further enhancements. Improvenient in monitoring and diagnostics will extend the scopc 
of useful tasks. The use of expert systems is very important when much heuristic 
information processing is required. 

This study should be considered as a feasibility analysis rather than as a final cointi01 
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