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Argonne Nation: aboratory has completed three full years oI opcration of 

19 vehicles in the Federal Methanol Fleet Project; ten of the vehicles are fueled with M85 

(85% methanol, 15% unleaded gasoline). Nearly 675,000 miles have been accumulated on 

the fleet vehicles so far, and comparisons of energy efficiency continue to show nearly equal 

performance between the methanol and gasoline vehicles. Emissions tests have revealed 

evidence of degradation of emission control systems for both the methanol and gasoline 

vehicles. Methanol vehicles continued to require more maintenance than the gasoline 

vehicles, and maintenance labor intensity (hours per 1080 miles) increased for ant the vehicie 

types being monitored. Metal accumulation rates in lubricating oil of the methanol vehicles 

continued to be elevated compared to that of the gasoline vehicles. Driver satisfaction in the 

third year appeared to be about the same as the second year, with the gasoline vehicles 

generally being rated slightly higher than the methanol vehicles. 
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PREFACE 

This report is one in a series of yearly reports on the results from the Federal 

Methanol Fleet project. Each report details the annual results from one of the three fleets 

participating in the project and, thus, represents only part of the entire story. Readers are 

directed to the other reports in the series in order to benefit from the entire context of the 

project rather than to risk the possibility of misreading limited results from only one report. 

A brief review some of the philosophies and practices implemented in this project are 

presented below in order to further reduce the possibilities of data being taken out of 

context. 

0 This project resulted from a congressional appropriation in Fiscal Year 1985 and the 
associated mandate to begin to place methanol-fueled vehicles in government fleets and 
assess their performance. Funds for these purposes have totalled $2.2 million through 
Fiscal Year 1990. 

It was decided to use the best available "proven" technology for converting vehicles to 
methanol since it was impossible to obtain methanol vehicles from original equipment 
manufacturers. The intent was to acquire methanol converted vehicles from as many 
"proven" aftermarket companies as funds would permit. ("Proven" here means that the 
aftermarket company possessed a demonstrated record of successful conversions of 
gasoline vehicles to methanol.) 

It was decided to operate the methanol vehicles in all cases alongside comparable 
gasoline vehicles for statistical comparisons. This entailed the acquisition of the gasoline 
vehicles also. 

While it was desirable to achieve the lowest possible emissions with the converted 
methanol vehicles, it was recognized that this would be an expensive proposition 
because rigorous engineering and development would be necessary in order to 
accomplish this goal. Because of this, the methanol vehicles are not optimized for 
lowest emissions. Instead, the philosophy was to acquire the vehicles, measure their 
emissions, and track their performance over time. The important comparison would be 
how emissions change over time, not how they would compare to the lowest: attainable. 
Emissions measured immediately after methanol conversions would serve as the baseline 
for comparison. 

0 All of the vehicles in the project were to be used in routine fleet service within the 
organizations to which they were to be assigned. This limited the extent to which very 
specialized tests or driving cycles could be utilized. On the other hand, the vehicles 
would experience a "real-world" environment, and it is within that context that they have 
been evaluated. 
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RESULT3 FROM TIE TWIRD YEAR OF OPERATXON 
OF Tu[E J3EDERAL METKANOL FLEET AT 

ARCDNNE NATIONAL LABORATORY 

B. H. West 
R. N. McGill 

S. L. Hillis 
J. W. Hodgson 

The Federal Methanol Fleet operating at Argonne National Laboratory (ANI,) has 

completed three years of operation with ten M85 (85% methanol, 15% unleaded gasoline) 

fueled vehicles and nine gasoline counterpart vehicles. The vehicles are all 1986 models; ten 

are Chcvrolet SlO pickup trucks, and nine are Ford Crown Victorias. Over 170,OO 

were accumulated on the nincteen vehicles during the year bringing the three-year total to 

ncarly 675,000 miles. Overall fuel economy and energy efficiency for the vehiclcs were very 

similar to previous years, with the energy efficiency of the melhanol vehicles bcing equal to 

that of the gasoline vehicles of the same type. 

Vehiclcs prcviously tested for emissions (one gasoline and two methanol Fords, and 

one gasoline and two methanol Chevrolets) were retestcd at the end of the third year to 

determinc how the emissions control systems may have changed with use and agc. Emissions 

Erom both gasoline vehicles, and both methanol Chcvrolets, increased from last year fix- all 

but the oxides of nitrogen from the gasoline Ford and one methanol Chevvroleh. Emissions 

from one of the methanol Fords stayed the same or decreased from last year, while those 

from the other Ford incrcascd. 

Maintenance data reveals that the frequency of maintenance (occasions of 

maintenance per lo00 miles) has been increasing only slightly for all threc years. "lie 

methanol vehicles continue to requirc more visits to the shop than the gasolinc vehiclcs, but 

not all of the extra visits are fuel related. Maintcnance labor intensity (hours per 1080 miles) 

has increased at greater rates than the frequency, and methanol vehicles require more tinic 

in the shop than the gasoline cars. Again, fuel related maintenance cannot account for the 

differential between the gasoline and methanol vehicles. 
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Oil sample analpes have shown that accumulation rates of iron and lead in the. 

me"taano1 vehiclcs' engine oil rcrnain elevated relative to the asoline vehicles. Higher Bevels 

of lead in the Ghemolets may have been aggravated by the rclcase of lead from plating in the, 

fuel tanks- While a few individual samples have had some uriusually high iron cmtcrt, the 

overall rates of accumulation of metals in the oil are typical of laethanol vehicles. 

Drivers of Fcderal Metlianol Fleet vehicles fill out a trip log in which they rate thc  

vehicka' pzrfornnanee, The percentage of "Good" rcspoiises far "Eas:: of Starting," and 

"Driveability" did not change much fmm last year for all vehicle types, except in ths case of 

thc methanol Chevrolets, where some decline was evidcot in the poDrivcabi~ityto ratings. In 

general, the gasoline vehicles maintain a slight advantage: ovcr the methanol velaicirs. 



3 

Argonne National Laboratory (ANL) has operated nineteen vehicles for over three 

years for the Department of Energy's Federal Methanol Fleet Project; ten of the vehicles arc 

methanol-powered and nine are comparable gasoline vehicles. The Oak R 
Laboratory (BRNL) has project management responsibility for the entire 

Project including activities at AFJL and, as such, collects and ~ ~ ~ e ~ ~ ~ ~ t ~ ~  data and 

information related to the operation of the project. Because much of the project's back- 

ground and the ANL fleet has been described in previous reports,'-''* it will not be discussed 

again at any length in this report; the reader is encouraged to refer to the earlier reports for 

those details. This report will deal primarily with the results and data from the t 

operation and the comparison of those data with the similar results from previous years.ls2 

Vehicles in the project at ANI, include ten 19% Chevrolct S-10 pickup trucks 

(5 methanol and 5 gasoline) and nine 1986 Ford Crown Victoria Sedans (5 methanol and 

4 gasoline). Methanol conversions were made by Alcohol Energy Systems, Inc, and include 

special provisions for cold-starting in the Illinois climate where ANL is located. On the 

Chevrolets, a separate gasoline fuel system is automatically engaged during cold wealher to 

start the engine and provide about 30 seconds of running before automatically switching to 

the methanol fuel system. The Fords had incorporated a proprietary system developed by 

Ford which used only the methanol fuel mixture. 

encountered this year, however, and the systems wcre disconnccted in the late spring of 1989. 

The methanol fuel mixture at ANIJ is nominally M85 (85% methanol and 15% rcgular 

unleaded gasoline), and the gasoline portion is tailored to the extent possiblc throughout the 

year to try to maintain favorable vapor pressure for cold-starting. An underground tank and. 

associated dispensing pump are used on-site at L for dispensing fuel into thc ~~~~~n~~ 

vehicles. This is the only place that they can be refuel 

Problems with this syste 

The Fords are used by the security department at ANE and are ~~~~~t~ as police 

cars. They are used around the clock every day of the week, and typical driving patterns 

include considerable engine idling timc and short trips. eir use is confined, far the most 

*Superscripled numbers denote rckrences at the end of the re 
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part, to the ANL site, The Chevrolet trucks are used by ANL maintenance personnel for 

transportation around the site to various job locations. They are used typically only during 

one shift per day and are also generally eonfined to the AWL site, which has a total of eleven 

A small amount of data including the drivers’ ratings of the vehicles’ ease of starting 

and driveability is recorded for each trip. Fueling and maintenance data are kept by the 

motor pool personnel. The lubricating oil is sampled in each vehicle on a nominal lo00 mile 

interval and sent to a laboratory whcrc it is analyzed for wear metal content, fuel dilution, 

base number, etc. All data from the methanol fleet project at ANL are forwarded to the 

ORNL project management office where the Federal Methanol Heet database is maintained. 



