
‘d
OAK RIDGE
NATIONAL
LABORATORY

ORNLTTM-11813

Visualizing Performance of
Parallel Programs

M. T. Heath
J. A. Etheridge

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

This report has been reproducsd directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-840 1, FTS 626-840 1.

Available to the public from the National Technical Information Service, US.
Department of Commerce. 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

0 RN L/ TM - 1 1 8 13

Engineering Physics and Mathemathics Division

Mathernatical Sciences Section

VISUALIZING PERFORMANCE OF PARALLEL PROGRAMS

Michael T. Heath +

Jennifer A. Etheridge t

t Center for Supercomputing Research and
Development
305 Talbot Laboratory
University of Illinois
104 South Wright Street
Urbana, IT, 6 180 1-2932

Oak Ridge National Laboratory
P.O. Uox 2008, Bldg. 6012
Oak Ridge, T N 37831-6367

* Mathetriatical Sciences Section

Date Published; May 1991

This work was supported by the Applied Mathematical Sci-
ences subprogram of the Office of Energy Research, U.S. De-
par tineii t of Energy

I

Prepared by the
Oak Ridge National Laboratory

Oak Ridge, ‘I’ennessee 37831
rnanaged by

Martin Marietta Energy Systems, Inc.
for the

U.S. UEI’AIM‘Mk~NT OF ENEILGY

3 4456 0 3 5 4 9 8 8 L

Contents

1 Motivation atid Design Philosophy . 1
1.1 Graphical Simulation . 1
1.2 Design Goals . 2

1.2.2 Easeofuse . 3

1.3 Previous Work . 4

1.2.1 Ease of understanding . 3

1.2.3 Portability . 3

1.4 R.elationship to PICL . 5
2 Using ParaGrapli . 7
3 SoftwareDesign . 9
4 Displays . 10

4.1 Utilization Displays . 11
4.1.1 Utilization Count (Figure 1) . 11
4.1.2 Gantt Chart (Figure 2) . 12
4.1.3 Utilization Sii.inma,ry (Figure 3) 12
4.1.4 Utilization Meter (Figure 4) . 16
4.1.5 Concurrency Profile (Figure 5) 16
4.1.6 Kiviat Diagram (Figure 6) . 16

4.2 Commnnication Displays . 20
4.2.1. Communication Traffic (Figure 7) 20
4.2.2 Spacetime Diagram (Figure 8) 22
4.2.3 Message Qiieiies (Figure 9) . 22
4.2.4 Communication Matrix (Figure 1.0) 25
4.2.5 Communication Meter (Figure 4) 27
4.2.6 Animation (Figure 11) . 27
4.2.7 Hypercube (Figures 12 and 13) 29
4.2.8 Node Statistics (Figure 14) . 29

4.3 Task Displays . 33
4.3.1 Task Count (Figure 15) . 34
4.3.2 Task Gantt (Figure 16) . 34
4.3.3 Tmk Status (Figure 17 j . 37
4.3.4 Task Sunimary (Figure 18) . 37

4.4 Other Displays . 37
4.4.1 Phase Por tn i t (Figure 19) . 37
4.4.2 Critical Path (Figure 20) . 4 1
4.4.3 Processor Status (Figure 21) . 41
4.4.4 Clock . 44
4.4.5 Trace . 44
4.4.6 Statistical Siirnmary . 45

4.5 Application-Specific Displays . 45

5 Options . 46
6 Futurework . 48
7 Acknowledgements . 49
8 References . 50

. 1v .

VISUALIZING PERFORMANCE OF PARALLEL PROGRAMS

Michael T. Heath

Jennifer A. Etheridge

Abstract

In this paper we describe a graphical display system for visualizing the be-

havior and performance of parallel programs on message-passing multiprocessor

architectures. The visual animation is based on execution trace information mon-

itored during an actual run of a parallel program on a message-passing parallel

computer. The resultitig trace data are replayed pictorially to provide a dynamic

depiction of the behavior of the parallel program, well as graphical summaries

of its overall performance. Several distinct visual perspectives are provided from

which to view the same perforinance data, in an attempt to gain insights that

might be missed by any single view. We descrihc this visualization tool, outline

the motivation and philosophy behind its design, and illustrate its usefulness in

analyzing parallel programs.

- v -

...

1. Motivation and Design Philosophy

Graphical visualization is a standard technique for facilitating hurnan compreherision of

complex phenomena and large volumes of data (see, for example, [12,18]). The behavior

of parallel programs on advanced computer architectures is often extremely complex,

and hardware or software performance monitoring of such programs can generate vast

quantities of dath Thus, it seems natural t o use visualization techniques t o gain insight

into the behavior of parallel programs so that their perforniance can be understood and

improved. We have developed such a software tool, called ParaGraph, that provides a

detailed, dynamic, graphical animation of the behavior of message-passing parallel pro-

gratns, as wdl as graphical summaries of their performance. The purpose of lhis paper

is t o describe this visualization tool, outline the rnotivation and philosophy behind its

design, and illustrate its uscfulness in analyzing parallel programs.

1.1. Graphical Simulation

For lack of a better term, we will often use the word “simiilation” to refer to the graph-

ical animation of a parallel program. The use of this term should not be taken to

suggest that there is anything artificial about the programs or their behavior as we

portray them. ParaGraph displays the behavior and performance of real parallel yro-

grams running on real parallel computers to solve real problems. 111 effect, ParaGraph

simply provides a visual replay of the cvents that actuczlly occurred when a parallel

program was r u ~ i on a parallel machine.

To date, ParaGraph has becn used only in such a “post processing” ~naiiner, using

a tracefile created during thc execution of the parallel program and saved for latcr

study. But the design of the package docs not rule out the possibility that thra dala

for the visualization could be arriving a t the graphical workstation as the parallel

program executes on the parallel machine. In practice, however, there are major im-

pediments to such real- time performance visualization. With thc current generation

of distributed-memory parallel architectnres, it is cliflicult to extract perforniance dnta

from the processors and send it tu the oubside world during execution without signif-

icantly perturbing the application program being monitored. MorCovw, the network

bandwidth bctwren the parallcl proccssor and the graphical workstation, as well as

the drawing speed of the workstation, are usually inadequate to liandle the extreniely

- 2 -

high data transmission rates that would be required for real-time display. Finally, even

if these other limitations were not a factor, human visual perception would be hard

pressed t o digest a detailed graphical depiction as it flies by in real time. One of the

strengths of ParaCraph is the insight that can be gained from repeated replays of the

same execution trace data.

Algorithm visualization can he thought of in either static or dynamic terms. After

a parallel program has completed execution, the tracefile of events saved on disk can

be considered as a static, immutable object to he studied by various analytical or

statistical means. Some performance visualization packages reflect this philosophy in

that they providc graphical tools designed for visual browsing of the performance data

from various perspectives using scrollbars arid tlie like. In designing ParaGraph, we

have adopted a more dynamic approach whose conceptual basis is algorithm animation.

We see the tracefile as a script to be played out, visually reenacting the original live

action of parallel prograrri execution in order t o provide insight into the progrim’s

dynamic behavior. There are advantages and disadvantages in both the static and

dynamic approaches. Algorithm animation is good at capturing a sense of motion and

change, but it is difTicult to control the apparent speed of the simulation. The static

“browser with scrollbars” approach, on the other hand, gives the user control over tlie

speed with which the data are viewed (indecd, “tirne” can even move backward), but

does not provide siich an intuitive feeling for the dynamic behavior of parallel programs.

Tn designing ParaCraph, we have opted for the dynamic animation approach, sacrificing

some control over sirnulation speed (as will be discussed in greater detail below).

1.2. Design Goals

In designing ParaCraph, our principal goals were:

0 ease of understanding,

0 ease of use, and

e portability.

We now briefly discuss each of these goals in turn.

- 3 -

1.2.1. Ease of understanding

Since the whole point of visualization is to facilitate human understanding, it is imper-

ative that the visual displays provided be as intuitively meaningful as possible. The

charts and diagrams should be aesthetically appealing, and the information they con-

vey should be as self-evident as possible. A diagram is not likely to be useful if it

requires an extensive explanation. The type of information conveyed by a diagram

should be immediately obvious, or at least easily remembered oiicc learned. The choice

of colors used shoiild take advantage of existing conventions t o reinforce the meaning of

graphical objects, and should also be consistent across views. Above all, it is essential

to provide many different visual perspectives, since no single view is likely t o provide

fir11 insight into the complw behavior and large volume of data associated with the

execution of parallel programs. ParaGraph in fact provides more than twenty different

displays or views, all based on the same underlying execution trace data.

1.2.2. Ease of use

One of the main purposes of software tools is t o relieve tedium, not promote it. Through

the iise of color and animation, we have tried to make ParaGraph painless, perhaps

even entertaining, to use. I t certainly seems reasonable that any graphics package

should have a graphical user interface. ParaGraph has an interactive, nou use and

menu-oriented user interface so that the various festurrs of the package are easily

invoked and custornizcd. Another iiriporlant factor in ease of use is that the useT’s

parallel program (the object under study) need not be modified extensively to obtain

the data on which the visualization is based. ParaGraph cimently takes its inpiit data

from execution tracefiles produced by PTCL (Portable Instrumented Communication

Library [20,21]), which enables the user to produce such trace data automatically.

1.2.3. Portability

‘Iliere are two senses in which portability is important in the present context. One is

that the graphics package itwlf IF portable. ParaGraph is based on the X Window

System, and thus runs on a wide variety of scientific workstations from many diffeient

vendors. ParaGraph does not require any X toolkit or widget spt, as it is based directly

on the standard Xlib library, which is available in any distribution of the X Window

- 4 -

System. ParaGraph has been tested with the MIT distributions of X l l R 2 , XllFt.7,

and X11R4, as well as several vendor-supplied versions of X Windows. Although Para-

Graph is most effective in color, it also works on monochrome and gray-scale monitors,

and it automatically detects which type of monitor is in use. A second sense in which

portability is importarit is that tho package be capable of displaying execution behavior

from different parallel architectures and parallel programming paradigms. ParaGraph

inherits a high degree of such portability froin I’ICL, which runs 011 parallel architcc-

tures from a number of different vendors (e.g., Cogent, Intel, Ncube, Symult). On

the other hand, many of the displays in ParaGraph are based on a message-passing

paradigm, and thus the package does not currently offer support for displaying the

behavior of programs based explicitly on shared-memory constructs.

1.3. Previous Work

I’araGraph is certainly not the first software tool t o be developed for visualizing

parallel programs. Graphical animation techniques for visualizing serial algorithms

have received considerable study [6,7,8,9,33,56]. Visualization of parallel computations

has been the subject of a number of recent F’h.D. theses [11,34,48], technical articles

[2,27,32,32,3G,38,42,44,~7,4~,50,55,5,57], and even a book [53] . Graphical visualization

has also been an important component of several environniciits that have beeii de-

veloped for parallel programming [1,5,16,22,46,54], debugging [25,26,37,60], and mon-

itoring [23,29,39,40], as well as integrated environrnents that combine several of t h e

components [17,35,52]. Algorithm visualization tools have also been developed for spec-

cific applications, such as matrix computations [3,4,13,43,58]. ParaGraph is a general-

purpose perfoririarice visualization tool that is distinguished froin previous efforts in

the following ways:

0 The sheer multiplicity of displays provided by ParaGraph is unique. Other pack-

ages have emphasized the irnportance of multiple views (e.g., [11,31,36,46]), but

ParaGrapli provides a. substantially greater variety of perspectives than any other

package of which we are aware. Some of the displays we have incorporated into

ParaGraph appear t o bc original, while others have been motivated hjr similar

displays found in previous packages.

