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CASTING OF HgCdTe 

Part II. Conduction - Diffusion Model and its Numerical Implementation 

Vasilios Alexiades 

Mathematics Department and Mathematical Sciences Section 
University of Tennessee Oak Ridge National Laboratory 
Knoxville, Tennessee 37996-130 Oak Ridge, Tennessee 37831-8083 

ABSTRACT 

HgCdTe is a technologically important electronic material for which large crystals of 
uniform composition are desirable. This is very difficult to achieve when the crystal is grown 
under gravity, so it is important to understand the details of the crystal growth process both 
qualitatively and quantitatively. 

In this report we present the first stage of the effort towards a detailed macroscopic model of 
the casting process, and its numerical simulation: the basic coupled conduction-diffusion model 
of the solidification process with constitutional supercooling and its numerical implementation. 
A compilation of all the relevant thermophysical properties of the pseudo-binary 
(HgTe)1,(CdTe),, as functions of composition x and temperature, is presented in Part I [3]. 
Simulation experiments will be presented in Part In 141. 

1. INTRODUCTION 

Mercury-Cadmium-Telluride is a versatile infrmd-detector alloy, for which large crystals of 
uniform composition arr: desirable. This is very difficult to achieve in any of the bulk crystal 
growth methods used for its prepartion, see [ 121 for a review. A better quantitative understanding 
of the crystal growth process is necessary in order to know how the various parameters affect the 
composition. Modeling and numerical simulation of the casting processes used in its preparation 
can help us in understanding the details of the process quantitatively, in interpretive experimental 
measurements, and in designing future earth-bound and microgravity experiments. 

A first attempt at quantitative modeling of bulk crystal growth of Hgl,Cd,Te from the 
melt was undertaken in [ 11, where the solidification of an ingot by convective cooling through a 
cyliidrical quartz ampoule was simulated numerically in the radiof direction only. The model 
took into account coupled heat conduction and solute diffusion, constitutional supercooling, the 
known phase diagram, and thennophysical properties as functions of composition and 
temperature. A pronounced “skin effect’’ was observed, namely, a steeply higher solute 
concentration near the ampoule wall, which matched well the limited experimental measurements 
available [HI. Sensitivity studies [lo], via computational experiments, indicated strong 
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dependence of the ficezing time and of composition on the heat capacity of liquid, which was not 
known reliably at that time. Subsequently, C.-H. Su [14] derived the dependence of heat 
capacity, Ck, on composition and temperature, directly from the Associated Solution 
thermodynamic model 161 of the Liquid phase. This information essentially completes the list of 
property values needed by the model and they are presented in [3], in a form convenient for 
numerical computations. 

The work described here is a natural extension and generalization of our earlier work [ 11. We 
simulate a casting process in two-dimensions (r , z coordinates), taking into account conduction 
in the alloy and the ampoule wall itself, solute diffusion, Soret and Dufour effects, segregation 
and constitutional supemling according to the phase diagram, and the presence of a free space 
inside the ampoule. The model is valid in any number of dimensions, fur any binary alloy. It is 
described in $2, and summarized in $3. Its primitive field variables are only the local 
concentration ( mass fraction of solute ) and internal energy, which are being updated directly 
from the basic conservation laws for mass and energy. All other variables, including temperature, 
are obtained from the two primitive ones. This new direct approach generalizes the standard, so 
called “enthalpy method” for moving boundary problems, to alloy solidification. The model is 
implemented in 2dimensional (cylindrical) geometry and the numerical scheme is outlined in $4. 
The Fortran 77 code implementing the scheme for (HgTe)l,(CdTe)), incoprates the 
tempemre and composition dependent thennophysical properties described in [3], and it exists 
in two versions. The serial version runs on any serial-architecture machine ( PC, workstation, or 
a Cray ), and the parallel version runs on distributed-memory message-passing parallel machines 
(such as Intel’s hypercubes iPSCL2 and iPSC/860 ). As illustration, a computational example is 
presented in $5. Detailed simulation studies will be reported in Part III [4]. The next stage of 
development of the model will incorporate convection in the melt and an external magnetic field. 

