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ABSTRACT 

It is often necessary for robots to navigate in environments which are not 
known in advance. In this context, self-location is the problem of determining 
how far and in what direction motion has occurred. Because of wheel slippage and 
other errors, odometry cannot be depended upon to provide precise or accurate 
positional information. Triangulating from visual features can help make position 
estimation more accurate. This paper describes work that was done during a 
three-month student research internship at the Center for Engineering Systems 
Advanced Research (CESAR) of the Oak Ridge National Laboratory, exploring the 
problem of robot self-location in unknown environments. This work included the 
development and integration of a set of programs which present a partial solution 
to this self-location problem. These programs use a sequence of images which are 
acquired as the camera moves between positions with a motion which is known 
approximately. Visual features are extracted from the images and matched through 
time. 'Ikiangulation using these features then provides a rough estimate of the range 
of these features from the camera. Kalman filtering (not implemented) can then 
be used to integrate the information from odornetry and vision to provide a better 
estimate of the position of the robot. 
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1. INTRODUCTION 

We define the problem as follows. The robot moves in a plane (termed the 
ground plane or plane of motion), so its position is described by the triple (x, y, 0). 
x and y determine the robot’s locality, and 8 its heading. The robot’s initial position 
is set to the origin, (0 0 0). The question to be answered is, after n moves, what is 
the new position ( d ,  ;’,’Of)? 

The robot is traveling 
through an unknown environment. This means that there is no a priori knowledge 
of any features which could be used by the robot to self-locate. However, there are 
two other sources of information which can be used for this purpose. The robot can 
observe perceptual features, although any measurements it makes will incorporate 
error. Wheel odometry is another source of information. The direction and distance 
the wheels turn may be measured. However, this measurement, too, will include 
error. Using these two sources of information, triangulation may be used to self- 
locate. Since we are dealing with digital computers, there will be round-off error, 
which will lead to imprecision in the results. The goal then is to use perceptual 
information coupled with odometry to refine the estimate of the robot’s position. 

This problem has several important characteristics. 

1.1 MOTIVATION 

Much of the work that has been done addressing mobile robot navigation 
assumes that the world is known in advance. However, this is not a reasonable 
assumption to make in most contexts. Many environments change rapidly over 
time. Many environments are not knowable in advance with the precision needed to 
solve detailed navigation problems. Other environments may be known in advance, 
but not with complete accuracy. 

The problem being addressed here does not face many of the difficulties 
introduced when knowledge of the environment is required. Moving objects will, in 
most cases, not disturb the self-location process. (Object motion ma be a problem 
when it occurs at a slow enough rate that it is not detected quickly.7 

1.1.1 Error in Odometry 

Figure 1 illustrates how positional error accumulates when using odometry. 
Ro is the robot’s initial position. The robot is then instructed to move a certain 
distance at a given heading to position R1. However, when a robot executes a 
command to move a certain distance at a given heading, it will not move exactly as 
commanded, due to wheel slippage and mechanical imprecision in the wheel drivers 
and encoders. The ellipse around R1 represents the uncertainty associated with the 
actual position of the robot after executing the motion command. This uncertainty 
is made up of error that is bounded (mechanical imprecision), and unbounded error 
(wheel slippage). Thus, the position of the robot is most likely to be somewhere in 
this ellipse around R1. (It is possible, but much less likely, that the robot’s position 
is outside this ellipse, since it is very unlikely that wheel slippage is great enough 
to cause this much error.) 

The uncertainty is in the shape of an ellipse because there is cornmonly more 
error associated with a robot changing heading than there is in moving a given 
distance. At the next step, when the robot moves to Rz, the error accumulates, 
and there is consequently a larger uncertainty associated with this position of the 
robot. 

1 



2 INTRODUCTION 

Fig. 1. Odometry error. 

1.1.2 Error in Triangulation 
Figure 2 illustrates the uncertainty which occurs when triangulating the position 

of a feature. The robot first sees the feature, F ,  when it is at position Ri-l. Due to 
noise in the imaging process, there is some angular uncertainty in where the robot 
detects the feature. Thus, the robot only knows that the feature is somewhere 
between the two lines indicated. When the robot moves to Ri, it again detects the 
angle of the feature, with some uncertainty. The resulting area formed between 
the intersecting lines represents the uncertainty on the estimated location of the 
feature. 
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- 1  

Fig. 2. Triangulation error. 

1.2 OBJECTIVE 

The objective of this project was to implement methods which have been 
recently presented in the literature and discover the limitations of these methods. 
There are two useful consequences of this work. First, this project makes available 
a set of programs implementing visual feature detection and matching which can 
be used in self-location. This software will be useful for future research on related 
topics in vision and navigation. Second, the results of this project suggest possible 
areas for future research. 

1.3 RESEARCH QUESTIONS 

There are numerous potentially interesting research questions which can be 
explored. For example, one can investigate the use of pardelization. Can this 
procedure be parallelized? Would parallelization result in a significant amount of 
speed-up? 

