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EXECUTIVE SUMMARY 

The overall objective of the work described in this report is four-fold: to a) develop a 
standardized and experimentally validated approach to the sampling and chemical and 
physical characterization of the exhaust products of scaleddown rocket launch motors fired 
under experimentally controlled conditions at the Army’s Signature Characterization 
Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; b) determine the 
composition of the exhaust products; c) assess the accuracy of a selected existing computer 
model for predicting the composition of major and minor chemical species; d) recommend 
alterations to both the sampling and analysis strategy and the computer model in order to 
achieve greater congruence between chemical measurements and computer prediction. 

Analytical validation studies were conducted in small chambers at the Oak Ridge National 
Laboratory (ORNL), while the actual firings were conducted at Redstone Arsenal. Real 
time determination of selected species was performed by a variety of techniques, including 
nondispersive infrared spectrometry, chemiluminescence, electrochemical monitoring, and 
optical scattering. Samples for analyses of trace constituents were collected from 
individual firings in the ASCF, and returned to ORNL for analysis, usually by gas 
chromatography/mass spectrometry. Four types of propellants were examined: a double 
base, a double base with 8% potassium perchlorate, one propellant which was 
predominantly ammonium perchlorate, and a minimum signature reduced smoke 
propellant, which was about two-thirds octahydro-l,3,5,7-tetranitro- 1,3,5,7-tetrazocine 
(HMX). Small, 2x2 motors, containing 25 - 75 g of propellant, produced significant 
quantities of carbon monoxide (CO) and particles when fired into the 20 m3 chamber. CO 
levels ranged from 85 - 350 ppm. This is equivalent to reaching 2500 - 7500 ppm if a full 
scale motor was fired in a similarly sized enclosed environment. Particle concentrations 
ranged from 30 - 100 mg/m3. All of the airborne particles were in the inhalable range. 
For two of the propellants ( the double base and the minimum signature), airborne lead 
was greater than 10 mg/m3. No ammonia or hydrogen cyanide was detected above 1 ppm. 
For the predominantly perchlorate formulation, hydrogen chloride (HCI) levels were 
greater than 100 ppm in the ASCF chamber. Because of the relatively high background 
levels observed, trace organic vapor phase constituents were difficult to accurately quantify. 
While a wide variety of trace constituents were observed, only a few were present at levels 
greater than a few ppbv. Compounds present at levels greater than 10 pg/m3 included 
benzene, methyl crotonate, toluene, and cyanobenzene. A number of PAHs and nitro- 
fluorene were observed in the airborne particulate matter. However, the levels were about 
a factor of 10 lower than that in outside ambient air particulate matter at a military 
instal 1 at ion. 

Computer modeling was performed with the NASA-Lewis CET-86 version. This approach 
obtains estimates of equilibrium concentrations by minimizing free energy. Mole fractions 
of major and minor species were estimated for a range of exit/throat area ratios. The 
predicted mole fractions for CO were typically 20 - 3536, except for the predominantly 
inorganic formulation. The model correctly predicted only minor amounts of ammonia 
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and essentially no hydrogen cyanide. Predicted mole fractions did not vary a great deal 
with such input parameters as exit/throat area ratios or small changes in the heats of 
formation of the various compositions. The accuracy of the predicted CO/CO, ratios was 
low for all but one of the formulations. In general, if the model were to be used in its 
present state for health risk assessments, it would be likely to over-estimate exposure to 
co. 

Probably the greatest limitation of the model is its inability to account for reactions after 
hot exhaust gases leave the rocket motor nozzle. For example, the model predicted no 
significant quantities of NO would be produced, yet such was measured at ppm levels on 
every bum. A modification of the model accomplished by mathematically accounting for 
mixing of hot exhaust gases with ambient air brought the predicted CO/CO, ratio into 
greater agreement with that which was observed experimentally. It seems likely that with 
the appropriate modifications to account for the roles of kinetically governed processes 
and the afterburning of exhaust gases, the model could make a more accurate prediction 
of the amounts of the major products. However, it seems unlikely for the system to be 
modifiable to the extent to which accurate predictions of toxic or carcinogenic species 
present at the ppbv level could be made. 
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I. OBJECTIVES 

.-. ... 

The overall objective of the work described in this report is four-fold: to a) develop a 
standardized and experimentally validated approach to the sampling and chemical and 
physical characterization of the exhaust products of scaleddown rocket launch motors fired 
under experimentally controlled conditions at the Army’s Signature Characterization 
Facility (ASCF) at Redstone Arsenal in Huntsville, Alabama; b) determine the 
composition of the exhaust products; c) assess the accuracy of a selected existing computer 
model for predicting the composition of major and minor chemical species; d) recommend 
alterations to both the sampling and analysis strategy and the computer model in order to 
achieve greater congruence between chemical measurements and computer prediction. 

11. BACKGROUND 

Upon initiation of the Army’s Health Hazard Assessment Program in 1983, the lack of 
information on the potential health hazards from weapons combustion products, to include 
rockets and missiles, became evident. Research to elucidate significant health effects of 
rocket and missile combustion products has been limited. Experiences with weapons 
systems such as ROLAND, VIPER, HELLFIRE, STINGER, and MLRS have resulted in 
the development of specific medical issues by the U.S. Army. Presumably, these issues will 
be addressed, in order to enhance the effectiveness of soldiers using such weapons. 
Requisite to addressing these issues is defining the chemical and physical nature of the 
combustion products. 

Evaluation of rocket exhaust toxicity from Army missile and rocket systems has been 
directed towards a limited number of combustion products. Chemical species such as 
carbon monoxide, carbon dioxide, nitrogen, oxides of nitrogen, hydrogen chloride, sulfur 
dioxide, ammonia, lead, and copper are among those frequently evaluated. A USAMRDC 
study’ has demonstrated more than one hundred chemical species in the combustion 
products of selected propellants. Many of the species represent potential health hazards 
even though the majority of those identified were at low levels. During the study, data 
were obtained for the Multiple Launch Rocket System’s (MLRS) propellant by computer 
prediction and laboratory analyses. The combustion product was generated by burning the 
propellant in a small test motor. When the exhaust plume was vented into a chamber with 
an inert atmosphere, good quantitative data was obtained for twelve chemical species, and 
was in excellent agreement with theoretically computed values. In excess of fifty trace gas 
species also were qualitatively identified. 

Various investigators have examined propellant and related combustion products generated 
in a variety of ways to include directly from a weapon or other equipment system’-’, 
burnin in a calorimeter or bombG9, personal and general area sampling in indoor firing 
rangesk0*”, and detonation or combustion in chambers or microc~mbustors~~~~-” .  The 
methods of samplin and characterization also have been varied. Sampling has been done 

a basis for comparing the relation between variables, such as, pressure and available 

under atmospheric’# 5 p4p5*12116,and less than a t r n o ~ p h e r i c ~ - ~ ~ ~ ~ ~ ~ ’ ~ - ~ ~  conditions which provide 

. ..... 
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oxygen, on the composition of the combustion product. Samplin methods have been 
either direct and continuous, e.g.,the method used by Goshgarian where the exhaust 
products of solid propellants were introduced directly into a mass spectrometer for analysis 
immediately following combustion, or by collection in a container or on a medium for 
subsequent analysis. The latter has involved cryogenic trapping, evacuated glass or 
stainless steel cylinders, and sorbent cartridges, filters, and condensation trains. Analytical 
methods to detect organics, gases, metals, and particulates have included gas 
chromatography (GC), gas chromatography-mass spectroscopy (GC-MS), titration, optical 
and infrared spectroscopy, scanning electron microscopy (SEW, x-ray emission and 
diffraction? and particle size analysis. Because of limitations with each sampling and 
analytical technique, several techniques must be employed simultaneously to optimize 
qualitative and quantitative characterization. 

1?14 

Computer models have been used to predict propellant ballistic properties to include the 
identity of the major chemical species contained in the combustion p r ~ d u ~ t ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ .  
When compared with laboratory derived empirical data, the models tend better to predict 
the major species than the minor ones both qualitatively and quantitatively'p5919. The 
models predict the chemical species that occur at the nozzle of the rocket as the exhaust 
exits; however, afterburning changes the chemical content of the combustion product. 
Afterburning and incomplete combustion effects are not predicted by the models. 

The approach taken in this study was to carefully validate real time analytical methods in 
chamber studies at Oak Ridge National Laboratory (ORNL) for as many of the major 
constituents as practical. The instrumentation for real time monitoring would then be 
transported to the ASCF for the firing of the scaled-down test motors. Vapor and particle 
phase samples for determination of trace organics and metal species would be returned 
for analysis. The Army Signature Characterization Facility (ASCF) has been used to 
determine the concentrations of major toxic species in propellant exhaust, e.g., carbon 
monoxide, carbon dioxide, hydrogen chloride, lead, aluminum oxide, and other nuisance 
particles*'. The facility is a 19.6m3 walk-in, climatic chamber with temperature limits of - 
40" to 140°F and humidity control in the range of 20 to 100% relative humidity (RH). 
Typical operating parameters are 70°F and 60% RH. Designed as a smoke measurement 
facility, the ASCF has been adapted for the measurement of rocket motor signature and 
exhaust constituents. The facility serves as a large gas cell in which the exhausts of 
standard 2 x 2 motors can be measured by infrared spectroscopy (Fourier Transform 
Infrared Spectroscopy, FTIS). Ports in the ASCF allow sampling and measurement by 
other methods, e.g., air sampling pumps and direct reading instruments. 

The results of the characterization studies were then to be compared with values predicted 
using the most recent version of a computer model developed by the Lewis Research 
Center of the National Aeronautics and Space Administration (NASA-Lewis). The model 
was then to be refined to the extent of available resources, in order to improve the 
predictive capability of the system. 

Results of these studies are described in two parts. In Part 1, results of the chemical and 
physical characterization studies are described and discussed. In Part 2, results of the 
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computer modeling work are described. Comparisons with characterization data are 
performed, and recommendations for model improvement are made. 

PART 1: CHEMICAL CHARACTERIZATIONSTUDIES 

EXPERIMENTAL 

The sampling and analysis methods used in this study have been described in detail in a 
previous rePo#, and are summarized in Table 1. An assortment of real-time analytical 
instrumentation was employed. However, resources were not available for the use of on- 
line mass spectrometric measurement, as such would have required periodic transport to 
the ASCF. Essentially, the approach taken was to first validate candidate analytical 
methods in small chambers (0.4 and 1.4 m3) at ORNL. Analytical measurements using 
real time instrumentation were made of target species in the presence of well defined 
quantities of other species. The extent to which these materials altered the response to 
the target species was noted, and corrections made when appropriate. For species which 
could not be determined in real time (usually trace organic vapor phase and particle phase 
species), samples would be taken at the actual bums to be conducted at the ASCF, and 
returned to ORNL for detailed chemical analysis. Following method validation for the 
propellant composition of interest, the sampling and analysis instrumentation was 
transported to the ASCF at Redstone Arsenal, and deployed for monitoring and sampling. 
Typically, between 2 and 3 firings of a test motor could be conducted during each 8-hour 
shift. Burns of the various propellant formulations took place between August, 1987 and 
December, 1989. 

RESULTS AND DISCUSSION 

The compositions of the various propellant formulations tested in this project are listed 
in Appendix A. Briefly, Composition D was a double-base propellant, comprised of 
approximately 50% nitrocellulose and about 40% nitroglycerine. Composition H was also 
a double base system, with approximately 8% by weight of potassium perchlorate added. 
Composition L was a formulation comprised of nearly 75% ammonium perchlorate, with 
the remainder being plyvinylchloride plastic and di (2-ethylhexyl) adipate. Composition 
Q was a minimum signature propellant, comprised of 66% HMX, and about 11% each of 
nitroglycerine and butane triol trinitrate. (A fifth motor, referred to as Composition X 
was fired only one time, and no modeiing studies were applied to it,) (Note that the 
linkage between the propellant and the weapon systems for which they may be used is 
considered CLASSIFIED information. Those having need of this information should 
contact the COR listed on the title page of this document.) All of the propellants 
contained small amounts of metals. The motor size tested varied between ca. 24 - 75 g. 
This compares to a typical launch motor weight on an anti-tank weapon system of ca. 560 
g. 

