
3 4456 0 3 3 3 3 2 3 5

Elizabeth R. Stuck

. _. -.

ORNL/TM-11718
CES AR-9 1 /03

Engineering Physics and Mathematics Division

ROBOT SELF-LOCATION IN
UNKNOWN ENVIRONMENTS

Elizabeth R. Stuck

DATE PUBLISHED - February 1991

Office of Engineering Research Program
Basic Energy Sciences

U.S. Department of Energy

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
managed by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY

3 4 4 S b 033LL23 5

CONTENTS

.
.

ABSTRACT vii
1 . INTRODUCTION 1

1.1 MOTIVATION . 1
1.1.1 Error in Odometry . 1
1.1.2 Error in Triangulation 2

1.2 OBJECTIVE . 3
1.3 RESEARCH QUESTIONS 3
1.4FOCUS . 4
1.5 BACKGROUND . 5

2 . GENERAL SOLUTION STRATEGY 7
2.1 ALGORITHM . 7

3 . IMPLEMENTATION . 9

3.2 MATCHING . 10
3.3 TRIANGULATION . 12

Obtaining Feature Angles 12
3.3.2 Robot Triangulation 13
3.3.3 Feature Triangulation 14

3.3.3.1 Calculating Range to an Unknown Feature 14

3.3.3.2 Calculating the Robot’s Current Position
3.4 SELF-LOCATION . 16

. 3.1 VISION 9

3.3.1

. 15

4 . EXPERIMENTAL DATA 17
5 . SUMMARY 21

5.1 ROBOT VS . FEATURE TRIANGULATION 21
6 . RECOMMENDATIONS 23
7 . ACKNOWLEDGMENTS 25

REFERENCES . 27
APPENDIX 29

PROCEDURE FOR USING PROGRAMS 29
DIAGRAM OF PROGRAM DATA FLOW 31
DESCRIPTION OF PROGRAMS 32
PROGRAM INTERFACES 36
FILE FORMATS . 37
ACCESSING PROGRAMS 40

.
.

.

.

.

...
111

LIST OF FIGURES

Fig.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Page

Odometry error 2

Triangulation error 3

One implementation of the general strategy 8

Sampleimage 9

Sample image after blurring and Laplacian 10

Matched feature points 11

Sequences of feature matches 11

Angles used in triangulation 12

Robot triangulation 13

Calculating feature range 14

Calculating robot position 16

First image of sequence 17

Last image of sequence 18

Diagram of program data flow 31

iv

LIST OF TABLES

Table PaEe

1 Experimental data . 18

2 Inputs and outputs of programs 36

V

ABSTRACT

It is often necessary for robots to navigate in environments which are not
known in advance. In this context, self-location is the problem of determining
how far and in what direction motion has occurred. Because of wheel slippage and
other errors, odometry cannot be depended upon to provide precise or accurate
positional information. Triangulating from visual features can help make position
estimation more accurate. This paper describes work that was done during a
three-month student research internship at the Center for Engineering Systems
Advanced Research (CESAR) of the Oak Ridge National Laboratory, exploring the
problem of robot self-location in unknown environments. This work included the
development and integration of a set of programs which present a partial solution
to this self-location problem. These programs use a sequence of images which are
acquired as the camera moves between positions with a motion which is known
approximately. Visual features are extracted from the images and matched through
time. 'Ikiangulation using these features then provides a rough estimate of the range
of these features from the camera. Kalman filtering (not implemented) can then
be used to integrate the information from odornetry and vision to provide a better
estimate of the position of the robot.

vii

1. INTRODUCTION

We define the problem as follows. The robot moves in a plane (termed the
ground plane or plane of motion), so its position is described by the triple (x, y, 0).
x and y determine the robot’s locality, and 8 its heading. The robot’s initial position
is set to the origin, (0 0 0). The question to be answered is, after n moves, what is
the new position (d , ;’,’Of)?

The robot is traveling
through an unknown environment. This means that there is no a priori knowledge
of any features which could be used by the robot to self-locate. However, there are
two other sources of information which can be used for this purpose. The robot can
observe perceptual features, although any measurements it makes will incorporate
error. Wheel odometry is another source of information. The direction and distance
the wheels turn may be measured. However, this measurement, too, will include
error. Using these two sources of information, triangulation may be used to self-
locate. Since we are dealing with digital computers, there will be round-off error,
which will lead to imprecision in the results. The goal then is to use perceptual
information coupled with odometry to refine the estimate of the robot’s position.

This problem has several important characteristics.

1.1 MOTIVATION

Much of the work that has been done addressing mobile robot navigation
assumes that the world is known in advance. However, this is not a reasonable
assumption to make in most contexts. Many environments change rapidly over
time. Many environments are not knowable in advance with the precision needed to
solve detailed navigation problems. Other environments may be known in advance,
but not with complete accuracy.

The problem being addressed here does not face many of the difficulties
introduced when knowledge of the environment is required. Moving objects will, in
most cases, not disturb the self-location process. (Object motion ma be a problem
when it occurs at a slow enough rate that it is not detected quickly.7

1.1.1 Error in Odometry

Figure 1 illustrates how positional error accumulates when using odometry.
Ro is the robot’s initial position. The robot is then instructed to move a certain
distance at a given heading to position R1. However, when a robot executes a
command to move a certain distance at a given heading, it will not move exactly as
commanded, due to wheel slippage and mechanical imprecision in the wheel drivers
and encoders. The ellipse around R1 represents the uncertainty associated with the
actual position of the robot after executing the motion command. This uncertainty
is made up of error that is bounded (mechanical imprecision), and unbounded error
(wheel slippage). Thus, the position of the robot is most likely to be somewhere in
this ellipse around R1. (It is possible, but much less likely, that the robot’s position
is outside this ellipse, since it is very unlikely that wheel slippage is great enough
to cause this much error.)