A second research issue involves the conflict between the needs of matching 
and those of triangulation. In order to match more quickly and more reliably, it 
is desirable to minimize the change in the imaged positions of features. The closer 
the imaged position of a feature is in one image to its imaged position in the next 
image, the better. However, triangulation requires a large (change in the relative 
angles between the robot and features. How can both requirements be met? If we 
build long sequences of features, we need to address the problems associated with 
using features over long periods of time. Features can become occluded, move, or 
become confused with other features. 

Another question has to do with how complex features should be. Complex 
features may reflect characteristics of the world more reliably. Perceptually 
significanf groupings,1 are similar across varying viewpoints. They are based 
on characteristics of the world rather than the scene, so they are less likely to 
change under different situations. Topographac ~ t r u c t u r e ~ , ~  such as ridges and 
valleys in image characteristics, are somewhat complex, and are thus both less 
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common and more easily distinguishable. Similarly, surfaces are characteristics of 
the world. However, there may not be enough of such complex features to meet 
the requirements of the procedure. In addition, they may be expensive to compute. 
The process of detecting and matching features will become more computationally 
expensive. On the other hand, if simple features are used, there may be enough 
of them to meet the requirements of self-location, but they may be difficult to 
distinguish and identify uniquely. There are many more of them, which makes the 
matching problem more difficult. Thus, incorrect matches may be more common, 
introducing another source of error in the data. However, they are much less 
computationally expensive to detect and match. Once the type of features has 
been chosen, we must also consider how matching should be done. Given the 
features in one image, should they be searched for in the next image based on 
motion information? 

A fourth question deals with the reliability and limitations of using real 
(vs. synthetic) data. Digital sensors provide imprecise data, which is due to 
discretization, and most incorporate noise. In addition, the interpretation of sensor 
data is still a difficult problem. How much information can be extracted from 
experimental data and how reliable is this information? What kinds of limitations 
does the use of experimental data place on computation? The use of experimental 
data also introduces the problem of how to eliminate “bad data” in the form of 
incorrect matches. Methods must be developed to detect incorrect matches and 
remove them from further computations. It may be possible to use characteristics 
of features which can increase the number of correct matches. Or there may be 
ways of filtering out incorrect data at later stages of processing. 

Another issue is what kind of sensing to use. Since we want to measure the 
angles of features with adequate precision, sonar is clearly not an appropriate type 
of sensor. There are several forms of visual sensing which can be used, such as 
passive (CCD) or active (laser-range finder). If CCD cameras are used, one must 
also choose between monocular or stereo (or even trinocular) vision. Once the sensor 
has been chosen, questions arise as to the kinds of limitations placed on computation 
by the form of sensing. There are other types of sensing as well, having to do with 
measuring motion of the robot. This raises the issue of whether or not odometry can 
be used reliably. Does it provide data that can be used, or is the noise simply too 
great? If odometry measurements are noisy, can the noise be modeled? In addition, 
we need to determine how well the motion parameters need to be estimated for this 
approach to work, as well as how changing these parameters affects how much the 
approach reduces positional uncertainty. 

1.4 FOCUS 

Clearly, only one or two of the above issues can be explored in three months. 
Therefore, I needed to limit the scope of my work. I chose to focus on using real 
CCD monocular imagery to do triangulation. The reason for this choice was that I 
was interested in exploring the limitations and requirements that using real imagery, 
especially CCD, monocular imagery, place on a solution of the self-location problem. 
Will this method work when monocular vision is used? I also wanted to explore the 
requirements of each part of a system that solves this problem. 

In order to meet these goals, I chose to use programs which had 
already been written at the University of Minnesota (by my thesis advisor, 
Dr. William Thompson). These programs detect and match features. The 
algorithms which these programs implement are of interest here only with respect 
to their limitations when used to solve the self-location problem. 
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1.5 BACKGROUND 

This problem has been addressed by several other researchers. There are two 
bodies of work which are closely related to the work presented here. The first set 
of research efforts deals with self-location on an abstract level, and so will only be 
mentioned briefly. Smith and Cheeseman3 present a method for estimating relative 
locations of objects and the corresponding expected error using Kalman filtering. 
Wang4 and Watanabe and Yuta5 both discuss methods for robot self-location based 
on odometry. 

The second relevant body of work includes research which presents solutions 
to the self-location problem which use real imagery. The goal of Kriegman, 
Triendl and €3inford6 is to instantiate a generic world model. They use stereo 
in a hallway to detect two-dimensional features (vertical edges). Stereo and motion 
uncertainty is represented using a normal distribution. Their solution uses odometry 
to estimate the robot’s position. Matches are based on similar intensities and 
neighborhood consistency (intervals between neighboring matches . They use the 

The state model is composed of the odometry transform, the correspondence points 
and the covariances. Camera calibration is done to obtain the baseline and to find 
the relationship between the two cameras’ intensities and epipolars. The system 
appears to work reasonably quickly. Since only features at the horizon are used, it 
is not clear if there may be situations in which this approach may have problems. 
In addition, the cameras may become misaligned through time and it is not obvious 
how well the approach will deal with this. 

