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Abstract 

A rigid body dynamical model and control architecture are developed for 
the closed-chain motion of two manipulators holding an object containing a 
spherical joint in a three-dimensional workspace. The manipulators may have 
an equal or unequal number of joints. Dynamic and kinematic constraints are 
determined and combined with the equations of motion of the manipulators to 
obtain a dynamical model of the entire system in the joint space. The problem 
of solving the joint space model for the unknown variables is discussed. This 
includes a new proof that the problem of solving the model for the generalized 
input forces applied to the joint actuators (i.e., computing the joint torques) 
is underspecified in nature. The system is transformed to reduce the dimen- 
sionality of the model and eliminate the generalized contact forces, which are 
calculated separately. The problem of solving the reduced order model for the 
unknown variables is also addressed. A new control architecture consisting 
of the sum of the outputs of a primary and secondary controller is suggested 
which, according to the model, decouples the force- and posi tion-controlled 
degrees of freedom during motion of the system. The proposed composite con- 
troller enables the designer to develop independent, non-interacting control 
laws for the force- and position-control of the complex closed-chain system. 





P INTRODUCTION 
The lifting and transport of a jointed object, Le., an object consisting of two rigid 

bodies connected by a joint, invariably requires two-handed cooperative manipula- 
tion. It would be difficult for a single manipulator to transport such an object in a 

safe and controlled manner since it could only hold one of the rigid bodies comprising 
the object while the other swings freely. Additionally, the mass of the object may 
be beyond the carrying capacity of a single manipulator. However, two cooperating 
manipulators could securely hold such an object by its two rigid bodies and move it 
in a desirable, well-behaved manner. Unfortunately, the addition of a second manip- 
ulator to accomplish the task leads to a more complicated system. Indeed, when two 
manipulators mutually hold an object, the three form a single closed-chain mecha- 
nism and a loss of degrees of freedom(D0F) occurs. Strong kinematic and dynamic 
interactions between the two manipulators due to the shared payload result in a 
constrained system motion. The manipulators can no longer function independently 
in this closed-chain configuration. The importance of understanding the problems 
and issues associated with controlling two cooperating manipulators is discussed in 

Various dynamical models have been developed and position-only as well as posi- 
tion/force control schemes have been proposed for two manipulators holding a rigid 
object[9 - 311, but the literature on the modeling and control of two manipulators 
holding a complex, jointed object is very scarce. Kinematic constraints and an entire 
system model for the closed-chain consisting of two six-axis manipulators holding 
a jointed object are developed in [9] by considering two types of objects: a pair of 
pliers and a part containing a spherical joint. The common load is viewed only as a 
pure kinematic structure imposing constraints on the motions of the manipulators. 
One manipulator is the leader (master), the other is the follower (slave). The joint 
velocities and accelerations of the follower are determined from the kinematic con- 
straints when the joint positions of both manipulators and the joint velocities and 
accelerations of the leader are given. A minimum Euclidean norm solution for the 
joint torques for trajectory tracking is computed from the model using pseudoinverse 
techniques in [9]. However, it does not address the problem of controlling the object 
contact forces. Also, the proposed control law in [9] is open-loop and involves no 
servoing. 

The significance of the motion dynamics in the modeling and control of a manip- 
ulator when the end effector is strongly constrained by environmental interactions 
has only recently been recognized [l - 81. Such environmental interactions are pro- 
duced by hard, physical contact between the end effector and rigid structures in the 
work area. Such systems usllally contain closed-chains and the manipulator motion 
is governed by its own dynamics, the generalized contact forces which arise due to 
the contact, and the kinematic constraints imposed on the motion of the manipu- 

1371. 
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lator (1 - 81. In particular, Kankaanranta and H.N. Koivo [l, 21 and McClamroch 
and Wang [3] have recently derived dynamical models and control laws for the hard 
contact motion of a single manipulator. The kinematic constraints governing the 
generalized coordinates are modeled as a constraint function and incorporated into 
the manipulator equations of motion to obtain a dynamical model for the entire 
closed-chain system. Using the constraint function, transformations are introduced 
which separate the model into two sets of equations. One set of equations character- 
izes the manipulator motion along the constraint surface and contains no generalized 
forces of contact. The other set of equations is used to calculate the generalized con- 
tact forces which are caused by strong interactions between the end effector and the 
constraint surface. Nonlinear controllers are proposed which, according to the latter 
form of the model, lead to the exact decoupling of the force- and position-controlled 
directions of motion [l, 2, 31. 

[3] demon- 
strated that considerable insight into the design of a control architecture for the 
complex, constrained motion of a single manipulator can be obtained by considering 
the dynamical model in the analysis. Motivated by their results, the general theory 
discussed in [l, 2, 31 has recently been extended to the modeling and control of a 

pair of N-joint manipulators holding a rigid object in a three-dimensional workspace 
[38, 391. In [l, 2, 31, the coupling effects between the manipulator and the environ- 
ment, e.g., a manipulator turning a crank, are taken into account by regarding the 
environment, i.e., the crank, only as a pure kinematic structure imposing constraints 
on the motion of the manipulator. In our recent work [38, 391, the rigid object held 
by two manipulators is considered to be large and heavy; thus its dynamics can be 
significant and have been accounted for in the analysis. The control architecture pro- 
posed in [38,39] is such that the position variables and an independent subset of the 
generalized contact forces are decoupled, i.e., they can be controlled independently. 

When the payload held by two manipulators possesses a joint, the overall system 
is more complicated and has more DOF when compared to the rigid payload case. 
Furthermore, to accomplish successfully the task of lifting and transporting such 
an object using two cooperating manipulators requires force control in addition to 
position control. Indeed, the generalized contact forces imparted to the object by the 
manipulators must be controlled in addition to controlling the position of the system. 
In order to better understand the problems associated with two strongly interacting 
manipulators, a model describing the dynamic behavior of the system is required. 
In this report a rigid body dynamical model for two manipulators holding an object 
containing a spherical joint in a three-dimensional workspace is first developed in the 
joint space. The system is transformed to obtain a reduced order model not explicit 

in the generalized contact forces, which are calculated separately. Additionally, a 
control architecture, which according to the latter form of the model decouples the 

The work of Kankaanranta et al. [l, 21 and McClamroch et al. 
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force- and position-controlled DOF during motion of the system, is suggested. For 
the case of two manipulators holding a jointed object, this is a new result that enables 
the designer to develop independent, non-interacting control laws for the force- and 
position-control of the closed-chain system. 

This report is a first step towards analyzing the increased dynamic complexity 
which occurs when the mutually held payload possesses a joint which is structurally 
distinct from the single-DOF joints contained in the two manipulators. It generalizes 
the approach given in [38, 391 and the manipulators are no longer restricted to have 
the same number of joints. The dynamics of all components of the closed-chain 
including those of the complex payload are accounted for in the rigid body model 
and control architecture presented here. 

The problem of determining the solution of the model for the forward dynam- 
ics(i.e., to determine the output response to given inputs) and inverse dynamics(i.e., 
to determine the required inputs when the desired output response of the system is 
specified) is not addressed in the previous work on the modeling and control of a 

single manipulator [l, 2, 31. For the case of two manipulators holding a rigid object, 
the solution for the forward dynamics is well-specified and for the inverse dynamics 
underspecified [38, 391. The problem of determining the nature of the solution to 
the closed-chain model for two manipulators holding a spherically jointed object is 
investigated here. 

The rigid body model and control architecture developed in this report can form 
the basis for an analysis of the closed-loop system properties and behavior which 
arise from the use of various force- and position-control schemes proposed in the 
literature [32, 331. The position controlled variables explicit in the model are general 
"pseudovariables" to be selected by the designer for a specific application. It should 
be mentioned that the control architecture derived here assumes perfect knowledge 
of the dynamical terms in the entire system model. Also, the computational require- 
ments for the suggested controller are not addressed in this report. 