Sampling of the exhausts was not without its difficulties. For example, for the first run of 
Composition D, the high volume particulate collector was placed inside the ASCF 
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chamber. However, the shock wave from the firing was sufficient to blow the filter media 
out of the holder. Thus, for subsequent runs, the sampler was placed outside the chamber 
and 
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TABLE 1 
Summary of Sampling and Analysis Strategy 
for Rocket Exbaust Constituents at ASCF 

Component Sampling and Analvsis Mcthod 

Carbon Monoxide 
Carbon Dioxide 
Oxides of Nitrogen 
Hydrogen Cyanide 
Ammonia 
Hydrogen Chloride 
Total Suspended Particulate Matter 
photometer 

Metals 

Particle Size Distribution 

Trace Vapor Phase Organics 

Trace Particle Phase Organics 

Real Time, non-dispersive infrared analyzer 
Real time, non-dispersive infrared analyzer 
Real time, chemiluminescence analyzer 
Real time, electrochemical analyzer 
Real time, electrochemical analyzer 
Real time, ion selective electrode 
Real Time: forward scattering infrared 

Off line: two-stage high volume filter, 
gravimetric analysis 

Low volume collection on membrane filter, 
followed by inductively coupled plasma or 
atomic absorption analysis. 

Cascade impaction, optical comparison of 
stages 

Collection on multi-sorbent traps, followed 
b y  t h e r m a l  d e s o r p t i o n  g a s  
chromatography/mass spectrometric analysis. 

Collection on two-stage, high volume filter, 
analysis by high performance liquid 
c h r o m a t o g r a p h y  a n d / o r  g a s  
chroma tography/mass spectrometry. 

. ....., 
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connected to it with the flexible plastic pipe. Also, on a latter run with "D,"the force of 
the shock wave buckled the main chamber access door on the ASCF. For the final firing 
of "D,"the nozzle was changed to force the propellant to bum over a longer period of 
time. T h i s  resulted in a considerable alteration in the exhaust composition (see Table 2). 

Major Constituents 

The observed exhaust major constituent concentrations in the ASCF are reported in Tables 
2 - 5, along with various physical characteristics of the motors. The data is summarized 
in Table 6.  

It is important to note that for those constituents determined in real time (ie, the gases), 
the concentrations listed represent peak concentrations. For gases, maxima were typically 
achieved within 30 seconds of the firing of the rocket motors. Presumably, maxima were 
achieved as the chamber contents were mixed by the fan mounted inside the chamber. 
Such was not always the case for the particulate phase species. For example, in Figures 
1 and 2 are compared the time courses for some of the major exhaust products for firings 
of Composition D and H motors, from about 30 seconds following the firing onward. For 
Composition D, immediately after following the achievement of maximum concentrations, 
the constituent levels slowly decreased. While the same happened for Composition H 
vapor phase species, the particles were very slow to reach a maximum. Although particle 
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size differences between the two products were minimal (see below), it was speculated that 
the action of the fans could have stirred up larger agglomerates which settled immediately 
after firing, which eventually broke up to form smaller primary particles. Concentration 
reductions seemed most likely due to leaking of the chamber contents through door seals, 
bulkheads, etc. Particle concentrations decreased somewhat more rapidly than those of 
vapor phase constituents, probably due to settling. 

No attempt was made to determine the concentrations of methane, hydrogen gas, or water 
vapor. For the former two species, quantitative measurements would be very difficult 
without the use of an on-line mass spectrometer, and such was not available for this work. 
Water vapor is one of the major components of the motor exhaust. The mole fraction 
predicted by the NASA-Lewis computer program typically is in the range of 20% (see 
below). However, the difficulty of making accurate determinations of water vapor 
concentration in a large chamber is considerable. For example, the maximum amount of 
hydrogen in any of the formulations listed in Tables A-1 - A 4  is sufficient to produce only 
15 g of H,O in the 20 rn3 ASCF chamber. This is comparable to increasing the 
concentration by at most 0.75 g/m3, to a concentration of ca. 11 g/m3 at 60% relative 
humidity at 21" C. The addition of this amount of water vapor would increase the RH 
by 4%, as long as no change in the temperature occurred. Given that such small changes 
would be difficult to measure accurately, and that water vapor represents no health hazard, 
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TABLE 2 

SUMMARY OF CHARACTERIZATION OATA 
COMPOSITION D 

MAJOR CONSTKUENTS 

Nominal exit diameter was 1.0 inches. However, this WBS an estimate only. Actual diameters could have varied between 0.75 and 
1.25 inches. 

Maximum obseived concentrations. 
Determined in Runs 7-4  using Dreager Tubes. Runs 5 and 6 using NDlR analyzer. 
Special rozzie used which increased bum time. See text Dah may not be repraentative. 

NR: Not Remrded 
N D  NotMected 
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MAJOR CONSTTTUENTS 

RVN NUMBER 1 2 3 

DATE 6-22-88 6-22-88 6-22-88 

QUANTW OF PROPELLANT. g 25 25 24 

MIT DIAMETER. inches a 1 1 1 

THROAT DIAMETER, inches 0.261 0.261 0 261 

ASCF CHAMBER TEMPERATURE. “F 70 ?O 70 

ASCF RELATIVE HUMIDITY 96 NR 68 57 

INTERNAL PRESSURE OF MOTOR, psia 5Ooo 5Ooo SO00 

CARBON  MONOXIDE^. ppm 290 C 300 

CARBON  DIOXIDE^. ppm 250 C 270 

NTTRIC  OXIDE^, ppm 4.5 C 1.7 

HYDROGEN CY ANI DE^. ppm ND C ND 

AMMONIA~. ppm ND C IUD 

TOTAL SUSPENDED PAATtCULATE 87 C 73 
MATTER. mgtm3 

LEAD mg/m3 0 771 C 0.618 

NITROGEN  DIOXIDE^. ppm ND C ND 

HYDROGEN CHLORIDE, ppm .Cl <l 

COPPER ms/m3 0 726 C 0.897 

ALUMINUM (as A ~ O J  mg/m3 NO C ND 

CHROMIUM mg/m3 ND C ND 

ZIRCONIUM OXIDE mg/m3 ND NO 1 I C 
~ 

MOLYBDENUM, mg/m3 1.41 C 0309 

MAGNESIUM, mg/m3 0.261 C 0.224 

TIN, rng/rn3 0.348 C 0.397 

I 

.̂ . ..... 

4 

6.23-88 

24 

1 

0 261 

72 

63 

5Ooo 

298 

290 

50 

ND 1 
ND 

1 

ND 

176 

0 486 

0 508 

ND 

ND 

ND 

0.088 

0 250 

0 177 

a 

b 

Nominal exit diameter was 1 .O inches. However. thir, was an estimate only. Actual diameters could have varied between 0.75 
and 1.25 inches. 
Maximum observed concenfrations. 
Sample Acquisition failure. c 

NR: Not Recorded 
N D: N d  D & d  
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m Nominal exjl diameter was 1.0 inches. H~wever. this was an estimate only. Actual diameters could have varied 
between 0.75 and 1.25 inches. 
Maximum observed concentrations. b 

N R: Not Recorded 
ND: Not aatected 
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Table 5 
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a Nominal exit diameter was 1 .O inches. However, this was an estimate only. Actual diameters could 
have varied between 0.75 and 1.25 inches. 
Maximum observed concentrations. b 

NR: Not Recorded 
NO: Not Detected 

. . .. 

2 3  



* BMDL: Below method detection limit. 
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it was decided that determination of water vapor would be omitted from the 
measurements. 

A determination of the carbon balance for the chamber indicates that the analytical 
measurements account for approximately 60% of the carbon in the formulation. For 
example, using the data in Table A-1 for Composition D, there are ca. 2.06 moles of 
carbon in the motor. Data from Run 5 of the "D" test indicates ca. 1.2 moles of C tied up 
as the oxides of carbon (CO and CO,). The analysis of the vapor and particle phase 
organic constituents (see below) indicates that only a very tiny amount of C is tied up in 
the trace species. And even if all the non-metal material collected as particulates was pure 
carbon, such would only add ca. 26 mg/m3 of carbon, or about 0.043 moles. Thus, it would 
appear that a significant fraction of the carbon present in the motor itself (ca. 33%) is 
present in some form which is not amenable to conventional analyses. Without 
confirmatory data, the composition of such material would be highly speculative. 

All of the formulations, despite the relatively small quantities of propellant fired in the 
chamber (ca. 1/7 to 1/20 of a typical size launch motor) produced substantial 
concentrations of carbon monoxide, ranging from a low of about 300 ppm/100 g of 
propellant for Composition Q, to a high of nearly 1400 ppm/100 g for Composition I,. 
The amounts of carbon dioxide produced varied considerably, from more than a factor of 
10 greater than the CO produced, to only about half the amount of CO produced. Only 
very small quantities of nitric oxide were produced, and no measurable amounts of 
nitrogen dioxide were produced. The latter is not surprising, since the production of NO, 
is dependent on the square of the NO concentration22. If the concentration of NO is low, 
significant amounts of the dioxide will not be produced in the first 10 minutes following 
the firing of the motor (the duration of time for which the ASCF was sampled for the 
oxides of nitrogen). Essentially, no ammonia or hydrogen cyanide was found at levels 
greater than 1 ppm. In the two formulations which contained perchlorates, measurable 
levels of hydrogen chloride were found. However, the observed levels were not 
proportionate to amount of perchlorate present. For example, while Composition L had 
about 8 x  more perchlorate in the formulation than Composition H, the levels observed in 
the chamber were about lOOx larger. There were a number of metals found in the 
airborne particles resulting from motor firings. Copper, aluminum (as the oxide), lead, tin, 
chromium, and cadmium were all found in measureable amounts. Probably the lead and 
cadmium are of the greatest concern from a health risk standpoint. For both 
Compositions D and Q, lead was found to be present in the diluted exhaust at levels 
greater than 10 mg/m3. 

In Table 7 are listed the particle size distributions of the exhaust products for the 
formulations studied. The mass median aerodynamic diameters (MMAD) were all less 
than 2 pm, indicating that the particles remaining airborne tong enough to be collected by 
the sampling method were capable of being inhaled. Although Composition D had a 
measurably bimodal distribution, the higher of the two MMADs was still less than 5 pm. 
Particles from Composition L had a somewhat smaller MMAD than of the other 
formulations, but the breadth of the distribution was larger. 

.. . 
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TABLE 7 

Particle Size Distribution 
Rocket Exhaust Particulate Matter 

Mean Values 

Mass Median Aerodynamic Diameter (MMAD) and Geometric Standard Deviation (o ) g 

Composition 

Da 

+ MMAD (ml 

1-46 1.86 

H 1.44 1.77 

L 

Q 

0.807 

0.96 

2.14 

2.4 

a Composition D had a definite bimodal distribution: 
large particles had a MMAD of 3.6microns, with og = 1.8; 
small particles had a MMAD of 0.47microns, with og = 1.7. 

Trace Constituents 

Trace organic vapor phase constituents present in the exhaust atmospheres were 
determined by collection of samples on multi-sorbent traps, followed by analysis by thermal 
desorption GUMS. Because of the sensitivity of the method, collection of sufficient 
sample was not difficult. However, the background levels of vapors in the chamber were 
very high, and as a result, made it very difficult to discern quantities of vapors arising from 
the firing of the rocket motor. Despite the fact that the chamber was flushed with clean 
air between most firings, background levels of collected constituents on chamber blanks 
were substantial (see Table 8). This suggests that there may be significant off-gassing of 
volatiles from materials adsorbed on the surfaces inside the chamber. Accurate 
quantitative determination of the constituents identified was exceedingly difficult, because 
it required determining the difference between two large values. Also, the largest peak 
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in many of the samples was determined to be a mixture of hydrocarbons that were not 
resolved, even by high-resolution chromatography. These may be unburned, volatilized 
waxes used in the manufacture of the test motors. In Appendix B, in Tables B-1 through 
B-4, are listed the various trace organic vapor phase components identified and quantified 
in the exhaust. The data is summarized in Tables 9 - 12. In this case, mean quantities 
were reported only if the compound was observed in two or more of the traps analyzed 
from the fuing of a specific composition and if the compound was present at a level 50% 
greater than the highest level reported for any blank collected during the series of firings. 
Several comments are in order. First, as stated above, it was very difficult to obtain a truly 
"clean" chamber atmosphere into which to fire the motors. 

