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ABSTRACT 

Electrostatic turbulence on the edge of the Advanced Toroidal Facility (ATF) 

torsatron is investigated experimentally with a fast reciprocating Langrnuir probe 

(FRLP) array. Initial measurements of plasma electron density ne and temperitme Te and 

fluctuations in density (fie) and plasma floating potential (&) are made in electron cyclo- 
tron heated plasmas at 1 T. At the last closed flux surface (LCFS, rK-  l), Te = 
2 0 4 0  eV and ne = 1012 cm-3 for a line-averaged electron density fie = (3-6) x 
1012 cm-3. Relative fluctuation levels, as the FRLP is moved into core plasma where 

T, > 20 eV, are iie/ne = 5% and eFf/Te = 2 V n e  about 2 cm inside the LCFS. The 

observed fluctuation spectra are broadband (40-300 ICHZ) with Ep, 2 0.1, where k is the 

wavenumber of the fluctuations and ps is the ion Larmor radius at the sound speed. The 
propagation direction of the fluctuations reverses to the electron diamagnetic direction 

around rfi c 1. The phase velocity and the electron drift velocity are comparable (vph - 
vde). The fluctuation-induced particle flux is comparable to fluxes estimated from the 

particle balance using the Ha spectroscopic measurements. Many of the features seen in 

these experiments resemble the features of ohmically heated plasmas in the Texas 

Experimental Tokamak (TEXT). 





1. INTRODUCTION 

Energy and particle confinement in tokamaks and stellarators is anomalous, and 

results from the two types of devices show similar dependences on plasma parameters 

113. The study of electrostatic fluctuations [2] in different magnetic configurations may 

help to identify the underlying physics mechanisms responsible for plasma  transport. To 

investigate the effects of the magnetic configuration on the characteristics of edge tur- 

bulence, recent measurements of electrostatic fluctuations at the edge of the Texas 

Experimental Tokamak (TEXT) [3j have been extended to the Advanced Toroidal 

Facility (ATF) [4] torsatron. Experimental observations on TEXT indicate that electro- 

static fluctuations are the dominant mechanism for energy and particle losses in the edge 

[3,5]. To understand the driving forces on the edge turbulence in terms of the plasma 

current and the magnetic configuration, initial edge fluctuation measurements have been 

carried out on the currentless ATF device with a diagnostic setup similar to that used in 

the TEXT experiments, that is, a fast reciprocating Langmuir probe (FRLP) array [6]. 

The FRLP has been used to characterize, from an experimental point of view, the 

electrostatic turbulence on the edge of the ATF torsatron. The experimental setup and the 

analysis method are described in Sect. 2. Measurements of plasma electron density ne, 

electron temperature Te, and fluctuations in density (fie) and plasma floating potential 

(&) at the edge of electron cyclotron heated (ECH) plasmas in ATF are presented and 
their turbulence characteristics are discussed in Sect. 3. Brief conclusions follow in 

Sect. 4. 

2. EXPERIMENTAL SETUP 

The stellarator configuration of the ATF torsatron has a poloidal multipolarity 1 = 
2, 12 field periods (M = 12), a major radius R, = 2.1 m, and an average plasma radius ii 
= 0.27 m. The externally produced currentless magnetic configuration has moderate 

shear; that is, the central rotational transform (U2n: = 1/q) of 0.3 becomes 1.0 at the last 
closed flux surface (LCFS). Initial fluctuation measurements in ATF were carried out 

around the LCFS with the FRLP in ECH plasmas at a magnetic field B = 1 T. Plasmas 

were created using a gyrotron source at 53 GHz with heating power P = 200 kW. In 

these ECH plasmas, a representative range for the line-averaged plasma density is iie = 
(3-6) x 10l2 ~ r n - ~ ,  and the plasma stored energy Wp = 1-2 W. 