5 

3.1 F U E T  UTILIZATION AND FUEL CONSUMPTION 

Tables 1, 2, and 3 summarize the fleet utilization (mileage accumulation) and fuel 

consumption results for the Chevrolet S-10 pickup trucks. Table 1 shows, for the third year 

of operation, figures for total miles driven, average miles per trip, and fuel economy (on both 

volume and energy bases) for individual vehicles as well as aggregate totals for each fuel type. 

Table 2 gives the same information for the entire three years of operation, and Table 3 

summarizes the aggregate totals for each individual year as well as all three years. Tables 4, 

Table 1. Eleet utilization data 
Third Year - January 1, 1989 to December 31, 1989 

Chevrolet S-10 Pickup Trucks 

Fuel Ikonomy 
Average 

Vehicle ID Total miles mileshrir, mpg 

ME-StN 
ME-562 
ME-564 
ME-566 
ME-568 
TOTAL 

ME-561 
ME-563 
ME-565 
ME-567 
ME-569 
TOTAL 

Methanol vehicles 

3,827 15 
594 17 
7 3  32 
3,395 1 

1 11,437 - 
17’ 

Gasoliae vehides 

4,286 6 
7,717 29 
4 12 

12,367 16 
6,720 

35,186 
I_ 27 
15h 

9.8 228 
10.5 245 
9.2 215 
7.1 164 

205 8.8 
9. 211b 

_II - 

18.2 241 
17.0 225 
15.6 206 
15.7 221 
14.7 ~ 194 
16Ab 216’ 

“Based on methanol heating value of 56,560 Btu/gal and 
gasoline heating value of 115,400 Blu/gal: hence, MS5 heating value 
equals 65,386 Btu/gal. 

’Based on total quantities, not an average of individual 
averages. 
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Table 2. Fleet utilization data 
Three Years Through DeGember 31, 1989 

Chevrolet S-10 Pickup Trucks 

Fuel Economy 

Vehicle ID Total miles miles/trip W% krn/GJa 
Average 

ME-560 
ME-562 
ME-564 
ME-566 
ME-568 
TOTAI, 

ME-561 
ME-563 
ME-565 
ME-56'7 
ME-569 
TOTAL 

Methaml vehicles 

24,190 16 
16,340 19 
21,685 29 
15,726 23 
27,653 

105,594 
12 
1P 
_I_ 

Gasolhe vehicles 

22,667 9 
24,781 3Q 
26,834 18 
20,912 14 

25 22,362 __I 

117,556 

9.6 
9.5 
9.5 
8.0 
9.3 
9.Zh 

17.3 
17.1 
17.0 
16.3 
15.8 
15.7' 
-_I 

225 
222 
221 
187 

~ 216 
215b 

229 
227 
225 
216 
209 
221' 
- 

'Rased on methanol heating value of 56,560 Btu/gal and 
gasoline heating value of 115,400 Btu/gal: hence, M85 heating value 
equals 65,386 Btu/gal. 

bBased on total quantities, not an average of individual 
averages. 

5, and 6 show similar information for the Ford Crown Victorias. Note that the aggregate 

totals for the gasoline Fords are for four vehicles, not five. 

Over 170,OOO miles were accumulated on the nineteen fleet vehicles during the third 

year, with the Fords accounting for more than 661 percent of the total. Over the three years, 

nearly 675,080 miles have been accumulated. Average trip length for all four car types was 
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Table 3. Fleet utilization data 
Sumrnaty of Three Years 

Chevrolet S-10 Pickup Trucks 

Fuel Economy 

Total miles miles/tripb m ~ g b  km/CJ"'b 
Average 

1st yr 
2nd yr 
3rd yr 

All 3 yrs 

1st yr 
2nd yr 
3rd yr 

All3yrs 

Methanol vehicles 

43,035 16 
30,550 19 
32,009 17 

105,594 17 

Gasoline vehicles 

46,426 16 
35,944 18 
35,186 15 

117,556 16 

9.6 224 
9.0 21 1 
9.0 211 

9.2 215 

16.9 219 
17.2 227 
16.4 216 

1.6.7 221 

'Based on methanol heating value of 56,560 Btu/gal and 
gasoline heating value of 115,400 Btu/gal: hence, M85 heating value 
cquals 65,386 Btu/gal. 

bBased on total quantities, not an average of individual 
averages. 

about the same as last year, although the Fords' trip lengths were longer last year than the 

first year. It is not likely that the Fords' scrvicc changed drastically from the first to the 

second year, as the fuel economy has held relatively constant, so the change in average trip 

length is probably due to drivers filling out the trip log less frequently. The Chevrolets have 

also shown little change in fuel economy and energy efficiency over the three years. 
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Table 4. Heet utilization data 
Third Year - January 1, 1989 to December 31, 1989 

Ford Crown Victorias 

Fuel Economy 

Vehicle ID Total miles miles/trip mPg WGJ" 
Avcrage 

ME-570 
ME-572 
ME-574 
ME-576 
ME-578 
TOTAL 

ME-5'71 
ME-573 
ME-575 
ME-579 
TOTAX, 

Methanol vehicles 

14,756 32 
11,309 24 
14,115 30 
9,432 27 

13,422 28.- 
63,034 2%' 

Gasoline vehicles 

12,681 31 
8,383 29 

14,625 28 
7,125 39 

42,734 3 7  

6.3 146 
6.2 144 
6.2 144 
6.1 142 
- 5.9 __ 137 
6.1' 143' 

10.1 134 
9.9 13 1 

10.6 140 
- 11.5 .I_ 152 
10.4' 138' 

"Based on methanol heating value of 56,5 
gasoline heating value of 115,400 Btulgal: hence, M85 heating value 
equals 65,386 Btu/gal. 

'Based QII total quantities, not an average of individual 
averages. 
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Table 5. Fleet utilization data 
Three Years - Through December 31, 1989 

Ford Crown Victorias 

Fuel Economy 

Vehicle ID Total miles miles/trip ~ P S  h /GJ"  
Average 

ME-570 
ME-572 
ME-574 
ME-576 
ME-578 
TOTAL 

ME-57 1 
ME-573 
ME-575 
ME-577 
TOTAL 

Mefhand vehicles 

46,693 18 
53,886 15 
5 1,078 17 
38,630 16 

17 46,052 I_ 

236,338 17' 

Gasoline vehicles 

47,6111 15 
61,277 14 
46,526 14 
59,090 I_ 16 

214,504 15' 

6.4 150 
6.3 3 4 6  
6.3 146 
5.9 139 
- 5.8 - 136 
6.2' 144b 

10.2 135 
10.3 137 
10.3 137 
11.0 - 145 
10.5' 138' 

"Based on methanol heating value of 56,560 Btu/gal and 
gasoline heating value of 115,400 Btu/gal: hence, M85 heating value 
equals 65,386 Btu/gal. 

'Based on total quantities, not an average of individual 
averages. 
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Table. 6. fleet utilization data 
Summary of Three Years 

Ford Crown Victorias 

1st yr 

3rd 
2nd yr 

All 3 yrs 

A11 3 yrs 

Mefhanol vehicles 

97,389 11 
75,915 28 
63,034 28 

236,338 17 

Gnsslim vehicles 

114,4% 11 
57,274 25 
42,734 30 

214,584 15 

6.2 
6.2 
6.1 

6.2 

10.5 
10.5 
10.4 

10.5 

145 
145 
143 

144 

139 
139 
138 

138 

aBa~ed on methanol heating value of 56,580 Btu/gal and 
gasoline beating value of 115,481) Btu/gal: hence, M85 heating value 
equals 65,386 Rtu/gal. 

