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ABSTRACT 

Measurements of electrostatic fluctuations on the edge of the Advanced Toroidal 
Facility (ATF) torsatron [J. F. Lyon et al., Fusion Technol. 10, 179 (1986)l are used to 
study the role of the edge turbulence in the particle transport in this current-free magnetic 
configuration. Spatial profiles of the plasma electron density ne, temperature T,, and 
fluctuations in density (fie) and in the plasma floating potential (&) are measured at the 

edge in electron cyclotron heated plasmas using a Langmuir probe array. At the last 

closed flux surface (LCFS), r/a 5= 1, Te = 20-40 eV, and ne = 10l2 em-3 for a line- 

averaged electron density = (3-6) x 1OI2 cm-3. The relative fluctuation levels decrease 
as the probe is moved into the core plasma. For T, > 20 eV, U n ,  = 5%, and e@Te = 
2fi,/ne at r/a = 0.95. ‘The measured fluctuation spectra are broadband (40-300 kMz) with 
kp, = 0.05-0.1, where k is the average wave number of the fluctuations and ps is the ion 
Lannor radius at the sound speed. Near the LCFS, the density fluctuations can be 
approximated by fie/ne = O.4mn, where L, is the gradient scale length of ne. The 
propagation direction of the fluctuations reverses to the electron diamagnetic direction at 
r/a < 1. The phase velocity of the fluctuations and the electron drift velocity are 
comparable. The particle flux estimated from the fluctuations is consistent with fluxes 
obtained from the particle balance using the H, spectroscopic measurements. Many of 
the features seen in the ATF edge fluctuations resemble those of ohmically heated 
plasmas in the Texas Experimental Tokamak (TEXT) [Ch. I?. Ritz et al., Phys. Rev. Lett. 
62, 1844 (1989)l. 
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I. INTRODUCTION 

The anomalous energy transport and particle transport in tokamaks and stellarators 

are observed to have similar dependences on plasma parameters. The basic mechanisms 
responsible for this anomaly are the subject of ongoing research in fusion devices. Inves- 

tigations of edge turbulence2 in different magnetic configurations can help to identify the 
underlying physical processes responsible for this anomalous plasma cross-field trans- 
port. To understand the driving forces on the edge fluctuations in terms of the plasma 
current and the magnetic configuration, recent measurements of electrostatic turbulence 

in ohmically heated plasmas at the edge of the Texas Experimental Tokamak3 (TEXT) 

have been extended to the current-free Advanced Toroidal Facility4 (ATF) torsatron. The 
TEXT results show that electrostatic fluctuations are the dominant mechanism for energy 

and particle transport in the edge.3i5 Initial electrostatic fluctuation measurements on 
ATF have been carried out at the edge with a fast reciprocating Langmuir probe (FIUP) 

array6 similar to the one used in the TEXT experiments. 
The paper is organized as follows: The experimental setup and the data analysis 

methods are described in Sec. II. In Sec. 111, measurements of plasma electron density ne, 
electron temperature T,, and fluctuations in density (@ and plasma floating potential (qI) 
at the edge of ATF in electron cyclotron heated (ECH) plasmas are presented and their 
turbulence characteristics are discussed. Brief conclusions follow in Sec. 1V. 

11. EXPERIMENTAL SETUP AND ANALYSIS TECHNIQUES 

The A W  torsatron bas a stellarator configuration of poloidal multipolarity I = 2, 12 
field periods ( M  = 12), a major radius R, = 2.1 m, and an average plasma radius a = 
0.27 m. The current-free magnetic configuration of ATF is produced by external means 
with a moderate shear: The rotational transform (t = V27c = l/q, where q is the safety 
factor) at the last closed flux surface (LCFS) is* = 1, which is about a factor of 3 higher 
than the central value. Initial fluctuation measurements at the ATF edge have been carried 
out around the LCFS, r/a = 1, where r is the average radial coordinate, with the FRLP in 
ECH plasmas at a magnetic field B = 0.95 T. These plasmas were created using a 53-GHz 
gyrotron source with heating power P = 200 kW. In these ECH plasmas, a representative 

range for the line-averaged plasma density is = ( 3 4 )  x 10l2 ~ m - ~ ,  and the plasma 

stored energy Wp = 1-2 kJ. 
The Langmuir probe array is located one field period (30" in toroidal angle) away 

from the instrumented rail limiter.7 The probe is inserted into the edge plasma from the 
top, as indicated in Fig. 1, moves 5 cm into the plasma in 50 ms, and remains there for 
about 60 ms to carry out the fluctuation measurements as shown in Fig. 2. The measure- 

1 



OHNL-DWG 90-2484 FED 

.......... FRLP 

R EC I P ROC AT I N G P R 0 BE D R IV E 
5-cm FAST STROKE (-50 ms) 
4 LANGMUIR PROBE TIPS 

...... ......... L ~ 

i 
LIMITER ONE 
FIELD PER101 
AWAY, 
Z,.,, = 40 cm 

LCFS, X =  1 

I T 7  
,.'.',-'l.. 