The uncertainty is in the shape of an ellipse because there is cornmonly more
error associated with a robot changing heading than there is in moving a given
distance. At the next step, when the robot moves to Rz, the error accumulates,
and there is consequently a larger uncertainty associated with this position of the
robot.

1

2 INTRODUCTION

Fig. 1. Odometry error.

1.1.2 Error in Triangulation
Figure 2 illustrates the uncertainty which occurs when triangulating the position

of a feature. The robot first sees the feature, F , when it is at position Ri-l. Due to
noise in the imaging process, there is some angular uncertainty in where the robot
detects the feature. Thus, the robot only knows that the feature is somewhere
between the two lines indicated. When the robot moves to Ri, it again detects the
angle of the feature, with some uncertainty. The resulting area formed between
the intersecting lines represents the uncertainty on the estimated location of the
feature.

INTRODUCTION 3

- 1

Fig. 2. Triangulation error.

1.2 OBJECTIVE

The objective of this project was to implement methods which have been
recently presented in the literature and discover the limitations of these methods.
There are two useful consequences of this work. First, this project makes available
a set of programs implementing visual feature detection and matching which can
be used in self-location. This software will be useful for future research on related
topics in vision and navigation. Second, the results of this project suggest possible
areas for future research.

1.3 RESEARCH QUESTIONS

There are numerous potentially interesting research questions which can be
explored. For example, one can investigate the use of pardelization. Can this
procedure be parallelized? Would parallelization result in a significant amount of
speed-up?

A second research issue involves the conflict between the needs of matching
and those of triangulation. In order to match more quickly and more reliably, it
is desirable to minimize the change in the imaged positions of features. The closer
the imaged position of a feature is in one image to its imaged position in the next
image, the better. However, triangulation requires a large (change in the relative
angles between the robot and features. How can both requirements be met? If we
build long sequences of features, we need to address the problems associated with
using features over long periods of time. Features can become occluded, move, or
become confused with other features.

Another question has to do with how complex features should be. Complex
features may reflect characteristics of the world more reliably. Perceptually
significanf groupings,1 are similar across varying viewpoints. They are based
on characteristics of the world rather than the scene, so they are less likely to
change under different situations. Topographac ~ t r u c t u r e ~ , ~ such as ridges and
valleys in image characteristics, are somewhat complex, and are thus both less

4 INTRODUCTION

common and more easily distinguishable. Similarly, surfaces are characteristics of
the world. However, there may not be enough of such complex features to meet
the requirements of the procedure. In addition, they may be expensive to compute.
The process of detecting and matching features will become more computationally
expensive. On the other hand, if simple features are used, there may be enough
of them to meet the requirements of self-location, but they may be difficult to
distinguish and identify uniquely. There are many more of them, which makes the
matching problem more difficult. Thus, incorrect matches may be more common,
introducing another source of error in the data. However, they are much less
computationally expensive to detect and match. Once the type of features has
been chosen, we must also consider how matching should be done. Given the
features in one image, should they be searched for in the next image based on
motion information?

A fourth question deals with the reliability and limitations of using real
(vs. synthetic) data. Digital sensors provide imprecise data, which is due to
discretization, and most incorporate noise. In addition, the interpretation of sensor
data is still a difficult problem. How much information can be extracted from
experimental data and how reliable is this information? What kinds of limitations
does the use of experimental data place on computation? The use of experimental
data also introduces the problem of how to eliminate “bad data” in the form of
incorrect matches. Methods must be developed to detect incorrect matches and
remove them from further computations. It may be possible to use characteristics
of features which can increase the number of correct matches. Or there may be
ways of filtering out incorrect data at later stages of processing.

Another issue is what kind of sensing to use. Since we want to measure the
angles of features with adequate precision, sonar is clearly not an appropriate type
of sensor. There are several forms of visual sensing which can be used, such as
passive (CCD) or active (laser-range finder). If CCD cameras are used, one must
also choose between monocular or stereo (or even trinocular) vision. Once the sensor
has been chosen, questions arise as to the kinds of limitations placed on computation
by the form of sensing. There are other types of sensing as well, having to do with
measuring motion of the robot. This raises the issue of whether or not odometry can
be used reliably. Does it provide data that can be used, or is the noise simply too
great? If odometry measurements are noisy, can the noise be modeled? In addition,
we need to determine how well the motion parameters need to be estimated for this
approach to work, as well as how changing these parameters affects how much the
approach reduces positional uncertainty.

1.4 FOCUS

Clearly, only one or two of the above issues can be explored in three months.
Therefore, I needed to limit the scope of my work. I chose to focus on using real
CCD monocular imagery to do triangulation. The reason for this choice was that I
was interested in exploring the limitations and requirements that using real imagery,
especially CCD, monocular imagery, place on a solution of the self-location problem.
Will this method work when monocular vision is used? I also wanted to explore the
requirements of each part of a system that solves this problem.

In order to meet these goals, I chose to use programs which had
already been written at the University of Minnesota (by my thesis advisor,
Dr. William Thompson). These programs detect and match features. The
algorithms which these programs implement are of interest here only with respect
to their limitations when used to solve the self-location problem.

INTRODUCTION 5

1.5 BACKGROUND

This problem has been addressed by several other researchers. There are two
bodies of work which are closely related to the work presented here. The first set
of research efforts deals with self-location on an abstract level, and so will only be
mentioned briefly. Smith and Cheeseman3 present a method for estimating relative
locations of objects and the corresponding expected error using Kalman filtering.
Wang4 and Watanabe and Yuta5 both discuss methods for robot self-location based
on odometry.