Table 8 

CONCENTRATION OF SELECTED CONSTITUENTS IN CHAMBER BLANKS 

Concent ra t ion  

Methylene chloride 
Methyl crotonate 
C6-cyclotrisiloxane 
C8-cyclotetrasiloxane 
C3-c yclopentane 
Terpinene 
C lo-cyclopentasiloxane 
Naphthalene 

119 
2.1 

239 
7.5 
25.4 
8.8 

129 
8.8 

Concentration 

C3-cyclopentane 
C 12-cyclohexasiloxane 
C 12-cyclohexasiloxane 
C3-cyclopentane 
Diethylphthalate 
Pentadecane 
Nonadecane 
Trimethylcyclobutanone 

52.4 
8.2 
4.4 
7.4 
19.1 
2.1 
2.6 
3.5 

Originally, it was believed that the siloxane compounds may have resulted from 
contamination of the multi-sorbent traps with a soap bubble solution which was used in 
measuring the sample flow rates in some of the earlier studies. (This potential for 
contamination has been confirmed by subsequent experiments in the laboratory). 
However, the siloxanes were also present in the blanks which were acquired in later 
experiments, in which only instrumental calibration of the flow rates were made. Thus, the 
siloxanes may be off-gassed byproducts of the detergents used to clean the chamber prior 
to the motor firings, or they may be true products of the propellant combustion. 
Significant amounts of siloxane have been seen in the vapor phases of several of the 
exhausts fkom various motors. In general, there appeared to be a greater variety of trace 
organics present in the vapor phase of the composition D and H exhausts. The fact that 
Composition L is predominantly inorganic probably contributes to this observation. 

Table 13 summarizes the maximum observed concentrations of non-siloxane compounds 
found in the ASCF atmospheres for those constituents with levels greater than 10 pg/m3 
(ca. 3 ppbv for benzene). For example, the average concentration for benzene was 17.6 

. ... - 
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pg/m3 or 5.4 ppb. Overall, the concentrations of these species were several orders of 
magnitude below the levels at which they are regulated for workplace exposures. One may 
conclude table 9 
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TABLE 9 
ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS 

CoMPosrnoN D 

CONSTIWENT APPROXIMATE CONCENTFIATION', p d m 3  

Trichloroethane 
Benzene 
Trichloroethylene 
Methyl crotonate 
Toluene 
C,-cy ciotrisiloxane 
C,-benzene 
Phenylacety lene 
Styrene 
C,-benzene 
C,-benzene 
Decane 
Decane 
Terpinene 
C,-cyclotetrasiloxane 
Teripene 
Undecane 
Naphthalene 
C,-cyclopentane 
Dodecane 
C,,-cy clohexasiloxane 
Hexadecane 

0.4 
13.5 
2.0 
15.3 
10.5 
1 1  
5.7 
2.7 
4.7 
2.7 
3.9 
1.5 
0.9 
0.7 
15 

1.1 
0.8 
6.1 
1.3 
0.7 
17.8 
1.1 

a Estimated by determination of mean value for at least 2 of traps analyzed, which must be at 
least 50% greater than the highest blank level observed. Levels have been corrected for blanks. 
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TABLE 10 
ESTlMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS 

COMPOSITION H 

CONSTITUENT 

Trichlorofluoromethane 
Trichloroethane 
Benzene 
Methylcrotonate 
Toluene 
Pheny lacety lene 
C,-benzene 
Heptene 
Cyano benzene 
C,-benzene 
C,-cyclopentane 
C,,-cycloheptasiloxane 

APPROXIMATE MEAN CONCENTRATION", ~ q / r n '  

9.8 
0.4 

17.6 
7.0 
2.2 
2.4 
0.7 
8.4 

18.0 
1.4 

16.1 
2.2 

a Estimated by determination of mean value for at least 2 of traps analyzed, which must be at 
least 50% greater than the highest blank level observed. Levels have been corrected for blanks. 
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TABLE 11 
ESTIMATED CONCENTRATION OF TRACE VAPOR PHASE CONSTITUENTS 

COMPOSmON L 

CONSTTTUENT APPROXIMATE MEAN CONCEMRATIOW, ,uq/m3 

Octamethyl-cyclotetrasiloxane 
Octamethy-cyclotetrasiloxane 

3.5 
2.6 

a Estimated by determination of mean value for at least 2 of traps analyzed, which must be at 
least 50% greater than the highest blank level observed. Levels have been corrected for blanks. 

TABLE 12 
ESTIMATED CONCENlRATlON OF TRACE VAPOR PHASE CONSmUENTS 

COMPOSmON Q 

CONSrrmENT APPROXIMATE MEAN CONCENTRATION", m/m3 

trichlorofluromethane 
hexamethyl cyclotrisiloxane 
trimethyl-cyclobutanane 
octamethyl-cyclotetrasiloxane 
phthalate 

0.6 
0.2 
23.5 
0.3 
8.5 

* Estimated by determination of mean value for at least 2 of traps analyzed, which must be at 
least 50% greater than the highest blank level observed. Levels have been corrected for blanks. 
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TABLE 13 
NON-SILOXANE VAPORPHASE COMPOUNDS PRESENT IN 

MOTOR EXHAUSTS AT CONCENTRATIONS GREATER THAN i o  p.g/rn3 in ASCF 
CHAMBER 

Component Composition! M a x i m u m  
Concentration. u g h -  3 

Benzene 
Methylcrotonate 
Toluene 
Cyanobenzene 
C p y  clopentane 
tri methyl-cyclobutanone 

D,H 
H 
H 
H 
H 
Q 

a Composition only listed if present at > 101(g/m3 in that particular exhaust atmosphere. 

17.6 
15.3 
10.5 
18.0 
16.1 
23.5 

from this that the levels of trace organic vapor phase constituents are probably not of 
concern from a health risk standpoint under most conceivable use scenarios. Only by 
repeated firings from an enclosed space could these materials reach toxic levels. And 
before toxic levels of the organic vapor phase species was reached, CO levels would 
probably be lethal. 

Determination of the higher molecular weight particulate-phase constituents proved 
difficult for the samples from the initial runs of Composition D (the first propellant 
studied). Because of filter clogging immediately following the firing of the test motors, the 
number of particles collected was very small. For example, the largest amount of sample 
collected on any of the initial runs was 40 mg. This was dispersed over a 4"diameter 
Teflon-coated glass fiber filter. Initial GC analysis of the extracts indicated very low levels 
of hydrocarbons. Next, the extracts were subjected to G U M S  analysis with selected ion 
monitoring (SIM). SIM has the advantage of identifying species from selected 
characteristic ions, as opposed to using the entire ionic fragmentation pattern. Due to the 
small amounts of material collected on the filters, quantities detected in the particulate 
filter extracts were considerably below our normal detection limits for the target 
constituents. For that reason, in the preceding studies, the particulate collection system 
was modified to be a two-stage filter. This approach proved to be much more successful 
at collecting greater amounts of particles. In Table 14 are listed the polynuclear aromatic 
hydrocarbons (PAH's) determined in the exhaust particles collected from the firings of 
Compositions D, H, L, and Q. In addition, a comparison is also made between these 
levels and those determined for outside air at a military base. A few comments are in 
order. First, only data €or particles collected in the coarse filters are reported. The fine 
filters collected very few particles (1 - 5 mg), and thus many of the levels determined are 
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at or near the instrumental limits of detection. Nitro-PAHs were determined only for 
Composition D and H exhausts. The levels 
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Table 14 

-- 
CompcrsiliacD C O l l p & h H  CanplSitionL CanpositionQ I 

Concentrations ( d g )  of Nitro-PAH and PAH in Particulate Matter Collected on Coarse Fitters at ASCF: 
Comparison with Outdoor Air Particulate Collected at U.S. Army Installation 

FL Carson' 
Outside Air 
Particulates 

2-nitrofluorene 

9-nitroanthracene 

~ 

Run 2 - Run 1 - Run 2 - Run 1 - Run 4 - Run 3 - Run I - Run 6 - Run 5 - constitual 
I 1 I I I I I 1 I 1 

BMDL BMDL 0.039 0.061 0.032 ND ND NO ND BMDL 

0.14 BMDL BMDL BMDL BMDL ND ND ND ND BMDL 

1 -nitropyrene 

benz(a)anthracene 

~ ~~ ~~ ~~ 

BMDL BMDL EMDL BMDL BMDL ND ND ND ND BMDL 

022 0.19 0.19 0.15 0.15 0.22 0.19 1.40 0.81 4.9 

benzo(btJt k)fluoranthrene 

benzo(e) pyrene 

benzo(a)pyrene 

%methylcholanthrene 

dibenz(a.j)anthracene 

indeno[1.2.3-cd]pyrene 

dibenz(a.h)anthracene 

benzo(g.h.i) perylene 

0.47 

0.26 

0.39 

BMDL 

0.13 

0.47 

0.13 

2.0 

0.24 

1.74 

0.13 

5.17 

0.14 2.10 

0.64 1.70 

0.31 5.80 

1.39 3.80 

chrysene 
-~ 

I 0.26 1 0.83 I 0.55 I 0.61 1 0.40 1 0.05 I BM; -1 4.70 1 11.5 

1.1 1 4  0.04 I 0.13 1 1.60 1.7 

0.66 

0.31 

EMDL 

1.1 

0.86 

0.37 

1.18 I 0.44 I 1.40 0.82 

0.59 

BMDL 

0.92 

0.52 

BMDL 

0.05 I BMDL I 1.30 

BMDL BMDL I BMDL I 0.54 BMDL BMDL 

1.06 0.51 

1.4 

1.9 

0.83 

0.52 

0.69 

0.15 

0.69 1.06 I 17 

0.14 

~- 

1.63 I 3.0 BMDL 

BMDL 

0.23 

3.2 

0.16 

3.2 BMDL 
~ 

1.87 

ND: Not detected BMDL: Below method detection limit 

' Data from Griest, et al.. 1988 



determined in these earlier studies were so low that a repeat of the complex analyses did 
not seem warranted. Despite the very low levels of PAH found in the particulates, the 
results are fairly consistent from sample to sample. The concentrations of a few selected 
PAHs in the particles of the Q exhaust were somewhat higher, but not by more than an 
order of magnitude. The only nitro-PAW which was identified consistently in the exhausts 
of the motors was 2-nitrofluorene, in the exhaust of Composition H. Its concentration 
ranged from ca. 30 - 60 ng/g. Most of the other PAHs identified and quantified in the 
exhausts were present at levels less than 1 pg/g. The outdoor air particulate sample with 
which a comparison is made was acquired outside a large motor pool building at Fort 
Carson, Colorado, in the mid-1980’s as background data for another project supported by 
the USABRDLa. A major contributor to the particulates in this sample was expected to 
be diesel- and gasoline-powered motor vehicle exhaust. The comparison indicates that, 
with the exception of 2-nitrofluorene, the PAH content of the rocket exhaust particulate 
is substantially less than (usually by a factor of 10 or so) that of outdoor air particulate 
matter found in a semi-urban setting at a military base. Also, the BaP content of the 
exhaust particulates is about half that of cigarette smoke particulate mattes4. Because of 
the relatively low concentrations of the PAH in the particle phase, the airborne 
concentrations of the PAHs are very low. For example, at the maximum particle 
concentration of 70 mg/m3 in the ASCF chamber (as a surrogate for human exposure 
conditions), the highest observed airborne benzo(a)pyrene concentrations would be 
approximately 0 .Walm3,  and that of benzo(g,h,i)perylene would be 0.36pg/m3. At these 
levels, the airborne PAHs and nitro-PAHs in the rocket exhaust probably do not represent 
an additional health hazard above that of normal urban air particulates for the troops 
using such weapon systems. 

SUMMARY AND RECOMMENDATIONS - PART 1 

The exhaust products from the firing of 2x2 rocket motors in a 20 m3 test chamber have 
been characterized. The data indicated that of all of the toxic and/or carcinogenic species 
present, most were present at very low levels. Of the major toxic constituents, carbon 
monoxide was the most universally present. Interestingly, the formulation with the greatest 
fraction of inorganic material (Composition L) yielded the highest concentration of CO 
in the ASCF chamber per 100 g of propellant. Nitric oxide was present in all of the 
exhausts, but typically at levels less than 5 ppm in the 20 m3 chamber. No ammonia or 
hydrogen cyanide was observed at levels greater than 1 ppm. Levels of HC1 were observed 
in the Composition L exhaust which were very high ( > lOOppm), and it seems likely that 
firing of this propellant in an enclosed space would produce very high concentrations of 
this toxic species. However, no data was obtained as to whether the HCl was present in 
the particle or the vapor phase. 