2. ANALYTICAL MODEL OF THE SOLIDIFICATION PROCESS 

2.A Overview 

Mercury-Cadmiun-Telluride is viewed as the pseudo-binary (HgTe)] ,  ( C u e  )=, which, for 
convenience, we write as (AC)l,(BCh, viewing BC = CdTe as the solute. The composition 
variable, x ,  represents the molefraction of BC , with conresponding weight fraction given by 

(2.la) 

MAC and MBC being the molecular weights of AC and BC respectively, and M ( x )  the 
(formula) molecular weight of the alloy. All property values are expressed as functions of x ,  
but mass conservation is more naturally expressed in terms of C. We will be using both 
variables. converting one to the other via (2.1) or its inverse 

(2.lb) 
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In the present model we exclude all convective effects by taking the density 
# = ps = consfanr . Such effects will be included in the next version of the model and code. 
Thus, the alloy solidifies under the simultaneous action of heat conduction and solute diffusion. 

The state of the material at location 7$ at each time f is characterized by the composition 
x$,  2 )  (or C 6, t)) and temperature T G ,  f) ,  with the phase (liquid, solid, or “mushy”) being 
determined from the (pseudo binary) phase diagram, shown in Figure 1, (we assume that 
conditions of local thermodynamic equilibrium prevail throughout the process). The liquidus and 
solidus curves of the phase diagram are monotone curves which may be represented, respectively, 
by the equations 

x = x L ( T )  and x = x s ( T ) ,  (2.2a) 

or, equivalently, by their inverses 

T = T L ( x )  and T = T s ( x )  (2.2b) 

(see Part I, 82, for expressions representing these functions). These two curves demarcate three 
possible phases: Liquid above the liquidus curve, solid below the solidus curve, and a two-phase 
coexistence region of constitutionally supercooled alloy, which we shall be refening to as 
“mushy”. 

The infernal energy at state ( x ,  T), which coincides with the enthalpy here (due to p I 
constant), will be denoted by E(x , T), and its value per gram by e (x , 7’) = specific energy. 
We shall follow the convention of using upper case letters for molar quantities (E, H ,  C p  ) and 
lower case letters for their specific values (e, h, cp).  Mole fractions and molar units are natural 
for thennodynamic considerations and properties, whereas conservation laws are more naturally 
expressed in terms of mass fiactions, on a per gram basis. 

2B Gibbs relation 

Within each pure phase (liquid and solid), the (integral) molar energy (enthalpy) E (x , T) at 
state (x , T) is determined from the Gibbs relation 

by integration over any convenient path on the phase diagram (see 52.D). Here 

i7i (x , T) := - EAc, i7:(x, T) = partial molar enthalpy of species i = AC , BC , 
inphase j = L , S ,  

and 
Cj(x, T) = molar heat capacity of the alloy in phase j = L , S . 

When the state ( x ,  T) is mushy (Le. x L  (T) < x < xS(T) ) ,  then the material is a mixture of 
Liquid at state ( x L  (T), T) and Solid at state (xs(T) ,  T), which coexist in equilibrium at 
temperam T, in pmportions determined by the local liquid fraction h(x , T). According to the 
lever rule, 
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x s ( T ) - x  
h ( x , T )  = * x L ( T )  < x  < x S ( T )  , 

x s  (T) - x'(T) 
(2.4) 

and 

E"(x, T )  = h(x, T ) E L ( x L ( T ) ,  T )  + [l -k@, T ) ]  E ' ( X ~ ( T ) ,  T )  , (2.5) 

in the mushy case. Note that for fixed x , E i ( x ,  T )  is an increasing function of T within each 
phase j = L , m , S ,  whichwillallowustodetermine T fromknowing x and E. 

2.C Conservation Laws 

The diffusion of solute (BC = C f l e )  and conduction of heat are governed by the 
conservation laws 

where p = density (E constant), C = mass fraction of BC, 7 = mass flux of BC , e (C , T) = 
specifi internal energy (or enthalpy here) at state (C , 7') and ;i' = energy flux. The constitutive 
laws relating fluxes with fields ((161, [SI; see (21 for details) are 

Fick'sLaw: 

Fourier's Law: 

7 = - p D  VC + p 6 V T 1  

G" = -k VT + PVC , 

and 
-+ + -+ 
q = G + h j ,  (2.10) 

-B 
where D = material diffisivity, G = heat flux, k = thermal conductivity, and E = & ,  - x A ~  = 
difference of the partial specific enthalpies h; of species i = BC , AC . In (2.8), (2.9) we have 
also included thermodiffusion cross effects, with 6 and #3 denoting the Soret and Dufour 
coefficients; these are usually thought to be negligibly small, and no experimental measurements 
exist for them. We retain them in the model in order to be able to study their contribution on the 
overall process via numerical experiments, by comparison with the case 6 = fl= 0. Note that 
6 > 0 in (2.8) would imply that solute diffuses towards the hotter region. 

