
C31HVH011 SWIISAS hW3N3 VIUIWW WWW

ORNL/TM-11938
CESAR-9 1 /32

Engineering Physics and Mathematics Division

PROCEEDINGS OF THE SIXTH
INTERNATIONAL SYMPOSIUM O N

METHODOLOGIES FOR INTELLIGENT
SYSTEMS (POSTER SESSION)

October 16-19, 1991
Charlotte, North Carolina

Karen S. Ha.rber, Editor
Center for Engineering Systems Advanced Research

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, T N 37831-6364

DATE PUBLISHED - September 1991

Sponsors:
UNC-Charlotte
IBhGCharlot te
BRNL/CESAR

Prcpa rd by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
managed by

MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the

U.S. DEPARTMENT OF ENERGY

3 4 4 5 6 0330660 8

Foreword

This volume contains papers which have been selected for the Poster Session at the Sixth
International Symposium on Methodologies for Intelligent Systems - ISMIS'9 1 , held in
Charlotte, North Carolina, October 16-19, 1991. The Symposium was hosted by UNC-Charlotte
and sponsored by IBM-Charlotte, ORNZJCESAR and UNC-Charlotte.

The Organizing Committee has selected the €allowing major areas for ISMIS'9 1:
* Expert Systems
* Intelligent Databases
* Knowledge Representation
* Learning and Adaptive Systems
* Logic for Artificial Lntelligence.

These contributed papers have been selected from 55 full draft papers by the following Program
Committee: A.W. Biemann (Duke), W. Bledsoe (Austin) , J. Calmet (Germany), J. Carbonell
(CMU), B. Chandrasekaran (Ohio State), P.R. Cohen (UM-Amherst), C. Fields (New Mexico
State), B.R. Gaines (Canada), P.E. Hart (Syntelligence), S.J. Hong (IBM-Yorktown Heights),
M. Karpinski (Germany), W. Kohn (Boeing, Seattle), K. Konolige (SRI), C. 1,assez
(IBM-Yorktown Heights), R. Lopez de Mantaras (Spain), J. Maitan (Lockheed), R.A.
Meersrrian (The Netherlands), R. Michalski (George Mason), J. Minker (Maryland), M.
Mukaidono (Japan), K. Parikh (CUNY), J. Pearl (UCLA), D. Perlis (Maryland), F.C. Pin
(ORNL), H. Prade (France), Z.W. Ras (UNC-C), L. Saitta (Italy), E, Saridewall (Sweden), 7'.
Sellis (Maryland), J. Sowa (TBM-Yorktown Weights), R. Thomason (Pittsburgh), D. Touretzky
(CMU), R. Waldinger (SRI), S.K.M. Wong (Canada), M. Zemankova (NSF) and J. Zytkow
(Wichita State). The activity of this Committee and all of the cooperating referees was a great help
in completing the final program. This help is highly appreciated.

The cooperating referees are listed below:
J. Baker, B. Chu, I,. Console, M. Franco, €I. Geffner, A. Giordana, L. Giordano, J.
Grzymala-Busse, M. Maher, A. Martelli, S. Matwin, E. Mays, Z. Michalewicz, E. Plaza, H.
Rasiowa, P. Torasso, J. Xiao, R. Yap and W. Zadrozny.

The Symposium has been organized by the University of North Carolina at Charlotte with the
following Organizing Committee: Rill Chu (UNC-C), Karen S. Harber (ORNL), Zbigniew
Michalewicz (UNC-C), M.S. Narasimha (IBM-Charlotte), Francois G. Pin (ORNL), Zbigniew
W. Ras (Symposium Co-Chair, UNC-C), Jing Xiao (UNC-C), Maria Zemankova (Symposium
Co-Chair, NSF).

We wish to express our thanks to Alan Riemann, Jon Doyle, Larry Kerschberg, Tom Mitchell,
and Gio Wiederhold who gave invited talks at ISMIS'91. We would also like to express our
appreciation to ISMIS'91 sponsors, to all who submitted papers for presentation at the
symposium and publication in this proceedings, to ISMIS'91 Organizing Committe, to Karen
Harber at ORNL without whose help the present volume could not have been completed and to
all of those who contributed to the symposium program.

Francois G. Pin
Zbigniew W. Ras
Maria Zemankova

iii

September, 1991
Charlotte, N.C.

TABLE OF CONTENTS

Robotic Mobility and Cognitive Maps
CarlM. Benda . 1

A Quantitative Analysis of Reasoning for RMS
Laurent Buisson and Jkrbme Eiizenat 9

A Strategy for the Computation of Conditional Answers
Robert Demolombe . 21

Integrated Reasoning Through Associative Retrieval

A First Order Theory for Representing Space in Knowledge-Based
Scene Generation

Thomas C. Eskridge . 33

Enrico Giunchiglia and Alessandro Armando 45

Jean-Louis Golmard . 57
Learning Intermediate Concepts in Causal Trees: A Direct Method

Transformation-Ordering Iterative-Deepening-A*

An Improvement of Weighting Strategy in Resolution-Based
Automated Reasoning

Pat tern Recognition Using the Third and the Fifth Classes of
Dynarnical Systems

Lawrence 0. Hall, Diane J. Cook, and Willard Thomas

Yong-Gi Kim and Ladislav J. Kohout 73

Ying Liu and Hede Ma . 83

. 65

Sensory Integration
G. T. McKee and E. T. Powner . 95

Data Structures f Genetic Operators = Evolution Programs
Zbigniew Michalewicz, Joseph Schell, and David Seniv 107

Generic Problem Solving Models in a Computer Aided Methodology
for the Construction of Knowledge Based Systems

AndrC R. Probst, Alex I. Kotvitz, and Dieter Wenger 119

Generation of Production Rules by Backward Search froin
Neural Networks

Da Qun Qian, Piero Scaruffi, and Dario Russi 131

Computational Nonmonotonism and the Qualification Problem
Arcot Rajaseliar . 143

V

Task Allocation by a Team of Learning Automata
Franciszek Seredynski . 155

Notes on Rough Inference

Bottom-Up Evaluation in Indefinite Deductive Databases

Brian Shay . 167

Rajshekhar Sunderraman . 179

Inheritance in Conceptual Networks

Combining Symbolic and Numeric Representations in Learning
Flexible Concepts: the FCLS System

Leixuan Yang and Stall Szpakotvicz 191

Jianping Zhang . 203

vi

POSTER SESSIONS

APPROXIMATE REASONING

“An Improvement of Weighting Strategy in Resolution-Based Automated Reasoning,”
Yong-Gi Kim and Ladislav J. Kohout (Florida State Univ.)

“Data Structures + Genetic Operators = Evolution Programs,” Zbigniew Michalewicz,
Joseph Schell, and David Seriiv (UNC-Charlotte)

“A Quantitative Analysis of Reasoning for RMS,” Laurent Buisson and
J6rGme Euzenat (France)

EXPERT SYSTEMS

“Generic Problem Solving Models in a Computer Aided Mcthodology for the
Construction of Knowledge Based Systems,” Andrk R. Probst, Alex I. Horvitz, and
Dieter Wenger (Switzerland)

INTELLIGENT DATABASES

“A Strategy for the Computation of Conditional Answers,” Robert Demohmbe
(Toulouse, France)

“Bot tom-Up Evaluation in Indefinite Deductive Databases,” Rajshekhar Sundenaman
(Wichita State Univ.)

KNOWLEDGE REPRESENTATION

“Integrated Reasoning Through Associative Retrieval,” Thomas C. Eskridgc:
(New Mexico State Univ.)

“A First Order Theory for Representing Space in Knowledge-Based Scene Generation,”
Enrico Giunchiglia and Alessandro Arinando (Genoa, Italy)

“Inheritance in Conceptual Networks1” Leixuan Yang (Ottawa, Canada) and Stan
Szpakowica (Johannesburg, South Africa)

“Sensory Integration,” G. T. McKee (Univ. Reading, England) and E. T. Powner
(Univ. Manchester, England)

“Pattern Recognition Using the Third and the Fifth Classes of Dynamical Systems,”
Ying Liu and Hede Ma (Savannah State College)

“Robotic Mobility and Cognitive Maps,” Carl M. Bends (IBM-Charlotte)

v i i

LEARNING AND ADAPTIVE SYSTEMS

[‘Task Allocation by a Team of Learning Automata,” F’ranciszek Seredyriski (Warsaw,
Poland)

“‘Generation of Production Rules by Backward Search from Neural Networks,”
Da Qiin Qian, Piero Scaruffi, and Dario Russi (Olivetti A.I. Center, Italy)

“Combining Symbolic and Numeric Representations in Learning Flexible Concepts:
the FCLS System,” Jianping Zhang (Utah State Univ.)

“Lea,rning Intermediate Concepts in Causal Trees: A Direct Method,”
Jean-Louis Goliiiard (Paris, France)

LOGIC FOR AI

“Computational Nonmoiiotonism and the Qualification Problem,” Arcot Rajasekar
(Univ. of Kentucky)

“Notes on Rough Inference,” Brian Shay (Hunter College, CUNY)

METHODOLOGICAL ISSUES

“Transformation-Ordering Iterative-Deepening- A’,” Lawrence 0. Hall, Dime J. Cook,
and Willard Thomas (Univ. of South Florida)

v i i i

Robotic Mobility and Cognitive Maps

Carl M. Benda
IBM

Charlotte
Charlotte, NC 28257

Abstract

This paper focuses on the acquisition and storage of environmental information by a
mobile robot. The environment includes obstacles which must be ma@ by the robot. A
method for representing a robot moving h u g h its environment is described. Algorithms used for
storage and retrieval of environmental data are presented. The goal is to represent the data in what
i s known as 3 cognitive map which allows faster retrieval of the environmental data becaw of this
representation's compact nature.

1. Introduction
The paper focuses on tools and algorithms used to show how a mobile rabot could map out an area

of his environment and store that map for later use. The environment of the robot contains various
obstacles which will be stored in the cognitive map of the environment. Specifically, this paper will focus
on three main areas of the project:

1.
2.
3. Creating a Cognitive Map

The robot, by processing information obtained through the use of these mapping algorithms can detect
exactly where obstructions me. This paper will present the software structure and algorithms employed to
generate the final goal, wbich is a "Cognitive Map" [6] of the original environment information.

Circular Quadtxee Data Stntctures ([31, I41)
Depicting the Data in Polar Coordinates ({31,[41)

2. Circular Quadtree
The "Quadtree Data Structute" 8s described in [2,3,4,5] is used to store the information that has

been scanned. There are in fact many methods available for storing environment infomation, from simple
memory dumps to complex compression algorithms. The quadtree data structure provides a useful yet
efficient method of storing environmentad idormation. Figure 2.1 graphically depicts the metbod used by
the robot to store the scanned data and the order in wbich tbe data is examined.

2

1

2

4

3
Figure 2.1. Circular Quadtree

In the quadtree data structure, elements are assigned values depending upan the data contained
within these elements. The elements have a value of either 0, 1, or 2. A value of zero means that for the
sector scannedd, there is no environmental information. To put it another way, the environment contains no
obstacles in that particular sector. A value of 1 means that for the particular sector, the environment
contains an obstacle which must be avoided. For a value of 2, the environment sector being scanned must
be subdivided into four subsectors to further determine the extent of the object. These subsectors are then
recursively scanned in a counter clockwise fashion. This recursive algorithm continues until the subsector
is found to contain an object or be devoid of an object. When all four quadrants have been scanned, the
resulting quadtree represents all of the visible local environmental data. A tree is created to represent the
storage of the environmental information. Figure 2.2 shows how the data structure in Figure 2.1 is stored
in a hierachid format.

