
3 4456 0333725 3 :d ORNUTM-11744

OAK RIDGE
NATIONAL
LAB0 RAT0 R Y Hypercube Clock Synchronization

T. H. Dunigan

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

I

I

c

ORNLJTM- 1 1744

Engineering Physics and Mathematics Division

Mathematical Sciences Section

HYPERCUBE CLOCK SYNCHRONIZATION

T. H. Dunigan

Date Published March 1991

The work was supported by the
Applied Mathematical Sciences subprogram

of the Office of Energy Research,
U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 3783 1

operated by
Martin Marietta Energy Systems, Jnc.

for the
U.S. DEPARTMENT OF ENERGY

3 445b 0333725 3

Table of Contents

Abstract ... 1

1 . Introduction ... 1

2 . Clock Synchronization .. 1

3 . Hypercube Clocks ... 4
3.llntel ... 5
3.2 Ncube .. 9

4 . Limitations and Extenstions .. 10

References .. 12

Appendix A: iPSC/2 microsecond clock subroutines ... 13

Hypercube Clock Synchronization

T. I€. Dunigan

Mathematical Sciences Section
Engineering Physics and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, Tennessee 3783 1

thd@ornl.gov

ABSTRACT

Algorithms for synchronizing the times and frequencies of the clocks
of Intel and Ncube hypercube multiprocessors are presented. Bounds for
the error in estimating clock offsets and frequencies are formulated in
terms of the clock read error and message transmission time. Clock and
communication performance of the Ncube and Intel hypercubes are
analyzed, and performance of the synchronization algorithms is presented.

Keywords: clock synchronization, hypercube communication.

1. Introduction.

In distributed computing, there is a need for accurate clocks that give the same time
on every computing element. A distributed computation may be implemented over a
local area network of computing elements or on a parallel processor. Distributed com-
puting systems that depend on such a common time include transaction processing sys-
tems, real-time systems, and simulation systems. A common time is also needed for
event traces arid synchronization such as timeouts or checkpoints.

This report addresses synchronizing the clocks in hypercube parallel processors,
specifically to eliminate timing anomalies in event trace files. If the clocks are not syn-
chronized, timing anomalies can occur, such as the apparent receipt of a message before
it was sent. In the following section, a model for synchronizing clocks in a distributed
computing environment is developed. In section 3, the characteristics of the clocks and
message-passing systems of the Ncube and Intel hypercubes are analyzed, and clock syn-
chronization algorithms are developed. Section 4 discusses the perfomlance of the
hypercube clock synchronization algorithms and the need for hardware clock synchroni-
zation.

2. Clock Synchronization
We wish to synchronize the clocks in a distributed computing system so we can

order events. In particular, if Ci[a] is the time at which processor i sends a message to
processorj, and C.1 b] is the time proeessorj receives the message, we want Ci[aJ < C.[b].

J I

- 2 -

This is Lamport’s condition C2 [LAM%]. ‘To avoid timing anomalies of events on a sin-
gle processor, we further require that time be tonically increasing, that is, Ci(tz) >
Ci(tl), if t2 > ti where Cit) is time from prwe s clock at physical time t.

To develop a light-weight clock synchronization algorithm that a hypercube appli-
cation program can implement, we assume that there are no faulty clocks in our ensemble
of processors. Synchronization t e c h es in the presence of faulty clocks are discussed
in [SRIU] and [RAM90a]. A robust successful implementation of clock synchroni-
zation over a network is described in [ML89] and [MIL90]. This report develops
software synchronization algorithms, though we later argue for a single clock or
hardware Synchronization of the ensemble of clocks, Hardware synchronization, how-
ever, is non-trivial [SHI88], [VASSg], [Kc$M9Ob].

etween two clocks i s the difference in their readings at the same phy-
sical time, that is,

8 3 I C i (t) - cj (t) I .

ci (f +s) - cj (t)

Ci(t-1-S) - C i (t) .

The skew, $7 between two clocks is their difference in frequency (fin.st derivative of offset
with time) measured over an intewal S, where

$ = ___

Coinputcr clocks drift only a few seconds per day, so typically, Cp < lo? Computer
clocks exhibit some variation in skew (second derivative of offset with time) due to aging
or temperature variation, but the effect is small (less than a few parts per million (ppm))
and is ignored in this study. Table 1 summarizcs the notation used in this report.

........ Notation _I.______

C,(t)
e clock offsct
6 round-trip message time
(1, frequency difference (skew)
P clock precision
R resynchronizaeion interval
s skew estimation interval
U minimum-.ggssage transmission time

Table 1. Notation conventions.

To avoid timing anomalies in sending and receiving messages between two proces-
sors, where the minimum message transmission time is U , the sum of the offset and skew
of the transmitter’s clock must be less than U , that is 8 t-

clock time at processor i at real time t

< U , or
a

We will have timing anomalies if the two clocks are not within U of each other, and,
even if they are initially that close, after some period of time the two clocks will have
drifted greater than U apart because of the difference in the frequencies. Thus, to syn-
chronize clocks, we must synchronize both time (eliminate or reduce the offset) and

frequency (make both clocks run at the same rate).