'Based on total quantities, not an average of individual 
avcragcs. 

All of the vehicles at ANL were testcd for emissions on gasolinc prior to conversion 

to methand, and on methanol fuel immediately after conversion. Results of the initial tests 

(round 1) on aZI ten nmcthanol vehicles can be found tabulated in a previous report.' Six of 

the vehiclcs (one gasoline and two methanol Chevrolets, and one gasoline and two methanol 

FOP&) werc rctested during the second year and again this year to see l i ~ ~  emissions may 

have changed with use and age. Results from the most recent tcsting (round 3) are compared 

with thc other emissions tests (rounds 1 and 2) in this section. 

'I'bc most recent emissions tests werc conducted by the h o c o  Wcsearch Eaboratorics 

in Naperville, Illinois. Unlike the previous tests on the vehicles, the latest round of testing 
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included direct determinations of both methanol and aldehydes in the exhaust. Also, 

duplicate tests were performed on one of each of the methanol vehicles to test for 

repeatability (designated as rounds 3A and 3B). 

Knowing the methanol and formaldehyde levels in the exhaust makes it possible to 

interpret more precisely the output from the hydrocarbon analyzer. Since the typical flame 

ionization detector, FID, used for hydrocarbon determinations responds only partially to 

methanol in the exhaust and has no sensitivity to formaldchyde, its response to the exhaust 

from a methanol vehicle is subject to some interpretation. This has led to the development 

of several different protocols for dealing with the F'XD output and to thc use of various 

terminologies for reporting the results. Unfortunately, there does not seem to be a consensus 

regarding terminology and the same term is sometimes used for different computed results. 

In particular, there are at least three different quantities that are referred to as "total 

hydrocarbons" or "hydrocarbons" by different laboratories. The following terminology is used 

in this report: 

Nonaygenated Hydrocarbons (NOHC): Hydrocarbons in the exhaust that 
do not contain oxygen.* This is the same as "HC' used by the E.P.A. in the 
published procedures'* for computing emissions from methanol-fueled vehicles 
and is assumed to be CH,,,. This has also been termed "total hydrocarbons" 
(THC) by some. 

Organic Material Hydrocarbon Equivalent (OMHCE): This EPA-defined 
quantity takes the NOHC, methanol (MeOH), and formaldehyde (HCOH) in 
the exhaust and lumps them together to give the mass of CHI., that wlould 
contain the same total mass of carbon present in the three substances 
considered. For gasoline-fueled vehicles which produce very little methanol 
and formaldehyde, the OMHCE and the NOHC are virtually the same and 
are the "hydrocarbons" or "unburned hydrocarbons" reported from emission 
tests. The EPA standards for production methanol-fueled vehidcs" will 
require the OMHCE to be no more than 0.41 grams per mile when the 
vehicle is tested over the FfP (Federal Test Procedure) driving cycle. In 
order to compute the OMHCE one must have values for the NOHC, MelDH, 
and HCOH. 

It is, however, common for emissions testing facilities to take the FID output and use 

it directly (with no corrections for methanol response) to report a value for hydrocarbons 

which is olten referred to as "hydrocarbons" or "total hydrocarbons". This approach was used 

*It is acknowledged that the term "non-oxygenated hydrocarbons" may, to some, be 
redundant. Unfortunately, the use of the term 'hydrocarbons" is somctimcs meant to 
(erroneously) include oxygenated hydrocarbons (such as methanol) - thus the adoption of 
the redundancy lor emphasis. 
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by the h o c 0  Research Laboratory in reporting the valucs for the latest rouad (round 3) of 

testing. 

In this report, round 3 emissions t a t  results will be compared to previous results. 

Wile round 3 results inch ed laboratory determinations of methanol, aldehydes, and NOHC, 

the results from rounds 1 and 2 did not, so the "ORNL Protocol"' was developed so that the 

OMMCE could bc estimated. Basically, this protocol assumes that the relative mole fractions 

of methanol and NBKC in the exhaust are the same as the relative mole fractions of 

~e~~~~~~ and gasoline in the M85 fuel. It then uses the FIf) methanol responsc factor to 

compute values for a e metkanol and NOHC concentrations in the exhaust. The results are 

used to calculate OMMCE. It is important to note that the protocol has no effect on 

the reported values of CO and NO, The QRNP, Protocol has been used in calculating the 

OMHCE mcd in generating figures in which rounds 1, 2, and 3 arc compared. Appendix A 

also ccraa~pases the accuracy of the ORNL Protocol to the EPA Protocol, which uses the 

laboratmy determinations of methanol and aldehydes. 

Since there is no ambiguity regarding the hydrocarbon emission results when gasoline 

is the vehidc fuel, comparisons among the three rounds of testing involving the gasaline- 

fueled ve'micks are straight-forward. The figures and tables presented herein will refer only 

to OMHCE for consistency, however, as stated above, this i s  the same as "HC" 

(hydrscarbo~s) for the gasoline vehiclles. 

The OMHCE emissions of the Ghevrokts arc shown in Fig. 1. Note that the 

OMHCE emissions of the gasoline vehjcle (565) increased slightly in round 2 and nearly 

doubled in round 3. The OMHCE emissions of the methanol vchicles (562 and 568) also 

increased in round 2, but decreascd in round 3. 

The Chevmlets' CO (carbon onoddc) emissions, shown in Fig. 2, follow trends 

similar to thc OMHCE cmissions in Fig. l7 with the gasoline vehicle's cmissions increasing 

each round, and the methalid vehicles' emissions increasing in round 2 and decreasing in 

round 3, 

The Chewoleas' crnissisxns of NO, (oxides of nitrogen, NO and NO,) are presented 

in Fig. 3. I11c gasoline Chevrolet's NO, emissions nearly doubled in round 2 but stabilized 

at a level near that of methanol vehicle 562. Methanol vehicle 5 shows increases in NO, 

emissions each year, doubling in round 2, and lincscasing only slightly in round 3. 
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Fig. 1. OMHCE emissions from the Federal Test Procedure for Chevrolet SI0 Pickup 
Trucks. 
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Fig. 2. CO emissions from the Federal Test Procedure for Chevrolet SI0 Pickup 
Trucks. 
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Fig. 3. NO, emissions from the Federal Test Procedure for Cbevrolct S10 Pickup 
Truck.. 

The emissions data for the Fords are shown in Figs. 4-6. Note in Fig. 4 that the 

gasoline Ford (575) had higher OMHCE emissions each year, as did methanol Ford 574, 
while the other methanol Ford (572) increased only in round 2 testing. The Fords’ CO 

emissions in Fig. 5 mimic their OMHCE emissions, as did the Chevrolets. 

‘Ihe NO, emissions of the gasoline Ford increased substantially from the first to the 

second round, but decreased in the third to a median value, as shown in Fig. 6. Methanol 

vekiclc 5’92’s NO, emissions were highest in round 2, while vehicle 574’s increased steadily 

each year. 

The third round of testing showed an increase in CO for both s f  the gasoline vehicles 

and, correspondingly, an increase in the OMWCE. The reason for the increased CO is not 

known. The NO, for gasoline vehicle 575 showed a decrease which could, in past, be 

attributable to a possible fusel enrichment reflected by the higher CO values, although the 

same thing cannot be said for gasoline vehicle 565 which showed an increase in NO, with an 

increase in CO. 
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Fig. 4. OMHCE emissions from the Federal Test Procedure for Ford Crown 
Victorias. 
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Fig. 5. CO emissions from the Federal Test Procedure for Ford Crown Victorias. 
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Fig. 6. NO, emissions from the Federal Test Procedure for Ford Crown Victorias. 

Shortly after round 3 emissions testing, one methanol Ford (vehicle 572) was returned 

to the testing labs for a "catalyst swap." One of Amom's gasoline powered (1987) Ford 

Crown Victorias was tested first with its own catalyst, and then with the catalyst from 

methanol vehicle 572. Vehicle 572 was likewise tested with the gasoline vehicle's catalyst. 