R (m) 
1.6 1.8 2.0 2.2 2.4 2.6 

0.6 ----' 
- 

- 

0 " 4 

0.2 - 
- 

d 

h 

E - 0- 

1 
N 

...... 

...... 

Fig. 1. Constant flux surfaces and the location of the FRLP on ATF. The rotational 

transform is t = 1 / 2 ~  = 1 at the LCFS, which the FRLP contacts at ZLCFS = 0.4 m. The 
rail limiter is located one field period (30" in toroidal angle) away from the FRLP and is 
positioned at ZLIM = 0.4 m. 
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meiits are made during the steady-state phase of the plasma discharge, and the hard x-ray 
measurements indicate no evidence of tail electrons from the ECH that might affect the 
probe measurements. The probe head consists of a square array of four tips, 0.5 mrn in 
diameter, that are 2 nmi long and 2 rnm apart. The two tips that are aligned perpendicular 
to the local magnetic field operate as a double Langmuir probe to measure the edge 
plasma ne, Te, and fie/ne profiles inside (about 2 cm, where x/a = 0.95 andt = 0.85) and 

outside (where r/a = 1.15) the LCFS. These profiles are obtained continuously iti space 

while the FRLP moves into the core plasma as shown in Fig. 2. The other two tips are 
used to measure the plasma floating potential qf, its fluctuations &, and the wave number 

k perpendcular to the local magnetic field. The fluctuation signals are digitized at 1 MHz 
for about 16 ms and low-pass filtered at 0.4 MKz to prevent aliasing. Then the data are 

analyzed with spectral analysis techniques8 by using fast Fourier transform to obtain their 
power spectrum S(k,o) as a function of frequency o and k from the two-probe technique 
described in Ref. 9. Ensemble averaging of the spectral distribution of the flux Ffi$w), 
obtained from rhe correlation of density and plasma potential fluctuations (qP), gives the 

fluctuatiom-induced radial particle fliix: 

where V, = -“k$p is the radial velocity resulting from the E x B convection of the 

fluctuating electric field E measured across the probe tips that are perpendicular to the 
local magnetic field. ‘81e frequency-resolved flux is estimated from many independent 

realizations using a triple correlation technique: lo 

Further, to understand the physical process better, rfi$w) can be expressed as8 

where Yfiq is the coherence, Ofi6 is the phase angle between the density and plasma 

potential fluctuations, and Zrms and ;Prms are the rms values of the density and the plasma 
potential fluctuations obtained from their auto-power spectra, respectively. 
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III. EXPERIMENTAL QBSERVATIONS AND DISCUSSIONS 

The spatial profiles of the edge plasma density, the electron temperature, and the 
plasma floating potential are given in Fig. 3 for 0.95 < r/a < 1.15. Near the LCFS, at r/a 

= 1, the typical ECH edge plasma parameters are ne = (1-1.2) x 10l2 cmU3 and T, = 
3040 eV. The characteristic e-folding density and temperature scale lengths are L, = 
[-(l/ne)(dnJdr)]-l = 3-4 cm and > 2L,, respectively. These values are comparable to 

those for ohmically heated plasmas in TEXT at 2 T, as discussed in Ref. 3. The plasma 

potential 4 can be estimated from qf and Te as qP = of + 6pT,, where $ is @en as1' 
= - 0.5 x In[2.np( 1 + Ti/",)( 1 - ys)-2], which depends on the probe material, the heat 

load on the probe, the ion temperature Ti, the species mass ratio p = W m j ,  and the 

secondary electron emission coefficient '&. Typically, &p = 1-3 for hydrogen plasmas;" 

for this study 6p = 2.5 is used, corresponding to Tine = 1 andy, = 0. 
The edge profiles of the normalized density (fi'e/"J and potential &Re) fluctuations 

are given in Fig. 4. Their typical values at r/a = 1 are &/ne = 0.05-O.l and @Te = 0.1-0.2, 

which are lower than those in TEXT pla~rnas .~  The relative levels of these fluctuations 
decrease as the probe is moved into the core plasma, where Te > 20 eV and &fTe = =?fiJn, 
at r/g = 0.95. 