The second relevant body of work includes research which presents solutions
to the self-location problem which use real imagery. The goal of Kriegman,
Triendl and €3inford6 is to instantiate a generic world model. They use stereo
in a hallway to detect two-dimensional features (vertical edges). Stereo and motion
uncertainty is represented using a normal distribution. Their solution uses odometry
to estimate the robot’s position. Matches are based on similar intensities and
neighborhood consistency (intervals between neighboring matches . They use the

The state model is composed of the odometry transform, the correspondence points
and the covariances. Camera calibration is done to obtain the baseline and to find
the relationship between the two cameras’ intensities and epipolars. The system
appears to work reasonably quickly. Since only features at the horizon are used, it
is not clear if there may be situations in which this approach may have problems.
In addition, the cameras may become misaligned through time and it is not obvious
how well the approach will deal with this.

Ayache and Faugeras7 address the problem of building and updating a three-
dimensional representation of the environment. They use trinocular vision for
detecting 3-D lines in both synthetic and real imagery (a cluttered room). Error is
modeled using a Gaussian distribution. Robot position is estimated from odometry.
Features are matched based on displacement and geometric parameters, and the
Mahalanobis distance is used to reject bad matches and outliers. They use the
extended Kalman filter to reduce uncertainty on both feature and robot position.
It is not clear how cameras are calibrated and how well this approach works if
they become misaligned. This approach also seems computationally expensive. No
information is given about how long this solution takes to compute.

Matthies and Shafer’ and Matthies and Kanadeg address the problem of how
best to model error in triangulation. They use stereo vision on real imagery

and use three-dimensional features (obtained with Moravec’s interest
operator (a rmml . Their solution estimates robot rotation and translation from feature
correspondences. Three-dimensional pruning handles bad matches. This approach
uses the fact that under rigid motion, the distance between three-dimensional
points does not change over time. They use the extended Kalman filter to reduce
uncertainty on both feature positions and robot position. The state model includes
the location of feature points. In the results presented, only forward motion along
the optical axis was performed (no rotation or sideways translation), so it is not clear
how well this approach would work for more complex motions. They do not discuss
how the cameras are calibrated or how this approach would deal with changes in
camera alignment.

All of these research efforts use stereo or trinocular vision. This simplifies the
matching and triangulation problems, since the baseline between cameras may be
assumed to be known in advance and not to change. The use of non-monocular
vision also allows the approximate localization of features using images obtained

extended Kalman filter to reduce uncertainty on both feature an d robot position.

6 INTRODUCTION

from one position of the robot. Two of the three approaches employ edges as
features. Since edges are more complex features, more processing is required
to obtain them, but there are also fewer features, which simplifies the matching
process. All of the solutions use Kalman filtering to integrate the range and position
information and reduce robot position uncertainty. Common assumptions include
using a Gaussian distribution for modeling error in vision and motion measurements.
They assume that the error covariances of vision and motion measurements is
known, which is a parameter needed in Kalman filtering. They also assume
that triangulation can be linearized (which simplifies the Kalman filtering process)
without rendering the information useless. Finally, some of the solutions deal with
the initial calibration of the cameras, but none of them deals explicitly with what
happens when the cameras become misaligned during motion, as they almost surely
will.

2. GENERAL SOLUTION STRATEGY

The general solution strategy is made up of four stages. In the first image
processing stage, images are acquired from different positions. They are filtered and
features are generated from them. In the second feature matching stage, feature
matches axe found and filtering is done to eliminate matches of low probability.
These matches are linked into longer sequences that span more than two images.
These sequences are also filtered. In the third triangulation stage, these feature
sequences are used to estimate the range of the features. Filtering can also be
done at this step to eliminate inconsistent data. In the fourth and final stage of
self-location, the range of features is used to refine the position of the robot.

Triangulation using visual features places conflicting demands on a
computational system. In order to find matches, images must be taken from
positions which are close to each other. However, the best results from triangulation
are obtained the closer the differences between angles get to 90". In order to
meet both of these requirements, matches are found between successive images
of a sequence. These pairwise matches are then integrated into lists which track
points across the entire sequence of images.

Monocular passive vision (using a CCD camera) is used to acquire a sequence
of images. Features in the form of local maxima and minima points were used and
matching was done on the basis of proximity and similar intensities. These choices
were made because of the software that was available and because of the short
duration of the project. Error was not modeled. The find step of robot position
refinement was not dealt with, but a brief discussion of techniques which could be
useful is presented at the end of this paper.

2.1 ALGORITHM
Figure 3 illustrates one algorithm which implements the general strategy

outlined above. Note that in this version, triangulation and filtering are both
included in the move-perceive loop. However, it might make sense to move both of
these computations outside of the loop, for two reasons. First, the robot's position
might be precise enough through several iterations, and it might not be necessary
to refine the position this frequently. Second, it might not be possible to triangulate
this frequently, if the angular position of features does not change rapidly enough.

7

8 GENERAL SOLUTION STRATEGY

match features from image i
with features from image i-1

START 0

list of pairs of points
(with disparity)

list of points (x , y coords.)
A

detect features I
move +
4

I e s t i m a t e r o b o t 1 change in angle, distance

of robot I

Fig. 3. One implementation of the general strategy.

3. IMPLEMENTATION

All but the programs used to display the results run on both a VMEbased
system and a UNIX system. The display programs run only on the VME system.
This system has a Motorola 68020 CPU, a Datacube digitizer, and a CCD video
camera.

3.1 VISION

CESAR lab:
Images of size 256 x 256 were used. Here is a sample image, taken in the

Fig. 4. Sample image.

In the image processing stage, the v2 * G operator is applied to the images.
The images are blurred by two Gaussians with distributions determined by the
characteristics of the images. A Laplacian operator is then applied t s detect zero
crossings. Finally, features are detected by locating local minima and maxima in -
the res&ing Laplacian image.

Figure 5 shows the resulting image after the Laplacian is
there is some noise in this processed image; zero crossings have
in which, upon examination of the original image, they would
be found.

applied. Note that
been found in axeas
not be expected to

9

10 IMP L EMEN TA T I 0 N

Fig. 5. Sample image after blurring and Laplacian.

