
3 4 4 5 b 0 3 5 5 0 0 b b

0

G. A. Geist

. , . , ,

. , ~ . . - , ~ .

ORNL/TM- 11760

Engineering Physics and Mathematics Division

Mathematical Sciences Section

NETWORK BASED CONCURRENT COMPUTING ON THE PVM SYSTEM

G . A. Geist

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Labomtory
Oak Ridge, TN 3783 1

V. S. Sunderam

Department of Math & Computer Science
Emory University
Atlanla, GA 30322

Date Published -June 1991

1
Research performed at the Mathematical Sciences Section

of Oak Ridge National Laboratory under the auspices of the
Faculty Research Participation Program of Oak Ridge
Associatcd Universities, and supported by the Applied

Mathematical Sciences subprogram of the Office
of Energy Research, U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U.S. DEPARTMENT OF ENERGY

under Contract No. DE-AC05-WOR21400

3 4 4 5 6 0 3 5 5 0 0 6 b

Table of Contents

Abstract .. 1

1 . Introduction .. 2

2 . An Overview of the PVM System ... 3

2.1 PVM Architecture ... 3

2.2 Heterogeneity Issues ... 6

2.3 Other Aspects ... 7

3 . The XPVM Interface ... 8

3.1 Configuration Management .. 9

3.2 Object Management .. 9

3.3 Application Execulion .. 10

3.4 Debugging and Monitoring ... 11

4 . Portable Programming Using PICL ... 11

12

13

4.1 Portability in Heterogeneous Environments ...
4.2 Experiences with PICL on PVM ..

5 . Porting Two Scientific Applications to PVM .. 15

6 . Results .. 20

References ... 22

Network Based Concurrent Computing on the PVM System

G . A . Geist

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN 3783 1-6367

V. S. Sunderam

Department of Math & Computer Science
Emory University
Atlanta, CA 30322

Abstract

Concurrent computing environments based on loosely coupled networks have
proven effective as resources for multiprocessing. Experiences with and
enhancements to PVM (Parallel Virtual Machine) are described in this paper.
PVM is a software package that allows the utilization of a heterogeneous net-
work of parallel and serial computers as a single computational resource. This
report also describes an interactive graphical interface to PVM, and porting and
performance results from production applications.

- 2 -

1. Introduction

Concurrent computing environments based on networks of computers can be an

effective, viable, and economically attractive complement to hardware multiprocessors.

A case in point is the number field sieve project of Lenstra and Manasse [11, whose most

recent milestone is the factoring of the ninth Fermat number (148 digits) using over

1 ,OOO computers worldwide. Although such large scale use of network-based concurrent

computing may be rare, there exist many examples of this mode of multicomputing on a

smaller scale. In all these cases, a collection of general purpose computer systems inter-

connected by existing networks and support services have been successfully used to

achieve parallelism in applications.

Some of these network-based concurrent computitig environments are specialized,

in that they are either based upon distributed operating systems (e.g. IBCUS [2], the V-

kernel [3]), or they support special-purpose programming paradigms (e.g. Linda [2 11, the

Cainelot transaction processing facility [171). While these systems arc highly effective,

they impose many constraints and requirements on application end-users and resource

administrators that are often difficult to meet. We are concerned in this paper with the

other class of distributed computing environments - those that provide general-purpose

programming environments and require underlying support from the rnachincs and their

operating systems at levels that are normally considered “standard”. As examples, pro-

gramming paradigms based on the imperative model with procedure-call access to sys-

tem facilities, operating system support for limited inter-process communication within a

machine, and network services that provide unreliable data delivery are characteristics

that such a distributed computing system would assume. Several systems that fall into

this category have been described in the literature; representative examples may bc found

in [4,5].

In addition to utilizing available computing resources, network-based general pur-

pose Computing environments offer several other benefits. One of the most important is

the potential for partitioning a computing task along lines of service functions. Typically,

networked computing environments possess a variety of capabilities; the ability to exe-

cute subtasks of a computation on the processor most suited to a particular function both

enhances performance and improves utilization. ‘The Plan 9 distributed system from Bell

Labs [6] is based entirely on this model, and initial results are very promising. But the

implementation of Plan 9 appears to suffer from lack of flexibility and special require-

ments in terms of nctwork characteristics and processing/storage elements. These factors

imply that widespread use of Plan 9 will be possible only with a long-term and substan-

tial commitment to the model and environment 011 the part of potential users.

- 3 -

Another advantage in network-based concurrent computing is the ready availabiliiy

of development and debugging tools, and the potential fault tolerance of the network(s)

and the processing elements. Typically, systems that operate on loosely coupled net-

works permit the direct use of editors, compilers, and debuggers that are available on

individual machines. These individual machines are quite stable, and substantial exper-

tise in their use is readily available. To the user, these factors translate into reduced

development and debugging time and effort, in addition to lowered contention for

resources and possibly more effective implementations of the application. Yet another

attractive feature of loosely coupled computing environments is the potential for user or

program level fault-tolerance that can be implemented with little effort - either in the

application or in the underlying operating system. Most multiprocessors do not support

such a facility; hardware or software failures in one of the processing elements often lead

to a complete crash.

There are, however, many aspects relating to user interface, efficiency, compatibil-

ity, and administrative issues that play a significant role in the effectiveness of network-

based concurrent computing environments. In this paper, we analyze several of the

design features of the PVM (Parallel Virtual Machine) system and report on experiences

gained with its use over time. An overview of PVM, followed by significant aspects of the

user interface and implementation strategies are presented in the following sections.

Finally, representative examples of porting and performance are described.

2. An Overview of the PVM System

The PVM system is composed of a suite of user-interface primitives (shown in Table

1) and supporting software that together enable concurrent computing on loosely coupled

networks of processing elements. Several design features distinguish PVM from other

similar systems such as Cosmic [7], Marionette [4], ISIS [22], and Dpup [SI. Among

these are the combination of heterogeneity, scalability, multilanguage support, provisions

for fault tolerance, the use of multiprocessors and scalar machines, an interactive graphi-

cal front end, and support for profiling, tracing, and visual analysis.