Particles were present at substantial levels in all of the exhaust atmospheres ( 230 mg/m3). 
Particle size distributions indicated that for those particles which could be collected under 
the sampling conditions employed, virtualty all of the material was within an inhafable size 
range ( < lOpm mass median diameter). A large fraction of the airborne particles were 
comprised of metallic species. Copper and lead (especially the latter) were present in the 
ASCF atmospheres of many of the motor types at levels above those regulated by OSHA. 
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However, the levels of PAHs and nitro-PAHs in the particulates were very low. 
Comparison with airborne particulate matter collected at a military installation indicated 
that the PAH content of the particles was about 1/10 that of outdoor air particles. 

Quantitative determination of the organic vapor phase constituents was very dificult due 
to both the very low levels at which they were present and the presence of large amounts 
of other species in the background samples. The latter included a large number of 
cyclosiloxanes, probably from the off-gassing of the chamber walls following cleaning. Only 
a few exhaust components were found at levels greater than a few ppb. These included 
benzene, toluene, methylcrotonate, and cyanobenzene. These were typically present at 
levels less than 10 ppb in the chamber. 

From the standpoint of fo l lowa  studies, recommendations depend on the goal of such 
efforts. If the goal is to refine the comparison between the observed chemistry and the 
predicted compositions, then the determination of methane (CHJ and molecular hydrogen 
(H2) would be very desirable. Such is a very difficult task, and would likely require a 
dedicated real time mass spectrometer to make such measurements. However, the 
determination of such constituents would not significantly further the understanding of 
potential health risks of the exhaust products, since neither are toxic species. 

Since these experimental studies were performed, there have been two developments in 
the field of analytical chemistry which, if applied to these studies, could significantly 
improve the quality of the data generated, especially with regard to the determination of 
volatile organics. First, a number of carbon based adsorbents are now commercially 
available which have many fewer artifacts than the Tenax used in these studies. Were the 
sorbent traps used in these studies replaced with the new systems, it is likely that the 
number of artifacts present in the samples would be significantly reduced, minimizing the 
complexity of the interpretation of the data. Also, the recent development of direct 
sampling ion trap mass spectrometry (DSITMS) for the determination of airborne vapor 
phase constituents is significant. DSITMS could be used to provide determination of a 
number of volatile species of toxicologic interest in real time, much like an NDIR analyzer 
provides real time measurement of CO or CO,. Transportable DSITMS systems are now 
under development at ORNL for air toxics monitoring at environmental remediation sites, 
and such technology could be useful for other scenarios. 

Finally, the most important recommendation for future work is the determination of the 
exhaust product composition under actual field conditions, firing full scale motors. There 
are two important reasons for this. First, the data in this study indicates that changes in 
the physical properties such as bum time can have a radical effect on exhaust composition. 
This suggests that it will be difficult to obtain highly realistic data unless true field 
measurements can be made. Secondly, firing of the test motors in an enclosed chamber 
causes significant run-to-run background contamination problems. Perhaps the firing of 
motors in single use, disposable structures, such as large nylon tents, would eliminate much 
of the contamination problem. 
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PART 2 - MODELING FOR HEALTH HAZARD PREDICTION 

INTRODUCTION 

Over the past 30 years, several digital computer programs have been developed at the 
National Aeronautics and Space Administration’s Lewis Research Center to carry out the 
considerable numerical calculations involved in the determination of the equilibrium 
composition of complex chemical mixtures at high temperaturessD 26p27. Updates to these 
programs have incorporated improved computational methods and adaptations to 
improvements in computer speeds and capacities. In accordance with a suggestion from 
project management, we have used the 1986 version28 of the program described in 
Reference 27 to obtain estimates of the composition of the exhaust gases from four 
different solid propellants. This was referred to as the NASA-Lewis model, version CET- 
86. The program obtains estimates of the equilibrium composition of a mixture of several 
components by minimizing either the Gibbs function or the Helmholtz function. If 
temperature and volume are constant, the Helmholtz function of a system decreases during 
an irreversible process, becoming a minimum at equilibrium; if temperature and pressure 
are constant, the same is true of the Gibbs function2*. All gases are assumed to be ideal, 
even if small amounts of condensed species are present. Calculations can be done for any 
one of six combinations of assigned state parameters (e.g., temperature, pressure, density, 
entropy, and enthalpy); additionally, theoretical rocket performance data can be obtained. 
The assumptions involved in the calculation of rocket performance parameters are listed 
in Ref. 3. Briefly, they are: (1) validity of the onedimensional form of the continuity, 
energy, and momentum equations; (2) zero velocity (no gas movement) in the combustion 
chamber; (3) complete combustion (in the sense that all reactants are converted to 
products); (4) adiabatic combustion; (5) isentropic (adiabatic and reversible) expansion; 
(6) homogeneous mixing; (7) ideal gas law; and (8) zero temperature and pressure lags 
between condensed and gaseous species. An extensive discussion of these assumptions and 
their validity can be found in Reference 30. 

The program first determines combustion properties in the rocket motor chamber and 
then determines exhaust composition and properties at various stations in the nozzle. 
Since our propellants were fired in motors having a range of exit diameters, we used the 
feature of the program that allows estimation of exit compositions for a set of several exit 
to throat area ratios. (In this case, the throat of the motor is considered to be the choke 
point, or opening of the smallest diameter. The exit is the exit of the motor nozzle. Using 
these definitions, the ratio of the exkthroat areas, AJh ,  must always be larger than 1.0.) 
In Table 15 are Iisted the ranges of exitlthroat area ratios possible for each motor. In 
each of the predictions, we used the design pressure as the combustion chamber pressure. 
The throat pressure is defined to be the pressure at which the flow velocity is equal to the 
velocity of sound. 

The iterative procedures used by the program are discussed in detail in Reference 27. 
Briefly, combustion temperature and equilibrium compositions are determined for an 
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TABLE 15 

COMPOSmON 

D 

H 

L 

Q 

w m 

MINIMUM THROAT 
DIAMETER, INCHES 

0.50 

0.261 

0.28 

0.188 

EXlTflHROAT AREA RATIO RANGES 
TEST MOTOR CONFIGURATIONS 

NOMINAL EWT 
DIAMETER, INCHES 

1 .o 
1 .o 
1 .o 
1.125 

MINIMUM 
A& 

1.125 

8.26 

7.17 

14.49 

MAXIMUM THROAT 
DIAMETER. INCHES 

0.707 

0.261 

0.28 

0.197 

MAXIMUM 
WAt 

6.25 

22.94 

19.93 

44.21 

12.76 

35.06 

a These are estimated exit diameters. Actual exit diameters varied between 0.75 and 1.25 inches. 
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assigned chamber pressure and the reactant enthalpy. From the combustion compositions 
and temperature, the combustion entropy can be determined. Assuming isentropic 
expansion, the program then obtains a first estimate for the ratio of chamber pressure to 
throat pressure; from the throat pressure and the entropy, the actual gas velocity, the 
speed of sound, and the Mach number can be calculated; if the Mach number is not 
sufficiently close to unity, the pressure ratio is corrected and a further calculation of Mach 
number is done. Exit conditions for assigned exit-to-throat area ratios are also obtained 
from an initial estimate of the ratio of the chamber pressure to the exit pressure, followed 
by iterative correction. The converged value of pressure ratio for each area ratio is used 
as the initial estimate for the next area ratio. 

We obtained the program, test case input, and output from the NASA Lewis Research 
Cente?8. We were able to compile the program on our VAX 6000420 computer and 
were able to reproduce the test case output with no problems. In our series of calculations 
the program has performed in a very reliable manner; we have had no difficulties with any 
of the iterative procedures failing to converge. 

REsutTS AND DISCUSSION 

In Tables 16 - 19 are listed the predicted mole fractions of various exhaust components 
over the range of potential ratios of exit areas to throat areas. (The full computer 
printouts for selected rum for each composition are included in Appendix C.) Note that 
there have been two independent First, CET86 
computations of mole fractions of Composition H were checked against the "Blake" code 
and found to be in excellent agreement. (See discussion regarding Table 23, below). 
Secondly, the calculations were verified by running MUCET, a modified version of CET86 
prepared by Eli Freedman & Associates for use with microcomputers. Results were 
identical to those reported here. 

checks of these  computation^^^. 

The model has a cut-off feature. Essentially, it can predict the levels of over 100 
compounds, but will only report out those mole fractions which are larger than a user- 
specified value. For this work, a mole fraction of 5xlO-'was employed. The rationale for 
using this value was as follows. If it is assumed that there are about 2 moles of exhaust 
products in the ASCF chamber following a firing, a mole fraction of 5 ~ 1 0 - ~  would be 
equivalent to lxlOdmoles of the particular product in the chamber. This assumption was 
in fact supported by the chemical characterization data (see above). For a compound with 
a nominal molecuIar weight of 100 g/mole, this translates to a concentration of 5 pg/m3, 
or lSppbv, in the 20 m3 ASCF chamber. Few airborne compounds are considered to be 
a significant health risk at such low concentrations. In addition, unless a very large sample 
is acquired, it is usually difficult to confidently quantify such species at these low levels. 

Using this criterion, with the exception of the metals in the exhaust products, the only 
compounds which were predicted to be present in the exhaust were carbon monoxide, 
carbon dioxide, hydrogen, water vapor, ammonia, and methane. In none of the cases did 
the model predict significant quantities of nitric oxide, despite the fact that NU was 
observed at levels near to or greater than 1 ppm on each burn. 
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Table 16 
Predicted Mole Fractions as a Function of ExWhroat Area Ratios 

CompositionD 
Chamber pressure = 2500 psia 

1.1300 1.8600 2.2500 3.1300 5.1700 6.2500 

2256.4 1894.1 1788.5 1626.8 1419.6 1355.0 

Mole fractions 

~ .37059 I ,35871 

.14561 .15759 

~ .35390 

.16241 

.3224 1 34478 .32876 

.17154 .la756 

.13844 .15445 

.21362 .19760 

2.4063~10~ 2.4063~10~ 

2.3325~10’ 2.3352~10’ 

8.2080~1 OB 8.6068~1 Os 

2.010 1.753 

.19391 

I .12931 1 .11245 .12448 

1 .23930 22754 
I 

2.3949~10‘~ 2.4058~10’ 

2.2823~10-~ 2 . 3 ~ 2 ~ 1  U3 

I. 1 109x1 o - ~  8.7647~1 o8 
2.545 2.276 

.16080 

.19126 22273 

2.4062~10~ 2.4062~1 0.3 

2.3363~1 O 3  

8.8299~1 0-6 

1.663 

4.554~1 0’ 

8.4223~10~ 

2.179 

5.562~1 0.’ 4.785.xIO’ I 4.589~1 0.’ 

k Exit T;K 

1.1300 I 1.8600 1 2.2500 I 3.1300 I 5.1700 6.2500 

1355.7 2256.8 1893.7 1788.1 1626.4 1420.8 

II Mde fractions 

.37061 I ,35869 .35388 I 34475 I ,32888 .32248 

I co2 

H2 

H2O 

Cu(Total) 

Pb(Total) 

NH, 

co/co, 
NHJCO, 

14560 I .15761 .16243 I .17156 I ,18744 .19384 

.16073 . 1 1245 .12450 

.23933 22752 

2.3968~10~ 2.4059~10’ 

2.2819~1 O5 2.321 9x1 0’ 

1.3315x1V5 1.0519~10” 

2.545 2.276 

9.145xlO-’ 6.674~10” 

.19133 

1 ~3565x1 O 5  

1.664 

5.450~10-~ 

2.179 2.010 

AJh: Ratio of the exit area to throat area 
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Table 17 
Predicted Mole Fractions as a Function of ExWhroat Area Ratios 

- 
A 4 4  8.3000 10.000 15.000 23.000 

Exit T, a K 1575.0 1 507.1 1372.2 1251.4 

Composition H 

Chamber pressure = 5(xxl pia 

Mde fractions 

.25795 ,2431 1 

.25776 .26229 .27332 

8.5609~10" 9.0087~1 O2 

.24704 a 2 7 8  .23242 

4.5892xlO' 3.4824~1 OJ 1.8022~1 O4 
~ 

KCI 1.3356~1 O 2  1.2799~1 O 2  1.0928~10" 

KCI(I)" 0.0000 0 o.oO0o 0 0.0000 0 

2.5247~1 0" 25729x1 0" 2.7684~1 Ob 

1 .OoO7 .9669 .0895 

HCVCO, 1.7804xlO" 1.3277~1 O3 6.5937~1 O4 

NH,C02 9.7947~10' 9.8094~10~ 1.01 29x1 o - ~  

At/A1: Ratio of the exit area to throat area 
": Liquid 

8.1 443x1 Os 

3.0523~1 Om6 

3067 

2.8469~1 CY4 
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Table 18 
Predicted Mole Fractions as a Function of ExWhroat Area Ratios 

Composition L 

Chamber pressure = 2500 p i a  

A e 4  7.2000 10.000 1 5.000 20.000 

Exit T, "K 1281.3 1 175.4 1059.3 986.5 

Mde fractions 

co I .14681 I .13536 

COZ .11988 .13129 

HCI .20072 .20084 

A12°3 45708x1 O3 4.5704~1 O3 

BaCIJTotal) 4.6571 xl0' 4.6849~1 O4 

r2°3(a) 8.1 900x1 OJ a. 1 892x1 o4 
0.0000 0 1 . 3 ~ 2 ~ 1  o4 

NH, 9.61 49x1 O4 1.0736~1 O s  

co/co, 1.225 1.031 

H CI/CO, 1.674 1.530 

NHJCO, 8.020~1O-~ 8.1 77x1 0" 

.11945 

.14697 

.20139 

.23169 

4.6850~1 OJ 

8.1 835x1 0-4 

1.2947~1 O 5  

0.813 

1.370 

.lo732 

. 1 5895 

.20167 

.21983 

45669x1 0.' 

