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SUPERNODAL SYMBOLIC CHOLESKY FACTORIZATION 
ON A LOCAL-MEMORY MULTIPROCESSOR 

Esmond Ng 

Abstract 

In this paper, we consider the symbolic factorization step in computing the 
Cholesky factorization of a sparse symmetric positive definite matrix on distributed- 

memory multiprocessor systems. By exploiting the supernodal structure in the 

Cholesky factor, the performance of a previous parallel symbolic factorization al- 

gorithm is improved. Empirical tests demonstrate that there can be drastic re- 

duction in the execution time required by the new algorithm on an Intel iPSC/2 
hypercube. 
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1. Introduction 

Let A be a large sparse symmetric positive definite matrix of order n and b be an 71- 

vector. Consider the solution of the linear system Az = b using Cholesky factorization. 

Denote the Cholesky factor of A by L.  It is often desirable to  determine the str.uct.uw of 

L before computing it numerically, since the information allows a data structure to  be 

set up prior to  the numerical factorization. Then numerical factorization can proceed 

with a fixed storage structure. The determination of the structure of L is often called 

the symbolic factorization of A. In this note, we are concerned with computing the 

structure of L on a multiprocessor system in which each processor has its own private 

memory. 

In [SI, an algorithm was proposed for performing the symbolic factorization step on 

a local-memory multiprocessor system. The goal of this paper is to  describe an improve- 

ment to that algorithm by exploiting the supernodal structure in the Cholesky factor. 

Preliminary numerical experiments on a hypercube indicate that the improvement leads 

to more than 50% reduction in the time required by the symbolic factorization step for 

matrices of order greater than 5000 on 16 or more processors. 

An outline of the paper is as follows. In Section 2, a symbolic factorization algorithm 

for serial machines is presented. The parallel version of the sequential algorithm from 

[SI and the improved algorithm are described in Sections 3 and 4, respectively. Some 

numerical experiments and concluding remarks are provided in Section 5. 

2. A sequential symbolic factorization algorithm 

Throughout this paper, we will use Struct[M, k] to  denote the set of row indices of the 

nonzeros in column k of the lower triangular part of the matrix M .  That is, 

Consider the Cholesky factor L of a symmetric and positive definite matrix A.  When 

Struct[L, k] # 8, we define f(k) to be the row index of the first off-diagonal nonzero in 

column k of L. If Struct[L, k] = 0, we let f(b) = k. Using this notation, the structure 

of column k of L can be characterized as follows [22]: 
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That is, the structure of column IC of L i s  given by the structure of column k of 

A (excluding the portion above the diagonal), together with the structures of those 

columns of L whose first off-diagonal nonzeros are in row k. An example demonstrating 

the result i s  provided in Figure 2.1. The structure of column 4 of L is given by the 

union of the structure of column 4 of A and the structures of columns 2 and 3 of L.  
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Figure 2.1: The structure of a matrix and its Cholesky factor. ( x  denotes a nonzero 
and @ denotes a fill due to  factorization.) 

An algorithm for computing the structure of L can be formulated using Equa- 

tion (2.1) and is presented in Figure 2.2. In the algorithm, the set Rk is used to record 

for k = 1 to n do 
Set Rk +- 0. 

end for 
for k = 1 to n do 

Set Struct[L, k] +- Struct [A,  k]. 
for i E Rk, do 

end for 
Set Struct[L, k ]  t Struct[l*, k]  U Slruct[lC, i ]  - { k } .  

Determine j (  k) 
if j ( k )  > k, set a,(,) +- X f ( k )  u {k}. 

end for 

Figure 2.2: A sequential symbolic factorization algorithm. 