- 5 -

0 Many previous packages for visualizing parallel programs have targeted a partic-

ular parallel architecture and/or been based on a proprietary graphical display

system. ParaGraph is applicable to any parallel architecture having message

passing as its programming paradigm, and ParaGraph itself is based on the X

Window System, which is widely available on workstations from many vendors.

0 We have tried to attain new standards in the intuitive appeal and aesthetic quality

of the displays provided by ParaGraph, including both the new displays we have

devised and the displays we have borrowed from previous packages. Of coursc,

the perceived siiccess of this attempt is in the eye of the beholder and can he

judged only by users.

0 We have also tried to make ParaGraph exceptionally easy to use, both through

its interactive, graphical iiser interface and by relying on an instrumented com-

munication library (PICL) to provide the requisite trace data without rcyuiring

the user to instrument explicitly the parallel program under study.

0 Another unusual feature of ParaGraph is its extensibility. ParaGraph provides a

mechanism for users to add new displays of their own design that can be viewed

along with the other displays already provided. This capability is iiiterided pri-

marily to support special-purpose displays for particular applications, and is de-

scribed in more detail below.

An indication of our degree of success in making ParaGraph easy t o iise and easy

to understand is the fact that ma.ny users have obtained an early version from Netlib

[14] over the Internet during the past year, and have been able to build the program at

their locations and use it effectively without the benefit of any documentation beyond

a one-page README file.

1.4. Relationship to PICL

PTCL is a Portablcl Instriiirientcd Communication Library (20,211 that runs on a variety

of messagepassing parallel architectures. As its name implies, it provides both yorta-

bility and instrumentation for programs that use its coirtrriunication facilities for passing

messages between processors. On reyucst, PICL provides a tracefile that records impor-

tant events in the execution of the user's parallel program (q., sending and receiving

...

- 6 -

messages). The tracefile contains one event record per line, and each event record

consists of a set of integers that specify the event type, timestamp, processor number,

message length, and other similar information.

ParaCraph has a producer-consumer relationship with PICL: ParaGraph consunies

trace data produced by PICL. By using PICL rather than the “native” parallel pro-

gramniing interface for a particular machine, the user gains portability, instrumenta-

tion, and the ability to use ParaGraph in analyzing the behavior and performance of

the parallel program. These benefits are essentially “free” in that once the parallel pro-

gram is implemented using YICL, no further changes are required to the source code to

moveit to a new machine (provided YICL is available on the target machine), and little

or no effort is required to instrument the program for perIormance analysis. On the

other hand, since ParaGraph’s dependence on PICL is solely for its inpiit data, Para-

Graph could in fact work equally well with any other source of data having the same

format and semantics. Thus, other niessage-passing systems could be instrumented to

produce trace data in the format expected by ParaGraph, or else YaraGraph’s input

routine could be adapted to a different input format. In this manner, PaTaGraph can

be, and indeed has been, used in conjunction with communicatiou systems other than

prcr,.
For a meaningful simulation, the timestamps of thc events should be as accurate

and consistent across processors as possible. This is not necessarily easy to accomplisli

on a machine in which each processor may have its own clock with its own starting time,

running at its own rate. Moreovw, the resolution of the clock may be inadequate to

resolve events precisely. Poor resolution and/or poor synchronization of the processor

clocks can lead t o “tachyons7’ in the tracefile, that is, messages that appear to bc

received before they are sent. Such an occiirreiice will confuse ParaGraph, since m u c h

of its logic depends on correctly pairing sends and receives, and will invalidate the

information in some of the displays. For this reason, PTCT, goes t o considerable lengths

to synchronize the processor clocks, and tils0 to adjust for potential clock drift, so

that the timestamps will be as consistent and meaningful as possible [15]. On some

machines, PICT, actually provides a higher rcsolution clock than the one supplied by

the system vendor.

Another important issue is thP amount of additional overhead introduced by the

- 7 -

collection of trace itiformation compared to the execution time of an equivalent unin-

strumented program. PICL tries t o minimize the perturbation due t o tracing by saving

the trace da ta locally in each processor’s memory, then downloading it to disk only

after the program has finished execution. Nevertheless, such nionitoring inevitably

introduces some extra ovt:rhead; in PICI, the primary additional cost is due t o the

clock calls necessary to determine the timestamps for the event records t o be placed

in the tracefile [20]. These clock cadls, plus other minor overhead, add a fixed amount

(independent of message size) to the cost of sending each message. The overall pertur-

bation is thus a function of the frequency and volume of coinmunicatioii traffic, and

it also varies from machine t o machine. In general, wc believe that this perturbation

is small enough that the behavior of parallel programs is not fundamentally altered.

It is certainly true that in our experience the lessons WF learn from visual study of

instrumented runs invariably lead to improved performance of uninstrumented runs.

2. Using ParaGraph

ParaGraph supports comniaxid line options that specify a liostnarne for reraote display

across a network, forced monochrome display mode (useful if black-and-white hard-

copies axe to be made from a color screen), or a tracefile name. The txacefile cart also

be specified (or changed) during execution by typing the filename in the appropriate

entry of the opt.ions menu. I’araGraph preprocesses the input tracefile to cletelmine

relevant parameters aiitoniatically (e.g., time scale, nunibcr of processors) before the

graphical simulation begins; most of these values CXIL be overridden by the user, if

desired.

ParaGraph initially displays only its main menu, which contains buttons for con-

trolling execution and for selcc ting vaxious additional menus. The submenus available

include those for three types, or families, of displays (11 tilization, communication, and

tasks), an additional nicnii o f miscellanectus displays, and ;L Inenti for specifying various

options a.nd pa,rametcrs. As m m y displays can be selected as will fit on the screen;

the displays can be resized within rea.sonable 1)oiinds. Althoiigh it is difficult to piiy

close attention to many displays at once, it i s still useful to have several ava.ilable

simultaneously for comparison and selectivt: scrutiny with repeated replays.

After selecting the desired displays, the user presses start to I-jegin the graphical

- 8 -

simulation of the parallel program based on the tracefile specified. The aniinat ion

then proceeds straight through to the end of the tracefile, but it can be interrupted

for detailed study by use of the pause/resume button. For even more detailed study,

the s tep button provides a single-step mode that processes the tracefile one event at

a time. A particular time interval can be singled out for study by specifying starting

and stopping times (the defaults are the beginning and ending of the trarefile), or the

simulation can be optionally stopped each time a user-specified event occiirs in the

tracefile. The entire animation can be restarted at any time (whether in the middle

or at the end of the tracefile) simply by pressing the start button again. Most of

the displays show program behavior dynamically as individual events occur, but some

show only overall summary information at the end of the rim (a few displays 5erve both

purposes, as will be discussed below).

The relationship between the apparent simulation speed and the original execution

speed of the parallel program is necessarily somewhat imprecise. The spced of the

graphical simulation is determined primarily by the drawirig speed of the workstation,

which in turn is a function of tlie numbpr and complexity of displays that have been

selected. There is no way, in general, to make the apparent simulation speed uniformly

proportional to the original execution speed of the parallel program. For the most

part, ParaGraph simply processes the event records and draws the resulting displays

as rapidly as it can. If there are gaps between consecutive timestamps, however, the

intervening tinic is ‘‘fiUcr1 in” by a spin loop so that there is at least a rough (hut not

iiniform) correspondence between simulation time and original execution time. For-

tunately, this issue docs not seem to be of critical imporl,ance in visual pcrfmnrsnce

analysis. The most important consideration in understanding parallel prograin bchav-

ior is simply that the correct relative order of events be preserved in the graphicd

replay. Mor(>ovcr, the figuies of merit produced by ParaGraph are based on thc actual

timestamps, not the apparent speed with which the simulation unfolds.

Since YaraCraph’s speed of execution is determined primarily by the drawing speed

of the workstation, it can be slowed down or speeded up by selecting more or fewer

displays. ‘Iltc speed is also affected by tlie complexity of the displays and the t y p

and amount of scrolling used. Ti t its initial dcJsign, when there were only a few displays

available, we included parameterized delay loops to slow the drawing down in case it

- 9 -

moved too quickly for the human eye to follow. However, as we added more displays,

this ceased t o be a p r o b l e ~ ~ and we dispensed with the delay loops, opting irislead

for the more indirect control over simulation speed mentioned above. We find that

now users tend to complain more that the simulation is too slow rather than too fast,

since most like to have many displays open at once. Moreover, one can always resort

to single-step mode if arbitrarily slow drawing speed is desired for very close study of

program behavior.

3. Software Design

ParaGraph is an interactive, event-driven program. Its basic structure is that of an

event loop and a large switch that selects actions based on the nature of each event.

There are in fact two separate event queues: a queue of X events produced by the uber

(mouse clicks, keypresses, window exposures, etc.) arid a queue of trace events pro-

duced by the parallcl program under study. Thus, ParaGraph must alternate betwpen

these two queues to provide both a dynamic depiction of the parallel program and re-

sponsive interaction with the user. Menu selections determine the execution behavior

of I’araGraph, both statically (e.g., initial selection of displays, options, and parameter

values) and dynamically (p.g., pause/resurne, single-step mode).

ParaGraph is written in C, and the source code contains about 10,000 lines. The

main program of ParaGrsph calls the preprocess function to determirie necessary

parameters, initidilizcs many variables, allocatm graphical resources such a5 windows

and fonts, and then goes into a while loop that repeatedly calls the functions get-event

and get-trace, which check the X event queuc, aid the trace went queue, respcctiv~ly,

for the next w e n t upon which to act. Thc get-event routine i s simply a switch

containing a series of calls t o appropriate routines to handle the various X events. Thc

get-trace routine calls scan to read a trace event record, and then calls draw to upd;bte

the drawing of the displays that have been selected.

The X event queue inust be checked frequently enough t o provide good interactive

responsiveness, but not so frequently as to degrade t l i ~ drawing speed during the sim-

ulation. On the other hand, the trace evmt queue should be processed as rapidly as

possible while the siniiilatioii is active, but need riot be checked at all if the next pos-

sible event must be an X event (c.g., before the sirnulation starts, after the simulation

- 10 -

finishes, when in single-step mode, or when the simulation has bceri paused and can be

resumed only by user input). To address these issues, the alternation between the two

queues is not strict. Since not dl trace event records produced by PICL are of interest

to ParaGraph, it “fast forwards” through any series of such “unint~)re~ting” records be-

fore rechecking the X event queue. Moreover, both blocking and nonblocking calls are

used t o check the X event queue, depending on the circumstances, so that workstation

resources are not consumed iinnccessarily when the simulation is inactive.

4. Displays

In this section we describe and illustrate thc iiidividiial displays provided by ParaGraph.

Some of these displays change in place dynamically as events occur, with execution tinic

in the original run represented by sirnulation time in tlie replay. Others depict time

evolution by representing execution time in the original run by one space dirncnsion

on tlie screen. The latter displays scroll as necessary (by a user-controllable amount)

as simulation time progresses, in effect providing a moving window for viewing what

could be considered a static picture. No matter which rcyresentation of time is used, all

displays of both types are updatecl sirnultaneously and synchronized with each other.