The conservation laws are valid globally, irrespectively of phase, and they determine the 
evolution of the system over time. However, since the fields and fluxes are not necessarily 
smooth (differentiable), the laws must be interpreted in a weak sense and not pointwise. Such 
mathematically valid interpretations are available via the modem theory of parrial differential 
equations (see, e.g.. [8], [9] ). For our purposes here, it is sufficient to interpret them in their most 
primitive physical sense, namely integrated over any (control) volume and time interval 
[ t , t  +At]: 
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(2.6)* 

where ;f denotes the outgoing normal to the boundary A of the control volume V. Our 
numerical scheme will be based on these. 

They can be used directly to updare the mean concentration Cc, t+At) and energy 
e 6, ?+&A to a new time t + At from values of C and T at an earlier time t , for each 
location r .  Then, knowing C and e at the new time we need to update the temperature T to 
the new time. To do this, we must know the new phase. Fortunately, the pair (C, e )  does 
determine the phase uniquely, and the monotonicity of e (C , T )  as function of T ,  for fixed C , 
allows us to solve for T (see 52.C). The standard alternative to this new direct approach is to 
eliminate e from the system (2.6)-(2.7) using Gibbs relations, in favor of C and T ,  as was 
done in [ 11. In the absence of phase-changes, elimination of e would be preferable since e and 
T are simply related by de = cPdT and e conveys no more information than T does. For 
phase-change processes however, these two variables are not equivalent; the temperature cannot 
distinguish solid from liquid at the melt temperature, only the enthalpy can, since it experiences a 
jump there. equal to the heat of fusion (latent heat). This observation constitutes the basis of the 
so-called “enthalpy method” for Stefan-type problems [SI. Thus, the direct approach to 
conservation laws we employ here generalizes the “enthalpy method” to alloy solidification. 

2.D Fluxes 

Having interpreted the basic conservation laws in their primitive integral sense, we also need 
to make precise the consti5tutive laws for fluxes in a mushy (two-phase) volume. Let us first 
discuss the diffusion $ux J := -D VC in a mushy volume V having liquid fraction h, mean 
concentration C and mean temperature T .  To the temperature T there correspond the liquidus 
and solidus compositions x L ( T )  and x s ( T )  from the phase diagram (see (2.2)). Convert them 
to weight fractions via (2-1). and call them C L ( T )  and C s ( T ) .  In fact, it is convenient to 
extend their definitions to include h = 0 and h = 1, as follows: 

if A = O  if h=O (2.11) 

where M ( x )  is the formula weight (see (2.1)). Define the corresponding liquid fraction 
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Cs(T) - C h(C , T) := 
C S V ) - C L ( T )  

(2.12) 

(equivalently, A = - M ( X L )  h, so for solid: A=O = h and for liquid A =  1 = h), so that the 

lever rule: 
M ( x )  

C = A C L ( T )  + [ 1 -A] C s ( T )  (2.13) 

is valid for all $5 A I 1. In the liquid (portion), the diffusion flux is JL :=--DL VCL and in the 
d i d  @ortion) J s  := -Ds VCs , so the total flux will be 

S V C S ) .  (2.14) 
* 
J =A(& V C L )  + [l -A] (4 

3 
Clearly, if the volume is all liquid then A = 1, CL = C , CS= 0 so (2.14) gives J = -DL VC ; 
andifallsolidthen h = O , C L = O , C S = C ,  so(2.14)gives J = - D s V C .  Theimportantaspect 
is that diffusion in the mushy case is driven by gradients of the liquidus and solidus 
conmmations only (and not by gradients in mean concentration). Note that CL and Cs 
depend onZy on temperature, so whenever the temperature is uniform, CL and Cs will also 
be uniform, their gradients will be zero, and there wiil be no Fickian diffusion, even if the mean 
concentration is non-uniform. Numerical approximation to the diffusive flux will be described in 
9 4 1 .  

Next, we consider Fourier’s law, G = - k VT , for a mushy volume V of liquid fraction h, 
and mean temperatun: T. We may define different effective conductivities in the various 

coordinate directions, so let us discuss the flux component G =-k-, in a generic direction r ,  

for definiteness. There are several “mixtun:” rules for effective conductivities [7], based on 
steady-state considerations and depending on what “layer structure” one assumes existing in the 
mixture. They range from the “serial arrangement” to “parallel arrangement” and various rules 
interpolating these two extremes. 