Ayache and Faugeras7 address the problem of building and updating a three- 
dimensional representation of the environment. They use trinocular vision for 
detecting 3-D lines in both synthetic and real imagery (a cluttered room). Error is 
modeled using a Gaussian distribution. Robot position is estimated from odometry. 
Features are matched based on displacement and geometric parameters, and the 
Mahalanobis distance is used to reject bad matches and outliers. They use the 
extended Kalman filter to reduce uncertainty on both feature and robot position. 
It is not clear how cameras are calibrated and how well this approach works if 
they become misaligned. This approach also seems computationally expensive. No 
information is given about how long this solution takes to compute. 

Matthies and Shafer’ and Matthies and Kanadeg address the problem of how 
best to model error in triangulation. They use stereo vision on real imagery 

and use three-dimensional features (obtained with Moravec’s interest 
operator (a rmml . Their solution estimates robot rotation and translation from feature 
correspondences. Three-dimensional pruning handles bad matches. This approach 
uses the fact that under rigid motion, the distance between three-dimensional 
points does not change over time. They use the extended Kalman filter to reduce 
uncertainty on both feature positions and robot position. The state model includes 
the location of feature points. In the results presented, only forward motion along 
the optical axis was performed (no rotation or sideways translation), so it is not clear 
how well this approach would work for more complex motions. They do not discuss 
how the cameras are calibrated or how this approach would deal with changes in 
camera alignment. 

All of these research efforts use stereo or trinocular vision. This simplifies the 
matching and triangulation problems, since the baseline between cameras may be 
assumed to be known in advance and not to change. The use of non-monocular 
vision also allows the approximate localization of features using images obtained 

extended Kalman filter to reduce uncertainty on both feature an d robot position. 
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from one position of the robot. Two of the three approaches employ edges as 
features. Since edges are more complex features, more processing is required 
to obtain them, but there are also fewer features, which simplifies the matching 
process. All of the solutions use Kalman filtering to integrate the range and position 
information and reduce robot position uncertainty. Common assumptions include 
using a Gaussian distribution for modeling error in vision and motion measurements. 
They assume that the error covariances of vision and motion measurements is 
known, which is a parameter needed in Kalman filtering. They also assume 
that triangulation can be linearized (which simplifies the Kalman filtering process) 
without rendering the information useless. Finally, some of the solutions deal with 
the initial calibration of the cameras, but none of them deals explicitly with what 
happens when the cameras become misaligned during motion, as they almost surely 
will. 



2. GENERAL SOLUTION STRATEGY 

The general solution strategy is made up of four stages. In the first image 
processing stage, images are acquired from different positions. They are filtered and 
features are generated from them. In the second feature matching stage, feature 
matches axe found and filtering is done to eliminate matches of low probability. 
These matches are linked into longer sequences that span more than two images. 
These sequences are also filtered. In the third triangulation stage, these feature 
sequences are used to estimate the range of the features. Filtering can also be 
done at this step to eliminate inconsistent data. In the fourth and final stage of 
self-location, the range of features is used to refine the position of the robot. 

Triangulation using visual features places conflicting demands on a 
computational system. In order to find matches, images must be taken from 
positions which are close to each other. However, the best results from triangulation 
are obtained the closer the differences between angles get to 90". In order to 
meet both of these requirements, matches are found between successive images 
of a sequence. These pairwise matches are then integrated into lists which track 
points across the entire sequence of images. 

Monocular passive vision (using a CCD camera) is used to acquire a sequence 
of images. Features in the form of local maxima and minima points were used and 
matching was done on the basis of proximity and similar intensities. These choices 
were made because of the software that was available and because of the short 
duration of the project. Error was not modeled. The find step of robot position 
refinement was not dealt with, but a brief discussion of techniques which could be 
useful is presented at the end of this paper. 

2.1 ALGORITHM 
Figure 3 illustrates one algorithm which implements the general strategy 

outlined above. Note that in this version, triangulation and filtering are both 
included in the move-perceive loop. However, it might make sense to move both of 
these computations outside of the loop, for two reasons. First, the robot's position 
might be precise enough through several iterations, and it might not be necessary 
to refine the position this frequently. Second, it might not be possible to triangulate 
this frequently, if the angular position of features does not change rapidly enough. 

7 
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match features from image i 
with features from image i-1 

START 0 

list of pairs of points 
(with disparity ) 

list of points (x ,  y coords.) 
A 

detect features I 
move + 
4 

I e s t i m a t e r o b o t 1  change in angle, distance 

of robot I 

Fig. 3. One implementation of the general strategy. 



3. IMPLEMENTATION 

All but the programs used to display the results run on both a VMEbased 
system and a UNIX system. The display programs run only on the VME system. 
This system has a Motorola 68020 CPU, a Datacube digitizer, and a CCD video 
camera. 

3.1 VISION 

CESAR lab: 
Images of size 256 x 256 were used. Here is a sample image, taken in the 

Fig. 4. Sample image. 

In the image processing stage, the v2 * G operator is applied to the images. 
The images are blurred by two Gaussians with distributions determined by the 
characteristics of the images. A Laplacian operator is then applied t s  detect zero 
crossings. Finally, features are detected by locating local minima and maxima in - 
the res&ing Laplacian image. 

Figure 5 shows the resulting image after the Laplacian is 
there is some noise in this processed image; zero crossings have 
in which, upon examination of the original image, they would 
be found. 

applied. Note that 
been found in axeas 
not be expected to 

9 
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Fig. 5. Sample image after blurring and Laplacian. 