Result.. of the swapped catalyst emissions tests are shown in Table '7. Note that the methanol 

vehicle's OMHCE emissions were more than cut in half, and the CO emissions reduced to 

about one-third by the gasoline vehicle's catalyst. The formaldehyde emissions were also 

greatly reduced, from around 3 mg/rnile to 60 mg/mile. The formaldehyde emissions of the 

gasoline Ford were unafkctcd by the catalyst swap, although the BMHCE emissions more 

than doubled, and the CO emissions more than tripled. NO, emissions on both vehicles were 

only slightly affectcd, being about 10 percent higher on either vehicle with the methanol 

vehicle's catalyst. 

The data from thc catalyst swap suggest that the methanol vehicle may have degraded 

its catalyst at a higher rate than the gasoline vehicle (although the methanol vehicle had 32% 
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Table 7. Emissions tests results with swapped catalysts 

OMHCE CO NO, HCOH 
ODOMETER 

Vehicle I.D. (miles) (gramdmile) 

Ford Crown Kctorias 

Methanol vehicle, orPinal catalyst 
{re-peated from Table All 

572 53,300 0.63 2.39 0.45 0.312 
53,300 0.66 2.35 0.43 0.299 

Methanoi vehicle. gasoline catalvst 

572 58,400 0.27 0.76 0.37 0.060 

Gasoline vehicle, oridnal catalvst 

Amoco vehicle 40,200 0.40 1.34 0.89 0.021 
40,200 0.38 1.39 0.90 0.022 

Gasoline vehicle, methanol catalvt 

Amoco vehicle 40,800 0.91 4.12 0.97 0.021 

more miles on it at its initial round 3 test). Catalytic converters common in today’s vehicles 

have been developed for gasoline engines, and it is well known that they can be ”poisoned” 

by metals such as lead. While the gasoline portion of the M85 used at ANL is lead-free, 

there is a possibility that metals such as zinc and phosphorous from engine oil additives may 

have “poisoned” the catalyst. Whether the Cue1 itself is guilty of accelerating catalyst 

degradation on methanol vehicles is not known. Perhaps OEMs are presently dcveloping 

different catalyst materials for methanol vehicles. In the ncar future, efforts Will be made to 

analyze some of the apparently failed catalysts from Federal Mcthanol Fleet Vehicles to 

determine cause(s> of failure. 

For further discussion of emissions test results, the reader is encouraged to refer to 

Appendix A. Tabulated data from which Figs. 1-6 were produced are provided, as well as 

discussion of formaldehyde emissions, possible reasons for high CO levels, and an evaluation 

of the ORNL protocol. 



Stacked bar graphs comparing maintenance of the methanol and gasoline vehicles are 

presented which show the vehicles' maintenance frequency (occasions of maintenance per 

lo00 miles) and intensity (labor hours per 1 0  miles). The sum of "Fuel 

anw. and "All Other'' maintenance includes all occasions for which a service work 

order was mitten, and thus includes occasions of routine maintenance such as oil changes and 

aintenancc in addition to occasions of unusual maintenance, i s .  those occasions that 

are prompted by complaints or malfunctions. 'fie occasions that have been designated as 

"Fuel Related" are those which Rave been identified as being intimately related to and/or 

caused by the nature of the fuel and/or fuel delivery systems, These designations are used 

pt to determine how much of the total difference in rnaintenancc bet 

oline vehicles can be traced to the ~ e t ~ ~ n o ~  fuel or its systems. 

Frequency of maintenance for the psolirae Chevrolets (Fig. 7) and Fords (Fig. 8)  has 

been rcllatively stable for three ycars, while that for the methanol vehicles has increased 

slightly each year. The aintcmance intensity Ear the gasoline Chevrolets has also increased 

only slightly over the three years, while it has more than tripled for the methanol pickups, 

with a steady increase in €ere1 related maintcwance hours. Ttnc maintenance intensity for the 

steadily each year for both the gasoline and methanol vehicles. In all cases, 

the "Fucl Rclateol" maintenance does not accaunt for the greater frequency or intensity of 

maintenance for the methanol cars. 

This suggests that perhaps drivers are mare sensitive to mechanical problems in the. methanol 

vehicles9 and request maintenance on occasions that they might overlook in a gasoline vehicle.. 

Samples of the lubricating oil are drawn from the crankcases of the nineteen vehicles 

at approximately lo00 mile intcrorals. (Oil change interval is every 3000 miles for all of the 

vehicles.) The oil samples are analyzed for total base number, kinematic viscosity, and 

concentrations of iron, Bead, copper, aluminum, chromium, sodium, and silicon. Generally, 

a fleet operator uses information from oil sample analyses as a diagnostic tool for im- 

plementing necessary preventive or corrective maintenance. In this project, however, the 
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Fig. 7. Maintenance frequency and intensity for Chevrolet S10 Pickup Trucks. 

information is not generally used to intervene in the natural processes that are progressing 

in the engines under study. 

Lubricating oil for the methanol vehicles has been supplied by the Lubrizol Corpor- 

ation and is a 1OW-30 multi-grade oil with a proprietary additive dcveloped by Lubrrizol which 

is intended to reduce engine wear and corrosion that may be caused by the methanol fuel. 
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Fig. 8. Maintenance frequency and intensity for Ford Crowii Victorias. 

The gasoline vehicles use standard 1OW-30 multi-grade lubricating oil approved by the 

manufacturers for regular use in their vehicles and stocked routinely by ANL. 
No significant abnormal trends have been observed in either the total base number 

or the kinematic viscosity of the oil of any of the cars for the period of this project. For the 

ANI, vehicles, chromium an sodium $0 not accumulate in the lubricatillg oil in any amounh 
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Methanol Vehicles 

First Second Third 
year year year 

Wear Metal 

that would warrant further attention here. 

lubricating oil contamination in both methanol vehicles and gasoline vehicles. 

Iron is usually the largest contributor to 

Results are presented in Tables 8 and 9 for accumulation rates of metals (iron, lead, 

and copper) in the lubricating oil for each of the three years for each vehicle type. Accumul- 

ation rates are found by (1) fitting linear regression.. (least squares curve-fits) to data of wear 

metals concentration as a function of distance since oil change, and (2) determining the slopes 

(accumulation rates) of the regressions. For the methanol Chevrolets, shown in Table 8, the 

accumulation rate of iron and lead increased in the second year, and decreased in the third. 

The increase in lead may have been caused by some degradation of the fuel tanks. These 

vehicles were supplied with fuel tanks that had an epoxy coating over the original terneplate 

Gasoline Vehicles 

First Second Third 
year year year 

Table 8. Wear metals accumulation rates 

Wear Metal Methanol Vehicles 

Chevrolet S-10 Pickup Trucks 

Gasoline Vehicles 

First Second Third 
year year year 

Table 9. Wear metals accumulation rates 

Ford Crown Victorias 

First Second Third 
year year year 

ppm per loo0 miles 
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(which contains icad), and the epoxy was thought to he resistant to mctbanol. However, 

evidence of dcterioration of the epoxy coating appeared during the second year. This would 

te exposed to attack by the methanol and would probably release quantities 

1, then into the engine, and ultimately into the crankcase oil. The increase 

in iron a ~ ~ ~ ~ ~ a t i o ~  rate may also be related to epoxy dcgradation if enough plating has been 

removed from the inside tank surfaces to reveal the stecl surface. If the increased iron is not 

from the fuel tanks? it most likely is from cylinder walls andlor piston rings. One fuel tank 

was rcplamd during the second year, and four tanks were replaced in the third year with 

replamments supplied by General Motors. One of the vehicles has had its tank changed 

twice, and one vehicle still ips its original tank (from the initial Conversion). 

Tke methanol Fords exhibited a slig t increase in accumulation rate of iron in the 

second year, and a ccrease in the third as shown in Table 9. The accumulation rate of iron 

in thc gasoline Fords doubled from last year, matching that of the methanol Fords. Rates 

of accutnulation of lead and copper in thc Fords have been nominal for a11 three years. 