the columns of L whose first off-diagonal nonzeros are in row k. It is constructed during 

the execution of the algorithm. When S t r u c t [ L , k ]  has been computed, k is added to 

the set R f ( k )  to  indicate that column k of L is needed to compute the structure of f ( k )  

of I;. This symbolic factorization algorithm can be implemented efficiently; see [12] 
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for a detailed discussion. Efficient implementations of the sequential algorithm can be 

found in SPARSPAK [4,11] and the Yale Sparse Matrix Package [6]. 
It is worth noting that the set of indices {f( I), f(2), - -, f(n)) plays an important 

role in sparse matrix computations. Define the graph 7 as follows. Let {1,2, - a ,  n} be 

the vertex set of 7, and let there be an edge between i and j in 7 if and only if j = f ( i )  

and j # i. It is easy to verify that 7 is a collection of trees, which is referred to as 

the elimination tree or elimination forest of L [16,21]. The elimination tree associated 

with the Cholesky factor in Figure 2.1 is depicted in Figure 2.3. There is exactly one 

Figure 2.3: The elimination lree associated with the Cholesky factor in Figure 2.1. 
-___ 

tree in I if and only if the matrix A is irreducible. When A is reducible, it is possible 

to permute the rows and columns of A symmetrically so that the permuted matrix 

is block diagonal. In this case, each tree in 7 corresponds to a diagonal block in the 

permuted matrix. Thus, without loss of generality, we will assume from now on that 

the given matrix A is irreducible, so that T has exactly one tree. 

In the elimination tree 7,  n is the only vertex such that f(n) = 9z and it is referred 

to as the root. Moreover, given any vertex i in 7,  there is a unique path between i 
and n. If k is a vertex on the path joining i and n, then E is an ancestor of i and i 
is a descendant of k .  In particular, if k = f ( i ) ,  E is the parent of i and i is a child 

of k. Thus, at step k of the symbolic factorization algorithm, the members of Rk are 

exactly the children of vertex k in 7. Finally, although the elimination tree is defined 

in terms of the structure of L ,  it can in fact be computed from the structure of A. An 

efficient algorithm is given in [16]. A parallel implementation of the algorithm on a 
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distributed-memory machine can be found in [23] .  

3. A parallel symbolic factorization algorithm 

The solution of a sparse symmetric positive definite system typically involves several 

stages, and it is often the case that the numerical factorization and the symbolic fac- 

torization are, respectively, the most and the least expensive phases. Thus, much effort 

has been spent on parallelizing the numerical factorization phase. There are, however, 

reasons for parallelizing symbolic factorization, particularly on local-memory multi- 

processor systems, even though the resulting pa rde l  symbolic factorization algorithm 

may not be much faster than its sequential counterpart. The most compelling reason 

is that ,  on a distributed-memory machine and for large problems, there may not be 

enough memory on a single processor to hold the entire problem to perform the sym- 

bolic factorization sequentially. As the problem is partitioned and distributed among 

the processors in a local-memory multiprocessor, it is natural to develop as efficient an 

algorithm as possible to perform the symbolic factorization on such architectures. 

In [8], a parallel version of the symbolic factorization algorithm described in the 

previous section was developed for distribixted-memory multiprocessor systems. It is 

assumed that the columns of the matrix A and its Cholesky Factor L are distributed 

among the processors according to some predetermined mapping strategy. As the 

numerical factorization tends to  be the most time-consuming phase in the solution of 

a sparse linear system, the mapping is often chosen in an attempt to  minimize the 

factorization time by reducing the amount of communication required and balancing 

the load among the processors during numerical factorization. Detailed discussion of 

the mapping issue can be found in [9]. In this paper, we will use rnup[k] to denote 

the processor to  which column k of 1; is assigned. Naturally, we assume that column 

k of A is also assigned to  processor map[k] .  In performing the symbolic factorization 

on a local-memory multiprocessor, the structure of column k of Z, has to be made 

available to  processor r n a p [ f ( k ) ]  when it has been computed. If nzap[f (k) ]  # rnap[k] ,  

this will result in a message (containing Strrsct[L, k]) being sent from processor map[k] 

to  processor nzap[f (k) ]  on most of the local-memory multiprocessor systems available 

today. In Figure 3.1, we summarize the parallel algorithm in [8]. The parallel algorithm 

will be executed on each processor. 