2.1. PVM Architecture

PVM may be implemented on a hardware base consisting of different machine archi-

tectures, including single CPU systems, vector machines, and multiprocessors. These

computing elements may be interconnected by one or more networks, which may them-

selves be different (e.g. one implementation of PVM operates on Ethernet, the Internet,

and a fiber optic network). These computing elements are accessed by applications via a

-4-

Table 1: PVM user routines.

void barrier(char *barrier-name, int num)

void bcast(char *component-name, int msgtype)

int enroll(char *component-name)

blocks caller until nun1 calls with same barrier name made.

broadcasts message in send buffer to all instances of component name.

enrolls process in PVM and returns instance number.

extracts value of dabtype [type] from received message and assigns it to x,
eg. getfloat(x). [type] must be int, float, dfloat, cplx, dcplx, string, or bytes.

int initiate(char *object-file)
initiates a new process and returns instance number.

int initiateM(char *object-file, char *arch [, char *machine])
initiate a process on the specified architecture [machine].

void initsend(int size)
initializes send buffer of specified length.

void leavc(char *component.-name, int instance)
process exiting PVM.

int probe(in t msgtype)
probe for message arrival of specified type or 'any' if msgtyp-1.

void get[typel([typel *XI

.-__--

Returns message typg-pr -1 (not arrived)"
_I

int probemulti(int num, int *msgtypes)

void pilt[typcI([typel

same as probe-ennits specifying an array of num message types.

inserts x into send buffer in machine independent form.
[type] must be int, float, dfloat, cplx, dcplx, string, or bytes,--

sends signal wi@-spccjfied (abstract) name.

receives a message of specified type or 'any' if msgtyp-1 (Blocking).
Returns actual message type.

int rcvmulti(int nom, int *msgtypes)
same as rcv, but permits specifying an array of num message types.

int rcvolim(int msgtype, int num)
Same as rcv, but limits the number of other messages that may
arrive in the interim.

int rcvtlim(int msgtype, int seconds)
same as rcv, but blocking limited to seconds.

void rcvinfo(int *bytes, int *msgtype, char "component, int *instance)
returns the length, type, and sender of last received message.

void snd(char *component, int instance, int msgtype)
sends message in send buffer to the specified instance of component.

void shmat-[typel(char *key, [type] *ptr)
attaches shared memory segment with name key to local address space
at pa for size units in typed form.

void shmdt-[typel(char *key, [type] *ptr)
detaches shared memory segment with name key from local address space.

void shmget(char *key, int bytes, char *flag)
creates shared memory segment with name key of size bytes,-nag = (RO or RW).

void ready(char *event-name)

int rcv(int msgtype)

--11

- 5 -

int status(char *component, int instance)

void terminate(char *component, int instance)

int uinitiate(int argc, int *argv)

returns 1 if specified component is active, 0 otherwise.

terminates a specified component.

same as initiate, but argv contains object name, arch type,
machine name, and command line arguments.

same as initiate, but permits 1/0 redirection.

same as vinitiate, but specifies a specific machine.

suspends caller until specified signal name occurs.

returns component name and instance number of caller.

int vinitiate(char *object-file, char *stdin, char 'stdour, char *arglist)

int vinitiateM(char *object-file, char *machine, char *stdin, char *sldout, char *arght)

void waituntil(char *event-name)

void whoami(char *component, int *instance)

standard interface that supports common concurrent processing paradigms in the form of
well-defined primitives that are embedded in procedural host languages. Application
programs are composed of components that are subtasks at a moderately large level of
granularity. During execution, multiple instances of each component may be initiated.
Figure 1 depicts a simplified architectural overview of the PVM system.

Component i n s t a n c e s

! QQQQQQQ

Figure 1: PVM Architectural Model

Application programs view the PVM system as a general and flexible parallel computing

resource that supports shared memory, message passing, and hybrid models of cornputa-

tion. This resource may be accessed at three different levels: the transparent mode i n

which component instances are automatically located at the most appropriate sites, the

architecture-dependent mode in which the user may indicate specific architectures on

which particular components are to execute, and the low-level mode in which a particular

machine may be specified. Such layering permits flexibility while retaining the ability to

exploit particular strengths of individual machines on the network. The PVM user

- 6 -

interface is strongly typed; support for operating in a heterogeneous environment is pro-

vided in the form of special constructs that selectively perform machine-dependent data

conversions where necessary. Inter-instance communication constructs include those for

the exchange of data structures as well as high-level primitives such as broadcast, barrier

synchronization, mutual exclusion, global extrema, and rendezvous,

PVM supports two general parallel programming models - tree computations as

supported by the DIB [SI and Schedule [9] packages, and crowd computations [113. Sup-

porting both paradigms increases the flexibility and power of the system significantly,

especially since individual subtasks within either of these models may themselves bc

parallel programs expressed in the other. At present, the model, individual subtasks, and

their interactions are described in procedural terms; work is in progress to provide graph-

ical specification.

Application programs under PVM may possess arbitrary control and dependency

structures. In other words, at any point in the execution of a concurrent application, the

processes in existence may have arbitrary relationships between each other and, further,

any process may communicate and/or synchronize with any other. This is the most

unstructured fomi of crowd computation, but in practice a significant number of con-

current applications are more structured. Two typical structures are the tree and the “reg-

ular crowd’’ structure. We use the latter tern to denote crowd computations in which

each process is identical; frequently such applications also exhibit regular communica-

tion and synchronization patterns. Any specific control and dependency struc lure may be

implemented under the PVM system by appropriate use of PVM constructs and host

language control flow statements.

2.2. Heterogeneity Issues

The PVM system is heterogeneous in several respects:

Applications: Heterogeneous applications are those that are coinposed of subtasks

that differ significantly from one another. Particularly in scientific compu ling, there

are many such applications. The components of such applications exhibit diverse

characteristics including vector processing, large-grained SIMD computing, and

interactive 2-D and 3-D graphics. The traditional solution to this problem is to exe-

cute each component separately on the most suitable architecture and construct

manual, application-specific interfaces among them.

Processing Elements: The PVM system is supported on various machine architec-

turcs including shared-memory multiprocessors, hypercubes, and scalar computers.

In order to make the most effective use of any multiprocessors that may be available

-7-

to an application, two options are provided. The first is the ability to treat multipro-

cessors as an atomic resource - applications may execute programs that are hard-

coded for specific multiprocessors under PVM control; such components retain the

ability to interact with other components executing elsewhere in the system. The

second is the provision for dynamic incorporation of application modules in a selec-

tive manner, depending upon the architecture on which an application component

executes. Tn the latter scheme, an application specifies several alternative modules

to perform a given function, each suitable for one of the different programming

models supported. At execution time, PVM selects the most appropriate module to

utilize, depending upon the actual machine(s) on which the application will execute.

Networks: Several different network architectures are supported by the PVM system,

both for reasons of wider applicability as well as to be better able to exploit specific

features of particular networks. For example, Internet protocols may be used both

on the DAWA Internetwork and on Ethernets. However, specialized low level pro-

tocols on Ethernet significantly improve perfomiance and efficiency in distributed

applications. The PVM system presently supports the Internet protocols[111, low

level Ethernet protocols [121, and the IMCS interface [131.