Time synchronization.
Processor i can synchronize its time with processor j by sending a message to pro-

cessor j at time cifi.) requesting that processor j send its current time back in a message
(Figure 1). If processor i receives processor j ’ s reply at hme C.(t) then processor i can
measure the round-trip time

L O

6 = Ci (t - Ci (ti)

that it took to send the message and receive the reply and calculate an estimate of the
offset between the two clocks,

e=cj (f j)+6 /2-Ci (f ,) .

Ideally, 6 = 2U, but in most message-passing systems, the transmission times to and from
processor j are independent random variables. Thus 6/2 is only an unbiased estimate of
the transmission time from processor j . Furthermore, the local clock can be read only to
within an error bounded by the clock’s precision, p. Thus we can estimate the offset only
to within some error, eo. Including the clock precision with Cristian’s result [CRI89], it
can be shown that

(2.1)

In section 3, we will quantify the error of our offset estimator and develop filters to
reduce those bounds.

6
2

E@ < - - Cr + $6 f p .

Figure 1. Processor i requests processor j’s rime

Frequency synchronization.

Even if we can make the offsets suitably small, after U/$I seconds, the two clocks
would again be greater than U seconds apart, resulting in potential timing anomalies.
Thus the clocks would have to be resynchronized every U/$ seconds, or, more conserva-
tively, every (U - seconds. We can reduce this resynchronization interval by
measuring the skew between the two clocks and using this estimate to “adjust” the fre-
quency of one of the clocks. Processor i can estimate the difference in frequency by tak-
ing the ratio of the differences of the two clocks over a period S , where

ci (t + S) - cj (t)
($= s

The error in the estimate is

- 4 -

__I

N6400

80
0

0.05
1

30@ 20ms
40
18
151
100

Yes

so $ can be estimated to the desired accuracy by increasing the interval S. Since we
assume that the frequency difference between two clocks is constant, we need calculate @
only once.

Having calculated both the time an frequency estimates, then the adjtisted clock on
processor i that is synchronized to the clock on processorj is

T i (f) = Ci(f) 4- 6 + $ (f - I g) 9 (2.3)

and the resynchronization interval is then

N3200

32
0

128
128
128
128
128
51 1
128
no

In the following section, we will apply this clock synchronization model to hypercube
parallel processors.

3. Hypercube clocks arid communication.

A hypercube parallel processor is an ensemble of computers interconnected by a
communication network with the topology of an n-dimensional hypercube. Each proces-
sor has its own local. memory, clock, an communication channels to n other processors.
The processors work concumently on an application and coordinate their computation by
passing messages. First-generation hypercubes used a store-and-forward scheme to route
messages between non-adjacent processors. Resent generation hypercubes use
hardwareassisted direct routing, and message-passing times are on the order of hundreds
of microseconds [DUN90]. By contrast, message-passing times on local area networks
are on the order of tens of milliseconds.

Hypercube Synchronization Para -

.................. __.I_

Crystal frequency (MHz)

Measured frequency difference ($) (ppm)
Clock prccision (ps)
Effective clock precision (p) (p)
Clock rcad error (ps)
Round-trip error (d6) (p)
Filtered round-trip error (d6) (ps)
Minimum message time (IJ) (ps)
Barrier exit error (d6) (ps)
Monotonic clock

_I-

PJsC/840

40
80
0.1
1

60@ l h s
120
25
44
250
Yes

....
*sa2

20
25
1 .o
15

260@ 50ms
527
114
302
400

Yes

Table 2. Intel and Nculae clock and conirnunication parameters.

Hypercube processor clocks may be driven by a single time source, or each proces-
sor may have its own time source. The Ncube hypercubes use a single crystal oscillator
to provide timing for all of the processors, and thus clock synchronization is fairly sim-
ple. The Intel hypercubes use a separate crystal OII each processor, and the communica-
tions hardware on each processor has its own crystal. Clock synchronization for the Intel

- 5 -

hypercubes requires both time and frequency synchronization. Table 2 summarizes the
clock and communication characteristics of both families, and details of the Intel and
Ncube characteristics are discussed in the next two sections.

3.1. Intel hypercubes.

Clocks
The Intel iPSC/860 hypercube uses 40 MHz oscillators on each processor. The cry-

stal oscillator, manufactured by MF Electronics, has a frequency stability of 0.01% (200
ppm) and a variation of frequency less than 45 pprn with respect to temperature. We
measured the frequency differences between the processors on three different iPSC/S60
hypercubes and found the maximum frequency difference to be less than 100 ppm
(OWL 128 processors < 80 ppm; NASA Langley 128 processors < 60 ppm; ICASE 32
processors < 40 ppm). The actual differences can change as processor boards are
replaced or as temperature varies.

The iPSC/86Q provides a 100 nanosecond timer that is readable with the dclock()
function available under NX 3.2. The resolution between two successive calls to
dcZock() is about 1.5 microseconds (averaged over 2,000 samples) with little variance.
However, a 40 microsecond spike occurs every 10 milliseconds from an operating system
timer interrupt. When the iPSC/860 is “booted,” all of the processor timers are reset
simultaneously.

The Intel iPSC/2 hypercube uses a 20 MWz oscillator on each 80386 processor
board. The oscillator operating characteristics are similar to those of the oscillator used
on the iPSC/S60. We measured a maximum frequency difference of less than 25 ppm on
the @-processor ORNL. iPSC/2. Time is provided through two 16-bit, microsecond
countdown timers and an operating system variable that is incremented by 50 rnil-
liseconds when the high-order counter interrupts.