3.2 MATCHING 

In the feature matching stage, initial matches are found on the basis of proximity 
of the imaged positions of features in two images. Then, better matches are 
found iteratively based on the intensity of these minima and maxima, using a 
local neighborhood consistency measure. In Fig. 6, matched features (in white) 
are overlaid on the original image. Note that again the results are noisy. Several 
features have been found in unexpected places. 

In the last step of matching, pairs of matches are linked to form longer sequences 
of matches. Sequences are shown in Fig. 7 overlaid on the original image. The 
position of the feature in the first image is shown in white. The black line plots the 
displacement of the feature from the original image to the image in which the feature 
was last found. Note that the length of the sequence does not necessarily indicate 
that the sequence spans many images. It indicates only that the displacement 
between the first and last position of the feature is large. 
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Fig. 6. Matched feature points. 

Fig. 7. Sequences of feature matches. 
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Not surprisingly, several sequences have been found which are not consistent 
with the other sequences. The camera is translating towards a point (the focus of 
expansion which is approximately one-fourth of the way down from the top of the 

segments representing sequences, when extended, would intersect at or near that 
point. Clearly, however, some of the segments representing sequences are pointing 
the wrong way or have the wrong orientation. 

image an d one-fourth from the right side. Thus we would expect that all of the 

3.3 TRIANGULATION 

3.3.1 Obtaining Feature Angles 
Before discussing these approaches in more detail, we first describe how to 

obtain the angle of a feature with respect to the robot. In Fig. 8, the feature of 
interest, F ,  lies in a plane which is parallel to the image plane. The robot, R, lies 
in the plane of motion, which is perpendicular to the first plane. There are two 
angles which describe the position of the feature, a and b. a is the angle between 
the optical axis and the projection of the feature on the plane of motion. b is the 
angle between the optical axis and the projection of the feature on a third plane 
which is orthogonal to the first two planes. I have chosen to use only one angle 
for triangulation calculations in order to simplify the calculations. I use a as this 
angle because when the camera is facing the direction of motion, a has more degrees 
of freedom than b. b could be used in addition, but in most circumstances would 
not provide much extra information. However, if the camera were pointed at the 
ceiling, for example, b would provide more information than a and should be used 
instead. The range that is found for the feature, r ,  refers to the distance between 
the robot and the projection of the feature onto the plane of motion. Note that in 
the discussion which follows, robot headings and the angular positions of features 
are given with respect to the robot’s original heading. 

Fig. 8.  Angles used in triangulation. 
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3.3.2 Robot Triangulation 

Visual measurements provide the angle from the robot, R,  to a feature, F .  The 
position of the feature's projection is given by: 

5 = X + r sin(a) 

y = Y + f cos(a) 

where ( X ,  Y) is the robot's position, (3, y) is the feature's position, a is the angular 
position of the feature as discussed in the previous subsection, and r is the range 
from the robot to the feature.1° 

A 

I a. 

F 

Fig. 9. Robot triangulation. 

Given two measurements of a feature's angular position taken at two positions 
of the robot (the position of the robot is indicated by subscripts): 

x = Xo + ro sin(a0) x = X I  + ~-1 sin(a1) 

y = Yo + 7-0 COS(U0) y = I5 + n cos(a1) 

we can calculate the range to the feature from either position (in this case, from 
(Xl ,  Y1)): 

(XI  - Xo)  cos(a0) - (Yl - 6 )  sin(u0) 
sin(a0 - al) 

When the difference between the two angles is small, the resulting uncertainty in 
the calculated position of the feature will be large. This uncertainty can be reduced 
in two ways. We can ignore the results of any calculations in which the difference 
between the two angles is below a certain threshold. We can also use the absolute 
value of sin(a0 - u l )  as a weighting function when using the calculated range. 

rl = 
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3.3.3 Feature Triangulation 

There are two computations involved in feature triangulation. The first, which 
calculates the range to (or position of) a feature, must be done when the feature is 
first encountered. The second computation uses the known positions of features to 
calculate the current position of the robot. 

3.3.3.1 Calculating Range to an Unknown Feature 

Calculating the range to a new feature requires the angular position of the 
feature from both positions, ai-1 and ai, the previous position of the robot, 
(Xi-1, X-l), plus the distance, di-1, and the heading, 6i-1, that the robot traveled 
between the previous and current positions. 

We can calculate the range to the feature from both of the robot's positions by 
using the Law of Sines: 

Therefore, 

and 

F 

Fig. 10. Calculating feature range. 
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We can also calculate the position of the feature. The robot's current position 
is given from the distance and heading traveled (obtained from odometry): 

Xi = Xi-1 + di-1 sin(8i-1) 

Y, = x-1 + di-1 cos(8i-1) . 
We know the position of the feature given the robot's previous position and the 

feature's range and angular position from the robot's previous position: 

z = Xi-1 + ri-1 sin(ai-1) 

y = x-1 + ri-1 cos(ai-1) 

Since we can express the range of the feature in terms of the distance and 
heading traveled between robot positions and the angular positions of the feature 
from both positions, we can eliminate range from the previous equations to obtain 
the feature's position: 

di-1 sin(a; - 6i-1) sin(a,-1) 
sin(ai - ai-1) 

x = Xi-1 + 
y = xi-1 + sin(a;,l - 8i-l) cos(u;-1) 

sin(a; - ai-1) 

3.3.3.2 Calculating the Robot's Current Position 

The second computation involved in feature triangulation uses the ranges from 
the robot's previous position to two features and the angular positions of these two 
features at the previous and current positions to calculate the current position of 
the robot. This requires four measurements. 