The report is organized as follows. To model the closed-chain mechanism, the 
dynamical and kinematic couplings between the manipulators due to the common 
load are first determined. The equations of motion of the manipulators are combined 
with the dynamic and kinematic constraints to obtain a closed-chain system model 
in the joint space. A reduced order model is derived that is not a function of the 
generalized contact forces, which axe calculated separately. The problem of solving 
the joint space and reduced order models for the forward and inverse dynamics is 
discussed. Finally, a decoupled control architecture is developed based on the reduced 
order model and the generalized contact force equations. A condensed version of this 
report can be found in [40]. 





2 PROBLEM STATEMENT AND SYSTEM 
DESCRIPTION 

The problem is to develop a dynamical model and control architecture for two 
serial-link manipulators holding an object in a three-dimensional workspace. Ma- 
nipulator i(i=l,2) has a stationary base and contains N; single-DOF joints. Thus 
the two manipulators can have an equal(N1 = N2) or unequal(iV1 # N2) number of 
joints. The common load securely held by both manipulators consists of two rigid 
bodies connected by a three-DOF spherical joint. There is no relative motion be- 
tween the end effector of manipulator i and rigid body i(i=l72) of the object, i.e., no 
slipping. It is assumed that the manipulators are initially holding the object. The 
problem of modeling and controlling the manipulators when they initially acquire 
(grasp) the object which results in collisions between the end effectors and shared 
load is not considered in this report. The dynamical models of both manipulators 
are assumed to be known. The configuration of the system is shown in Fig. 1. 

2.1 

The joint positions of the two manipulators are the generalized coordinates describ- 
ing the configuration of the system. The system variables include the generalized 
coordinates, velocities, and accelerations, the generalized contact forces exerted by 
the end effectors on the common object, the contact forces transmitted across the 
spherical joint of the shared load, and the generalized input forces(i.e., the joint 
torques) applied to the joint actuators. 

A stationary world coordinate frame ( X w ,  Y,, 2,) shown in Fig. 1 serves as 

a reference frame. The location of this coordinate system is based upon the task 
geometry. As shown in Fig. 1, the coordinate frame (Xf', Y f ) ,  2;') is assigned to 
the kth link of manipulator i(=1,2), where k = 0,1, .  . . , N;. 

An orthogonal (3x3) rotation matrix 'RZ(4;)  describes the orientation of the 
(X(i!  N 3 Y") N ,  3 2")) N, coordinate frame which has its origin at the centerpoint of the end 
effector of manipulator i in the world coordinates. The tips of the (3x1) vectors ' r  
and iwr emanating from the centerpoint of the end effector of manipulator i coincide 
with point CM,;, the center of mass of the rigid body i of the object, as shown in 
Fig. 2. Vectors and iwr are expressed in the local and world coordinate systems, 
respectively. They are related by: 

System Variables and Coordinate Frames 

iwr(q;) = ' ~ ? ( q i )  ' r  . (1) 

The tips of the (3 x1) vectors ilr and 'lWr emanating from the centerpoint of the end 
effector of manipulator i coincide with point Q,, the center of the spherical joint, as 

shown in Fig. 2. Vectors ilr and ilwr are expressed in the local and world coordinate 
systems, respectively. They are related by: 

5 
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2.2 Manipulator Models 

The dynamical model for an individual serial-link manipulator i (=1,2) shown in Fig. 
1 whose end effector is exerting a generalized contact force fn. on the environment, 
i.e., on the spherically jointed object, is given in Lagrange's formulation by: 

where superscript T denotes a transposition. The joint positions of manipulator i are 
represented by vector q; = [q i l ,  q i 2 , .  . . , q;NI lT  and the joint torques applied to the 
joint actuators by the vector i~ = [ ~ T ~ , ~ T ~ ,  . . . , ' T N ~ ] * .  The (N;  x N ; )  symmetric and 
positive definite inertia matrix is D;(q;), and the Coriolis, centripetal, and gravity 
forces for manipulator i are described by the ( N ;  x 1) vector C;(q;,q;). Manipulator 
i imparts contact forces and contact torques to the object at the contact surfaces 
between its end effector and the load. The (6x1) generalized contact force vector 
f c i  in Eq. ($3) ??resents the equivalent contact force and torque acting at the origin 
of the ( X ,  , YN, ,$!) coordinate system, i.e., at the centerpoint of the end effector 
of manipulator i. The equivalent generalized force at  the centerpoint produces the 
same effect on the object as the applied forces and torques at  the contact surfaces. 
fc; is expressed in the world coordinates. It is comprised of a (3 x 1) force vector 
iW f i ~ , , ~ , + 1  and a ( 3  x 1) torque vector iw n N l , N , + l  shown in Fig. 2: 

In Eq. (3), the ( N i x 6 )  transposed Jacobian matrix JL(q; )  of manipulator i trans- 
forms the generalized contact force fc; to the joint space. 

The equations of motion for manipulators 1 and 2 defined in conjunction with Eq. 
(3) with i=1,2 will be combined along with the equations describing the dynamic and 
kinematic couplings to obtain the model of the entire system. The dynamic coupling 
between the manipulators is discussed next. 



3 DYNAMIC COUPLING 

The motions of the manipulators are dynamically coupled because the generalized 
contact forces are interrelated through the common object. The coupling effects can 
be quantified by the dynamics of the load. The object is decomposed into two rigid 
freebodies connected by a spherical joint. Newton's and Euler's equations for rigid 
freebody i(i=1,2) of the object shown in Fig. 2 are: 

where superscript 'denotes that the quantity is an explicit function of the unit vectors 
directed along the X,, Yw and 2, axes of the world coordinate frame. In Eqs. ( 5 )  
and (6), m,; is the mass of the rigid body i, and D,; is the (3x3) symmetric inertia 
matrix of the rigid body i about its center of mass at  point CM,;. The quantities 
(Dcicjci) and (Dciwci) on the left hand side of eq. ( 6 )  denote that the expressions 
(Dei &&) and (Dei w,i) are considered to be single vector quantities, respectively. The 
vector represents the gravitational acceleration of the rigid freebody. The vectors 
[i7& , &;I and [sei , sei] denote the Cartesian velocity and acceleration of the center 
of mass of rigid freebody i, respectively, with (Gk, .'ti) being the translational and 
( Z c i  , s,i) the rotational components. In Eqs. ( 5 )  and ( 6 ) )  iwfcs  is a vector denoting 
the contact force the other rigid freebody of the object imparts to rigid body i at 
point Qu, as shown in Fig. 2. It is evident that: 

4 -4 

-+ 

(7) l w  - 2w * 
f c s  = - fa. 

It should be noted that there are no contact torques transmitted across the spherical 
joint, i.e., rotational motion about the center of the spherical joint is allowed. The 
quantities -""F and (i'wF - '"3 are moment arms from point CM,; to the points 
where iWfN,,~I+l and 

Since all quantities are to be expressed in matrix/column-vector notation through- 
out this report, Eqs. ( 5 ) ,  (6), and (7) are rewritten in a concise form: 

4 

act on rigid body i of the object, respectively. 

where all vectors are expressed in the. world coordinate system. Isx, and 0 3 x 3  denote 
(3 x 3) identity and zero matrices, respectively. fci is defined in Eq. (4) and i w f c s  

9 
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is a (3 x 1) vector. In Eq. ( S ) ,  L,;(q;) is a (6x6) force/torque transmission matrix 
which transforms the generalized contact force of manipulator i to its equivalent at 
the center of mass of the rigid body i of the object at point CM,;. The equivalent 
generalized force at point CM,i produces the same effect on the rigid freebody as 
the applied generalized force at the point of contact [39]. Matrix L,;(q;) is defined 
bv: 

The (3 x 3) matrix Edq,)  in Eq. (10) arises from representing the cross product 
expression ( - iwT x iw fN,,N,+*) in Eq. (6) in a matrix/column-vector notation. E;(q,)  
is defined as: 

iw  iw 
r z  TY 

Ei( q i )  = [ ;Gz -. 0 -  i w r x  ] (11) 
0 iw 

r y  r x  
- 

where [iwrx, iwrZ]T = iwr is defined in Eq. (1) .  Matrix L,;(q;) in Eq. (10) is 
nonsingular with determinant { Lmi(q i )}  = 1. 