0

2.3. Other Aspects

Multiprocessing on loosely coupled networks provides facilities that are normally

not available on tightly coupled multiprocessors. Debugging support, fault tolerance in

the form of checkpoint-restart, uniprocessor level I/O facilities, and profiling and moni-

toring to identify hot-spots or load imbalances within an application are examples. On the

other hand, several obstacles and difficulties are also associated with networked eon-

current computing. Among these are generating and maintaining multiple object modules

for different architectures, considerations of security and intrusion into personal worksta-

tions, and a number of administrative and housekeeping functions. In its present form,

PVM supports two auxiliary components that provide some desirable features and over-

come several of the obstacles. First, the XPVM interface is a graphical tool that eases

many of the application tasks of specifying components, handling input and output,

interacting with PVM during execution, managing multiple objects, and providing a

debugging interface. Second, the PICL library [141 supports portable parallel program-

ming and profiling. These components are discussed in the following sections.

The PVM support software (a daemon process that executes on each participating

host) is replicated for each user of the system. The (small) overheads incuned are con-

sidered acceptable since this scheme eliminates many of the security and addressing

- 8 -

issues that are encountered when common support software caters to all users. To

achieve location transparency and fault tolerance, the PVM system uses the strategy of

global knowledge among the daemon processes and identifies component instances using

symbolic names and instance numbers. In the common daemon scheme, naming

conflicts are possible, and further, hosts that are not used by a particular application are

required to participate in all events, leading to performance degradation and delays.

The PVM system supports a limited form of fault tolerance at several levels. First,

since individual component instances are independent processes (usually on different

machines), failure of an instance does not affect others. The PVM system attempts to pro-

vide this level of tolerance even on multiprocessors provided that the operating system

facilities permit partial degradation. In addition, individual instances that have failed may

be migrated or restarted if the application so desires, subject once again to host operating

sy s tem constraints.

In addition to the above, nearly all the user interface constructs provided by PVM

contain provisions for the detection and recovery from failures, a feature rarely available

as a native facility in typical tightly coupled multiprocessors. For example, to preempt

some forms of deadlock, blocked message reception may be aborted either on timeouts or

by placing a limit on the number of alternative messages. Barrier synchronization prirni-

tives permit the specification of a quorum of processes that are required; if it is impossi-

ble to form such a quorum, processes that invoke barrier constructs are so notified. Distri-

buted locks may be specified as having a limited “lifetime”; if a component instance

aborts prematurcly, any locks held by that process are forcibly released. While some of

these facilities must be used with caution, they are nevertheless valuable - essentially,

the PW system permits applications to incorporate significant levels of fault tolerance

when desired.

3. ’I’he XPVM Interface

PVM suppoi-ts a wide range of facilities including the ability to configure the set of

participating hosts dynamically, to debug selected component instances, to position

specific processes, and to execute multiple processes that make up an application using

several different control structures. These features may be used under program control,

augmented by manual execution of standard utilities available on most host environ-

ments. However, in order to exploit them fully in the most effective way, a user-friendly,

interactive interface is desirable and necessary. The XPVM front-end is designed to

enable convenient access to the PVM facilities using a graphical interface, and will be

- 9 -

described in this section. XPVM is still evolving, but sufficient functionality is available

in its present form to allow a substantial number of operations to be performed.

The XPVM interface essentially sets up an interactive “session” with the PVM sys-

tem in a manner analogous to a login session. Sessions are on a “per-user” basis;

indirectly, the XPVM interface permits multiple users to share simultaneously some of

the support functions provided by PVM. Interaction with XPVM is accomplished via a

menu-driven interface. In the remainder of this section, the functions supported by the

XPVM system are described with illustrative examples extracted from an actual session.

3.1. Configuration Management

The XPVM interface consists of five major components. The first is configuration

management and is responsible for managing the pool of hosts that are accessible during

a session. Using this fxility, PVM users may add to or delete from the pool of hosts on

which a concurrent application is to execute. The configuration example shown in Figure

2 is a snapshot at the moment immdeiately preceding the addition of a transputer based

machine, with hostname “cogent”. In addition, configuration management perfomis

authentication functions and ensures that specified hosts are indeed accessible by the

user. PVM daemons are started up on each host, and information regarding the current

configuration is shared among the active daemons. In addition, the daemons cooperate to

assign each host an identification number for use in the execution of distributed PVM

primitives such as broadcast, barrier synchronization and distributed mutual exclusion.

During this phase, the YVM system also attempts to classify hosts on the basis of geo-

graphical distance, relative computing power, and load conditions. These parameters are

obtained using a combination of statically defined tables and instantaneous measurements

and are used during execution time to select the configuration that is likely to be most

effective using simple heuristic rules.

Error diagnostics are provided in the case of authentication failure or when a

specified machine or architecture type does not exist. It should be noted that additions to

the host pool may be made while applications are executing; deleting a host with a live

component instance causes the operation to be delayed until the instance has terminated.

3.2. Object Management

One of the most cumbersome aspects of concurrent computing in a heterogeneous

network is the management of multiple object modules for each component of an appli-

cation system. To assist the user in handling this issue, XPVM supports an object

management interface. In its present fomi, this interface is somewhat limited. An

- 10-

Figure 2: Sample XPVM Session

example scenario showing the present facilities in the object management interface is

shown in Figure 2. Work is in progress to include dictionary facilities, version control,

and automatic object code generation to simplify the task of object maintenance.

3.3. Application

The XPVM iriterface contains facilities for unstructured and regular crowd cornpu-

tatioaa models. In addition, tree structured computations will be supported using the

Schedule [9] system. In the regular crowd model, the XPVM interface permits the

specification of an object m~du le and the number of instances that are to be initiated; the

specified number of processes are then executed automatically by the PVM system,

thereby avoiding the need for a user-written driver program. In the unstructured model, it

is assumed that a “host” program assumes responsibility for initiating the application

component instances if any. The XPVM interface essentially enables the individual ini-

tiation of separate programs (each of which may subsequently spawn others) once again

without the need for a control or clriver program. In addition, the application execution

function of XPVM permits the specification of command line arguments, as well as input

- 11 -

and output files and redirection, either for individual component instances or for groups

of processes. An example of the use of the “RUN” function is shown in Figure 2.