1 2 3 4

Figure 2.2. Circular Quadtree Hierarchical Structure.

3. Scanning Technique
The first element to be determined is the scanning radius of the robot. After the radius has been

set, the scanning method must be chosen. The direction of the scan is not as important as the final quadtree,
as any direction would produce an equivalent quadtree.

3

3.1 Data Transformation
The scanned environment is stored as It, Theta polar coordinates. To display the location of the

objects scanned, the data is translated into X,Y coordinates which the display hardware uses. See Figure
3.1.

3.1. Transformation from polar coopdinates to positive integer Cartesian coordinates takes place using a
simple software algorithm.

Scanned as R. Theta

I memory as
R, Theta

______e)L

r di r ec ti 0-1

Coord inate Trans la ti on Usage
Figure 3.1. Data Representdons

3.2. The Scanning and Subdivision Algorithms
In order to be as efficient as possible, the seanning algorithm only s a n s until the area of concern

is known to contain an object. In this way, the subdivided area is completely scanned only when it is
devoid of an object. Using a single subsector, figure 3.2 depicts the scanning sequence used by the
algorithm. Once the area of detail is resolved, the algorithm stores &e location of the subsector in a
table. This infomation is stored along With the level of resolution required to resolve the subseetor. The
level of resolution is the number of SuMivisions required to ascertain whether the subsector in question is
devoid of an object or filled with an object. In practice however, as will be shown, the number of
subdivisions is limited to the ability of the machine to t m l a t e from p l a r coordinate information to
integer relative points in the environment. After four subdivisions within a given sector, if the subsector i s
still known to be gray, the robot stores that information into the table. Because subdivision i s done using
polar coordinates, the areas close to the center of the environment can not be resolved lxyond the fourth
level. The level of subdivision is the number of times the subdivision algorithm calls itself within a given
subsector of the environment.

4

Section being scanned

Section being scanned

Area of Detail
Only one Scan line
is used because an
object has been found.
This area must be
subdivided

Multiple Scan lines
required to decern
that object is present
in area. The area must
be subdivided.

/

Entire area is scanned
without encountering the 1 Q b iect .

Figure 3.2. Scanning Example

5

Information is stored in memory in a simple format. The data consists of level, color, starting
angle, ending angle, and two radial values, (one indicating the starting radius, and the second indicating the
fmd radius of the subsector, both outward from the position of the robot). The level is a number from 1 to
4. The mlor is stored as an ASCII character which is one of either b, w, or g. The radius values are stored
as a relative distance value from 0 to 240. For example, in figure 3.2, the sector being scanned in the final
view would have a starting radius value of 210, mending radius value of 240, and a starting angle of 168.

The major difficulty in scanning the environment is that all of the points on the environment are
in reality only addresses in memory, and thus can be referenced only in an integer fashion. The scanning
process, however, requires floating point calculations in order to more realistidly depict the vision process.
The floating point calculations are handlied with the float data structure in C. In view 3 of Figure 3.2,
using the above formula, the calculatian for the starting angle works out to be 168.75, but because it is
evaluated to an integer, the starting angle stored onto the would be 168 degrees. In application this
approximation performs satisfactorily. Moreover, when an algorithm which incorporated rounding was
used, it proved not to add a significant change in the overall accuracy of the robot. However, the more
complicated algorithm did add quite a lot of overhead to the program thus slowing execution down

Determinirag how and when to subdivide the current sector if it does contain an obstacle is the job
of the subdivision algorithm. Starting with the cutrent position of the sector that is being scanned, the
subdivision algorithm determines where the next subsector to be scanned is located. The key to the
successful completion of the subdivision algorithm is its use of recursion. One point not shown, howevee,
is the fact that there i s a practical limitatiod to the amount of subdivision that can be done. In theory,
subdivision of the area can continue to infiiity. The practical limitation is based solely on the resolution
of the environment. llhrough trial and error it was found subdivision would be allowed to continue as long
BS necessary or until a depth of 4 was reached. Figure 3.3 is a quadtree representation of a single quadrant
showing that an end node does not have to be either all black or all white, but because a depth of four has
been reached no f W r subdivision will take place on that subsector.

significantly.

level

1 ev

level 4

unresolved
end node

Figure 3.3. Quadtree with an Wmsolved End Node.

level

level

1 ev

4

unresolved
end node

Figure 3.3. Quadtree with an Wmsolved End Node.

2

.e 1 3

6

4. Robotic Mobility and Creating the Cognitive Map
The study of cognitive maps is not new, but has been around since the 19th century 161. In this

paper, cognitive maps are used to create a data base for information used to show where the Robot i s in
relation to the objects that are to be avoided.

within the scope of and its domain is a
radius of 240 relativ ironment. There are

at will collect the
lements that must

purposes of edification, the
g the shape of objects within the domain of

ability the iobot to Wavel, the domain of expeiience ~ Q W S as the iobot moves within the environment.
Typically, the primitive elements may be one of either a limited local descriptor or a more general area
descriptor, and since the concern is to compute the spatial layout, i.e. the Cognitive Map, of the
~ ~ ~ u ~ ~ m ~ n ~ ~ the choice i s to use an area descriptor. An mea descriptor describes the space in which the
robot is traveling [6] . Attributes ofthis space include Empty Space d NON-Empty Space. In Figure 5.1
below, the iobot’s initial perception of its envir ent i s shown. The lines represent the robots line of
sight, and the polygonal shapes are objects w&ic robot cannot sen past.

Figure 4.1. Initial Space Representation for the Robot.

7

2) The second element which must be decided upon is the choice of coordinate system. In
[6] , the discussion concludes with the author selecting a nonegocentric framework. This means that since
the world is stable and it is the robot that keeps changing position on the environment, the Cognitive Map
should be computed independent of the perceiver's point of view. Originally, the quadtree data structure
nqxesentation of the objects on the environment had been pre-calculated.

These first two elements, although important in themselves, an! more or less a means of
coming to the tbkd element of the Cognitive Map, the organization. There are two possible alternatives for
organizing the primitive elements to represent the structure of the environment. The fmt is to describe the
relationship between individual objects as they are perceived, and the second is to partition the objects into
groups of objects which are then c ~ m ~ e d together as a dole .

3)

4.2. Computing the Cognitive Map
To compute the entire data base, referred to as the domain of experience for the robot, an algorithm

$as been generated which collects environmental data based cm the quadtree recreation of the environment.
A set of cognitive maps are produced which are written to tables. These tables collectively are known as
the domain of experience for the robot. The path, along with the environmental data is entered by the

Collected data is stored in a table. The data describes at what angle the object was first observecl t~
be located and the relative distance from the robot. After scanning a complete 360 degrees, the robot then
moves a specified distance along the selected jath and repeats the scanning process at the new location.

travels at a known rate, and along the way stops to obtain new cognitive mapping data.

4.3. How the Cognitive Map is Created.
The objective of depicting a Cognitive Map for environmental representation is to provide a

comprehensive depiction of whether or not the planned path is viable. The idea of mapping out exactly
where the objects in the environment are located is not as important for robot navigation as showing a
blocked path.

Using the Cognitive Map, the robot is able to avtaid aneas where obstacles exist. The Cognitive
Map defines regions of the environment which are not passable, rather than storing the size and location of
the obstacles. "'he data used to create the Cognitive Map is stored in a Table .

A Cognitive Map is an important tool for the use of robot navigation when the goal is to achieve
navigation to a destination point. Clearly if the g is to gather data about the environment for later study,
as is the case with a probe, the Cognitive Map as s employed here would require modification. Perhaps
the best reason for creating a Cognitive Map for data representation of environmental data can be summed

If the relative sizes measured in bytes of the Wrheta table and a randomly selected
m p d , the R/Theta data table would be an order of magnitude larger than that of the
kr $he n e t a data table, each data table contributing to the Cognitive Map is used

to show where the objects in the environment are losated. This means that the amount of data that the
to make a decision about which direction to travel, is far less if the Cognitive Map is
RA'heta data table. It staou kept in mind that the development of the Cognitive
e &Theta representation be nd manipulated at least one time. If the robot moves

into a new region, which bas not been previously scmed, ional scanning of t h i s new region would be
requid. If, however, one considers the complexity of th represented by the two formats, it is also
clear that the Cognitive map has less complex idomt ion .

The advantage to the &Theta data table is that it gives an additional view of the entire scanned-in
data. It provides i domt ion on where the environment has subsectors that are gray, black, and white. In
the Cognitive Map, the only information that matters i s the visible contour the obstacles, i.e. how far away
they are, and in what direction they lie.

The Cognitive Map is a simple way to get around the burden of knowing everything about all of
the environment. It relies on the R/p?leta mapping process, but really only once.

8

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

Snyder, W. E., Industrial Robots: Computer htedacing and Contd (hentice Hall Inc. 1985).

Approxiirnation and Gompnessin (Department of
Computer Science University of Maryland, 1982).

Chen, S. , Spherical Data Structure and Visual Feadback for Robotic Control (bx. First
Annual Workshop on Intelligent Control, Troy, NY August, 1985).

chen, S . , Multi-sensor Fusion and Navigation of Mobile Robots (Special Issue on Robotic
Navigation, International Jownal of Intelligent Systems, 1987).

Yaq M. and Srihari, S. , A HiemchidDah Structure for MuJti~imcjnsionalDigital Images
(Communications of the ACM July, 1983).

Yeap, W. K., Towamls a Computational T k ~ r y of Cognitive Maps (Artificial Intelligence
Number 3,1988).

Huttenlocher, J. md Presson, G. C., n e Coding and Tmsfonnation of Spatial Momation
(Cognitive Psychology Number 11,1979).

Marr, D. and Nishihm, N. K., Repmsentatjon and Recognition of the Spatial Orgaariztion of
%e-Dimensional Shapes (F'mc. Roy. Soc. B 200, 1978).

Nishiara, H. K., Kntensiy, Visible-Smf'ace, and VoJmetrjc Reptesenhtions (Artificial
Intelligence Number 17, 1981).

9

A QUANTITATIVE ANALYSTS OF REASONING FOR RMS

Laurent Buisson and Jkr6me Euzenat

Division Nivologie IIRlMAGflNPG
CEMACREF Laboratoiire AREMIWmag

BP76 B P 5 3 X
F-38402 SAINT-MARTIN D’HERES F-38041 GRENOBLE Cedex

internet: Jerome.Euzenat@ sherpa.imag.fr - uucp: euzenat@imag.fr

ABSTRACT

For reasoning systems, it is sometime useful to cache away the
inferred values. Meanwhile, when the system works in a dynamic
environment, cache coherence has to be performed, and this can be
achieved with the help of a reasoning maintenance system (RMS). The
questions to be answered, before implementing such a system for a
particular application, are: how much is caching useful ? Does the
system need a dynamicity management system ? Is a RMS suited (what
will be its overhead) ?

We provide an application driven evaluation framework in order to
answer these questions. The evaluation is based on the real work to be
processed on the reasoning of the application. First, we express the
action of caching and maintaining with two concepts: backward and
forward cone effects. l h e n we quantify the inference time for those
systems and find the quantification of the cane effects in the formulas.