Measurements of feature n from both robot positions (feature number is 
indicated by superscripts): 

xn = Xi-l  + r;"-l sin(ur-l) xn = Xi + r; sin(a7) 

yn = Y,-l + ?f-l cos(a;-l) yn = y,  + r; cos(.;) 

Measurements of feature m from both positions: 

xm = Xi-1 + r iV1 sin(ur l )  

ym = x-1 + .El cos(aTl> 

m 
2"' = Xi + 7-1 sin(ay> 

ym = V ,  + r r  cos(ar) 

These measurements can be combined to yield the range to either of the features 

rzl sin(uF - u T l )  + ?-:-.l sin(ay-l - U T )  
sin(ul - ur) 

from the current position: 

rr = 

The new position of the robot can be calculated by: 

X ;  = Xi-l  + r;-l sin(uF-l) - rr  sin(a3) 

Y,  = X-1 + rZ1  cos(ay-l) + r l ( -  cos(a~))  . 
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F" 
r 7 (- cos (a;)) 

r ?  cos (an ) 
1-1 i-1 ! 

r ?  sin (a!,) 
I- 1 

Fig. 11. Calculating robot position. 

Therefore, we can calculate the robot's current position: 

cos (ay ) [ r r l  sin(a7 - aTl) + sin(uy-l - U T ) ]  y, = X-1 + r;-l COS(a&l) - 
sin(a7 - a?) 

3.4 SELF-LOCATION 

There are two ways to use the feature range information. The calculations may 
be made pairwise and then combined, or a technique known as Kalman filtering 
may be used. 

Kalman filtering is a recursive form of least squares estimation. It is useful 
when the parameter of interest, in this case the robot's position and the range of 
features to it, is changing. The information that is required to use this method 
include models of the system and of the measurement process. The system model 
includes a description of the transition as well as its noise and the covariance of 
the noise. In other words, equations which describe the motion of the robot and 
incorporate the noise involved in this process must be generated. The measurement 
model is made up of a description of how measurements may be predicted, as well 
as the noise and covariance of measurements. 



4. EXPERIMENTAL DATA 

One experiment was run in which twelve images were acquired. The camera 
was moved forward five inches between each image’s acquisition. Figure 12 shows 
the original image in the sequence. 

Fig. 12. First image of sequence. 
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Figure 13 shows the find image of the sequence. 

4 4 2  
3 7 7  
3 0 5  
2 6 3  
3 9 6  
3 1 9  
2 6 9  
3 7 9  

2 5 6  
2 8 2  

2 0 6 6  

2 9 8  
3 2 7  
1 4 8  
1 4 0  
2 5 8  
2 2 6  
2 0 5  
2 0 4  

2 5 6  
l a 4  

pairs 
4 4 9  
3 8 4  
4 2 0  
4 04  
5 7 5  
5 8 7  
4 6 2  
5 3 3  
5 3 7  
4 9 8  
5 2 9  

Fig. 13. Last image of sequence. 

Table 1. Experimental data. 

3 
1 2 9  
3 8  
2 4  
3 5  

1 3 5  
6 2  
3 5  
7 7  
9 8  

- - 
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In Table 1, the first column (image) refers to the position of the image in 
the sequence. The second column features) gives the number of features found 
in that image. The third column i pairs) gives the number of matched features 
found between consecutive images. The fourth column (sequences) gives the total 
number of sequences of all lengths which originate in the corresponding image. The 
subsequent columns give the number of sequences of length two through nine which 
originate in each image. 

There was found to be relatively large error in the preliminary data obtained 
from triangulation (not shown). This can be explained by the occurrence of incorrect 
matches, as well as the short length of sequences that were found (see Table 1). The 
judicious filtering of short sequences may eliminate much of the useless data. 





5.  SUMMARY 

Preliminary results demonstrate that using experimental (vs. synthetic data 

However, even this relatively simple approach has provided some useful information. 
Clearly more work needs to be done to explore these problems further. 

to calculate the positions of features and the robot poses some difficult pro b lems. 

5.1 ROBOT VS. FEATURE TRIANGULATION 

One of the advantages of robot triangulation is that it uses all of the available 
information. However, it requires a model of the error in the odometry, which 
may not be known with much precision, if at all. This method is most useful in 
environments in which features appear and disappear frequently, and. cannot be 
relied upon to remain. 

An advantage of feature triangulation is that it uses odometry data sparingly. 
When it does use odometry, it requires only the distance traveled by the robot from 
its previous position to its current one, rather than total distance traveled, which has 
accumulated error. In addition, this information is required only for new features, 
when their positions need to be computed. However, feature triangulation requires 
that old features remain available for more than two time steps, so that they may 
be used to calculate the position of the robot. This method may initially appear 
to be more desirable, but in environments in which features appear and  disappear 
frequently, this method will not have any advantage over robot triangdation, since 
odornetry will have to be used just as frequently. 