3.4. Debugging and Monitoring

One of the most attractive features of the PVM system from the user viewpoint is the

ability to execute selected, individual instances of a concurrent application under control

of a debugger. This facility is rarely available on tightly coupled distributed-memory

multiprocessors, and its absence is a significant obstacle to rapid program development.

Given this situation, YVM also becomes attractive as an emulator of a variety of

distributed-memory multiprocessors, in addition to being useful in its own right. ‘me

XPVM interface enables interactive debugging of selected application component

instances in a simple and straightforward manner. The “DEBUG” function in the XPVM

front end permits the user to specify the component name and instance numbers of those

processes that are to be executed under control of a debugger. When the specified

instances are initiated, the PVM system executes them under debugger control. At present

the xdbx debugger is used, and a separate window for each selected process is created.

An a1 ternative debugging interface that will support debugging functions for all selected

processes using a single window is being investigated. Such an interface will be very

valuable for actions such as simultaneous single-step execution in all selected instances.

An example of the debugging interface that is available at present is shown in Figure 2.

In addition to debugging individual component instances, the XPVM “MONI-

TOR” interface can monitor global events. This includes hardware status, link failures,

synchronization between application instances, and communication delays. The PICL

interface, described in the following section, is a major component of the monitoring

function. Essentially, applications that are written in terms of this interface may option-

ally enable tracing, which globally logs all events including message transmission and

reception, synchronization, and other distributed events. At present, these global logs

may be analyzed visually using the ParaCraph tool r151, which graphically displays

events, their relationships, and (indirectly) parameters such as processor utilization and

load imbalances. The monitoring facility of the XPVM interface will soon be able to

display event information dynamically to assist in interactive debugging.

4. Portable Programming Using PICL

PICL (Portable Instrumented Communication Library) is a collection of library rou-

tines that facilitates portable development of multiprocessor programs. A complete

description of the PICL primitives may be found in 11 61. The PICL, libraries have been

- 12-

ported to the PVM system in order to allow applications also to be portable to a network-

based multiprocessing system. The main issues in porting PICL to a heterogeneous

environment are discussed in this section.

The PICL library contains a set of high-level communications routines such as

broadcast, barrier synchronization, and global extrema finding. ‘fie generic PlCL release

implements these in terms of low-level PICI, routines, thereby achieving greatcr portabil-

ity. In the PVM implementation, it was found that better performance could be attained for

some of these high-level functions if they were translated directly into corresponding

PVM priniitives, and thercfore this approach was adopted.

One of the most valuable features of the PICL library is the “trace” option that per-

mits all communication and synchronization events to be logged. Effective iisc of this

information for performance analysis, however, is dependent on synchronized clocks on

all processing elements. While clock synchronization is a problem even on machines

such as comriiercial hypercubes, the granularity of synchronization attainable on local

networks is coarser than hypercubes and continues to be an issue of concern in the PVM

implementation. At present, a combination of the network time protocol [191 and internal

PVM synchronization is used and is acceptable for short-running applications.

4.1. Portability in Heterogeneous Environments

TWQ important issues in programming for heterogeneous network environments are

the issue of data representation and byte ordering. The options available are simple -
the sending process either converts data to the format on the destination machine, or the

sender converts data into a machine-independent (or network) format and the receiver

converts from this format to the local representation. Typically, existing systems use the

latter scheme (e.g. Sun XDR 1181); although conversion is pcrformed twice, senders do

not need to know the architecture type of the destination processor, nor do representa-

tions for every possible architecture have to be known at each sender.

The, PVM system employs the following strategy - the representation that is com-

mon to a majority of the hosts in the pool is chosen dynamically as the “standard”, and

data are transmitted over the communications network i n this format. Processors in the

host p o l that use different data representations or byte ordering perfom conversions

locally on both transmission and reception, thereby reducing overheads significantly and

performing conversions only in a (usually) small number of exchanges. However, the

present implementation performs conversions (at each end) evcn when two “minority”

processors with the same format exchange data; while this could be avoided, it is not

believed to be worth the benefit.

- 1 3 -

The generic release of the PICL library is not strongly typed. Since the library was

originally intended only for homogeneous environments, all communication is performed

on untyped byte streams. The port of the PICL libraries to the PVM system therefore

necessitated a few changes in both the PICL package and the PVM system. The PICL

library was expanded to include two new routines, pacO and unpad) that perform trans-

lation of typed data to and from the “standard” format. This enhancement is a natural

extension of the untyped send0 and rem0 constructs that exchange sequences of bytes.

In order to provide backward compatibility, the PVM system also supports the unryped

send and receive primitives, with the understanding that knowledgeable users might wish

to execute existing PICL programs on PVM in a homogeneous networked environment.

Another issue in implementing the PICL library in a heterogeneous environment is

the handling of various machine dependent constants, initialization procedures, and other

characteristics. For example, some message passing multiprocessors require that a subset

of the processing elements be allocated in a dedicated fashion to an application, while

others employ the notion of processes “occupying” and “vacating” a CPU. Machine-

dependent limits on the number of different message types allowed and the maximum

length of each message are other attributes that must be handled. In addressing these

issues, the general philosophy adopted by the PVM implementation is to avoid limitations

wherever possible, or to use an encompassing strategy that is a superset of the limitations

on existing multiprocessors. For example, the Pvki system does not constrain message

lengths, each (virtual) processing element is considered capable of simultaneously exe-

cuting many component instances, and no initialization or processing element allocation

is necessary. Given the general nature of the PVM system and the operating system

infrastructure on most machines on typical networks, most of these issues are resolved in

a straightforward manner.

4.2. Experiences with PICL on PVM

In order to test the PICL implementation on PVM, applications written using the

PICL primitives were ported and tested. The porting effort required no modifications to

the original programs. Performance figures for these applications under PVM using native

constructs and PICL are compared in Table 2, which shows that the introduction of the

additional PICL layer causes little or no significant overhead.

As important as this ready portability is the fact that tracing and performance visual-

ization tools can now be used with the PVM system. This facility is extremely useful, and

efforts are in progress to allow event logging from within native PVM constructs in addi-

tion to its current availability via the PICL library. To illustrate a few of the kinds of

- 14-

Problem size (Order of Matrix)

processors 200 5 0 1000

2.0 (2.0) 9.2 (9.0) 140.6 (141.5) 1046.6 (1040.2)

Table 2 : Times (in seconds) for Cholesky factorization: PICL (native PVM)

postmortem analysis possible, displays from the use of the ParaGraph tool are presented

below. ‘The application chosen is Cholesky factorization of a matrix using 8 processors

and a 100x100 matrix. The experiment was run on an Intel iPSC/2 hypercube and is con-

trasted to a network of sun4 workstations in the PVM environment. It should be noted that

the granularity of this problem size is too fine to be effective in networked environments;

it was deliberately chosen to highlight the value of the visualization tool i n understanding

the behavior of parallel programs executing on PVM.

