RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

LSRRI

l 3 445k 0333725 3 ORNL/TM-11744

OAK RIDGE
NATIONAL |
LABORATORY Hypercube Clock Synchronization

MARTIN MARIETTA

T. H. Dunigan

) OAK RIDGE NATIONAL LABORATORY

CENTRAL RESEARCH LiIBRARY
CIRCULATION SECTION

4500N ROOM 175

' LIBRARY LOAN COPY

DO NOT TRANSFER TO ANOTHER PERSON
¥ you wish someone else to see this
report, send in name with report and
the library will arrange a loan.

69 '3 977

MANAGED BY

MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES

DEPARTMENT OF ENERGY

-j0818y} Aouebe Au 10 JUBUWIUIBAOYD)
$01BIS pejun 8yl Jo 8soy) Joeyel 1o ejeis AjluBssedsu jou op wesey pessesdxe
sioyine jo suoiuido pue smein eyj ‘Joeisy) Aouebe AuB IO JUBLIUIBAOL)
§0}8IS pelun eyl Aq Buioas} JO ‘uonBpUBWIWOIeS ‘Juewesiopue sy Aldwi 10 aym
-JSUO0D A1JBSS826U JOU Se0p ‘@siMIBylo JO ‘JesnjorjnueBwl ‘YJBWEPEI} ‘BWBU epel}
Aq eoiaies Jo ‘sseo0ud ‘Jonpoud [BIOJOWIWOD oyoeds AuB 0O} uleley edoueiejey
"8jybu peumo AjejeAd eBuuju) Jou pjnom esn s) }BY} sjuesesdel Jo ‘pesold
-sip sseooid Jo ‘Jonposd ‘snjesedde ‘uonewliol Aue Jo sseunjesn 1o ‘sseusjs|d
-wod ‘Aoeinode ey} Joy Apjqisuodses 1o Appqen [eBe| Aue sewnsse 10 ‘peiljdw)
io sseudxe ‘Aueiiem AuB sexpw ‘seeAojdwe eyl jo Aue Jou ‘joesey} Aouvebe
AUB JOU JUBWUIBOAOD) S8IBIS POUN Syl JOYLSN ‘JUBLIULISAOD) S8}BIS pelun eyl
jo AoueBe ue AQ pelosuods Hiom jJo JunoOoe ue sB pesedesd sem lode. siyl

19122 VA ‘Pleybuuds pY [BAOH Lod §82S ‘80sewwo) jo juswiedeg
‘SN ‘O0IAIeS UOHBULIOJ| |BOWYOS] [BUOHBN oy} woy onand ey} O} 8|qBfiBAY

‘L0P8-929 S1d 'LO¥8-9.9
(S19) woyj ejgejieae sedud !LEQLE NL ‘8BPIH 3BO ‘29 X0g "O'd ‘UoiBULIO| [BD
-luyda} pue J4nULIDS JO BJYO 8y} woJj s10J0BJUOD JOQJ PUB JOQ O} 8igB|IBAY

‘kdoo e|qejiBAR Jseq ey} woJuj Ajjoslip peonpoides ueeq sey Loded siyy

Engineering Physics and Mathematics Division

Mathematical Sciences Section

HYPERCUBE CLOCK SYNCHRONIZATION

T. H. Dunigan

Date Published ~ March 1991

ORNL/TM-11744

The work was supported by the
Applied Mathematical Sciences subprogram
of the Office of Energy Research,

U. S. Department of Energy

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
operated by
Martin Marietta Energy Systems, Inc.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

MARIETTA ENERGY SYSTEMS LIBRARES

(T

3 445k 033375 3

Table of Contents

AADSITACE oot ee e e e s v eesseseeereensaesesessaestnsn e san s e s b aassEe st sas s asasensaeassnssssssennntsss b sessanrasaseneannan 1
L. IEFOQUICHION oottt evere et s seesasase st seens s areseses sasannsssbeseesasnseasessnnsaassesensestntsssaserereenn 1
2. Clock SYNCHIOMIZAIONccoivieereceerireinceseenmsisecssessessssanetssssssasserssssassscsnsessmsssnsssnsesms s ssssssesns 1
3. HYPEICUDE CIOCKS ...conemirriricrnirrereneensecssntssemssasscssssssssesssasesssssssssssssesssssssesssssasssssss st sessssssanssns 4

Bl IR oottt e e e aeere e ee et s et em e sanesan s et ot e et en e eAs A bRttt S ronsanntes et sre st enene st abereseeneneane 5

B2 NCUDE oot eer et et e e estseenets et sesaoesestraenos ot svessesas sesenesssmsasncnssesenssstntonsasasnsasasasssosacs 9
4, LImitations And EXIENSHONS ..o iceiereeiesieee et ststesesteseasstetssssessesssssessesessssssereessarasessssssssssens 10
R T IICES ettt ettt et te e eveseses e s s s e s bos et et sasaserane ss et ennnsasesseessesessabebes sanesease bt eemaseeranas 12

Appendix A: iPSC/2 microsecond clock SUDTOULINESvccvrvverirernnirnecnreccsisirne s 13

Hypercube Clock Synchronization

T. H. Dunigan
Mathematical Sciences Section
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
Oazak Ridge, Tennessee 37831
thd@ornl.gov

ABSTRACT

Algorithms for synchronizing the times and frequencies of the clocks
of Intel and Ncube hypercube multiprocessors are presented. Bounds for
the error in estimating clock offsets and frequencies are formulated in
terms of the clock read error and message transmission time. Clock and
communication performance of the Ncube and Intel hypercubes are
analyzed, and performance of the synchronization algorithms is presented.