If we assume a columnar type structure normal to the rdirection, (serial arrangement) then 

, the total 

4 

aT 
ar 

1 - h  
kS 

and through solid -. 11 
the resistivity to conduction through liquid will be - 

kL 
resistivity will then be 

1 h 1 - h  
k kL  kS 

= -  +-. - (2.15) 

On the other hand, if we assume layers parallel to the r direction, then the conductivities add up, 
and the effective conductivity will be 

k = X k L  + ( l - h ) k s  . (2.16) 

Neither one of these is appropriate for an amorphous mixture of solid and liquid, in which case 
we may use the formula [7, p. 2421 
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kL 
kS ' 

, K = -  
l+km(K- l )  k = kS 

1 + ( P 3 - - h ) ( ~ - 1 )  
(2.17) 

which interpolates the two previous ones. 

2 3  Specific energy 

The Gibbs relation (2.3) on a per gram basis has the form 

de j (C ,T )  = 2 dC + c i d l " .  j = L , S  

- .  
where :=& -&, h,J = partial specific enthalpy (cal /g)  of i =AC,  BC in phase 

x (see (2.1)), we get j = L,  S, and cp = specific heat (cul/g K). From C = - 
de  = h, whence 

I MBC 

M ( x )  

M (x l2 

As reference state (of zero energy) we choose pure AC ( x  = 0) solid at its melt temperature 
TAG, and write the energy as: 

where Ae~c = heat of fusion of pure AC at its melt temperature TAC . 
In particular, the energies at (x , Ts (x  )) and (x , TL (r )) depend onZy on x . Therefox, given x , 
we can compute the two values: 

x 7' (x 1 (2.20) 

(2.21) 
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and e (x , T) can be expressed as 

(2.22) 

Since, for solid, e 2 E' ( x )  and for liquid e 2 8 (x), we see that the pair ( x ,  e)  characterizes 
the phases as well as the pair (x , T) does. 

We conclude that, given the numbers x and e,  

if e I 8 ( x )  then the phase is solid and T can be found by solving the equation 

T 
E'(x)+ j c,"(x,z)~'L = e ; (2-23)s 

TS (XI 

if @ ( x ) c e  <EL(%) thenthephaseismushyand T canbefoundfrom 

(2.231, L L  h(x ,T)e  (x ( T ) , T )  + [l - h ( x , T ) ]  e S ( x S ( T ) , T )  = e ; 

if ( x )  I e then the phase is liquid and T can be found from 

Even though the equation: em ( x ,  T) = e for T in the mushy case is complicated, it is easy to 
see that it has a solution T between T S ( x )  and TL(x) .  Indeed, at T = T s ( x )  we have h= 0 
(because x (T ( x ) ) - x  = x  - x  EO, since T s ( x )  is the inverse function to x s ( T ) ) ,  and 
e S ( x s C r S ( x ) ) , T S ( x ) ) = e S ( x , T S ( x ) ) = ~ ( x )  < e ;  on the other hand, at T = T ' ( x ) ,  we have 
h= 1 and e L ( x L ( T L ( x ) ) , T L ( x ) ) = e L ( x , T L ( x ) ) = & ( x ) >  e;  hence the expression 
em (x , T) - e changes sign on the interval [Ts ( x ) ,  T L  ( x ) ] ,  and it is easy to solve by a bisection 
type method (e.g. Brent's method, [13]). 

s s  

23 Heat conduction in the container and in the free space 

energy updating scheme. 
Heat conduction in the container's walls may be conveniently incorporated into the same 

Conservation of energy in the wall is governed by 

p W q ' " + d i v ~  = 0 (2.24) 

where p" = densi2 .(E const.), ew (T) = specific internal energy (enthalpy) at temperature 
T G , t )  atlocation r inthewallattime t ,  and 
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= - kW VT = conductive flux in the wall (2.25) 

with k” the thermal conductivity of the wall. Since the Gibbs relation here is 

de” = cp”dT, (2.26) 

with cp” = specific heat of the wall material, (2.24) is simply the primitive form of the standard 
heat conduction equation 

p” c:TI - d i v ( k W V T )  = 0 .  

Knowing the temperature field at time t , we use (2.24) to update ew to a later time t + At and 
then update the temperature from (2.26). If cp” is a constant, this is simply 

(2.27) 

(using TAc as reference temperature, where ew = 0). More generally, if c: varies with tem- 
perature, then we must solve for T the equation 

T 
I cp”(T)dT = ew 

TAC 

(2.28) 

(analogous to (2.23)). It is uniquely solvable since c: > 0 implies the left-hand side is strictly 
increasing function of T. 