In Eq. (8), Lsi(qi)  is a (6 x 3 )  force transmission matrix that transforms the 
contact force i w f c s  acting at point Qcs to its equivalent at point CM,;. Matrix 
L,;(q;) is defined as: 

The matrix term (Eil(q;) - E;(q;))  in Eq. (12) arises from the cross product term 
[ ( i lwF - '"3 x iwf7-b]  in Eq. ( 6 ) .  Ei(q,) is given in Eq. (11) and E;l(q;) is a (3 x 3) 
matrix defined as: 

ilw ilw 0 -  f z 

E;&;) = 0 -  (13) [ ilw rz  0 

where [il'"rx, i lwry,  ilwrZ]T = ilwr is defined in Eq. (2). 

(& ;x (D&w&))  in Eq. (6), where Q, is a ( 3 x 3 )  matrix defined as: 
In Eq. ( S ) ,  (CL-i D k  wn.) is a (3 x l )  vector arising from the cross product expression 

where [Wcix, uny, WcizIT  = w&. The object dynamics in Eqs. (8) with i=1,2 and 
(9) quantify the dynamic coupling between the manipulators. Indeed, they repre- 
sent fifteen scalar dynamic constraints which characterize the dependence among the 
eighteen scalar components of the generalized contact force [f:, '"f:, f;, *"f;J'. 
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They will be incorporated in the closed-chain dynamical equations. In addition to 
the dynamical constraints, the kinematic coupling between the manipulators also 
constrains the motion of the closed-chain mechanism. It is presented next. 





4 KINEMATIC COUPLING 

The manipulators are kinematically coupled because the ( N ,  + N 2 )  generalized 
coordinates (qT , qT)T are interrelated. The kinematic coupling effects can be quan- 
tified by equations showing the dependence among the generalized coordinates and 
their derivatives. These kinematic constraints can be determined by expressing the 
Cartesian translational velocity of the center of the spherical joint contained in the 
object in terms of the joint velocities of manipulator i(=l,2), and then obtaining a 
relationship among the generalized velocities. 

The Cartesian translational velocity of the object at point Q,, and the object 
velocity a t  point CM,; are related through the force transmission matrix L,i(qi). 
The relation among these velocities is: 

where the (3 x 1) vector o, is the translational velocity of the center of the spherical 
joint in the world 'coordinates. Furthermore, the Cartesian velocities of rigid body 
i of the object at point CM,; and at the point of contact of the external forces 
imparted by manipulator i are related by: 

[ vci ] = (LZt(qi))-l [ vi ] 
wci w; 

where the (3x1) vectors q and w;(i=1,2) represent the translational and rotational 
velocities, respectively, of the end effector of manipulator i at its centerpoint in 
the world coordinates. A detailed derivation to obtain the result of Eqs. (15) and 
(16) based only on the geometry and kinematics of the closed-chain is provided in 
Appendix A. It is straightforward to verify by Eqs. (10) and (16) that w; = wc;, 

since every point on the rigid end effector of manipulator i and the rigid body i of 
the complex object has the same Cartesian angular velocity in the world coordinate 
system. However, 
joint, 

The velocities 
dinate frame and 
JiW(q;), that is: 

it should be noticed that in general w,1 # wc2 due to the spherical 

of the end effector of manipulator i in the Cartesian world coor- 
the joint space are related through the (6  x N;)  Jacobian matrix 

Eliminating [v:, wZlT from Eq. (15) using Eq. (16), and equating the right hand 
sides of the two sets of resulting equations obtained with i=1,2 give a relationship: 

13 
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in which Eq. (17) has been applied. Equation (18) comprises three scalar constraint 
equations characterizing the kinematic dependence among the generalized velocities 
when the manipulators operate in the closed-chain configuration. Each independent 
scalar constraint contained in Eq. (18) causes the loss of one DOF in the closed-chain 
[34]. This is significant since the system DOF specifies the number of independent 
ways the multi-manipulator closed-chain can move without violating the constraints 
given by Eq. (18) [34]. The number of DOF for a three-dimensional kinematic chain 
mechanism consisting of rigid links serially connected by j1 single-DOF revolute 
joints and j 2  three-DOF spherical joints is determined by: 

DOF = 6 ( k t o t  - 1) - 5 j l  - 3 j z  (19) 

where ktol is the total number of links(inc1uding a stationary, zeroth reference link 
the mechanism is mounted on). Equation (19) reflects the fact that each moving link 
has six DOF whereas the zeroth link has none, and each single-DOF joint causes a 
loss of five DOF for a moving link, while each three-DOF joint causes a loss of three 
DOF for a moving link. For the multi-manipulator configuration shown in Fig. 1, 
ktot = ( N I  + N Z  -t l),  j1 = ( N ,  + N2), j ,  = 1,  and the total sytem DOF is 
(N1 + N2 - 3) by Eq. (19). Indeed, the DOF for the closed-chain is equal to the 
number of generalized coordinates (q:, q;)T minus the number of independent scalar 
equations of constraint [34]. 

A dynamical model for the multiple manipulator system is presented next. 



5 CLOSED-CHAIN MODEL IN JOINT 
SPACE 

The dynamic constraints represented by Eqs. (8) with i=1,2 and (9) as well 
as the kinematic constraints in Eq. (18) must be satisfied during the closed-chain 
motion. The constraints may be combined with the equations of motion of the ma- 
nipulators to obtain a joint space dynamical model of the entire system. The model 
is formed by first combining the manipulator models and the dynamic constraints 
to obtain dynamical equations which contain explicitly an independent subset of the 
generalized contact forces. The dynamical equations are incorporated into the kine- 
matic constraints to obtain a functional relation for the generalized contact forces. 
These contact forces can then be eliminated from the equations of motion to obtain 
a closed-chain model for the entire system. 

The dynamics of rigid body i of the object in Eq. (8) can be incorporated in the 
manipulator i model in Eq. (3) by the following two step procedure: (a) Eq. (8) is 
solved for fc; and (b) fcl is eliminated from Eq. (3) using the solution obtained in 
step (a). This procedure gives the composite dynamics for manipulator i and rigid 
body i of the object: 

where A; is a ( 6 x 6 )  matrix: 

It should be noted that Eq. (20) is an explicit function of the spherical joint contact 
force vector jwfCs which is defined in conjunction with Eqs. ( 5 )  - (7) and (9). 

Since the closed-chain model is to be expressed in the joint space, the Cartesian 
variables w&, L& and 6,. of the object are eliminated from Eq. (20). The Cartesian 
acceleration of the object at point CM,; can be expressed in terms of the joint 
accelerations of manipulator i by differentiating Eq. (16) and applying Eq. (17): 

( ~ f i ( q i ) ) - l  [ j i w  (ii + J i w ( q i )  i i ]  (22) 

where the (6 x 6 )  matrix (L:i)-l[= (O((L:i)-')/aqi)@;] and the (6 x N ; )  matrix 
j;w[= (aJ iw /aq i ) i i ]  are functions of the joint positions and velocities of manipulator 
1. 