For reasoning systems such as knowledge bases, it is often necessary to record
the result of the inference process even if it is god driven. Recording the result of a
computation is called caching in co~npu ter science. Caching is necessary when the
produced inferences are costly and used several times.

When knowledge in the base does not evolve, caching is safe and very efilcient.
But in real world applications, the knowledge base is usually dynamic. This is true for
systems that interact with the environment (through sensors) OH with \he user who can
set hypotheses and change the knowledge in the base. So, caching requires dynamicity
management. Mast of the t h e , it is performed by using a RMS (Reasoning
Maintenance System) based on dependency graph manipulation. But is a RMS: always
interesting ’? Should i t be more attractive to treat dynamkity problems by ignoring RMS
solutions ?

We develop here a quantitative analysis of the reasoning graph in order to answer
these questions. Numeric criteria defined on properties of the dependency graph are
used. Real world applications give evidence of such properties, especially for spatial
knowledge bases and spatial reasoning.

After a short description of reasoning maintenance systems and their advantages
in the context of knowledge bases, we will briefly describe an object-based knowledge

10

base management system called ShirkalTMS which uses a RMS ($2). We will show
some numeric results from that system and give expectations about its behavior. More
recently, observations have been performed on a real world application ELSA ($3)
dedicated to the analysis of snow avalanche path. This application uses the inference
mechanisms in order to compute spatial properties of a geographic area such as
connected sub-areas or close ridges which are used very often. The benchmark results
obtained with ELSA are very surprising.

We are able to explain them with the help of a new concept: backward and
forward cone effects. They are formalized ($4) in order to draw general conclusions
about RMS use i n reasoning systems. In fact, the advantage of a RMS toward rough
caching is a tradeoff between backward and forward cone effect.

2. A SPATIAL REASONING APPLICATION

The motivations for using a RMS in knowledge based systems are first presented.
Then, Shirka/TMS will be introduced together with some tests and expectations about
its behavior.

2.1. REASONTNG MAINTENANCE SYSTEM

When using an inference system in backward chaining mode, the result of each
inference, would it be an attribute value or the validity status of a proposition, can be
cached i.e. recorded in memory. Cached values do not have to be inferred twice or
more. In fact, caching is useful when a value is used several times by the system and is
as useful as the number of times the value is needed. But, while caching uses additional
memory space and time, it has to be used with care.

Moreover, in evolving systems or when the inferences allowed by the system can
be nonmonotonic, something which is considered as holding (a value considered as the
value of an attribute or a proposition considered as true) can be discarded. In such
cases, the cached values must be invalidated, i.e. not cached anymore. This is the job
of a RMS.

Fig. 1. A dependency graph is here
represented with circles as nodes and
triangles as justifications where the nodes
in the IN-list come through a full line
while nodes in the OUT-list come through
a doted line. Nodes that have a
justification whose IN- and OUT-lists are

0 node justification empty (e,g D) represent true formulas
because they do not need to be inferred.

1.

Reasoning maintenance systems (RMS) are aimed at managing a knowledge base
considering different kinds of reasoning. Such a system is connected to a reasoner (or
problem solver or inference engine) which communicates every inference made. The
RMS has in charge the maintenance of the reasoner’s current belief base. R M S
developed so far focussed on nonmonotonic reasoning or multiple contexts reasoning.
They record each inference in a justification that relates nodes representing
propositional formulas plus a special atom (1) representing contradiction. A
justification (<(i l , ... in)(ol,.,.om)>: c) is made of an IN-list ({il, ... in]) and an OUT-

I. 1

list ({oi, ... om)). Such a justification is said to be valid if and only if all the nodes in
the TN-IiSt are known to hold while those in the OLJT-list are riot; a node, in turn, is
known to hold if and only if it is the consequent (c) of a valid justification. The
recursion of the definition is stopped by nodes without justification and by the axioms
that we nodes with a justification containing empty IN- and om-lists.

Shirka is a traditional object based knowledge representation system written in
Lisp [I]. Everylhing, in Shirka, is an object (including inference ~ncthsds.. .). Each
object belongs to a class which defines its structure - in ternis of a list of fields and
constraints oil tlhe fields values .- and its inferential capabilities in terns of inference

in order to determine the vdues of unfilled fields. Inference meth
among value passing, procedural attachment, pattern matching and default values.

Classes are organized in a direct acyclic graph structured by the a-kind-of
relationship between classes. This relationship enables bheritance from a class to its
specializations. Inheritance is used through class refinement - a class strongly
inherits, i.e. possesses, its constraints on fields from its super-class - and inference
specialization -- a class weakly inherits, Le. inherits by default, its inference methods.

A RMS has been implemented on Shirka. It i s standard except that it records and
propagates field values 121. The underlying assumption of the i m ~ l e m e ~ t ~ ~ ~ o n of a RMS
in an abject-based knowledge representation is that the hase is queried very often (or
not often rndified). The performances are very attractive because re-infering is avoided
(and so, the answers are given very quickly). On another hand, the modifications -
that are safely dealt with -- and initial inferences are processed more slowly. This
assumption was enforced by the observations made with the very simple tests below.

2.3. ELSA: A SPATIAL REASONING APPETCAT

In the context sf spatial seasoning, the RMS is vcry attractive. In other words,
spatial reasoning appears as a good application domain. Meanwhile, some effects
which have not been presented yet can be observed in that kind of ~ ~ p ~ ~ c a ~ ~ o ~ s : they are
“forward and backward cone effects”. These obsewarions were performed on a real
world application dedicated to the analysis of SIIQW avdarache paths: ELSA.

We first present ELSA and the advantage of using a RMS in the context s f spatial
reasoning. Then, a set of numeric tests are discussed which demonstrates the advantage
of using a RMS in ELSA. At last, tlhobc results are summarized in two principles called
backward and forward cone effect,

ELSA is a problem solving environment which offers to a snow specialist the
different tools available in order to perform an avalanche path analysis and choose the
best protection devices. As it has been explained elsewhere 13, 41, ELSA is built OD
ShirkOMS. EL$A i s a knowledge based system which uses both symbolic simulation
based on expert knowledge and numerical simulation based on fluid rnechanics
conservative laws.

Because of the spatial extension of the phenomena involved in snow avalanches
(snowdrift, snow-cover stability, fracture propagation, avalaalche flowing.. .), ELSA
needs spatial information on the path. In order to get this information or to use it, ELSA
perfoms an actual spatial reasoning as i t has been defined in [3]. As a matter of fact,
from p r l y relevant spatial knowledge such as contour line, vegetation or ridge maps,

12

ELSA must infer the definition of special units of terrain called “small panels” by snow
specialists and which are relevant for analysis (they are homogeneous from the analysis
criteria points of view). Meanwhile this definition in sinal1 panels is not relevant enough
and ELSA must also infer the properties of these small panels to perform its analysis.

These inferences are taken into account by the knowledge base system. In this
paper we emphasize on terrain inference: the inference of spatial relevant properties
from poor spatial knowledge. For example, here is the spatial definition of a small-
panel called ppi. At the beginning of the session, this small panel is defined only by the
list of triangles included in it. As it has been written in Shirka, the syntax is frame like.

I PPI
is-a = small-panel ;
contains = tr2 tr93 }

In order to make an analysis of the avalanche starting zone, ELSA needs more
relevant information and, to that extent, infers a more complete description of the small
panel ppi. All the fields inferred by E I S A are obtained by the use of inference methods
(as presented above), particularly, pattern-matching inference and procedural
attachment.

t PPI
is-a = small-panel ;
area = 6850. ;

di ame t e r = 115. ;
slope-% = 68. ;
is-in = tende ;
contains = tr2 tr93 ;
boundary-points = po4 p06 po5 pol ;
connected-panels = pp2 pp3 ;
borders = %border-589 %border-590 ;
c 1 os e - ridges = arl ar3 ar4 ar5 ;

c-gravity = %point-552 ;

above = PP3 I

Reasoning maintenance is interesting in an interactive environment for spatial
reasoning. As a matter of fact, the caching of inferences is necessary because of the size
of the spatial knowledge base and the amount of inferences. In ELSA, an avalanche path
can easily contain more than 500 triangles and 50 small panels and ridges. Without
caching the time taken for the inferences will forbid any interactive use of the system,
while ELSA is dedicated to decision support and thus needs interactive use.

But, i n this kind of context, the user is also supposed to modify given
knowledge. In ELSA, the user can change the vegetation of a part of a small panel (in
order to simulate protection works for instance), or modify the definition of a small
panel (toward a more accurate decomposition of space). As a result, the spatial
properties of these small panels m u s t be re-inferred. In order to keep the base
consistent, a RMS is necessary.

Although EISA is based on Shirka/”rMS, it can take advantage of the RMS in order
to manage dynamicity in spatial reasoning. Fig. 2 gives a good example of interest of
such a RMS.

13

Fig. 2. In a triangulation of space, two polygons are defined through the set of
triangles which are includcd in bhcrn. The inferences describcd bclow are made on those
polygons. Ifa wianglc changcs its owner, thc RMS must invalidate the cached inferences
which were concerned by thcsc two polygons. Meanwhile, the inferences conducted. on
the other polygons arc not mndificd. Ihc invdidalion remains local.

As a summary, it appears that spatial reasoning applications can trike advantage of
classical RMS abilities. More precisely, the spatial locality can be translated in the
dependency graph.

2.5. PERFORMANCE m s T s ON THE ELSA SYSTEM

Some inference times are given i n order to illustrate OUT claims. They show how
the caching is attractive and also why the RMS is useful. The tests Rave been performed
on the same hardware as above,

Table 1. This first sct of queries concerns caching; cach query requires the computation
of thc close ridgcs of a pancl. This second sct of queries also concerns caching but queries
cornpu~e the set of panels connected lo a prccisc pancl. No results about Shirka alone are
providcd bccausc response times are prohibitive (in fact, from this unique test, we can
concludc that ELSA i s not viable without caching).

ShiAa: Val? pp26 conncctcd-pmcls
Shirka: val? pp27 connected-pels
Shirka: vd? pp27 connected-panels
Shirka: val? pp30 connecteri-panels

0.
2.21
2,49
1.74

14

Table 2. After thc tests that produccd Table I , the user changes the terrain description
transferring one triangle (tr78) from a pancl to another Gust as in Fig. 2). The former
queries arc processed at new. In the first case (single caching), the user must clear the
base and load it again. The time rcquired for Lhose operations is not taken into account.

naintenance level
Shirka: sup-val pp26 contains tr78
Shirka: aj-Val pp27 contains tr78
Shirka: val? pp34 close-ridges
Shirka: val? pp33 close-ridges
Shirka: val? pp3 1 close-ridges
Shirka: val? ppl close-ridges
Shirka: val? pp2 close-ridges
Shirka: val? pp26 connected-panels
Shirka: val? pp27 connected-panels
Shirka: val? pp30 connected-panels
Shirka: Val? PPI connccted-panels

Caching
0.89
0.1
4.2
1.81
2.14
1.49
1.16

65.87
5.17
4.17
3.7 ..

Shirka: Val? pp2 connected-panels 3.52 5.49
I Total (initial inference I- modification + re-inference) 134.21

With single caching, inference time is considerably reduced. A further discussion
will give some explanations of some surprising results (especially the reduction of the
firsf inference time). With the RMS, inference times are slightly increased in comparison
with single caching inference times but the gain toward Shirka is obvious.