Tables 8 and 9 use an entire year of data for the linear regressions. Similar 

regressions were also performed on data from each season to investigate any wcather-related 

trends that might exist. The results for the Chevrolets are shown in Figs. 9 and 10 for iron 

and lead accumulation rates, respectively; and Fig. 11 shows the iron accumulation ratcs in 

the Fords. Note that the metal accumulation rates fluctuate seasonally, with the iron rate in 

the methanol Chewolets being highest in the winters of the first and second years and the 

spring of the second ycar. The gasoline Chevrolets exhibited higher than average iron 

accumulation rates in the spring and summer of the first year, and in the wintcr of the 

third year. The lead accumulation rates in the met anol Chevrslcts were highest in the 

winters of the first and second years, and the spring of the third, while that of the gasoline 

vehides was unusually high only in the spring of the third year. 

l%e methanol Fords exhibitcd high iron accumulation rates in thc wintcr of the first 

year, and thc summer of ehe third. 'l'hc gasoline Fords showed largely nominal accumulation 

r a t a  of iron except for ira~reases in the nter of the sewn year and spring of the third. 

Reasons for tlicsc fluctuations are not entirely clear, although cold weather is  believed 

to play a role in accelerated engine wear, especially whcn mupled with short trip driving. Hot 

weather can also accelerate engine wear when combined with high load seav i~e , '~ '~  This may 



23 

ORNL-DWG OOC-3708 ETD 

180 

160 

140 

120 

100 - 
u) - Q1 80 
E 
0 
0 60 

5 40 

.- 

9 
\ 

P 

w 
t- 
Q a 

- 

METHANOL CHEVROLETS 5 VEHICLE AVERAGES 
I 

z 
I- 
0 

z” GASOLINE CHEVRQLETS 

V 
Q 

4 
2 80 

z 80 z 
40 

20 

0 
1st YEAR 2nd YEAR 3rd YEAR 

lE2zzl EzzZizB cszxJ l?zzzzl 

Fig. 9. Iron accumulation rate as a function of season for Chevrolet SI0 Pickup 

SPRING SUMMER FALL WINTER 

Trucks. 

partially account for some of the high iron and lead accumulation rates evident in Figs. 9, 10, 

and 11. 

Note that the linear regressions performed for each individual season used as few as 

4 (only one case) and as many as 41 data points (the average numbers were 12 for the 

Chevrolets, and 22 for the Fords). The reader should also note that the possibility certainly 
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Fig. 10. Lead accumulation rate as a function of season for Chevrolet S10 Pickup 
Trucks. 

exists that oil samples can be drawn (and analyzed) during a season subsequent to the season 

in which the metal accumulation actually occurred. Also, driving style can contribute to or 

nullify the effects of weather oil engine wear. Hence, the seasonal metals accumulation data 

represent trends and sene only to suggest that engine wear i s  affected by ambient 

tcmperature. 
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Fig. 11. Iron accumulation rate as a function of season for Ford Crown Victorias. 

35 DRNERS' PERCEPTIONS OF VEHICLE P E R F O W a  

35.1 A 
Drivers at ANL evaluate the vehicle's ease of starting and driveability at the end of 

each trip by making a check mark under either "Good", "Average", or "Poor" on the trip log 
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for bc9ilh "Ease of Starting" and "Drivcability". This simple process yieX a profile of the 

drivers' general impressions of the cars' performance. and how their impression may change 

over time. 

In the third year 4335 trips were recorded in the Chevrolets (1928 methanol and 2407 

gasoline) and 3633 trips in the Fords (2226 methanol and 14 7 gasoline). For the three years, 

this brings the totals to 13,637 recorded trips in the Cbevrolets and 28,695 for the Fords. 

Results sf drivers' ratings during the three years are. shown in Figs. 12-15, and are 

tabulatd in Appendix . Figures 12 and 14 show the percentages of "good," "average," and 
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Fig. 12. Driver ratings of ease of starting for Chevrolet S10 Pickup Truck. 
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Fig. 13. Driver ratings of driveability for Chevrolet S10 Pickup Truc:k 

"poor" responses for ease of starting for the Chevrolets and Fords, respectively, while Figs. 13 

and 15 show the driveability responses. Note in Fig. 12 that the number of good responses 

for ease of starting of the methanol Chevrolets has declined only a lew percent over the three 

years. The percentage of good ratings for the gasoline Chevrolets declined slightly last year, 

and rebounded slightly this year to maintain a small advantage over their methanol 

counterparts. In Fig. 13 it can be noted that the number of good driveability ratings for the 

gasoline Chevrolets decreased in the second year and held relatively constant, while that of 

the methanol Chevrolets increased in the second year only to decrease in the third. 
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Fig. 14. Driver ratings of ease of starting for Ford Crown Victorias. 

In Figs. 14 and 15, the data suggest that drivers' perceptions of the ease of starting 

and driveability of the Ford Crown Victorias declined in the second year. The number of 

good responses declined drastically for both vehicle types in the second year, and held 

relatively constant or rebounded slightly in the third. Reasons for these fluctuations are not 

clear, however it seems that drivers are satisfied with both the gasoline and the methanol 

and Chcmolets), rating their ease of starting and driveability as good or 

average over 90 percent of the time in most cases. 
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Fig. 15. Driver ratings of driveability for Ford Crown Victorias. 

3-5.2 Variation of Ratin. with Ambient Temperature 

As well as providing opinions of ease of starting and driveability, drivers at ANL also 

provide an estimate of ambient temperature for each trip logged in any of the vehicles. 

Three ranges of temperatures are indicated on the trip log, and drivers check the one that 

fits their estimate. Ranges are: Greater than 4O”F, 6 to 40°F, and 5°F or less. Using this 

simple system, it can be determined how the drivers’ ratings of ease of starting and driveability 

may be affected by the ambient temperature. The drivers’ ratings as a function of their 



estimates of ambient temperature for the last three years are sfno in Figs. 16-19, and 

tabulated in Appendix B. Table 10 shs the frcquency of temperatures as estimated by the 

drivers. The ease of starting results are in Fig. 16 for the Chevrolets, and Fig. 18 for the 

Fords. The drivcability results are in Figs. 17 and 13 for C h e ~ d c t s  and Fords, respectively. 

Note in Fig. 16 that drivers have rated the easc of starting of both methanol and gasoline 

Ctnevrolets as goad QVCX 70 percent of the time, regardless of the temperature. "This suggests 
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Fig. 16. Driver ratings of ease of starting for Chevrolet S10 Pickup Trucks as a 
function of estimated ambient temperature. 
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Fig. 17. Driver ratings of driveability for Chevrolet S10 Pickup Trucks as a function 
of estimated ambient temperature. 

that the gasoline cold start systems on the methanol vehicles were performing satisfactorily. 

The number of good responses does not necessarily increase with increasing ambient 

temperature, as one might expect, but as shown in Table 10, the frequency of temperatures 

below 5°F is small, and again, the methanol Chevrolets have a gasoline cold start system. In 

Fig. 17 it appears that many more drivers rated the driveability of the methanol Chevrolets 

as average or poor when the weather was cold in 1987. Also, a sizeable number of drivers 
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Fig. 18. Driver ratings of easc of startitig for Ford Crown Victorias as a function of 
estimated anibieet temperature. 

gave average responses in the warmer weather of 1889. Except for these occurrences, the 

number of good responses i s  ovewkclmimgly high. 

The decline in good responses for the Fords which was evident for the second year 

in Figs. 14 and 15, i s  also quite evident in Figs. 18 and 19. Note in Fig. 18 the high 

percentage of good ease of starting responses in 1987, especially during cold weather. Both 
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Fig. 19. Driver ratings of driveability for Ford Crown Victorias as a function of 
estimated ambient temperature. 

vehicle types suffered a decline in number of good ratings from 1987 to 1988, and both have 

the highest number of good responses in the warmer weather for 1988 and 1989. The 

response to driveability in Fig. 19 shows increasing numbers of good responses with increasing 

temperature for the gasoline Fords in 1988 and 1989. The good responses have been o&et 

almost entirely by average responses, for both ease of starting and driveability. 
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Table 10. Drivers' estimates of temperatures 

Greater than 40°F 640°F 5°F or less 

1st year 62 35 3 
2nd year 55 40 5 
3rd year 61 38 1 

While the drivers' ratings do vary with the apparent ambient temperature, the data 

do not entirely indicate that colder weather produces more difficult starting or worse 

driveability. The fact that the vehicles have cold start systems (except for the Fords in the 

latter half of 1989) certainly has the potential. to alter any expected trends. To further 

examine how drivers' opinions of the vehicles' ease of starting change with weather, the data 

have bcen viewed in yet another way. The first rating of ease of starting each day has been 

extracted from the rest of the, data, assuming that the first start of each day would be with a 

e (as the vehicle has had several hours of "soaking" at the ambient temperature). 