On the iPSC/2, only one millisecond resolution is provided by the Intel dclock()
function, and the time is not monotonic (successive calls will return the same time, since
several calls can be made in less than a millisecond). However, the PICL library
[GEI90] provides a microsecond resolution time function, cZockU() for the iPSCI2 (see
Appendix A). Successive calls to cEuckO() take an average of 138 microseconds, with a
260 microsecond spike every 50 milliseconds as a result of the operating system timer
interrupt. (The iPSC/2 hypercube operating system (NX 3.2) actually provides multitask-
ing for an application on each processor of the hypercube, so, as with any time-sharing
operating system, even larger variations between successive calls to cZockO() are possible
if multiple tasks are active.) Since the software that reads the countdown timers must
avoid the roll-over intervals of the counters, the values returned by clockO() exhibit more
variance than the iPSC/860 &lock() calls, reducing the effective resolution to about 15
microseconds. Since time on the iPSC/2 is maintained with an operating system vari-
able, when the hypercube is “booted,” this variable is reset only after the operating sys-
tem is loaded on each processor. On a 64-processor iPSC/2, several seconds can pass
before the last processor’s operating system is loaded and the time reset. Thus, the
iPSC/2 clocks will have offsets of several seconds as soon as they are started.

- 6 -

Communication

Each iPSCI2 and iPSC/860 processor has a separate communication module that is
clocked by its own 28 A4Hz crystal oscillator. Message transmission time varies linearly
with message size [DUN90]. Part of the. startup cost for sending if incssage is the time
for the processor and communication tndules to synchronize. For messages between
non-adjacent prmessors, additional time is required to synchronize the intervening com-
munication modules. The minimum transmission time, I / , (one hop, zero-length mes-
sage) is 64 microseconds for the iPS@/860 and is 302 microseconds for the iPSC/2.

i I I

6 hop

r - ~

5 1 00 15 20

Figure 2.8-byte message round-trip delay (ps)? iPSCJ860,2000 samples.

The clock synchronization model developed in section 2 uses the round-trip delay to
estimate offset betwecn two processor’s clocks. Figure 2 illustrates the variance in the
round-trip delays for 2,000 samples using an 8-byte message, for adjacent iPSC/860 pro-
cessors and processors that are six hops away. The figurc shows the spikes when a tinier
interrupt occurs on one or both of the processors involved. As expected, the mulri-hop
delays are larger and show more variance than nearest neighbor communication. (iPSC/2
delays show somewhat less variance than the iPSC/860 delays due to the less precise
clock and due to the slower communication.)

From equation (2.P), our offset estimate improves as the round-trip delay
approaches the minimum round-trip delay. But the delay will be the minimum with only

- 7 -

a small probability (Figure 3). We can be certain only that the delay will be less than the
maximum round-trip delay. (We shall assume for now that the delay dues have an upper
bound.) If we wish to improve the error bound of OUT offset estimate, but at the risk of
some uncertainty, we can choose a delay, D, less than the maximum. If p is the probabil-
ity that processor i observes a round-trip delay greater than D, then the probability of
observing round-trip a delay less than D is 1 -p. However, if we make k successive clock
requests, the probability of at least one delay less than D increases to I -pk [CRI89]. Thus
we can choose a level of certainty and estimate the offset between clocks with a small
error bound at the cost of many messages or with a larger error bound but at the cost of a
only a few messages. We can also improve the deterministic estimate since some of the
variation in round-trip delay is not random, but is caused by fixed-interval, timer-
interrupt spikes. The interval between timer-interrupt spikes is much longer than the
round-trip delay, thus we can eliminate the effect of these spikes by taking the minimum
round-trip delay of at least three successive clock requests. Table 3 shows the reduction
in round-trip delay variance with increasing k using a minimum filter and 2,000 readings.

125 150 175 200 225 250
microseconds

Figure 3. One-hop round-trip delay distribution, iPSCl860, 2000 samples.

For our implementation, we use four successive requests to estimate the offset
between two clocks and use the resulting (Table 3) to select the interval, S, for
estimating the frequency correction @ (2.2) to the desired precision. For example, to
adjust the frequency to within an error of one part per million for our dimension-6

- 8 -

iPSC/860, S (2.2) would need to he at least 26 seconds. Similarly, for our dimension-6
i13SsC/2, the estimation interval would need to be at lcast 144 seconds.

Table 3. Round-trip delay (ps) with minimum of k tries. (2,000 samples)

Given E and F~ we can calculate the resynchronization time from (2.3). If the fre-
quency adjustment is accurate to within one ppm, the iPSC/860 processor would have to
be resynchronized in less than 55 seconds, and in less than 230 seconds for the iPSC/2.