The usefulness of these methods also depend on the type of feature used. More 
complex features are less likely than simple features to appear and disappear 
frequently, and so may be coupled successfully with the feature triangulation 
method. Simple features would be best used with robot triangulation. 
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6.  RECOMMENDATIONS 

There is clearly a great deal of research which could build upon the work 
reported here. As was discussed in the background section, Kalman filterin can 
be used to integrate the information obtained from both vision (feature angles! and 
odometry. It would be informative to implement Kalman filtering to see how well 
this method would work to reduce the uncertainty of the robot’s position. 

Another aspect of this work that could be pursued is better features, in terms 
of complexity and reliability. More complex features, such as edges, could be 
used in place of points. More reliable features, obtained by additional filtering, 
would provide better data for triangulation. Both of these characteristics should 
be implemented. This would address the question of how many features need to be 
used to obtain good results in triangulation. 

Currently, matching is done simply by examining a neighborhood around the 
imaged position of a feature. One way to increase the number of correct feature 
matches is to predict the new imaged position of a feature by using knowledge about 
the motion of the robot and the range of the feature. Another way to cut down on 
the number of incorrect matches is by filtering sequences which have been found. 
Local filtering could be done by examining the local neighborhood of a sequence 
to see if the length and orientation of the sequence is consistent with other nearby 
sequences. More global filtering could be done by determining the focus of expansion 
and eliminating all inconsistent sequences. 

The only experimentation which was done was simple translation. In theory, 
the approach presented here should work for rotation as well, but this clearly needs 
to be tested. In addition, an assumption was made that the camera pointed in 
the same direction as the robot’s motion. If this is relaxed, it might be possible 
to obtain better data for triangulation by, for example, looking to the side while 
moving forward. 

The two triangulation approaches could be further studied and compared. Are 
they indeed complementary? Is there some way that they could be combined 
and provide better results? An apparent drawback of feature triangulation is 
that features may appear and disappear so frequently in most environments that 
odometry has to be used at every time step. It would be useful to see whether this 
is indeed true. 
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APPENDIX 

PROCEDURE FOR USING PROGRAMS 

The pseudo-code on the following page outlines the procedure to be used when 
running the programs to solve that part of robot self-location which has been 
implemented as of September 1990. (Those programs with names which begin with 
capital letters are so marked to indicate that there are two slightly different versions 
on the VME and UNIX systems.) Figure 13 presents a diagram summarizing this 
procedure. 

The following programs are used: 
Delsqg 
lminrnax 
featurelist 
Flink 
Match-init 
Match 

This procedure requires eight arguments: then number of files to be processed, 
files, the basename of the files, base, the diameter of the Gaussian kernels, dia, 
the threshold level, thr, the disparity window, disp, the neighborhood, nbr, the 
number of iterations in the relaxation process, iters, and the threshold to use 
when filtering matches, ftr-thr. Recommended d u e s  are dia = 3, thr = 225, 
disp = 7, nbr = 11, iters =lo, and ftr-thr = 0.5. 

Output filenames are created by each program by appending the appropriate 
number or letter to the basename of the file. See the source code of particular 
programs for more detail. 

Arguments which are passed to this procedure axe boldfaced; internal variables 
are italicized. 
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filenum = 1 
prev = concat (base, * I .  I' , filenum) 
next = concat (base, ' ' . ' I ,  filenum + 1 ) 
comb = concat (base, I t . ' ' ,  filenum, filenum + 1) 

Delsqg prev dia 
l m i n m a x  prev-dia-thr 
f ea tu re l i s t  prev-dia-thr -3- 

f o r  ( i  = 0; i < files; i++) { 
/* process images and detect features */ 
Delsqg next dia 
l m i n m a x  next- dia-thr 
fea ture l i s t  next-dia -thr .3- 

/* match features */ 
F l i n k  prev_dia_thr-.3- next-dia-thr .3- \ 

comb-dia-t hr .S-disp- disp 
Match-init -i comb-dia-thr.3-disp- prev next 5 1 \ 

comb-dia-thr .3-disp-d- 
Flink -neighbors prev-dia-thr.3- \ 

comb-dia-thr .3-disp-d-n- nbr 
Match comb-dia-thr .3-disp-d- comb-dia-thr .3-disp-d-n- \ 

default iters comb-dia-t h r  .3-disp-d-n-m 

/* f i l t e r  matches */ 
mv comb-dia-t h r  .3-disp-d-n-m combm 
mat chf ilt e r  combm ftr-t hr  

fil  enurn+ + ; 
prev = concat (base, I I . I I ,  filenum) 
next = concat (base, 8 1 . 0 ,  filenum + I )  
comb = concat (base, ' I .  I t ,  filenum, filenum + 1 )  