In illustrating these displays in a printed manuscript, we obviously cannot convey

the dynamic movement portrayed by ParaGraph in actual practice, but must content

ourselves with snapshots taken during a typical execution. ‘The figures were produced

from tracefiles made on an Intel iPSC/2 hypercube.

As stated earlier, most of the displays €all irito one of three basic categories

utilization, communication, and task information although some displays contain

more than one type of information, and a few do not fit these categories a t all. Uelow

we provide brief descriptions and still-picture illiistratioris of the displays. For clarity

and simplicity, the illustrative examples use only a small number of processors. Marly

of the displays scale up well to rnuch larger numbers of processors, but a fpw contain

too much detail to scalc up well. We will discuss later the nunhcr of processors that

can be supported effectively and the limitations we see in our approach.

The parallel program illiistrated in most of the figurcs is a coxninon cornpiitation

in scientific computing, the solution of ;t large spane system of linear equations by

Cholesky factorization. For details of tlie parallel algorithni used, see [XI. In the

- 11 -

example, the sparse matrix of the linear system arises from a 15 x 15 square grid,

so that the matrix is of order 225. The nodes of the grid, and hence the rows and

columns of the matrix, are ordered by nested dissection, which is a type of domain

decomposition that leads to a typical divide-and-conquer parallel algorithiii for the

factorization. In the example, each of the eight processors initially computes the portion

of the factorization corresponding to the interior of its own part of the grid, and can

do so independently of the other processors. Eventually, however, the processors reach

a point where interprocessor communication is required t o supply boundary data from

neighboring portions of the grid that are needed before computations can proceed any

further. The processors team up in four pairs, then two sets of four, and finally all

eight together, as they work their way up the elimination tree and coniiniinicatc across

higher level boundaries.

4.1. Utilization Displays

The displays described in this section are concerned primarily with processor utilization.

They are helpfiil in determining the effectiveriess with which the processors are used

and how evenly the coniputational work is distributed across the processnrs.

4.1.1. Utilization Count (Figure 1)

,, Illis display shows the total niimber of processors in each of three states - busy, over-

head, and idle - as a function of time. The number of processors is on the vertical

axis and time is on the horizontal axis, which scrolls as necessary as the simulation

proceeds. The color scheme used is borrowed from traffic signals: green (go) for busy,

yellow (caution) for overheatl, and red (stop) for idle. By convention, we show grecn

at the bottom, yellow in tho middle, and red at the top dong the vertical axis. At

any given time, ParaGraph categorizes each processor as idle if it has suspended ex-

ecution awaiting a message that has not yet arrived (or if it has ceascd execution at

the end of the run), overhead if it is executing in the commiinication subsystem (bu t

not awaiting a message), and busy if it is cxecuting some portion of the program other

than the comrnunication subsystem. Sirire the three categories are rnutually exclusive

and exhaustive, the total height of the coniposite is always equal t o the total number

of processors. Ideally, we would like to interpret busy as meaning that a processor is

- 1 2 -

doing useful work, overhead as meaning that a processor is doing work that would be

unnecessary in a serial program, and idle as meaning that a processor is doing nothing.

Unfortunately, the monitoring required to make such a determination would allnost

certainly be nonportable and/or excessively intrusive. Thus, the “busy” time we report

may well incliide redundant work or other work that would not be necessary in a serial

program, since our monitoring detects only overhead associated with communication.

However, we find that the definitions we have adopted based on the data provided by

PICL are quite adequate in practice to convey the effectiveness of parallel programs

pictorially. In the example shown in Figure 1, the all-green portion at the far left

depicts the final part of the perfectly parallel phase with which the divide-and-conquer

algorithm begins.

4.1.2. Gantt Chart (Figure 2)

This display, which is patterned after graphical charts used in industrial management

[19], depicts the activity of individual processors by a horizorital bar chart in which tbe

color of each bar indicates the busy/overhead/idle stat 11s of the corresponding processor

as a function of time, again using the traffic-signal color scheme. Processor number is

on the vertical axis and time is on the horizontal axis, which scrolls as necessary as

the simulation proceeds. The Gantt chart provides the same basic information as the

Utilization Count display, but on an individual processor, rather than aggregate, basis;

in fact, the Utilization Count display is simply the Gantt chart with the green slink to

the bottom, the r d floated to the top, and the yellow sandwiched between.

4.1.3. Utilization Summary (Figure 3)

Unlike the displays described previously, which show current behavior and change dy-

nainically with time, the Utilization Summary display is defined only at the end of a run.

It shows the pcrceritage of time, over the entire run, that each processor spent in each

of the three l~iisy/overhead/iclle states. The percentage of time is shown o n the vertical

axis and the processor number on the horizontal axis. Again, the grecn/yellow/red

color scheme is used to indicate the three states. In addition to giving a visual im-

pression of the overall efficiency of the parallrl program, this display also gives a visual

indication of the load balance across processors, In the sparse matrix example shown

I

KI
Fi
I

oh@s,p $uno3 uo?qm!g$n '1 arnZ!d
.............. nn-.." .. "..̂ ~*...,,

j...

ASfm i
i
i

i' .- -- .- i 3iu r

1

f f

I

I

-
1
9
 -

I
.
.
-
.
.
-
.
.
.
"

....-.. ,""..."..._....-.. I

..-..... I
" _

n
"

1 --

- 15 -

-
I

-I

In
-

...

- 16 -

in Figure 3, four of the processors are assigned the four corners of the grid, while the

other four are assigned central portions of the grid, leading to a load imbalance that is

cleasly visible.

4.1.4. Utilization Meter (Figure 4)

This display uses a colored vertical bar, with thc usual green/yellow/red color scheme,

to indicate the percentage of the total number of processors that are currently in

each of the three busy/overhead/idle states. The visual effect is similar to that of a

thermometer or some automobile speedometers. This display provides essentially the

same information as the Utilization Count display, but saves screen space (which may

be needed for other displays) by changing in place rather than scrolling with time.

4.1.5. Concurrency Profile (Figure 5)

This is another summary display that becomes defined only at thc end of a run. For

each possible niimber of processors k , 0 5 k 5 p , where p is the rnaximurn number of

processors for this run, this display shows the percentage of time during the run that

exactly k processors were in a given state (Le., busy/overhead/idle). The percentage

of time is shown on the vertical axis and the number of processors k is shown 011 the

horizontal axis. The profile for each possible state is shown separately, and the user can

cycle through the three states by clicking the mouse on the appropriate sizbwinclow.

The actual concurrency profile for real prograins shown by this display is usually in

marked contrast to the idealized coriditions that are the basis for Amdahl’s Law, wlierc

the concurrency profile is assumed to be bimodal, with nonzero values at k = 1 aid

k = p and zero elsewhere (i.e.? at any given time the computational work is either

strictly serial or fully parallel). Yigure 5 shows the busy and idle profiles for the sparse

matrix example; the overhead profile is not shown.

4.1.6. Kiviat Diagram (Figure 6)

This display, which is adaptcd from rclated graphs used in other types of performance

evaluation [28,41], gives a gconietric depiction of the utilization of individual proccssors

and the overall load balance across processors. Kach processor is rcpresented by a spoke

of a wheel. The recent average fractional utilization of each processor determines a

L..... :

Figure 4. Utilization Meter (left) and
Communication Meter (right) displays.

L

I
I

.......
......-

. .."
......

......
.._.

......
.._

I
.
.
.
"
.
.
.
.
.

..
I
.
"......

....
....

,..-

......
... I

I

........

........

- 8
1

-

- 19 -

........................
I..

- 20 -

point 011 its spoke, with the hub of the wheel representing zero (completely idle) and

the outer rim representing one (completely busy).

Taken together, the points for all the processors determine the vertices of a polygon

whose size and shape give a pictorial indication of both processor utilization and load

balance across processors. Low utilization causes the polygon to be concentrated near

the center, while high iitjlizatiori causes the polygon to lie near the perimeter. Poor

load balance across processors causes the polygon to be strongly skewed or asymmetric.

Any change in load balance is clearly shown pictorially; for example, with many ring-

oriented algorithms the moving polygon has the appearance of a rotating camshaft as

the heavier workload rnoves around the ring. The ciirrent utilization is shown in dark

shading, while the “high water mark” seen thus far is shown in lighter shading. The

“current” utilization is in fact a moving average over a time interval of user-specified

width, since instantaneous utilization would of course always be either zero or one for

each processor.

4.2. Communication Displays

The displays described in this section are concerned primarily with depicting inter-

processor communication. They are helpful in determining the frequency, volume,

and overall pattern of communication, and whether there is congestion in the message

queues.

4.2.1. Communication Traffic (Figure 7)

This display is a simple plot of the total cotnrnunication traffic in the iriterconnectioti

network (including message buffers) as a function of time. The curve plotted is the t o t d

of all messages that arr currently pending (; .e . , sent but not yet received), and can be

optionally expressed either by message count or by voliirne in bytes. The cornmunica-

tion traffic shown can also optionally be eithcr the aggregate over all processors or just

tlie messages pending for any individual processor the user selects. Message uolumr~ or

count is shown on the vertical axis, and time is shown on the horidontal axis, which

scrolls as necessary. Figure 7 shows tlie siiccessively lziglier peaks in communication

traftjr for the sparse matrix example as higher level grid separators are encountercd.

"
 "...".,

- Z
l
-

...................................
......................

.
I

I

r-
8

m
i

.............................

"
.
.
.
.
.
.
.
.
.
.
I
.
.

"
 I

.........._........ "

" "
e.;

.......................

- 22 -

4.2.2. Spacetime Diagram (Figure 8)

This display i s patterned after the diagrams used in physics, particularly in relativity

thcory, to depict interactions between particles through space and time.

This type of diagram has been used by Lamport [30] for describing the order of

events in a distributed computing system. The same pictorial concept was used over

a century ago t o prepare graphical railway schediiles [59, page 311. In our adaptation

of the Spacetime Diagram, processor number is 011 tlie vertical axis, and time is on

the horizontal axis, which scrolls as necessary as time proceeds. Processor activity

(busy/idle) is iiidicsted by horizontal lines, one for each processor, with the line drawri

solid if the corresponding processor is busy, and blank if the processor is idle. Messages

between processors are depicted by slanted lines between the sending and receiving pro-

cessor activity lines, indicating the times at which each message was sent and received.

Lhese sending and receiving times are froni user process to iiser process (not siniply

the physical transniission time), arid hence the slopes of the resulting lines give a visual

indication of how boon a given piece of data produced by one processor was necded

by tlie receiving processor. The communication lines are color coded to indicate the

sizes of the messages being transmitted. The Spacetime Diagram i s one of the iiiost

informative of all the displays, since it depicts both individual processor utilization and

all message traffic in full detail. For example, it can easily be seen which particular

message “wakes up” a n idle processor that was previously blocked awaitiiig its arrival.

Unfortunately, this fine level of detail does not scale up well to large numbers of pro-

cessors, as the diagram becomes extremely cluttered. The dividc-and-conquer nature

of the sparse matrix example can he clearly seen in Figure 8. T h e eight processors

initially work independently, then combine in successively larger groups as they move

up the elimination tree.

r >

4.2.3. Message Queues (Figure 9)

This display depicts the size nf the queue of incoming messages for each processor by i~

vertical bar whose height varies with time as messages are sent, buffered, and received.

The processor nurnber is showi on the horizontal axis. At the user’s option, the queue

size can bc mcasured either by the number of messages or by their total length in bytes.

The input queue size for a given processor is ilicremented each time a message is sent to

- 23 -

F

... ...