4.6849~1 0-4 

8.1831~10'~ 

1.1 224x1 0' 

1.51 82x1 O'5 

0.675 

1.269 
~ 

9.551~1 O 5  

AJA,: Ratio of the exit area to throat area 
': Solid 
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. . .~ ... 

AeiAt 32.600 

Table 19 
Predicted Mole Fractions as a Function of Exit/Throat Area Ratios 

35.100 

, /  

I 

cowosrnoN Q 

Exit T, "K 91 8.9 904.4 900.7 

CJiAMBER PRESSURE = 1480 psia 

1.51 08x1 O 5  

2.3203~1 O5 

1.0228~1 O4 

7.2073~1 OJ 

1.5fi68xl Os 

2.321 6x1 D3 

1.0234~10-~ 

I .0005x1 O 3  

35.800 

8.21 5x1 O 5  
- - ~- 

8.364~1 O s  

co 

N"3 

ZrO, (Total) 

Pb 

Bi 

co/co, 

NHJCO, 

1.0248~1 O' I 9.9504~10~ 

1.143 1 1.102 

Ad&: Ratio of the exit area to throat area 

9.8735~1 0-2 

1.581 0x1 O 5  

1 .0236x 1 0.3 

1.0889~1 OJ 

1.094 

8.399~20.~ 

. . . .~ 

4 3  



For many of the input parameters, the model was not particularly sensitive to substantial 
changes. For example, for Composition H, a nearly 3-fold change in the exitithroat area 
ratios decreased the predicted mole fraction of CO by less than 12%. The ratio of major 
components was not significantly altered. For Composition D, a 5-fold change in the 
A,/A, reduced the CO/CO, ratio by 35%. The ratios of minor to major components were 
typically affected to a greater degree. In many cases, mistakes made in the original entry 
of data into the model were difficult to identify, since the mistaken or modified entry 
resulted in such a small change in the data output. For example, considerable effort was 
place into obtaining or calculating the best heats of formation for compounds present in 
the formulations. However, an exact value may not be particularly critical to the modeling 
projections. For example, in Table 20 are compared the mole fractions predicted by the 
model for a * 5 %  change in the heat of formation of ammonium perchlorate, which 
comprises nearly 75% of the starting formulation. The results of the manipulation show 
only minor changes in the predicted mole fractions. For example, the predicted mole 
fraction of HCI changed only in the fourth decimal place. 

From the standpoint of predicting the composition of the exhaust products in the chamber, 
the model was not particularly effective. As stated previously, in no case did the model 
predict NO to be present at levels above 10 ppb, even though NO levels were 
experimentally observed near 1 ppm, In Table 21 are compared the ranges of observed 
and predicted ratios of carbon monoxide to carbon dioxide in the ASCF chamber. For 
Composition M, the predicted values were very close to those observed. For Composition 
L, the model was accurate to within a factor of 2 - 3. For the other two formulations 
tested, there was substantial disparity between observed and predicted values. In both of 
these cases, the model predicted a much higher fraction of CO to be present than that 
which was observed. If the model had been used to make a health risk projection, the risk 
from CO exposure would have been considerably overestimated. 

The comparison of observed and predicted absolute concentration levels in the ASCF 
chamber is a much more complex task. Briefly, the moles of the elements present in the 
formulation were computed. Since we did not determine water vapor or hydrogen gas in 
the chemical characterization studies, it was assumed that all of the H present in the 
formulation was converted to water vapor. (From a functional standpoint of predicting the 
concentrations of other species, it makes no difference if the H present existed as water 
vapor or H, gas.) Next, the total number of moles measured in the chamber was 
calculated, assuming 100% efficiency of conversion of H to water in the chamber. Finally, 
the mole fractions of the various species were multiplied by the total number of moles 
present, and divided by the chamber volume, in order to estimate chamber concentrations 
of the target species. The results of these calculations are summarized in Table 22. In 
general, the model was very good at predicting the concentrations of metallic species. In 
the case of zirconium oxide for Composition Q, and copper for Composition D, there was 
substantial over-estimation of the concentrations. This may be due to settling of 
particulates containing 
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H. = -74109. cal/mole 

7.2 

1248.8 

10.0 15.0 20.0 

1 146.3 1033.7 963.8 

7.2 

1300.9 

10.0 15.0 

1194.0 1075.7 

. 1 1 748 .12854 

1.27 1.07 

.14394 

.85 

HC1 

N2 

cu (SI 

.19898 

7.836~1 O2 

1.257~10“ 

TABLE 20 
Effect of 2 5% Shift in Heat of FarmatKKl ‘ ~FArnmoniumPerchlorate 

cOmpCE&OflL 

%/At 
Predicted Temperature, a K 

co I .14393 1 .13194 I .11561 I .lo325 
.12259 I .13431 I . 1 m 1  .16255 

.64 1.17 .98 .n 
.25!526 .24320 22699 

.19284 .20402 .21943 

. 1 9924 . 1 9992 .20044 

21 523 

23066 

.20076 

1 7.833~10~ 1 7.826~10~ 1 7.822~10~~ 
I 

7.823~1 O 2  

NH3 

II H, = -67051. cal/mole 

20.0 

1001.2 Predicted Tem~erature. K 

II co I .14912 I .13778 f ,12215 .11017 

. 1 5578 co2 
co/co, .71 

H2O .26048 

tl, I .18794 

.24902 ,221 57 

22469 

.19975 .20032 

7.827~10” 1 7.821 x l  O 2  

20059 

7.820~1 0-2 

3.260~1 U3 

1.367~1 O5 9.774~1 O* I 1.1 69x1 0”” 
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these species before they could be collected. For Compositions D and Q, the model 
substantially over-predicts CO and underestimates the amount of CO, produced. In the 
cases of the formulations which were expected to produce measurable amounts of HCI, the 
model predicted more HCI than was measured in both cases: It could be that in this case, 
the acquisition of the sample could be suspect. First, some of the HCl or potassium 
chloride could have been adsorbed on particulate matter which settled very rapidly in the 
chamber. In this case, the material would not reach the input to the continuous HCI 
analyzer. In addition, some of the HCI may have been lost in the short lengths of Teflon 
tubing leading from the chamber atmosphere to the analyzer. 

TABLE 21 

COMPARISON OF OBSERVED AND PREDICTED 

CARBON MONOXIDE: CARBON DIOXIDE RATIOS 

Observed Predicted 

Prouellant Composition Minimum Maximum Minimum Maximum 

D 

H 

L 

Q 

0.0924 0.2265 1.663 2.545 

1.028 1.160 0.8067 1.0007 
1.817 2.473 0.675 1.225 
0.0622 0.0779 1.094 1.143 

In terms of the trace organic vapor and particle phase constituents, the model correctly 
predicts that the concentrations of these species will be low. In fact, the observed levels 
of such species as benzene and benzo(a)pyrene were much less than 100 ppbv, or 1 e l m 3 ,  
respectively. However, the number of toxic species which the model considers is limited, 
and it is certainly conceivable that a compound not considered by the model could be 
present at sufficiently high levels to warrant some health risk consideration. 

LIMITATIONS AND MODIFICATIONS 

In addition to not considering all of the toxic species likely to be produced by the ignition 
of a predominantly organic matrix, the model does have several limitations. First, it is dn 
equilibrium based system, and does not take into account those synthesis pathways which 
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may be governed predominantly by kinetic processes. Secondly, it assumes ideal gas 
behavior on the part of all of the gases produced. This assumption is not likely to be 
accurate over the entire range of conditions existing inside the rocket motor. However, 
from a practical standpoint, this may not be a severe limitation. For example, the 
magnitude of non-ideal gas effects depends primarily on the density and the temperature 
in the system. For the system in question, the largest densities occur in the chamber. 
Interestingly, the most dense gas @I), has a density of only 0.037 g l d ,  which is not 
sufficiently large to induce substantial deviations from the ideal gas law. To illustrate this 
point, Freedman3' has used the "Blake" code to compute chamber concentrations (at 
340.23 atmospheres pressure and a temperature of 3167" K) assuming both ideal and real 
gas equations of state. This was performed for Composition H, whose exhaust products 
were capable of reaching some of the higher temperatures in the study. The results are 
listed in Table 23. It is clear that the differences between the real and the i d 4  gaseous 
equations of state are very small. And although there are differences between the NASA- 
Lewis results and those from the "Blake" code, the differences are negligible from a 
practical standpoint and are due to differences in the thermodynamic data bases 
themselves. 

Finally, and probably most importantly, the model assumes that all of the chemical 
processes are frozen at the point at which the exhaust gases exit the motor. There is a 
considerable body of evidence to suggest that this is not the case. For example, the model 
predicts that no significant production of NO willoccur for any of the formulations tested. 
However, NO was in fact observed. We believe that its presence is due to the effect of 
the heated exhaust gases on the ambient air in the chamber. That is, the heat from the 
motor firing causes the formation of nitrogen monoxide. The production of NO is 
probably proportional to the duration of the flame contact with the air. For example, 
during run No. 5 for Composition D, the shock wave from the firing of the motor caused 
some damage to the chamber. A different nozzle was installed on the test motor used for 
burn #6. This lengthened the burn time, and reduced the pressure of the bum. Such 
resulted in some substantial differences between burns #5 and #6 for the Composition D 
motors. The change in the NO concentration is considerable. Probably, the increase in 
time that the flame is in contact with the air causes much more NO to be produced. Note 
also the change in the CO concenwation from Run No. 5 to Run No. 6. 