In Fig. 5 the variation of the estimated mean value of the wave number in the edge is 

shown. The range of values is k = 1-3 cm-l; thus, Ep, = 0.05-0.1, where p is the ion 

Larmor radius at the sound speed. Near the LCFS, the relative density fluctuations may 
be closely approximated by 6Jne = 0.4/k i ,  = 4ps/Ln, as predicted for the drift wave 

description of the edge plasma turbulence.12 The sign change observed on the wave 
number in the edge (Fig. 5) indicates that the propagation dkction of the fluctuations is 
in the direction of the ion diamagnetic drift for r/a > 1, but it reverses to the electron dia- 

magnetic drift direction for r/a < l, Similar results are observed on the TEXT 

Fig. 6 the integrated potential fluctuation power spectra S(w) and S(k) are shown. The 
power spectrum S(m) is broadband, Fig. 6(a), and mostly in the range 40-300 kEIz. For 
large values of W2.n (>200 kHz) and k, the power spectra can be represented by S(o) - 
O-", and S(k) - k-"k, where a, = ak = 4 -t. 1. The general shape of the fie power 

spectrum is also similar to that of &. The shape of S(k) may not be its true shape.13 

However, the technique used here9 provides a reliable determination of E and the spectral 
width ok, which is the rms deviation about k, as discussed in Ref. 13. The wave number 

spectrum analysis indicates that inside the LCFS ok decreases with increasing local elec- 
tron temperature, as shown in Fig. 7. Thus the correlation length Lc = 1/ok increases with 

P 

Fluctuation spectra of 5, and &have been examined for frequencies up to 4 
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temperature; l4 typically L, = 1 cm, which is much larger than the probe tip separation, 

for Te > 35 eV. 
As a simple first estimate, the fluctuation-induced particle flux is calculated from 

Eqs. (1) and (2) by taking $p &, i.e., by neglecting the contribution of the electron tem- 

perature fluctuations Te to 6p [ = (6; + 8p T, + 26,( &T&) ' 1. The correlation between 

6f and T, in ATF has not yet been determined, and there is uncertainty concerning the 

level of Te: Outside the LCFS, YJT, has been observed to be smaller than iiJn,,14.15 

whereas around the LCFS in ATF the upper bound of ??,/T, may be comparable to 

iiJn,,l4 as shown in Fig. 8. ?his initial estimate of 7fle is obtained from the so-called 

triple Langmuir probe technique;14 the associated error may be large because of possible 
contributions from the fluctuating electric field between the probe tips. At the LCFS, 
where rfi6 will be compared with the global particle flux later, the inclusion of T, could 

increase the particle flux by a factor of -2 as the result of assuming positive correlation 

between Tf and T, and using ye/& = 0.75 at r/a = 1 from the measurements (Fig. 9) to 

estimate Tp in Eq. (2). 
As shown in Fig. 10, the correlation between the density and the floating potential 

fluctuations is high, y f i ~  = 0.8, up to 150 kHz, and beyond 250 kHz it drops to 4 .2 .  The 

corresponding phase angle is €Ifi$ = 70" around 150 kHz. The frequency-resolved particle 

flux r5,$co) is dominated by frequency components below 250 H-Iz (Fig. 10) and reaches 

a maximum at 100-150 kHz, where the phase angle has its maximum. The spatial edge 
profile of the fluctuation-induced particle flux rfiq which is obtained from the sum of 

T,$co) over the spectral frequency components, is given in Fig. 11 for two representative 

line-averaged densities, 6, = 3.5 x 1012 cm-3 and 5.5 x l0l2 ~ r n - ~ .  This radial flux is 

always outward and around the LGFS has a value rfi$ = (3-4) x lOI5 c ~ - ~ . s - ~  for G, = 

3.5 x 1OI2 cm-3 and (1-2) x l O I 5  cm-2+-1 €or ne= 5.5 x 10l2 The corresponding 
fluctuation-induced particle confinement times, assuming that r f i g  is toroidally and 

poloidally uniform on the LCFS, can be estimated from 

2 -  2 0 5  

where (VdS,,,) is the ratio of the core plasma volume to the area of the LCFS, and 

(neb  is the volume-averaged core plasma density. The core density profiles observed in 
ATF are nearly flat with (nJv = ne. Thus, Ey. (4) yields zfii = 10-50 rns for these line- 

averaged densities. Although detailed scans of Ge have not yet been carried out, results 
from the present limited scans indicate that zfig increases with 6, in these low-density 

plasmas. This observation is consistent with the TEXT results.16 

The associated fluctuation-induced local density diffusion coefficient is I), = 

I 
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T,fLn/n, = 1 x lo4 cm2*s-l, where n,(edge) I- 1012 cases. 