The second kind of queries shows the gain of time thanks to reasoning
maintenance system. The comparison is made between single caching and RMS. The
total line in Table 2 shows that the gain provided by the RMS is very important.

2.6. NEW EXPLANATIONS FOR THESE RESULTS: CONE EFFECTS

The observation made (comparing ELSA with or without RMS) are counter-

Of course, the second call to the same inference takes no time with the RMS
while, in spite of its the filtering capabilities, in Shirka, it still takes a while.
Even the first call is faster with the RMS than without (with a factor 12)!
Moreover, the time required to answer the same query against another object is
reduced of a factor 8.

intuitive at first sight:
1)

2)
3)

So these evaluations reveal a synergistic effect between inferences. These effects
can be summarized as:

Backward cone eflect: there is a backward cone effect when a datum is used
several times in the Computation of another. This can be stated in another way: the more
used the datum, the better the caching. This effect is as much interesting as the datum is
expensive to compute. Backward cone effect is able to explain the results above for
points (2) and (3). Intermediate inferences performed use each other several times in
order to obt&n the high-level (or requested) data. With the RMS, these intermediate data
are computed only once. For the same reason that the inferences of different data share
the same intermediate inferences, after the computation of an item, the required time to
answer the same query against another object is reduced. The two former points explain
why the system is also faster on the re-computation after a change.

15

Fig. 3. In order to obtain C31, the
system must infer C21 and C22 which in
turn necessitates other inferences. Their
cornputalion can take advantage of caching
because they share common inferences.
This explains that the inferences produced
with caching are faster even for their first
coinputation.

Forward cone eflect: the more used the datum, the worse the invalidation. As
before, there is a forward cone effect when a datum is used for the inference of a
important number of other pieces of knowledge. The forward cone effect is a negative
effect, it reflects the necessary work in order to invalidate a cached result. It explains
the classical results of observation (1) with ShirkflMS.

c12

Fig. 4. Thc whole graph rcprescnts the
infcrences made by the inference engine.
Thc shadcd part of the graph is invalidatcd
al‘tcr the suppression of C15. We can scc,
q u d i f n l i v e f y , that this shaded part looks
like a “forward cone”. The larger is this
cone, thc less interesting is the RMS
because the number of inferences to
launch is nearer from the numbers of all
Lhe inferences.

The problem that will be addressed in the remaining is: how is it possible to
quantify these effects? and which conclusions to draw for the use of a RMS in a
particular application. It is obvious that the attraction of a RMS in an application will
result in a wade off between backward and forward cone effects.

3. A SPACE OF REASONING: THE DEPENDENCY GRAPH

Here is an attempt to generalize the results we obtained with the E L S A
experiments in order to state what kind of reasoriing/application can benefit from a
RMS.

Real efficiency of RMS is very difficult to evaluate because a lot of factors have to
be taken into account: not only the number of nodes and justifications but also the way
they are organized in cycles of different kind and the order of firing rules, Moreover,
the performances of RMS depend heavily of the kind of use. Here, we do not address
these complexity problems but the conditions under which a RMS is useful in order to
maintain a reasoning. So, worst case analysis is not a suited measure of the
performances of the system and an abstract computation of the algorithm complexity is
not very useful. What is important for real applications is not the theoretical complexity
analysis of the program used for reasoning maintenance but the real complexity of the
RMS when confronted with the rea! reasoning. To that extent, we exhibit some results
for graphs with pmicular restrictions that do not trigger the whole machinery of a RMS.

16

This section will, first, set some definitions to be used in the quantitative analysis
and the restrictions used in the present study. Then the analysis is achieved for both
kinds of cone effect before summarizing the results of the rradeoff between backward
and forward cone effect.

3.1. NOTATION AND RESTRICTION

In order to give some precise results, some hypotheses have been done about the
dependency graph. We assume that:
H1) There is no nonmonotonic inferences. This is not an important restriction when

assumed the second hypothesis, In fact, nonmonotonic inference in a graph
without loops is a problem for the inference system but not for the RMS.

H2) There is no loops in the graph. This assumption is quite restrictive. In fact, it is
restrictive regarding the complexity analysis of RMS, but it is not for a lot of
applications.

H3) The analysis below only considers average values and hypothesizes the
homogeneity of the graph, With regards to real application, this is the most
restrictive hypothesis. The general aspect of reasoning will be evaluated and
quantified on the basis of average values considered that the graph can itself be
decomposed i n several little sub-graphs in which it is possible to cancel or
activate reasoning maintenance.
All those hypotheses are set for reason of simplicity. Of course, the quantitative

analysis of reasoning for RMS have to be fulfilled with the relaxation of those
hypotheses.
First, some notations have to be introduced. Let B be a knowledge base dedicated to a
given application. We consider all the inferences launched all along the typical session
of the application; this is called the reasoning. A particular reasoning can be represented
as a dependency graph such as the one used in the R M S . If we do not care for
nonmonotonic inferences (Hl), i t is an AND-OR graph (each inference is an and-node
linking the antecedents to the consequent, each formula is an or-node linking together
the possible inference of this formula).

Note that the dependency graph (as it does in RMS) does not represent the
potential inference of B, but the inferences really committed. The formulas in the graph
constitute the set F of formulas used in the reasoning (they can either be given by the
user or inferred by the reasoning system). N is the number of all formulas in F. In F,
we distinguish two sets of formulas: I is the set of initial formulas which are given and
not inferred, and Q is the set of interesting formulas which are the goal of the reasoning
process.

We call a chain, a sequence fo, j l , fi,.. . jn, fn of formulas and justifications such
that, for each iE [1 ,n], 6-1 is an antecedent of ji and fi is the consequent of ji in the
graph. n is the length of the chain (the number of justifications).
The forward depth (df(f)) at node f is the length of the longest chain beginning at node f
(and ending at a node in Q). The backward depth (db(f)) at node f is the length of the
longest chain ending by node f (and beginning at a node in I). Backward depth is also
called the level off.

The forward width (wf(f)) at node f is the number of and-node f is linked with as
antecedent. The backward width (wb(f)) at node f is the number of and-node f is linked

1 7

with as consequent. So, wf(f) and wb(0 are the number of connections at front or back
of an OR-node. Note that width can also be called branching factor at node f.

wf is the average number of justifications based on one fornula of nQ (where nQ={x;
XEF~XGQJ). wb is the average number of justifications of a formnula of N. In this
paper, we will consider that wb = 1 (this means that a datum is inferred by only one
way). So,

c. wb(f)
f€N

c wf(f)

1Rl1 w b = - f - W
wf== I I q l - y

~ (f) is the number of times f is used during the session, this i s not the number of
inferences in which it appears but the number of times these inferences are drawn. In a
lot of applications these inferences are used a lot.

" f
Thus, here p= lnQ' -~~F\II , because of the value of wb. It is the

IRQI*wf p is the ratio 'F--- IF\Il*wb'
average number of antecedents per justification in the reasoning graph,

We distinguish several constant times which are:
T jnf: the average time taken for an inference for which a11 the premisses are available.
rrW: the average time taken for recording a value (result of an inference).
rdcp: the average time taken for recording a dependency (representing an inference).
rSup: the average time taken for suppressing a dependency and a cwhed value.

Fig. 5. Examples of typical graphs

An additional important constant time also appears, but is not taken into account
in our argumentation. Tt is Treset, the time required for quitting and loading the
application again. e guess that all these values can be easily evaluated for
homogeneous reasoning. Two archetypical examples are given in Fig. 5.

Table 3. Ttic average values of the variables for the graphs given above.

18

3.2. INFERENCE AND PROPAGATION ANALYSIS

At first sight, the time taken in order to produce the reasoning is

But, if the backward cone effect is accounted
time taken to infer the formula f is:

for, we can say (if p#l) that the

db(0 -1

e - 1
because - is the size of a complete p-ary tree of depth db(f). If p=1, then

T B (9 = 'tinf * db(f). Hence, the total time for the inferences of the session, if no result
of inference is recorded (and p l) , is:

It is noteworthy that the ratio used in T B (9 is the number of inferences in the
backward cone. If other hypotheses are taken into account (no homogeneity, no tree
structure.. .), the formula can be replaced in TB(f) by another expressing the number of
inferences in the cone. With the recording of all the inferred formulas the time is:

and

the formula is the same for caching without the reference to Tdep

Table 4. The values for the graphs given as examples. Notes that they are not
mirltiplicd by the same factors. As a result, case (1) do not profit from caching (and this
is true whatever is the total dcpth of the graph).

3.3. INVALIDATION ANALYSIS

A RMS is useful for invalidation (otherwise, rough caching is enough as it is in
forward chaining systems). Invalidation will lead to the forward cone effect. This effect
is now evaluated. We consider that one given formula f in I is modified and that the
user asks the same queries Q as before. Because of the caching system, the answers

19

recorded are no valid any more. With a single caching system, we need to re-infer all
the formulas. The time required is so

where m c a c h = IFlII * (Tinf+Trw) as above.
w a c h "E3cac- + I;cxt I- T B c X h

Another solution uses a reasoning maintenance system. In that case,

T ~ M S = TBRMS -t Tinv + Treirlf

with T B R M ~ = 1 I * (rinf+rra+rdep) as above,

and Tinv = Ninvd'rsup and Treinf = Ninval"(zin~~rcc3"cdep).

and Ninval -1 if wf+l and df(0 ofherwise, this is, agdin, the size of a wf-

ary tree of depth df(9, so this is the size of the forward cone starting at f. The
branching factor is wf because it has been considered justifications with only one
consequent, otherwise, the branching factor would have k e n wf*nksq (in which
nlxsy is the average number of consequents).

wfdf(Q+l -1
w f - 1

As a result, the gain given by the RMS is:

If we ignore resetting time and set that (Tjnf-t.rrec)*k = rin~-tr,,+rdep+~sup, the
W = N*(Tmf+rrec) + Tresct - Ninval*(rin~+rrec+r.de~+Tsup)

RMS must be attractive when Ninval*k < N which MUSE be tme most of the time.

Table 5. Thc results of the invalidation phase for the graphs given above
(+ex11=+inf+rrec and -rRMS='iraf+rrcc+':dep+~sup). The graphs are n8t big- enough t0
illustrate interesting properties: both cases do not appeal for a RMS. In particular,
locality do not a p w r (after each modification, an important part of the graph must be
revised). It kcornes more attractive if wc consider 10 irndcpendcait graphs as in case 2' in
which thc invalidation is useful.

A pure static evaluation cari be given with p modifications of data and the whole
set of queries between them:

V P) = p *
Tcach(p> = p * Treset + @+1> * T b a c h

TKMS(p) = TBKMS 4- Ninval * P * (Tinf+rrcc+rdep+rsup)

EASONTNG (ABOUTIFROM) 'THE GRAPH

As said above, the main problem consists in evaluating the tradeoff between both
cone effects. T&G important questions to ask for a pxtiicular application are: Can it
benefit from caching ? Does caching need dynamicity management ? Is a RMS suited for
dynamicity management or is i t better to recompute everything ?

20

It is noteworthy that these questions cannot be answered independently.
Moreover, they are not directive; in particular, dynamicity management does not imply
the use of a RMS. Nevertheless, reasoning dynamics must be taken into account. As a
matter of fact, the performances of the system depend on the relations between query
and modification time. The result will not be the same if there is a new query after each
modification or if there is an important number of modifications between each query
phase.

