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ABSTRACT 

Algorithms for synchronizing the times and frequencies of the clocks 
of Intel and Ncube hypercube multiprocessors are presented. Bounds for 
the error in estimating clock offsets and frequencies are formulated in 
terms of the clock read error and message transmission time. Clock and 
communication performance of the Ncube and Intel hypercubes are 
analyzed, and performance of the synchronization algorithms is presented. 

Keywords: clock synchronization, hypercube communication. 

1. Introduction. 

In distributed computing, there is a need for accurate clocks that give the same time 
on every computing element. A distributed computation may be implemented over a 
local area network of computing elements or on a parallel processor. Distributed com- 
puting systems that depend on such a common time include transaction processing sys- 
tems, real-time systems, and simulation systems. A common time is also needed for 
event traces arid synchronization such as timeouts or checkpoints. 

This report addresses synchronizing the clocks in hypercube parallel processors, 
specifically to eliminate timing anomalies in event trace files. If the clocks are not syn- 
chronized, timing anomalies can occur, such as the apparent receipt of a message before 
it was sent. In the following section, a model for synchronizing clocks in a distributed 
computing environment is developed. In section 3, the characteristics of the clocks and 
message-passing systems of the Ncube and Intel hypercubes are analyzed, and clock syn- 
chronization algorithms are developed. Section 4 discusses the perfomlance of the 
hypercube clock synchronization algorithms and the need for hardware clock synchroni- 
zation. 

2. Clock Synchronization 
We wish to synchronize the clocks in a distributed computing system so we can 

order events. In particular, if Ci[a] is the time at which processor i sends a message to 
processorj, and C.1 b] is the time proeessorj receives the message, we want Ci[aJ < C.[b]. 

J I 
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This is Lamport’s condition C2 [LAM%]. ‘To avoid timing anomalies of events on a sin- 
gle processor, we further require that time be tonically increasing, that is, Ci(tz) > 
Ci(tl), if t2 > ti where Cit) is time from prwe s clock at physical time t. 

To develop a light-weight clock synchronization algorithm that a hypercube appli- 
cation program can implement, we assume that there are no faulty clocks in our ensemble 
of processors. Synchronization t e c h  es in the presence of faulty clocks are discussed 
in [SRIU]  and [RAM90a]. A robust successful implementation of clock synchroni- 
zation over a network is described in [ML89] and [MIL90]. This report develops 
software synchronization algorithms, though we later argue for a single clock or 
hardware Synchronization of the ensemble of clocks, Hardware synchronization, how- 
ever, is non-trivial [SHI88], [VASSg], [Kc$M9Ob]. 

etween two clocks i s  the difference in their readings at the same phy- 
sical time, that is, 

8 3 I C i ( t )  - cj ( t )  I .  

ci ( f  +s ) - cj (t  ) 

Ci(t-1-S) - C i ( t )  . 

The skew, $7 between two clocks is their difference in frequency (fin.st derivative of offset 
with time) measured over an intewal S, where 

$ =  ___ ......... 

Coinputcr clocks drift only a few seconds per day, so typically, Cp < lo? Computer 
clocks exhibit some variation in skew (second derivative of offset with time) due to aging 
or temperature variation, but the effect is small (less than a few parts per million (ppm)) 
and is ignored in this study. Table 1 summarizcs the notation used in this report. 

........ Notation _I.______ 

C,(t) 
e clock offsct 
6 round-trip message time 
(1, frequency difference (skew) 
P clock precision 
R resynchronizaeion interval 
s skew estimation interval 
U minimum-.ggssage transmission time 

Table 1. Notation conventions. 

To avoid timing anomalies in sending and receiving messages between two proces- 
sors, where the minimum message transmission time is U ,  the sum of the offset and skew 
of the transmitter’s clock must be less than U ,  that is 8 t- 

clock time at processor i at real time t 

< U , or 
a 

We will have timing anomalies if the two clocks are not within U of each other, and, 
even if they are initially that close, after some period of time the two clocks will have 
drifted greater than U apart because of the difference in the frequencies. Thus, to syn- 
chronize clocks, we must synchronize both time (eliminate or reduce the offset) and 



frequency (make both clocks run at the same rate). 