15 
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The closed-chain dynamics for the entire system are derived in two steps: (a) In- 
corporate Eqs. (16), (17) and (22) into Eq. (20) to obtain the composite manipulator 
i - rigid body i(of object) dynamics in the joint space; (b) The two sets of equations 
obtained from (a) with i=1,2 are combined and expressed in a concise form: 

7 = D ( q ) $  + c(q, 4) + H A ( q ,  4) f H B ( q ,  4 ) 4  + A T ( ( ? ) 2 w f c 3  (23) 

in which Eq. (9) has been used to eliminate l w f C 3  and where T = [I?', 27T]T 

and q = [q: , q:lT are the joint torques and generalized coordinates for the entire 
system, respectively. The ( ( N ,  + N 2 )  x l )  vector C(q, 4) is defined as: 

lh ((NI + N2) X (Ni + N2))  matrix D ( q )  is defined by: 

where matrix 11, (i=1,2) in Eq. (25) is defined by Eq. (21). D ( q )  is the inertia matrix 
for the entire closed-chain system. It is symmetric, positive definite, and therefore 
nonsingular. 

The ( (Nl+N2)xl)  vector H A ( q ,  q )  and ( ( N l + N 2 )  x ( N l f N 2 ) )  matrix H R ( q ,  q )  
in Eq. (23) are defined as: 

H B ( q ,  4) = 

JL Kt A1 2 { (JL JK: I T  } ONl x Nz [ O N ~ X N ,  J z T , L 3 2 &  { ( J L G ) T }  
where $ { ( J L  ~5,:)~) = [(i:,)-' J iw(q i )  + (L:i(qi))-' j i w ]  with i=1,2 in Eq. (27). 

matrix. It is defined by: 
The ( (Nl+N2)  x3) matrix AT(q)  in Eq. (23) is termed the contact force coefficient 
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The dynamics of both manipulators and mutually hdd object are represented in 
Eq. (23) as (N1 + N2) second order differential equations. Equation (23) contains ex- 
plicitly an independent subset of the generalized contact forces [fz, lW f;, fz, 2 w f 2 ] T  
acting on the object, namely 2wfCb.  While Eq. (23) describes the dynamics of all 
components of the closed-chain, it does not account for the kinematic constraints be- 
tween the manipulators due to the common jointed load. To combine the kinematic 
constraints given by Eq. (18) and the closed-chain dynamics to obtain a model for 
the entire system, Eq. (18) is first expressed in a simplified, concise form in terms of 
the contact force coefficient matrix: 

A(Q)  Q = 0 3 x 1  (29) 
in which Eq. (28) has been applied. The corresponding acceleration constraints 
result from differentiating Eq. (29): 

The ( 3 x ( N 1  +N2) )  matrix A[= (aA/aq)q] in Eq. (30)  is a function of the generalized 
coordinates and velocities. 

Equations (23) and (29) are derived independently based on the dynamics and 
kinematic constraints for the closed-chain, respectively. Matrix A(4)  quantifies the 
coupling among the generalized velocities in Eq. (29). Interestingly, Eq. (23) reveals 
that AT(q)  maps the three components of contact force acting at the center of the 
spherical joint in the object (*"fCs) to the joint space. A functional relation for 
the calculation of the object contact forces is obtained by solving Eq. (23) for the 
generalized accelerations and substituting the result in Eq. (30): 

A D - 1 A T 2 w f c l  = A q  + A D - ' { r  - C -  HA - H B ~ } .  (31) 

Since A has rank three and D-' is positive definite and symmetric, then the (3x3) 
coefficient matrix ( A  D-' AT) on the left hand side of Eq. (31) is positive definite, 
symmetric, and therefore nonsingular. Thus, the determination of 2w fcs using Eq. 
(31) is a well-specified problem. Interestingly, the object contact forces transmitted 
across the center of the spherical joint are functions of the generalized coordinates 
q, the generalized velocities 4, and the joint torques T using Eq. (31). 

The dynamical model of the closed-chain system is determined by eliminating the 
vector ''"fts in Eq. (23) using Eq. (31). After rearranging, the resulting equations 
are: 

A(q) (7 - C -  H A  - H B ~ }  = Dij + A T ( A D - l A T ) - ' A 4  ( 3 2 )  

where A(q) is a ( ( N I  + N2) x (NI + N2)) matrix defined as: 
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Interestingly, matrix A(q) is idempotent, i.e., A(q) = A 2 ( q ) ,  and it is an orthogonal 
complement of the contact force coefficient matrix, i.e., A(q) AT(q) = O(Nl+Nz)x3. 

Equation (32) represents a joint space rigid body dynamical model for the entire 
system in the Lagrange's formulation. It incorporates all constraint effects and con- 
tains (N1+ N z )  second order differential equations. The solution of Eq. (32) for the 
forward and inverse dynamics is discussed next. 

5.1 Solving for Forward Dynamics 

The joint torques T = ( I T * ,  2rT)T  over the specified time interval ( t o  5 t 5 t f )  
are assumed to be given. The variables to be determined over the specified time 
interval are the ( N ,  + N 2 )  generalized coordinates q = (qT , q: )* and the ( N ,  + N2) 
generalized velocities q = (qT , 4jf)T, which are assumed to be given and to satisfy 
Eq. ( 2 9 )  at time to. 

The closed-chain model in Eq. (32) contains (N1 + N2) second order differential 
equations and (Nl + N 2 )  generalized accelerations. Since matrix D ( q )  is nonsingular, 
Eq. (32) can be solved for the highest order derivative 4" and expressed as 2(N1 +N2)  
first order differential equations containing 2(N1 + N2) unknown variables ( q  , q). 

Since the number of first order differential equations is equal to the number of un- 
known scalar variables, the solution for the forward dynamics is well-specified when 
input T is known over the given time interval. Therefore the model given in Eq. (32) 
can be numerically integrated to provide dynamical simulation of the closed-chain 
mot ion. 

5.2 Solving for Inverse Dynamics 

The desired trajectories of the generalized coordinates and their derivatives: q , q ,  + 
over the specified time interval ( to  5 t 5 t j )  are assumed to be given which satisfy 
Eqs. (29) and (30). The variables to  be determined over the specified time interval 
are the (Nl + N 2 )  joint torques T = ( T , T ) . 

The closed-chain model in Eq. (32)  involves (N1 + N2) second order differential 
equations containing (N1+ N2) joint torques. The rank of the (( N1 + N2) x (N1+ N2))  
coefficient matrix A(q) defined in Eq. (33) which premultiplies vector T in the 
model determines the nature of the solution to the inverse dynamics. It is proven 
in Appendix B by analytical techniques that A(q) is a singular matrix and that its 
rank does not exceed the DOF of the closed-chain system, namely ( N l  + N2 - 3). It 
should be mentioned that the proof in Appendix B requires knowledge of particular 
matrix- and vector-variables which are introduced in the next section(6). The proof 
that matrix A(q) is singular and that the runk(A(q) )  5 ( N ,  + N2 - 3)  is a new result 
for the case of two manipulators holding a spherically jointed payload. Therefore the 
problem of solving for the inverse dynamics is underspecified in nature. Equation (32) 

1 T  2 T T  
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has infinitely many solutions for the joint torques when the generalized coordinates 
and their derivatives are known over the specified time interval. 

The structure of the closed-chain joint space model given by Eq. (32) is not 
particularly suitable for the development of a control architecture, i.e., the joint 
torques cannot be solved by inverting matrix A(q),  since it is singular. Furthermore, 
the number of scalar second order differential equations contained in Eq. (32) exceeds 
the DOF of the system. However, as shown in the next section, the joint space model 
is amenable to the realization of a reduced order model which is useful for controller 
design purposes. 





6 REDUCED ORDER MODEL AND 
CONTACT FORCE DETERMINATION 

The closed-chain system consisting of two serial-link manipulators containing 
N1 and N2 joints, respectively, mutually holding an object containing a spherical 
joint described by (N1 + N2)  second order differential equations in Eq. (32) has 
(Nl  + N2 - 3) DOF. The number of second order differential equations of motion is 
reduced from (Nl + N2)  to (Nl + N2 - 3) in this section. The generalized contact 
forces are eliminated from the reduced order model, but can be calculated separately. 
The solution of the model for the unknown variables is discussed. 

