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ABSTRACT 

Immediately after a large conductor with segregated matrix and superconductor is 
driven normal, the transport c m n t  is confined to the vicinity of the superconductor; 
thus, the Joule power is initially much larger than it would be if the current density were 
uniform. Subsequently, the current diffuses throughout the matrix and eventually fills it 
uniformly, so that the excess Joule power gradually falls to zero. This paper presents 
simple formulas for the time-integrated excess Joule power (the excess Joule heat) 
produced in conductors of various shapes with various dispositions of matrix and 
superconductor. 

V 





1. INTRODUCTION 

Very large composite conductors with segregated matrix and superconductor have 
been proposed recently for a variety of purposes, for example, energy storage magnets,l 
fusion magnets,2 and space applications.3 Typically, such conductors operate with 
currents in the range from 30 to 100 kA, are of the order of 2.5 to 5 cm in diameter, and 
consist of large blocks of aluminum in which much smaller superconductors are 
em bedded. 

Tk segregation of the aluminum matrix and the superconductor has a deleterious 
effect on the stability of the conductor. When the superconductor is first normalized, the 
current enters the matrix but is confined to the vicinity of the superconductor. The Joule 
power is then very high. Thereafter, the current diffuses throughout the matrix, tending 
toward a state of uniform current density. In this uniform state, the Joule power is much 
lower than at the start. 

The relaxation time of current redismbution is typically some tens of milliseconds. 
So the excess Joule power (over the uniform state) appears as a short pulse immediately 
following normalization. For magnets that are not fully cryostable, this pulse reduces the 
stability margin. It has already been shown to have a strong effect on the propagation 
velocity.4-6 

The purpose of this report is to calculate the magnitude of this excess Joule heat 
pulse for conductors of several shapes having various dispositions of superconductor in 
the matrix. The goal is simple, easily evaluated foxmulas for the excess Joule heat. 

2. GENERAL FORMULATION 

Let the axes so be chosen that the z-axis points along the conductor in the direction of 
flow of the transport current I. Let L? denote the cross section of the conductor in the (x,y) 
plane and let 14, denote the portion of R in which the transport current is initially 
confhed. At t = 0, imagine this confinement to be abrogated. The transport current then 
diffuses transversely, tending toward a state of uniform current density. During this 
redistribution, the current density J obeys the diffusion equation 

aJ p 2 - = -V J .  
at 

We wish to solve Eq. (1) under the boundary and initial conditions 

I/Q, in do 
0 elsewhere in R ’ r 

JQ .J(?,r)dw = i , 

1 
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where dw = dx dy and f is the two-dimensional radius vector (x,y). 

equation in R, namely, those defined by the equations 
It proves useful to expand J in terms of certain eigenfunctions $k of the Helmholtz 

(3b) 
n 
n .VQ, = 0 on 2, the boundary of R , 

where iZ is the outward normal to C. Thus we set 

which satisfies Eq. (1). Equation (4) also satisfies condition (2a). It follows by well- 
known arguments7 that 

With the help of Eq.  (5a) we can see that Eq. (4) satisfies condition (2c). We choose 
the coefficients Ak to satisfy condition (2b), which can be written 

where gRO is the characteristic function of a, that is, the function which is 1 inside Q) 
and 0 outside. Using Eq. (5 ) ,  we find that 

The Joule power expended per unit length of conductor is 
Qo 

(8) 
k=l 

The first term on the right in Eq.  (8) is the Joule power produced when the current density 
is uniform throughout R. The second term is the excess Joule power. When integrated 
over t from 0 to 00, the second term gives the excess Joule heat per unit length of 
conductor. Dividing the result by R gives Q, the excess Joule heat density: 
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or 

The second factor in Eq. (9b) is a dimensionless geometric factor, the calculation of 
which is the goal of this paper. 

3. SLAB CONDUCTOR 

Nowhere in the derivation of El. (9b) did we make any use of the dimensionality of 
R, so Eq. (9b) applies as well to slab geometry. In a slab of thickness 2h centered on z = 
0, the eigenfunctions for reflection-symmetric current distributions are 

$k=cos( 2Ik.L ) (loa> 
k = 1 ,  2, 3, ... 

a k -  -zrk (lob) 

Then (@k, @k) = h. 

Interior Source. If the initial current distribution is of thickness 2a centered on z = 
0, then r;zO = 2a and 

Equation (9b) now becomes 

where I represents the c m n t  per unit length of the slab (see Fig. 
computation shows that the second factor in Eq. (12) is (1 - a/h)2 

Q=- Pd2 ( 1  -a/h)2 . 
24 

1). A straightforward 
(see Appendix A). Thus 

Exterior Source. Suppose the initial current distribution is confined to regions of 
thickness a at the outer edges of the slab (Fig. 2). If two such slabs are put in contact (top 
view, Fig. 3), Q will not change; for owing to the symmetry of the setup, neither slab will 
influence the instantaneous current distribution in the other. Now, again owing to sym- 
metry, if we remove the parts of the conductor outside the dash-dot lines in Fig. 3, Q will 
not change. What is left is the same situation as shown in Fig. 1, so Eq. (13) holds as well 
for the slab of Fig. 2.  
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Fig. 1. Sketch of a slab conductor of thickness 2h with an initial current distribution 
of thickness 2a centered in the matrix. 
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Fig. 2. Sketch of a slab conductor of thickness 2h with an initial current distribution 
confined to regions of thickness a at the outer edges. 