Time synchronization. 
Processor i can synchronize its time with processor j by sending a message to pro- 

cessor j at time cifi.) requesting that processor j send its current time back in a message 
(Figure 1). If processor i receives processor j ’ s  reply at hme C.(t  ) then processor i can 
measure the round-trip time 

L O  

6 = Ci ( t  - Ci (ti ) 

that it took to send the message and receive the reply and calculate an estimate of the 
offset between the two clocks, 

e=cj ( f j )+6 /2-Ci ( f , ) .  

Ideally, 6 = 2U, but in most message-passing systems, the transmission times to and from 
processor j are independent random variables. Thus 6/2 is only an unbiased estimate of 
the transmission time from processor j .  Furthermore, the local clock can be read only to 
within an error bounded by the clock’s precision, p. Thus we can estimate the offset only 
to within some error, eo. Including the clock precision with Cristian’s result [CRI89], it 
can be shown that 

(2.1) 

In section 3, we will quantify the error of our offset estimator and develop filters to 
reduce those bounds. 

6 
2 

E@ < - - Cr + $6 f p . 

Figure 1. Processor i requests processor j’s rime 

Frequency synchronization. 

Even if we can make the offsets suitably small, after U/$I seconds, the two clocks 
would again be greater than U seconds apart, resulting in potential timing anomalies. 
Thus the clocks would have to be resynchronized every U/$ seconds, or, more conserva- 
tively, every (U - seconds. We can reduce this resynchronization interval by 
measuring the skew between the two clocks and using this estimate to “adjust” the fre- 
quency of one of the clocks. Processor i can estimate the difference in frequency by tak- 
ing the ratio of the differences of the two clocks over a period S ,  where 

ci ( t + S )  - cj ( t )  
($= s 

The error in the estimate is 



- 4 -  

__I 

N6400 

80 
0 

0.05 
1 

30@ 20ms 
40 
18 
151 
100 

Yes 

so $ can be estimated to the desired accuracy by increasing the interval S. Since we 
assume that the frequency difference between two clocks is constant, we need calculate @ 
only once. 

Having calculated both the time an frequency estimates, then the adjtisted clock on 
processor i that is synchronized to the clock on processorj is 

T i ( f )  = Ci( f )  4- 6 + $ ( f - I g )  9 (2.3) 

and the resynchronization interval is then 

N3200 

32 
0 

128 
128 
128 
128 
128 
51 1 
128 
no 

In the following section, we will apply this clock synchronization model to hypercube 
parallel processors. 

3. Hypercube clocks arid communication. 

A hypercube parallel processor is an ensemble of computers interconnected by a 
communication network with the topology of an n-dimensional hypercube. Each proces- 
sor has its own local. memory, clock, an communication channels to n other processors. 
The processors work concumently on an application and coordinate their computation by 
passing messages. First-generation hypercubes used a store-and-forward scheme to route 
messages between non-adjacent processors. Resent generation hypercubes use 
hardwareassisted direct routing, and message-passing times are on the order of hundreds 
of microseconds [DUN90]. By contrast, message-passing times on local area networks 
are on the order of tens of milliseconds. 

Hypercube Synchronization Para ......... - 

.................. __.I_ 

Crystal frequency (MHz) 

Measured frequency difference ($) (ppm) 
Clock prccision (ps) 
Effective clock precision (p) (p) 
Clock rcad error (ps) 
Round-trip error (d6) (p) 
Filtered round-trip error (d6) (ps) 
Minimum message time (IJ) (ps) 
Barrier exit error (d6) (ps) 
Monotonic clock 

_I- 

PJsC/840 

40 
80 
0.1 
1 

60@ l h s  
120 
25 
44 
250 
Yes 

.... 
*sa2 

20 
25 
1 .o 
15 

260@ 50ms 
527 
114 
302 
400 

Yes 

Table 2. Intel and Nculae clock and conirnunication parameters. 

Hypercube processor clocks may be driven by a single time source, or each proces- 
sor may have its own time source. The Ncube hypercubes use a single crystal oscillator 
to provide timing for all of the processors, and thus clock synchronization is fairly sim- 
ple. The Intel hypercubes use a separate crystal OII each processor, and the communica- 
tions hardware on  each processor has its own crystal. Clock synchronization for the Intel 
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hypercubes requires both time and frequency synchronization. Table 2 summarizes the 
clock and communication characteristics of both families, and details of the Intel and 
Ncube characteristics are discussed in the next two sections. 