L I I

1

~
I

i 11
I

1 Y

s
-

N
m

*
m

@
+

Ie

........
U

.......
I
 I

.
.
I
.

I

.
.
.
.
.
I
.
.
.
_
.
.
.

I

...-.. Y

..
I

.... "..." ...-. "

 -
..........

....... I
.
.
.
-
.
.
-
.
.
-
.
.
.

"

I

....
....................................

...................................
........"

-lq m

I

s
i

I

..................
...............................

..
..............

I

i!
I
.
.
.
.
"
.

-1

- 25 -

that processor, and decremented each time the user process on that processnr receives

a message.

On most message-passing parallel systems, the physical transmission time between

processors is negligible compared to the soft ware overhead in handling messages, so that

the time interval between the send and receive events is a reasonable approximation to

the time a given message actually spends in the destination processor’s input queue. Of

course, depending on message types, the messages may not be received in the same order

in which they arr ive for queuing, so the queues may grow and shrink in complicated

ways. As before, dark shading depicts the current queue size on pach processor, and

lighter shading indicates the “high water mark” seen so far. The Message Queue display

gives a pictorial indication of whether there is coinrnunication congestion in a parallel

program (i.e., whether messages are accumulating in the input queue), or the messages

are being consumed at about the same rate as they arrive. Of course, it is best if

messages arrive slightly before they are actually needed, so that thc receiving processor

does not become idle awaiting a message. But a large backlog of incoming messages

can consume excessive buffer space, so a happy medium (analogous to “just in ti me”

manufacturing) is desirable. In the example shown in Figure 9, processor 2 currently

has no messages i n its input queue; the remaining processors all have messages awaitiug

receipt by their user processes, but only the queue on yroccssor 3 is at its maximurn

size seen so far.

4.2.4. Conirnuriicatiori Matrix (Figure 10)

In this display, messages are rrprcserited by squares in a two-dinrensioIia1 array whose

rows and columns correspond to the sending and receiving processors, respcctively,

for each message. During the simulation, each message is depicted by coloririg the

appropriate square a t tlie time the message is sent, and crasirig i t at the time the

message is received. The color used indicates the size of the message in bytcs, as given

in the separatt. Color Code display that can also be selected from the nienu. Thus ,

the sizes, durations, and overall pattern of messages are depicted by this display. The

nodes can be ordered along the axes in either natural or Gray code order, and the

user’s choice may strongly affect the appearance of the communication pattern. A t

thc end of the simulation, tlie Communication Matrix display shows the cumulative

3 4 ! 3 6 7 /

RECEIUING NODE " "_... " ~ " :

\ e 1 2

"IL'
? 1c

3 -

RECEIVING N1 K." " " ...

I
/

s
E
H
D
I
H
c
H
D
D

... ̂

I

h3
Q,
I

Figure 10. Communication Matrix display during run (left) and
concluding summary (right).

- 27 -

coniiriunication volurne for the entire run between each pair of processors.

4.2.5. Communication Meter (Figure 4)

This display uses a vertical bar to indicate the percentage of maximum communication

volume (or number of messages) currently pending (Le., sent but not yct received).

This display provides essentially the same information as the Conimiinication Traffic

display, but saves screen space (which may be nceded for other displays) by changirig

in place rather than scrolling with time. Conceptually, this thermometer-like display

is similar to the Utjlization Meter display, except that it shows communication instead

of utilization, and the two are interesting to observe side by side.

4.2.6. Animation (Figure 11)

In this display, the multiprocessor is represented by a graph whose nodes (depicted by

numbered circles) represent processors, and whose arcs (depicted by lilies between the

circles) represent communication links. The status of each node (busy, idle, sending,

receiving) is indicated by its color, so that the circles can be thought of as the “front-

panel lights” of the multiprocessor. An arc is drawn between the soiirce arid clcstination

processors when a message is sent, and erased when the message is received. Thus,

both the colors of the nodes arid the conriectivity of the graph change dynamically as

the simulation proceeds. The srnall circles depicting the processors are arranged in a

large circle merely for convenience in drawing straight lines between arbitrary pairs of

processors without intersecting any other processors; this is not meant to suggest that

the underlying arch itccture is necessarily a ring. The nodes can be ordered around the

circle in either natural or Gray code order, and Ihe user’s choice may strongly affect the

appearance of the conimunicatioii piittern among proccssors. The arcs represent the

logical, rather than physical, connectivity of the multiprocessor network, and possible

routing of messagps through intervening nodes is not depicted unless the program being

visualized does such forwarding explicitly. In the example shown in Figure 11, a total

of four messages are pending receipt. Note that various combinations of states arp

possible for the sending and receiving processors. For cxamplp, both processors 2 and

3 are busy, one having already sciit the message arid resumed cornputiiig, while tlrc

other has not yet stopped computing to receive it. TJpon conclusion, this display shows

I

a
I
i
i
i
i i
i
i i
i
i
i i
I
i
i i
i
i
i i
i i i I k a w i rl 1

bwy SQnd iI..._* .*""...'....'...a

a ?
i i

i
i 1 ~ ~ a ~ !
i idle SOnd i i idle L ... Y -... '..- L... ".. E?-.. J

Figure 11. Animation display during run (left) and cuucludhg
summary (right).

I

tr3
00

I

- 29 -

a, summary of all (logical) cominuiiicstion links used throughout the run.

4.2.7. Hypercube (Figures 12 and 13)

This display is similar to the Animation display, except that it provides a number of ad-

ditional layouts for the nodes in order t o exhibit more clearly communication pat terns

corresponding to the various networks that can be embedded in a hypercube [20,51].

The layouts provided include ring, ring of rings, web, cube, lateral cubes, nested cubes,

mesh, linear, tree, tesseract, and polytope arrangements, some of which are illustrated

in Figure 12. Note that this display does not require that the interconnection nctwork of

the machine on which the parallel program exeriited actually be a hypercube; it mercly

highlights the hypercube structure as a matter of potential interest. The scheme for

coloring nodes and drawing arcs is the same as that for the Animation display, except

that curved arcs are often used to avoid, as much as possible, intersecting intermediate

nodes. To help the user of a hypercube to determine if the network’s physical con-

nectivity is correctly lionored by the commiiuication in the parallel program, message

arcs corresponding to genuinc physical hypercube links are drawn in a different culor

from message arcs along “virtual” links that do not exist in a hypercube and therefore

entail indirect routing through intervening processors. In Figure 13, for example, the

message between nodes 0 and 5 must travel over a virtual link by being forwarded

through an intermediate processor, whereas the message betwern nodes 0 and 2 travels

directly over the physical link between those two processors. IJpon conclusion, this

display shows a siirrimary of all (logical) communication links used throughout thc [un.

Unfortunately, the method used tu draw this rather elaborate display does not scale

up well t o large numbers of processors.

4.2.8. Node Statistics (Figure 14)

This display provides, in graphical forni, detailed communication statistics for a single,

iiser-selected processor. Thp choices of statistics plotted are the source/destinatioI1,

type, length, and Hclrnming distance traveled for all messages sent i o or from the cho-

sen processor. Time is on the horiLonta1 axis, and the chosen statistic is on the vertical

axis, with incoming and outgoing messages shown i n separate windows. This display is

helpful in analyzing cornniunication behavior in detail, especially in perceiving treiids

il
f

i i
i i i
i
i
i
!

i!
ti

i

il

!i
ii
!I

i !

1 !!

li i
ii
ii

i i i
i !
i:

Idle euS, 0 8md

I

0
0
I

Figure 12. Some of the node layouts available in the Hypercube displav.

i
Busy a sr?Rd I

i (Mo I T / - i -
. - - - ~ * - " - - - " - " ~ ~ ~ *-. _-".",'........, -

I

w
c-r
I

Figure 13. Hypercube display during run
using "cube" layout of nodes.

- 33 -

or patterns in the communication structure that improve understanding of program be-

havior and performance. l t has been used as an aid in designing “synthetic program^,^'

which are simple programs that mimic the behavior and performance of much more

complex programs, and are useful for performance modeling and benchmarking [&I.

4.3. Task Displays

The displays we have considered thus far depict a number of important aspects of

parallel program behavior that help in detecting performance bottlenecks. However,

they contain no information indicating the location in the parallel program at which

the observed behavior occurs. To remedy this situation, we considered a number of

automated approaches t o providing such iriforrnatiori (e.g., picking up line numbers in

the source code from the compiler), but all of these encounter nasty practical difliciilties

(such as dealing with multiple source files). Thus, we reluctantly made an exception to

our rule that the user need do nothing to instruinent the parallel program under study

in order to use ParaGraph.

We developed a nurnber of new “task” displays that use information provided by

the user, with the help of PICL, to depict the portion of the user’s paralld program

that is executing at any given time. Specifically, the user defines “tasks” within the

program by using special PICL routines t o mark the beginning and ending of each

task and assign it a user-selected task nurnber. The scope of what is meant by a

task is left entirely to the user: a task can be a single line of code, a loop, an entire

subroutine, or any other unit of work that is meaningful in a given application. For

example, in matrix factorization one might define the coniputstion of each column

to be a task, and assign the column number as the task number. Tasks are defined

simply by calling PICI,’s traceblockbegin and traceblockend routines, with the

desired task number as argument, imniecliately before and after the selected section of

code. Tllis causes I’ICL to produce event records that are interpreted appropriatcly by

ParaGraph to depict the given task, using displays to be described in this section. We

should emphasize that task definitions are required only if the user wishes to view the

task displays. I f the tracefilc contains no event records defining tasks, then the task

displays will simply bc blank, but the remaining displays in ParaGrapli will still show

their normal information.

- 34 -

Note that tasks can be nested, one inside another, but i l so these should be propcrly

bracketed by matching task begin and end records. Note also that more than one

processor can be assigned the same task (or, more accurately, each processor can be

assigned its own portion of the same task); indeed, the model we have in mind is that

all processors collaborate on each task, rather than that each task is assigned to a single

processor. In mrtriy contexts, such a b the matrix example mentioned above, there is a

natural ordering and corresponding numbering of the tasks in a parallel program. In

most of the task displays described below, the task numbers are indicated by a color

coding. Since the number of tasks is likely to be larger than the number of colors that

can be easily distinguished, we recycle a limited number of colors to depict successive

task numbers. We use one of six basic colors for indicating each task, with thr choice of

color given by the task number modulo sjx. In the sparse matrix example, we dt4ned

the computation of each coluniii of the factorization to be a separate task, with the

column number as task number, for a total of 2'25 tasks.

4.3.1. Task Count (Figure 15)

During the sirnnlation, this display shows the number of processors that a1e executing

a given task a t the current time. Tlie number of processors is shown on the vertical

axis and the task number is shown on the horizontal axis. At the end of the run,

this display cha.nges to show a summary over the entire run. Specifically, it shows

the average number of processors that were executing each task over the lifetime of

that task (i.e., the time interval starting when the first processor began the task and

ending when the last processor finished the task) . Jn the example shown in Figure 15,

four processors are currently working on task 4, two are working on task 3, and one

processor each on tasks 1. and 2.

4.3.2. Task Gantt (Figure 16)

This display depicts thc task activity of individual processors by a horizontal bar chart

in which the color of each bar indicates the current task being executed by the cor-

responding processor as a fuiictioii of time. Processor numbcr is on the vertical axis

and time is on the horizontal axis, which scrolls as necessary as the simulation pro-

ceeds. This display can be compared with the Utilization Gantt chart to correlate

- 35 -

.........
.........