For these discharges, D,, 5 D, at the IICFS, where E), (in cm2=s-l) is the Bohrn diffusion 

coefficient, DB = 625 x ‘rdB (with T, in eV and B in T). Estimates of edge particle fluxes 
from the Ha spectroscopic measurements are rather difficult in ATF Ixxause of the lack 
of a full set of spectroscopic monitors to cover the coinglicated edge geometry and the 

existence of particle sources from the divertor str?ipes17 around the LCFS. It-Iowever, sniiie 
comparisons can be made using the available data. 

In steady state, from the particle balance, the edge radial particle flux leaving the core 
plasma, r/a = 1, is r = Z.<D./SLCFS, where Z.Q. is the total sate of electron production 

from ionization of the recycled flux from the walls a,, the limiters QL, arid the flux of 

particles introduced by the gas valve CDG. Here again 1.’ is assumed to be constant on the 

LCFS. The contributions of the impurities are ignored because of the low Zeff (= 1.8). 

From absolute measurements of Ha radiance in the vicinity of walls (observed vertically 
and horizontally) and also at the limiter, these fluxes are estimated using a collisional- 

radiative model1* to be DW = SwCi,IJW) and aiL = SLCi,I,(L). Here Sw = 25 m2 is the 

and L, = 4 cm for both 

J J  J J  
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estimated area of the emitting Ha shell in the vicinity of the walls, S, is the total area of 
the top and bottom limiters, which cover about 0.45% of the LCFS area, and C, (= 12 for 

edge plasmas with T, - 20-30 eV) is the ratio of ionization to excitation events.’* I,(W) 

is the average Ha radiance obtained from the measurements of the vertical and horizontal 
H, wall monitors, and I&) is the limiter Ha radiance when the limiter is located at the 

LCFS, Thus, the estimated radial flux is I? = (1-1.5) x 1015 cm-2=s-1 for ne = 5.5 x 

10l2 cm-3, which is comparable to r,,at the LCFS. This suggests that the electrostatic 

edge turbulence may play an important role in determining the global particle 
confinement characteristics in ATF. 

A velocity shear layer is observed in the ATF edge; this is also the case in TEXT? 
Figure 12(a> shows the spatial profile of the mean phase velocity of the fluctuations, vph 

= 2Ca>O~ph(~)  with vph(m) = ~~(W/k)S(k,w)~~kS(k,w). The location of the shear layer 

approximately coincides with the peak of the plasma potential [Fig. 12(b)J. There the 
radial electric field E, = - d$p/d” changes its sign and the density and electron tempera- 
ture gradients are nearly zero, as shown in Fig. 3. Thus Vph = Vde = 0, where Vde = 
(TJeB) x ( l/Ln + l h )  - E@ is the electron drift velocity. Just inside the shear layer a 

steep density gradient is observed. At r/a = 1.025, where Vph has its maximum at the 
electron drift direction, the estimated electric field is E, = -12 V/cm, the electron 

temperature profile is flat with Te = 30 eV, and Ln = 4 cm. The electron drift velocity is 

then Vde= 2.1 x lo5 c d s ,  which is comparable to the phase velocity of the fluctuations. 

Future experiments will include measurements of the electron temperature fluctua- 
tions as described in Refs. 15 and 19 to determine the relationship between $$Te and 

fidn,, scaling studies of the edge fluctuation parameters with Gee. and extension of the 

ECH experiments to B = 2 T and neutral-beam-heated plasmas. The recently installed 

heavy ion beam probe diagnostic2* is expected to provide additional information on the 
plasma potential and its fluctuations. 

Well inside the LCFS, where E, = 0, it is estimated that Vdei vph io5 cm/s. 

IV. CONCLUSION 

The initial results indicate substantial similarities in the characteristics of electrostatic 
edge turbulence in the current-free ATF torsatron and the ohmically heated TEXT 
tokamak. The fluctuation-induced particle flux is consistent with the total particle flux 
estimated from the global particle balance (if the fluxes are assumed to be toroidally and 
poloidally uniform). Thus, electrostatic turbulence may be responsible for the edge par- 
ticle transport. Detailed comparisons of the ATF and TEXT experimental results are 
under way.21 These can serve as a basis for a coherent physics understanding of the effect 
of edge turbulence on plasma transport in toroidal devices. 
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file of the estimated edge plasma poteritial $,. The shear layer location nearly coincides 
with the peak of the lasma potential where the radial electsic field Er Z= d$p/d” changes 

its sign. 
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