In the algorithm, snzod[k] is the number of structnre modifications that have to  

be applied to column b.  Since srnod[k] is thc same as the number of children of 

vertex k in the elimination tree, it can be compiited by traversing 7 once before the 

symbolic factorization proceeds. Here we assume that 7 is computed before the start of 

symbolic factorization, for example, using the algorithm from [23]. Two communication 
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primitives are used: send for sending a message from one processor to another processor 

and recv for receiving a message. The algorithm in Figure 3.1 is data-driven, since 

the data is made available to another processor once the data is generated. A detailed 

description of the parallel algorithm c m  be found in [8]. 

for each column, say column k, of A assigned to  this processor do 
Set Stmct [L,  k] t Struct[A, k]. 
if smod[k] = 0 then 

if ISb~uct[L,k]( 2 1 then 
Determine f(k). 
send Struct[L, k] to processor mup[f (k) ] .  

end if 
end if 

end for 
while there are columns of I; to be computed in this processor do 

retv Struct[L, 21, for some i (defined in the message). 
Determine f ( i ) .  
Set Struct[L, f(i)] +- Struct[L, f(i)] u Struct[L, i] - {f(i)}. 
Decrement smod[f( i )]  by 1. 
if smod[f ( i ) ]  = 0 then 

if IStruct[L,f(i)]l 2 1 then 
Determine f(f(i)). 
send Struct[L, f(i)] to processor m a p [ f ( f ( i ) ) ] .  

end if 
end if 

end while 

Figure 3.1: A parallel symbolic factorization algorithm for distributed-memory multi- 
processor systems. 

4. An improvement to the parallel symbolic factorization algorithm 

It is often the case that multiple columns in the Cholesky factor L share the same 

sparsity structure. Such a grouping of columns is referred to as a supernode. To be 

more precise, K = {SI, $2, - + - sm), with s1 4 s2 < - - < s,, is a supernode if and only 

if Struct[L,si] = Struct[L,s,] U {si+l, .--,s,}, for 1 5 i 5 m - 1. As an example, 

columns 5-8 of the Cholesky factor L in Figure 2.1 form a supernode and each of the 

first four columns of L i s  in a supernode of size one. The notion of supernodes (and 

its variants) has been used extensively in sparse matrix computations [1,3,5,13,15,19, 
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20,221. The set of supernodes can sometimes be identified in the reordering phase. For 

example, the set of indistinguishable nodes in the minimum degree algorithm [13] or 

a minimal. separator in the nested dissection algorithm [lo] forms a supernode in L.  
Alternatively, the algorithm in [18] can be used to compute the supernode partitioning. 

Without loss of generality and for convenience, we assume that columns in the 

same supernode are numbered consecutively. Such supernodes can be obtained by 

computing a postordering of the elimination tree [17]. (See [18] for more discussion on 

the numbering of columns in a supernode.) Moreover, we assume that the supernodes 

in E are fundamental supernodes [2]. Let K = { j ,  j + 1 , .  . -, j + T - 1) be a supernode. 

Then K is a fundamental supernode if it is a maximal contiguous column subset such 

that j -+ i - 1 i s  the only child of J' + i in the elimination tree, for 1 5 i 5 T - 1. 

'I'he improvement to  the parallel symbolic factorization algorithm in Figure 3.1 

is obtained by exploiting the supernodal structure of the Cholesky factor. Since the 

columns in the same supernode share basically the same structure, it is sufficient to 

compute the structure of the j i lat  column in each supernode. This observation is 

actually exploited in existing sequential symbolic factorization algorithms [12,22]. 

We can exploit the observation made above in the parallel setting as well. Let 

Ir' I- { j , j  + 1, - .  - , j  $- T - 1)  be a fundamental supernode in E .  We use the notation 

f ( K )  to  stand for f ( j  + T - 1). Sixppose Struct[E,j]  has been computed by processor 

mapj j ] .  For the parallel algorithm in Figure 3.1, SEruct[L,j] will be sent to processor 

map[f(j)] = map[j  + 11 (due to  the way in which columns in a supernode are numbered 

and the fact that columns j and j f 1 are in the same supernode) so that processor 

map[j+1] can compute S tmc t [L , j  -1-11. In particular, processor map[f(j+r-1)] wuuld 

not he able to  finish computing ,Yt~uct[dr, f ( j  6 T - I>] until Struct[L, j  + r - 11 has 