4 m

I

r Ji

- 36 -

.........
......... "... """...."..."..,.",,". " "._,."

pr
.......-..

IQ c

Ir
1
 li

- 37 -

busy/overhead/idle status with the task information. For instance, comparing Figure

16 with Figure 2 shows that for the sparse matrix example the longer tasks tend to

he caused by extended idle periods within the task while the processor awaits ~leeded

data, rather than by a heavier work load for that processor.

4.3.3. Task Status (Figure 17)

In this display the tasks are represented by a two-dimensional array of squares, with

task numbers filling the array in row-wise order. Initially, all of the squarps are white.

As each task is begun, its corresponding square is lightly shaded t o indicate that that

task is now in progress. When a task is subsequcntly completed, its corresponding

square is then darkly shaded. Again, the divide-and-conquer iiature of the sp;trse

matrix example is clearly visible in Figure 17, where several factor columns associated

with the interiors of the initial eight pieces of the grid have been completed at the

instant shown, and precisely eight distinct tasks are currently in progress.

4.3.4. Task Summary (Figure 18)

This display, which is defiutd orily at the elid of the simulation run, indicatcs the

duration of tach task (from earliest beginning to last completion by any processor) as

a percentage of the overall execution time of the parallel program, and furthermore

places thc duration interval of each task within the overall execution interval of the

parallel program. The percentage of the total execution time is shown on the vertic a1

axis, and the task numbtlr is shown on the 1iorizont;tl axis. Figure 18 provides another

striking depiction of the divide-and-conquer sparse matrix example, with thc 8-4-2-1

sequence clearly visible.

4.4. Other Displays

In this section we describe some additional displays that eithtr do not fit into any of

the three categories above or else cut across more than one category.

...

4.4.1. Phase Portrait (Figure 19)

This display is patterned after the phase portraits used in differential equations and

classical mechanics t o depict the relationship between two variables (e.g., position and

I

a0
m
I

%qdyp snttiqs ysa~, -LT a.m&d
*........I - * I.."...." " " "_..."I.._.."

fEU31dC903 SS333Wd NI

E Ill rri-

- 39 -

.............
.
.
.
.
.
.
.
.
.
.
I
.
"
.
.
.
.
.
.
.

"
 I

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
I.."

"
I

 ._..
i

....... I
.
.
.
.
.
.

....... I

.....................

1

5

'.

, T c
i
i/

i i j

- 40 -

- 41 -

velocity) that depend on some independent variable (e.g., time). In our case, we are

attempting t o illustrate pictorially the relationship over time between communication

and processor utilization. At any given point in time, the current percentage utilization

(i.e., the percentage of processors that are in the busy state), and the percentage of

the maximum volume of communication currently in transit, together define a single

point in a two-dimensional plane. This point changes with time as communication and

processor utilization vary, thereby tracing out a trajectory in the plane that is plotted

graphically in this display, with communication and utilization on the two axes. Since

the overhead and potential idleness due to communication inhibit processor utilization,

one expects communication and utilization generally to have an inverse relationship.

Thus one expects the phase trajectory to tend t o lie along a diagonal of the display.

This display is particularly useful for revealing repetitive or periodic behavior in a

parallel program, which tends to show up in the phase portrait as an orbit pattern. In

the example shown on the left in Figure 19, two distinct phases of the computation

can be seen, each of which exhibits a high degree of periodic behavior. By setting task

numbers appropriately, the user can color code the trajectory to highlight either major

phases (Figure 19, left) or individual orbits (Figure 19, right).

4.4.2. Critical Path (Figure 20)

This display is similar to the Spacetime display described earlier, but uses a different

color coding to highlight the longest serial thread in the parallel computation. Specifi-

cally, the processor and message lines along the critical path are shown in red, while all

other processor and message lines are shown in light blue. This display is intended to

aid in identifying performance bottlenecks and tuning the parallel program by focusing

attention on the portion of the computation that is currently limiting performance.

Any improvement in performance must necessarily shorten the longest serial thread

running through the computation, so this is a primary place to look for potential algo-

ri thm improvements.

4.4.3. Processor Status (Figure 21)

This is a comprehensive display that attempts to capture detailed information about

processor utilization, communication, arid tasks, but in a compact format that scales up

- 42 -

I
 ,. .

L
-. L

'----S

-.. -4 >I.,."?.----
...--

i
_
_
_
.

h

I

,,..

"
r

..~
..."

_

_.-..I.....,.____ ~

...........
i

iP

i . 1

iml

..................... -

1 -h I I,

....... L-
-..."_.."..*-"..-.I.̂.- ' -."-...-"... l-.".,"..,...".,

:-.~...*"L"." -_._

..........-.." "....-. .. .- "_"

I

1

I

L

- 44 -

well t o large nunibcrs of processors. This display contains four subdisplays, in each of

which the processors are represented by a two-dimensional array of squares, with pro-

cessor numbers filling the array in row-wise order. The upper left subdisplay shows the

current state of each processor (busy/overhead/idle), using the usual green/yellow/red

color scheme. The upper right subdisplay shows the task currently being executed by

each processor, using one of six colors chosen as discussed previously. The lower left

subdisplay shows the volume in bytes of messages currently being sent by each proces-

sor, and the lower right subdisplay shows the volume in bytes of messages currently

awaiting receipt by each processor; both of these communication subdisplays indicate

message volume in bytes using the same color code as discussed previously for the other

comrriunication displays. Although this comprehensive display is soiriewhat difficult t o

follow due to the large amount of information it contains, it has the virtue of scaling

t o very large numbers of processors more readily than any of the other displays in

ParaGrapli. The example shown in Figure 21 illustrates a run with 64 processors.

4.4.4. Clock

This display provides both digital and analog clock readings during the graphical sim-

ulation of the parallel program. The current sumulation time is shown as a numerical

reading, and the proportion of the fill1 tracefile that has been completed thus far is

shown by a colored horizontal bar. The clock reading is updated synchroriously with

the other displays, and it “ticks” through all integral time values, not j u s t those that

happen to come from event timestamps.

4.4.5. Trace

This is a non-graphical display that prints an annotated version of each trace event as

it is read from the tracefile. It is primarily useful in the single-stpp mode for debugging

or other detailed study of the parallel program on an event-by-event basis. Altlioiigh

the trace records are drawn in this display one a t a time, space is allowed to show

several conswutivc trace records, and the display scrolls vertically as necessary with

time.

- 45 -

4.4.6. Stat is tical s urn mary

This is a non-graphical display that gives numerical values for various statistics sum-

marizing processor utilization and communication, both for individual processors and

aggregates over all processors. While this tabular display may yield considerably less

insight than the graphical displays provided by ParaGraph, exact numericall quanti-

ties are occasionally useful in preparing tables and graphs for printed reports, or for

analytical performance modeling.

4.5. Application- S p eci fic Displays

All of the displays we have discussed thus far are generic in the sense that they are

applicable to any parallel program based on message passing and do not depend on

the particular application or problem domain that the program addresses. While this

wide applicability is generally a virtue, knowledge of the specific application ran often

enable one to design a special-purpose display that reveals greater detail or insight

than generic displays alone would permit. In studying a parallel sorting algorithm,

for example, generic displays can show which processors are communicating with each

other, and the volume of communication, but they cannot show which specific data

items are being exchanged between processors. Since we obviously could not provide

such application-specific displays as part of ParaGraph, we instead made ParaGraph

extensible so that users can add application-specific displays of their own design that

can be selected froin the incnu and viewed along with the usual generic displays.

The mechanism we use for supporting this capalility works as follows. ParaGraph

contains calls a t appropriate points to routines that provide initialization, data input,

event handling, drawing, etc., for an application-specific display. If the corresponding

routines for such a display are not supplied By the user when the executable module for

ParaGraph is built, then dummy “stlib” routines are linked into ParaGraph instead,

and no user-supplied display selection appears in the menu. When an application-

specific display has been linked into ParaGraph and the resulting module is executed,

the user-snpplied display is givtn access to all of the event records in the tracefile that

I’araGraph reads and can use t h a n in any manner it chooses.

The usual events generated by PICL may suffice for the application-spccific dis-

play, or the user may wish to insert additional events during execution of the parallel

- 46 -

program in order t o siipply additional data for the application-specific display. The

tracemarks event of PICL is perhaps the most useful for this purpose, as it allows

the user to insert into the tracefile timestamped records containing arbitrary lists of

integers, which might be used to provide loop indices, array indices, memory addresses,

or any other information that would enable thc laser-supplied display to convey more

fully and prt4sely the activity of the parallel program in the context of the particular

application.

Unfortunately, writing thc necessary routines to support an application-specific

display is a decidedly nontrivial task that requires a general knowledge of X Window

System programming. Rut at least the potential user of this capability can concentrate

on only those portions of thc graphics programming that are relevant to his application,

taking advantage of the supporting infrastructure of ParaGraph to provicle all of the

other necessary Facilities to drive the overall graphical simulation. As an aid to iisers

who may wish to develop application-specific displays to add to ParaGrapli, we have

developed two such prototype displays, one for depicting parallel sorting algorithnzs and

one for depictitig parallel matrix transposition. These example routines are distributed

along with the source code for ParaGraph. Figure 22 illustrates the application-specific

display for matrix transposition, which is driven by tracemarks event records that

indicate which data items are being exchanged among the processors.

5 . Options

The execution behavior and visual appearance of I’araChaph can be customized in a

number of ways to suit each iiscr’s taste or needs. In this section, we briefly discuss

some of the choices available in the Options menu.

e In many of the displays, the user can clioose to have the processors arranged in

either rratural or Gray code order, and the choice will affect the appearance of

communication pat terns.

0 Those windows that represent time along the horizontal dimension of the screen

can smoothly scroll or jump scroll by a user-specified airmint as simulation time

advances. Smooth scrolling provides an appealing sense of visual con tin uity, but

results in a slower drawiiig speed.

- 47 -

- 48 -

e The relationship between simulation time and the timestamps of the trace events

is determined by the time unit chosen. The user can override the value that

ParaGraph heuristically chooses for a given tracefile.

0 A related parameter is the scale width, which is defined to be the width, in

simulation time units, of the horizontal axis for the displays that scroll with

time. The scale width chosen implicitly determines the number of pixels on the

screen that represent each unit of simulation time. A larger number of pixels per

time unit in effect magnifies the horizontal dimension of the scrolling displays to

bring out more detail, but with less of the overall behavior of the program visible

at once. Again, the user can override the value that ParaGraph chooses.

0 By default, ParaGraph starts the simulation at the beginning of the tracefile arid

proceeds to the end of the tracefile. By choosing other starting and ,stopping

times, however, the user can isolate any particular time period of interest for

visual scrutiny without having to view a possibly long simulation in its entirety.

0 The uscr can also select the amount of smoothing uscd in the Kiviat Diagram

and Phase Portrait displays to avoid an excessively noisy or jumpy appearmce.

6. Future Work

In terms of the nnmber and appearance of displays it provides, ParaGraph is a rea-

sonably mature software tool, although wc intend to add more displays as helpful new

perspectives are devised. There are a few minor technical points about ParaGraph that

could stand improvement. We have already mentioned that it would be nice to have

more explicit control over the apparent speed of the simulation. As another example,

the contents of many of the displays are lost if the window is obscured and tlien reex-

posed. ‘Ihis inability to repair or redraw windows, short of rerunning thc simulation

from the beginning, was a deliberate design decision based on a desire to conserve the

substantial amount of memory that would bc required to save the contents of all win-

dows for possible restoration. Nevcrtheless, this “feature” can he annoying a t times

and should eventually be fixed.