Keywords: clock synchronization, hypercube communication.

1. Introduction.

In distributed computing, there is a need for accurate clocks that give the same time
on every computing element. A distributed computation may be implemented over a
local area network of computing elements or on a parallel processor. Distributed com-
puting systems that depend on such a common time include transaction processing sys-
tems, real-time systems, and simulation systems. A common time is also needed for
event traces and synchronization such as timeouts or checkpoints.

This report addresses synchronizing the clocks in hypercube parallel processors,
specifically to eliminate timing anomalies in event trace files. If the clocks are not syn-
chronized, timing anomalies can occur, such as the apparent receipt of a message before
it was sent. In the following section, a model for synchronizing clocks in a distributed
computing environment is developed. In section 3, the characteristics of the clocks and
message-passing systems of the Ncube and Intel hypercubes are analyzed, and clock syn-
chronization algorithms are developed. Section 4 discusses the performance of the
hypercube clock synchronization algorithms and the need for hardware clock synchroni-
zation.

2. Clock Synchronization

We wish to synchronize the clocks in a distributed computing system so we can
order events. In particular, if C[a] is the time at which processor i sends a message to
processor j, and Cj[b] 1s the time processor j receives the message, we want Ci[a] < Cj[b].

-92-

This is Lamport’s condition C2 [LAM78]. To avoeid timing anomalies of events on a sin-
gle processor, we further require that timee be monotonically increasing, that is, Cfty) >
Cit)),if t, > t, where C (1) is time from processor i’s clock at physical time 1.

To develop a light-weight clock synchronization algorithm that a hypercube appli-
cation program can implement, we assume that there are no faulty clocks in our ensemble
of processors. Synchronization techniques in the presence of faulty clocks are discussed
in [SRI87] and [RAM90a]. A robust and successful implementation of clock synchroni-
zation over a network is described in [MIL89] and [MIL90]. This report develops
software synchronization algorithms, though we later arguc for a single clock or
hardware synchronization of the ensemble of clocks. Hardware synchronization, how-
ever, is non-trivial [SHI8S8], [VAS88], [RAMS(b].

The offset, 8, between two clocks is the difference in their readings at the same phy-
sical time, that is,
0=1C;(t)- Cj(t)l.

The skew, ¢, between two clocks is their difference in frequency (first derivative of offset
with time) measured over an interval S, where

Cj (t-4+S8)— C}- @)
C;(t+8) ~ C; (1)
Computer clocks drift only a few seconds per day, so typically, ¢ < 102, Computer
clocks exhibit some variation in skew (second derivative of offset with time) due to aging

or temperature variation, but the effect is small (less than a few parts per million (ppm))
and 1s ignored in this study. Table 1 summarizes the notation used in this report.

¢

Nl

Notation

l.(t) clock time at processor i at real time ¢
clock offsct

round-trip message time

frequency difference (skew)

clock precision

resynchronization interval

skew estimation interval

minimum message transmission fime

P!

TS oD

Table 1. Notation conventions.

To avoid timing anomalies in sending and receiving messages between two proces-
sors, where the minimurm message transmission time is U, the sum of the offset and skew
of the transmitter’s clock must be less than U, thatis 0 + Up < U , or

We will have timing anomalies if the two clocks are not within U of each other, and,
even if they are initially that close, after some period of time the two clocks will have
drifted greater than U apart because of the difference in the frequencies. Thus, to syn-
chronize clocks, we must synchronize both time (eliminate or reduce the offset) and

-3-

frequency (make both clocks run at the same rate).

Time synchronization.

Processor i can synchronize its time with processor j by sending a message to pro-
cessor j at time C (1) rcquestmg that processor j send its current time back in a message
(Figure 1). If procelssor i receives processor j's reply at time C (t) then processor i can
measure the round-trip time

3=C;(tg) - C;(t;)

that it took to send the message and receive the reply and calculate an estimate of the
offset between the two clocks,

0=C;(t;)+ 82— C;(tg).

Ideally, 8 = 2U, but in most message-passing systems, the transmission times to and from
processor j are independent random variables. Thus 0/2 is only an unbiased estimate of
the transmission time from processor j. Furthermore, the local clock can be read only to
within an error bounded by the clock’s precision, p. Thus we can estimate the offset only
to within some error, €y- Including the clock precision with Cristian’s result [CRI89], it
can be shown that

ee<-g——U+¢6+p. 2.1

In section 3, we will quantify the error of our offset estimator and develop filters to
reduce those bounds.

Cj(tj)

Gt Ci(ty)
Figure 1. Processor i requests processor j's time.

Frequency synchronization.

Even if we can make the offsets suitably small, after U/p seconds, the two clocks
would again be greater than U seconds apart, resulting in potential timing anomalies.
Thus the clocks would have to be resynchronized every U/¢ seconds, or, more conserva-
tively, every (U - gy)/¢ seconds. We can reduce this resynchronization interval by
measuring the skew between the two clocks and using this estimate to ‘‘adjust’’ the fre-
quency of one of the clocks. Processor i can estimate the difference in frequency by tak-
ing the ratio of the differences of the two clocks over a period §, where

(f): Cj(r+S) Cj(z) ' 22)

The error in the estimate is

-4-

so ¢ can be estimated to the desired accuracy by increasing the interval S. Since we
assume that the frequency difference between two clocks is constant, we need calculate ¢
only once.