This, of course, may not always be true for the Fords, which experience a large amount of 

around-the-clock use. Numbers were assignkd to ratings of good, average, and poor, so that 

numerical averages could be calculated to generate Figs. 20 and 21. Figure 20 shows the 

monthly average of the first daily rating of ease of starting, for the Chevrolcts. For methanol 

vehicles with no cold start systcm, one would expect to see the highest ratings in the warmer 

months, and lower ratings in colder months. Note that except for a dip in the fall of 1989 for 

the methanol Chevrolets, the curves are all relatively flat and ratings are generally good. A 
similar curve for the methanol Buiclrs at ORNL," which have no cold start system, was more 

"classically" shaped, trailing off to average and poor in the cooler months, as expected. 

Figure 21 shows the first start data for the Fords. Note that in 1987 both vehicle 

types were rated good until late sunmedearly fall, when the methanol vehicles' ratings began 

to declinc. The data for 1988 and 1989 show the general decline in driver ratings for both 

vehicle types, which was discussed previously. The bottom two curves are for the methanol 

vehicles in 1988 and 1989. Note the dip to average in the fallhinter for both of these curves. 

It is interesting to note that the 1989 data does not seem to indicate any lesser degrce of 

driver satisfaction than 1988, even though the cold-start systems were not in operation in the 

latter half of 1989. As mentioned above, the Fords are securiv vehicles and are used around 

the clock, so the possi ility certainly exists that on many of the "first" starts of a calendar day, 
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the vehicle may not have been "cold." Also, the vehicles are equipped with electric block 

heaters. There is no data on when the heaters are used, but it is likely that they are used in 

very cold weather. 

The data presentcd suggest that successful cold start systems can be engineered to 

provide reliable starting for methanol vehicles. While the drivers' ratings of the gasoline 

vehicles is generally a little higher than that of the methanol vehicles, the methanol vehicles' 

ratings are nonetheless acceptable. The cold start systems on the ANL vehicles can be 

thought of as "first generation" systems. Original equipment manufacturers are doing research 

in the area of cold start for methanol (or flex fuel) vehicles, and it is likely that systems 

available on OEM cars will be as reliable as the gasoline vehicle5 to which the consumer has 

grown accustomed. 
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FURTHER DISCUSSION OF EMISSIONS TESTING 

The data from which Figs. 1-6 were generated are summarized in Table A.1. Shown 

are vehicle mileage at each test, and OMHCE, CO, and NO, emissions in gramslmile, as well 

as aldehyde emissions (HCOH) for the most recent tests. Tests with duplicate mileage 

indicate a repeat of the test (rounds 3A and 3B). 

Table kl. Summary of emissions tests results 

OMHCE" CO NO, HCOH 
Vehicle Odometer 

I.D. Round (miles) (gramshile) 

Gasoline 
565 

Methanol 
562 

568 

Gasoline 
575 

Methanol 
572 

574 

1 
2 
3 

1 
2 
3A 
3B 

1 
2 
3 

1 
2 
3 

1 
2 
3A 
3B 

1 
2 
3 

Chevrolet SI Os 

14 0.18 0.32 0.24 nmb 
10,400 0.21 1.93 0.51 nrn 
27,300 0.39 2.71 0.55 0.011 

381 0.16 0.74 0.51 nm 
7,600 0.72 8.27 0.67 nun 

17,9cK) 0.32 6.30 0.53 0.065 
17,900 0.34 6.27 0.60 0.059 

288 0.25 1.39 0.43 nrn 
8,700 0.44 6.36 0.85 nrn 

29,600 0.38 5.59 1.02 0.071 

Ford Crown Victorias 

85 0.20 0.40 0.43 nm 
23,400 0.67 0.77 1.07 nrn 
48,600 0.81 3.09 0.73 0.009 

793 0.18 0.76 0.62 nm 
32,800 0.70 2.23 0.79 nm 
53,300 0.63 2.39 0.45 0.312 
53,300 0.66 2.35 0.43 0.299 

418 0.23 1.44 0.63 nm 
26,900 0.65 3.16 0.71 nm 
53,800 2.46 9.36 0.84 0.522 

"By ORNL Protocol 

'Not measured 
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The highest emissions appear to be the CO emissions from methanol Chevrolets 562 

and 568; and, in the last round of testing, from methanol Ford 574. These relatively high CO 

emissions are accompanied by high OMHCE emissions in vehicles 562 and 574. No 

explanation for this result is available at this time, although some insight can be gained from 

examining the results from the various phases (bags) during the test. Table A 2  shows the 

CO mass emitted during the three test phases from each of the vehicles during the last two 

rounds of testing. Note in Table A 2  that there is clearly a problem with the fueling of 

vehicles 562 and 568 during the cold transient portion of the test, as their bag 1 CO emissions 

are about three times that of the other vehicles, while their bags 2 and 3 appear more 

reasonable. It is probable that whatevcr causcd these high emissions i s  the same problem that 

Table k 2 .  Vehicle CO emissions by test phase (grams) 

Test Phase 

Chevrolet SI Os 

Gasoline 
565 2 15.5 3.8 7.1 

3 22.0 6.4 8.3 

562 2 118 6.10 9.10 
3A 96-3 3.30 4.83 
3B 92.8 3.56 6.29 

568 2 64.0 10.6 16.8 
3 81.2 4.0 6.01 

Methanol 

Ford Crown Victorins 

Gasoline 
575 2 8.91 0.75 2.07 

3 26.7 6.80 9.26 

Methanol 
572 2 25.8 0.60 8.90 

3A 31.0 1.05 6.25 
3B 31.3 1.20 5.27 

574 2 38.8 1.0 10.7 
3 64.2 26.5 28.2 
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existed during the second round of testing. Vehicle 574 shows high values of CO during fl 
phases of round 3 testing, but did not exhibit this behavior during round 2 testing. Obviously, 

something has changed on this vehicle and caused the high CO emissions during the entire 

FIT cycle in round 3. 

A comparison of formaldehyde levels from the gasoline vehicles with those of the 

methanol vehicles in Table k l  shows the typically higher values associated with methanol 

fuel. The formaldehyde values of about 10 mg/mile are typical of gasoline-fueled vehicles 

equipped with modern emission control systems (three-way catalyst, oxygen sensor feedback 

control). It should be noted, however, that no steps were taken during the conversion 

process to address the formaldehyde emissions. Newer technology has resulted in the 

availability of catalysts formulated especially for methanol-based fuels and these could be very 

effective in reducing formaldehyde emissions to the levels associated with gasoline-fueled 

Results from long-term durability tests, however, are just now becoming 

available. 

The most recent round of testing allowed the computation of emissions more in 

keeping with the EPA protocol." The emissions data supplied by Amoeo Research 

Laboratories were manipulated to yield values for the NOHC and OMHCE as shown in 

Table k 3 .  

Table A3 shows that the FID (flame ionization detector) is measuring mostly 

methanol, and the amounts of non-oxygenated hydrocarbons (NOHC) emitted by these M85- 

fueled engines are, with the exception of vehicle 574, less than those emitted by the gasoline- 

fueled vehicles. Of course, the gasoline-fueled vehicles emit no methanol and significantly 

less formaldehyde than the M85-fueled vehicles. 

The latest data also provide an opportunity to evaluate the effectiveness of the 

"ORNL Protocol" in estimating the OMHCE. Table A4 lists the OMHCE as determined 

from the measured data and from the ORNL Protocol. The agreement is good enough to 

make the comparisons (between rounds) in Table A1 valid. 
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Table A.3. Round 3 methanol vehicle organics emissions 

THC MeOHb NOHC OMHCE' 
Vehicle Odometer 

I.D. (miles) (grams/mile) 

Chevrolet S-1 Os 

562 17,900 0.26 0.55 0.07 0.3 1 
17,900 0.27 0.52 0.09 0.32 

568 29,600 0.3 1 0.42 0.16 0.34 

Ford Crown Victorias 

572 53,300 0.48 1.05 0.12 0.58 
53,300 0.51 1.05 0.15 0.60 

574 53,800 2.07 2.95 1-06 2.33 

"Calculated using FID directly with no methanol corrections. 

bMeasured directly using impingers. 