Following consultations with Dr. Eli Freedman, we decided to test the hypothesis that 
including a step in the computer calculations which would determine the influence of 
mixing the predicted exhaust gases with ambient air would lead to a more accurate 
prediction of the observed gas concentrations in the chamber. The model was revised to 
mix the exhaust gases with the ambient air at fixed ratios and at varying pressures and 
temperatures. As an example, the exit composition from propellant D (a formula which 
had initially yielded a relatively inaccurate prediction of the observed CO/CO, ratio) was 
selected as a "fuel" which could be mixed with air. Initial exit pressure and temperature 
were set at 39.5 atmospheres and 1837 OK, respectively. The "fuel" was mixed with 
ambient air in the ratios given in Table 24 to yield equilibrium compositions at two 
arbitrarily selected lower pressures. As indicated in TabIe 24, there was a substantial 
decrease in the COlCO, ratio. The resulting ratio is much closer to that which was 
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observed experimentally than the ratio predicted by the unmodified model, suggesting that 
there is considerable mixture with ambient air and conversion of carbon monoxide to 
carbon dioxide between the vicinity of the motor exit and the analysis train. That the 
model does not consider the influence of mixing with ambient 
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i 

t 

CONSTITUENT COMPOSITION D COMPOSITION H COMPOSITION L COMPOSITION 0 

Observed' Predicted Observedb Predicted Observe@ Predicted Observedd Predicted 

Carbon Monoxide, ppm 282 943 296 240 154 171 84 542 

Carbon Dioxide, ppm 1245 538 270 248 344 188 1324 491 

NO, ppm 2.2 0' 3.7 0" 0.75 0" 1 O0 

Cu, mg/m3 4.0 17 BMDL 0" 4.5 36 0 02 OB 

I 0" 

ZrO, mg/m3 BMDL 0' BMDL 0" e0.1 295 BMDL 0' 

1 BMDL 04 

I BMDL 0" 

KCI/HCI, ppm BMDL 0' <1 14 114 270 

A~,o,, mg/m3 BMDL Oe BMDL 0" 6.8 6 1  

Pb, mgh3 37 55 BMDL 0" 16 21 9 BMDL I 

TABLE 22 

COMPARISON OF OBSERVED AND PREDICTED' CONCENTRATIONS 
OF EXHAUST CONSTITUENTS IN ASCF CHAMBER 

a Run #5 
Average of Runs 1,3, & 4 
Average of Runs t - 4 
Gaseous components means of Runs 1, 2, 3; Panicle component means of Runs 1 & 3 

* Predicted using assumption that aft H in formulation of H 0 during burn. See Text. 
e Predicted mole fraction of component less than 0.5 x 1 0  cut off. 
BMDL: Below Method Detection Limit 

a 



TABLE 23 

Effect of Choice of Gaseous Equation of State on Computed Mole Fractions for 
Composition Ha 

NASA-Lewis 

IDEAL 

0.29422 

0.27100 

0.21722 

0.13459 

4.8588 x 10.' 

8.4006 x 
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air on the products of propeftant firing has been observed by other  investigator^^^. 
Snelson, et al. reported that double base propellants fired in Argon atmospheres produced 
mole fractions of CO which were much closer to\ those predicted by thermodynamic 
modeling than when the same propellants were fired in ambient air. 

Table 24 

Influence of Exhaust Gas Mixing with Air 
on Carbon Monoxide/Carbon Dioxide Ratios 

Composition D 

Fuel/Air = 5* 

Pressure, a m  39.5 5.0 1 .o 
Temperature, " K 1837 1300 loo0 

co/co, 1 1.44 1.08 1 0.74 

FueUAir = 3* 

Pressure, atm 39.5 5 .O 1 .o 
Temperature, OK 1837 1300 lo00 

COICO, 1.16 0.88 1 0.61 
1 Fuel/Air = 1* 

Pressure, atm 39.5 5.0 1 .O 

Temperature, "K 1837 1300 loo0 

co/co, 1 0.31 0.25 0.17 

* Considers exhaust gases from motor nozzle as "fuel." 
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RECOMMENDATIONS FOR FURTHER WORK 

It would be interesting to compare these results with other computer models. Software 
is available with similar, but not identical methods of computation and data fitting33. 

It may be possible to extend the NASA Lewis model to account for nonideal gas equations 
of state for some of the major components, without involving major modifications to the 
program. However, any revision is not to be undertaken lightly; the program is some 5000 
lines of Fortran and represents a very large investment of time and effort. The 
development of a new model would require a similar investment. 

A thorough review of the thermal and transport property data base may seem to be 
desirable, in order to incorporate any new information available since the 1986 revision, 
and to have some additional assurance that the data have been entered correctly. 
However, there have only been 8 changes to the data base, and none have practical 
significance for this stud?'. And since transport properties are not a significant factor in 
this work, any changes should not have an effect on the conclusions. 

It would be useful to model the chemical kinetics of these processes, using the software 
described in Reference 34. It should be noted, however, that a considerable amount of 
effort would be required to elucidate the reactions occurring in these events and to make 
estimates of the necessary rate constants. The Arrhenius constants and the activation 
energies for the hundreds of conversions processes are not available. In contrast, modeling 
the flow processes may be useful, since it could lead to a better understanding of the 
amount of air entrained with the exhaust during combustion. 

It might be useful to do some experimental firings of the motors into inert atmospheres, 
such as argon, in order to test the air mixing hypothesis. However, such in and of itself 
would not aid in the refinement of the model. 

Finally, alternatives to the "air entrainment" explanation as the source of disagreement 
between experiment and computation should be explored. For example, calculations 
described in this report were carried out for two possible cases: either the chemical 
reactions in the expanding flow from the combustion chamber maintain complete 
equilibrium from throat to the nozzle exit, or else the flow is completely frozen once it 
leaves the nozzle throat. But the intermediate case is also possible. That is,the flow may 
freeze somewhere between the throat and the exit. This could provide a possible 
explanation for the discrepancy between experiment and computation without requiring 
the assumption of entrained air. To implement such an approach, an adiabatic expansion 
calculation should be run. Initial estimates provided to the authors of this report suggest 
that this approach is feasible3'. However, to take full advantage of such an approach, 
careful experimental determination of hydrogen and methane would have to be performed. 
Because of the complexities of such real time analyses, these measurements could not be 
performed. 
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Selected Rocket Propellant Formulations 
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Table A-1 

COMPOSITION "D" FORMULATION 

Abbreviation Constituent Fmula wt% AW (kcaVmole) 

NC 

NG 

DNPA 

Nitro Cellulose (12.6% N) C,H,,,O,, N2,49 
Nitroglycerine 1 c, H, N, 0, 

NDPA 

WaX 

Di-n-propyl adipate 

2-Nitrodiphenyl amine 

LC-12-6" See note 
I c,2 HI1 N2 0 2  

Candelilla wax I C,,H,O 

49.0 f 1.5 

40.6 

3.0 

2.0 .t 0.05 

5.3 

0.1 

169.17 

-88.60 

-16.71 

a LC-12-6 is a mixture, consisting of 11.4% Copper, 36% Lead, 40.1% P-resorcylic acid (C, H, 03 
( A H p  = 190 kcal/mole), and 12.5% 2-hydroxybenzoic acid (C, H, O,, AH," = -141 kcaI/mole) 

* Heat of formation unavailable 



Table A-2 

COMPOSmON 'H' FORMULATION 

Constituent 

Potassium perchlorate 

Nitrocellulose 

Nitroglycerine 

Ethyl Centralite 

Carbon Black 

11 Abbreviation Formula wt% AW (kcaVmole) 

KCIO, 7.8-8.05 -1 03.43 

C,,H,,N,O, 54.60 169.17 

C3H5N304 35.50 -88.6 

C,,H,N,O 0.9 - 0.8 -25.1 

C 1.20 Ref. 

The entry 'Ref.' in the heat of formulation column means that this is a reference element in the 
NASA-Lewis program. 
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Table A 3  

COMPOSmON 'L' FORMULATION 

Abbreviation 

AP 

PVC 

DEHA 

CUCR 

A I  

Constauent F m u t a  wt% A&- (kcaVmole) 

Ammonium Perchlorate NH, C04 73.93 -70.58 

Polyvinyl Chloride cc, H, CI) 11.67 8.41 

Di (2-ethyl hexyl) adipate C, H, 0, 11.67 -308.0 

Copper chromite Cu, Cr, 0, 0.97 Ref. 

Aluminum Powder AI 0.99 Ref. 

59 

C Carbon Black 

BACD Stabilizer 
(Barium/Cadmium) 

succinate 

Glycerol monooleate 

SDSS Sodium dioctyl sulfo 

Pentaerythrital dioleate 

C 0.05 Ref. 

Ba-Cd 0.47 Ref. 

C, H,, 0, SNa 0.083 

c21 H, 0 4  ' 0.083 * 

'41 H78 Ot5 0.084 * 



Table A 4  

PROPELLANT 'Q FORMULATION 

Formula 

C,HSN,O, 1 Nitroglycerine 

Weight % AH", 
(Kcal/mole) 

11.36 -88.60 

Butane triol trinitrate 

Cyclotetramethy lene 
tetranitramine 

Polyglycol adipate 

Tri-functional isocynate 

N-methyl-gnitroaniline 

4-NDPA 4nitrodiphenylamine 

PCP Polycaprolactone polyol 

NC Nitrocellulose 

Lead Citrate 

ZrC Zirconium Carbide 

C Carbon Black 1'  TPB Triphenyl bismuth 

The entry 'Ref.' in the heat of formulation column means that this is a reference element in the NASA-Lewis program 

Heats of formation unavailable 
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Appendix B 

Trace Organic Vapor Phase Constituents Observed 
In Selected Rocket Exhaust Atmospheres 
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Table 5 1  

Concentration of Trace Organic Vapor Phase Constituents 
in ASCF Chamber' 

Compositions D and H 

Concentrations, pg/rn3 

Composition t i  

CONSTl7lJEFCTS Blank1 No.1A No.= N o . 2 0  Blank2 No.1A 

Trichlorofluoromethane 17.7 

Methylene chloride 8.91 1 1.9 9.29 

Trichloroethane 0.42 0.79 0.93 0.3 

No.= No.28 No.38 Blank3 

11.2 10.1 

6.39 2.1 1 

0.4 

3.79 49.2 15.8 

4.39 19.7 3.82 0.75 

2.44 6.66 2.94 1.02 

14 22.7 6.59 18.4 
I 1 I 

I I II 0.48 I 



Tabte E1 (Page 2) 
Compositions D and H 

CONSTITUENTS 

C(2]- benzene 

Octane 

Nonene 

Nonane 

Terpinene 

Blank1 No. 1A 

1.28 

1.7 

C[b]-benzene I 1.36 
I 

0.56 

C[l]-sytrene 

0.76 

C[Z]-benzene 

C[3II-benzene 

Composition H I 

1.17 

No. 2C No. 2D Blank2 No. 1A No. 2A 
I I I I 

4.24 

6,37 

0.6 

I 

2.33 

1.15 

1.91 I 

1 4.67 I 1.19 1 0.79 I 

~ 

0.56 

12 

1 2  

Heptene I 
Cyanobenzene 

Octene 

C[3]- benzene 

Decene 

I 

1.09 

0.91 

7.1 1 I 

1.07 

1.66 0.9 a,5i 0.56 

2.5 0.56 

Composition D 

No. 26 No. 36 Blank 3 

U 

10.6 

I 4.83 I 



Table E 1  (Page 3) 
Compositions D and H 

Blank 1 CONSrrrUENTS 

Composition H 

No. 1A No. X NO. 2D Blank 2 NO. 1A 

0.38 1.49 Decane 

Terpinene 

No. 2A 

0.48 

0.8 

5.19 Cf81-cvclotetrasiloxane 

No. 28 No. 38 

18.2 6.1 5 7.48 

Teripene 

6.22 6.03 30.2 20 0.97 4.65 

0.87 1.36 

I 1.02 I 1.84 I 2.59 I 1.12 I 0.98 

C[3]-cyclopentane 

C[8]-cyclotetrasiloxane 

C[3]-benzene 

C(31-benzene 

C[4]- benzene 

C[3]-cyclopentene 

Terpinene 

~ 

2.67 6.03 3.26 4.67 25.4 9.75 5.99 0 66 

2.31 

1 .E9 0 88 

0.72 

0.89 

1.87 8.16 

I 8 84 

Composition D 1 II 

Undecane 

C[1]-cyclohexanol 

C[4]-benzene 

C(3]-cyclopentane 

I 1.29 II 

~~ 

1-06 1.6 1.91 0.68 0.6 0.56 0.53 1.56 

2.07 1.28 2.96 4.67 2.39 1.72 1.02 

1.47 

1.19 8.32 0.75 

1 4.24 1 1 11 

C[ 101 -cyclopentasiloxane I 6.41 I 1.3 I 25.9 I 8.21 I 5.57 5.19 I 12.1 1 3.51 



Table 5 1  (Page 4) 
Compositians D and H 

c0NSTmJENl-s Blenkl N o . l A  No.= No.2D 

Naphthalene 2.79 4 44 11 
I I 

C[ 1O]-cyclopentasiloxane 2.04 

C[S]-cyclopentane 0.77 1.91 

Dodecane 0.26 1.23 

C[3]-cyclopentane 1.7 1.24 2.16 

C[3]-oyclopentane 7.41 4.9 1’1.2 2.38 

C[12]-cyclohexasiloxan I 0.51 

Tridecane 1.4 

C[l2~-cyclohexasiloxane 0.89 0.91 16.6 44.1 

Tetradecane 1.26 0.95 1 .ea 
C[S]-benzoquinona 1.41 ? .83 

C[9] -eminophenol 2.3 1.36 2.29 

Penthdecane 

C[12j-cyclohexasiloxane 4.74 0.64 5.92 21.2 

Diethylphthalate 

C[1 4]-cycloheptasiloxane 

1.72 3.2 4.42 

4.18 

4.04 0.29 



Table E1 (Page 5)  
Compositions 0 and H 

Missing values denote compound -at levels below method detection limits 



Table B-2 

argon 

carbon dioxide 

trichlorotrifluoroethane 

octamethyl-cy clotetrasiloxane 

mono- or di-subs benzene 

hydroxy-N-phenyl-acetamide or isomers 

trirnethylsilane compd 

octamethyl-cyclotetrasiloxane 

hexamethy I-cyclotrisiloxane 

octamethy I-cy clotetrasiloxane 

decarnethy I-cyclopentasiloxene 

dodernethyl-cyclohexasiloxane 

Concentration of Trace Organic Vapot.Phase ConsMuents 
in ASCF Chamber 

RRENllON SYSTEMBIANK BLANK1 SAMPIX 1 SAMPLE2 SAMPLE3 BLANK 2 
TIME (rnin) W m 3 )  berm? brJm3) (c1drnJ) Wm3) bs/d 