Having calculated both the time and frequency estimates, then the adjusted clock on
processor i that is synchronized to the clock on processor j is

T;(t)= C;(1) + 8+ §(r—t) , (23)
and the resynchronization interval is then
U —
&

In the following section, we will apply this clock synchronization model to hypercube
parallel processors.

3. Hypercube clocks and communication.

A hypercube parallel processor is an ensemble of computers interconnected by a
communication network with the topology of an #-dimensional hypercube. Each proces-
sor has its own local memory, clock, and communication channels to n other processors.
The processors work concurrently on an application and coordinate their computation by
passing messages. First-generation hypercubes used a store-and-forward scheme to route
messages between non-adjacent processors. Present generation hypercubes use
hardware-assisted direct routing, and message-passing times are on the order of hundreds
of microseconds [DUN90]. By contrast, message-passing times on local area networks
are on the order of tens of milliseconds.

Hypercube Synchronization Parameters
iPSC/860 iPSC/2 N6400 N3200

Crystal frequency (MHz) 40 20 80 32
Measured frequency difference (9) (pprm) 80 25 0 0

Clock precision (is) 0.1 1.0 0.05 128
Effective clock precision (p) (s) 1 15 1 128
Clock read error (Us) 60 @ 10ms | 260 @ 50ms | 30 @ 20ms 128
Round-trip error (d6) (jis) 120 527 60 128
Filtered round-trip error (d6) (us) 25 114 18 128
Minimum message time (U) (LLs) 64 302 151 511
Barrier exit error (d6) (p1s) 250 400 100 128
Monotonic clock yes yes yes no

Table 2. Intel and Ncube clock and communication parameters.

Hypercube processor clocks may be driven by a single time source, or each proces-
sor may have its own time source. The Ncube hypercubes use a single crystal oscillator
to provide timing for all of the processors, and thus clock synchronization is fairly sim-
ple. The Intel hypercubes usc a separate crystal on cach processor, and the communica-
tions hardware on each processor has its own crystal. Clock synchronization for the Intel

-5-

hypercubes requires both time and frequency synchronization. Table 2 summarizes the
clock and communication characteristics of both families, and details of the Intel and
Ncube characteristics are discussed in the next two sections.

3.1. Intel hypercubes.

Clocks

The Intel iPSC/860 hypercube uses 40 MHz oscillators on each processor. The cry-
stal oscillator, manufactured by MF Electronics, has a frequency stability of 0.01% (200
ppm) and a variation of frequency less than 5 ppm with respect to temperature. We
measured the frequency differences between the processors on three different iPSC/860
hypercubes and found the maximum frequency difference to be less than 100 ppm
(ORNL 128 processors < 80 ppm; NASA Langley 128 processors < 60 ppm; ICASE 32
processors < 40 ppm). The actual differences can change as processor boards are
replaced or as temperature varies.

The iPSC/860 provides a 100 nanosecond timer that is readable with the dclock()
function available under NX 3.2. The resolution between two successive calls to
dclock() is about 1.5 microseconds (averaged over 2,000 samples) with little variance.
However, a 40 microsecond spike occurs every 10 milliseconds from an operating system
timer interrupt. When the iPSC/860 is ‘‘booted,”” all of the processor timers are reset
simultaneously.

The Intel iPSC/2 hypercube uses a 20 MHz oscillator on each 80386 processor
board. The oscillator operating characteristics are similar to those of the oscillator used
on the iPSC/860. We measured a maximum frequency difference of less than 25 ppm on
the 64-processor ORNL iPSC/2. Time is provided through two 16-bit, microsecond
countdown timers and an operating system variable that is incremented by 50 mil-
liseconds when the high-order counter interrupts.

On the iPSC/2, only one millisecond resolution is provided by the Intel dclock()
function, and the time is not monotonic (successive calls will return the same time, since
several calls can be made in less than a millisecond). However, the PICL library
[GEIS0] provides a microsecond resolution time function, clockO() for the iPSC/2 (see
Appendix A). Successive calls to clockO() take an average of 138 microseconds, with a
260 microsecond spike every 50 milliseconds as a result of the operating system timer
interrupt. (The iPSC/2 hypercube operating system (NX 3.2) actually provides multitask-
ing for an application on each processor of the hypercube, so, as with any time-sharing
operating system, even larger variations between successive calls to clock()() are possible
if multiple tasks are active.) Since the software that reads the countdown timers must
avoid the roll-over intervals of the counters, the values returned by clock(() exhibit more
variance than the iPSC/860 dclock() calls, reducing the effective resolution to about 15
microseconds. Since time on the iPSC/2 is maintained with an operating system vari-
able, when the hypercube is ‘‘booted,”’ this variable is reset only after the operating sys-
tem is loaded on each processor. On a 64-processor iPSC/2, several seconds can pass
before the last processor’s operating system is loaded and the time reset. Thus, the
iPSC/2 clocks will have offsets of several seconds as soon as they are started.

microseconds

Communication

Each iPSC/2 and iPSC/860 processor has a separate communication module that is
clocked by its own 28 MHz crystal oscillator. Message transmission time varies linearly
with message size [DUN90]. Part of the startup cost for sending a message is the time
for the processor and communication modules to synchronize. For messages between
non-adjacent processors, additional time is required to synchronize the intervening com-
munication modules. The minimum transmission time, U, (one hop, zero-length mes-
sage) is 64 microseconds for the iPSC/860 and is 302 microseconds for the iPSC/2.

6 hop

200 +

150

1 hop

500 1000 1500 2000
samples

Figure 2. 8-byte message round-trip delay (uis), iPSC/860, 2000 samples.