3.1. Intel hypercubes. 

Clocks 
The Intel iPSC/860 hypercube uses 40 MHz oscillators on each processor. The cry- 

stal oscillator, manufactured by MF Electronics, has a frequency stability of 0.01% (200 
ppm) and a variation of frequency less than 45 pprn with respect to temperature. We 
measured the frequency differences between the processors on three different iPSC/S60 
hypercubes and found the maximum frequency difference to be less than 100 ppm 
(OWL 128 processors < 80 ppm; NASA Langley 128 processors < 60 ppm; ICASE 32 
processors < 40 ppm). The actual differences can change as processor boards are 
replaced or as temperature varies. 

The iPSC/86Q provides a 100 nanosecond timer that is readable with the dclock() 
function available under NX 3.2. The resolution between two successive calls to 
dcZock() is about 1.5 microseconds (averaged over 2,000 samples) with little variance. 
However, a 40 microsecond spike occurs every 10 milliseconds from an operating system 
timer interrupt. When the iPSC/860 is “booted,” all of the processor timers are reset 
simultaneously. 

The Intel iPSC/2 hypercube uses a 20 MWz oscillator on each 80386 processor 
board. The oscillator operating characteristics are similar to those of the oscillator used 
on the iPSC/S60. We measured a maximum frequency difference of less than 25 ppm on 
the @-processor ORNL. iPSC/2. Time is provided through two 16-bit, microsecond 
countdown timers and an operating system variable that is incremented by 50 rnil- 
liseconds when the high-order counter interrupts. 

On the iPSC/2, only one millisecond resolution is provided by the Intel dclock() 
function, and the time is not monotonic (successive calls will return the same time, since 
several calls can be made in less than a millisecond). However, the PICL library 
[GEI90] provides a microsecond resolution time function, cZockU() for the iPSCI2 (see 
Appendix A). Successive calls to cEuckO() take an average of 138 microseconds, with a 
260 microsecond spike every 50 milliseconds as a result of the operating system timer 
interrupt. (The iPSC/2 hypercube operating system (NX 3.2) actually provides multitask- 
ing for an application on each processor of the hypercube, so, as with any time-sharing 
operating system, even larger variations between successive calls to cZockO() are possible 
if multiple tasks are active.) Since the software that reads the countdown timers must 
avoid the roll-over intervals of the counters, the values returned by clockO() exhibit more 
variance than the iPSC/860 &lock() calls, reducing the effective resolution to about 15 
microseconds. Since time on the iPSC/2 is maintained with an operating system vari- 
able, when the hypercube is “booted,” this variable is reset only after the operating sys- 
tem is loaded on each processor. On a 64-processor iPSC/2, several seconds can pass 
before the last processor’s operating system is loaded and the time reset. Thus, the 
iPSC/2 clocks will have offsets of several seconds as soon as they are started. 
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Communication 

Each iPSCI2 and iPSC/860 processor has a separate communication module that is 
clocked by its own 28 A4Hz crystal oscillator. Message transmission time varies linearly 
with message size [DUN90]. Part of the. startup cost for sending if incssage is the time 
for the processor and communication tndules  to synchronize. For messages between 
non-adjacent prmessors, additional time is required to synchronize the intervening com- 
munication modules. The minimum transmission time, I / ,  (one hop, zero-length mes- 
sage) is 64 microseconds for the iPS@/860 and is 302 microseconds for the iPSC/2. 

i I I 

6 hop 

r -  ~ 

5 1 00 15 20 

Figure 2.8-byte message round-trip delay (ps)? iPSCJ860,2000 samples. 

The clock synchronization model developed in section 2 uses the round-trip delay to 
estimate offset betwecn two processor’s clocks. Figure 2 illustrates the variance in the 
round-trip delays for 2,000 samples using an 8-byte message, for adjacent iPSC/860 pro- 
cessors and processors that are six hops away. The figurc shows the spikes when a tinier 
interrupt occurs on one or both of the processors involved. As expected, the mulri-hop 
delays are larger and show more variance than nearest neighbor communication. (iPSC/2 
delays show somewhat less variance than the iPSC/860 delays due to the less precise 
clock and due to the slower communication.) 