'Calculated using measured methanol values. 
factor = 0.79. Neglects methanols levels in dilution air. 

FID methanol response 

Table k 4 .  Round 3 comparison of 
OMHCE values 

OMHCE (gmlmile) 
Vehicle 

I.D. (1) (2) (3) 

Chevrolet S-1 Os 

562 0.31 0.32 0.01 
0.32 0.34 0.02 

568 0.34 0.38 0.04 

Ford Crown I/ictonas 

572 0.58 0.63 0.05 
0.60 0.66 0.06 

574 2.33 2.46 0.13 

Notes: (1) Calculated using measured 
methanol values. 

Protocol. 
(2) Calculated using ORNL 

(3) Difference (2)-(1). 
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APPENDIXB 

Data used to generate the bar graphs in Figs. 7-19 is presented here in tabular form. 

Maintenance data for the Chevrolets and Fords is in Tables B.1 and B.2, respectively. The 

metals accumulation rates per season for Figs. 9-11 are given in Tables B.3 and B.4. Driver 

responses for ease of starting and driveability of the Chevrolets are shown for the third year 

in Table B.5, for the second year in Table B.6, and for the first year in Table B.7. Similar 

data for the Fords is given in Tables B.8-B.10. The driver response data as a function of 

Table B.1. Maintenance frequency 
and intensity - Chevrolet S10 

Pickup Trucks 

Frequency (occasions oE 
maintenance per 

loo0 miles) 

First Second Third 
year year year 

All Maintenance 
Methanol 1.7 1.9 2.0 
Gasoline 1.3 1.1 1.3 

Fuel-Related 
Maintenance 

Methanol 0.2 0.3 0.4 
Gasoline 0.0 0.0 0.0 

Intensity (hours of 
maintenance per 

loo0 miles) 

First Second Third 
war  vear year 

All Maintenance 
Methanol 2.0 4.1 7.2 
Gasoline 0.8 0.9 1.3 

Fuel-Related 
Maintenance 

Methanol 0.4 1.4 2.2 
Gasoline 0.0 0.0 2.2 
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drivers’ estimates of ambient temperature is shown in Tables B.11-B.16. Tables B.11-B.13 

provide the data for the Chevrolets for third, second, and first years of operation, respectively. 

Tables €3.14-B.16 provide similar data for the Fords. 

Table B.2. Maintenance frequency 
and intensity - Ford Crown 

Victorias 

Frequency (occasions of 
maintenance per 
lo00 miles) 

First k n d  Third 
year year year 

All Maintenance 
Methanol 1.6 1.7 1.9 
Gasoline 1.4 1.5 1.4 

Fuel-Related 
Maintenance 

Methanol 0.2 0.2 0.2 
Gasoline 0.03 0.02 0.0 

Intensity (hours of 
maintenance per 
lo00 miles) 

First Second Third 
year year year 

Methanol 2.4 3.8 5.9 
Gasoline 2.0 3.1 3.6 

All Maintenance 

Fuel-Related 
Maintenance 

Methanol 0.1 0.3 0.7 
Gasoline 0.05 0.1 0.0 
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Season Iron 
1987 1988 1989 

Table B.3. Metals accumulation rates as a function of season 
- Chevrolet S10 Pickup Trucks 

Lead 

1987 1988 1989 

Spring" 
SummeP 
Fall" 
WinteP 

Spring" 
Summe? 
Fall" 
WinteP 

41 
23 
95 

109 

51 
60 
6 

16 

Methanol Vehkles 

174 35 98 
60 60 134 
38 49 125 

116 27 156 

Gasoline Vehicles 

23 27 16 
18 24 17 
20 14 14 

3 4 8  23 

123 153 
132 92 

43 54 
155 77 

29 72 
23 6 
27 3 
4 10 

"March 16 through June 15. 
bJune 16 through August 15. 

"August 16 through November 15. 

dWinter season for a given year includes 2.5 months of 
subsequent year, except for winter of 1989, which includes only 
partial 1990 data (November 16 through March 15). 
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Table B.4. Iron accumulation rate as 
a function of season - Ford Crown 

Victorias 

Accumulation rate 
( P P d 1 0  mi) 

Season 
Iron 

1987 1988 1989 

Methanol Vehicles 

Spring" 40 65 
SummeP 55 27 
Fall" M) 50 
WinteP 120 72 

Gasoline Vehicles 

Spring 8 17 
SummeP 11 21 
Fall' 6 9 
WinteP 9 34 

56 
93 
17 
47 

55 
16 
12 
0 

'March 16 through June 15. 

'June 16 through August 15. 

"August 16 through November 
15. 

9 h n t e r  season €or a given year 
includes 2.5 months of subsequent 
year, except for winter of 1989, which 
includes only partial 1990 data 
(November 16 through March 15). 
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Table B.5. Driver responses from daily trip logs. 
Third Year - January 1, 1989 to December 31, 1989 

Chevrolet S-10 Pickup Trucks 

Good Average Poor No Response 

Number of Responses 

Ease of Starting 
Methanol 1532 338 47 11 
Gasoline 2089 302 5 11 

Percent of Total 

Methanol 79 18 2 1 
Gasoline 87 13 0" 0" 

Numbers of Responses 

Driveabilitv 
Methanol 1222 603 90 13 
Gasoline 2004 385 0 18 

Petrent of Total 

Methanol 63 . 31 5 1 
Gasoline 83 16 0" 1 

"Less than 0.5%. 
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Table B.6. Driver responses from daily trip logs. 
Second Year - January 1, 1989 to December 31, 1989 

Chevrolet S-10 Pickup Trucks 

Responses 

Good Average Poor No Response 

Ease of Starting 
Methanol 
Gasoline 

Mcthanol 
Gasoline 

Driveability 
Methanol 
Gasoline 

Methanol 
Gasoline 

Number of Responses 

1366 158 45 
1697 294 4 

Percent of Total 

86 10 3 
85 15 0 

Numbers of Responses 

133 1 213 27 
1625 362 4 

Percent of Total 

84 13 2 
81 18 0 

11 
7 

1 
0 

9 
11 

1 
1 
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Table B.7. Driver responses from daily trip logs. 
First Year - January 1, 1989 to December 31, 1989 

Chevrolet S-10 Pickup Trucks 

ReSpOnSeS 

Good Average Poor No Response 

Number of Responses 

Ease of Starting 
Methanol 
Gasoline 

Methanol 
Gasoline 

Driveability 
Methanol 
Gasoline 

Methanol 
Gasoline 

2360 301 36 
2803 135 25 

Percent of Total 

87 11 1 
93 4 1 

Numbers of Responses 

2060 517 99 
2788 135 25 

Percent of Total 

76 19 4 
92 6 0 

19 
41 

1 
2 

40 
56 

1 
2 
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Table B.8. Driver responses from daily trip logs. 
Third Year - January 1, 1989 to December 31, 1989 

Ford Crown Victorias 

Responses 

Goad Average Poor No Response 

Number of Responses 

Ease of Starting 
Methanol 5% 1532 86 12 
Gasoline 590 801 3 13 

Percent of Total 

Methanolb 27 69 4 1 
Gasoline 42 57 0" 1 

Numbers of Responses 

Driveability 
Methanol 540 1523 141 22 
Gasoline 562 828 2 15 

Percent of Total 

Methanolb 24 68 6 1 
Gasoline 40 59 0" 1 

- ~~ 

a L e ~ ~  than 0.5%. 

bPcrcentagcs do not add up to 100% due to rounding. 
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Table B.9. Driver responses from daily trip logs. 
Second Year - January 1,1989 to December 31,1989 

Ford Crown Victorias 

Responses 

Good Average Poor No Response 

Number of Respmes 

Ease of Starting 
Methanol 691 2017 40 12 
Gasoline 822 1480 5 7 

Percent of Total 

Methanol 25 73 2 0 
Gasoline 36 64 0 0 

Numbers of Responses 

Driveabilitv 
Methanol 597 2089 56 18 
Gasoline 782 1505 20 7 

Percent of Total 

Methanol 21 I 76 2 1 
Gasoline 34 65 1 0 
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Table B.10. Driver responses from daily trip logs. 
First Year - January 1, 1989 to December 31, 1989 