4. CONCLUSION

The problem we addressed was the evaluation of the benefits of caching and RMS
in knowledge based applications. To that extent, we first show some results expected
on a general purpose tool and some results obtained on a real world application. The
results, at the advantage of the RMS, were not expected. We explained then by
producing two informal models of the actions of caching and RMS on the reasoning: the
so-called cone effects. Then, we quantified the amount of work required in order to
demonstrate some facts (or resolve one problem). The equations we obtained revealed
the presence of the cone in the quantifications of the number of inferences they contain.

This is a first attempt in order to characterize the usefiilness of caching and RMS.
It has to be continued by a better knowledge of reasoning dynamics and by relaxing the
hypotheses we assumed on the graphs. Finally, the advantage of using a RMS in an
application is seen as a tradeoff between both principles. More examples and
experiments, together with a discussion of further and related works can be found in
PI.

REFERENCES

1. F. Rechenmann and P. Uvietta, “SHIRKA: an object-centered knowledge base
management system”, Artificial intelligence in numerical and symbolic simulation,
9-23 (1991).

2. J. Euzenat, “Cache consistency in large object knowledge bases”, Laboratoire
ARTEbWhnag internal report (1990).

3. L. Buisson, “ELSA : a problem solving environment for avalanche path analysis”,
Artificial intelligence in numerical and symbolic simulation, 25-49 (199 1).

4. L. Buisson, “Reasoning on space with knowledge object centered representation”,
Lecture notes on computer science, 409:325-344 (1990).

5 . L. Buisson and J. Euzenat, “A quantitative analysis of reasoning for RMSes”,
Laboratoire ARTEMISflmag Internal report (1991).

2 1

A Strategy for the computation of Conditional Answers *

Robert, Demolor-nhe

2 avenue E.Belin B.1’. 4025
31055 Toulouse

France
e-mail: demolombe@ t Is-cs . c a t .fr

0 N ERA/ CXRT

June 1991

Abstract

We consider nun-Horn Deductive Data Bases (DDR) represented in a First Order
language withoii t fiirrctiori syrnbols. In this context the DDB is an incomplete description
of tlie world. A first. appro;ich to reduce the incompleteness is to add to the DDB
some kind of default rules, in order to autorniitically assume missing information. rl’hc:
second approach, which is adopted i n this paper, is t>o provide t,o the user the conditions
which guarantee the validity of the answer. These conditional answers are generated by
standard reasoning, and not by default reasoning.

Then the problem is tlie following : if T represents tlie DDB and (1 the query, and if
there i s no direct answer to q, we \vatit to derive the more general conditions c such tha t
: ‘T t- q - c. We present a strategy, GASP, designed for this purpose. I t is defined by
rneta, rules, and these meta rules can he used for a least fixpoint operator definition. We
show tha t the GASP strategy is always more efficient than another usual strategy called
GALP. Since in the case of recursive definitions the answers triay be infinite GASP has
been adapted into GRASP in order to only compute ground conditional answers. We
show tha t the least fixpoint, operator associated to GRASP computes the a.nswer in a
finite nirrnl)er of steps, even if the DUB contains recursive defnitioiis.

._..___.-_.I___
“This work h u been partially supported by the CEC, in the context of the Basic Research “kLio11, called

MEDLAR.

2 2

1 Introduction

Many works have been devoted to the standard approach of Deductive Data Bases (DDLI)
[I, 12, 5 , 131. In this approach a DDB is composed of two parts : a set of rules, the Intensional
Data Base (IDB), which is a set of definite Horn clauses, and a set of facts, the Extensional
Data Base (EDB), which is a set of ground atoms. More recently this approach has been
extended to disjunctive DDB where the rules are not necessarily Horn clauscs [8, 3, 61 , and
facts may be ground positive clauses.

In this paper we extend disjunctive DDB to the case where EDD may contain any kind
of ground clauses. But the most significant contribution is t o consider a new kind of answcrs
called Coriditiorial Answers. We consider two kinds of Conditional Answers : the Intension-
al Conditional Answers [2] , which are derived from IDR, and tlie Extensional Conditional
Answerb, which are derived from IDB U EDB. Conditional answers are another way to deal
with incompleteness. Indeed the usual appraoch is to reduce the incompleteiiess with some
kind of meta rule like Closed World Assumption (CWA), or Generalised Closed World As-
sumption (GCWA) [7], in the context of disjiinctive DUB, or default rules in the context of
non-monotonic reasoning [lo]. In the Conditional Answer approach no assumption is added
to the DDB by applying some kind of default reasoning. When there is not enough informa-
tion in the UDB to answer a given query, the answer provide tlie less restrictive assumptions
which allow to infer the query.

Let’s consider for example the very simple DDB : A V I3 +-- C A D, C, and the query :
A?.

In that case we cannot provide a direct answer to the query, but we can provide the
conditional answer : A - D A l B . Then the user knows that A is true under the assumptions
: D and l B , and he can take the decision himself t o assume or not D and 1 B .

In the next section is presented a general definition of conditional answers. Then we
present a strategy to compute conditional answers. Its efficiency is compared with another
standard stmtegy, and we point out the pa.rticular problem of infinite answers. In the last
section we propose a modification to this strategy in order to compute extensional conditional
answers i n a finite number of steps.

2 General definition of Conditional Answers

We consider queries which are positive literals. This assumption does not restrict generality.
Indeed, if the query is a general formula F(x), we define a new predicate symbol q(x), we
add to the DDB the formula Q = (q(x) +- F(x))Vx, and the query is represented by the
positive literal q(x).

23

EDIU is a set of ground formulas. IDB is a set of formulas. We coiisider the theory
T = IDB U EDB U Q, whtrc all the formulas are represented in clausal form, arid each clause
is Range Restricted. Moreover, as usual in the UDU context, we consider cla,iises without
functional symbols.

Definition 1 : Conditional Answer

Let q be a positive literal, the conditional answer to the query q is the set of clauses :

{ qa V c I T t- qa V c , and qo V c is not a tautology, and qa V c is minimal wrt
subsumption }

A clause d is minimal with regard to subsumption, in the context of T, if there is no
clause d’ dcrivnble from T such that d’ siihsutnes d. A clause d’ subsumes a clause d if there
exists a substitution 0 such that : d’cr C d.

The clause c is called by Reiter and de lilcer, in [l l] , a niiniinal support for qa. The
clauses qcr V c satisfying these properties are called miniinal iniplicants.

It is important t o notice that copmuting Conditional Answers is a new kind of problem
with regard to Theorem Proving and Logic Programming. I he itew feature comes froin
the fact that an a,nswer is neither a truth value, like in Theorem Proving, nor a set of
substitutions, like in Logic Progra.mming, but i i set of clauses.

r ,

This prohlcrn is deeply related to Abductive reasoning, with some particular features due
t o the DDB coiltext.

Definition 2 : Extended Conditional Answer

With the same notations we define an extended conditionial answer as the set of claiises :

{ qa V c I T !- qo V c, and qo V c is not a tautology. and there is no clause c’ such that
: T t- qa V c’ and c’ subsumrs c }

We can <wi ly see that, for a given qiiery, tlic extended conditional answer contains the
conditional a~is\vcr. The only diffweiice is that for claiiscs i n the extended conditional answer
there is no guctrantee that c is not a theorem of 1’; this means that 7c may he an inconsistent
assumption.

24

3 Intuition of the strategy

The strategy presented in this section has been specifically designed to compute extended
conditional answers, and i t is based on the L-inference presented in [4]. To get a conditional
a.nswer from an extended conditional answer we have to test, for every given clause qa V c
in the extended conditional answer, if c is derivable or not from T. For this purpose we can
use any strategy designed for Theorem Proving.

The strategy is called GASP, an abreviation for Generate As Soon as Possible. It is
informally described in this section with a simple example. For this decription we shall cad1
relevant theorem for a given query, a clause derivable form T containing the query, or one of
its instances.

The idea is, in a first step, t o select the axioms in T which are relevant theorerns.In the
current step one, or several, generated relevant theorems are resolved with an axiom in T.
The resolvelit is a new relevant theorem which can be used in the next step. At each step
tautologies and subsumed clauses are removed.

Let's consider, for exa.mple, the theory T with the axioms :

(1) Px V -iQx (2) PX V ~ I L x (3) QX V RX V i s> ; (4) TJx V IPX
(5) Pc V 1 U c V T c (6) Sa V iTa (7) Sb V Ub

and the query : Px?

The clauses generated by the GASP strategy are :

Step 1 : (1) Px V 1 Q x
Step 2 : (S) [Px V Rx V lSx]
Step 3 : (12) PaV 1Ta

(2) Px V 1 R x

(13) Pb V Uh

(5) Pc V 1 U c V T c
(9) [Px V Qs V ~ S X] (10) Px V l S x (l 1) [Pc V 1 P c V Tc]

In the Step 1 arc generated the axioms in T containing an instance of the query Px. In
the Step 2 a standard resolution generates (S) (resp. (9)) from (1) (resp. (2)) and (3). The
clause (11) is generated from (4) and (5) . An hyperresolution generates (10) from (l), (2)
and (3). Notice these resolutions prescrve Px, or an instance of Px, in the resolvent. At
the end of Step 2 the clauses (S) and (9) are removed because they are subsumed by (l o) ,
and (11) is removed because it is a tautology. The removed clauses are represented between
brackets. In the Step 3 (12) and (13) are respectively generated by resolving (6) and (7)
with (10) .

Though GASP generates only relevant theorems the final result, here the clauses : (l) ,

''The predicate arguments are not between parenthesis to have simpler notations. For example, P(x,a) i s
noted Psa.

2 5

(2), (5), (lo) , (l a) , and (13), is not tlie conditional ansrvcr but the extended conditional
answer. For instance the clause (13) is not in the conditional answer because it is subsumed
by (14) Ub, which is derivable from (4) a id (13).

A s we said before for each clause in the extended conditional answer it would be possible
to check if the condition is consistent or not with 'I' in a further phase. For example to check
if [Jb or T'Ya are theorems, we coiild apply again the GASP strategy to the queries : Ub?,
or l T a ? , in order to test if TJb or YTa are theorenis of T.

4 Formal definition of the strategy

In this section the strategy is formally defi~ied by aileta rules. These rules express, at a nieta
lrvel, the derivation control. It is important not to confuse the strategy used for meta rule
evaluation, and the derivation strategy, at the object level, which is decribed by these meta
rules. We use tire following notations.

Meta-variables :

0 q, 1; : literal variable; thew variables hrt-' instantiated by 1itcra.l~ a t the object level

0 -11; : literal variables; such a variable is iristrtntiatcd by a literal which is the complement
of 1;.

e ci : clause variables; these variables are instantiated by sets of literals at the object
level; this set may be the empty set.

a 1 v li v ci : denotes tlie set of literals : {I} u {li} u ci.

a 1 V c1 V . . . ?/ c, V clJ : denotes the set of literals : (1) U c1 U . . . U c, U CO.

Meta-predicates :

a Query(1) : this predicate means that ws haw to find the extmded conditional answer
to the query 1.

e Ax(c) : tbis.predicate means that c is an axiom of T.

m Tti(c) : this predicate mems that c is a theorem of T.