ORNL-DWG 91 M-2911 FED 

-- 

-- 

Fig. 3. Top view of two slabs of the kind shown in Fig. 2 put in contact. 
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4. CYLINDRICAL CONDUCTOR 

In a cylinder of radius R,  for current distributions that depend only on the radius 
(azimuthal symmetry), 

where Jo i s  the Bessel function of the first kind of order zero and yk is the kth root of 1 1 ,  

the Bessel function of the f i s t  kind of order one. Then 

Suppose Qo is the annulus R1< r < R2. Then 

Thin Outer Ring. If we set R2 = R and R1 = R(l - E), we find, in the limit as 
E + 0, 

The exact value of the sum in the middle term of Eq. (17a) is 1/8; see Appendix B for the 
evaluation of this sum. 

When E is not zero 

Table 1 gives the second factor in Eq. (17b) as a function of E. 
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Table 1. The second factor in Eq. (17b) 
for various E 

E = 1 - R1 /R = AR/R Second factor 

0 
0.01 
0.025 
0.05 
0.10 
0.20 
0.50 
0.75 
1 

1 
0.9734 
0.9346 
0.8716 
0.7532 
0.5454 
0.1414 
0.01631 
0 

For small values of E (E < 0.2), the second factor can be fitted well by the empirical 
expression (1 - 4~/3)*. 

Inner Cylinder. In this case, we let R1 = 0. Then 

Shown in Table 2 are numerically calculated values for various values of RdR. 

Table 2. The second factor in Eq. (18) 
for various R2IR 

Second factor 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

4.579 x 10-2 
2.861 
1.897 
1.257 

8.059 x lW3 
4.834 
2.575 
1.093 

2.624 x 10-4 

The right-hand side of Eq. (1 8) diverges logarithmically as R2/R + 0: 
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(For a proof, see Appendix C. )  

5. RECTANGULAR CONDUCTOR 

A complete set of eigenfunctions of Eqs.  (3a,b) even in both x and y for the rectangle 
-a < x  c a, -b < y c b is 

k, rn = 0, 1 ,  2, 3, .... 

The term I/i2 in Eq. (14) is the eigenfunction $00; therefore, the sums in Eqs. (6), (8), and 
(9) run from k = 0 to - excluding the single term for which k = rn = 0. Furthermore, 

Thin Outer Ring. Imagine the region sfo to be a strip of uniform thickness s just 
inside the outer boundary of the rectangle (see Fig. 4). In calculating ($km, g) fork f 0, 
rn f 0, let us begin by considering the contribution of the trapezoid KACL. It is the 
contribution of the rectangle KBCL less the contribution of the mangle ABC. Similarly, 
the contribution of the trapezoid MACN is that of the rectangle MDCN less that of the 
triangle ADC. The contributions of the two rectangles KBCL and MDCN are zero, so that 
the total contribution from the fmt quadrant is from the square ABCD. Since the 
eigenfunction is even in both x and y ,  the contributions fxom all quadrants are the same; 
therefore ($km, g) is four times the contribution from the square ABCD, namely, 

When s -+ 0, (+h, g) approaches 0 as (-l)k+m14s2. Thus the numerator in the 
summands in Eq. (9b) approaches 0 as d. The area Qo, on the other hand, approaches 0 
as s, so the denominator in the summands in Eq. (9b) approaches 0 as s2. Hence the 
limiting contribution to the right-hand side of Eq. (9b) from the eigenfunctions for which k 
f: 0 and m f 0 is zero. 

Now let us calculate ($h, g). In the frrst quadrant, the entire contribution comes 
from the rectangle MABN. As before, the total contribution is four times as great: 
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Fig. 4. A rectangular conductor with its initial current distribution in a strip of width 
s just inside the outer boundary of the rectangle. 