9

Implementation

Given the clock and comtnuriicatisn characteristics, we can synchronize the time
and frequency between two processors’ clocks. For an application program to synchron-
izc all of the processors’ clocks in a dimension-Pt hypercube, we use a master-slave
model. We designate processor 0 as the master clock, and all of the remaining yroces-
sors synchronize their clocks with processor 0. (For the present, we require only that the
clocks be consistent within the hypercube; we are not trying to synchronize the clocks
with an external source such as UTC [MILW].) Our clock synchronization algorithm
consists of two sulx-outines, clk - sync() and sclock(). At the start of the application, each
proces.:or calls clk ,ryrtc(S) to synchronize the time and estimate the frequency correction
over S seconds. ?%e application then uses sclock() to read the processor’s synchronized
clock, where the synchronized time is calculated from (2.2). On the Intel hypercubcs,
time resynchronization can be scheduled and managed in the “background” using
alarin(R) and signd(SIGALRA4) on the slave processors in conjunction with hrecv() on
the master processor.

These routines (less resynchronization) have been added by Worley to PICL
[GJDQ] and have eliminated the timing anomalies previously experienced without clock
synchronitation. PICL had previously used a barrier-synchroilization (implemented with
a dimensional exchange) to synchronize time when event tracing was enabled. However,
timing anomalies occurred frequently, since the variation in barrier exit (Table 3) was
oftcn larger than the minimum message transit time, and there was no compensation for
clock skew.

- 9 -

3.2. Ncube hypercubes.
The Ncube 6400 hypercube (also known as the Ncube 2) uses one 80 MHz crystal

oscillator to drive all of the processors and their associated clocks, count-down timers,
and communication channels. Each processor provides a 50 nanosecond running timer
accessible through the arickcnr() function under Vertex 2.0. Successive calls to atickcnt()
require about 8 microseconds. There is a 30 microsecond spike from an operating system
timer interrupt every 20 milliseconds. When the hypercube is rebooted all of the running
timers are reset simultaneously. Thus all of the processors are synchronized with respect
to time, and since there is only one oscillator, there is no frequency skew.

The older Ncube 3200 hypercube (previously call the Ncube/ten) uses one 8 MHz
crystal oscillator to drive all of the processors. No running timer is provided, and each
processor keeps time using an operating system variable and a count-down timer inter-
rupt. When the Ncube 3200 is “booted,” time is reset by the operating system after it is
loaded, so the processor clocks will not be synchronized. Time (actually clock rate
divided by 1024) is provided by the mime() function, giving a resolution of 128
microseconds. Successive calls to ntime() can return the same value. Figure 4 illustrates
how ntime() can be packaged so that it returns monotonically increasing values.

d e f i n e MICRO 0 . 0 0 0 0 0 1
d e f i n e SPT 0 .000128
s t a t i c d o u b l e bump = 0;
s t a t i c i n t lastt= 0;
double s c l o c k 0
(

/ * return seconds, each call w i l l r e t u r n larger v a l u e * /
int t;

t = n t i r n a o ; / * t i c k s * /
bump t= MICRO;
if (t ! = lastt) { / * rollover * /

bump = 0;
1 a 5 t t. -t ;

1
re t .urn(burnp t t * SPT);

Figure 4. Monotonic clock for the Ncube 3200.

Since all Ncube processors and communication channels are driven by the same
timing signal, there is much less variance in transmission times. On the Ncube 3200, the
low resolution of the clock masks any variance, so transmission times are within plus or
minus one tick (128 ps). Transmission time increases with message size and the number
of hops [DUNgO], and for the Ncube 6400, the variance in transmission time increases
with multiple hops.

No clock synchronization is required for the Ncube 6400 hypercubes, and only ini-
tial time synchronization is required for the Ncube 3200 hypercubes. The Ncube 3200
requires no frequency estimation, and since the variance is small, successive time-request
messages and minimum filtering are not required. The Ncube 3200 application merely
calls clk - synch() on each processor when the program starts and uses scZock() to read the
synchronized and monotonically increasing time. As with the Intel hypercubes,

- 10-

clk synch() uses a master-slave model, each processor synchronizing its time with pro-
cesior 0.

For both the Intel and Ncube hypercubes, syiichronization could be done faster
using a spanning tree [FRE98]. Processor 0 would be used to synchronize the clocks of
its nearest neighbors. These clocks would then be the “master” clocks for their respec-
tive subtrees. There would be n levels of master clocks in a dimension-n hypercube,
each level synchronizing its clocks with the level above. Clock synchroriization could be
completed in n steps rather than the 2n-1 steps required by our master-slave scheme.
IIowever, using spanning tree synchronization increases the error in the offset estimate
for a dimension-n hypercube to fiee, where E~ is the one-hop error. For both the Intel
and Ncube hyperccubes, the n-hop error is niuch less than n&* (Table 3), so we choose the
more accurate master-slave scheme.

4. Liniitations and Extensions.

Our master-slave, minimum filter, synchronization algorithm has eliminated the
timing anomalies in our event trace files. The algorithm is implemented as application
subroutines, requires no modifications to the operating system, and can be extended to
other distributed, parallel processor topologies such as a mesh. The algorithm requires
an initial delay while the processors estimate frequency corrections, followed by a rcsyn-
chronization of time every minute. (Frequency corrections could be calculated when the
hypercube is rebooted and saved in a file, these corrections could then be read by
clk syncti() when an application starts.) Our implementation requires only four messages
per processor to synchronize the hypercube clocks within tens of microseconds of each
other. For the Ncube 3200 hypercube, only initial tiinc synchronization is needed, no
frequency corrcction or resynchronization is required. The Ncube 6400 hypercube
clocks are synchronized by design.