1 
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The FREP is located one field period away from the instrumented rail limiter [7]. 
The probe is inserted into the edge plasma from the top, moves 5 crn into the plasma in 

50 ms, and remains there about for 4.0 rns to c w  out the fluctuation measurements. The 

FIPLP head consists of a square array of four tips, 0.5 mm in diameter, that are 2 rnm 

long and 2 mm apart. Double Langmuir probe operation o€ two tips, aligned perpen- 

dicular to the local magnetic field, makes it possible to measure the edge plasma ne, Te, 
and fie /ne profiles inside (about 2 cm) and outside the LCFS, as indicated in Fig. 1. The 

other two tips are used to measure & and the wavenurntver k perpendicular to the local 

magnetic field. The data have been analysed using spectral analysis techniques 181. That 

is, the fluctuation signals are digitized at 1 MHz, and fast Fourier transform (FFT) is 
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used to obtain their power spectrum S(k,o) as a function of frequency w and k using the 
two-probe technique described in ref. [9]. Ensemble averaging of the spectral distribu- 

tion of the flux ~(co),  obtained from the correlation of density and plasma potential 

fluctuations (qP), gives the turbulence-induced radial particle flux: 

Here Tr = - i k q p  is the radial velocity due to the electrostatic fluctuations, and the 
frequency-resolved flux is estimated from many independent realizations using a triple 

correlation technique [lo]: 

Further, to gain an insight into the physicaI process, T(W) can be expressed as [8] 

where '&$is the coherence, efi6is the phase angle between the density and potential fluc- 
tuations, and nmS and $r'rms are the rms values of the fluctuations. 

3. RESULTS AND DISCUSSION 

Spatial profiles of the edge plasma density and temperature and the plasma float- 

ing potential qf are shown in Fig. 2 for 0.95 < r/E c 1.15. These measurements were made 
during the steady-state phase of the plasma discharge. The plasma potentia? 9, may be 

estimated from the measurements of Cpf and Te as 9, = Qf + l$,Te, where % depends on 

the probe material, the heat load on the probe, the ion species and its temperature, and 
the secondary electron emission coefficient. Typically, i3p - 1-3 for hydrogen plasmas 
[I 13. Around the LCFS, r/Z= 1, the plasma parameters are ne = (1-1.2)~ 10l2 cme3 and 

Te = 30-40 eV. The characteristic density and temperature scale lengths are I.,* = [dl/ne) 

x (dnJdr)]-* = 3-4 cm and = 2L,, respectively. These values are comparable (within 

a factor of 2) to those for ohmically heated plasmas in TEXT at 2 T 131. 

Typical values for the normalized density (iiJne) and potential (@"e) fluctuations 

(see Fig. 3 for profiles) around the LCFS are iiJne = 0.05-0.1 and &JTe = 0.1-0.2, which 
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Fig. 3. Relative fluctuation levels for edge density and potential. 

are lower than those in TEXT plasmas [3]. Although the correlation between & and tem- 

perature fluctuations Te in ATF is not yet known, the contribution of Te to TP has been 

neglected because the measured values of T, on TEXT were relatively small ('?J'& 
O.4iiJne) [12]. Fluctuation levels decrease as the probe is moved into the core plasma, 

where T, > 20 eV and Tfl, = 2iiJn, at rhi = 0.95. 

Fluctuation spectra of ii, and Tf have been examined for frequencies up to 

400 kHz. Observed wavenumber-frequency power spectra S(k,o) are broadband and 
mostly in the range 40-300 kHz (as seen in Figs. 4 and 5). The estimated mean value of 

the wavenumbers from the two probe measurements is E = 1-3 cm-l, which satisfies Ep, 
= 0.05-0.1, where ps is the ion Larmor radius at the sound speed, as observed in TEXT 

[3]. Analysis of the wavenumber spectra shows that inside the LCFS the spectral width 

c k ,  the rms deviation about E, decreases with increasing local electron temperature 

(Fig. 6),  indicating that the correlation length Lc = 1/ok increases with temperature [13] 
and typically Lc = 1 cm, which is much larger than the probe tip separation, for Te > 35 
eV. The integrated potential fluctuation power spectra S(o) and S(k) decrease for large 

o/2n: (>ZOO kHz) and k (as illustrated in Fig. 5 )  with dependences given by S(o) - 
and S(k) - k4, where a - p = 4 +1, with a possible deviation from the true shape but a 
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reliable determination of and ok [9,14]. The shape of the fie spectrum is generally 
similar to that of &. 