1 
/* generate feature sequences f o r  a l l  bu t  l as t  two images */ 
/* 
/* two, which have already been generated i n  match f i l e )  */ 
f o r  ( i  = I; i c Ales; i++) { 

t r a c k j o i n t s  -i files base 

(second t o  l a s t  image only  has sequences of length */ 

1 
/+ t r iangulate  */ 
f o r  ( i  = 1; i <= files; i++) { 

1 

filename = concat (base, I ' . ' ' ,  i ,  " m f s " )  
t r i ang  filename t r iang .mot ion  
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high-match-prob n-1 ,n 

hi h-match-se - robln 

I feature-ranges 1 
Fig. 14. Diagram of program data flow. 
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DESCRIPTION OF PROGRAMS 

To get feature points: 

Delsqg imagel laplacianl diameter 
Delsqg image2 laplacian2 diameter 

Applies v2 * G operator to original image. Output is image. 

set-thresh laplacianfile level 

Sets a threshold for use by the lminmax program. 

lminmax laplacianl minmax [threshold [neighborhood] 1 
lminmax laplacian2 minmax [threshold [neighborhood]] 

Computes local maxima and minima of v2 * G files. Input is image file. 
Output file is list of feature points. 

To match feature points: 

diff-stats imagel image2 [rows [cols]] 

Computes difference statistics between two image files. (Useful in setting 
parameters for the matching programs.) Images have default size of 
256 x 256. 

f eaturelist minmax f eature-list-1 
f eaturelist m i n m a x  f eature-list-2 

Converts images of feature points to text files listing coordinates and type 
of feature points. 

Flink [-nolabel] f eature-list-1 feature-list-?. matchlist 
window-size 

Merges text files indicating feature points to create single file indicating 
matches. -nolabel flag causes feature types to be ignored. 
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Match-init [-ill  matchlist  image1 image2 window inc  [noise 
maxdiff] i n i t g r o b  

Adds initial likelihoods to each possible match. 

Flink -neighbors feature-list-1 neighbors window-size 

Makes a list of neighbors for first frame features. 

Match [-options] i n i t j r o b  neighbors parm-file i t e r a t i o n s  output  

Does actual matching. Output is a text file with disparity and likelihood 
values for each first frame feature point. 

matchf i l ter  input-f i le  probability-threshold 

Removes all matches from input f i le  with probabilities below given 
threshold. 

t r a c k s o i n t s  [-]current-file-num numfiles basename 

Links together sequences of feature points connected across multiple frames. 
(File names are assumed to be in the format basename.num, where num 
indicates the position of the image in the sequence. The beginning value of 
num is assumed to be 1 with the final value numfiles.) 

tr iang i n p u t f i l e  m o t i o n f i l e  

Calculates range of features from robot. Input is either a disparity file or a 
feature point trace. Output is a file listing features and their ranges. 
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To Display Images: 

display frame [image [rows [columns] 1 ] 

Reads in an image file and displays it. Specified frame is displayed if no 
image is given. Optional arguments give size of image; default is 256 x 256. 

display0 frame image [origin-rov [origin-column]] 

Reads in an image file and displays it. Specified frame is displayed if no 
image is given. Optional arguments give placement of origin of image in 
memory; default is (50,50). The image is assumed to be 256 x 256. 

To Display Matches: 

displaym frame image [origin-row [origin-columnll 

Reads in a disparity file and displays the features for which matches have 
been found. Data already in memory is overwritten only where features are 
present. Optional arguments give placement of origin of image in memory; 
default is (50,50). The image is assumed to be 256 x 256. 

To Display Match Sequences: 

displaytc frame image [origin-row [origin-column]I 

Reads in a feature point trace file, displays the feature point at its originating 
position and plots a line from this position to its final position. Data 
already in memory is overwritten only where features are present. Optional 
arguments give placement of origin of image in memory; default is (50,50). 
The image is assumed to be 256 x 256. (A feature point trace file contains a 
list of matches tracked over multiple, consecutive frame pairs. It is produced 
by track-points). 
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Shell Files to Automate Processing (On Iris Only): 

g o i p  number basename diameter threshold-level 

Sets up feature points to be matched. Uses features defined by extrema in 
the Laplacian of the smoothed images. number is the number of image files 
to be processed. basename is the base name of the image files. (File names 
are assumed to be in the format basename.num, where num indicates the 
position of the image in the sequence. The beginning value of num is 
assumed to be 1 with the find value number.) diameter is the size for 
the v2 * G filter. threshold-level is the intensity d u e  to be used €or 
thresholding features. 

gomatch number basename max-disparity max-neighbor i t era t ions  

Establishes the initial list of matches and then runs the relaxation matching 
program. number is the number of image files to be processed. basename 
is the base name of the image files. (File names are as in goip.) 
ma-disparity is the maximum possible disparity expected between 
frames. (Maximum vertical and horizontal disparities are currently assumed 
to be the same.) max-neighbor defines the neighborhood over which the 
relaxation updating looks for support. Make this at least two times larger 
than max-disparity. iterations is the number of passes through all of the 
possible matches that are made. If more than two image files are specified, 
each consecutive pair will be matched. 

gotrack number basename 

Generates sequences of feature matches. number is the number of image 
files to be processed. basename is the base name of the image files. (File 
names are as in goip.) number - 1 iterations are performed, since running 
trackgoints on the last match file is redundant (the last match file contains 
sequences of length two). 
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PROGRAM INTERFACES 

Flink 
Match-init F Match 

track-poin ts  E 

Table 2. Inputs and outputs of programs. 
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FILE FORMATS 

Format of Feature List File: 

<feature l ist> 
< . . .misc i n f o . .  > 
nmline nmsamp 
n number of feature points 
i l  j l  l a b e l  
i 2  j2 l a b e l  
i 3  j 3  labe l  

text string indicating type of file 

number of lines, samples in image file 

line and sample coordinates, label 

... 