3.2 MATCHING

In the feature matching stage, initial matches are found on the basis of proximity
of the imaged positions of features in two images. Then, better matches are
found iteratively based on the intensity of these minima and maxima, using a
local neighborhood consistency measure. In Fig. 6, matched features (in white)
are overlaid on the original image. Note that again the results are noisy. Several
features have been found in unexpected places.

In the last step of matching, pairs of matches are linked to form longer sequences
of matches. Sequences are shown in Fig. 7 overlaid on the original image. The
position of the feature in the first image is shown in white. The black line plots the
displacement of the feature from the original image to the image in which the feature
was last found. Note that the length of the sequence does not necessarily indicate
that the sequence spans many images. It indicates only that the displacement
between the first and last position of the feature is large.

IMPLEMENTALTION 11

Fig. 6. Matched feature points.

Fig. 7. Sequences of feature matches.

12 IMPLEMENTATION

Not surprisingly, several sequences have been found which are not consistent
with the other sequences. The camera is translating towards a point (the focus of
expansion which is approximately one-fourth of the way down from the top of the

segments representing sequences, when extended, would intersect at or near that
point. Clearly, however, some of the segments representing sequences are pointing
the wrong way or have the wrong orientation.

image an d one-fourth from the right side. Thus we would expect that all of the

3.3 TRIANGULATION

3.3.1 Obtaining Feature Angles
Before discussing these approaches in more detail, we first describe how to

obtain the angle of a feature with respect to the robot. In Fig. 8, the feature of
interest, F , lies in a plane which is parallel to the image plane. The robot, R, lies
in the plane of motion, which is perpendicular to the first plane. There are two
angles which describe the position of the feature, a and b. a is the angle between
the optical axis and the projection of the feature on the plane of motion. b is the
angle between the optical axis and the projection of the feature on a third plane
which is orthogonal to the first two planes. I have chosen to use only one angle
for triangulation calculations in order to simplify the calculations. I use a as this
angle because when the camera is facing the direction of motion, a has more degrees
of freedom than b. b could be used in addition, but in most circumstances would
not provide much extra information. However, if the camera were pointed at the
ceiling, for example, b would provide more information than a and should be used
instead. The range that is found for the feature, r , refers to the distance between
the robot and the projection of the feature onto the plane of motion. Note that in
the discussion which follows, robot headings and the angular positions of features
are given with respect to the robot’s original heading.

Fig. 8. Angles used in triangulation.

IMPLl3MENTATIOiV 13

3.3.2 Robot Triangulation

Visual measurements provide the angle from the robot, R, to a feature, F . The
position of the feature's projection is given by:

5 = X + r sin(a)

y = Y + f cos(a)

where (X , Y) is the robot's position, (3, y) is the feature's position, a is the angular
position of the feature as discussed in the previous subsection, and r is the range
from the robot to the feature.1°

A

I a.

F

Fig. 9. Robot triangulation.

Given two measurements of a feature's angular position taken at two positions
of the robot (the position of the robot is indicated by subscripts):

x = Xo + ro sin(a0) x = X I + ~-1 sin(a1)

y = Yo + 7-0 COS(U0) y = I5 + n cos(a1)

we can calculate the range to the feature from either position (in this case, from
(Xl , Y1)):

(XI - Xo) cos(a0) - (Yl - 6) sin(u0)
sin(a0 - al)

When the difference between the two angles is small, the resulting uncertainty in
the calculated position of the feature will be large. This uncertainty can be reduced
in two ways. We can ignore the results of any calculations in which the difference
between the two angles is below a certain threshold. We can also use the absolute
value of sin(a0 - u l) as a weighting function when using the calculated range.

rl =

14 IMPLEMENTATION

3.3.3 Feature Triangulation

There are two computations involved in feature triangulation. The first, which
calculates the range to (or position of) a feature, must be done when the feature is
first encountered. The second computation uses the known positions of features to
calculate the current position of the robot.

3.3.3.1 Calculating Range to an Unknown Feature

Calculating the range to a new feature requires the angular position of the
feature from both positions, ai-1 and ai, the previous position of the robot,
(Xi-1, X-l), plus the distance, di-1, and the heading, 6i-1, that the robot traveled
between the previous and current positions.

We can calculate the range to the feature from both of the robot's positions by
using the Law of Sines:

Therefore,

and

F

Fig. 10. Calculating feature range.

IMPL EMEN TA TI0 N 15

We can also calculate the position of the feature. The robot's current position
is given from the distance and heading traveled (obtained from odometry):

Xi = Xi-1 + di-1 sin(8i-1)

Y, = x-1 + di-1 cos(8i-1) .
We know the position of the feature given the robot's previous position and the

feature's range and angular position from the robot's previous position:

z = Xi-1 + ri-1 sin(ai-1)

y = x-1 + ri-1 cos(ai-1)

Since we can express the range of the feature in terms of the distance and
heading traveled between robot positions and the angular positions of the feature
from both positions, we can eliminate range from the previous equations to obtain
the feature's position:

di-1 sin(a; - 6i-1) sin(a,-1)
sin(ai - ai-1)

x = Xi-1 +
y = xi-1 + sin(a;,l - 8i-l) cos(u;-1)

sin(a; - ai-1)

3.3.3.2 Calculating the Robot's Current Position

The second computation involved in feature triangulation uses the ranges from
the robot's previous position to two features and the angular positions of these two
features at the previous and current positions to calculate the current position of
the robot. This requires four measurements.