26

Definition 3 : GASP Strategy

(1) Query(q) A Ax(q V c) - Th(q V c)

(2) Query(q) A ‘Ih(q V 11 V C I) A . . . A ’l’li(q V 1, V c,) A Ax(1l1 V . . . -11, v CO)

+ Th(q V ~1 V . . . V C, V CO)

One could notice that it is not usual to ha.ve dots in a formal definition. We have used
dots here to ma.ke the definition more easy to rea.d, however it would not be difficult to
replace the dots by recursive definitions without dots.

We define a meta theory M T containing the rules (1) and (a) , tlie sentence Ax(c), for
each clause c in T, and the sentence Query(q), where q is the literal denoting the initial
query.

The meta rules are evalua.ted with a trivial strategy which is an incremental saturation
by level, with eliminatioii of subsumed cla,uses and tautologies. Here incremental means that
when a new sentence is generated by a meta rule , at least one of its premisses in tlie ineta
rule has to be a. new sentence in the computa.tion of the previous level.

The sets of sentences generated by saturation by level are denoted by : SO, S I , . . . , Si,

So contains all the sentences derivable in one step by the rules (1) and (2) from MT.
A sentence is derivable by a rule if there exist a rule instance whose consequence is this
sentence, and all its premisses are satisfied by MT. ,411 the tautologies, and all the sentences
subsumed by a sentence in M T or So are removed from S O . We call AS0 the resulting set of
derived sentences.

We define Si+l and AS;+, in function of S; and AS, i n the following way. We consider
all the sentences derivable using the rules (1) and (2) from M T and Si and we remove from
this set all the tautologies and all the sentences subsumed by a sentence in MT or Si. The
resulting set of sentences is called AS;+, . Then S;+1 is defined by : S;+1 = Si U AS;+,-

If M is any meta predicate, we say that the sentence M(c’) subsumes the sentence M(c)
iff the clause c’ subsumes the clause c. We also say that M(c) is a tautology if c is tautology.

We say that the premisses of the rule (2) (a similar definition applies t o rule (1)) are
satisfied by a set of sentence S iff :

0 the following set of sentence is in S, or S contains sentences whose some factors are :
Query(&), Tli(Q1 v L1 V Cl) , . . . , Tli(Qn V L, V Cn), AX(TL’, V . . . V TLL V CO); where
Q, & I , L I , C1, . . . , Qn, L,, C,, Co are literals or cla.uses at the object level,

0 there exists a most general unifier (T which is solution of the equa.tions :

27

Tn that case the instantiation of the meta variables is :

arid the generated sentelice is Th(q V c1 V . . . V Cn V cg).

The eqiiatiions I,=L’, where L arid L’denote P(t1,. . . , tP) and P(t{, . . . , t;), or lP(t1,. . ., tI,)
and lP(t;, . . . , t;>, are short hands for the set of equations :

t l = t; tz = t; . . . t, = t;

It is easy to show that the interpretation we have defined for the meta rules defining
GASP provides a definition for a least fixpoint operator.

5 Comparison with other strategies

It is interesting to compare GASP with another very intuitive strategy based on the idea
of the decompositiorr of problems into sub-problems L‘ & la Prolog”. Here the problem is to
compute tlte estencied conditional answer to a query : A?, If there is an axiom containing
A in clie theory T of the form : A V 1 1 3 1 V . . . V ~ € 3 , V . . . V 7 B n , where the B;s may be
positive or negative literals, we caii generate sub-problems, i.e. new queries, of the form :
B,?, B,?, . . . ,E;?, . . . , B,?. Indeed wc know that any answer to a query like B,? is of the
from : B; V ci, and thercfore any set of answers can be resolved by an hyperresolution with
the axiom to generate new answers of tlic form : A V c1 V . . . V c, V l R j + I V . . . V l&,. This
strategy i s called CALLP, whicli is a11 alx-eviation for Generate As Late as Possible. It can
he defined by mcta rules in thc S ~ I W style as for GASP.

Definition 4 : GALP Strategy

E’or each i i n [1,p] :

Endfor;

(2) Query(1) A Th(ll V c1) A . . . A T€i(ll, V c ,) A Ax(1 V 1 l 1 V . . .11, V c g) - Tii(1 V CI V . . . V c,, V c g)

28

In the particular case where we impose the lis to be positive literals, and cg, c l , . . . , c,
denote the empty clause, the GALP strategy is very close to stmtegies like : Magic Sets [l],
ALEXANDER [la], QSQ [13], or APEX [5]. In that case the axioms in (2.i) are Definite
Horn clauses, and the generated theorems are ground a,toms. The only difference is that
in these strategies the answers to sub-queries are not computed in parallel. GALP can be
easily adapted in order t o impose to compute the sub-queries in sequence, as we did in [3].

Unfortunately it can be shown tha.t i n every cases GALP generates a superset of the
clauses generated by GASP, and then it is always less efficient. However, as it is noticed in
[4], GASP may generate an infinite set of clauses when the initial theory contains recursive
definitions. Nevertheless if we are interested in Extensional Conditional Answers containing
only ground clauses, it is possible to adapt GASP in order t o prevent infinite derivations.
T1ia.t is the purpose of the next section.

6 Strategy for Extensional Conditional Answers

The adapted strategy is based on the following interesting property of Range Restricted
clauses : if a ground clause is derivable, by Resolution, from a set of Range Restricted
clauses, and if s is the composition of all the most general unifiers used in the proof of that
clause, then, if we apply s t o any cla.use in the proof, we get a ground clause. The idea is
to design a strategy, based on this property, which generates only “ground proof trees”, i.e.
proof trees where all the clauses are ground clauses. The intuition of the strategy can be
presented with the following example :

(1) Lxy V 1Pxy V TP’xy
(2) LXY V 1Rxy V TR’xy
(5) P’XY V R‘XY V 1Sxy

(3) Pa.y V 1Ty
(4) Rxb V TUX

Let’s consider the corresponding connection graph, as defined by Naqvi and Heiischen in
[9] (see Figure 1) . In this graph the nodes are clauses, and we can imagine these clauses as
active agents able to send or to receive queries or answers, and able to store the answers. The
role of these queries and answers is to find the unifiers of the proofs whose composition can
lead to ground unifiers. They are of a different sort than the initial query and the conditional
answers.

For example if the clause (1) receives the query Lxy?, then it sends the two queries Pxy?
and P’xy? along the edges starting from the clause (1).

When the clause (1) sends to the clause (3) the query Pxy?, the meaning of this query is
: “what would be the most general unifier if the clause (1) would be resolved with the clause
(3) on the literal Pxy ?”. The returned answer in that ca.se is Pay!.

2 9

We can also imagine that each clause can store the answers i t lias received from the other
clauses, and that these stored iiiiswers can be used to generate new answers. For example
the clause (1) can use the answer Pay! received from (3) to send the answer Lay! to the
query Lxy?.

We can easily sce that after receiving the query I”xy? the clause (5) sends to the clause
(2) the query TFL‘sy?, and the clause (2) sends to the clause (4) the query Rxy?. The clause
(4) returns to the clause (2) tlie answer Rxb!, and the clause (2) returns t o the clause(5) the
answer TR‘xb!. Tlien the clause (5) returns to the clause (1) the answer P’xb!.

At this stage the clause (1) knows, froin tlie answcrs Yay! a i d P’xb!, that there exists a
proof, involving the clause (l) , where the composition of all the iiiost general unifiers defined
in that proof transforms the clause (1) into a ground clause. Tlien the clause (1) call generate
tlie corresponding grouiid instance : (6) Idah V 1Pab V lP’alJ, which is a ground conditioiial
aiiswer t o the initial query.

In the furter steps the clause (G) can be resolved, arording to GASP strategy, with (3) to
gencrate : (7) Lab V 1Tb V ~P’a l t , or with (5) t o generate : (8) Cab V 1Pab V It‘ab v +ab,
or with both (3) and (5) to geiierate : (9) Lah V 1 T b V Rab V 1Sah.

(3) 1 Kxb I - . ux 1
Figure 1: Connection Graph

The strategy we have infornially presented is called : GRASP, for “Generate gRound As
Soon As Possible”. Its description in t e r m of meta-rules is presented in the DefinitioIi 5 ,

30

where we use the iiotatioiis :

GrAx(c) : c is a ground insta.nce of a.n a.xiom.

l? : we have to find the 1 instances which appear in soiiie derived clause of the form 1 v c.

l! : there exists a derived clause of the form 1 V c.

Definition 5 : GRASP Strategy

For ea.ch i i n [I,.] :

(2.i) l? A Ax(1 V 11 V . . . V 1; V . . . V ln') - i l i ?

Eiidfor;

(4) Query(q) A i l j l ! A . . . l l j p ! A GrAx(q V 11 V . . . V 1,) + Th(q V 11 V . . . V I n)

(5) Query(q) A Th(q V 11 V c1) A . . . A Th(q V 1, V c ,~) A
I,,! A . . . A lip! A GrAs(i l1 V . . . 11, V CO) - Th(q V ~1 V . . . V C, V CO)

where i , j1,. . . , j, are in [1,11].

In this deliiiition the meta-rules (2.i) generate sub-queries in the same way as GALP
does. An important difference is that tlie answers to queries of the form : l? are not clauses
but literals like : l.!. That is the reason why the computation always stops. Indeed, even
if there are recursive definitions the number of answers, up to the variable names, is finite
when we do not have function syinbols.

The meta-rules (4) and (5) are very similar to the corresponding ones in the GASP
definition, and tlie ineta-rule (3) generates t,he solutions of the form l'!.

The evalna.tion of these rules, with the technique defined for GASP, generates only ground
theorems which are ground conditional answers.

31

7 Conclusion

We have presritted a strategy (GASP) to geiierate conditional answers in the context of a
non-Horn Dpductivc Data Base. ‘The basic idea is to focus the derivation process on clauses
which are relevant for the query.

We have compared this strategy (GASP) with an another btrategy (GALP) similar to
standard strategies used in the contest of L)eductive Data Dases for Horn clauses, and we
have shown that GASP is always more efliricrit than C;ALP. GASP is defined by ineta. rules,
and a least fixpoint operator can be associated to these rules. ‘fhis computation technique
prevents to repeat several times the same coinpiit ation. This is a significant brncfit with
respect t o compiitatioii techniques ‘‘A la Prolog”, or based o i i SI,-resolution.

In the case of reciirsive definitions tlict answer may be infinite. For this p r t i cu la r case
we have desigiied tlie GRASP strategy, a,ii adapttitioil of GASP i n order t o derive oiily
ground clauses. ‘I’ho associated least fixpoint operator always compute tlre a.nswer i n a finite
iiiiiiiher of steps. Ilowever a t this t,iirie we have no result allout the completeness of GRASP,
because we ha,ve iio clenota,tiona.l tlefiiiitioit of w h a t is comyutcd by GRASP. That needs
more investigations, aud as to be considered as a work i n progress.

It should also be clear that the defiiritions of these strategies have to he considered as a
general fra.inework for further refincments. Iitdcetl t.liere are m a n y open choices to irtiplerrient
these stra,legies, and, depeiidiiig on these cliniccs, the performa.iices can be strongly improved.

Acknowleclgcinents : Many thanks to Luis Farifias del Cerro for all our fruitfill1 and
stimulating discussions.

References

[l] E’. IJancilIm and 13.. Itaiiia.k.risl,,iiaii. A n aiiia.teur’s introduction to recursive query
processing strat,egies. In Pi-oc. ACAf PODS, 1986.