0.2 2.420 2.330 4.210 13.200 14 390 

3.4 0.720 2.730 7.301 13.460 15 160 

10.1 0.270 

21 .o 1.490 0.066 8.570 1 . g o  

21 .8 0.530 

24.6 1.290 

24.7 0.580 

25.8 0.108 5.820 0.21 7 2.050 0.149 

27.8 1.370 

28.5 0.31 2 

29 6 1.926 0.569 

33.4 0.496 

I 

I 

Composition L 

hexamethyl-cyclotrisiloxane 34 0 

hexamethy I-cyclotrisiloxane 42.3 

0.930 

4.680 1 



Table 8 3  
Trace Organic Vapor Phase Constituents 

in ASCF Chamber 

Cornposition 0 

trimethyl-cyclobutanone 
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Appendix C 

Output from Selected Runs of Computer Model 
NASA-Lewis CET-86 
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Table C-1 

NASA - Lewis CET - 86 

Output 

Composition D 
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3 1 5 3 4 - 1  3 1061-1 
I 4012-1 I 4>60-1 
I 2318-3 5 1 0 2 1 - 1  
1 O ? S  -6 I 4 0 7  - 7  
I 110 - 5  4 4 6 4  -6 ~~ 

1 . 4 3 5 4 - 5  6 , 1 2 3 3 - 1  
b . 3 6 2 4 - 6  3.8013-6 
1 . 1 5 2 6 - 3  4 . 1 6 . 1 - 6  
2.3219-6 1.2191-6 
1.0296-1 1.0136-1 
2.4141-1 2 . b 3 8 3 - 1  
1 . 1 1 0  -6 3 . 1 6 9  - 1  
2.11166-5 1,6133-5 
1.246 - 5  2 0 8 4  - 5  

0 8 8 3 - L  
4 7 1 4 - 6  

. 6 S 1 1 - 6  
0 1 3 6 - 1  

. 1 2 4 5 - 1  
3933-1 

, 3 3 0  - 1  
, 3 3 1 5 - 5  
.I60 -6 

2 f  5 8 1  2 5  6 0 1  2 5  6 1 9  
. O O O O Z  - 1  0 0 1 8 4  - 1  00116 
1 0 0 0 3  1 . 1 1 8 1  1 OlbS 
0 4 0 8 7  0.4416 0 4 3 3 1  
I t S r l  1 . 2 2 4 9  1 226. 
101 0 ? $ 1 . 8  7 3 4 . 6  
2 461 2 . 1 1 3  3.013 

3 1300 5 . 1 1 D D  6.2300 
b l 5 3  4 1 1 3  4 7 5 J  

1.371 1 491 1 . S 2 S  
219 8 1 4 2 . 0  2 a 4 . 0  
2 0 2  7 1 1 0 . 2  t P 5 . 7  

8 0 8 3 4 - 1  6 3610-1 4 3 4 1 9 - 1  2 560s-1 
8 9820-1 6 6629-1 1 1119-1 2 0968 1 
1 3 2 3 4 - 1  3 3 1 4 1 - 1  6 8614-1 2 6230-6 
3 31169-1 3 1 3 8 8 - 1  S 1 1 7 3 - 1  3 2 1 1 9 - 3  
1 5161-1 1 6 1 1 s - 1  1 1 1 3 6 - 1  I 8 7 L b - 1  
S 6316-5 2 3 ~ 0 4 - 5  4 8590-6 J b421-1 
I 491 -9 2 6 1 9 - 1 0  1 105 -11  6 2 5 1 - 1 4  
1 563 1 4 2 8 0  - 8  S 911 -9 1 132-11 
5 . I I I J - 5  
1.1532-6 
2 . 2 0 6 1 - 7  
2 . 4 4 1 1 - 1  
1 .  2 4 5 0 - 1  
2.2112-1 
1 . 3 8 1  - 8  
1 0519-S 
2 . 1 3 4  - 1  

1.6015-5 1.6443-6 1.0426-6 
9 , 1 3 0 4 - 7  6.3191-7 3.8611-7 
1 . 0 1 1 2 - 1  1.0610-8 b . 2 4 6 6 - 9  

1.193J-I 1 . 3 9 4 6 - 1  1 . 5 4 3 1 - 1  
2 . 2 2 1 1 - 1  2.1339-1 1 . 1 1 1 2 - 1  
6.156 - 9  1.491 - 9  1.405-10 
1.0110-5 9.0>>4-6 1 . 0 1 1 9 - 1  
6.411 - D  1 . 5 5 0  - 9  1.319-10 

i . i s 6 q - i  9,9024-1 4 . 1 9 0 1 - 1  

2 . 1 1 9 1 - 1  
1 . 6 4 8 1 - 1  
4.4849-6 
3 . ? ? 4 8 - 1  
1 , 9 3 1 4 - 1  
1 , 2 1 2 4 - 7  
8.549-1s 
1.677-11 
4.0691-1 
3.24lb-1 
2.0146-9 
J ,1631-9 
1.601>-1 
1.91S3-1 
6 . 9 1 1 - 1  I 
1 . 0 5 6 5 - 5  
6.12>-11 

T F U P  
OCC K 

2911 .15  
298.15 
1 9 1 . 1 5  
2 9 8 . 1 5  
298. I S  
1 9 E . 1 5  
298.15 

1 9 8 . 1 5  



N 2  1.2661-1 1 . 2 6 1 9 - 1  
0 1.126 -6 1.261 -6 
OH V . 3 3 3 5 - 4  3 . t 2 2 0 - L  
0 2  7 . 9 3 1  -6 1 . 1 1 1  -6 
P B  2.1611-3 2.2380-3 
PBO 1 6 V 2 7 - 4  9 . 5 0 1 1 - 5  
P B 2  1.6105-6 1.1666-6 

C U I L )  0 . 0 0 0 0  0 1.1091-3 
P B ( L )  0 . 0 0 0 0  0 0 . 0 0 0 0  0 

C U I 5 1  o . o o o o  o o.aooo o 

1 .  2604-1 
1.090 - 1  
1 . 0 1 9 b - 4  
1.691 - 1  
2.2819-1 

I .  1020-6 
0.0000 0 
1.0865-3 
0.0000 0 

s . 2 i n a - 3  

1.2616-1 
2.349 -9 
I .  1 1 0 2 - 6  

2.3219-3 
1.3061-5 
9.3201-1 

2.3196-3 
0.0000 0 

i . n i 3  - 9  

o . a o o a  a 

1.2601-1 
b . b V 1 - 1 0  
?.9b99-6 
1 . 4 1 2 - 1 0  
2 1294-3 
1 . 1 1 8 3 - 6  
0 .  1 1 1 1 - 1  
0 . 0 0 0 0  0 
2.3824-3 
0 . 0 0 0 0  0 

1.2601-1 1.2611-1 
2 . 2 6 0 - 1 1  1.14b-13 
5.1111-1 2.9613-8 
1.383-11 1 . 0 5 9 - 1 3  

3.0605-6 5 . Y l O 4 - 1  
8.1506-1 4,6515-1 
0.0000 0 0.0000 0 
2 . 4 0 1 4 - 3  1 . 4 0 3 9 - 3  
0.0000 0 5.2611-. 

2 . 3 1 2 2 - 1  i.no94-3 

1 .  2601-1 
2 . 1 1 2 - 1 *  
9.9403-9 
1 . 5 5 6 - 1 .  
1 . 1 1 1 1 - 3  
1 .  1 4 0 0 - 1  
I. 1106-1 
1 ,  & O b 2 - 3  
0.0000 0 
1 . 2 1 1 9 - 3  

A O D I T l O N A l  P R O D U C T S  W H I C H  W E R E  C O N S I D E R E D  B U l  WHOSE H O L E  F R A C T I O N S  W E R E  L E S S  T H A N  0 . 5 O O O O E - 0 6  F O R  A L L  A S S I G N C O  C O N D l T l O N S  

t 
CN 
C l n J  M A D  

CNC R A D  
ALLEN[.  
P M O r A N C  
? - B U T  1NE 
S - B U T Y L  M A 0  
C Y C L O P C N I A D I C N E  
1 S O r E N l A H E  
N - H E X Y L  M A 0  
1 - O C T E N C  
N - O E C Y L  R A D  

( r o n u i c  A C I O ) ~  

c n 2  
CNN R A D  
t H 3 C O  R A D  

C C O  R A D  
C Y C L O P R O P A N E  
C A R B O N  S U B O Y I O L  
2 - B U T E N E  T R A N S  
I - B U T Y L  R A O  
I - P E N T E N E  
PHlNYL R A D  
f 0 1 U E N E 
O C T A N E  
B l P H E N l  

c r n i i  o x i o c  R A D  

N H 2 0 H  NO2 NO3 
N 2 0 3  N 2 0 4  N 2 0 3  
B E N Z C N C ( L )  O C T A N E (  

CHI 
C 2  
C H Z C H O  110 
E T H A N E  
c 3  
? R O P 1 L C N E  
c4 
2 - B U T E N E  CIS 
1 5 0 B U T A N E  
N - ? E N 1 1 1  M A 0  
PHENOXY R A D  
C R E S O L  
1 5 0 - O C l A N C  
J C T - A I G )  
H 2 O l  
H Z H 2  
N 3  
J C l - A ( L 1  

H Y D R O X V N C f l i Y L t N C  
C 2 H  R A D  
E T H Y L E N E  
A Z O Y E T H A N C  

P R O P Y L E N E  O X I D E  
BUT A D I Y N C  
I S O B U T E N E  
N - B U T A N E  
1 - P E N T Y L  R A O  
O C N l f N L  

N - N O N Y L  R A D  
B I B C * Z Y L  
N 
W H I N 0 2  
N 3 H  
C U C O J  ( 5  I 

c3n3 n6o 

I - n c r r t N c  

rB(s) 

NO O f  O l l O A N f  I N  1 0 T A L  O X I O A N l S  

N E T H V L O X I D C  
A C E T Y L E N E  
A t E T A r D E n Y O E  
E l H I N O L  
C I C L O P R O P E N C  
I - P R O P Y L  1 A O  
B U T A N - I C N - 3 V N  
1 - B U T E N E  
C A R B O N  S U B N I T R I D  
C H 3 C I C H 3 1 2 C H 3  
P H E N O L  
N - H E P T Y L  R A O  
N A P I H L E N E  
HNO 
NCO 
N Z H b  
0 3  
tUD(S) 
P B O ( R 0 )  

METHANOL 
K I T C U E  
A C E f 1 C  A C I D  
O i n c i u v L  c t n c n  
P R O P I N C  
N - P R O P Y L  R A D  
C Y C L O B U T A O I E N C  
( A C E T I C  A C I D ) I  
t 5  
P E N I A N E  
C I C L O H E I C N C  
N - H E P T A N E  
A I U L C N C  
H N O 2  
NH 
N 2 0  
CICR) 
cuoznz( 5 )  
P B O (  Y W )  
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Table C-2 

NASA - Lewis CET - 86 

output 

Composition H 

85 
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XCL 
K H  
K O  
x on 
L 2 C L 2  
N 
Nn 
Nn 2 
N H  3 
N O  
N O 2  