Ford Crown Victorias 

Good Average Poor No Response 

Number of Responses 

Ease of Starting 
Methanol 6536 2366 227 60 
Gasoline 9428 1277 32 62 

Percent of Total 

Methanol 71 26 2 1 
Gasoline 87 12 0 1 

Numbers of Responses 

Driveability 
Methanol 5155 3127 825 82 
Gasoline 8997 16% 40 76 

Percent of Total 

Methanol 56 .34 9 1 
Gasoline 83 16 0 1 
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Table B.11. Driver response as a function 
of estimated temperature 

Third Year - January 1, 1989 - December 31, 1989 

Chevrolet S-10 Pickup Trucks 

Number of response (percentage) 

Total 
Good Average Poor Responses 

Ease of starting 

Temperature: Greater than 40°F 
Methanol vehicles 952 (81) 
Gasoline vehicles 1,411 (90) 

Methanol vehicles 554 (78) 
Gasoline vehicles 592 (82) 

Methanol vehicles 24 (92) 
Gasoline vehicles 52 (87) 

Driveability 

Methanol vehicles 760 (65) 
Gasoline vehicles 1,389 (87) 

Methanol vehicles 441 (62) 
Gasoline vehicles 566 (78) 

Temperature: - 6 to 40°F 

Temperature: 5°F or less 

TemDerature: Greater than 40°F 

Temperature: 6 to 40°F 

Temperature: 5°F or less 
Methanol vehicles 20 (77) 
Gasoline vehicles 45 (75) 

195 (17) 
159 (10) 

142 (20) 
128 (18) 

378 (32) 
208 (13) 

222 (31) 
155 (22) 

32 (3) 

2 (0) 
1,179 
1,602 

710 
723 

26 
60 

1,178 
1,597 

709 
72 1 

26 
6c) 



Table B.12. Driver response as a function 
of estimated temperature 

Second Year - January 1, 1989 - December 31, 1989 

Chewolet S-10 Pickup Trucks 

Number oE response (percentage) 

Total 
Good Average Poor Responses 

Temperature: Greatcr than 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 6 to 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 5°F or less 
Methanol vehicles 
Gasoline vehicles 

Temperature: Greater than 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 6 to 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 5°F or less 
Methanol vehicles 
Gasoline vehicles 

Ease of starting 

842 (89) 
1,083 (88) 

481 (84) 
536 (79) 

32 (74) 

Driven bility 

74 (86) 

809 (85) 
1,035 (84) 

475 (83) 
512 (76) 

36 (86) 
75 (88) 

6Q (12) 21 (4) 
139 (21) 0 (0) 

124 (13) 15 (2) 
198 (16) 4 (0) 

947 
1,230 

568 
675 

43 
86 

948 
1,229 

570 
673 

42 
85 
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Table B.13. Driver response as a function 
of estimated temperature 

First Year - January 1,1989 - December 31, 1989 

Chevrolet S-10 Pickup Trucks 

- ~~- ~ 

Number of response (percentage) 

Total 
Good Average Poor Responses 

Ease of starting 

Methanol vehicles 1,462 (87) 192 (11) 23 (1) 1,677 
Gasoline vehicles 1,786 (94) 86 (5 )  20 (1) 1,892 

Temperature: Greater than 40°F 

Temperature: 6 to 40°F 
Methanol vehicles 880 (88) 108 (11) 10 (I) 998 

Methanol vehicles 18 (82) 1(4)  3 (14) 
Gasoline vehicles 16 (94) 1 (6) 0 (0) 

Gasoline vehicles 1,001 (95) 48 (5) 5 (0) 1,054 

22 
17 

Temperature: 5°F or less 

DriveabiZity 

Temperature: Greater than 40°F 
Methanol vehicles 1,312 (78) 297 (18) 63 (4) 1,672 
Gasoline vehicles 1,757 (94) 121 (6) 0 (0) 1,878 

Methanol vehicles 742 (76) 210 (21) 33 (3) 985 
Gasoline vehicles 991 (94) 61 (6) 0 (0) 1,052 

Temperature: 6 to 40°F 

Temperature: 5°F or less 
Methanol vehicles 6 (32) 10 (53) 3 (15) 19 
Gasoline vehicles 17 (100) 0 (0) 0 (0) 17 



Table B.14. Driver response as a function 
of estimated temperature 

Third Year - January 1, 1989 - December 31, 1989 

Ford Crown Victorias 

Number of response (percentage) 

Total 
Good Average Poor Responscs 

Ease of starting 

Methanol vehicles 452 (34) 828 (63) 43 (3) 1,323 
Gasoline vehicles 387 (47) 434 (53) 1 (0) 822 

Temperature: Greater than 40°F 

Temperature: 6 to 40°F 
Methanol vehicles 122 (15) 657 (80) 42 (5) 821 

Methanol vehicles 22 (32) 45 (Mi) 1 (1) 

Gasoline vehicles 180 (37) 310 (63) 2 (0) 492 

68 
72 

Ternrmature: 5°F or less 

Gasoline vehicles 19 (26) 53 (74) 0 (0) 

Drivea bility 

Temperature: Greater than 40°F 
Methanol vehicles 372 (28) 887 (67) 56 (4) 1,315 
Gasoline vehicles 367 (45) 454 (55) 0 (0) 821 

Temperature: 6 to 40°F 
Methanol vehicles 150 (18) 590 (72) 80 (10) 820 
Gasoline vehicles 173 (35) 317 (64) 2 (0) 492 

67 
72 

TemrPerature: 5°F or less 

Methanol vehicles 18 (27) 44 (66) 5 (7) 
Gasoline vehicles 19 (26) 53 (74) 0 (0) 
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Table B.15. Driver response as a €unction 
of estimated temperature 

Second Year - January 1, 1989 - December 31, 1989 

Ford Crown Victorias 

Number of response (percentage) 

Total 
Good Average Poor Responses 

Ease of starting 

Temwrature: Greater than 40°F 
Methanol vehicles 417 (32) 881 (67) 
Gasoline vehicles 512 (43) 690 (57) 

Methanoi vehicles 230 (19) 986 (80) 
Gasoline vehicles 263 (28) 658 (71) 

Methanol vehicles 43 (22) 142 (73) 
Gasoline vehicles 45 (26) 131 (74) 

Temoerature: 6 to 40°F 

Temperature: 5°F or less 

Dnvea bility 

Temwrature: Greater than 40°F 
Methanol vehicles 345 (26) 937 (72) 
Gasoline vehicles 427 (36) 762 (63) 

Methanol vehicles 211 (17) 993 (81) 
Gasoline vehicles 256 (28) 658 (71) 

Methanol vehicles 41 (21) 146 (75) 
Gasoline vehicles 39 (22) 137 (78) 

Temperature: 6 to 40°F 

Temperature: 5°F or less 

1,305 
1,203 

1,235 
925 

194 
1 76 

1,303 
1,202 

1,23 1 
924 

194 
176 
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Table B.16. Driver response a,. a function 
of estimated temperature 

First Year - January 1, 1989 December 31, 1989 

Ford Crown Victorias 

Number of response (percentage) 

Total 
Good Average Poor Responses 

Ease of stamhg 

'&mDerature: Greater than 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 6 to 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 5°F or less 
Methanol vehicles 
Gasoline vehicles 

Temperature: Greater than 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 6 to 40°F 
Methanol vehicles 
Gasoline vehicles 

Temperature: 5°F or less 
Methanol vehicles 
Gasoline vehicles 

4,089 (70) 1,562 (27) 185 (3) 
5,310 (87) 774 (13) 14 (0) 

2,307 (73) 804 (26) 38 (1) 
3,998 (89) 502 (11) 18 (0) 

2,988 (51) 2,234 (39) 601 (10) 
4,948 (81) 1,119 (19) 21 (0) 

2,988 (65) 893 (28) 223 (7) 
3,931 (87) 564 (13) 19 (0) 

5,836 
6,098 

3,149 
4,518 

144 
121 

5,823 
6,088 

3,140 
4,514 

144 
121 
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