[2] I,. Cholvy and R.. Deinolombe. Querying a Ii.ule Ba.se. In Proc. of 1st Int. Conf. on
Kcpe rt Data ba.w 5 ‘ ~ ~ s te nis, 19 8 6 .

[3] R . I)eitioloiiibe. A n eflicient evaliiatioii stra,t.egy for Non-Ilor11 1)eductive Data Ilases.
In IFIP C‘ongress’S9, extended t ~ r s i o i i in : Jouriza/ of ‘I’lieoreticcil Computer. Science
Nrrin 7s. Elsevier, 1989.

[4] R. Deinolombp and L. Fariiias del Ckrrn. Efficient representation of incomplete infor-
iiiatioi L abou t s t ruc t 11 red objects . In J . S cli irii dt and C2 .Th a nos, ctli t ors , Fozi iztlci t ions of
Knowledye 13ases Mcintigcmriil. Springer-Verlag, 1990.

32

[5] E. Lozinski. Evaluating queries in deductive databases by generating. In Proc of IJCAI,
1985.

[GI E. Lozinski. Conipiiting facts in non-horn deductive systems. In Proc of VLDB, 1988.

[7] J. Minker. On indefinite databases and the closed world assumption. In Proc. of 6th
Co 12 je re n ce 0 12 A ut o i n a t ed Reo so 12 i ng , 1 9 S 2.

[SI J. Miiiker and A. Rajasekar. Procedural interpretation of non-horn logic programs. In
Proc. Coiaference on Autonznted Deduction, 19S8.

[9] S. Naqvi and L. Henshen. Recursive query answering with non-horn clauses. In Proc.
Conference on Autonanted Uecluction, 1988.

[lo] R. Reiter. Nonmonotonic reasoning. In Annual Reviews of Computer Science, 2, 1987.

[l l] It. Reiter and de Kleer. Foundations of assumptioii-based truth maintenance system.
111 AAAI-S7 , 1987.

[12] J . Rohnier, R. Lescoeur, and J - A i l . Iierisit. The alesander method : a technique for
the processing of recursive axioms i n deductive databases. New Generation Computing,
Vol. 4(Num. 3) , 1986.

[13] L. Vieille. Recursive axioms in deductive databases : the query-sub-query approach.
In L.I<erschberg, editor. Proc. 1st Zr2t. Conj. on Expert Database Systems. Ben-
j ami n / C uiiim i n gs I’ u 11. C om p . , 198 7 .

3 3

INTEGRATED REASONING THROUGH ASSOCIATIVE RETRIEVAL

Thorns C. Eskridge

Computer Science Department &
Computing Research Laboratory

New Mexico State University
Eas Cruces, NM 88003-0001, USA

(teskridg@nmsu.edu)

ABSTRACT

Deduction, induction and analogy have traditionally been treated as separate
processes each requiring specialized machinery. We present a hybrid con-
nectionist - symbolic approach that seamlessly integrates these forms of rea-
soning by way of associative retrieval.

1. INTRODUCTION

Traditional research in machine learning has taken a componential view of reasoning
where deduction, induction, and analogy are studied separately with a different computa-
tional mechanism proposed for each. While this approach has value in identifying key is-
sues for each technique, it also has problems in that the research generally does not make
any attempt to integrate the techniques in an overall cognitive architecture.

We have designed and implemented a computational model in which small variations
on a single mechanism, associative retrieval, can perform deductive, inductive and analog-
ical reasoning. Similar notions of using a uniform mechanism to perform the three reason-
ing tasks have been proposed [1,2,31. Our notion differs from these in that we employ the
principles embodied in the Continuous Analogical Reasoning theory to constrain and focus
what is retrieved, ensuring the retrieval. of the most relevant, useful information available
r4,51.

This paper begins with a discussion of Continuous Analogical Reasoning, motivating
the need for interactions between the stages of analogy and comparing it to Discrete Ana-
logical Reasoning. It then describes the hybrid symbolic-connectionist knowledge repre-
sentation and processing mechanisms of the ASTRA program. It is the unique combination
of structure and processing in ASTRA which allows the complex, continuous interactions
to take place among all stages of the analogical reasoning process. The system’s behavior
under different forms of reasoning is then discussed, which shows success in achieving in-
tegrated reasoning and provides impetus For future research.

2. ASTRA: AN OVERVIEW

Analogical reasoning is typically divided into three stages: retrieval, mapping, and
evaluation & use. The retrieval stage involves accessing knowledge from long-term mem-
ory (called the source) that can be applied to the current problem. In the mapping stage, the
objects and relations of the source are placed into correspondence (also called a mapping)
with the objects and relations in the target. By extension of the mapping, the evaluation 8r

34

use stage takes knowledge present in the source but not in the target (conjectures) and in-
troduces them into the target domain. The conjectures are transferred to the target by re-
placing objects from the source with their corresponding objects in the target, and asserting
the modified conjecture in the target. The evaluation & use stage then evaluates the new
knowledge, checking to see if the current goal has been met, and setting new goals for the
system.

ASTRA is a computational model of human analogical reasoning developed to encom-
pass the entire range of analogical reasoning, rather than an isolated phenomenon [6,7]. As
prescribed by the Continuous Analogical Reasoning theory, ASTRA models the three stag-
es mentioned above and their interactions. The interactions between stages can be consid-
ered as soft constraints or “preferences” [8] which modify the processing done in each stage
to reduce the search space and focus reasoning on relevant information. The interactions
make the analogical reasoning process more efficient by reducing the search space, as well
as more robust by focussing reasoning on relevant information.

Discrete Analogical Reasoning systems are those systems that do not promote interac-
tion among the stages of analogy. These systems generally model only one stage of the an-
alogical reasoning process. One justification is that the researcher is only interested in one
of the stages, thus modeling only it. Another justification of this approach is that it is easier
to implement one component at a time, with the idea that, once components are developed
for each stage of analogy they can be tied together to create a complete system. I argue that
modeling a single stage of the analogical reasoning process will be inadequate for two rea-
sons: l) The modeled portion will also include mechanisms to perform processing that
would normally be done by another stage. An example of this is the mechanism that creates
an initial mapping when modelling only the mapping stage. This information would nor-
mally be created by the analog retrieval process, where the source is examined with respect
to features of the target to determine its relevance to the current situation. Thus, to ade-
quately model just a single stage, the interactions with the other stages must be taken into
account; 2) When combined into a complete system, the discrete approach will lack the ef-
ficiency of the continuous approach because it discards search constraining information
generated by the stages instead of making it available to the other stages. As in the previous
example, the search for a source analogy will necessarily involve the comparison of the tar-
get to prospective sources. Generally, the source that shares the most features with the tar-
get will be selected. If the correspondence infomation is not passed on to the mapping
stage, the mapping stage must reproduce portions of the search done previously by the re-
trieval process in order to find the initial mapping. As in many cases in computer science,
the lack of efficiency of an algorithm can result in lack of capability as well. Thus, I argue
that from a psychological standpoint, it is more difficult to determine what parts of a dis-
crete modelled stage are actually part of the stage and what parts are required due to the
lack of interaction. From a computer science standpoint, the redundant search of required
by a discrete analogical reasoning system can result in a limited ability to handle scaled-up
problems. Our hypothesis is that a better understanding of analogy will result from looking
at analogy as a continuous process rather than as a set of discrete components.

The premise of this paper is that a cognitive architecture can be built based on the con-
tinuous interaction mechanisms in ASTRA that makes no procedural distinctions between
deduction, induction and analogy. Instead, the style of reasoning performed depends entire-
ly on the type of information retrieved during the retrieval process. If the information is a
rule, the mapping stage unifies the antecedent and instantiates the consequent. The evalua-
tion & use stage transfers the consequent to the target and starts a new remeval on the en-
hanced target. If the information retrieved is a set of sources, then a generalization process
may be invoked to induce a description of the set. This description can then be used as the
source from which to transfer information to the target. Tf the information retieved by the
retrieval process is a single source, analogy can proceed as usual.

35

Extension of Initial
Correspondences

Fig. 1. Architecture of ASTRA. Like a blackboard system, all interactions
between processes occurs in the hybrid symbolic-connectionist network.

3.0 ASTRA ARCHITECTURE AND PROCESSES

The architecture of the ASTRA system is shown in Fig. 1. This figure shows the bidi-
rectional communication between each of the three processes mediated by the hybrid sym-
bolic-connectionist knowledge representation network. The processes communicate by
varying activation levels on nodes relevant to the current task. The principal mechanism for
this is spreading activation. One of the difficulties in dealing with activation alone is the
credit assignment problem: What nodes most significantly influenced a highly active node?
To overcome this, spreading activation is augmented by a marker passing scheme which
deposits on each node a pointer to the source of the activation.

The task of the retrieval process is to activate a set of sources which are semantically
similar to the target problem, creating a set of initial correspondences in the process. The
mapping stage interacts with retrieval by directed activation and marker passing, pressuring
the retrieval stage towards analogs which are syntactically and systematically similar to the
target. The evaluation & use stage spreads activation from the goal or context related as-
pects of the target description, pressuring retrieval towards sources that are pragmatically
relevant to the target goals.

The task of the mapping process is to extend the initial correspondences to unmapped
nodes in the source and target. The extension is done using the initial correspondences from
the retrieval stage, pragmatic constraints from the evaluation & use stage, and systematicity
principles to constrain the possible matches in the target. Nodes in the source that have no
mapping after extension are considered to be conjectures and are marked for transfer by the
evaluation & use stage.

The evaluation & use stage is responsible for exerting pragmatic goal and context-re-
lated pressures on retrieval and mapping. The symbolic procedures for the creation of new

36

nodes and links resulting from the transfer of a conjecture reside in the evaluation & use
stage. Procedures for determining if current goals are satisfied and the generation of new
goals also reside here. Retrieval influences this stage by suggesting new goals to pursue
based on previous experiences and by suggesting different evaluation contexts for the anal-
ogy based on the type of source retrieved. The context for evaluation of the analogy will
change depending on if the source analog is described in behavioral, causal, componential,
or other terms.

Before presenting the details of the system, it would be useful to look at the process in
overview. At the start of problem solving activities, the initial target analog description or
representation is presented to the system, starting the retrieval process. The retrieval pro-
cess uses a combination of marker passing and spreading of activation to both search the
knowledge base for a suitable source analog and to elaborate the target analog description
with deductive pattern completion inferences. Goal and context related information, if
present in the initial target analog description is activated and used as a source of activation
spread by the evaluation & use process. The mapping process is awakened by markers fiom
the target analog touching nodes in other experience descriptions. Since the markers passed
in the network reference the origin of the marker, the mapping process is primed with a par-
tial mapping between the target and the potential source when it is awakened. Extension of
the mapping is done for only the most highly active analogs, or any one marked by the eval-
uation & use’s marker spreading process.

The following section describes the hybrid knowledge representation scheme and the
mix of connectionist and symbolic processing used in ASTRA. There are both theoretical
and practical benefits of using a hybrid representation and processing scheme. Hybrid sys-
tems are theoretically interesting simply because they are new and there is not much infor-
mation available concerning their capabilities. This work can be considered to be an
empirical study of the capabilities of hybrid systems for performing high-level integrated
reasoning. The other benefits are purely practical: symbolic and connectionist systems have
different strengths and weaknesses that are orthogonal and complementary. I believe that
more powerful systems can be built with properties not present in either paradigm alone us-
ing each technique where natural and appropriate.