The fI.ee (void) space inside the ampoule is filled with vapor of Mercury whose pressure and 
density are functions of temperature. Since this density is at least two orders of magnitude lower 
than the density of the alloy, we may consider the mass (hence also the energy) in the void space 
as negligible. Then this space is simply a thermal layer at a uniform temperature TVod 
responding to the temperature of the surroundings with conductivity k ” ~ ‘ “ .  The heat conduction 
equation now reduces to 

O =  div qVd,  (2.29) 

which, upon integration over the void, simply says that the sum of the fluxes along the boundary 
of the void is zero. Hence, at each time, TVoa is a weighted average of the surrounding 
temperatures and may be found easily. 
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3. SUMMARY OF THE MODEL AND ALGORITHM 

The primary unknowns are the temperature and concentration fields as they evolve in time, 
namely TG, t )  and x(7f, t )  (or CG,  t ) .  via (2.1)). They are determined from the conservation 
laws (2.6)-(2. lo), (2.24)-(2.25). (2.29) and the relations (2.23), (2.28). 

Let's describe the basic steps of the algorithm. The data of the problem are: 

@ ( x ,  TI, 
- thermophysical properties of the alloy: p (s constant here), ck(x, T), $(x,  T), g ( x ,  T ) ,  

k L ( x ,  T),kS(x,T),DL,DS,SL,iSS,BL,ps; 
- phase diagram: x = x L ( T ) .  

- thermophysical properties of the container: p" , c,!,", kW ; and of the vapor filling the void: 

x =xs(T);  

k-; 

- initial temperature and composition: T d ,  0), x d ,  0); 
- boundary conditions on the outer surface of the container, (e.g the temperature imposed 

there), and zero mass-flux at the inner (cavity) walls. 

We update the energy e from (2.24) in the walls (using the boundary conditions) and from (2.7) 
in the alloy, and also update C from (2.6). Convert C to x via (2.1b), and update T from 
(2.23) in the alloy, from (2.28) in the walls, and from (2.29) in the free space. Thus we find 
e ,  C , x and T at the new time, and can proceed to the next time step. 

Clearly, the model and algorithm are valid in any number of dimensions, for any binary alloy. 
The only restriction is the exclusion of convective effects which can naturally be incorporated 
into the overall scheme by adding momentum conservation for the velocity field and the 
appropriate convective terms in the mass and energy conservations laws. This will be done in the 
next version of the model and code. 

4. NUMERICAL IMPLEMENTATION 

We consider axisymmeuic solidification in a cylindrical mold of inner radius &, outer 
radius Rea, inner height 2, and outer height 2, + Z,, -i- 2Zw, Z, being the thickness of 
the top and bottom walls, and Z,.d the height of the void space (filled with Hg vapor). For 
simplicity in the pmntauon we neglect the void and only describe the case Zwa = 0 here. 

4.A Numerical grid 

Given four integers Ip  , I, ,  Jp , J ,  , let 

Ar =R, /Ip ,  Arw =(RON -Rh)IIw, Az =Z,lJ,, Azw =Zw/J ,  
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and set up the mesh shown in Figure 2. The indices range as follows: for nodes 

ri : i = 1 ,... , I p ,  (cavity); 
zj : j = 1, ...Jp (cavity); 

i = Ip+l ,... Jp+Iw (wall) ; 
j = -Jw+l,...,O (bottom wall) ; j = Jp+l, ...Jp+J , (top wall) ; 

and for faces: 

where AeAc =heat of fusion of pure AC at its melt 

R ~ J ~  : i = 1, JP+l (cavity); 

zjdh : j = 1, ...J,+ 1 (cavity); j =-Jw+l, ... ,I (bortom wall); j = Jp+l, ...Jp+J ,,,+I (top wall) 

i =Ip+l,e..,Ip+Iw+l (wall) 
(rlh = 0, rip+!h = Rin * rip+iw+!n = ROKf 1 

(z-Jw@,$ = -& 9 Z = 09 Zlp#h = 2, 9 zJp+J,+h = 2, z w  

The i j  -th control volume is centered at (ri , zj ) and has volume (of revolution) 