been computed by processor m a p [ j $ ~  - 11. However, since columns j -t 1, . 0 ,  j -t- T -- 1 

are in the supernode containing column j ,  there is no need to compute S truc t[E, j+ i], 

for 1 5 i 5 T - 1; Struct[E, j  + i] is simply given by Struct[L,j]  - { j  + 1, . . . , j  + i}. 
'rhus, processor n z a p [ f ( j  + r - l)] does not have to  wait for S t ruc t [L , j  4- T - 13; it 

really needs Struct[L,j] .  However, as the columns belonging to  the same supernode 

are generally assigned to different processors, processor m a p [ j  + i] still needs to  receive 

S t ~ u c t [ L ,  j] from processor m a p [ j ] ,  even though no structure computation is reqnired 

for column j + i, for 1 5 i 5 T - 1. Because of this observation, we will distinguish 

between two types of messages: primary and secondary. 

When S t ~ u c t [ X ; ,  j ]  has been computed by processor map[j], it is clearly desirable to 

send the structure to processor m a p [ f ( j + r - l ) ]  first, so that processor m a p [ f ( j + r - l ) ]  

can proceed with the computation of S t ruc t [L , f ( j  + T - l)]. From the definition of 

fundamental supernodes, it should be clear that column f ( j  + T - 1) (i.e., f ( K ) )  must 

be the first column of some fundamental supernode K' in E .  The message sent from 
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the first column of a supernode to the first column of another supernode is referred to 

as a primary message. 

After sending the structure of column j to processor m u p [ f ( j  + r - l)], processor 

map[j]  sends Struct[L,j] to processors mup[j  + i], where 1 5 i I: T - 1, with the 

understanding that only one copy of Struct[L, j ]  should be sent to a processor even if 

several columns from the same supernode are assigned to it. Messages sent from the 

first column of a supernode to other columns in the same supernode are referred to as 

secondary messages. 

It is important for a processor to consume as many primary messages as it can 

before considering any secondary messages, since this will allow the structure of the 

Cholesky factor to be computed as soon as possible. A processor will consume the 

secondary messages only when no primary messages are available in the message queue. 

An improved parallel symbolic factorization algorithm that exploits the supernodal 

structure is given in Figures 4.1 and 4.2. In the algorithm, we make use of an additional 

communication primitive iprobe(type), which is used to check if there is any message 

of type type waiting in the message queue. 

In the description of the algorithm, the notation smod[K] denotes the number of 

children of vertex j in the elimination tree, where j is the first column in k'. Thus, 

smod[K] is the number of structure updates that supernode K will expect. The number 

of fundamental supernodes in L is denoted by N .  Moreover, the set 7 2 ~  records the 

supernodes J such that kj and j j  are assigned to the same processor, where kf and 

j j  denote, respectively, the first columns of I< and J .  That is, R J ~  keeps track of local 

structure modifications that supernode K expects to receive. The variable m y i d  refers 

to the processor number of the processor executing the algorithm. 

Finally, the variable ktrol in Figure 4.2 is used to control the maximum number of 

secondaxy messages a processor will process before looking for primary messages again; 

it is set to 3 in Figure 4.2. Intuitively, a large value for ktrol implies that a processor 

may process more secondary messages between the processing of two primary messages. 

This may cause delay in computing the structures of the first columns of the supernodes. 

On the other hand, a small value for Ctrol means that each processor will give priority 

to the primary messages. However, for the problems in our numerical experiments, 

wc have found that the performance of the improved parallel symbolic factorization 

algorithm is not very sensitive to the choice of ktroi. This suggests that the queues for 

the primary messages tend to be non-empty, so that the processors will handle them 

first before examining the secondary message queues. In any case, in the experiments 

reported in Section 5 ,  ktrol was set to 3. 
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{The following algorithm is to  he executed on each processor.} 
for each supernode K = 1 to N do 

end for 
for each supernode K = 1 to N do 

Set RK + 0. 