A more serious liniitation of ParaGraph in its current form is the niiniber of yro-

cessors that can be depicted effectively. A few of the current displays are simply too

- 49 -

detailed to scde up beyond about 128 processors and still be comprehensible. Most

of the displays scale up well to a level of 512 or 1024 processors on a normal sized

workstation screen, but at this point they are down to representing each processor by

a single pixel (or pixel line), and hence cannot be scaled any further in their current

form. To visualize programs for massively parallel architectures having thousands of

processors, we must either devise new displays that scale up to this level, or else we

must adapt the existing displays, either by aggregating or selecting information. For

example, the current displays could depict either clusters of processors or subsets of

individual processors (e.g., cross sections).

While it is fairly easy to imagine how graphics technology might be adapted to meet

the needs of visualizing massively parallel computations, it is much less obvious how

to handle the vast volume of execution trace data that would result from monitoring

thousands of processors. Even with the more modest numbers of processors ctirreiitly

supported by PICL and ParaGraph, storage and processing of the large volume of

trace data resulting from runs of significant duration are alrcady diflicult prolderns. To

go beyond the present level will almost certaj lily require some degrec of abstraction

of essential behavior in a more concise and cornpact form, both in the data and in

its graphical presentation. We simply cannot afford to continue to record or display

all commiinication events when they Lcconie so voluminoiis. Unfortunately, many

of the current displays in I’araCraph depend critically on the availability of data on

each individual event. Thus, the development of new visual displays and ncw data

abstractions must proceed in tandem so that the execution monitoring facility will

produce data that can be visually displayed in a meaningful way to provide helpful

insights into program behavior and performance.

7. Acknowledgements

The detailed irnplernrntation of ParaGrapli has been clone almost entirely by under-

graduate students during research internships at Oak Ridge National Laboratory. The

overall structure of the software and the conceptual designs of the individual displays

were developed by one of the authors (1Ir;tth). The vast bulk of thc programming was

done by the other author (Ethcridge) while she was an undergraduate student, first at

Roanoke College and later at the University of Tennessee. Two other undergraduate

- 5 0 -

students have also worked on the development of ParaGraph: Loretta Auvil, then of

Alderson Broadchis College, developed the Hypercube display, and Michelle Hribar,

then of Albion College, developed the first two application-specific displays (to illus-

trate parallel sorting and matrix transposition) as extensions t o ParaGrayh. In each

rase these undergraduates began their work on ParaGraph without any prior knowledge

of Unix, C, computer graphics, workstations, or the X Window System, and within a

single term each was contributing t o the sophisticated software described in this paper.

Thus, the clevelopnient of ParaGraph has been an interesting educational experiment

that has provided a useful tool for the performanw analysis of parallel programs.

This research was supported by the Applied Mathematical Sciences Research Pro-

gram, OfKce of Encrgy Research, U.S. Dcpartment of Energy under contract DEACO5-

840R21400 with Martin hlarietta Energy Systems, Inc.

8. References

[l] D.A. Bailey, J.E. CUIIY, and C.P. Loornis. ParaGraph: graph editor support for

parallel programming environments. International Journal of Parallel I'rogram-

ming, 19, 1990. to appear.

[2] D. Bernstein and K. So. Perforrnance visualization of parallel programs on a

shared memory multiprocessor system. In Proceedings of the 198.9 International

Conference on Paruble1 Processing, volume 11, pages 1-1 0, August 1989.

[3] M. Berry. The use of matrix visualization in algorithmic design. Computing

,S'ysterrLs in Engineering, 1990. to appear.

[4] 0. Ilre'wer, J. llongarra, and D. Sorensen. Tools to aid in the analysis of memory

access patterns for Fortran programs. Parallel Coniputiny, 9:25--35, 1988.

[5] G.P. Brown, R.T. Carling, C.F. Irerot, D.A. Kramlich, arid I-'. Souza. Pro-

gram visiialization: graphical support for softwarc dpvelopnient. IEEE Computer,

18(8):27 35, August 1955.

[rj] M.H. Brown. Algorithm Animation. MIT Press, Cambridge, MA, 1988.

[7] M.11. Brown. Exploring algoritlirris using Balsa-11. Ib>KE Conzputer, 21 (5):14-X,

May 1988.

- 51 -

[8] M.H. Brown and It. Sedgewick. A system for algorithm animation. Computer

Graphics, pages 177--186, July 1984.

[9] M.H. Rrowii and It. Sedgewick. Techniques for algorithm animation. IEEE Sofl-

ware, 2(1):28--39, January 1985.

[lo] D. Clark. Plotting N-space cubes. Creative Computing, pages 148-161, July 1982.

[ll] A.L. Couch. Graphical represen tations of program performance on hypcrcube

rnessage-passing multiprocessors. Technical Report 88-4, Department of Computer

Science, Tufts University, Medford, MA, April 1988.

[12] T.A. Defanti, M.D. Brown, and B.H. McCormick. Visualization: expanding scien-

tific and engineering research opportunities. IEEE Computer, 22(8):12-25, August

1989.

[13] J. Dongarra, 0. Brewer, J.A. Kohl, and S. Fineberg. A tool to aid in the design,

implementation, and understanding of matrix algorithms for parallel processors.

Journal of Parallel and Distributed Computing, 9:185-202, 1990.

[14] J..J. Dongarra and E. Grosse. Distribution of mathematical software via electronic

mail. Communications of the A CM, 30:403-407, May 1987.

[15] T.H. Dunigan. Tlypercube clock synchronization. Technical Report ORNL/TM-

11744, Oak Hidge National Laboratory, Oak Ridge, T N , February 1991.

[16] II. El-Rewini and T.G. Lewis. Sclteduling parallel program tasks onto arbitrary

target machines. Journal of Parallel and Distributed Computing, 9:135-1.53, 1990.

[17] H,.J. E’owler, T.J. LeUlanc, and J.M. Mellor-Crunimey. An integrated approach to

parallel program debugging and perforniarice analysis on large-scale multiproces-

sors. SIGPLAN Notices, 24(1):163-173, January 1989.

[18] K.A. Frenkel. The art and science of visualizing data. Communications of the

ACM, 31:llO-121, Febriiaxy 1988.

[19] 11.1,. Gantt. Organizing for work. Industrial Management, 58:89-93, Ailgust 1919.

...

- 52 -

[20] G.A. Geist, M.T. Heath, B.W. Peyton, and P.H Worley. PICL: a portable instru-

mented comrnunication library, C reference manual. Technical Report ORNL/'I'M-

11130, Oak Ridge National Laboratory, Oak Ridge, TN, July 1990.

[21] G.A. Geist, M.T. Heath, B.W. Peyton, arid P.H Worley. A users' guide to F'TCJ,,

a portable instrumented comniunication library. Technical Report ORNL/'I'M-

21616, Oak Ridge National Laboratory, Oak Ridge, TN, October 1990.

[22] V.A. Guarna, D. Gannon, I). Jablonowski, A D . Malony, and Y. Gaur. Faust:

an integrated environment for parallel programming. IE$E SoJtwnrr, 6(4):20- 27,

July 1989.

[23] n. Haban and 1). Wybranietz. A hybrid monitor for behavior and perforrnance

[EEE Trnnsactions on ,(;ofttunre Enyiiaeering, analysis of distributed systems.

16(2) : 19 7-2 1 I, 1990.

[24] M.T. Heath, E. Ng, and B.W. Peytori. Parallel algorithms for sparsc lincsr sys-

terns. S U M Reuiew, 33(2), June 1991. to appear.

[25] A.A. Wough and J .E. Cuny. Initial experiences with a pnttern-oriented parallel

debugger. S'IC~I'LAN Notices, 21(1):195 -205, January 1989.

[26] S. Isoda, T. Shimomura, and Y. Ono. VIYS: a visual debugger. IEEE Software,

4(3):8-19, May 1987.

[27] D. Kimelmsn and T. Ngo. Program visualization for R1'3: an overview. T(?clinical

report, IBM T.J. Watson Research Center, Yorktowii Heights, NY, 1990.

[28] K. Kolencc and P. Kiviat. Software unit profiltis arid Kiviat figures. Perfornaance

Evaluation Review, 2(3):2-12, September 1973.

[as] M. KuInar. Measuring pa.rallelism in cotnyutation-in tensive scitntifc/engincerillff

applications. IEEE Tmrzsnctions on Computers, 37(9):1058-1098, 1988.

[30] L. Laniport. Time, clocks, and the ordering of evcnts i n a distributed system.

Commundcntions of the A CrW, 21:5.58-565, July 1978.

- 5 3 -

[31] T.J. LeBlanc, J.M. Mellor-Chrmxney, and 1t.J. Fowler. Analyzing parallel program

executions using multiple views. .Journal of Parublel and Distributed Computing,

9:203-217, 1990.

[32] T. Lehr, Z. Segall, D.F. Vrsalovic, E. Caplan, A.T,. Chung, and C.E. Fineman.

Visualizing performance debugging. IEEE Computer, 22(10):38-51, October 1989.

[33] R.L. London and R.A. Duisberg. Animating programs using Smalltalk. IEEE

Computer, 18(8):61-71, August 1985.

[34] A.D. Malony. Performance observability. Technical Report UIUCDCS- EL-90- 1630,

Department of Computer Science, University of Illinois, TTrbana-Champaign, IL,

October 1990.

[35] A.D. Malony, J.W. Arendt, R.A. Aydt, D.A. Reed, D. Grabas, and 13.K. Totty.

An integrated performance data collection, analysis, and visualization system. In

J. Gustafson, editor, Proceedings of the Fourth Conference on Hypercubes, Con-

current Computers, and Applications, volume 1, pages 229---236, Los Altos, C h ,

March 1989. Golden Gate Enterprises.

[36] A.D. Malony and D.A. Reed. Visualizing parallel computer system performance.

Technical Report TJI U C I) C S- lt-88- 1465, Depart men t of Computer Science, Uni-

versity of Illinois, Urhana-Champaign, IT,, September 1988.

[37] C.E. McUowell and D.P. 'tielmbold. Debugging concurrent programs. A C'M Com-

puting Surueys, 21 :593--622, 1989.

[38] l3. Melamed and R.J.T. Morris. Visual simulation: the performance analysis work-

station. IaEE Computer, 18(8):87-94, August 1985.

[30] B.P. Miller. DPM: a rneasurenient system for distributed programs. IlLYE TWNJS-

actions on Computers, 37(2):243 -248, February 1988.

[40] B.P. Miller, M. Clark, J . IIollingsworth, S. Kierstead, S. Lini, and T. Torzewski.

IPS-2: the serorid generation of a parallel prcgram measurement system. IEEE

Transactions on Parallel u r d Distributed Systems, 13206-217, 1990.

- 54 -

[41] M.F. Morris. Kiviat graphs - conventions and figures of merit. Performance

Evakiintiori Review, 3(3):2-8, October 1974.

[42] K.M. Nichols and J.T. Erdmark. Modeling multicomputer systems with PAILET.

IEEE Computer, 21(5):39--48, May 1988.

[43] R.F. Paul and D.A. Poplawski. Visualizing the pcrformance of parallel matrix

algorithms. In D.W. Walker and Q.F. Stout, editors, Proceedings of the E’iffh Dis-
tributed Memory Computing CortJerence, volume TI, pages 1207-1212, Los Alami-

tos, CA, April 1990. lEEE Computer Society Press.