i = l,."., I p ,  Ip+l ,..., Ip+Iw 

j =-jw+l ,..., 0,1,... 9jp, jp+1,  ..., Jp+j, . 
2 

Vi, = x [ r i L  - r i ~ ~ I [ z j + r h - z j ~ h I *  

The area of a radial face is 

i = 1 *... , I p ,  Ip+l,..-, Ip+Iw+l 

j = -J,+.+l,..., Jp+Jw AiJh,j = 2 x r i ~ h [ z , + ! ~  - z j + j ] ,  

and of an axial face 

i = 1, .... Ip+Iw 

j = -Jw+l...., 0, 1. ..., Jp,Jp+l ,..., Jp+Jw+l . 
2 Ai j+ j=x[ r&h - riJh] ,  

The field variables e ,  C, x , h, T will be represented discretely by their mean values, e: , C;, 
x;, A;, T;, over the control volume Vij,  at time t,, and they will be associated with the node 
(Ti , Z j ) .  

4.B Discrete conservation laws 

We integrate (2.6), (2.7) over each control volume Vi, and over a time step [ t n ,  t n + l ]  of 
length At,, = zn+l -t,, , i.e. use (2.6)'. (2.7)' for each Vij .  Denoting by C; and e: the mean 
values of C and e over Vi, at time fn ,  by AJ/!!h,,AJ/',ffi, the mass flow rates and by 
AQrph,, Ale,!',*% the energy flow rates ( m a  x flux) through the radial faces (A i rh j )  and axial 
faces (Ai&, we obtain the forward Euler (explicit in time) discrete mass and energy balance 
equations: 

i = 1 ,... , I,, j = 1, ..., Jp 
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i = l,...,ZpJp+l,...Jp+Iw, j =-Jw+l,  ..., 0, I,... J p ,  . . . ,Jp+Jw 

The time steps At,, n = 0, 1, ... , are chosen from a Courant-Friedricks-Levy (CFL) condition to 
ensure numerical stability of the explicit scheme. 

The reasons we prefer to use an explicit scheme over an implicit one are twofold. First, 
implicit schemes are only marginally more efficient for highly nonlinear phase-change problems. 
Their time step may be taken a few times larger than the explicit one, but the number of iterations 
required for convergence is of the same order as this factor. Given the added programming and 
computations the implicit scheme requires, the net gain is at best marginal. The second and 
principal reason is that recent experience, [ll], has shown the explicit scheme to be more 
efficient for parallel distributed memory (message-passing) computers, such as the Intel iPSC/860 
hypercube on which most of the fine-mesh runs are to be performed. 

4.C Discrete fluxes 

We need expressions for the discrete flow rates appearing in (4.1). (4.2). Consider any two 
adjacent control volumes V1 and V2, say in the r-direction, with common face A and radial 
distance (between their nodes) Ar.  Let hl, b; C 1, C2; TI, T2 be their liquid fractions, mean 
concentrations and mean temperatures, and AI, A2; Ci, C$,  Cf , Cg the quantities defined by 
(2.11). (2.12). 

Keeping in mind the discussion in 923, the (radial) mass flow rate AJ normal to the face of 
areaA istakentobe 

This allows diffusion between the liquid portions (across the area A -min{Al, A2)) of the 
volumes, and between their solid portions (across an area A (1 -min( AI, A2})). For the Soret 
coefficient we have taken = as =: 6, for simplicity. A similar formula may be used for flow 
rates in rhe z -direction 

For the heat flux (2.9), we implement the resistivity method (2.15) to compute an effective 
resistivity 

for each node in the alloy, while R g  = l/k" for wall nodes ( and Ref = l/kvaPw for void 
nodes ). 

Letting r l ,  r2 denote the r-locations of the nodes of V1, V2 (r2- r l  = A T )  and r1,.th the 
r-location of the common face between them, r l  < r1gh < r2, the total resistance to heat flow 
from rl to r2is 
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Thus the discrete velsion of the heat flux, (2.9), taking pL = Ps =: p, is 

and the energy flow-rate across the face of area A is taken to be 

hi +& 
(AQ)i+.!! := A + (AJ)ia'Po-  2 '  

(4.7) 

- -  
where we have used a simple averaging of the nodal values hl, h2, to approximate the value of 5; 
at the midpoint rl+'h, and (AJ)l+'h is from (4.3). A similar formula may be used in the z- 

T2-T1 
direction. Inside the walls, (4.7) reduces simply to AQ = A  (4" 

*r 1. 