= - 4 (b - s) (L) sin [krr: (1 - s/u)] , (23b) 

which goes to zero as (-l)k 4bs as s -+ 0. Similarly, the limiting contribution of (qh, g) 
is (-l)m 4as in the limit Q - 4(a + b)s. Thus from Eq. (9b) we find 

krr: 

When a, the source thickness in Eq. (13), goes to 0, Q approaches the value 
@/24, which is the limit for a slab with infinitely thin current sources at its outer faces. 
When a, the width in Eq. (24), is much greater than b, the length, Q approaches the value 
@/12, a value twice as great as the slab value. This is because letting the width of the 
rectangle greatly exceed its height does not eliminate the contribution from the ends at x = 
+a any more than letting h 3 in JZq. (1 3) makes Q approach zero. The value of Q given 
by Eq. (24) is the sum of two equal contributions, one from the horizontal pair of faces (k  
= 0 eigenfunctions) and one from the pair of vertical faces (m = 0 eigenfunctions). The 
individual contribution from each pair of faces approaches &/24, the slab limit, as it 
should. 

equal area, we find that 
If we compare Eq. (24) for a square (i.e., for a = b) with Eq. (17a) for a cylinder of 

Rutherford Cable. A configuration of interest is a thin Rutherford cable at the 
center of a rectangular conductor (see Fig. 5). Owing to the symmetry of the 
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Fig. 5.  A rectangular conductor with a thin Rutherford cable centrally placed. 

configuration, we can again use the eigenfunctions and eigenvalues of Eqs. (20a) and 
(20b) excluding the term k = m = 0. The terms in the sum Eq. (9b) are now of three kinds: 
(i) k = 0, m $0;  (ii) k f 0, m = 0; and (iii) k f 0, rn f 0. For terms of type (i), a = 
-n2m2/b2, (Qb, @km) = 2ub, and (@km, g)/& = 1 if we neglect the transverse thickness 
of the cable. The contribution of these terms to the right-hand side of Eq. (9b) is then 

2 
km 

2 For terns of type (ii), akm = n2k2/u2, ($km, $km) = k b ,  and ($km, g)/sZo = 
sin(hc/a)/(hc/u). The contribution of these terms to the right-hand side of Eq. (9b) is 

2 Finally, for terms of type (iii), akm = x2(k2/a2 + m2/b2), (@km, @km) = ab, and 
( q h ,  g)/% = sin(kxc/u)/(h/a). The contribution of these terms to the right-hand side of 
Eq. (9b) is 

where 

According to Jolley,* 
00 

(m2 + x"1= [Itx coth (nx) -1]/2x2 1 

m= 1 
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so that finally the geomemc factor G becomes - H(kXb/U), 
= c [ (hda) 1 

&= 1 

where 

H(x)  = (x coth x - 1 ) p  . (30b) 

The series (30) can be summed numerically and converges rapidly. Shown in Fig. 6 is Q 
plotted vs c/a for various values of b /a  

x < p , - q < y c q g i v e s  theresult 
A similar calculation for an initial current source region confined to the rectangle -p < 

The series (3Oc), though a double series, converges rapidly enough to allow easy 
numerical summation. 

ORNL-DWG 91-2740 FED 
- 

0 

0 0.2 0.4 0.6 0.8 1 .o 
c/a 

Fig. 6. The excess heat density Q for the conductor of Fig. 5 divided by ~(Z /2a )~ /24  
as a function of c/a for various values of b/a. 
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Appendix A 
CALCULATION FOR EQ. (12) 

In order to verify the trigonometric sum 

we must fust eliminate the square of the sine using the identity 

(fw 2 1  sin y=-(1 -cos 2y). 
2 

Then after some straightforward rearrangement, we obtain 

In obtaining EQ. (A3) we have used the relation 

which can be found in Ref. 1. Equation (A4) is a Fourier series, and the coefficients on the 
left-hand side can be found, after quite a lengthy calculation, from Euler’s formulas. 

REFERENCE 

1. L. B. W. Jolley, Sumnation ofseries, Dover, New York, 1961, #343. 
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Appendix B 
CALCULATION FOR EQ. (17a) 

The sum in Eq. (17a) can be evaluated by a technique due to Euler and described by 
Po1ya.l Euler begins by considering polynomials P(z)  of order n whose roots are rl ,  r2, 

..., rn. In our case we shall specialize to even polynomials of order 2n, so that each of the 
roots rl ,  r2, ..., r,, is a double root. Then, following Euler, we can write 

n 
= 1 - 2 2  c - 1 + ... 

k=l  rk 2 

so that 

In his use of this formula, Euler applies it to functions that can be represented as a 
Maclawin series. If we do this as well and apply it to the function P(z)  = J l (z ) / z ,  we find 
at once that 

00 

l/$ = 1/8. 
&= 1 

REFERENCE 

1. G. Polya, Induction and Analogy in Mathematics, vol. 1 , Princeton Univ. 
Press, Princeton, N.J., 1954, pp. 18-21. 





17 

Appendix C 
CALCULATION FOR EQ. (18) 

The second factor on the right-hand side of J2q. (18) can be written 

where r = RgR.  When r << 1, the quantity in the square brackets is close to 1/2 until yk 
becomes roughly l/r. Now for large yk , Jo( yk ) is given closely by m, so that the 
first l/r terms of the sum in Eq. (18) become 

Since the roots yk are asymptotically spaced at intervals of x, we can estimate the 
sum in a. (C2) by the integral 

which is the estimate we are seeking. 
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