[44] D. Pease, A. Ghafoor, I. Abmsd, D. 1,. Andrews, K. Foudil-Hey, T.E. I<arpinski,

M.A. Mikki, and M. Zerrouki. PAWS: A performance evahation tool for parallel

computing systems. IEEE (hrnputer , 24(1):18 29, January 1991.

[45] 1I.A. Poplawski. Synthetic models of distributed ~iiernory parallel programs. Tech-

nical Report ORNTJ/TM-11634, Oak Ridge National T,aboratory, Oak Ridge, T N ,

September 1990,

[LiG] S.P. Reiss. Pccan: program development systems that support multiple view.

IEEE Trunsnclions on Sofluwire Engineering, SI?-11 :276 -285, 1985.

[47] C;.-C. Roman and K.C. Cox. A declarative approach to visualizing concurrent

computations. IE’LSE Computer, 22(10):2.5 36, October J 989.

[48] D.T. Itover. Visualization of program performance on concurrent computers. PhT)

thesis, lowa State University, h i e s , IA, 1989.

[49] D.T. Rover, G.M. Prahhu, and C.T. Wright. Characterizing the pcrforniaucc of

coIicurrent computers: a pictiire is worth a thousand numbers. In J. Gwtafson,

editor, Proceedirig.9 of the Fourth Conference on Hgpercubes, Concurrent Corn-

puters, u12d Applications, volume T , pages 215-248, Los Altos, CR, March 1989.

Golden Gate Enterprises.

[SO] U.T. Rover and C.T. Wright. Pict iires of perforrna.nce: highlighting program

activity in time arid space. In D.W. Walker and Q.F. Stout, editors, Proceedings

of the Fifth Distributed M t m o ~ y Conzputin~g Conference, volu tile 11, pages 1228-

1233, Los Alamitos, CA4, April 1990. IEEE Corriputer Society Press.

- 55 -

[51] Y. Saad and M.R. Schultz. 'Topological properties of hypercubes. IGEE ?'runsac-

tioras on Coinputers, 37(7):867-872, 1988.

[52] Z. Segall and 1,. Rudolph. PIE: a programming and instrumentation enviroiiment

for parallel processing. IEEE Software, 2(6):22-37, November 1985.

[53] M. Simmons, It. Koskela, and I. Bucher, editors. Pat-allel Computer ,Systems:

Performance Irzstrunaentution and Visualzzution. RCM Press, New York, 1990.

[54] T,. Snyder. Parallel programming and the Poker programming environment. IEEE

C'o rnp pu te 1; 1 7(7) : 2 7--36, July 1 984.

[55] 11. Sochd, M.C. Bailey, and D. Notkin. Voyeur: graphical views of parallel pro-

grams. SIGPLAN Notices, 24(1):20G 215, January 1989.

[56] J .T. Stasko. 'rango: a framework and system for algoritlirii animation. IEEE

Computet-, 23(9):27 39, Septeniher 1990.

[57] J.M. Stone. A graphical representation of concurrent processc's. SIGPLAN No-

tices, 24(1):226-235, January 1989.

[58] A . Tiichman and M , H m y . Matrix visiialization in the design of numerical algo-

rithms. ORSA Journal on Curriputing, 2(1):84--92, 1990.

[59] J3.ltC. Tufte. The Visual D i s p l q of Quantitative Informution. Graphics Press,

Cheshire, CT, 1983.

[60] L.D. Wittie. Debugging distributetl C program by real tiinc replay. SIGPLAN

Notices, 24(1):57 67, January 1989.

Biographies

Michael T . Heath is Professor in the Computer Science Departrncnt and Seiiior

Computer Scientist i n the Center for Supercomputing Research and Development at

thc University of Illinois a t Urbana-Champaign. Previously he was a Senior Research

StafF Member and Computer Science Group Leadcr in the Mathematical Sciences Sec

tion at Oak Ridge National Laboratory. He received a P1i.D. in Computer Scimce

froin Stanford University in 1978. His current research interests are in largr-scale sci-

entific computing on parallcl corriputers, riiimPrica1 linear algebra, and performance

visualization.

- 56 -

Jenn i f e r A . Etheridye is a Technical Research Associate in the Mathematical Sci-

ences Section at Oak Ridge National Laboratory. She received a B.S. degree from the

IJniversity of Tennessee, Knoxville, in December, 1990, with a major in Mathematics.

Her current interests are in computer graphics and visnalization.

- 57 -

0 RNL/TM- 1 181 3

INTERNAL DISTRIBUTION

1. R . R. Appleton
2-3. T. S. Darland

4. E. F. U'Azevedo
5. J . J . Dongarrs
6. J . B. Drake

7-11. J . A. Etheridge
12. R. E. Flanery
13. G. A. Geist
14. E. 1X. Jessup
15. M. R. Leuze
16. V. E. Lynch
17. E. (2. Ng
18. C. E. Oliver
19. 13. W. Peytoii

20-24.
25.
26.

27-31.
32-36.

37.
38.
39.
40.
41.

42.
43.

44-4 5.

S. A. Raby
C. €1. Romine
T. 8. Rowan
R. F. Sincovec
R. C. Ward
P. H . Worley
A. Zucker
Central Itesearcll Library
ORNL Patent Office
K-25 Applied Technology Li-
brary
Y-12 Technical Library
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

46. John Antonishek, Bldg. Yt3/B364, National Institnte of Standards and Technol-
ogy, Gaithersburg, MD 20899

47. Donald M. Austin, 6196 FECS Bldg., .University of Minnesota, 200 TJnion St.,
S.E., Minnertpolis, MN 55455

48. J,oretta huvil, Dept. of Computer Science, Virginia Tech University, Blacksburg,
VA 24061

49. Edward 11. Barsis, Computer Science ;tiid Matliematics, P. 0. 130x 5800, Sandia
National Laboratories, Albuquerque, NM 87185

50. Eric Barszcz, NASA Ames Research Center, hloffett Field, C h 94035

51 . Dotiria Bergmark, Cornel1 National Si1 percomputer Facility, Engineering and The-
ory Center Bldg., Ithaca, N Y 14853-3801

52. E'ran Berman, Dept. of Computer Science, University of California - San Diego,
La Jolla, CA 92093

53. Roger W. Brockett (EPMU Advisory Committee), Wang Professor of Electrical
Engineering and Computer Science, Division of Applied Scierices, Harvard Uni-
versity, Cambridge, MA 02138

54. Eugene Brooks, P.O. Box 808, LLNL-298, Lawrence Livermore National Labom-
tory, Livermore, CA 94550

55. Marc Rui , I .N.R.I .A. ttocquencourt, Projet Capran, Domaine de Volnceau - B.P.
105, F-78153 Le Cliesiiay Cedex, France

- 58 -

56. Rosario Caltabiano, Silicon Graphics, One Cabot Road, Hudson, MA 01749

57. Brian M. Carlson, Dept. of Computer Science, Vanderbilh University, Nashville,
T N 37235

58. John Cavallini, Office of Scientific Computing, Office of Energy Research, EIt-7,
Germantown Bldg., U S . Dept. of Energy, Washitigton, DC 20585

59. Tony Chan, Dept,. of Mathematics, University of California, Los Angeles, 405
I-Iilgard Ave., Los Angeles, CA 90024

60. Jagdish Chandra, Army Research OCfice, P .0 . Box 12211, Itesearch Triangle Park,
NC 277013

61. Long Chsng, SSC I,ahoratory, bIS-1046, 2550 Beckleymeade Ave., Dallas, ‘IX
75237’

62. Arm Chatterjee, Experimental Systems, MCC, 3500 West Ralcones Cetif.er Ih.,
Austin, T X 78759-6509

63. Doreen Y. Cheng, MS 258-6, NASA Arnes Research Center, Moffett Field, CA
94035

64. Thomas Coleman, Dept. of Computer Science, Cornell Uitiversity, Ithaca, NY
14853

65. Alva Couch, Dept. of Computer Science, Tufts University, Medford, M A 02155

66. Lawrence Cowsar, Dept. of Mathematical Sciences, Rice IJniversity, Ifouslorr, ’1’X
7725 1

67. Jan Cuny, Dept. of Computer and Tnfortn;ttion Sciences, TJniversity of Mas-
sachusett,s, Arnherst, MA 01003

68. George Cybenko, Center for Supcrc.orn[,uting Resea.rch arid Development, 305 Tal-
bot Laboratory, Universit,y of Illinois, 104 S. Wright St., Urbana, 11, 61801-2932

69. Ivo De Lotto, Tlcpt. of Informatics and Systems, University of Pavia, Via .Abbi-
atepasso, 209-27100 Pavia, Italy

70. James W. Demniel, Cornputer Science Division, TJniversity of California, Berkeley,
CA 94720

71. Yuefan Deng, Applied Mathematics Dept., S U N Y at Stony Brook, Stony Brook,
NY 11794-3600

72. Darrin 1,. Dimrnick, Bldg. 223/R361, National Institute of Standards and ‘Tech.-
nology, Gaithersburg, MI). 20899

73. J . J I Dorning (W M D Advisory Committee), Dept. of Nuclear Engineering, arid
Engineeritig Physics, Thorntori Hall, 1Juivt:rsity of Virginia, Charlottesville, VA
22901

74. Lawrence W. Dowdy, Dept. of Computer Science, Vanderbilt University, Nashville,
T N 37235

75. Jean-Marc Fellous, Center Fot Neural Engineering, IJniversity of Southern Cali-
fornia, Ilos Angeles, CA 90089

76. Chuck Fleckentein, Horieywell Inc., MS 736-4h, 13350 IIwy 19 South, Clearwater,
FL 34624

- 59 -

77. Geoffrey C. Fos, NPAC, 111 College Place, Syracuse University, Syracuse, NY
13244-4100

78. Joa,ri Francioni, Computer Science Dept., IJniversity of Southwestern Louisiana,
Lafayette, L A 70504

79. Dennis B. Gaiiiion, Dept. of Computer Science, Indinna [Jniversity, Uloomington,
IN 47405

80. -John Garnett, Ikpt. of Computer Science, University of Texas, Austin, T X 78712

81. W. hlorven Gentleman, Div. of Electrical Engineering, National Research Council,
Sldg. M-50, Room 344, Montreal Rd., Ottawa, Ontario, Cha t l a K l A OR8

82. J . Alan Gorge, Vice President, Academic and Provost, Needles Hall, IJnivPrsit,y
of Waterloo, Waterloo, Ontario, Cariada N'LL 3G1

83. Ian Glendinniog, Electronics anti Computer Science, University of So~thi i~r~pton,
England SO9 5NII

84. Gene €I. Golub, Dept. of Computer Science, Stiitiford University, Stanford, CA
94305

85. Johii Gustafson, Ames Laboratory, 236 Wilhelm Hall, Iowa State Uiiiversity,
Ames, I A 50011--3020

S6--00. Michael 'l'. Heath, Centcr for Supercoinputing Resmrch and Development, 305
Talbot Laboratory, University of Illinois, 104 S. Wright St., [Jrbana, IT., 61801-
2932