Measurements of feature n from both robot positions (feature number is
indicated by superscripts):

xn = Xi-l + r;"-l sin(ur-l) xn = Xi + r; sin(a7)

yn = Y,-l + ?f-l cos(a;-l) yn = y, + r; cos(.;)

Measurements of feature m from both positions:

xm = Xi-1 + r iV1 sin(ur l)

ym = x-1 + .El cos(aTl>

m
2"' = Xi + 7-1 sin(ay>

ym = V , + r r cos(ar)

These measurements can be combined to yield the range to either of the features

rzl sin(uF - u T l) + ?-:-.l sin(ay-l - U T)
sin(ul - ur)

from the current position:

rr =

The new position of the robot can be calculated by:

X ; = Xi-l + r;-l sin(uF-l) - rr sin(a3)

Y, = X-1 + rZ1 cos(ay-l) + r l (- cos(a~)) .

16 IMPLEMENTATION

F"
r 7 (- cos (a;))

r ? cos (an)
1-1 i-1 !

r ? sin (a!,)
I- 1

Fig. 11. Calculating robot position.

Therefore, we can calculate the robot's current position:

cos (ay) [r r l sin(a7 - aTl) + sin(uy-l - U T)] y, = X-1 + r;-l COS(a&l) -
sin(a7 - a?)

3.4 SELF-LOCATION

There are two ways to use the feature range information. The calculations may
be made pairwise and then combined, or a technique known as Kalman filtering
may be used.

Kalman filtering is a recursive form of least squares estimation. It is useful
when the parameter of interest, in this case the robot's position and the range of
features to it, is changing. The information that is required to use this method
include models of the system and of the measurement process. The system model
includes a description of the transition as well as its noise and the covariance of
the noise. In other words, equations which describe the motion of the robot and
incorporate the noise involved in this process must be generated. The measurement
model is made up of a description of how measurements may be predicted, as well
as the noise and covariance of measurements.

4. EXPERIMENTAL DATA

One experiment was run in which twelve images were acquired. The camera
was moved forward five inches between each image’s acquisition. Figure 12 shows
the original image in the sequence.

Fig. 12. First image of sequence.

17

18 EXPERIMENTAL DATA

Figure 13 shows the find image of the sequence.

4 4 2
3 7 7
3 0 5
2 6 3
3 9 6
3 1 9
2 6 9
3 7 9

2 5 6
2 8 2

2 0 6 6

2 9 8
3 2 7
1 4 8
1 4 0
2 5 8
2 2 6
2 0 5
2 0 4

2 5 6
l a 4

pairs
4 4 9
3 8 4
4 2 0
4 04
5 7 5
5 8 7
4 6 2
5 3 3
5 3 7
4 9 8
5 2 9

Fig. 13. Last image of sequence.

Table 1. Experimental data.

3
1 2 9
3 8
2 4
3 5

1 3 5
6 2
3 5
7 7
9 8

- -

EXPERIMENTAL DATA 19

In Table 1, the first column (image) refers to the position of the image in
the sequence. The second column features) gives the number of features found
in that image. The third column i pairs) gives the number of matched features
found between consecutive images. The fourth column (sequences) gives the total
number of sequences of all lengths which originate in the corresponding image. The
subsequent columns give the number of sequences of length two through nine which
originate in each image.

There was found to be relatively large error in the preliminary data obtained
from triangulation (not shown). This can be explained by the occurrence of incorrect
matches, as well as the short length of sequences that were found (see Table 1). The
judicious filtering of short sequences may eliminate much of the useless data.

5. SUMMARY

Preliminary results demonstrate that using experimental (vs. synthetic data

However, even this relatively simple approach has provided some useful information.
Clearly more work needs to be done to explore these problems further.

to calculate the positions of features and the robot poses some difficult pro b lems.

5.1 ROBOT VS. FEATURE TRIANGULATION

One of the advantages of robot triangulation is that it uses all of the available
information. However, it requires a model of the error in the odometry, which
may not be known with much precision, if at all. This method is most useful in
environments in which features appear and disappear frequently, and. cannot be
relied upon to remain.

An advantage of feature triangulation is that it uses odometry data sparingly.
When it does use odometry, it requires only the distance traveled by the robot from
its previous position to its current one, rather than total distance traveled, which has
accumulated error. In addition, this information is required only for new features,
when their positions need to be computed. However, feature triangulation requires
that old features remain available for more than two time steps, so that they may
be used to calculate the position of the robot. This method may initially appear
to be more desirable, but in environments in which features appear and disappear
frequently, this method will not have any advantage over robot triangdation, since
odornetry will have to be used just as frequently.

The usefulness of these methods also depend on the type of feature used. More
complex features are less likely than simple features to appear and disappear
frequently, and so may be coupled successfully with the feature triangulation
method. Simple features would be best used with robot triangulation.

21

6. RECOMMENDATIONS

There is clearly a great deal of research which could build upon the work
reported here. As was discussed in the background section, Kalman filterin can
be used to integrate the information obtained from both vision (feature angles! and
odometry. It would be informative to implement Kalman filtering to see how well
this method would work to reduce the uncertainty of the robot’s position.

Another aspect of this work that could be pursued is better features, in terms
of complexity and reliability. More complex features, such as edges, could be
used in place of points. More reliable features, obtained by additional filtering,
would provide better data for triangulation. Both of these characteristics should
be implemented. This would address the question of how many features need to be
used to obtain good results in triangulation.

Currently, matching is done simply by examining a neighborhood around the
imaged position of a feature. One way to increase the number of correct feature
matches is to predict the new imaged position of a feature by using knowledge about
the motion of the robot and the range of the feature. Another way to cut down on
the number of incorrect matches is by filtering sequences which have been found.
Local filtering could be done by examining the local neighborhood of a sequence
to see if the length and orientation of the sequence is consistent with other nearby
sequences. More global filtering could be done by determining the focus of expansion
and eliminating all inconsistent sequences.

The only experimentation which was done was simple translation. In theory,
the approach presented here should work for rotation as well, but this clearly needs
to be tested. In addition, an assumption was made that the camera pointed in
the same direction as the robot’s motion. If this is relaxed, it might be possible
to obtain better data for triangulation by, for example, looking to the side while
moving forward.