To determine a reduced order model, a new vector variable 
I/ = [VI, v2,. . . ? I / N , + N ~ - ~ ] *  referred to as the pseudovelocity [1, 341 is introduced. 
The number of scalar components of v is equal to the DOF of the system. The 
pseudovelocity is defined by: 

Y = B(q)Q. (34) 

The ( ( N ,  + N2 - 3) x ( N l  + N2)  ) matrix B(q)  in Eq. (34) is selected so that 
the composite ((Nl + N2) x ( N ,  + N 2 ) )  matrix ( AT(q) ; BT(q))T is nonsingular. It 
is convenient to partition the inverse of ( AT(q) ; BT(q))* into two matrices: 

where II(q) is a ( ( N l  +N2) x3) matrix and C(q)  a ( (Nl  +N2) x ( N ,  + N ,  -3)) matrix. 
Eq. (35) implies that A n  = 1 3 x 3 ,  A x  = 0(3X(Nl+N2-3)), B n  = O ( ( N ~ + N Z - ~ ) X ~ ) ?  

B = 1(N1+N2-3)X(N1+N2-3) and (n A + B ,  = I ( N ~ + N ~ ) X ( N ~ + N Z ) *  The 
pseudovelocity emphasizes the fact that the linear combinations of the generalized 
velocities on the right hand side of Eq. (34) are not necessarily the time derivatives 
of any physical coordinates [l, 341. Indeed, the choice of matrix B(q) by the designer 
is somewhat arbitrary. Two examples of the selection of matrix B(q) given specific 
choices for the pseudovelocity vector Y by the designer are provided in Appendix C. 
Furthermore, the examples show that matrices U ( q )  and C(q) may be defined analyt- 
ically thus avoiding the numerical inversion of matrix (AT(q) ;  B*(q))' for calculating 
their values. 

Differentiating Eq. (34) establishes a relationship between the pseudo- and gen- 
eralized accelerations: 

The ((NI + N2 - 3) x (NI + N2) ) matrix h[= (aB/aq)g] in Eq. (36)  is a function 
of the generalized coordinates and velocities. 

fi = Bf j  + B q .  (36) 

Equations (29) and (34) can be solved for the generalized velocities: 

q = C Y  

21 

(37) 



22 

in which Eq. (35) has been applied. Likewise, Eqs. (30) and (36) can be solved for 
the generalized accelerations: 

4; = cri - [nA + C B ] C v .  (38) 

Substituting for q in Eq. (29) using Eq. (37) yields the kinematic veloc- 
ity constraint equation A C v  = 03x1, which is identically true because A C  = 
0 ( 3 x ( ~ 1 + ~ 2 - 3 ) )  in accordance with Eq. (35). Thus the kinematic constraints are 
satisfied regardless of the values of the pseudovelocities; therefore, the closed-chain 
dynamics in Eq. (23) expressed in the pseudospace implicitly satisfy the kinematic 
constraints. 

Premultiplying Eq. (23) by the matrix ET and utilizing the properties of Eq. 
(35) obtain: 

ET D q = C T { t  - C - HA - H B Q } .  (39) 

Substituting Eqs. (37) and (38) into Eq. (39) yields the reduced order equations 
of motion in the pseudospace: 

ETDCri = ET { T  + {D [IIA + Cb] - H B }  Cv - C - H A } .  (40) 

Eq. (40) is comprised of ( N ,  + N2 - 3) second order differential equations, which is 
equal to the DOF of the entire system. It should be noted that the term ( A T 2 W f c s )  
in Eq. (23) is implicitly cancelled in the reduced order model because ETAT = 
O ( ( N ~ + N ~ - ~ ) ~ ~ )  in accordance with Eq. (35). Thus, Eqs. (39) and (40) are not 
functions of the generalized contact forces which may be calculated in terms of the 
pseudovelocities using Eqs. (31) and (37): 

f c S  = A x v  +  AD-'{^ - c - H~ - H ~ c ~ ) .  (41) 
A D - ~ A T  2w 

It should be mentioned that 2wfcs can be calculated as a function of fi through 
premultiplying Eq. (23) by the matrix IIT and incorporating Eqs. (35), (37), and 

It will be shown in the next section that the separated form of the model for the 
entire closed-chain system given by Eqs. (40) and (41) is useful for controller design 
purposes. 

The solution of the reduced order model for the forward and inverse dynamics is 
now discussed. 

(38)- 

6.1 Solving for Forward Dynamics 

The joint torques T = (l?, 2 ~ T ) T  over the specified time interval ( t o  5 t 5 t,) 

are assumed to be given. The variables to be determined over the specified time 
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interval are the (N1 + N2 - 3) pseudocoordinates p (= [pl, p a , . .  . , p l ~ , + ~ , - 3 ] ~ }  and 
the ( N I  + N Z  - 3) pseudovelocities v ,  where v = $. It is assumed that q and v are 
given at  time to which satisfy Eq. (37). 

The reduced order model in Eq. (40) involves (N1 + N2 - 3) second order dif- 
ferential equations containing (& + NZ - 3)  pseudoaccelerations. Since matrix E* 
has full rank ( N ,  + N2 - 3 )  and matrix D(q) is positive definite and symmetric, then 
the square coefficient matrix ( C T D C )  in Eq. (40) is positive definite, symmetric, 
and therefore nonsingular. Thus Eq. (40) can be solved for the pseudoaccelera- 
tions and expressed as 2(N1 + N2 - 3) first order differential equations containing 
2(N1 + N2 - 3) unknown variables ( p  , v ) .  Since the number of first order differential 
equations is equal to the number of unknown scalar variables, the solution for the 
forward dynamics is well-specified when the input T is known over the given time 
interval. 

The reduced order model in Eq. (40) leads to a computationally efficient dynam- 
ical simulation of the closed-chain motion when compared to the joint space model 
given by Eq. (32). For example, with two six-joint manipulators (N1 = N2 = 6) 
holding a spherically jointed object, Eqs. (40) and (32) contain nine and twelve sec- 
ond order differential equations of motion, respectively. However, since the problem 
of analytically expressing the generalized coordinates q = (q: , qr)' in a reduced 
manner remains unsolved 11, 2 ,  3, 71, Eqs. (40) and (41) are explicit functions of g 

and not of the pseudocoordinate vector p .  Thus it is nontrivial to numerically inte- 
grate the reduced order model. A method for circumventing this problem in discrete 
time which solves for the pseudocoordinates numerically is now discussed. 

Let r denote the sampling period and assume that the joint torques ~ ( k r )  are 
given over the specified time interval k = Eo, ko + 1, . . . , kj, where time t = k I? and 
{ko, kj} are non-negative integers. The variables q and v are assumed to be given 
and to satisfy Eq. (37) at t = ko r. The nonsingular coefficient matrix (ET D E) on 
the left hand side of Eq. (40) is a function of g. The right hand side of Eq. (40) is a 

function of the variables (q,  v, 7 ) .  

At the initial time Eq. (40) can be solved for the highest order derivative ($ (ko  I')) 
and numerically integrated over the sampling period from t = KO I' t o  t = (IC0 + 1) I' 
to obtain p ( t )  and v( t )  at t = (ko + 1) r. The drawback of the reduced order model 
being a function of the generalized coordinates is now evident. Indeed, q( (ko  + 1) I?) 
must be determined before Eq. (40) can be solved for the highest order derivative 
( 6 (  ( Lo + 1) r)) and numerically integrated from time t = ( ko + 1) I' to t = ( k0 + 2) I?. 
To solve this problem, Eq. (37) could be numerically integrated over the sampling 
period from t = ko I? to t = (ko + 1)  I? to obtain q((k0 + 1) I?). This approach 
involves numerically integrating ( N ,  + N2) first order differential equations and is 
purely kinematical in nature. 

Given (Q, Y, 7) at t = (ko + 1)r, the reduced order model can be solved for 
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(V((lC0 + 1) I?)) and numerically integrated to obtain p ( t )  and v( t )  at t = ( I C o  + 2) I?. 
q ( t )  at 1 = (IC0 + 2)r can be obtained by integrating Eq. (37) from time t = 

Continuing in the aforementioned manner, the dynamical, discrete time simula- 
(ko  + i)r  to t = (k0 + 2)r. 

tion of Eq. (40) can be accomplished. 