From equation (2.P), our offset estimate improves as the round-trip delay 
approaches the minimum round-trip delay. But the delay will be the minimum with only 
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a small probability (Figure 3). We can be certain only that the delay will be less than the 
maximum round-trip delay. (We shall assume for now that the delay dues have an upper 
bound.) If we wish to improve the error bound of OUT offset estimate, but at the risk of 
some uncertainty, we can choose a delay, D, less than the maximum. If p is the probabil- 
ity that processor i observes a round-trip delay greater than D, then the probability of 
observing round-trip a delay less than D is 1 -p. However, if we make k successive clock 
requests, the probability of at least one delay less than D increases to I -pk [CRI89]. Thus 
we can choose a level of certainty and estimate the offset between clocks with a small 
error bound at the cost of many messages or with a larger error bound but at the cost of a 
only a few messages. We can also improve the deterministic estimate since some of the 
variation in round-trip delay is not random, but is caused by fixed-interval, timer- 
interrupt spikes. The interval between timer-interrupt spikes is much longer than the 
round-trip delay, thus we can eliminate the effect of these spikes by taking the minimum 
round-trip delay of at least three successive clock requests. Table 3 shows the reduction 
in round-trip delay variance with increasing k using a minimum filter and 2,000 readings. 

125 150 175 200 225 250 
microseconds 

Figure 3. One-hop round-trip delay distribution, iPSCl860, 2000 samples. 

For our implementation, we use four successive requests to estimate the offset 
between two clocks and use the resulting (Table 3) to select the interval, S, for 
estimating the frequency correction @ (2.2) to the desired precision. For example, to 
adjust the frequency to within an error of one part per million for our dimension-6 
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iPSC/860, S (2.2) would need to he at least 26 seconds. Similarly, for our dimension-6 
i13SsC/2, the estimation interval would need to be at lcast 144 seconds. 

Table 3. Round-trip delay (ps) with minimum of k tries. (2,000 samples) 

Given E and F~ we can calculate the resynchronization time from (2.3). If the fre- 
quency adjustment is accurate to within one ppm, the iPSC/860 processor would have to 
be resynchronized in less than 55 seconds, and in less than 230 seconds for the iPSC/2. 

9 

Implementation 

Given the clock and comtnuriicatisn characteristics, we can synchronize the time 
and frequency between two processors’ clocks. For an application program to synchron- 
izc all of the processors’ clocks in a dimension-Pt hypercube, we use a master-slave 
model. We designate processor 0 as the master clock, and all of the remaining yroces- 
sors synchronize their clocks with processor 0. (For the present, we require only that the 
clocks be consistent within the hypercube; we are not trying to synchronize the clocks 
with an external source such as UTC [MILW].) Our clock synchronization algorithm 
consists of two sulx-outines, clk - sync() and sclock(). At the start of the application, each 
proces.:or calls clk ,ryrtc(S) to synchronize the time and estimate the frequency correction 
over S seconds. ?%e application then uses sclock() to read the processor’s synchronized 
clock, where the synchronized time is calculated from (2.2). On the Intel hypercubcs, 
time resynchronization can be scheduled and managed in the “background” using 
alarin(R) and signd(SIGALRA4) on the slave processors in conjunction with hrecv() on 
the master processor. 

These routines (less resynchronization) have been added by Worley to PICL 
[GJDQ] and have eliminated the timing anomalies previously experienced without clock 
synchronitation. PICL had previously used a barrier-synchroilization (implemented with 
a dimensional exchange) to synchronize time when event tracing was enabled. However, 
timing anomalies occurred frequently, since the variation in barrier exit (Table 3) was 
oftcn larger than the minimum message transit time, and there was no compensation for 
clock skew. 
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3.2. Ncube hypercubes. 
The Ncube 6400 hypercube (also known as the Ncube 2) uses one 80 MHz crystal 

oscillator to drive all of the processors and their associated clocks, count-down timers, 
and communication channels. Each processor provides a 50 nanosecond running timer 
accessible through the arickcnr() function under Vertex 2.0. Successive calls to atickcnt() 
require about 8 microseconds. There is a 30 microsecond spike from an operating system 
timer interrupt every 20 milliseconds. When the hypercube is rebooted all of the running 
timers are reset simultaneously. Thus all of the processors are synchronized with respect 
to time, and since there is only one oscillator, there is no frequency skew. 