Our algorithm has assumed a dedicated hypercube and idle communication chan-
nels. However, in some cases, other traffic may be competing for the communication
channcls, for example, if the hypercube is being shared with other applications or if there
is traffic from other parts of the application during resynchronization. In this case the
variance in the message delay and our error bounds increase. In fact, message delays can
be much larger, so to maintain the same error bounds, it might be be necessary to add a
minimum-delay threshold and keep sampling until delays fall below that threshold.

If multi-tasking is supported on a hypercube processor, then the synchronization
algorithm needs to be implemented in the operating system, so that each process on a
processor has a synchronized, monotonic clock. If time synchronization is required with
external clocks, then processor 0 could synchronize with the hypercube host processor.
However, typical external clock synchronization algorithms over a local area network are
usually accurate to only tens of milliseconds [MILW]. Finally, it is possible for time to
appear to run backwards as a result of a resynchronization, possibly resulting in a timing
anomaly in an application. More sophisticated local clock software is needed to slew a
clock to the proper timc, rather than making a step adjustment backwards in time. Mills
describes the necessary characteristics of a local clock [MIL90].

- 11 -

Distributed parallel processors need high precision, synchronized clocks. We have
demonstrated that hypercube clocks can be synchronized using only application software
with very little overhead. However, to support fault tolerance, slewing, and tighter syn-
chronization, much more software will be needed. It is much more desirable to have a
single clock like the Ncube hypercubes or hardware synchronized clocks, eliminating the
intrusion and software overhead and providing tighter synchronization.

- 1 2 -

[CRI 891

[DUN901

[FRER9]

[GEI90]

[INT89]

[LAM781

[MIL891

[MIL901

[NCU86]

References
F. Cristian, “Frobablistic Clock Synchronization”, ZBM Alrnaden Research
Report RJ 6432 (62550), March 1989.

T. H. Dunigan, ‘‘Performance of the Intel iPSC/860 Hypercube”, Oak Ridge
National Labornmy TM-I 1491, June 1990.

J. C. French, A Global Time Reference for Hypercube Multicomputer,
Proceedings of the Fourth Conference on Hypercubes, Montcrey, CA, 1989,

G. Geist, et al., “A User’s Guide to PICL: A Portable Instrumented Com-
munication I,ibrary”,Oak Ridge National Laboratory TM-I 1616, September
1990,

Intel, iPSC Programmer’s Reference Manual, Intel 3 1 1708-2, Portland, Ore-
gon, 1989.

L. Lamyot-t,“Time, Clocks, and the Ordcring of Events in a Distributed Sys-
tern”, Comm. ofthe ACM, 7(July 1978),558-565.

D. L, Mills, “Network ’rime Protocol (version 2) specification and imple-
mentation”, DARPA Network Working Group Report RFC-I I 19, September
1989.

D. E. Mills, “Network ’Time Protocol (version 3) specification and imple-
mentation”, DARPA Network Working Croup Draf RFC, September 1990.

Ncube, Ncube Handbook, Ncube V l . 1, Beaverton, OR, 1986.

pp. 217-220.

[RAM90a] P. Ramanathan, et al., “Fault-Tolerant Clock Synchronization in Distributed
Systems”, IEEE Computer, 23(0ctober 1990), 33-42.

[RAM90b] P. Ramanathan, et al., “I-Iardware-assisted Software Clock Synchronization

[SHI88]

[S RI8 71

[VAS881

for Homogeneous Distributed Systems”, IEEE Trans. Computers, 39(April

K. G. Shin, et al., “Transmission Delays in Hardware Clock Synchroniza-
tion”, IEEE Trans. Computers, 37(Nsvernber 1988), 1465-1467.

T. K. Srikanth et al., “Optimal Clock Synchronization”, J . A C M , 34(July

N. Vasanthavada, et al., “Synchronization of Fault-tolerant Clocks in the
Presence of Malicious Failures”, ZEEE Trans. Computers, 37(April 1988),

1990), 514-524.

1987), 626-645.

440-4 48.

- 1 3 -

Appendix A

Intel iPSC/2 microsecond clock subroutines

The following C and assembler subroutines provide access to the microsecond
hardware counters used by inclock(). This code is similar to that provided by Worley in
the PICL library [GE190].

/ * c l o c k O () r e t u r n s d o u b l e p r e c i s i o n t i m e s e c o n d s * /
/* load w i t h -D t o get 1/0 p r iv i l ege t o access hardware L i m e r s * /
/* D O 250 us t i m e r t h a t carries o v e r t o Dl (20'250 11s u n i t s) * /
/ * code t r ies t o a v o i d ro l l -over r e g i o n s o f t hese two c o u n t e r s * /

d e f i n e PIT-DO OxDO
d e f i n e PIT-D1 OxD2

d o u b l e c l o c k 0 ()