The two triangulation approaches could be further studied and compared. Are
they indeed complementary? Is there some way that they could be combined
and provide better results? An apparent drawback of feature triangulation is
that features may appear and disappear so frequently in most environments that
odometry has to be used at every time step. It would be useful to see whether this
is indeed true.

23

7. ACKNOWLEDGMENTS

I thank Dr. Franpis Pin for his support and advice concerning strategies in
general research as well as for providing specific ideas to investigate. 1 also thank
Dr. David Reister for his technical assistance and willingness to act as a sounding
board for new ideas.

25

REFERENCES

1. D. G. Lowe, Perceptual Organization and Visual Recognition, Kluwer Academic
Publishers, 1985.

2. T.-C. Pong, “Matching Topographic Structures in Stereo Vision,” Technical
Report TR 87-2, University of Minnesota, Minneapolis, Minnesota, 1987.

3. R. C. Smith and P. Cheeseman, “On the Representation and Estimation of
Spatial Uncertainty,” The International Journal of Robotics Research 5(4),
56-68 (Winter 1986).

4. C. M. Wang, “Location Estimation and Uncertainty Analysis for Mobile
Robots,” Proceedings of the International Conference o n Robotics and
Automation 2, pp. 1230-1235 (1988).

5. Y. Watanabe and S. Yuta, “Estimation of Position and Its Uncertainty in the
Dead Reckoning System for the Wheeled Mobile Robot,” Proceedings of the 2Uth

6. D. J. Kriegman, E. T r i e d , and T. 0. Binford, “Stereo Vision and Navigation in
Buildings for Mobile Robots,” IEEE Transactions o n Robotics and Automation
5(6) , pp. 792-803 (December 1989).

7. N. Ayache and 0. D. Faugeras, “Maintaining Representations of the
Environment of a Mobile Robot,” IEEE If.arnsactions on Robotics and
Automation 5(6) , pp. 804-819 (December 1989).

8. L. Matthies and S. A. Shafer, “Error Modeling in Stereo Navigation,” IEEE
Journal of Robotics and Automation, RA-3(3), pp. 239-248 (June 1987).

9. L. Matthies and T. Kanade, “The Cycle of Uncertainty and Constraint in Robot
Perception,” Proceedings of the International Symposium o n Robotics Research,
MIT Press (1987).

10. D. B. Reister, “The Self-Location Problem for a Robot,” Personal
Communication (1989).

ISIR, pp. 205-212 (1989).

27

APPENDIX

PROCEDURE FOR USING PROGRAMS

The pseudo-code on the following page outlines the procedure to be used when
running the programs to solve that part of robot self-location which has been
implemented as of September 1990. (Those programs with names which begin with
capital letters are so marked to indicate that there are two slightly different versions
on the VME and UNIX systems.) Figure 13 presents a diagram summarizing this
procedure.

The following programs are used:
Delsqg
lminrnax
featurelist
Flink
Match-init
Match

This procedure requires eight arguments: then number of files to be processed,
files, the basename of the files, base, the diameter of the Gaussian kernels, dia,
the threshold level, thr, the disparity window, disp, the neighborhood, nbr, the
number of iterations in the relaxation process, iters, and the threshold to use
when filtering matches, ftr-thr. Recommended d u e s are dia = 3, thr = 225,
disp = 7, nbr = 11, iters =lo, and ftr-thr = 0.5.

Output filenames are created by each program by appending the appropriate
number or letter to the basename of the file. See the source code of particular
programs for more detail.

Arguments which are passed to this procedure axe boldfaced; internal variables
are italicized.

29

30 A ppendiz

filenum = 1
prev = concat (base, * I . I' , filenum)
next = concat (base, ' ' . ' I , filenum + 1)
comb = concat (base, I t . ' ' , filenum, filenum + 1)

Delsqg prev dia
l m i n m a x prev-dia-thr
f ea tu re l i s t prev-dia-thr -3-

f o r (i = 0; i < files; i++) {
/* process images and detect features */
Delsqg next dia
l m i n m a x next- dia-thr
fea ture l i s t next-dia -thr .3-

/* match features */
F l i n k prev_dia_thr-.3- next-dia-thr .3- \

comb-dia-t hr .S-disp- disp
Match-init -i comb-dia-thr.3-disp- prev next 5 1 \

comb-dia-thr .3-disp-d-
Flink -neighbors prev-dia-thr.3- \

comb-dia-thr .3-disp-d-n- nbr
Match comb-dia-thr .3-disp-d- comb-dia-thr .3-disp-d-n- \

default iters comb-dia-t h r .3-disp-d-n-m

/* f i l t e r matches */
mv comb-dia-t h r .3-disp-d-n-m combm
mat chf ilt e r combm ftr-t hr

fil enurn+ + ;
prev = concat (base, I I . I I , filenum)
next = concat (base, 8 1 . 0 , filenum + I)
comb = concat (base, ' I . I t , filenum, filenum + 1)

1
/* generate feature sequences f o r a l l bu t l as t two images */
/*
/* two, which have already been generated i n match f i l e) */
f o r (i = I; i c Ales; i++) {

t r a c k j o i n t s -i files base

(second t o l a s t image only has sequences of length */

1
/+ t r iangulate */
f o r (i = 1; i <= files; i++) {

1

filename = concat (base, I ' . ' ' , i , " m f s ")
t r i ang filename t r iang .mot ion

Appendiz 31

high-match-prob n-1 ,n

hi h-match-se - robln

I feature-ranges 1
Fig. 14. Diagram of program data flow.

32 Appendix

DESCRIPTION OF PROGRAMS

To get feature points:

Delsqg imagel laplacianl diameter
Delsqg image2 laplacian2 diameter

Applies v2 * G operator to original image. Output is image.

set-thresh laplacianfile level

Sets a threshold for use by the lminmax program.

lminmax laplacianl minmax [threshold [neighborhood] 1
lminmax laplacian2 minmax [threshold [neighborhood]]

Computes local maxima and minima of v2 * G files. Input is image file.
Output file is list of feature points.