The clock synchronization model developed in section 2 uses the round-trip delay to
estimate offset between two processor’s clocks. Figure 2 illustrates the variance in the
round-trip delays for 2,000 samples using an 8-byte message, for adjacent iPSC/860 pro-
cessors and processors that are six hops away. The figure shows the spikes when a timer
Interrupt occurs on one or both of the processors involved. As expected, the multi-hop
delays are larger and show more variance than nearest neighbor communication. (1PSC/2
delays show somewhat less variance than the iPSC/860 delays due to the less precise
clock and due to the slower communication.)

From equation (2.1), our offset estimate improves as the round-trip delay
approaches the minimum round-trip delay. But the delay will be the minimum with only

count

-7 -

a small probability (Figure 3). We can be certain only that the delay will be less than the
maximum round-trip delay. (We shall assume for now that the delay does have an upper
bound.) If we wish to improve the error bound of our offset estimate, but at the risk of
some uncertainty, we can choose a delay, D, less than the maximum. If p is the probabil-
ity that processor i observes a round-trip delay greater than D, then the probability of
observing round-trip a delay less than D is /-p. However, if we make & successwc clock
requests, the probability of at least one delay less than D increases to / p [CRI89). Thus
we can choose a level of certainty and estimate the offset between clocks with a small
error bound at the cost of many messages or with a larger error bound but at the cost of a
only a few messages. We can also improve the deterministic estimate since some of the
variation in round-trip delay is not random, but is caused by fixed-interval, timer-
interrupt spikes. The interval between timer-interrupt spikes is much longer than the
round-trip delay, thus we can eliminate the effect of these spikes by taking the minimum
round-trip delay of at least three successive clock requests. Table 3 shows the reduction
in round-trip delay variance with increasing k using a minimum filter and 2,000 readings.

250 -
200 +
150 +
100 +
50 |
£ : St Pl et *
125 150 175 200 225 250

microseconds

Figure 3. One-hop round-trip delay distribution, iPSCI860, 2000 samples.

For our implementation, we use four successive requests to estimate the offset
between two clocks and use the resulting €4 (Table 3) to select the interval, S, for
estimating the frequency correction ¢ (2.2) to the desired precision. For example, to
adjust the frequency to within an error of one part per million for our dimension-6

-8-

iPSC/860, S (2.2) would need to be at least 26 seconds. Similarly, for our dimension-6
iPSC/2, the estimation interval would need to be at least 144 seconds.

iPSC/860 iPSC/2
1 hop 6 hops 1 hop 6 hops
k | min | max | €, | min | max { € || min | max | & | min | max g
11 147 | 235 | 45 | 246 | 339 | 47 || 704 | 985 | 155 | 797 | 1325 | 278
2) 147 } 195 | 25 | 246 | 294 | 14 | 704 | 838 82 | 197 931 82
3 147 | 171 |13 | 246 | 272 | 13 || 704 | 835 80 | 797 916 74
4] 147 | 166 9 246 | 271 | 13 || 704 | 835 80 | 797 911 72
51 147 | 164 91246 f 271 | 13 |j 704 | 834 80 | 797 911 72
10 | 147 | 160 71246 | 267 | 11 || 704 | 832 79 | 797 907 70

Table 3. Round-trip delay (\\s) with minimum of k tries. (2,000 samples)

Given €, and £q We can calculate the resynchronization time from (2.3). If the fre-
quency adjustment is accurate to within one ppm, the iPSC/860 processor would have to
be resynchronized in less than 55 seconds, and in less than 230 seconds for the iPSC/2.

Implementation

Given the clock and communication characteristics, we can synchronize the time
and frequency beiween two processors’ clocks. For an application program to synchron-
ize all of the processors’ clocks in a dimension-n hypercube, we use a master-slave
model. We designate processor (as the master clock, and all of the remaining proces-
sors synchronize their clocks with processor 0. (For the present, we require only that the
clocks be consistent within the hypercube; we are not trying to synchronize the clocks
with an external source such as UTC [MIL90].) Our clock synchronization algorithm
consists of two subroutines, clk_sync{) and sclock(). At the start of the application, each
processor calls clk_sync(S) to synchronize the time and estimate the frequency correction
over § seconds. The application then uses sclock() to read the processor’s synchronized
clock, where the synchronized time is calculated from (2.2). On the Intel hypercubes,
time resynchronization can be scheduled and managed in the ‘‘background’ using
alarm(R) and signal(SIGALRM) on the slave processors in conjunction with hrecv() on
the master processor.

These routines (less resynchronization) have been added by Worley to PICL
[GEI90] and have eliminated the timing anomalies previously experienced without clock
synchronization. PICL had previously used a barrier-synchronization (implemented with
a dimensional exchange) to synchronize time when event tracing was enabled. However,
timing anomalies occurred frequently, since the variation in barrier exit (Table 3) was
often larger than the minimum message transit time, and there was no compensation for
clock skew.

3.2. Ncube hypercubes.

The Ncube 6400 hypercube (also known as the Ncube 2) uses one 80 MHz crystal
oscillator to drive all of the processors and their associated clocks, count-down timers,
and communication channels. Each processor provides a 50 nanosecond running timer
accessible through the atickcni() function under Vertex 2.0. Successive calls to atickent()
require about 8 microseconds. There is a 30 microsecond spike from an operating system
timer interrupt every 20 milliseconds. When the hypercube is rebooted all of the running
timers are reset simultaneously. Thus all of the processors are synchronized with respect
to time, and since there is only one oscillator, there is no frequency skew.