The fluctuation-induced particle flux is estimated from Eqs. (1) and (2) by taking 

& = &. The coherence between the density and the floating potential fluctuations is yfiq 
= 0.8 up to 150 kHz, dropping to -0.2 beyond 250 kHz, and the corresponding phase 

angle is efi6- 70” around 150 kHz. The frequency-resolved particle flux r(o) is domin- 
ated by frequencies below 250 k3Iz (Fig. 7) and reaches a maximum at 100-150 kHz, 
where the phase angle has its maximum. The spatial profile of the total particle flux fs, 
Eq. (l), is given in Fig. 8 for two representative line-averaged densities iie = 3.5 x 10l2 

~ r n - ~  and 5.5 x 10l2 ~ r n - ~ .  The radial flux is always outward and at the LCFS has a value 

and 1.2 x 1015 cm-2*s-1 for E, = 5.5 x 

10l2 ~ r n - ~ .  For the nearly flat core density profiles observed in AW, the corresponding 

fluctuation-induced particle confinement times, assuming that T is constant on flux sur- 

faces, are T p  = @/2)iief - 16ms and 60 ms, respectively. The associated local density 
diffusion coefficient is D, = finhie - 1 x lo4 crn2.s-l, where ne(edge) - 1012 ~ r n ; - ~  and 

L, - 4 cm for both iik cases. Although detailed scans ofEe have not yet been carried out 

- 3 x 1015 cm-2.s-1 for iie = 3.5 x 10l2 
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in ATF to determine the scaling o f f  with Ze, results from the present limited scans 

indicate that T p  increases with fie in these low-density regime studies. This observation is 
consistent with the TEXT results [lS]. In ATF, it is rather difficult to use Ha spectro- 

scopic measurements for estimating the particle fluxes at the edge because of the lack of 

a full set of spectroscopic monitors to cover the complicated edge geometry and the 

existence of particle sources from the divertor stripes around the LCFS [ld]. Nonethe- 

less, some comparisons can be made. Based on available data from Ha measurements, 

the estimated particle flux from the particle balance is rHa- (1-1.5) x 1015 cm-2*s-1 for 

ne = 5.5 x 10l2 cm3,  which is comparable to r. This suggests that the electrostatic edge 
turbulence may be responsible for particle confinement characteristics in ATF. 

A spatial profile of the mean phase velocity of the fluctuations, Vph = 
2~msvph(w> with vph(w> = ~~(w/k>S(k,o)/ricS(,~), is given in Fig. 9. As observed on 
TEXT [2], the propagation of the fluctuations is in the ion diamagnetic direction for rfi> 

1, but it reverses to the electron diamagnetic direction for r/Z < 1. The location of the vph 

shear layer nearly coincides with the peak of the plasma potential where the radial elec- 

tric field E, = --d$ddr changes its direction from outward to inward, as shown in Fig. 10 

for 6, - 2.5. At this location, the density and electron temperature gradients are nearly 

- 
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zero and vph - v, - 0, where ve = (TJeB)(l/L, + l/LT) - E,/B is the electron drift 

Future experiments will include measuring the electron temperature fluctuations 

using the techniques given in refs. [12,14] to determine the relationship between $fie 
and fiehe, scaling of the edge fluctuation parameters with iie, and extending the 

experiments to ECH plasmas with B = 2 T and neutral-beam-heated plasmas. The heavy 

ion beam probe diagnostic [ 181 should provide additional information on the plasma 

potential and its fluctuations. 

velocity. Also, well inside the LCFS, where E, = 0, it is found that vde= vph io3 m/s. 

4, CONCLUSION 

The initial results indicate substantial similarities in the characteristics of edge 

turbulence in the ohmically heated TEXT tokamak and the currentless ATF torsatron. 

The fluctuation-induced particle flux is consistent with the total particle flux estimated 

from the global particle balance. Thus, electrostatic turbulence may be responsible for 
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the edge particle transport. Detailed comparison of the ATF and TEXT results can serve 

as the basis for development of a unified physics interpretation of edge tiirbulence in 

toroidal devices. 
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