Figure 3 shows the Kiviat diagram at an advanced stage in the program’s execution.

This display gives a geometric depiction of individual processor utilization and overall

load balance. The dark regions indicate recent utilization by shading a polygon fonnetl

by connecting individual processor utilizations, with the center representing an idle state

and thc circumference 100% utilization. The lighter region depicts “high-water” points

in an analogous manner.

The diagram shown for the iPSC/2 is typical for this application on a homogeneous, dedi-

cated distributed-memory rmultiprocessor. l ’he PVM figure however, shows some interest-

ing aspects. First, thc marked load imbalance is evident. Second, the high-water arca

shows 100% utilization for aEZ processors (not simultaneous) at some previous time. Both

these factors are a direct consequence of greatly increased asynchrony in a networked

environment, and external loads on the workstations causing their effective computing

capabilities to be different.

The Gantt chart shown in Figure 4 for the PVM experiment displays a snapshot of

the execution. Figure 4 shows the asynchrony, as well as elongated busy and idle times in

comparison to the i P W 2 run. Some of this difference is also attributable to the inhercnt

differencc in processor speeds, although it is believed that the nature of the network and

external factors are the primary causes. Therefore, thesc two diagrams in particular must

- 1 5 -

Figure 3: Kiviat Diagrams for Cholesky Factorization (100x100 matrix)

be interpreted carefully in the PVM context, but they are nevertheless valuable for under-

standing program behavior and locating errors particularly when the animation is viewed.

The Feynman diagram (called Space-Time diagram in later versions of ParaGraph)

is a display that depicts interaction between processing elements as a function of time.

Processor activity is indicated by horizontal lines, while slanted lines show message

transmission and reception events. This view, observed at nearly identical points on the

iPSC/2 and YVM, is shown in Figure 5. This example clearly displays the difference in

communication speeds in the two environments, and also shows the possible variation in

communication rates between the same two processing elements. Once again, this

display is useful in locating bottlenecks, detecting deadlock, and as a basis for fine tuning

of the application.

5. Porting Two Scientific Applications to PVM

In order to assess the practicality and ease of use of PVM, two scientific applications

were ported to PVM. Each application had been parallelized previously to run on hyper-

cube multiprocessors. The size of the codes, communication patterns, and communica-

tion volumes are very different between the two applications.

- 16-

Both applications are written in Fortran. This required that a Fortran-to-C interface

be designed so that the PVM C functions could be called. A list of these Fortran interface

routines is given in Tablc 3.

Scvcral problems arose during the development of this interface. The first problem was

the different calling conventions of C from Fortran by different compilers. For example,

some compilers prepcnd C routine names with underscores; others do not. ?‘his problem

was resolved by having ifdefs for each of the different calling conventions in the inter-

face routines. A second problem, common to Fortan-to-C interfaces, was correct passing

of arguments. Fortran passes arguments by reference and C passes arguments by value.

Because of problems on some supported machines with passing values to Fortran func-

tions, only subroutines are used in the interface. This causes the user intcrface to PVM to

be slightly different when programming in Fortran rather than C. A third problem

encountered was string termination. Several PVM routines pass strings, such as program

names and signals. C terminates strings with NIJLLs, but this is not a requirement in For-

tran so some Fortran compilers do not terminate strings. Instead, they keep track of the

length of strings in an internal table. Sending a C routine a pointer to the beginning of a

nonteminated string leads to nondeterministic behavior at best and a memory fault at

worst. The solution to this problem requires that Fortran programmers append all the

string arguments in their codes with v). For example, calf jinitiate(’prograrn\O’,

instancenurn). The development of this Fortran-to-C interface was the most difficult part

of porting the two scientific applications.

The first application calculates the electronic structurc of metallic alloys from first

principles and is based on the KKR-CPA algorithm [23]. The algorithm is parallelized

using a “Master/Slave” paradigm in which the host proccss initiates tasks to perform the

majority of the work. The host also coordinates the tasks to achieve good load balance.

The code consists of 16000 lines of Fortran divided among 127 subroutines, but only

about 20 subroutines are involved explicitly with the algorithm’s parallelization.

The second application performs a molecular dynamics simulation and is used to

study the interaction and vibration in rnoleculeq. The algorithm is parallelized by having

multiple copies of the codc solve a PDE on different spatial legions of a 3-D volume.

Data are exchanged across the boundarieq, and the solution is time steppcd. The code

consists of only 700 lines of Fortran, but nearly every subroutine is involved in some

aspect of the algorithin’s parallelization.

The conversion of both applications to run under P V I I ~ was straightforward.

Changes were required in three areas. First, initiating tasks is different than in

- 17 -

BUSY

BUSY

0
IDLE

Figure 4: Gantt Charts for Cholesky Factorization (100x100 matrix)

- 1 x -

- FEYWW DIAGRAM

I--

Figure 5: Feynman Diagrams for Cholesky Factorization (100x100 matrix)

- 19 -

fshmatfloat(key-name, real-buff, isize)

fshmatint(key-name, int-buff, isize)
fshmdt(key-name, char-buff)
fshmdtfloat(key-name, realbuff)
fshmdtint(key-name, int-buff)

fshmfree(key-name)

fshmget(key-name, isize, flags)

fterminate(process-name, instancc-number)

fwaituntil(event-name) -

Table 3: Routines in Fortran-to-pw interface.

fbarrier(barrier-name, n)

fbcast(component-name, msg-id)
fenroll(component-name, instance-number)

fgetcplx(variable)
fgetdcplx(variable)
fgetdfloat(variable)
fgetfloal(variable)
fgetint(ivariable)

fgetstring(string)

finutcolx(variable)

fputdcplx(variable)
fputdkloat(variable)

I fDutfloat(variable) I

frecv(msg-id)

ensure that tasks have enrolled before conmunicating with one another. If an enrolled

task sends a message to a task that has not yet enrolled, the message is lost. Constructs,

- 20 -

such as waituntil(), are provided in PVM to ensure that tasks are ready. Second, in order

to facilitate the use of heterogeneous architectures, PVM routines are called to convert all

messages to a “standard” format before sending and to convert them to a machine-

specific fonnat on receipt. As discussed earlier, the PVM routines may not actually do a

conversion depending on the architectures of the sending task and receiving task. Third,

sending of messages is changed to account for the fact that the user often does not know

on which machine a task is running. A task (or instance) is defined by a process name

and instance number. These two values are used to specify uniquely the message destina-

tion.