The older Ncube 3200 hypercube (previously call the Ncube/ten) uses one 8 MHz
crystal oscillator to drive all of the processors. No running timer is provided, and each
processor keeps time using an operating system variable and a count-down timer inter-
rupt. When the Ncube 3200 is ‘*booted,’’ time is reset by the operating system after it is
loaded, so the processor clocks will not be synchronized. Time (actually clock rate
divided by 1024) is provided by the ntime() function, giving a resolution of 128
microseconds. Successive calls to ntime() can return the same value. Figure 4 illustrates
how ntime() can be packaged so that it returns monotonically increasing values.

#define MICRO 0.000001
#define SPT 0.000128
static double bump = 0;
static int lastt= 0O;
double sclock()

{

/* return seconds, each call will return larger value */
int t;

t = ntime(); /¥ ticks */

bump += MICRO;

if (¢ !'= lastt){ /* rollover */
bump = 0;
lastt=t;

}

return{bump + t * SPT);

Figure 4. Monotonic clock for the Ncube 3200.

Since all Ncube processors and communication channels are driven by the same
timing signal, there is much less variance in transmission times. On the Ncube 3200, the
low resolution of the clock masks any variance, so transmission times are within plus or
minus one tick (128 ps). Transmission time increases with message size and the number
of hops [DUN90], and for the Ncube 6400, the variance in transmission time increases
with multiple hops.

No clock synchronization is required for the Ncube 6400 hypercubes, and only ini-
tial time synchronization is required for the Ncube 3200 hypercubes. The Ncube 3200
requires no frequency estimation, and since the variance is small, successive time-request
messages and minimum filtering are not required. The Ncube 3200 application merely
calls clk_synch() on each processor when the program starts and uses sclock() to read the
synchronized and monotonically increasing time. As with the Intel hypercubes,

-10 -

clk_synch() uses a master-slave model, each processor synchronizing its time with pro-
cessor 0.

For both the Intel and Ncube hypercubes, synchronization could be done faster
using a spanning tree [FRE90]. Processor 0 would be used to synchronize the clocks of
its nearest neighbors. These clocks would then be the ‘‘master’” clocks for their respec-
tive subtrees. There would be n levels of master clocks in a dimension-n hypercube,
each level synchronizing its clocks with the level above. Clock synchronization could be
completed in n steps rather than the 2”-1 steps required by our master-slave scheme.
However, using spanning tree synchronization increases the error in the offset estimate
for a dimension-n hypercube to ney, where g is the one-hop error. For both the Intel
and Ncube hypercubes, the n-hop error is much less than neg (Table 3), so we choose the
more accurate master-slave scheme.

4. Limitations and Extensions.

Our master-slave, minimum filter, synchronization algorithm has eliminated the
timing anomalies in our event trace files. The algorithm is implemented as application
subroutines, requires no modifications to the operating system, and can be extended to
other distributed, parallel processor topologies such as a mesh. The algorithm requires
an initial delay while the processors estimate frequency corrections, followed by a resyn-
chronization of time every minute. (Frequency corrections could be calculated when the
hypercube is rebooted and saved in a file, these corrections could then be read by
clk_synch() when an application starts.) Our implementation requires only four messages
per processor to synchronize the hypercube clocks within tens of microseconds of each
other. For the Ncube 3200 hypercube, only initial time synchronization is needed, no
frequency correction or resynchronization is required. The Ncube 6400 hypercube
clocks are synchronized by design.

Our algorithm has assumed a dedicated hypercube and idle communication chan-
nels. However, in some cases, other traffic may be competing for the communication
channels, for example, if the hypercube is being shared with other applications or if there
is traffic from other parts of the application during resynchronization. In this case the
variance in the message delay and our error bounds increase. In fact, message delays can
be much larger, so to maintain the same error bounds, it might be be necessary to add a
minimum-delay threshold and keep sampling until delays fall below that threshold.

If multi-tasking is supported on a hypercube processor, then the synchronization
algorithm needs to be implemented in the operating system, so that each process on a
processor has a synchronized, monotonic clock. If time synchronization is required with
external clocks, then processor 0 could synchronize with the hypercube host processor.
However, typical external clock synchronization algorithms over a local area network are
usually accurate to only tens of milliseconds [MIL90]. Finally, it is possible for time to
appear to run backwards as a result of a resynchronization, possibly resulting in a timing
anomaly in an application. More sophisticated local clock software is needed to slew a
clock to the proper time, rather than making a step adjustment backwards in time. Mills
describes the necessary characteristics of a local clock [MIL90].

-11 -

Distributed parallel processors need high precision, synchronized clocks. We have
demonstrated that hypercube clocks can be synchronized using only application software
with very little overhead. However, to support fault tolerance, slewing, and tighter syn-
chronization, much more software will be needed. It is much more desirable to have a
single clock like the Ncube hypercubes or hardware synchronized clocks, eliminating the
intrusion and software overhead and providing tighter synchronization.

[CRI89]
[DUN90]

[FRESB9]

[GEI90]

[INT89]
[LAM7E]

[MIL89]

[MIL90]

[NCUS6]
[RAM90a]

[RAMO0b]

[SHIES]

[SRI87]

[VASS88]

-12-

References

F. Cristian, ‘‘Probablistic Clock Synchronization’’, IBM Almaden Research
Report RT 6432 (62550), March 1989.

T. H. Dunigan, ‘‘Performance of the Intel iPSC/860 Hypercube’’, Oak Ridge
National Laboratory TM-11491, June 1990.

J. C. French, A Global Time Reference for Hypercube Multicomputer,
Proceedings of the Fourth Conference on Hypercubes, Monterey, CA, 1989,
pp. 217-220.