The older Ncube 3200 hypercube (previously call the Ncube/ten) uses one 8 MHz 
crystal oscillator to drive all of the processors. No running timer is provided, and each 
processor keeps time using an operating system variable and a count-down timer inter- 
rupt. When the Ncube 3200 is “booted,” time is reset by the operating system after it is 
loaded, so the processor clocks will not be synchronized. Time (actually clock rate 
divided by 1024) is provided by the mime() function, giving a resolution of 128 
microseconds. Successive calls to ntime() can return the same value. Figure 4 illustrates 
how ntime() can be packaged so that it returns monotonically increasing values. 

# d e f i n e  MICRO 0 . 0 0 0 0 0 1  
# d e f i n e  SPT 0 .000128  
s t a t i c  d o u b l e  bump = 0; 
s t a t i c  i n t  lastt= 0; 
double s c l o c k  0 
( 

/ *  return seconds, each call w i l l  r e t u r n  larger v a l u e  * /  
int t; 

t = n t i r n a o ;  / *  t i c k s  * /  
bump t= MICRO; 
if (t  ! =  lastt) { / *  rollover * /  

bump = 0; 
1 a 5 t t. -t ; 

1 
re t .urn(burnp t t * SPT); 

Figure 4. Monotonic clock for the Ncube 3200. 

Since all Ncube processors and communication channels are driven by the same 
timing signal, there is much less variance in transmission times. On the Ncube 3200, the 
low resolution of the clock masks any variance, so transmission times are within plus or 
minus one tick (128 ps). Transmission time increases with message size and the number 
of hops [DUNgO], and for the Ncube 6400, the variance in transmission time increases 
with multiple hops. 

No clock synchronization is required for the Ncube 6400 hypercubes, and only ini-  
tial time synchronization is required for the Ncube 3200 hypercubes. The Ncube 3200 
requires no frequency estimation, and since the variance is small, successive time-request 
messages and minimum filtering are not required. The Ncube 3200 application merely 
calls clk - synch() on each processor when the program starts and uses scZock() to read the 
synchronized and monotonically increasing time. As with the Intel hypercubes, 
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clk synch() uses a master-slave model, each processor synchronizing its time with pro- 
cesior 0. 

For both the Intel and Ncube hypercubes, syiichronization could be done faster 
using a spanning tree [FRE98]. Processor 0 would be used to synchronize the clocks of 
its nearest neighbors. These clocks would then be the “master” clocks for their respec- 
tive subtrees. There would be n levels of master clocks in a dimension-n hypercube, 
each level synchronizing its clocks with the level above. Clock synchroriization could be 
completed in n steps rather than the 2n-1 steps required by our master-slave scheme. 
IIowever, using spanning tree synchronization increases the error in the offset estimate 
for a dimension-n hypercube to fiee, where E~ is the one-hop error. For both the Intel 
and Ncube hyperccubes, the n-hop error is niuch less than n&* (Table 3), so we choose the 
more accurate master-slave scheme. 

4. Liniitations and Extensions. 

Our master-slave, minimum filter, synchronization algorithm has eliminated the 
timing anomalies in our event trace files. The algorithm is implemented as application 
subroutines, requires no modifications to the operating system, and can be extended to 
other distributed, parallel processor topologies such as a mesh. The algorithm requires 
an initial delay while the processors estimate frequency corrections, followed by a rcsyn- 
chronization of time every minute. (Frequency corrections could be calculated when the 
hypercube is rebooted and saved in a file, these corrections could then be read by 
clk syncti() when an application starts.) Our implementation requires only four messages 
per processor to synchronize the hypercube clocks within tens of microseconds of each 
other. For the Ncube 3200 hypercube, only initial tiinc synchronization is needed, no 
frequency corrcction or resynchronization is required. The Ncube 6400 hypercube 
clocks are synchronized by design. 