To match feature points:

diff-stats imagel image2 [rows [cols]]

Computes difference statistics between two image files. (Useful in setting
parameters for the matching programs.) Images have default size of
256 x 256.

f eaturelist minmax f eature-list-1
f eaturelist m i n m a x f eature-list-2

Converts images of feature points to text files listing coordinates and type
of feature points.

Flink [-nolabel] f eature-list-1 feature-list-?. matchlist
window-size

Merges text files indicating feature points to create single file indicating
matches. -nolabel flag causes feature types to be ignored.

Appendiz 33

Match-init [-ill matchlist image1 image2 window inc [noise
maxdiff] i n i t g r o b

Adds initial likelihoods to each possible match.

Flink -neighbors feature-list-1 neighbors window-size

Makes a list of neighbors for first frame features.

Match [-options] i n i t j r o b neighbors parm-file i t e r a t i o n s output

Does actual matching. Output is a text file with disparity and likelihood
values for each first frame feature point.

matchf i l ter input-f i le probability-threshold

Removes all matches from input f i le with probabilities below given
threshold.

t r a c k s o i n t s [-]current-file-num numfiles basename

Links together sequences of feature points connected across multiple frames.
(File names are assumed to be in the format basename.num, where num
indicates the position of the image in the sequence. The beginning value of
num is assumed to be 1 with the final value numfiles.)

tr iang i n p u t f i l e m o t i o n f i l e

Calculates range of features from robot. Input is either a disparity file or a
feature point trace. Output is a file listing features and their ranges.

34 A p p e ndiz

To Display Images:

display frame [image [rows [columns] 1]

Reads in an image file and displays it. Specified frame is displayed if no
image is given. Optional arguments give size of image; default is 256 x 256.

display0 frame image [origin-rov [origin-column]]

Reads in an image file and displays it. Specified frame is displayed if no
image is given. Optional arguments give placement of origin of image in
memory; default is (50,50). The image is assumed to be 256 x 256.

To Display Matches:

displaym frame image [origin-row [origin-columnll

Reads in a disparity file and displays the features for which matches have
been found. Data already in memory is overwritten only where features are
present. Optional arguments give placement of origin of image in memory;
default is (50,50). The image is assumed to be 256 x 256.

To Display Match Sequences:

displaytc frame image [origin-row [origin-column]I

Reads in a feature point trace file, displays the feature point at its originating
position and plots a line from this position to its final position. Data
already in memory is overwritten only where features are present. Optional
arguments give placement of origin of image in memory; default is (50,50).
The image is assumed to be 256 x 256. (A feature point trace file contains a
list of matches tracked over multiple, consecutive frame pairs. It is produced
by track-points).

Append i z 35

Shell Files to Automate Processing (On Iris Only):

g o i p number basename diameter threshold-level

Sets up feature points to be matched. Uses features defined by extrema in
the Laplacian of the smoothed images. number is the number of image files
to be processed. basename is the base name of the image files. (File names
are assumed to be in the format basename.num, where num indicates the
position of the image in the sequence. The beginning value of num is
assumed to be 1 with the find value number.) diameter is the size for
the v2 * G filter. threshold-level is the intensity d u e to be used €or
thresholding features.

gomatch number basename max-disparity max-neighbor i t era t ions

Establishes the initial list of matches and then runs the relaxation matching
program. number is the number of image files to be processed. basename
is the base name of the image files. (File names are as in goip.)
ma-disparity is the maximum possible disparity expected between
frames. (Maximum vertical and horizontal disparities are currently assumed
to be the same.) max-neighbor defines the neighborhood over which the
relaxation updating looks for support. Make this at least two times larger
than max-disparity. iterations is the number of passes through all of the
possible matches that are made. If more than two image files are specified,
each consecutive pair will be matched.

gotrack number basename

Generates sequences of feature matches. number is the number of image
files to be processed. basename is the base name of the image files. (File
names are as in goip.) number - 1 iterations are performed, since running
trackgoints on the last match file is redundant (the last match file contains
sequences of length two).

36 Appendiz

PROGRAM INTERFACES

Flink
Match-init F Match

track-poin ts E

Table 2. Inputs and outputs of programs.

Appendix 37

FILE FORMATS

Format of Feature List File:

<feature l ist>
< . . .misc i n f o . . >
nmline nmsamp
n number of feature points
i l j l l a b e l
i 2 j2 l a b e l
i 3 j 3 labe l

text string indicating type of file

number of lines, samples in image file

line and sample coordinates, label

...

...
i n j n l a b e l

(Points are sorted in non-decreasing order of i, and within i in non-decreasing
order of j.)

Format of Match List:

<match l ist>
<match l ist window size
nmline nmsamp
t o t a l
l i n e samp
match1
d l i n e l dsampl

d l inen dsampn

nmatchm
d l i n e l dsampl

text identifier

number of lines, samples in original file
number of frame one feature points
line, sample index of first feature point
number of matches for this point
line and sample disparities

= n>

number of matches for last point

dl inen dsampn

38 Appendaz

Format of Initial Match File:

< i n i t i a l i z e d l i s t>
<match list windou s ize = n>
<match-init : uindow = n , i n c = n>
nmline nmsamp
t o t a l
l i n e samp
m a t c h 1
d l i n e l dsampl probl

d l i n e n dsampn probn
p-unmat ch probability of unmatchable

number of lines, samples in original image
number of frame one feature points
line, sample index of first feature point
number of matches for this point
line and sample disparities, initial probability

nmat ch
d l i n e l dsampl probl

d l i n e n dsampn probn
p-unmat ch

number of matches for last point

Format of Neighbor File:

<neighbor l i s t >
<neighbor l ist window size = n>
nmline nmsamp
t o t a l
l i n e samp
n-neighbor-1
l i n e 1 sampl

l i n e n sampn

number of lines, samples in original image
number of frame one feature points
line, sample index of first feature point
number of neighbors for this point
line and sample indices of neighbor

n-neighbor-m
l i n e 1 sampl

l i n e n sampn

Format of Parameter File:

number of neighbors for last point

parm-1-name = parm-1-value (Parameters can be in any order,
but all should be specified.)

pan-n-name = parm-n-value

A p p e n d i x 39

Format of Match Files:

<disparity f i l e >
<. . .misc inf 0.. .>
nmline nmsamp
t o t a l
line-1 samp-1
d l i n e l dsampl probl

number of lines, samples in original image
number of frame one feature points
line, sample index of first feature point
line and sample disparities, likelihood

line-n samp-n
dlinen dsampn probn

(The disparities in the file correspond to the match labels with the largest
likelihood. The unmatchable label is coded implicitly. A small value for the
likelihood indicates that “unmatched” is the result of the matching. A likelihood
of 0 means that the disparity values in the file should be ignored, and the point
is definitely “unmat chable. ”)

Format of Feature Point Trace:

<feature point trace>
<. . .misc i n f o . . .>
nmline nmsamp
nmpoints
m a t c h e s
l i n e 1 sampl
nmf u t ure 1
l i n e l f l samplfl problf l

l i n e l f n samplfn problfn

linem sampm
nmf uturem
linemfl sampmfl probmfl

number of lines, samples in original image
number of feature points
maximum number of future feature points
first feature point
number of matches
line, sample of nearest new match

line, sample of farthest new match

last feature point
number of matches
line, sample of nearest new match

linemfn sampmfn probmfn line, sample of farthest new match

40 Appendiz

Format of Triangulation Files:

<triangulation f i l e >
<. . .misc info.. .> information records
nmline nmsamp size of image
features number of features
nmmat ches maximum number of matching points
l ine - la samp-la angle-la first point in sequence
tota l -1 number of matches of 1st feature
l n l b smlb anlb prlb n i b corresponding point in 2nd image

I n k smlz anlz pr iz rn lz last corresponding point

line-na samp-na angle-na point in next to last image
t o t al-n number of matches of last feature
lnnb smnb annb prnb rnnb corresponding point in 2nd image

lnnz smnz annz prnz rnnz last corresponding point

Format of the Motion File:

<motion f i l e >
t o t a l number of steps
dist-1 heading-1 distance and heading for first step

dist-n heading-n distance and heading for last step

ACCESSING PROGRAMS

These programs work on both the VMEbased system, vislab, and on the
UNIX system, IRIS. Display capabilities exist only on the VME system. On
vislab, the programs are currently located in /hu/usr/liz/BIN. The source and
on-line documentation is in /hu/usr/liz/SRC, and the relocatable files are in
/hu/usr/liz/RELOC. Image sequences are in /h~/usr/liz/256IMAGES. On IRIS,
the programs are currently located in /usr/people/liz/bin, and the source,
documentation and relocatable files are in /usr/people/liz/src. Image sequences
are in /usr/people/liz/256 images.

ORNL/TM-11718

INTERNAL DISTRIBUTION

1. J. E. Baker
2. A. L. Bangs
3. M. Beckerman
4. R. J. Carter
5. J. R. Einstein
6. K. Fujimura
7. C. W. Glover
8. J. P. Jones
9. H. E. Knee

10. G. Liepins
11. E. M. Oblm

12-16. R. C. Mann
17-21. F. G. Pin

22. D. B. Reister

23. J. C. Schryver
24. P. F. Spelt
25. F. J. Sweeney
26. M. A. Unseren
27. R. C. Ward

28-29. Laboratory Records
Department

30. Laboratory Records,

31. Document Reference

32. Central Research Library
33. ORNL Patent Section

ORNL-RC

Section

EXTERNAL DISTRIBUTION

34. Dr. Peter Allen, Dept. of Computer Science, 450 Computer Science,
Columbia University, New York, NY 10027

35. Dr. Wayne Book, Department of Mechanical Engineering, J. S. Coon
Building, Room 306, Georgia Institute of Technology, Atlanta,, GA 30332

36. Prof. John J. Dorning, Department of Nuclear Engineering and Physics,
Thornton Hall, McCormick Rd., University of Virginia, Charlot tesville,
VA 22901

37. Dr. Steven Dubowsky, Massachusetts Institute of Technology, Building 3,
Room 469A, 77 Massachusetts Ave., Cambridge, MA 02139

38. Dr. Avi Kak, Dept. of Electrical Engineering, Purdue University,
Northwestern Ave., Engineering Mall, Lafayette, IN 47907

39. Dr. James E. Leiss, 13013 Chestnut Oak Dr., Gaithersburg, MD 20878
40. Prof. Neville Moray, Dept. of Mechanical and Industrial Engineering,

University of Illinois, 1206 West Green St., Urbana, IL 61801
41. Prof. Mary F. Wheeler, Dept. of Mathematical Sciences, Rice University,

P.O. Box 1892, Houston, TX 77251
42. Dr. Wes Snyder, Center for Communications and Signal Processing,

North Carolina State University, P.O. Box 7914, Raleigh, NC 27695-7914
43-47. Elizabeth R. Stuck, Computer Science Dept., 4-192 EE/CS Building,

University of Minnesota, 200 Union St., Minneapolis, MN 55455
48. Dr. William B. Thompson, Computer Science Dept., 4-192 EE/CS

Building, University of Minnesota, 200 Union St., Minneapolis, MN 55455

59. Assistant Manager, Energy Research and Development, DOE/ORO.
49-58. Technical Information Center, P.O. Box 62, Oak Ridge, T N 37831

41