... 
i n  j n  l a b e l  

(Points are sorted in non-decreasing order of i, and within i in non-decreasing 
order of j.) 

Format of Match List: 

<match l ist> 
<match l ist  window size 
nmline nmsamp 
t o t a l  
l i n e  samp 
match1 
d l i n e l  dsampl 

d l inen dsampn 

nmatchm 
d l i n e l  dsampl 

text identifier 

number of lines, samples in original file 
number of frame one feature points 
line, sample index of first feature point 
number of matches for this point 
line and sample disparities 

= n> 

number of matches for last point 

dl inen dsampn 
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Format of Initial Match File: 

< i n i t i a l i z e d  l i s t>  
<match list windou s ize  = n> 
<match-init : uindow = n ,  i n c  = n> 
nmline nmsamp 
t o t a l  
l i n e  samp 
m a t c h 1  
d l i n e l  dsampl probl  

d l i n e n  dsampn probn 
p-unmat ch probability of unmatchable 

number of lines, samples in original image 
number of frame one feature points 
line, sample index of first feature point 
number of matches for this point 
line and sample disparities, initial probability 

nmat ch 
d l i n e l  dsampl probl  

d l i n e n  dsampn probn 
p-unmat ch 

number of matches for last point 

Format of Neighbor File: 

<neighbor l i s t >  
<neighbor l ist  window size = n> 
nmline nmsamp 
t o t a l  
l i n e  samp 
n-neighbor-1 
l i n e 1  sampl 

l i n e n  sampn 

number of lines, samples in original image 
number of frame one feature points 
line, sample index of first feature point 
number of neighbors for this point 
line and sample indices of neighbor 

n-neighbor-m 
l i n e 1  sampl 

l i n e n  sampn 

Format of Parameter File: 

number of neighbors for last point 

parm-1-name = parm-1-value (Parameters can be in any order, 
but all should be specified.) 

pan-n-name = parm-n-value 
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Format of Match Files: 

<disparity f i l e >  
<. . .misc inf  0.. .> 
nmline nmsamp 
t o t a l  
line-1 samp-1 
d l i n e l  dsampl probl 

number of lines, samples in original image 
number of frame one feature points 
line, sample index of first feature point 
line and sample disparities, likelihood 

line-n samp-n 
dlinen dsampn probn 

(The disparities in the file correspond to the match labels with the largest 
likelihood. The unmatchable label is coded implicitly. A small value for the 
likelihood indicates that “unmatched” is the result of the matching. A likelihood 
of 0 means that the disparity values in the file should be ignored, and the point 
is definitely “unmat chable. ” ) 

Format of Feature Point Trace: 

<feature point trace> 
<. . .misc i n f o . .  .> 
nmline nmsamp 
nmpoints 
m a t c h e s  
l i n e 1  sampl 
nmf u t  ure 1 
l i n e l f l  samplfl problf l  

l i n e l f n  samplfn problfn 

linem sampm 
nmf uturem 
linemfl sampmfl probmfl 

number of lines, samples in original image 
number of feature points 
maximum number of future feature points 
first feature point 
number of matches 
line, sample of nearest new match 

line, sample of farthest new match 

last feature point 
number of matches 
line, sample of nearest new match 

linemfn sampmfn probmfn line, sample of farthest new match 
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Format of Triangulation Files: 

<triangulation f i l e >  
<. . .misc info.. .> information records 
nmline nmsamp size of image 
features number of features 
nmmat ches maximum number of matching points 
l ine - la  samp-la angle-la first point in sequence 
tota l -1  number of matches of 1st feature 
l n l b  smlb anlb prlb n i b  corresponding point in 2nd image 

I n k  smlz anlz pr iz  rn lz  last corresponding point 

line-na samp-na angle-na point in next to last image 
t o t  al-n number of matches of last feature 
lnnb smnb annb prnb rnnb corresponding point in 2nd image 

lnnz smnz annz prnz rnnz last corresponding point 

Format of the Motion File: 

<motion f i l e >  
t o t a l  number of steps 
dist-1 heading-1 distance and heading for first step 

dist-n heading-n distance and heading for last step 

ACCESSING PROGRAMS 

These programs work on both the VMEbased system, vislab, and on the 
UNIX system, IRIS. Display capabilities exist only on the VME system. On 
vislab, the programs are currently located in /hu/usr/liz/BIN. The source and 
on-line documentation is in /hu/usr/liz/SRC, and the relocatable files are in 
/hu/usr/liz/RELOC. Image sequences are in /h~/usr/liz/256IMAGES. On IRIS, 
the programs are currently located in /usr/people/liz/bin, and the source, 
documentation and relocatable files are in /usr/people/liz/src. Image sequences 
are in /usr/people/liz/256 images. 
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