4.D Time-stepping algorithm 

quantities (superscript n denotes value at time 2,): 
With each conml volume Vii , whose node is at (Ti ,  z;), we associate the following discrete 

Vi, (volume); Airhi,  ai,^ (areas of radial and axial faces); 

e; (mean specific energy); T; (temperature); 

h$ (liquid fraction); CG (mean concentration); CL;, CSG (see (2.1 1)); 

x; (mean composition); cp";i (mean specific heat); h t  (mean specific enthalpy 
difference); 

- 

R&d (effective resistivity); 

A J r s j ,  AI,!';*% (mass flow rates acmss the corresponding faces); 

AQ,!'& j ,  AQF;ph (energy flow rates). 

Knowing e;, T:, A$, Cc, CLG, CS;, x; at time t,, , their updating to time tn+l = t, +At,, 
proceeds as follows: 

Step 1: Evaluate the conductivities kL (x; , TJ) ,  kS (x;, T;), also - 
hi'fi = q%(X;* TG) + (1 - q)P(%$* TG), 
$9 = x;cpLrx;, Ti;.) + [ l -  x;lc;(x;. Ti;.). 

and 

Compute R e f ;  from (4.4), and the allowable time-step At,, fmm a numerical 
stabiity (a) criterion. set time = zn +At,, . 
Compute the flow rates .AJi!h;, Alrjeh AQT&;, AQiRjts from (4.3), (4.7). Step 2: 
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Step 3: 

Step 4: 

Compute C$+' and eo+' from (4.1) and (4.2). 

Find x;" from (2.lb), and compute the quantities 8 (x;+l). & (x;+') from (2.2% 
(2.21). According to (2.23). 

if e;+1 5 g(x;+') thenset A;+' =o, C L ~ + ' = O ,  CS~+'=CC+' 

and find T;'' by solving (2.23)s; 

if t?(x$+l) c e;+1 c EL@;+') then find A$+' from (2.4), 

CL;" and CS;" from (2.1 l), and Ti;+' by solving (2.23h; 

and find Ti;-+* by solving (2.23)L. 

Thus all the field quantities are updated to the new time tn+l = tn +Arn. Of course, for wall 
nodes 7'"' is directly found from (2.28). As for T W a ,  it is obtained as a weighted average 
(derived from (2.29) )of the nodal temperatures surrounding the void. 

if EL (x;+l) 5 eo+' then set xg+1= 1, CLG+' = c;+1, CS[+' = 0, 

5. A NUMERICAL SIMULATION 

Consider a quartz ampoule of inner radius Ri, =0.5cm, height Zh =9crn, and wall 
thickness Z, =0.3cm. It is filled entirely (no free space) with HgCdTe of uniform 
composition xhir =0.2 and initially the system is at uniform temperature rind = 820°C, so the 
alloy is in its liquid phase. At time t = 0, we impose a constant temperature T b  = 650°C at 
the outer surface of the cylinder and let it solidify. 

We have simulated this casting process using 20 x 128 nodes in the alloy and 3 x 3 nodes in 
the walls (I,, =20, Jp = 128,1, =3, J ,  =3, see SAA), whence Ar =0.25mm, Az =0.7mm, 
and Arw = 1 mm, Azw = 1 mm. The quam properties values used are: p" = 2.203 g/cm3,  
c; = 1.045 J / g K  = 0.2496 callg K, k" = 6.4 x lF3 cal/crn s K. The thermophysical properties 
of (HgTe)1,(CdTe), used in this code are composition and temperature dependent, described 
in detail in [3], except for the density which is taken as constant p I 7.53 g /cm3. 

All nodes become constitutionally supercooled (mushy) by time t = 10s and solidification 
begins at about that time. The alloy solidifies at t = 110s , with a sharp composition gradient 
near the lateral wall similar to that seen in the one-dimensional simulations described in [ 11. [15]. 

Sample output is shown in Table 1, produced at desired time intervals (specified by the user), 
for preselected columns (i = 1,5, 10, 15,20) and rows 0' = 1,32,64,96, 128); in addition, 
temperatures are shown at the inner-most and outer-most wall nodes (in top, bottom, and lateral 
walls). As computational checks, heat and mass balances are also shown. The phase index array 
(iphase) prints a 2 for liquid, 1 for mushy and 0 for solid, for all columns and preselected rows 
(i = 1, 16, .... 128) of the mesh. It serves as a convenient visualization of how the solidification 
progresses. see Table 2. 