91. I h n E. Ileller, Physics and Conrputer Scit:nce Dept., Shell Ikvelopment Co., P.0.
Box 481, Iloustori, T X 77001

92. Charles S. Henkel, Dept. of Nuclt:itr Engineering, North (hrolina State TJniversity,
Raleigh, NC: 27605,

93. Wdter floffrnmn, Vakgrocp Computersystemen, Ilniversikit van Ainslerdani,
1Cruisla.a.n 409, 1098 SJ Ariisterdmrr

94. Miiry E. TIrilmr> 23078 Jobiist,ori, Last Detroit, M I 48021

95. Michelle R. Ilrihar, 23078 Johnstoil, Errst Detroit, MI 48021

96. Cennart Jolinsson, Thinking i\?la.ehincs Inc., 245 First, St., Catnbridgc, M A 02142-
1214

97. JIarry Jordan, Dept. of Electrical and Computer Engineering, IJniversity of Col-
orado, Boultler, CO 80309

98. Jeff' Jortner, Saridia National TAoratories, hlbuqiierque, N M 87185

99. Bo Kagstrorii, Institute of Jnforrnation Processing, 11 niversity of Umea, S-901 87
U rnea, S wetleri

100. hlalvin H . Kalos, Cornell Theory Center, Engineering and Theory Center Slclg.,
Cornell Univcrsity, Tthaca, NY 14853-390 1

101. Hans Kaper, Mathematics and (.-Jomputer Science niv. , Argonne National T A o -
ratory, 9700 South Cass Avc., Argonne, 11, 60439

102. Nick Karonis, Mathematics and Cotnputcr Science Division, Argoniine National
Laboratory, Oi00 S. Cass Ave., Argome, IL 60439

- 60 -

103. Kenneth Kennedy, Dept. of Computer Scimce, Rice University, P.O. Box 1892,
Houston, T X 77005

104. Karl Kesselrnari, Aerospace Corp., Los hngeles, CA 90053

105. Doug Kimelman, IBM T.J. Watson Research Center, P.O. Box 218, Yorktowii
Heights, N-Y 10598

106. Andrew Kitchen, Dept. of Computer Science, Rochester Institute of Technology,
P.O. Box 9887, Rochester, NY 14623-0887

107. Thorriw Kitchens, Dept. of Energy, Scientific Coinputing Staff, Ofice of Energy
Research, ER-7, Office G-236 Gerrriaritown Bldg., Washington, I)C 20585

108. Jim Kohl, Iowa Computer Aided Engineering NeLwork, University of Iowa, Iowa
City, 1A 52212

109. Steven Kratzer, Siiperconiputing ftesearch Center, Institute for Defmse Analyses,
17100 Science Dr., Uowie, M D 20715--4300

110. David .Kilck, Center for SupercoriiputiiilS Research and Development, 305 Talbot
Laboratory, IJoiversity of Illinois, 104 S. Wright S t . , Urbana, IL 61801--2932

111. J . E. k i s s (EI’MD Advisory Committee), Itt. 2, Box 142C, Broadway, VA 22815

112. Eric Leu, Ecole Polytechnique Fidirale, Lab. tie Sysl. c1’Exploitation - DI, IN -
Ecublens, CII - 1015 Lausnnnr:, France

113. Jim LalIrlIs, Dept. of Computer Sc.icnce, [Jniversity of Wisconsin, Madison, W I
53706

114. ‘I’ed Lewis, Dept. of Computer Science, Oregon State .University, Corvallis, OR.
(37331

115. ltik Littlefield, Dept. of Computer Scieiice, Tiiiiversity of Washiiigtiin, Seattle,
W h 98195

116. Skphen F. Lundstrorn, P.0. Box 053.5, I’alo Alto, C X 04300

117. Ewing I,usk, Mathertintics and Corriputer Science Division, Argonnne National
Laboratory, (3700 S. Cass hve . , Argonne, 11, 60139

11 8. Allen Illnlony, Cenler for Supercomputing Itesearclr and Developinertt, 305 Talbot
L;tboralory, University of Illiaois, 104 S. Wright St., Urbana, IL 61 801-2932

119. James McCraw, Lawrence Liveririore National Laboratory, L-306, P.O. L3ox 508,
Livermore, CA 94550

120. John Meissen, Oregon Advanced Corriputing Jnstitiute, 19500 S.W. Gibhs Dr.,
Suite 110, Beaverton, OIt 97006-6907

121. Paul C. Messina, Mail Code 158-70, California Institute of ‘Techriology, 1201 E.
California Blvd., Pasadena, CA 9112.5

122. Bart Miller, Dept. of Computer Science, University of Wisconsin, Mzidison, \VI
53706

123. Bryan Miller, 13ept. of Cornputer Sciericc, Oregon State University, Corvallis, OR
97331

124. Stuti Moitra, Mail Stop 125, NASA Langley Research Center, IIarnptori, VA
23665

125.

126.

127

128

129

130

131

132

133

134.

135.

136

137.

138.

139.

140.

141.

112.

143

144.

145.

Cleve Moler, T h e Mathworks, 325 Liiifield Place, Menlo Park, CA 94025

N . Moray (EI-’MU Advisory Cornmiltee), Dept.
Engr., Univervity of Illinois, 1206 W. Green SL., IJrbana, IL 61801

Kathleen M. Nichols, Apple Computer, IIIC., 20525 hlariani Ave., M/S 76-31<,
Cupertino, CA 95014

Paid W. Oman, Computer Science Dept., University of Ida.lio, MOSCOW, ID 83843

James M. Ortega, Dept. of Applied Mathematics, Thornton Hall, Ilniversity uf
Virginia, (~liarlottesville, VA 22903

Susan Ostrouchov, Dept. o f Computer Scienci?, University of rI’eni~essee, Knoxville,
T N 37996

Cherri Pancake, Dept. Cornpciter Science and Engineeririg, Auburn University,
Aiiburn, AI, 36849-5347

Merrell Patrick, New Teclinologies Program, Natioiial Science Fouritlation, 1800
(2 Street, N.W., Wdiingtor i , TIC: 20550

Robert J. Plrmnions, Depts. of Mathematics and Computer Science, North Car-
olina St;tt.e University, Raleigh, NC 27650

David Poplawski, Dept. of blatlieniatical Sciences, Michigan ‘li\cb IJrLiversity,
kIoughtori, 1111 49931

J. Mark Pullen, Tactical Technology OiGce, Defense Advanced Research Projects
Agency, 1400 Wilson Boulevard, Arlington, Vh 22209

Angela Qnealy, Sverdrup Technology, Inc., NASA Lewis Research Center, Cleve-
land, 011 44135

Michael Quinn, Dept. of Compiiter Science, Oregon State Universitiy, Corvallis,
OR 07331

Justin Rattrier, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaver-

of Meclianical and Industrial

ton, OR 97006

Diin Reed, Center for Supercomputing Research and Developrnmt, 305 ‘l’albot
Laborahry, University of Illinois, 10.1 S. Wright St. , Urbana, IL 6180 1-2932

Michacl 1). Rice, Malhernatics Dept,., Wesleyan University, Middletowri, C‘r 06457

Itich itinchart, NASA/Lewis R,est:iirch Centcr, Cleveland, OII 41135

Diane 13(.ovm, 236 Wilhelni Hall, h i e s Laboratory, Iowa State University, Airies,
IA 50011

Joel Saltz, ICASE, MS 132(:, NASA Langley Research Center, fT;trnptorr, VA
23665

Ahrned 11. San1e11, Chitc:r for Siipercoinpiiting Resertrcli arid Development, 305
‘Talbot Laboratory, IJniversity o f Tllinois, 104 S . Wright St., Urb:l.nii., TT, 61801-
2932

N a n C . Schaller, I k p t . of Chrnpiiter Science, Itochcster lristitute of ‘J.’echIloI~igy,
P.O. Box 9857, T{.ochcster, NY 14623-0887

- 62 -

-

.....

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Bobby Schnabel, Dept. of Computer Scicxice, University of Colorado, Boulder,
co 80309

Robert Schreiber, RIACS, Mail Stop 230-5, NASA ilrnes Itescarch Center, Moffet
Field, CA 94035

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Pkwy., Beaver-
ton, OR 97006

Charles L. Seitz, Dept. of Computer Science, California Institut,e of Techriology,
Pasaderia, CA 91125

Andrew Sberman, Ilepf,. of Cornputer Science, Yale University, New Haven, C'I'
06520

Antliony Skjellurn, Lawrence Livermore National Laboratory, 7000 East Ave. ~ 1,-
316, PO 13ox 808, Livermore, CA 94551

Lawrence Snyder, Dept. of Computer Science arid Engineering, FR-35, University
of Washington, Seattle, WA 98195

Rick SLevc:ris, Mallierriatics and Computer Science Division, Argonrine National
Laboratory, 9700 S. Cass Ave., Argonne, IT, 60439

G. W. Slewart, Computer Science Ilept., University of Maryland, College Park,
MD 20742

Quentin F. Stout, Dept. of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, M1 48109

Vaidy Sunderarri, Dept. of Mathematics and Computer Science, Eniory University,
Atlanta, G A 30322

Dave Swan, Dept. of Computer Scietice, FK.-35, University of Washington, Seattle,
WIi 98195

Valerie Taylor, Dept. of Electrical Engineering, IJniversif,y of California, Berkeley,
CA 94720

Charles Tong, Dept. of Mathematics, Uriiversity of California, Los Angeles, 405
IIilgnrd Ave., L c x Angeles, CA 90024

Bernard 'I'ourancheau, LIP, ENS-%yon, 69361 Lyon cedex 07, Fratice

Scott Townsend, NASA Lewis Iiesearvh Center, Cleveland, OH 44135

Ray 'Turniriaro, Sanclia Nstiorral T,at)oratories, Albuquerque, N M 87185

Sue Utter, C:orne:ll National Supercomputer Facility, 737 Engineering and 'I'heory
Center I31dg., Itliaca, NY 14853-3801

Bradley Viirider Zant lm, Dept. of Computer Science, Ilniversity of 'I'ennesscc,
Knoxville, T N 37906

Robert C. Voigt, ICASE, MS L32-C, NASA 1,angley Research C h t e r , Hairiptv~i,
VA 2366.5

Charles Vollum, Cogent Research, Inc., 2010 N.E. %th, Ilillsboro, OIL 97124

Phuorig Vu, Gray Research Tnc., 655F Idone Oak Dr., Eagatri, MN 5.51'21

Tllon1it.; D. Wagner, Dept. of Computer Scierice, Vantierhilt University, Nashvillc,
T N 37235

- 63 -

169. Gil Weigand, Defense Advanced Research Projects Agency, 1400 Wilson Roule-
vard, Arlington, VA 22209

170. Tammy Welcome, P.O. Box 808 , LLNL-298, Lawrence Livermore National Labo-
ratory, Livermore, CA 94.550

171. M. F. Wheeler (EPMD Advisory Committee), Dept. of Mathematical Sciences,
Rice University, P.O. Box 1892, Houston, T X 77251

172. Andrew B. White, Cotnputing Div., Los Alamos National Laboratory, Los Alamos,
NM 87545

173. Michael Wolfe, Oregon Graduate Institute, 19500 N.W. Von Neurnann Dr., Beaver-
ton, OR 97006-1999

174. Markus Zellner, Computer Science Dept., Australian National University, GPO
Box 4, Canberra A.C.T., 2601, Australia

175. OfIicc of Assistant Manager, for Energy Research and Development, U.S. Dept. of
Energy, Oak Ridge Operations Ofice, P.O. Box 2001, Oak Ridge, T N 87831-8600

176--185. Office of Scientific, & Technical Information, P.O. Box 62, Oak Ridge, T N 37831