Our algorithm has assumed a dedicated hypercube and idle communication chan- 
nels. However, in some cases, other traffic may be competing for the communication 
channcls, for example, if the hypercube is being shared with other applications or if there 
is traffic from other parts of the application during resynchronization. In this case the 
variance in the message delay and our error bounds increase. In fact, message delays can 
be much larger, so to maintain the same error bounds, it might be be necessary to add a 
minimum-delay threshold and keep sampling until delays fall below that threshold. 

If multi-tasking is supported on a hypercube processor, then the synchronization 
algorithm needs to be implemented in the operating system, so that each process on a 
processor has a synchronized, monotonic clock. If time synchronization is required with 
external clocks, then processor 0 could synchronize with the hypercube host processor. 
However, typical external clock synchronization algorithms over a local area network are 
usually accurate to only tens of milliseconds [MILW]. Finally, it is possible for time to 
appear to run backwards as a result of a resynchronization, possibly resulting in a timing 
anomaly in an application. More sophisticated local clock software is needed to slew a 
clock to the proper timc, rather than making a step adjustment backwards in time. Mills 
describes the necessary characteristics of a local clock [MIL90]. 
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Distributed parallel processors need high precision, synchronized clocks. We have 
demonstrated that hypercube clocks can be synchronized using only application software 
with very little overhead. However, to support fault tolerance, slewing, and tighter syn- 
chronization, much more software will be needed. It is much more desirable to have a 
single clock like the Ncube hypercubes or hardware synchronized clocks, eliminating the 
intrusion and software overhead and providing tighter synchronization. 
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Appendix A 

Intel iPSC/2 microsecond clock subroutines 

The following C and assembler subroutines provide access to the microsecond 
hardware counters used by inclock(). This code is similar to that provided by Worley in 
the PICL library [GE190]. 

/ *  c l o c k O ( )  r e t u r n s  d o u b l e  p r e c i s i o n  t i m e  s e c o n d s  * /  
/*  load  w i t h  -D t o  get 1/0 p r iv i l ege  t o  access hardware L i m e r s  * /  
/* D O  250 us t i m e r  t h a t  carries o v e r  t o  Dl (20'250 11s u n i t s )  * /  
/ *  code t r ies  t o  a v o i d  ro l l -over  r e g i o n s  o f  t hese  two c o u n t e r s  * /  

# d e f i n e  PIT-DO OxDO 
# d e f i n e  PIT-D1 OxD2 

d o u b l e  c l o c k 0  ( )  

( 
i n t  e2h, e21, e n v I N 0 ;  
l o n g  t i m e l ,  t i m e ] ;  
u n s i g n e d  l o n g  m c l o c k o ;  

e 2 1  = envIN(PIT_-DO); / *  read t i m e r  regis ter  * /  
i f  ( e 2 1  >= 15)  e2h = envIN(PIT-Dl) ;  / *  a v o i d  r o l l o v e r  * /  

else  { 
w h i l e  (envIN(PIT.-DO) < 15)  ; / *  a v o i d  r o l l o v e r  * /  
e 2 1  = envIN (PIT-DO) ; 
e 2 h  = envIN (PIT-Dl) ; 
}; 

i f  (e2h > 1) t i m e 1  -= m c l o c k ( ) ;  
e l s e (  
w h i l e  (envIN(P1'T-DO) < 1 0 0 )  ; / *  avoid  r o l l o v e r  * /  
t i m e l  = r n c l o c k ( ) ;  
e2h = envIN (PIT-_Dl) ; 
e 2 1  = envIN (PIT-DO) ; 
1; 

t i m e l  = t i m e l / 5 0 ;  / *  remove  redundant :  l o w e r  b i t s  * /  
t i m e 2  = 50250 - (250*e2h + e21); 
r e t u r n ( . 0 5  * t i m e l  t . O O O G O l  * t i m e 2 ) ;  

I 

/ e n v i n . s  a s s e m b l e r  r o u t i n e  t o  read i/n register, r e s u l t = e n v I N ( r e g ) ;  

e n v I N :  
. g l o b 1  e n v I N  

rnov 4 (%esp)  , % e d x  
x o r  &ax,  % e a x  
. b y t e  OxEC / i n b  %dx 
ret 
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