6.2 Solving for Inverse Dynamics 

The desired trajectories of the generalized coordinates and their derivatives: q, q, q 

over the specified time interval ( t o  5 t 5 t f )  are assumed to be given which satisfy 
Eqs. (29) and (30). The ( N l + N 2 )  scalar variables to be determined over the specified 
time interval are the joint torques 7 = (I?, 2 ~ T ) T .  

The desired pseudospace trajectory (v, i) is first obtained by Eqs. (34) and (36) 
since the desired joint space variables and their derivatives are known. The reduced 
order model in Eq. (40) contains (Nl + N2 - 3) second order differential equations 
with (N1 + N , )  unknown joint torques. Moreover, the coefficient matrix ET which 
premultiplies T in Eq. (40) is rectangular with fewer rows than columns. Therefore, 
the solution to the inverse dynamics is underspecified, since the number of unknown 
joint torques exceeds the number of equations. Equation (40) has infinitely many 
solutions for T when the desired trajectories of the generalized coordinates and their 
derivatives are given over the specified time interval. A solution for the joint torques 
obtained from the reduced order model would not consider the spherical joint contact 
forces, which are governed by Eq. (41). In view of this a control architecture for the 
joint torques based on Eqs. (40) and (41) is derived in the next section. 



7 CONTROL ARCHITECTURE 

The problem considered is to derive a control law for the (N1+  N2) joint torques 
r = 2 ~ T ) T  so that the force and position of the closed-chain mechanism behave 
in desirable manners. The controller is designed on the basis of the separated form 
of the closed-chain model given by Eqs. (40) and (41). Specifically, a control input T 

is determined so that the pseudovariables (I/, fi} and the object contact forces 2w fc3 

acting at the center of the spherical joint will be controlled separately. Finally, the 
modeling and control methodology presented here are compared to another model 
and control scheme recently proposed in the literature. 

The controller consists of the sum of the outputs of a ( ( N ,  + N2) x 1) primary 
controller (TP) that is designed for cancellation of nonlinear terms in the model and 
a ( (N1 + N2) x 1) secondary controller ( r8)  that performs closed-loop servoing. The 
composite control (7) is specified as T = TP + 7". r p  is realized by introducing 
nonlinear feedback and/or feedforward loops into the closed-chain system such that 
the nonlinear terms in Eqs. (40) and (41) that are not explicit in the variables 
('"f-, f i )  are cancelled. The primary controller is chosen as: 

where the superscript A denotes that the quantity is estimated as a function of the 
desired(reference) feedforward trajectory (qref, v f c j )  and/or the feedback variables 

(q ,  v). The composite control (T = r p  + 7") is substituted into Eqs. (40) and 
(41). The resulting equations, under the assumption that the following relations 
hold: 

can be expressed as: 

i/ = ( c T D c ) - l  C T P ,  (44) 

2wfc, = ( A  0-1 AT)-' A D-1 r s  (45) 
in which Eqs. (35) and (42) have been applied. 

The design of the secondary controller (7.") is based on the structure of Eqs. (44) 
and (45) so as to obtain a closed-loop control system where the pseudovariables and 
object contact forces are servoed separately. The secondary controller is selected as: 

rg = ATr; + Dkri  (46) 
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where T: and T; are (3  x l )  and ( (N1+  N2 - 3) x l )  vectors, respectively, representing 
control variables to be determined. Substituting Eq. (46) into Eqs. (44) and 
(45), utilizing the matrix relations in Eq. (35), and rearranging give: 

L; = 725, (47) 

(48) 
where the assumption of perfect knowledge of the nonlinear terms in Eq. (43) has 
been applied. 

Eqs. (47) and (48) represent the reduced order model equation (40) and the 
spherical joint contact force equation (41) in the closed-loop system, respectively. 
Suppose the secondary controller components 725 and 71" are feedback and/or feed- 
forward control laws selected by the designer to servo the pseudovariable error and 
the object contact force error, respectively. Since Eqs. (47) and (48) are completely 
decoupled, T: and 7; are independent, non-interacting controllers for the force- and 
position-control of the constrained multi-manipulator system, respectively. Thus, 
the force- and position-controlled DOF are decoupled when the composite control 
law (T = T P  + 7") defined by Eqs. (42) and (46) is used in conjunction with Eqs. 
(40) and (41). This is a new result for the case of two manipulators holding a jointed 
object . 

Interestingly, the structure of the composite controller (T = T P  + T") reveals 
that it is a hybrid control strategy [32, 331. In the secondary controller defining 
Equation (46), the ( (Nl + N2) x3) matrix AT transforms the contact force controller 
7: to the joint space. Likewise, the ((Nl + N,)x(Nl + N2 - 3)) matrix ( B e )  in 
Eq. (46) transforms the pseudovariable controller T; to the joint space. Therefore all 
(Nl  + N2) actuated manipulator joints contribute to the force- and position-control 
of the entire closed-chain system. 

In [9], the "orthogonal complement" C of the matrix A is defined by the equation 
A C  = 03x9 for a pair of six-axis (N1 = N2 = 6) manipulators holding an object 
containing a spherical joint. A joint space reduced order model in the form of Eq. 
(39) is obtained by premultiplying the combined manipulator equations of motion 
by ET, which eliminates the generalized contact forces and reduces the number of 

second order differential equations of motion from twelve to  nine [9]. Eq. (39), 
however, contains (N1 + N2 - 3) second order differential equations of motion and 
(Nl  + N2) generalized accelerations i. Thus the problem of solving Eq. (39) for 
q is underspecified and the reduced order model in the joint space is impractical 
for dynamical simulation. Eq. (39) also contains (N1 + N z )  joint torques T. An 
underspecified solution for the joint torques for position tracking is computed from 
the model in [9]. The approach used here additionally derives functional relations in 
Eqs. (31) and (41) for the generalized contact forces, which is not considered in the 
earlier work [9]. 
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It is difficult to develop a control input r so as to decouple the joint space form 
of the reduced order model and contact force equation given by Eqs. (39) and 
(31), respectively. The advantage of introducing the pseudovariables (Y, b} and 

determining matrices n and by Eq. (35) is that it becomes straightforward to 
derive a control architecture to completely decouple the reduced order model and 
contact force equation when they are expressed in the pseudospace by Eqs. (40) and 
(41), respectively. 





CONCLUSION 

The closed-chain motion of two manipulators holding an object containing a 
multiple-DOF spherical joint has been analyzed. A rigid body model was first devel- 
oped in the joint space. It includes the dynamics of all components of the closed-chain 
as well as the kinematic constraints. The system was transformed to obtain a reduced 
order model which also includes the dynamics of both manipulators and the object, 
but implicitly satisfies the kinematic constraints. Either form of the model more 
closely represents the physical behavior of the system than the model presented in 
[9], which includes the manipulator dynamics but does not include the dynamics of 

the spherically jointed object. Furthermore, it has been shown that the solutions of 
the joint space and reduced order models for the forward dynamics are well-specified 
in nature, whereas their solutions for the inverse dynamics are underspecified. 

In [9], the controller design was based only on the joint space reduced order 
model which contains no generalized contact forces. By considering both the reduced 
order model and separate contact force equation expressed in the pseudospace for the 
controller design, it has been shown here that the force- and position-controlled DOF 
can be completely decoupled. That is, the pseudovariables {v, c }  and an independent 
subset of the generalized contact forces can be controlled independently using the 
proposed composite control architecture (7 = T P  + 7") .  