In addition to the standard output, composition and temperature histories of preselected 
nodes, as well as profiles of preselected rows at desired time-intervals may be produced. 
Examples are shown in Figures 3 and 4. 
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Table 1. Sample output from BAS-2D 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Time = 50.00(s) 1 no of s t e p  21 12 I Tbry= 650.00 

liquid fractions: alam , every -32 
.000000 .m .m .m .oOO 
.666819 .644573 S46565 .157008 .000000 
.666819 .644573 S46565 .157008 .000000 
.666819 .644573 S46565 .157008 .000000 
.000000 .000000.000000.000000.000000 

.204661 .204398 .203459 -201846 .205154 

.197825 .197712 .197307 -198508 .211314 

.197825 .197712 ,197307 -198508 .211314 

.197825 .197712 .197307 .198508 -211314 

.204661 .204398 .203459 .201846 205154 

mole hctions: j=Jp,l, -32 

Temperatures: j=Jp,l, -32 
653.333 653.101 652.419 651.527 650.632 650.457 650.086 
667.164 665.841 662.245 657.641 653.228 652.461 650.461 

680.993 677.98 1 671.286 662.940 655.261 653.835 650.691 
741.495 739.1 15 729.967 708.546 670.768 664.028 652.408 
741.495 739.1 15 729.967 708.546 670.768 664.028 652.408 
741.495 739.1 15 729.967 708.546 670.768 W.028 652.408 
680.993 677.981 671.286 662.940 655.261 653.835 650.691 

667.164 665.841 662.245 657.641 653.228 652.461 650.461 
653.333 653.101 652.419 651.527 650.632 650.457 650.086 

iphase : j=Jp,l, -32 /2 
00000000000000000000 
111111111111111m 
1111 1111111111 1 m  
111111111111111OOOOO 
11111111111111100000 
111111111111111OOOOO 
13111111111111100000 
111111111111111OOOOO 
00000000000000000000 
Eold= -343.364945689206138 Enew= -343.542343164036083 
Energy balance 
Mass balance :-0.333635796948783536E-03 
latest time-step dt = 0.238355 138087157671E-01 

0.305228065O1507 1 162E- 12 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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Table 2. Phase amy at various times (only every 16th TOW is shown) 

time = 0 
22222222222222222222 
22222222222222222222 
22222222222222222222 
22222222222222222222 
22222222222222222222 
22222222222222222222 
22222222222222222222 
22222222222222222222 
22222222222222222222 

time = 5 sec 
11111111111111111111 
22222222222221111111 
22222222222221111111 
2222222222222 1 1 1 1 1 1 1 
22222222222221111111 
22222222222221111111 
22222222222221111111 
22222222222221111111 
11111111111111111111 

time = 10 sec 
11111111111111111110 
11111111111111111111 
11111111111111111111 
11111111111111111111 
11111111111111111111 
11111111111111111111 
11111111111111111111 
11111111111111111111 
11 111111111111111110 

time = 20 sec 
1111111 111111 1 m  
11111111111111111110 
11111111111111111110 
11111111111111111110 
11111111111111111110 
11111111111111111110 
11111111111111111110 
11111111111111111110 
llllllllllllllOOOOOO 

time = 40 sec 
00000000000000000000 
11111111111111111Ooo 
11111111 11 1111111Ooo 
11 11111 1111 111111Ooo 
11 1111111111 11111Ooo 
11 111 111 1111 111 11Ooo 
11 1111 11 111111111Ooo 
11111111111111111Ooo 
OOOOOOOOOaOOOOOOOOOO 

time = 60 sec 
00000000000000000000 
11 111 1111 111 11OOOOOO 
11111111 11111 1OOOOOO 
11111111111111OOOOOO 
11111111111111OOOOOO 
11111111111111OOOOOO 
11 111111 111 1 1 1 m  
11111111111111OOOOOO 
00000000000000000000 

time = 100 sec 
00000000000000000000 
111111- 
111111OOOOOOOOOOOOOO 
11 111 1OOOOOOOOOOOOOO 
111111OOOOOOOOOOOOOO 
111111OOOOOOOOOOOOOO 
11 1111- 
111111- 
00000000000000000000 

time = 109 sec 
00000000000000000000 
1OOOOOOOOOOOOOOOOOOO 

1OOOOOOOOOOOOOOOOOOO 
1OOOOOOOOOOOOOOOOOOO 
1OOOOOOOOOOOOOOOOOOO 
1OOOOOOOOOOOOOOOOOOO 
1OOOOOOOOOOOOOOOOOOO 
00000000000000000000 
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