Having made these changes, these two applications were run on a network of Sun

and TRM workstations connected by Ethernet. XPVM was used during these experiments

to relieve the tedium of starting PVM on all the machines and in the case of the molecular

dynamics simulation, starting each copy of the application program. Results from these

experiments are given in the next section.

6. Results

The electronic structurc application is computationally intensive with only a few

hundred very large (10KB - 500KB) messages. Because the message traffic is small corn-

pared to the computation time, this application actually ran faster on a network of eight

IBM RS/6000 workstations than on eight nodes of an Intel iPSC3/860 hypercube with

dedicated communication channels. The execution times for the test problem were 33

minutes and 40 minutes respectively. All of this performance gain is due to the higher

execution rate of RS/6000 versus the i860 processors for this application. All 128 proces-

sors of the Intel machine have becn used during computational cxperiments on supcrcon-

dwtors producing cxecution rates in excess of 2.5 Gflops. The performance of compar-

able expcrinients on various PVM configurations of RS/6000 workstations is shown i n

Table 4.

The results of the molecular dynamics application for a range of processors and

problem sizes are given in Table 5. The table compares the execution times of PVM using

a network of RS/6000 workstations and the iPSC/860 hypercube. Again for a small

number of processors, PVM over a 1.2 MR/sec Ethcsnet is quite competitive with a hyper-

cube with dedicated 2 8 MB/sec channels. Load imbalances became worse on PVM when

eight processors were used because the workstations had different computational rates.

With an even more heterogeneous tnixture of machines, the load imbalances would be

expected to gct much worse given this application’s method of parallelization. (These

load imbalances arc not seen in the electronic structure application because its method of

- 21 -

Model 320 model 530

nprm 1 flops

serial 18.2

2 31.3

4 63.1

N/A ---

I 6 (530’s) + 4 (320’s) 206.5 I

nproc I flops

serial 24.4
2 45.9

4 92.2

7 161.9

I 7 (530’s) + 4 (320’s) 226.0 I
I 1 (550) + 8 (530’s) + 4 (320’s) 261.0 I

Table 4 : Perfomance of the KKR-CPA code on various IBM RS/6000 configurations.

Table 5: Comparing execution time (secs) for molecular dynamics application.

parallelization employs a dynamic load balancing scheme.)

Overall the performance of these two applications show the viability of using rvM

to achieve supercomputer performance with existing hardware. Even higher perfor-

mance is expected as faster networks become available.

- 22 -

References

A. I.enstra, M. Manasse, "The Number Field Sieve", Proc. Symposium on the

7heory of Computing, Baltimore, May 1990.

G. Popek, B. Walker, "The IJO@US Distributed System Architecture", MZT Press,

Cambridge, 1985

1). ('heriton, "The V Distributed System", Cornrn. ACM, Vol. 31, No. 3, pp. 314-

333, March 1988.

M. Sullivan, D. Anderson, "Marionette: A System for Parallel Distributed Program-

ming Using the Master/Slave Model", Proc. 9th Intl. Conf. on Distributed Comput-

ing System, pp. 181-188, June 1989.

T.J. Gardner, et.al., "DPUP: A Distributed Processing Utilities Packagc", Computer

Science technical report - University of Colorado, 1986.

R. Pike, et. al., "Plan 9 from Bell Labs", Research Note, July 1990.

C. Seitz, et. al., "'The C Programmers Abbreviated Guide to Multicomputer Pro-

grannming", Caltech Computer Science Report CS-TR-88-1, January 1988.

R. Finkel, U. Manber, "DIB - A Distributed Implementation of Backtracking", ACM

Transactions on Programming Languages and Systems, Vol. 9, No. 2, pp. 235-256,

,4pril 1987.

J . Dongarra, D. Sorenson, "SCHEDULE: Tools for Ileveloping and Analyzing

Parallel Fortran Programs", in The CIzaracteristics of Parallel Algorithms, MIT

Press, Cambridge, 1988.

[101 G. Fox, "Parallelism Conies of Age: Supercomputer Level Parallel Computations at

Caltech", Concurrency: Practice & Experience, Vol. 1, No. 1, pp. 63-104, Sep-

tember 1989.

[1 I] J. Postel, "User Datagram Protocol", Internet request for Comments RFC793, Sep--

ternber 198 1.

[123 V. Sunderam, "A Fast 'l'ransaction Oriented Protocol for Distributed Applications",

Proc. Winter Usenix Conference, pp. 79-87, February 1988.

1131 K. liadcr, "IMCS Programmers Guide - Draft", IBM Corporation, June 1990.

[141 G. Geist, M. T. Ileath, B. W. Peyton, and P. H. Worley, "A Machine Independent

Communications Library", Proc. of the Fourth Conference on ilypercubes, Con-

current Computers, and Applicaiions.ed. J.L. Guqtafson, Golden Gate Enterprises,

IAN Altos, CA, pp. 565-568, 1989.

- 23 -

[151 M. Heath, "Visual Animation of Parallel Algorithms for Matrix Computations",

Proc. Fi fh Distributed Memory Computing Conference, ed. D. Walker and Q.

Stout, IEEE Computer Society Press, pp. 1213-1222, April 1990.

[16] G. Geist, et. al., "A User's Guide to PICL: A Portable Instrumented Communication

Library", Oak Ridge National Laboratory TM-11616, September 1990.

[171 A. Spector, et. al., ""Camelot: A Flexible Distributed Transaction Processing Sys-

tem", Proc. Spring Compcan 88 - 33rd IEEE CS Intl. Conf., pp. 432-437, March

1988.

[181 Sun Microsystems, "XDR: External Data Representation Standard", Internet request

for Comments RFC1057, June 1988.

D. L. Mills, "Network Time Protocol (version 2) specification and implementation",

DARPA Network Working Group Report KFC-1119, September 1990.

V. Sunderam, "PVM: A Framework for Parallel Distributed Computing",

Concurrency:Practice & Experience Vol. 2 No. 4, Dec. 1990.

M. Arango, 1). Berndt, N. Carriero, D. Galernter, and D. Gilmore, "Adventures with

Network Linda", Supercomputing Review, Vol. 3 No. 10, Oct. 1990.

K. Birman and K. Marzullo, "ISIS and the META project", Sun Technology Sum-

mer 1989, pp. 90-104.