Derivation of an analytical expression for matrix B(q) which defines the pseu- 
dovelocity vector v is one of the main tasks when applying the reduced order model 
and control architecture to a specific application. Two examples of the selection of 
matrix B(q) such that matrix (A*(q) ; B*(q))* is nonsingular given specific choices 
of Y by the designer have been presented. Furthermore, the feasibility of analytically 
deriving matrices n(q) and C(q)  to avoid numerically inverting (AT(q)  ; BT(q>)T for 
calculating their values was investigated in the examples. In the previous work on 
two manipulators holding a rigid object [38, 391, matrix B(q) was presented only in 
general terms. 

Each manipulator holding a rigid object was required to have N joints in [38, 
391. The analysis in [9] was restricted to a pair of six-joint manipulators holding a 
spherically jointed object. The rigid body model and decoupled control architecture 
presented in this report are applicable to two manipulators containing N 1  and N2 
joints, respectively. 

The research presented in this report has uncovered and identified a wealth of 
open problems and issues associated with the closed-chain motion of two manipu- 
lators holding a spherically jointed object that warrant future attention. The total 
DOF in the closed-chain system is ( N ,  + Nz - 3) as discussed in section 4. When 
there are redundant DOF in the system, i.e., when the total DOF of the closed-chain 
system exceeds nine, the choice for and the physical interpretation of the additional 
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pseudovelocities [ulo, yl,. . . , U N ~ + N ~ - ~ ] ~  need to be investigated. This includes the 
development of criteria or analytical methods for selecting the matrix B( q).  

Another interesting suggested future work area involves using the rigid body 
model and proposed controller to investigate properties of the closed-loop system in 
the presence of force disturbances, or uncertainty in the knowledge of the system 
dynamics and/or the kinematic constraints. 

Slippage and friction were not considered in this report, but are important factors 
in the modeling and control of two interacting manipulators. It would be helpful and 
desirable to determine if the results presented here could be extended to include 
these effects. 

The approach to the problem discussed here for the spherically jointed payload 
case could be applied to other interacting manipulator problems, e.g., two or more 
manipulators holding other complex jointed payloads such as an object containing a 

universal joint. 
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APPENDIX A 

RELATIONSHIP AMONG THE CARTESIAN 
VELOCITIES FOR THE RIGID BODY i OF 

THE COMPLEX OBJECT AT THE CENTER 
OF MASS AND AT THE CONTACT POINTS 

The Cartesian velocity relations given by Eqs. (15) and (16) are derived in this 
Appendix based on the geometry and kinematics of the closed-chain. The trans- 
lational velocity vector vc; defined in conjunction with Eq. ( 5 )  can be derived as 

follows : 

( A 4  
v,; = - { iN, Pw (!?*I + * w + A ) }  

dt 

Similarly, the translational velocity vector vcs defined in conjunction with Eq. (15) 
can be derived as follows: 

where ;p:(q;) in Eqs. (A. l )  and (A.2) is a (3 x 1) vector emanating from the origin 
of the ( X w ,  Yw, Z w )  world coordinate frame to the origin of the ( X i ! ,  Y$), Zi!) 
coordinate frame. Thus 'p$ ( P i )  represents the Cartesian translational position of 
the centerpoint of the end effector for manipulator i in the world coordinate system. 
The translational velocity vector v; defined in conjunction with Eq. (16) is related 
to vector ' p > ( q ; )  as foHows: 

In Eqs. (A. l )  and (A.2), $(iwr(q;)) and $(ilwr(q;)) denote the time derivatives 
of vectors iwr(gi) and 'lWr(g;), respectively, with reference to the world coordinate 

vectors '"r(q;) and i""r(q;), respectively, with reference to the end effector coordinate 
system (Xg! ,  YZ), Z i ! ) .  Then the following relationships hold [36]: 

system ( X w ,  Yw, Zw). Let zit( d* iw r(qi)) and s ( i ' w T ( q j ) )  denote the time derivatives of 

ilw ilw 0 -  r z  rv 
rx 0 -  T X  

rY rX 

ilw ilw 

0 ilw ilw - 
W ;  (A.5) 
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where the last term on the right hand side of Eq. (A.4) arises from representing the 
cross product expression (b; x iwF(q;)) [ = - iwF(q;) x w";] in a matrix/column-vector 
notation. Likewise, the last term on the right hand side of Eq. (A.5) arises from the 
cross product expression (3; x "".'(q;)). 

Manipulator i securely holds the rigid body i of the complex object without 
slippage. Moreover, the (Xi!, Y l ) ,  2:;) coordinate frame shown in Fig. 1 moves as 
the end effector for manipulator i moves. Points CM,; and Q,,, which coincide with 
the tails of vectors (;r,  'wr(q;))  and ("r, ""r(q;)) respectively, as shown in Fig. 2, are 
stationary with respect to the (Xi!, Y$), 2;:) coordinate frame. Furthermore, there 
is no joint variable associated with the local end effector coordinate frame. That is, 
the outermost scalar joint variable qiN,  for manipulator i contained in the vector q; = 
[ q i l ,  q ; ~ ,  coordinate frame. 
Therefore vectors (;T, 'wr(q;)p "r ,  alwr(q;)) are constant(stationary) with respect to 
the ( X i ! ,  Y$), ZE!) coordinate frame. The time derivatives of vectors iwr(qi) and 
""r(q,) with respect to the local moving coordinate frame are given by: 

- . , q ; N , l T  is associated with the (Xi!-,, Y$L1, 

Incorporating Eqs. (A.3), (A.4) and (A.6) into Eq. ( A . l )  yields the following 
relation : 

iw 0 -  
v,; = 0; - 

Similarly, Eqs. (A.3), (A.5) ana (A.7)  are substituted into Eq. (A.2): 

if w ilw 
r z  f Y 

v,, = 0; - [ - 0 -  ilWrz ] w; . 
0 ilw 

f X  TY 
- 

Equations (A.8) and (A.9) can be expressed in concise forms: 

(A.10) 

(A.11) 

in which Eqs. (11)  and (13) have been applied, respectively. 
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As discussed in Section 4, every point on the rigid body i of the shared payload 
and on the end effector of manipulator i has the same Cartesian angular velocity in 
the world coordinates. Thus the following relation holds: 

W d  = W i .  (A.12) 

Equations (A.lO) and (A.12) can be combined and expressed in terms of the 
force/ torque transmission matrix L,; (q i )  : 

[ vn. ] = (LLl(q;))-* [ ] 
W d  wi 

(A.13) 

in 

in 

which Eq. (10) has been applied. 
Equation (A.13) is in agreement with Eq. (16). 
Eliminating [v:, wTIT from Eq. (A . l l )  using Eq. (A.13) gives a relationship: 

Substituting for Lz i (q ; )  in Eq. (A.14) using Eq. (10) and simplifying yield: 

vca = [ ~ s x J ;  E i ( q i )  - ~ i l ( q i ) l  [ ] Wci 

Finally, Eq. (A.15) can be expressed in a compact form: 

which Eq. (12) has been applied. 
Eauation (A.16) is in agreement with Ea. (151. 

(A.15) 

(A.16) 





APPENDIX 13 

PROVING SINGULARITY OF THE JOINT 
TORQUE COEFFICIENT MATRIX 

In this Appendix it will be proven that matrix A(q) which premultiplies the 
vector of joint torques in Eq. (32) has less that full rank and thus is singular. The 
definition of the pseudovelocity vector Y given in Eq. (34), the matrix relations given 
by Eq. (35), and the definition of A(q) in Eq. (33) will be used in evaluating the 
rank of A(q).  Additionally, the following matrix property will be used. Suppose two 
(n  x n)  real matrices X and Y are given. Matrix X is assumed to possess full rank 
n and thus is nonsingular. Then the following mathematical relation applies [35]: 

rank(Y) = r a n k ( X Y )  = r a n k ( Y X )  = rank(X*Y)  = ranlc(YXT).  (B.l) 

The rank of ACq) may now be determined. By the property of Eq. (B.l), the 
following relation holds: 

ranE(A) = rank { [ ET] A [ A T ;  q} . 
The rank of the ( ( N l +  I V 2 )  x ( N l  + N z ) )  matrix within the braces on the right hand 
side of Eq. (B.2) is now analyzed by first decomposing it into four submatrices: 

The submatrices can be expanded by replacing A with the right hand side of 
Eq. (33) and simplified by invoking the matrix relations in Eq. (35). Indeed, it is 
straightforward to verify that: 

Equation (B.4) reveals that the first three columns of the matrix ([H ; E]* A [AT ; BT])  
contain all zeros. Thus the matrix ([n ; E]' A [A* ; BT]) is singular. Furthermore, 
the runk([II;  ZIT A [AT ; BT])  I (NI + NZ - 3). 