N Z O  
0 

n2 

on 
O P  
K C L C L )  

9 2 3 1 5 - 1  
3 0 7 1 5 - J  
3 6 1 4  - J  
5 5 5 9 9 - J  
1 6 9 5 0 - 9  
7 * ? O  - 7  
2 3 0 )  - 6  
2 3 0 0  - 6  
1 7 @ 5 1 - 6  
I 116 -3 
f lS1 - 7  
1 3 4 6 9 - 1  
5 2 1 0  - 7  
2 3 6 ?  - 4  
h 4 3 6 8 - 3  
J 191 - 4  
0 O O O D  0 
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C C O  R A D  
C I C L O P ~ O P A N C  
C A R B O M  S U B O X I D E  
Z - B U T E N C  TURNS 
N-QUlIL R A D  
I-PCNICYC 
P h C N I L  I l b  
C R E S O L  
I S O - O C T A NC 
ICl-I(G) 
C U I  
HZMt 
NO I 
B I D 3  
A L C L )  
B A I C )  
1 A D 1 1 ( 1 ~ 5 )  

CUP(S) 
Wtc4CL ( 9 )  

c a ( s )  

C3 
PIIDPILCYK 
C. 
2-BUTENE C I S  
N - 8 U f  ANC 
I-?CNTIL M A D  
PMCNOll RIP 
1-HEPILNC 
N-NONYL R l D  
C L C N  
C U > C L 3  
n2ot 
NOZCL 
N Z D b  
ALCLJCS) 
B A C L )  
B A O t t i I I L )  
CR(L) 
C U Q l H Z C S )  

C3H3 RAD 
CROPrLCNE O X I D E  
IUTADIINK 
I S O B U T  L N E  
I S O B U I A N E 
N-PENTYL RAD 
BXNZLNL 
N - H C ~ ~ ~ L  RID 
NlPTHlENE 
E L 0 2  
N I L 0  
N 
NO) 
N2OS 
A L C L J C L )  
bACLI( A )  
C C G R )  
CRN(S) 
CUIOCSI 

ClCLOPRDPCHC 
I - P R O P V L  R A D  
C Y C L D B U T A OlENE 
I - O U I C N C  
C A k B O N  S U B N I T R I D  
PENTAHE 
PHCNOL 
N-WCP1 ANE 
LlULENE 
CLZO 
HMO 
HCO 
n z m i  
NJ 
LLN(S) 
O A C L Z  { 8 )  
BCNIENE(L) 
CRlN(5) 
C l ) I O ( L )  

P R D P I N C  
H-PROPYL R A D  
BUTAN-IEN-3IN 
(ACETIC A C 1 D ) I  
c s  
ISOP[NILNC 
CYCLOHCX€NC 
1-OCTfNL 
N-OLCTL RAD 
C I H  
HN02 
NH 
N H Z N O Z  
N I H  
A L l C J  ( A )  
BACL 2 ( L ) 
TOLUCNECL) 

H Z O ( 5 )  
C R Z O I  ( 5 )  

N O f E .  W E I G H 1  rIIACllOM O f  F U C L  IN TDtAL F U E L S  AND OF OXIDANT IN f O I A C  OKIDIHIS 

C I L C U l A l I O N 5  W E R E  S l O P P C O  O E C A U S E  HEXI POINI 1 5  NORC IWAN 50 BEG BELOW ICNP RANGE Or A C O N O E H S C C  SPCClCS 

ALLCNE 
PlOfANC 
1,)-RUIAOIENC 
I - B U I Y L  R A O  
CICLOPCNlAOICNC 
CHJC(CH3)tCHJ 
H - W E I I L  R I D  
N-OCIYL R I D  
0-01PHENIL RAD 

HNO3 
N H Z O H  
N l W 4  
0 3  
B A ( A )  
B A O ( 5 )  
DCIINEL L ) 
C U I % )  
H Z O C L I  

c n o 3  
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I- 
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n r  A C  T A N T S  
c 3 0000 0 9 0000 
c 4 0000 0 1 0000 
C 4 0000 0 8 0000 
c 10.0000 0 5 . 0 0 0 0  
c 2 0000 0 1.0000 
C 7.0000 0 2 0000 
c l2.0000 0 2.0000 
C 6 . 0 0 0 0  0 1 . 0 0 0 0  

n 5.0000 N 
n 1.oooo N 
H 8.0000 N 
Ii 16.0000 
H 3 . 0 0 0 0  N 

H 11.0000 N 
H 3.0000 

n @ . o o o o  N 

c I Z  n o o n  o z o . o o o o  n i 5 . o o o o  N 
IR I 0000 C 1 . 0 0 0 0  0 . 0 0 0 0  
P E  1 0000 C 1 2 . 0 0 0 0  H 1 6 . 0 0 0 0  0 
c I 0000 0 . 0 0 0 0  0 0 0 0 0  
8 1  1.oooo c i a . o o o o  n 15.0000 

N A M C L l  5 1  S 

3 .  0 0 0 0  
I 0000 
I 0000 
0.0000 
1,0000 
2.0000 
2.0000 
0.0000 
5.0000 
0.0000 

1 1  . o o o o  
0.0000 
0.0000 

I I N P T Z  
L A S E  
I 
P 
p s i 1  
nunc 
N S D M  
V 
n n o  
C R A T I O  
O F  
r p c i  
r h  
M I  K 
T P  
n p  
SP 
T V  
uv 
s v  
R K T  
S H O C K  
D C l N  
l R A C C  
so 
5 0  

l 0 C B U C  

S I U N l l  
I N H C  
l R N 5 P T  

O l r  
N O 0 A T A  
U 
n 
S C N O  

i o n s  

P n i  

i n p h c c  

3 0 0 .  
= 26.0 O O O O O O O C t O O .  . i4ao.000 , ~ 5 ~ o . o o o o o o o ~ + o 0 .  - I .  
= r .  - r .  - 26.0 O O O O O D O C + O O .  

i4ao.000 , ~ 5 * o . o o o o o o o c + o ~ .  
= r .  

r .  - r .  

. r .  

= r .  - r .  . r .  - r .  - r .  . r .  

* F .  

- 26'-1.000000 , . r .  

* I .  

. 3 ooooooooooooooooc-01, 
= 0 0000000000000000L+00. . 0 . 0 0 0 0 0 0 0 E . 0 0 .  
= r ,  

= r .  
= r .  - r .  

- r .  

0. 

= F .  

* 0 9199000000000000 . r .  

* 1 o o o o o o o o o o o o o o o o c * 1 o .  
= 1 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c . 1 0  

0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0 . 0 0 0 0  
0.0000 
0 . 0 0 0 0  
0.0000 
0.0000 
0.0000 
0.0000 
0 . 0 0 0 0  
0 . o o o o  
0 . 0 0 0 0  

11.J60000 
11.360000 
66.000000 
1.830000 
1 . 6 0 0 0 0 0  
0 . 1 ~ 0 0 0 0  
0 . 4 O O O O O  
0.340000 
O . J 4 0 0 O O  
1 . o o o o o o  
1. 500000 
0.400000 
0.040000 

- 3  5300.00 
- 9 ~ 0 1 0 . 0 0  
11930.00 

-281900.00 
- 2 1 5 5 0 . 0 0  
-7460.00 

-15400.00 
-655110.00 
-160200.00 
-4~500.00 

0.00 
0 00 
0 . 0 0  

S 
S 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
S 

290.150 
2 P a .  150 
290.150 
298.150 

298.150 
298.150 
298.150 
298.150 
2911.150 
198.150 
298 1 3 0  
290.150 

298.150 



BUR 84 
086161 
BUR 8 1  
L b / I 5  
P I O l O l  
B U R  Bb 
L 9115 
1 1 2 / 6 9  
P I P / ) )  
L l 2 / 8 4  
? I O / ( l l  
P 4/61 
P I O I U S  
L l Z / S b  
3 1 1 / 1 0  
J 3/71 
311170 
RUS 1 0  
nu5 7 5  
nus 11 
3 3 / 1 1  
I 6/19 
B A R  1 3  
1 a116 
1 1 I / l I  
3 6/79 
1 1 2 / b 5  

E T H A N O L  
C S H 3  R A D  
C Y C L O P R O P A H C  
P I  0 P A  H C 
C V C L O B U l A O I C N E  
2 - 6 O I E N E  C I S  
S - B U l I L  110 
C 5  
N - P E M I V l  R A D  
P H f M V L  R A D  
M - H E K V L  R A D  
N - N E P I A N E  
H - N O N I L  B i P n c u r L  R A O  

H N C O  
H I  
NC 0 
NO 
N H Z M O Z  
N l O f  
0 1  
IR 
B I L L 1  
I t l - h ( C I  
pa0 ( ID ) 
z n ( A )  
I R O Z f l  I 

3 3/67 
BUR 8 b  
L 4 / 1 5  
L 1/39 
BUR a 4  
BUR 8 0  
Q l O / b S  
PlOl15 
P l O l 0 5  
L l ? / B b  
PlOf01 
P I 2 1 3 2  
B U R  81 
L 6/88 
R U 4  1 8  
3 1 ? / 6 1  
RUS 1 8  
RUS 18 
RUS 1 8  
nus 1 8  
3 6/61 
3 6/63 
I 3/78 
L 3 / 8 1  
312/11 
I 6/79 
llt163 

- 
C N C  R A O  
C Y C L O P R O P E N C  
P R O P Y C t k C  
I - P R O P A N O L  
B U I A N - I C N - I Y Y  
1 5 0 8 U I  EHC 
N - I U I Y I  RIO 
C I C L O P C N l L D I i N C  
P E N I A N C  
P H C H O X V  R A D  
lOLUtNC 
I -OCIENC 
N h P l H L E N C  
. l E l - A ( C )  
H M O  
H Z N I  
N H  
HO 1 
H2HO 
N3 
0 1  
I R H  
C ( G R )  
w?o(s) 
PBo(rr) 
l R ( B 1  
Z R O Z ( 8 )  

C F F i C T l V C  F U E L  
H P P C Z J  

~ 0 . 6 7 1 ~ 1 0 2 Z C + 0 2  

KG-FORU X I  / X C  BQP(l.2) BOP(1,I) 
C 0 1 6 4 b 1 ? 6 6 C - 0 1  0 OOOoOOOot+oO 
0 0 1 1 6 0 1 1 1 J E - O I  0 0 0 0 0 0 0 0 0 E * 0 0  
H 0 2915959Jt-01 o nnanooooctoo 
N 0 21201800c-01 0 ooooooooc+oo 
Z R  I) 96870128E-04 o oooaoooac+oo 
P R  0 12lUU66IC-01 0 0 0 0 0 0 0 0 0 i * 0 0  
0 1  0 90#1llllC-06 0 O O O O O O O O L * 0 0  

P O I H I  I f N  1 c o  H 2 0  HZ )I2 

1 20 2 9 1 0  I t  - 3 0  1 1 6  -36 191 - 1 0  137 - 2 3  033 

ADO Z R O Z ( 8 )  
1 5 2 9 5 5  30 -30 1 0 6  -36 O b 3  - 1 8  1 8 0  - 2 5  016 

A00 l R O ? ( L )  
1 I 2 9 5 0  4 1  -30 105 -36 091  - 1 8  11. - 2 5  0 6 9  

R K M O V t  Z R O 2 ( B J  
I 2 2 9 5 1  3 1  -30 105 -36 a90 - I O  17) - I S  0 1 1  

- 6 2 . I h 1  -19.0b4 -21.667 

-62.001 -19.026 -11.649 

-62 791 -19 029 - 2 1  653 
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(1'862 
51'862 
(1.861 
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51'862 
51'862 
51'1161 
<I'862 
(1.061 
(1.861 
(1'862 
S1'162 
SI'812 

dull 
n 5x0 

5 
S 
S 
S 
S 
S 
S 
5 
5 
5 
S 
5 
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3lVlf 

1-9608' 1 
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8-1060'1 
b-CCCO'2 
L-<*tG'Z 
9-6; 14 ' I 
I-OS1I'I 
I-S89L 'I 

1-.21L'I 
sI-*rt'c 
8-LO96 I 
6-COlZ'S 
L-LBVI'C 
9-LSOl 'I 
1-6101 'I 
1 -9;CS '8 

O'ltl I'ICI 9'6ZK L'lIl, 0'101 ['SO1 
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