G. Geist, et al,, ““A User’s Guide to PICL: A Portable Instrumented Com-
munication Library’’,Qak Ridge National Laboratory TM-11616, September
1990.

Intel, iPSC Programmer’s Reference Manual, Intel 311708-2, Portland, Ore-
gon, 1989.

L. Lamport,‘ “Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem’’, Comm. of the ACM, 7(July 1978),558-565.

D. L. Mills, ““Network Time Protocol (version 2) specification and imple-
mentation’’, DARPA Network Working Group Report RFC-1119, September
1989.

D. L. Mills, ““Network Time Protocol (version 3) specification and imple-
mentation’’, DARPA Network Working Group Draf RFC, September 1990.

Ncube, Ncube Handbook, Ncube V1.1, Beaverton, OR, 1986.
P. Ramanathan, et al., ‘“‘Fault-Tolerant Clock Synchronization in Distributed
Systems’’, IEEE Computer, 23(October 1990), 33-42.

P. Ramanathan, et al., ‘‘Hardware-assisted Software Clock Synchronization
for Homogeneous Distributed Systems™, [EEFE Trans. Computers, 39(April
1990), 514-524.

K. G. Shin, et al., “‘“Transmission Delays in Hardware Clock Synchroniza-
tion”’, IEEE Trans. Computers, 37(November 1988), 1465-1467.

T. K. Srikanth et al., “‘Optimal Clock Synchronization’’, J. ACM, 34(July
1987), 626-645.

N. Vasanthavada, et al., ‘‘Synchronization of Fault-tolerant Clocks in the
Presence of Malicious Failures’’, IEEE Trans. Computers, 37(April 1988),
440-448.

-13-

Appendix A

Intel iPSC/2 microsecond clock subroutines

The following C and assembler subroutines provide access to the microsecond
hardware counters used by mclock(). This code is similar to that provided by Worley in
the PICL library [GEI90].

/* clock0() returns double precision time seconds */

/* load with ~-D to get I/O privilege to access hardware timers */
/* DO 250 us timer that carries over to D1 (20%250 us units) */
/* code tries to avoid roll-over regions of these two counters */

#define PIT_DO OxDO
#define PIT D1 0xD2

double clockO ()

{
int e2h, e2l, envIN{);
long timel, time2;
unsigned long mclock ()

e2l = envIN(PIT_DO0); /* read timer register */
if (e2l >= 15) e2h = envIN(PIT_D1); /* avoid rollover */
else(
while (envIN(PIT DO) < 15) ; /* avoid rollover */
e2]l = envIN(PIT DO);
e2h = envIN(PIT D1);
}:

if (e2h > 1) timel = meclock():;
elsef
while (envIN(PIT_DO) < 100) ; /* avoid rollover */
timel = mclock(};
e2h = envIN(PIT D1);
e2l = envIN(PIT DO);
}:

timel = timel/50; /* remove redundant lower bits */
time2 = 50250 - (250*e2h + e2l);
return (.05 * timel + .000001 * time2);

/ envin.s assembler routine to read i/o register, result=envIN{reg);
.glebl envIN
envIN:
mov 4 (%esp), %edx
Xor $ecax, %eax
.byte OxEC / inb %dx

ret

-15 -

ORNL/TM-11744

INTERNAL DISTRIBUTION

1. B.R. Appleton 23. P. H. Worley
2-3. T.S.Darland 24. A, Zucker
4, E.F.D’Azevedo 25. 1. J. Doming (EPMD Advisory Commitice)
5. I Y. Dongarra 26. R. M. Haralick (EPMD Advisory Committec)
6-10. T. H. Dunigan 27.). E.Leiss (EPMD Advisory Commiltee)
11. G. A, Geist 28. N. Moray (EPMD Advisory Committee)
12. M. T. Heath 29. M. F. Wheeler (EPMD Advisory Committee)
13. E.R.Jessup 30. Central Research Library
14. E.G.Ng 31. ORNL Patent Office
15. V.W.Ng 32. K-25 Plant Library
16. C.E. Oliver 33. Y-12 Technical Library
17. B. W. Peyton /Document Reference Station
18-19. S. A.Raby 34. Laboratory Records - RC
20. C.H.Romine 35-36. Laboratory Records Dept.
21-22. R.C.Ward

EXTERNAL DISTRIBUTION

37. Cleve Ashceraft, Boeing Computer Services, P.O. Box 24346, M/S 7L.-21, Scattle, WA
98124-0346

38. Robert G. Babb, Dept. of Computer Science and Engineering, Oregon Graduate Insti-
tute, 19600 N.W. Walker Rd., Beaverton, OR 97006

39. David H. Bailey, NASA Ames Rescarch Center, Mail Stop 258-5, Moffett Field, CA
94035

40. Jesse L. Barlow, Dept. of Computer Science, Pennsylvania State University, Univer-
sity Park, PA 16802

41. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

42, Eric Barszcz, NASA Ames Research Center, MS T045-1, Moffett Field, CA 94035

43. Robert E. Benner, Parallel Processing Div. 1413, Sandia National Laboratories, P. O.
Box 5800, Albuquerque, NM 87185

44. Donna Bergmark, Cornell Theory Center, Enginecring and Theory Center Bldg.,
Ithaca, NY 14853-3901

45. Chris Bischof, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL 60439

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

62.
63.

64.
65.