(
i n t e2h, e21, e n v I N 0 ;
l o n g t i m e l , t i m e] ;
u n s i g n e d l o n g m c l o c k o ;

e 2 1 = envIN(PIT_-DO); / * read t i m e r regis ter * /
i f (e 2 1 >= 15) e2h = envIN(PIT-Dl) ; / * a v o i d r o l l o v e r * /

else {
w h i l e (envIN(PIT.-DO) < 15) ; / * a v o i d r o l l o v e r * /
e 2 1 = envIN (PIT-DO) ;
e 2 h = envIN (PIT-Dl) ;
};

i f (e2h > 1) t i m e 1 -= m c l o c k () ;
e l s e (
w h i l e (envIN(P1'T-DO) < 1 0 0) ; / * avoid r o l l o v e r * /
t i m e l = r n c l o c k () ;
e2h = envIN (PIT-_Dl) ;
e 2 1 = envIN (PIT-DO) ;
1;

t i m e l = t i m e l / 5 0 ; / * remove redundant : l o w e r b i t s * /
t i m e 2 = 50250 - (250*e2h + e21);
r e t u r n (. 0 5 * t i m e l t . O O O G O l * t i m e 2) ;

I

/ e n v i n . s a s s e m b l e r r o u t i n e t o read i/n register, r e s u l t = e n v I N (r e g) ;

e n v I N :
. g l o b 1 e n v I N

rnov 4 (%esp) , % e d x
x o r &ax, % e a x
. b y t e OxEC / i n b %dx
ret

- 15-

ORNL/TM-11744

INTERNAL DISTRIBUTION

1.
2-3.

4.
5.

6- 10.
11.
12.
13.
14.
15.
16.
17.

18-19.
20.

21-22.

37.

38.

39.

40.

41.

42.

43.

44.

45.

B. R. Appleton
T. S. Darland
E. F. D’Azevedo
J. J. Dongarra
T. H. Dunigan
G. A. Geist
M. T. Heath
E. R. Jessup
E. G. Ng
V. W. Ng
C. E. Oliver
B. W. Peyton
S . A. Raby
C. H. Romine
R. C. Ward

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

34.
35-36.

P. H. Worley
A. Zucker
J. J. Doming (EPMD Advisory Committee)
R. M. Haralick EPMD Advisory Committec)
J. E. Leiss (EPMD Advisory Committee)
N. Moray (EPMD Advisory Committee)
M. F. Wheeler (EPMD Advisory Committee)
Central Research Library
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library

Laboratory Records - RC
Laboratory Records Dept.

Document Relerence Station

EXTERNAL DISTRIBUTION

Clew Ashcraft, Bocing Computer Serviccs, P.O. Box 24346, M/S 7L-2 1 , Seattlc, WA

Robcrt G. Babb, Dept. of Computer Science and Engineering, Oregon Graduate Insti-
tute, 19600 N.W. Walker Kd., Beaverton, OR 97006

David H. Bailey, NASA Ames Research Center, Mail Stop 258-5, Moffetl Field, CA
94035

Jesse L. Barlow, Dept. of Computer Sciencc, Pennsylvania State University, Univcr-
sity Park, PA 16802

Edward W. Barsis, Computer Science and Mathcmatics, P. 0. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87 185

Eric Barszcz, NASA Ames Research Center, MS T045-1, Moffett Field, CA 94035

Robert E. Benner, Parallel Processing Div. 1413, Sandia National Laboratories, P. 0.
Box 5800, Albuquerque, NM 87185

Donna Bergmark, Cornel1 Theory Center, Enginecnng and Theory Ccntcr Bldg.,
Ithaca, NY 14853-3901

Chris Bischof, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Avc., Argonnc, IL 60439

98 124-0346

- 16-

46. Ake Bjorck, Dept. of Mathematics, Linkoping University, S-58 1 83 Ihkoping,
Sweden

47. Jean R. S . Blair, Dept. of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

48. Daniel Boley, Dept. of Computer Science, University of Minnesota, 200 Union St.
S.E. Rm.4-192 Minneapolis, MN 55455

49. James C. Browne, Dept. of Coniputer Sciences, University of Texas, Austin, TX
78712

50. Bill L. Buzbee, Scientific Computing Div., National Center for Atmospheric
Research, P.O. Box 3000, Boulder, 6‘0 80307

51. Donald A. Calahan, Dept. of Electrical arid Computer Engineering, University of
Michigan, Ann Arbor, MI 48 109

52. John Cavallini, Office of Scientific Computing, Office of Energy Research, ER-7,
Germantown Building, U.S. Dept. of Energy, Washington, DC 20.545

53. Ian Cavers, Dept. of Computer Science, University of British Columbia, Vancouver,
British Columbia V6T 1W5, Canada

54. Tony Chan, Dept. of Mathematics, University of California, Los Angeles, 405 Hilgard
Ave., Los Angeles, CA 90024

55. Jagdish Chandrrt, Army Research Office, P.O. Box 1221 1, Research Trianglc Park,
NC 27709

56. Eleanor Chu, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

57. Melvyn Cirnent, National Science Foundation, 1800 G Street N.W., Washington, DC
20550

58. ‘Thomas Coleman, Dcpt. of Computer Science, Coinell University, Ithaca, NY 14853

59. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Ecrkcley,
CA 94720

60. Jane K. Cullum, IRM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

61. George Cybenko, Center for Supercomputing Research and Dcvelopment, Ilniversity
of Illinois, 104 S. Wright St., Urbana, IL 61801-2932

62. George J. Davis, Dept. of Mathematics, Georgia State University, Atlanta, GA 30303

63. Iain S Duff, .4tlas Centre, Rutherford Appleton Laboratory, Chilton, Oxon OX1 1
OQX England

64. Patricia Ebcrlein, Dcpt. of Computer Science, SUNY at Buffalo, Buffalo, NY 14260

6.5. Stanley Eisenstat, Dcpt. of Computer Science, Yale University, P.O. Box 2158 Y a k
Stalion, New Haven, CT 06520

- 17-

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

74.