C. A. Geist, B. W. Peyton, W. A. Shelton, and G . M. Stocks, "Modeling Iiigh-

temperature Superconductors and Metallic Alloys on the Intel iPSC/860", Proc.

Fifth Distributed Memory Computing Conference, ed. D. Walker and Q. Stout,

IEEE Computer Society Press, pp. 504-512, April 1990.

- 25 -

ORNWTM-11760

INTERNAL DISTRIBUTION

1.
2-3.

4.
5.
6.

7-11.
12.
13.
14.
15.

16-17.
18.

19-23.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

B. R. Appleton
T. S. Darland
E. F. D’Azevedo
J. J. Dongarra
T. H. Dunigan
G. A. Geist
E. R. Jcssup
E. G. Ng
C. E. Oliver
B. W. Peyton
S . A. Raby
C. H. Romine
R. C. Ward

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

35-36.

P. H. Worley
A. Zucker
R. W. Brockett (EPMD Advisory Committec)
J. J. Doming @PMD Advisory Committee)
J. E. Leiss (EPMD Advisory Committee)
N. Moray (EPMD Advisory Committee)
M. F. Wheeler (EPMD Advisory Committee)
Central Research Library
ORNL Patent Office
Y-12 Technical Library
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA

Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von Ncu-
mann Drive, Beaverton, OR 97006-1999

David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffett Field, CA
94035

Jesse L. Barlow, Department of Computer Science, Pennsylvania Stale University,
University Park, PA 16802

Edward H. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87 185

Eric Barszcz, NASA Ames Research Center, MS T045-1, Moffett Field, CA 94035

Robcrt E. Benner, Parallel Processing Div. 1413, Sandia National Laboratories, P. 0.
Box 5800, Albuquerque, NM 87185

Donna Bergmark, Cornel1 Theory Centcr, Engineering and Thcory Center Building,

Chris Bischof, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

Akc Bjorck, Department of Mathematics, Linkoping University, S-58 1 83 Linkoping,
Swcden

98 124-0346

Ithaca, NY 14853-3901

- 26.

47. Jcan R. S. Blair, Department of Computer Scicncc, Ayrcs Hall, University of Tcnnes-
see, Knoxville, TN 37996-1301

48. Daniel Bolcy, Department of Computer Science, University of Minnesota, 200 Union
Street, S.E. Km.4-192 Minneapolis, MN 55455

49. Jatnes C. Browne, Department of Computer Sciences, University of Texas, Austin,
TX 78712

50. Bill L. Buzbee, Scientific Computing Div., National Center for Atmospherk
Research, P.Q. BQX 3O00, Boulder, CO 80307

5 1 . Donald A. Calahan, Dcpartment of Electrical and Computer Engineering, University
of Michigan, AMI Arbor, MI 48 109

52. John Cavallini, Office of Scientific Computing, Office of Energy Rcsearch, ER-7,
Gemantown Building, U.S. Department of Energy, Washington, DC 20545

53. Ian Cavers, Dcpament of Corriputer Science, University of British Columbia, Vm-
couver, British Columbia V6T 1 W5, Canada

54. Tony Chan, D q m ~ r ~ i c n t of Mathematics, University of California, Los Angcles, 405
Hilgard Ave., Los Angeles, CA 90024

55. Jagdish Chandra, A m y Research Office, P.O. Box 12211, Rcsearch Triangle Park,
NC 27705,

56. Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G1

57. Melvyn Cimcnt, National Science Foundation, 1800 G Street N.W., Washington, DC
20550

58. Thomas Coleman, Department of Computer Science, Cornel1 University, Ithaca, NY
14853

55. Paul Concus, Mathematics and Computing, Lawrence Berkclcy Laboratory, Bcrkelcy,
CA 94720

60. Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

6 1. Gcorgc Cybenko, Ccntcr for Supcrcomputing Research and Development, University
of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

62. George J. Davis, Dcparlment of Mathematics, Georgia State University, Atlanta, GA
30303

63. Ian S. Duff, Atlas Centre, Rutherford Applcton Laboratory, Chilton, Oxon OX1 1 OQX

64. Patricia Ekrlcin, Department of Computer Science, SUNY at Buffalo, Buffalo, N Y
14260

65. Stanley Eisenstat, Dcpasliment of Cornputcr Science, Yale University, P.8. Box 2158
Yale Station, New Maven, CJT 06520

England

- 27 -

66. Lars Elden, Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

67. Howard C. Elman, Computer Science Department, University of Maryland, College
Park, MD 20742

68. Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M / S 7L-21, Seattle,

69. Ian Foster, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439

70. Geoffrey C. Fox, NPAC, 111 College Place, Syracuse University, Syracuse, NY
13244-4100

71. Paul 0. Frederickson, NASA Ames Research Center, RIACS, M/S TO45-I Moffett
Field, CA 94035

72. Fred N. Fritsch, Computing & Mathematics Research Division, Lawrence Livermore
National Laboratory, P. 0. Box 808, L-316 Livermore, CA 94550

73. Robert E. Funderlic, DeparEment of Computer Science, North Carolina State Univer-
sity, Raleigh, NC 27650

74. Dennis B. Cannon, Computer Science Department, Indiana University, Bloomington,
IN 47405

75. David M. Gay, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

76. Charles W, Gear, NEC Research Institute, 4 Independence Way, Princeton, NJ 08540

77. W. Morven Gentleman, Div. of Electrical Engineering, National Research Council,
Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada KIA OR8

78. J. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1

79. John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyotc Hill Rd., Palo Alto,
CA 94304

80. Gene H. Golub, Department of Computer Science, Stanford University, Stanford, CA
94305

81. Joseph F. Grcar, Div. 8331, Sandia National Laboratories, Livemore, CA 94550

82. Sven Hammarling, Numerical Algorithms Gmup Ltd. Wilkinson House, Jordan Hill
Road Oxford OX2 8DR, United Kingdom

83. Per Christian Hansen, UNI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

84. Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Boulevard,
Houston, TX 77042-3020

85. M. T. Heath, Center for Supercomputing Research and Development, 305 Talbot
Laboratory, University of Illinois, 104 South Wright Street, Urbana, IL 61801-2932

WA 98 124-0346

- 28 -

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

99.

100.

101

102.

103.

104.