-16 -

Ake Bjorck, Dept. of Mathematics, Linkoping University, S-581 83 Linkoping,
Sweden

Jean R. S. Blair, Dept. of Computer Science, Ayres Hall, University of Tennessce,
Knoxville, TN 37996-1301

Danicl Boley, Dept. of Computer Science, University of Minnesota, 200 Union St.
S.E. Rm.4-192 Minneapolis, MN 55455

James C. Browne, Dept. of Computer Sciences, University of Texas, Austin, TX
78712

Bill L. Buzbee, Scientific Computing Div., National Center for Atmospheric
Resecarch, P.O. Box 3000, Boulder, CO 80307

Donald A. Calahan, Dept. of Electrical and Computer Engineering, University of
Michigan, Ann Arbor, MI 48109

John Cavallini, Office of Scientific Computing, Office of Energy Research, ER-7,
Germantown Building, U.S. Dept. of Energy, Washington, DC 20545

Ian Cavers, Dept. of Computer Science, University of British Columbia, Vancouver,
British Columbia V6T 1WS5, Canada

Tony Chan, Dept. of Mathematics, University of Califomnia, Los Angeles, 405 Hilgard
Ave., Los Angeles, CA 90024

Jagdish Chandra, Army Research Office, P.O. Box 12211, Rescarch Triangle Park,
NC 27709

Eleanor Chu, Dept. of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington, DC
20550

Thomas Coleman, Dept. of Computer Science, Cornell University, Ithaca, NY 14853

Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,
CA 94720

Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

George Cybenko, Center for Supercomputing Research and Development, University
of Illinois, 104 S. Wright St., Urbana, IL 61801-2932

George J. Davis, Dept. of Mathematics, Georgia State University, Atlanta, GA 30303

Jain S Duff, Atlas Centre, Rutherford Appleton Laboratory, Chilton, Oxon OX11
0QX England

Patricia Eberlein, Dept. of Computer Science, SUNY at Buffalo, Buffalo, NY 14260

Stanley Eisenstat, Dept. of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

66.
67.

68.

69.

70.

71.

72.

73.

74.

75.
76.
77.

78.

79.

80.
81.
82.

83.

84.

85.

-17 -

Lars Elden, Dept. of Mathematics, Linkoping University, 581 83 Linkoping, Sweden

Howard C. Elman, Computer Science Dept., University of Maryland, College Park,
MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

Ian Foster, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, 1L. 60439

Geoffrey C. Fox, Booth Computing Center 158-79, California Institute of Technol-
ogy, Pasadena, CA 91125

Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1 Moffett
Field, CA 94035

Fred N, Fritsch, Computing & Mathematics Research Division, Lawrence Livermore
National Laboratory, P. O. Box 808, L-316 Livermore, CA 94550

Robert E. Funderlic, Dept. of Computer Science, North Carolina State University,
Raleigh, NC 27650

Dennis B. Gannon, Computer Science Dept., Indiana University, Bloomington, IN
47405

David M. Gay, Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
C. William Gear, Computer Science Dept., University of Illinois, Urbana, IL 61801

W. Morven Gentleman, Div. of Electrical Engineering, National Research Council,
Building M-50, Room 344, Montreal Rd., Ottawa, Ontario, Canada K1A ORS§

J. Alan George, Vice President, Academic and Provost, Needles Hall, University of
Waterloo, Watetloo, Ontario, Canada N2L 3Gl

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto,
CA 94304

Gene H. Golub, Dept. of Computer Science, Stanford University, Stanford, CA 94305
Joseph F. Grear, Div. 8331, Sandia National Laboratories, Livermore, CA 94550

Sven Hammarling, Numerical Algorithms Group Ltd. Wilkinson House, Jordan Hill
Road Oxford OX2 8DR, United Kingdom

Per Christian Hansen, UNI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd,,
Houston, TX 77042-3020

Don E. Heller, Physics and Computer Science Dept., Shell Development Co., P.O.
Box 481, Houston, TX 77001

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

-18 -

Nicholas J. Higham, Dept. of Mathematics, University of Manchester, Grt Manches-
ter, M13 9PL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air
Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Dept., Lawrence Livermore National Laboratory,
P.O. Box 808, Livermore, CA 94550

Ilse Ipsen, Dept. of Computer Science, Yale University, P.O. Box 2158 Yale Station,
New Haven, CT 06520

Lennart Johnsson, Thinking Machines Inc., 245 First St., Cambridge, MA 02142-
1214

Harry Jordan, Dept. of Electrical and Computer Engincering, University of Colorado,
Boulder, CO 80309

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Malvin H. Kalos, Comell Theory Center, Engincering and Theory Center Bldg., Cor-
nell University, Ithaca, NY 14853-3901

Hans Kaper, Mathematics and Computer Science Div., Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439

Robert J. Kee, Applicd Mathematics Div. 8331, Sandia National Laboratorics, Liver-
more, CA 94550

Kenneth Kennedy, Dept. of Computer Science, Rice University, P.O. Box 1892,
Houston, TX 77005

Thomas Kitchens, Dept. of Energy, Scientific Computing Staff, Office of Encrgy
Research, ER-7, Office G-236 Germantown, Washington, DC 20585

Richard Lau, Code 1111MA, 800 N. Quincy Strect, Boston Tower, 1 Arlington, VA
22217-5000

Alan J. Laub, Dept. of Electrical and Computer Engineering, University of California,
Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
North Carolina 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Dr,
Pasadena, CA 91109

Peter D. Lax, Courant Institute of Mathematical Sciences, New York University, 251
Mercer St., New York, NY 10012

John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle, WA
98124-0346

104.

10s.

106.
107.

108.

109.