80.

81.

82.

83.

84.

85.

Lars Elden, Dept. or Mathematics, Linkoping University, 58 1 83 Linkoping, Swcdcn

Howard C. Elman, Computer Science Dept., University of Maryland, College Park,
MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M / S 7L-21, Scattle,

Ian Foster, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439

Geof€rey C. Fox, Booth Computing Center 158-79, California Institute of Technol-
ogy, Pasadena, CA 9 1 125

Paul 0. Frederickson, NASA Amcs Research Ccnter, RIACS, M/S T04.5-1 Moffett
Field, CA 94035

Fred N. Fritsch, Computing & Mathematics Research Division, Lawrcncc Livermore
National Laboratory, P. 0. Box 808, L-316 Livermore, CA 94550

Robert E. Funderlic, Dept. of Computer Science, North Carolina State University,
Raleigh, NC 27650

Dennis B. Gannon, Computer Science Dept., Indiana University, Bloomington, IN
47405

David M. Gay, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974

C. William Gear, Computer Science Dept., University of Illinois, Urbana, IL 61 801

W. Morven Gentleman, Div. of Electrical Engineering, National Research Council,
Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada KIA OR8

J. Alan George, Vice President, Academic and Provost, Needles Hall, Univcrsity of
Waterloo, Waterloo, Ontario, Canada N2L 3G 1

John R. Gilbert, Xerox Pdlo Alto Rescarch Center, 3333 Coyote Hill Rd., Palo Alto,
CA 94304

WA 98124-0346

Gene H. Golub, Dept. of Computer Science, Stanford University, Stanford, CA 94305

Joseph F. Grcar, Div. 8331, Sandia National Laboratories, Livennore, CA 94550

Sven Hammarling, Numerical Algorithms Croup Ltd. Wilkinson House, Jordan Hill
Road Oxford OX2 8DR, United Kingdom

Per Christian Hansen, UNI*C Lyngby, Building 305, Technical University of Dcn-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

Don E. Heller, Physics and Computer Science Dept., Shell Development Co., P.O.
Box 481, Houston, TX 77001

- 18 -

86. Nicholas J. Higham, Dept. of Mathematics, University of Manchester, Grt Manches-
ter, M13 9PL, England

87. Charles J. Holland, Air Forcc Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

88. Robert E. Huddleston, Computatiori Dept., Lawrence Livermore National Laboratory,
P.O. Box 808, Livemore, CA 94550

89. Ilse Ipsen, Dept. of Computer Science, Yale University, P.O. Box 2158 Yale Station,
New Haven, CT 06.520

90. Lennart Joluwon, Thinking Machines Inc., 24.5 First St., Cambridge, MA 02142-
1214

91. Hany Jordan, Dept. of Elcctricd and Computer Engineering, University of Colorado,
Boulder, CO 80309

92. Bo Kagstrom, Institute of Infomation Processing, University of Umea, 5-901 87
Urnea, Sweden

93. Malvin H. Kitlos, Cornel1 Theory Center, Engineering and Theory Center Uldg., Cor-
nell University, Ithaca, NY 14853-3901

94. IIans Kapcr, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonnc, IL 60439

95. Robert J. Kee, Applied Mathematics Div. 8331, Sandia National I ,aboratorics, Liver-
more, CA 94550

96. Kenneth Kennedy, Dept. of Computer Science, Rice IJniversiey, P.O. Box 1892,
Ilouston, TX 77005

97. Thomas Kitchens, Dept. of Energy, Scientific Computing Staff, Office of Energy
Research, ER-7, Office G-236 Gemantown, Washington, DC 20585

98. Richard Lau, Code 11 1 IMA, 800 N. Quincy Street, Boston Tower, 1 Arlington, V A
222 17-5000

99. Alan J. Laub, Dept. of Electrical and Cornputcr Engineering, Ilnivcrsity of California,
Santa Barbara, CA 93106

100. Robert L. Launer, Amy Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

101. Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Dr.,
Pasadena, CA 91 109

102. Peter D. Lax, Courant Institute of Mathematical Sciences, New York IJniversity, 25 1
Mercer St., New York, NY 10012

103. John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Scatlle, WA
98 124-0346

- 19-

104. Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston, TX

105. Joseph Liu, Dept. of Computer Science, York University, 4700 Keele St., North York,
Ontario, Canada M3J lP3

106. Franklin Luk, School of Electrical Engineering, Cornell University, Ithaca, NY 14853

107. Thomas A. Manteuffel, Dept. of Mathematics, University of Colorado - Denver,
Denver, CO 80202

108. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali-
fornia Blvd. Pasadena, CA 91 125