Let k j  and kl be the first and the last columns in supernode K ,  respectively. 
if map[kf]  = myid then 

Struct[L, K ]  e- S t r v c t [ A ,  K ] .  
for r E RK do 

Struet [L ,  K ]  4-- S t Z U C t [ L ,  I ]  - { 1,2,  * * ,  bf}. 
Decrement smod[ K ] .  

end for 
if srnod[K] f 0 then 

end if 
if kl is not the root of the elimination tree then 

perform external updates (see Figure 4.2). 

Let j j  be the parent of kl in the elimination tree. 
Suppose j j  is in supernode J .  
if map[ j j ]  # mup[kj ]  then 

send priinary message of type J to  m a p [ j j ]  containing Struct[A, K ] .  
else 

RJ +- RJ IJ { K }  
end if 
for i E K and i + k j  do 

if map[i] # rnap[kj]  then 

end if 
send secondary message to  map[i] containing Struct[A, li]. 

end for 
for i E K and i # kf do 

if n ~ u p [ i ]  = rnap[kj] then 

end if 
Set up pointer information for the structiire of column i 

end for 
ella if 

end if 
end for 
while there are more secondary messages to arrive do 

retv secondary message from supernode K 
Set up pointer information for columns in K 

end while 

Figure 4.1: An improved parallel symbolic factorization algorithm for distribnted- 
memory multiprocessor systems that exploits the supernodal structure. 
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External updates for supernode K :  
while true do 

while iprobe(K) > 0 do 
{ Process primary messages. } 
recv Struct(L, I ) ,  for some supernode I (defined in the message). 

Decrement smod[K].  
if smod[#] = 0 then exit from external updates. 

Struct(L,K) + StTUCt(L,K)U Struct (5 , I )  - {1,2, * - .,kj}. 

end while 
ktrol +- 3. 
while ktrol > 0 and iprobe(secondary) > 0 do 

{ Process secondary messages. } 
recv Struct(L, I ) ,  for some supernode I (defined in the message). 
Set, up pointer information for columns in I 
ktrol +- k t r d  - 1. 

end while 
end while 

Figure 4.2: Procedure “External updates”. 

5. Numerical experiments and concluding remarks 

In this section, we present the results of some preliminary numerical experiments com- 

paring the improved algorithm described in this section with the parallel algorithm in 

[$I; these two algorithms are referred to as the new and old algorithms, respectively, 

in the tables. All experiments were performed on an Intel iPSC/2. The programs were 

written in Fortran and compiled with optimization turned on. 

There were two sets of test problems. The first set contains a sequence of matrices, 

each of which is obtained by applying a nine-point operator to a k x k grid ordered by 

the nested dissection algorithm [7]. That is, n = k2. The second set contains matrices 

obtained from triangulations of an L-shaped domain as illustrated in [lo]. The mesh 

points were ordered using a parallel version of an automatic nested dissection algorithm 

[9,10] The columns of A and L are assigned to the processors using the saibtree-to- 

subcube mapping [14], which is known to reduce communication and balance the load, 

particularly for the numerical factorization phase. See [8,14] for details. 

The timing statistics are provided in Tables 5.1 and 5.2. The improvement due to 

the exploitation of the supernodal structure in the Cholesky factor is obvious. The 

large reduction in the time reqiiired to perform symbolic factorization using the new 

algorithm comes from two sources. First, by processing the primary messages first, the 
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_.__. _I 

n I [AI - n I ]  method 11 p = 8 I p = 16 I p = 32 I p = 64 

Table 5.1: Time in seconds for new and old parallel symbolic factorization algorithms 
for k x K grid problems. 

new algorithm attempts to compute the structures of the first columns ofthe supernodes 

as soon as possible. Second, since the structures of the columns in a supernode are given 

essentially by the structure of the first column in the same supernode, there is no need 

to  compute the structure of every column in a supernode. Thus, the new algorithm 

has avoided some redundant computation by exploiting the supernodal structure and 

consequently it further reduces the time required to  compute the structure of a Cholesky 

factor. 
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c 

n I IAI - n 11 method 11 p = 8 1 p = 16 I p = 32 1 p = 64 

Table 5.2: Time in seconds for new and old parallel symbolic factorization algorithms 
for a sequence of L-shaped problems. 
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