Since matrix ([TI; E]' A [A*; B']) is singular, then matrix A is also singular 
with runk(A) _< (N1 + N2 -3) because the ranks of these two matrices are the same 
as shown in Eq. (B.2). Interestingly, this result indicates that the rank of A(q) does 
not exceed the DOF of the closed-chain configuration, namely (Nl + N2 - 3) . 
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APPENDIX C 

SPECIFICATION OF ANALYTICAL FORMS 
FOR MATRICES B(q), n(q), AND C(q) 

In this Appendix two examples of the selection of matrix B(q) which defines 
the pseudovelocity vector u in accordance with Eq. (34) are provided given specific 
choices for v by the designer. Additionally, the analytical derivation of matrices 
n(q) and C(q), which are defined by Eq. (35), is presented. The case of two six-axis 
(N1 = N2 = 6) manipulators holding a spherically jointed object is considered in the 
examples. It is assumed that the (6 x 6) Jacobian matrix J;,(q;) for manipulator 
i(=1,2) defined in conjunction with Eq. (17) possesses full rank six and thus is non- 
singular. In this case the closed-chain system has nine DOF and the pseudovelocity 
vector v contains nine scalar components, i.e., I/ = [ul, u2, .  . . , v9IT. 

The definition of matrix A(q)  given by Eqs. (28) and (29) is repeated here for 

convenience: 

4) = [m?l) (G1k1)I-l Jlw(al1; - G ( q 2 )  (~T,2(cr2) ) - '  J 2 d d - J  - (C.1) 

Example 1 : In this example the pseudovelocities are chosen to be the Cartesian 
angular velocities of rigid body 2 of the complex object as well as the Cartesian 
velocities of the center of mass of rigid body l(of the object) at point CMOl, i.e., Y = 
[us, v z ,  Suppose the first three pseudovelocities [VI, v2,  v3]* are expressed in 
terms of the joint velocities of manipulator 2 while the last six pseudovelocities are 
in terms of the joint velocities of manipulator 1. In this case the (9 x 12) matrix 
B(q) is selected as: 

03x6 103x3; 13x3 I J ~ w ( q 2 )  

(E,  (Q1) JlW(Q1) 06x6 

in which Eqs. (lo), (16), and (17) have been used. 

with (N1 = IV, = 6) is presented here in a partitioned form: 
The (12 x 12) composite matrix ( A T ( q ) ;  BT(q))T defined by Eqs. (C.1) and (C.2) 

where the (6 x 6) matrices q ( q 1 )  and G(q2) in Eq. (C.3) are defined s: 

4 3  
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Matrix (AT(q)  ; BT(q))T given by Eq. (C.3) must be nonsingular in accordance 
with Eq. (35). The determinant of this composite matrix is given by [35]: 

where det [ ] denotes the determinant of [ 1. To determine the rank of (AT(q) ; BT(q))T, 
the rank of matrix Q ( q 2 )  contained on the right hand side of Eq. (C.6) is needed. 
@ ( q 2 )  can be simplified by incorporating Eqs. (10) and (12) with i=2 into Eq. (C.5) 
and rearranging: 

(C.7) 

Interestingly, Eq. (C.7) reveals that matrix @ ( q 2 )  is nonsingular and that it satisfies 
the relation: (@(q2))2 = 16x6. Given that Jiw(qi) and Lmi(q i ) ,  i=1,2, are nonsingular 
matrices, the application of the matrix relation given by Eq. (B.l) to the matrix 
product terms contained on the right hand side of Eq. (C.6) reveals that matrix 
(AT(q) ; BT(q))T is nonsingular. 

Matrix ( A T ( q ) ;  BT(q))T in Eq. (C.3) can be symbolically inverted using the 
method of partitioning [35]: 

The (12 x 3) matrix H(q) and the (12 x 9) matrix C(q) defined by Eq. (35) with 
(Nl = N2 = 6) are comprised of the first three and last nine columns, respectively, 
of the matrix contained on the right hand side of Eq. (C.8): 

in which Eq. (C.7) has been applied. It is straightforward to verify that matrices 

A(q), B(q) ,  n(q), and C(q) defined by Eqs. (C.l), (C.2), (C.9), and (C.10) respec- 
tively, satisfy the matrix relations given in Eq. (35) with ( N ,  = N2 = 6). 
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B(q) = 

Example 2 : In this example the pseudovelocities are chosen to be the Cartesian 
angular velocities of the two rigid bodies comprising the common load as well as 
the Cartesian translational velocities of the center of the spherical joint at  point 
QcJ,  i.e., v = [uz, v:, u:IT. Suppose the first three pseudovelocities [VI, v2, u3IT 

are expressed in terms of the joint velocities of manipulator 2 while the last six 
pseudovelocities are in terms of the joint velocities of manipulator 1. In this case the 
(9 x 12) matrix B(q) is selected as: 

- 
O3x6 [ 0 3 x 3 ;  1 3 x 3  1 J z w ( q 2 )  - 

L:l(41) V J : l ( q w  Jl&d 0 3 x 6  

- [ 0 3 x 3 ;  13x3  I Jlw(q1)  0 3 x 6  + 

(C.11) 

where the (6 x 6) matrices Q(q1) and d i ( q 2 )  in Eq. (C.12) are specified in Eqs. ((2.4) 
and (C.7), respectively. The (6  x 6) matrix X(q1) in Eq. (C.12) is defined as: 

(C.13) 

Matrix (A*(q) ; BT(q))T given by Eq. (C.12) must be nonsingular in accordance 
with Eq. (35). The determinant of this composite matrix is given by [35]: 

To determine the rank of (AT(q);  BT(q))T, the rank of matrix X ( q 1 )  contained on 
the right hand side of Eq. ((2.14) is needed. A ( q 1 )  can be simplified by incorporating 
Eqs. (10) and (12) with i=l into Eq. (C.13) and rearranging: 

(C.15) 

Equation (C.15) reveals that A(ql )  is nonsingular and det [X(ql)] = 1. Given that 
JiW(q.;) and Lmi(qi), i=1,2, and ( a ( q 2 )  are nonsingular matrices, the application of the 
matrix relation given by Eq. (B.l) to the matrix product terms contained on the 
right hand side of Eq. ((2.14) reveals that matrix (AT(q)  ; BT(q))T is nonsingular. 
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Matrix (AT(q)  ; B’(q))T in Eq. (C.12) can be symbolically inverted using the 
method of partitioning [35]: 

(C.16) 
The (12 x 3) matrix n(q) and the (12 x 9) matrix C(q) defined by Eq. (35) with 

(N1 = N2 = 6) are comprised of the first three and last nine columns, respectively, 
of the matrix contained on the right hand side of Eq. (C.16): 

1 06x3  c 
(C.17) 

1 0 6 x 3  J a q d  (%))-l 

V q )  = 
- J&?Z) %z) W l 1 )  (J?211(ql))-1 ( W I W  

(C.18) 

in which Eq. (C.7) has been used. It is straightforward to  verify that matrices 
A(q) ,  B(q) ,  n(q), and C(q) defined by Eqs. (C.l), (C.ll) ,  (C.17), and ((2.18) re- 
spectively, satisfy the matrix relations given in Eq. (35) with (N, = Nz = 6). 
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