109. James McGraw, Lawrence Livennore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

110. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

11 1. Brent Morris, National Security Agency, Ft. George F. Meade, MD 20755

112. Dianne P. O’Leary, Computer Science Dept., University of Maryland, Collcgc Park,
MD 20742

113. Jamcs M. Ortega, Dcpt. of Applied Mathematics, Thornton Hall University or Vir-
ginia, Charlottcsville, VA 22903

114. Chris Paige, Dept. of Computer Science, McGill University, 805 Sherbrooke S t . W.,
Montreal, Quebec, Canada H3A 2K6

115. Roy P. Pargas, Dept. of Computer Science, Clemson University, Clemson, SC

116. Beresford N. Parlett, Dcpt. of Mathematics, Univcrsity of California, Bcrkelcy, CA
94720

117. Merrell Palrick, Dcpt. of Computer Science, Duke University, Durham, NC 27706

118. Robert J. Plcmmons, Dcp1.s of Mathematics and Computer Science, North Carolina
State University, Raleigh, NC 27650

119. Jesse Poore, Dept. of Computer Science, Ayres Hall, University of Tennessee, Knox-
ville, TN 37996-1301

120. Alex Pothen, Dept. of Computer Science, Pennsylvania State University, University
Park, PA 16802

121. Michael J. Quinn, Computer Science Dept., Oregon State University, Coivallis, OR
9733 1

122. Noah Rhee, Dept. of Mathematics, University of Missouri-Kansas City, Kansas City,

123. John K. Reid, Numerical Analysis Group, Central Computing Dept., Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX1 1 OQX, England

77042-3020

29634- 1906

MO 64 I 10-2499

- 20 -

124.

125.

124.

127.

128.

129.

130.

131.

132.

133.

134.

135.

134.

137.

135.

139.

140.

141.

142.

Werner C. Rheinboldt, Dept. of Mathematics and Statistics, University of Pittsburgh,
Pittsburgh, P14 15260

John R. Rice, Computer Science Dept., Wlrdue University, West Lafayette, IN 47907

Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore 1-aboratory,
Livermore, CA 94550

Donald J. Rose, Dept. of Computer Science, Duke IJniversity, Durham, NC 27706

Ahmed 11. Sameh, Computer Science Dept.? Ilniversity of Illinois, Urbana, IL 61801

Michael Saunders, Systems Optimization Laboratory, Operations Research Dept.,
Stanford University, Stanford, CA 94305

Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffct
Field, CA 94035

Martin 11. Schultz, Dept. of Computer Science, Yale Ilniversity, P.O. Box 2158 Yak
Station, New Havcn, CJT 06520

David S. Scott, Intcl Scientific Computers, 15201 N.W. Greenbricr Pkwy., Bcavctton,
OR 97006

Lawrencc F. Shampine, Marhcmatics Dept., Southern Methodist University, Dallas,
TX 75275

Kermit Sigmon, Dcpt. of Mathematics, University of Florida, Gainesville, FL, 3261 1

Horst Simon, Mail Stop 258-5, NASA Ames Research Center, Moffctt Field, CA
94035

Larry Snyder, Dept. of Computer Science and Engineering, FR.35, Univcrsity of
Washington, Seattle, WA 98195

D m y C. Sorcnscn, Dept. of Mathematical Sciences, Rice University, P. 0. Box
1892, Houston, T X 7725 1

Rick Stevens, Mathematics and Computer Sciencc Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

G. W. Stewart, Computer Science Dept., University of Maryland, College Park, ML)
20742

Qucntin F. Stout, Dept. of Electrical and Computer Enginecring, Univcrsily of Michi-
gan, Ann Arbor, MI 48 109

V. S. Sunderam, Dcpts. of Math and Computer Scicnce, Emory Ilniversity, Atlanta,
GA 30322 Daniel B. Szyld, Dcpt. of Computer Science, Duke linivcrsity, Durham,

W.-P. Tang, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G 1

NC 27706-259 1

- 2 1 -

143. Michael Thomason, Dept. of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

144. Bernard Tourancheau, LIP ENS-Lyon 69364 Lyon cedex 07, France

145. Charles Van Loan, Dept. of Computer Science, Cornel1 University, Ithaca, NY 14853

146. James M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1W5, Canada

147. Robert G . Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

148. Michael Vow, Dept. of Computer Science, Ayres Hall, University of Tenncssce,
Knoxville, TN 37996- 1301

149. Phuong Vu, Cray Rcsearch Inc., 1408 Northland Dr., Mendota Heights, MN 55 120

150. E. L. Wachspress, Ucpt. of Mathematics, University of Tennessec, Knoxville, TN

151. Daniel D. Wamcr, Dept. of Mathematical Sciences, 0-104 Martin Hall, Clcmson
University, Clemson, SC 29631

152. D. S. Watkins, Dept. of Pure and Applied Mathematics, Washington State University,
Pullman, WA 99 164-2930

153. Andrew B. White, Computing Div., Los Alamos National Laboratory, Los Alamos,
NM 87545

154. Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumann Dr., Beaver-
ton, OR 97006

155. Margaret Wright, Bell L,aboratories, 600 Mountain Ave., Murray Hill , NJ 07974

156. David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

157. Office of Assistant Manager for Energy Research and Development, U.S. Dept. of
Energy, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600

158-167. Office of Scientific Technical Information, P.O. Box 62, Oak Ridge, TN 37831

37996-1300