Don E. Ilellcr, Physics and Computer Science Department, Shell Development Co.,
P.O. Box 48 1 , Houston, 'I'X '7XX91

Nicholas J. Higham, Department of Malhernatics, University of Manchester, 6rt Man-
chester, M I3 9PL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

Robert E. Huddleston. Computation Department Lawrence Livermore National
Laboratory, P.O. Box 808, Livemore, CA 94550

Ilse Ipsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CI' 06520

Lennart Johnsson, Thinking Machines Ine., 245 First Street, Cambridge, MA 02142-
1214

H a w Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Swedcn

Malvin H. Kalos, Corncll Theory Center, Engineering and lheory Ccnicr Building,
Cornell University, Ithaca, N Y 14853-3901

Hans Kaper, Mathematics and Computer Science Div., Argonne National I,aboratory,
9700 South Cass Ave., Argorm, IL 60439

Robert J. Kee, Applied Mathematics Div. 833 1, Sandia National Laboratories, Liver-
more., CA 94550

Kenneth Kcnncdy, Depanrricnt of Computer Science, Rice Univcrsity, P.0. Box
1892, Houston, TX 77005

Thomas Kitchens, Dcpartmcnt of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Officc 6-236 Gemaratown, Washington, DC 20585

Richard I a i , Ofticc of Naval Research, Code 11 1 IMA, 800 N. Quincy Street, Boston
Tower 1, Arlington, VA 22217-5000

Alan J. Laub, Department of Electrical and Computer Engineering, University of Cal-
ifornia, S a m Barbara, CA 93106

Robert 1,. Launcr, Anny Rcscarch Office, P.O. Box 1221 1, Research Trianglc Park,
Noah Carolina 27709

Charlcs Lawson, MS 301 -490, Jet Propalsion IAmatory, 4800 Oak Grove Drive,
Pasadena, CA 91 109

Pctcr 0. Lax, Courant Institute of Mathematical Scicnccs, New Uork University, 25 1
MerceaStrece, New York, NY 10012

John G. I .ewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattlc, WA
98 124 -0346

- 29 -

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Boulevard, Houston,

Joscph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

Franklin Luk, School of Eleclrical Engineering, Cornel1 University, Ithaca, NY 14853

Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Denver, CO 80202

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali-
fornia Boulevard, Pasadena, CA 91125

James McGraw, Lawrence Livemore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Lcary, Computer Science Department, University of Maryland, College
Park, MD 20742

James M. Ortega, Department of Applied Mathematics, Thornton Hall University of
Virginia, Charlottesville, VA 22903

Chris Paige, OADDR, McGill University, School of Computer Science, McConnell
Engineering Building, 3480 University Street, Montreal, PQ Canada H3A 2A7

Roy P. Pargas, Department of Computer Science, Clemson University, Clemson, SC

Beresford N. Parlett, Department of Mathematics, University of California, Berkeley,
CA 94720

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

TX 77042-3020

29634-1906

Robert J. Plemmons, Departments of Mathcmalics and Computer Science, North
Carolina State University, Raleigh, NC 27650

Jesse Poore, Depamcnt of Computer Science, Ayres Hall, University of Tennessee,
Knoxviile, TN 37996-1301

Alex Pothen, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

Michael J. Quinn, Computer Science Department, Oregon State University, Corvallis,
OR 9733 1

Noah Rhee, Department of Mathematics, University of Missouri-Kansas City, Kansas
City, MO 64 1 10-2499

John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

- 30 -

125. Werner C. Whcinboldt, Department of Mathematics and Statistics, IJniversity of Pitts-
burgh, Pittsburgh, PA 15260

126. John R. Rice, Computer Science Department, Purdue University, West Lafayette, IN
47907

127. Gamy Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

128. Donald J. Rose, Depamcnt of Computer Science, Duke University, Durham, NC
27706

129. Ahrned 11. Sameh, Computcr Science kpartment, University of Illinois, Urbana, IL
61881

130. Michael Saundcrs, Systems Optimization Laboratory, Operations Research Depart-
ment, Stanford University, Stanford, CA 94305

131. Rokr t Schci'xx-, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 940.35

132. Martin 11. Schultx, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, c;T 06520

133. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaverton,
OR 97086

134. Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, T X 75275

135. Kermit S i p o n , Dcpamcnt of Mathematics, University of Florida, Caincsville, FT
3261 1

136. Horst Simon, Mail Stop 258-5, NASA Ames Rescarch Center, Moffett Field, CA
91035

137. I m y Snyder, Department of Computcr Science and Engineering, FIX-35, University
of Washington, Seattle, WA 98195

138. Danny C. Ssrcnsen, Dcpartmcnt of Mathematical Sciences, Rice University, P. 0.
Box 1892, Houston, TX 7725 1

139. Rick Stevens, Mathcmatics and Computer Science Div., Argonne National Labora-
toryy, 9700 South Cass ,4ve., Argonnc, I L 60439

140. G. W. Stewart, Coniputcr Scicncc Degartmcnt, University of Maryland, College Park,
MI1 20742

141. Quentin F. Stout, Dcpartmcnt of Electrical and Computcr Engineering, University of
Michigan, A m Arbor, MI 48 109

141-145. V. S. Sunderam, Dcpanrnciits of Math and Computer Science, Emory University,
Atlanta. G.4 30322,

146. Dank1 E3. Szyld, Department of Computer Science, Duke University, Durham, NC
27706-259 1

- 3 1 -

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

W.-P. Tang, Departmcnt of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3G 1

Michael Thomason, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996- 1301

Bernard Touranchcau, LIP ENS-Lyon 69364 Lyon cedex 07, France

Charles Van Loan, Department of Computer Science, Cornell University, ILhaca, NY
14853

James M. Varah, Centre for Integmted Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia VGT
1 W5, Canada

Udaya B. Vemulapati, Department of Computer Science, University of Central
Florida, Orlando, FI, 32816-0362

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hamplon, VA
23665

Michael Vose, Department of Computer Science, Ayres Hall, University of Tennes-
see, Knoxville, TN 37996-1301

Phuong Vu, Cray Research Inc., 1408 Northland Drive, Mendota Heights, MN 55120

E. L. Wachspress, Department of Mathematics, University of Tennessee, Knoxville,

Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall, Clcm-
son University, Clemson, SC 2963 1

D. S. Watkins, Dcpartmcnt of Pure and Applied Mathcmatics, Washington State
University, Pullman, WA 99164-2930

Andrew B. White, Computing Div., Los Alamos National Laboratory, Los Alamos,
NM 87545

Michael Wolfe, Orcgon Graduate Institute, 19600 N.W. von Neumann Drive, Bcaver-
ton, OR 97006

Margaret Wright, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 7873 1

Oflice of Assistant Manager for Energy Research and Devclopment, U.S. Department
of Energy, Oak Ridgc Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600

TN 37996-1300

163-172. OPlice of Scientific Technical Information, P.O. Box 62, Oak Ridge, TN 37831