110,
111.
112.

113.

114.

115.

116.

117,
118,

119.

120.

121.

122.

123.

-19 -

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston, TX
77042-3020

Joseph Liu, Dept. of Computer Science, York University, 4700 Keele St., North York,
Ontario, Canada M3J 1P3

Franklin Luk, School of Electrical Engineering, Comell University, Ithaca, NY 14853

Thomas A. Manteuffel, Dept. of Mathematics, University of Colorado - Denver,
Denver, CO 80202

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 E. Cali-
fornia Blvd. Pasadena, CA 91125

James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025
Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Leary, Computer Science Dept., University of Maryland, College Park,
MD 20742

James M. Ortega, Dept. of Applied Mathematics, Thomton Hall University of Vir-
ginia, Charlottesville, VA 22903

Chris Paige, Dept. of Computer Science, McGill University, 805 Sherbrooke St. W.,
Montreal, Quebec, Canada H3A 2K6

Roy P. Pargas, Dept. of Computer Science, Clemson University, Clemson, SC
29634-1906

Beresford N. Parlett, Dept. of Mathematics, University of California, Berkeley, CA
94720

Merrell Patrick, Dept. of Computer Science, Duke University, Durham, NC 27706

Robert J. Plemmons, Dept.s of Mathematics and Computer Science, North Carolina
State University, Raleigh, NC 27650

Jesse Poore, Dept. of Computer Science, Ayres Hall, University of Tennessee, Knox-
ville, TN 37996-1301

Alex Pothen, Dept. of Computer Science, Pennsylvania State University, University
Park, PA 16802

Michael J. Quinn, Computer Science Dept., Oregon State University, Corvallis, OR
97331

Noah Rhee, Dept. of Mathematics, Universily of Missouri-Kansas City, Kansas City,
MO 64110-2499

John K. Reid, Numerical Analysis Group, Central Computing Dept., Atlas Centre,
Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

124.

125.
126.

127.
128.
1269.

130.

131.

132.

133.

134.
135.

136.

137.

138.

139.

140.

141.

142.

-20 -

Werner C. Rheinboldt, Dept. of Mathematics and Statistics, University of Pitisburgh,
Pittsburgh, PA 15260

John R. Rice, Computer Science Dept., Purdue University, West Lafayette, IN 47907

Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

Donald J. Rose, Dept. of Computer Science, Duke University, Durham, NC 27706
Ahmed H. Sameh, Compuier Science Dept., University of Itlinois, Urbana, IL 61801

Michael Saunders, Systems Optimization Laboratory, Operations Research Dept.,
Stanford University, Stanford, CA 94305

Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffct
Field, CA 94035

Martin H. Schultz, Dept. of Computer Science, Yale University, P.O. Box 2158 Yalc
Station, New Haven, CT 06520

David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbricer Pkwy., Becaverton,
OR 97006

Lawrence F. Shampine, Mathematics Dept., Southern Methodist University, Dallas,
TX 75275

Kemmit Sigmon, Dept. of Mathematics, University of Florida, Gainesville, FL 32611

Horst Simon, Mail Stop 258-5, NASA Ames Rescarch Center, Moffett Field, CA
94035

Larry Snyder, Dept. of Computer Science and Engineering, IFR-35, University of
Washington, Seattle, WA 98195

Danny C. Sorensen, Dept. of Mathematical Sciences, Rice University, P. O. Box
1892, Houston, TX 77251

Rick Stevens, Mathematics and Computer Science Div., Argonne National Labora-
tory, 9700 South Cass Ave., Argonne, IL. 60439

G. W. Stewart, Computer Science Dept., University of Maryland, College Park, MD
20742

Quentin F. Stout, Dept. of Electrical and Computer Enginecring, University of Michi-
gan, Ann Arbor, MI 48109

V. S. Sunderam, Depts. of Math and Computer Scicnce, Emory University, Atlanta,
GA 30322 Daniel B. Szyld, Dept. of Computer Science, Duke University, Durham,
NC 27706-2591

W.-P. Tang, Dept. of Computer Science, University of Watcerloo, Waterloo, Ontario,
Canada N2L 3Gl

143,

144,

145.

146.

147.

148.

149,
150.

151.

152.

153.

154.

155.
156.

157.

158-167.

-21-

Michael Thomason, Dept. of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

Bernard Tourancheau, LIP ENS-Lyon 69364 Lyon cedex 07, France
Charles Van Loan, Dept. of Computer Science, Cornell University, Ithaca, NY 14853

James M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1WS5, Canada

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA
23665

Michael Vose, Dept. of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

Phuong Vu, Cray Research Inc., 1408 Northland Dr., Mendota Heights, MN 55120

E. L. Wachspress, Dept. of Mathematics, University of Tennessec, Knoxville, TN
37996-1300

Daniel D. Wamer, Dept. of Mathematical Sciences, 0-104 Martin Hall, Clemson
University, Clemson, SC 29631

D. S. Watkins, Dept. of Pure and Applied Mathematics, Washington State University,
Pullman, WA 99164-2930

Andrew B. White, Computing Div., Los Alamos National Laboratory, Los Alamos,
NM 87545

Michael Wolfe, Oregon Graduate Institute, 19600 N.W. von Neumann Dr., Beaver-
ton, OR 97006

Margaret Wright, Bell Laboratories, 6060 Mountain Ave., Murray Hill, NJ 07974

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

Office of Assistant Manager for Energy Research and Development, U.S. Dept. of
Energy, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600

Office of Scientific Technical Information, P.O. Box 62, Oak Ridge, TN 37831