3.1 KNOWLEDGE REPRESENTATION

The knowledge representation used in ASTRA is a tightly-coupled integration of sym-
bolic semantic networks with unweighted, labeled links, and sub-symbolic connectionist
networks with unlabeled, weighted links. Each knowledge-level concept in ASTRA is rep-

Fig. 2. Graphic representation of “Because John loves Mary, he kisses her”.
All links are bi-directional, with reverse links not shown.

37

resented by a labeled node. These nodes are shared by both the symbolic and sub-symbolic
portions of the knowledge representation. Each node also has associated with it a set of mi-
crofeatures which describe the concept [9 l. For example, the concept “LOVE” has (adore,
respect honor, dote, fancv, desire, -1 as its set of microfeatures. The concept
“LIKE” has (adore, fancv, esteem, favor) as its set of microfeatures. The similarity
between these two concepts are represented in the overlap between their microfeature sets.
The similarity is determined by the activation spread from one node to the other. Thus, the
more microfeatures shared between concepts, the more similar they will be.

Abstracting from the implementation level, the knowledge representation can be divid-
ed into four parts: The hierarchy of concepts, the story representation, rules, and the pro-
cess-created data structures. The hierarchy defines the concepts that are known by the
system and how they are related to one another by ancestry and packaging. The story rep-
resentation ties together instances of concepts found in the hierarchy with relational infor-
mation, forming a conceptual representation of the actors and actions of a story. Fig. 2
shows graphically the representation for the short story “Because John loves Mary, he kiss-
es her.” Rules are represented in much the same manner as stories: concepts in the anteced-

Fig. 3. Rule link “IMPLIES” in rule definition. The special “AND” node is
not shown for clarity. Shaded “LOVE” node is created on rule application.
Dashed links show connection of arguments to created node.

ent of a rule are tied together by a special “AND” node which is connected to the consequent
nodes by an “IMPLIES” link. Fig. 3 shows an example of a simple rule. The process-created
data structures are structures created in response to the actions taken by the retrieval, map-
ping, and evaluation & use processes. There are two such data structures: markers and
bridges. A marker is simply a pointer to the node originating the mark. A bridge is a special
type of link that has pointers to other bridges that it uses or that use it. The functionality of
these data structures will be discussed in the next section.

3.2 PROCESSING MECHANISMS

The continuous analogical reasoning theory places some special processing requirements
for a computational implementation. The greatest difficulty lies in the need for communi-
cation among the three stages during processing. There are four basic processing mecha-
nisms used in ASTRA to implement the continuous analogical reasoning process:
automatic spreading of activation, marker passing, directed retrieval, and traditional sym-
bolic procedures. Automatic spreading of activation passes activation from a node to all
neighbouring nodes [lo]. A user specified decay rate attenuates the activation as it is spread
in the network. The default activation rule is:

38

i

where a,.,(t) is the activation of node n at time t, we is the incoming weight from node i to
node n, oi(t) is the output of node i at cycle t, and &is the activation decay rate. The output
function of a node i is:

.-

Oi(t) = 1 7:;) ai(t> 2 e
o otherwise

where a. is the number of links connected to node i, and 8 is the activation threshold I 11 cutoff.

SAR-2: If the link is marked as special because of the goals
or context of the problem solver, increase activation by
specified amount.

SAR-3: If the link‘s head-node has the same label as the or-
igin of the activation, then double the amount of activa-
tion on that node.

y of the marker given to the node

s on a node from a different story
symbolic process that will build

Fig. 4. Spreading Activation and Marker Passing Rules. A set of transition
rules define exceptions to the default activation transfer equation. Two sim-
ple rules define the marker passing procedure.

The marker passing mechanism follows the activation spreading process and puts
markers containing information about the origin of the activation on each node receiving
activation. When a marker is placed on a node from a different story representation, a
bridge link can be created between it and the target node. The directed retrieval process
complements the above two processes in that it allows activation and markers to be spread
between nodes only over specified links. The symbolic procedures used include procedures
for creating bridge links and for determining untouched portions of story representations.
More detail on the processing mechanisms can be found in [7].

39

4. REASONING IN ASTRA

In this section we describe the reasoning methods ASTRA can produce. To do this we
present the discussion in terms of an example from our test domain of interpersonal rela-
tionships. For this example, ASTRA has four stories represented in memory from which to
draw information. The stories are:

1: “Because John loves Mary, he kisses her” (shown in Fig. 2),
2: “Because Carol dislikes Ted, she slaps him”,
3: “Because Jenny loves Tom, she kisses him”, and
4: “Because Fred loves Wilma, he kisses her”

and the rule:
R1: “If a person looks longingly at another person, the first person loves the second per-
son”
Given the target “Romeo looks longingly at Juliet” shown in Fig. 5 , what predictions

can be made from this?

4.1 DEDUCTION IN ASTRA

Automatic spreading of activation is begun when the target is presented to AS‘TKA. The
target nodes “LOOK-L-AT”, “PERSON(1)” (the agt node), “ROMEO”, “PERSON(2)” (the
pat node), “JULIET”, “MALE”, and “FEMALE” act as sources from which activation is
spread. A marker is created for each of the target nodes and is passed along with the acti-
vation, continuing until the activation level falls below a user-specified threshold. Activa-
tion from each of the target nodes moves up into the hierarchy and back down to nodes in
the same class, but in different story representations. At the same time, the evaluation &
use process uses a directed retrieval process to increase the activation of any node that pass-
es over a ‘TAUSE” link. The evaluation & use stage emphasizes “CAUSE” links since the
goal of the system is to answer “What will happen because Romeo looks longingly at Juli-
et?”

Activation
from “LOOK-L-AT” spreads up the hierarchy and back down to node “LOOK-L-AT” where
rule R l is connected. When activation reaches the rule, a symbolic process is triggered that
creates a bridge link between the “LOOK-L-AT” in the target and the “LOOK-L-AT” in the
rule. Activation also travels from the target nodes across microfeatures to other nodes, and

Activation spreads from each activation source to all connected nodes.

Fig. 5. Target representation of “Romeo looks longingly at Juliet”. The goal
is to determine what will come of this situation.

40

bridges are created for them also. A strength is associated with each bridge that corresponds
to the degree of evidence for that correspondence. The bridge strength is the amount of ac-
tivation at the bridge’s head node that can be attributed to the node at the tail of the bridge.
Since the target “LOOK-L-AT” and its correspondent in R1 have identical labels, the acti-
vation at “LOOK-L-AT” in R1 and the bridge is doubled by rule SAR-3. Thus, it has the
highest activation of all bridges emanating from “‘LOOK-L-AT” in the target. The other
nodes in the target also spread activation and set up bridges with corresponding nodes in
the knowledge base.

Once all activation has fallen below a user specified threshold, a symbolic process is
invoked to which selects the source analog from the group of competing analogs. The se-
lection is made by choosing the maximum of the sumied activation of all nodes in the story
representation, combined with the activation along the bridges between the target and the
story representation. In this example, rule R I has the highest activation and is chosen as the
source. The mapping process enforces systematicity in determining which set of bridges
created by retrieval will yield the best mapping. This is done by preferring bridges that re-
late identical case relations between head and tail nodes of the bridge with the highest ac-
tivation. By focussing on the bridges with high activation, the mapping process pairs the
target with rule R1. In this pairing, the rule node “LOVES” is left unmapped, and so is
marked as a potential node for transfer.

Evaluation & use notices that there is a node marked €or transfer and sets up a symbolic
process to create a new instance of that node, and create links to the corresponding nodes
in the target. The evaluation & use process checks to see if what has been transferred to the
target is enough to solve the current goal “What will happen because Romeo looks long-
ingly at Juliet?” In this case, the information transferred does not provide a solution to the
goal, but rather, the deduction provides a means for restructuring the target situation into
an new problem, “What will happen because Romeo loves Juliet?” Evaluation & use sets
this problem up as the new goal for the system.

4.2 INDUCTION IFV ASTRA

Armed with a new target situation, ASTRA restarts the retrieval process. Activation
spreads from the deduced target node “LOVES” through the hierarchy to the “LOVES”
nodes in sources 1, 3 and 4. Activation will also go to the “DISLIKES” node of source 2 if
the activation level does not fall below threshold after climbing an extra step up in the hi-
erarchy to reach a common generalization. Once activation does reach a “LOVES” node in
the source stories, the mapping process creates a bridge between the “LOVES” node in the
source and the “LOVES” node in the target. The strength of this link will be high relative to
the strength of a bridge between “DISLIKES” and “LOVES”, because of their close proxirn-
ity in the concept hierarchy. At the point where activation from the target is spread from the
“LOVES” nodes in sources 1, 3 and 4, the activation is increased by the evaluation & use
process because of the “CAUSE” links connecting the nodes.

Target nodes spreading activation now have new paths to explore along the newly cre-
ated bridges. Activation levels that would normally not be strong enough to go through the
hierarchy to other sources can now go there directly by way of the bridges. When a node
sends activation along a bridge, another directed retrieval process is created by the mapping
stage that checks if the relationship between the origin of the activation and the head node
of the bridge is present on the tail-node. If it is, then a new bridge is set up between those
nodes. Thus when “PERSON(1)” passes activation and its marker along the bridge between
the target “LOVES” and the “LOVES” in 1, a similar relationship is found between the target
“PERSON(1)” and the source “PERSON(1)” nodes. A new bridge is set up to reflect this re-

41

lationship. The new bridge is also connected to the bridge traversed as a component of that
bridge and increments its strength by the amount of activation in the new bridge. The bridg-
es then form a network of competing mapping hypotheses. In this example, the bridges that
map the target to sources 1 and 4 have greater strength than those mapping the target to
source 3. Source 3 requires a mapping of “MALE” =$ “‘FEMALE” and “FEMALE” *
“MALE” which will have lower strength than the identical mapping of the bridges to sourc-
es 1 and 4. Thus, sources 1 and 4 will have the greatest activation and will be selected as a
set of sources.

When the retrieval process proposes a set of sources instead of a rule or a single source,
an induction process is spawned to produce a generalized story which encompasses the sto-
ries in the set. The induction process is done by simple hierarchy climbing and replacing
differing constants by variables. In this case, the generalization procedure will produce
“When a male person with any name loves a female person with any name, he will kiss
her”. The new structure is placed into memory with appropriate links to sources in the set.
The bridges from the target to the different sources in the set are similarly generalized. The
generalized bridges are connected to the target and the generalization. The strength of each
generdlized bridge will be the sum of the strengths of the member bridges between the tar-
get and the sources in the set. Thus, the generalization will now have the highest activation
of the story representations in memory.

4.3 ANALOGY IN ASTRA

Now that the generalized story created by the induction process has the highest activa-
tion of any story representation linked to the target, the mapping process again enforces
systematicity in selection a set of bridges which represent the mapping. Nodes in the source
that have received activation but do not have a bridge associated with them are selected €or
transfer to the target. The evaluation & use stage checks the nodes linked to the selected
nodes for bridges. If a bridge exists, the corresponding node in the target is linked by the
same relation to the newly created target node. If a bridge does not exist, a ‘‘sk~lem’~ node
is built and is then treated as if a bridge had been found. This is done for each link connected
to the selected source nodes. In this example, the generalized “KISS” node is transferred
over to the target situation due to activation gained by spread over the cause link. Since
bridges exist from the agt and pat of the “KISS” node, the nodes at the other end of the
bridges are linked to the new node.

The evaluation & use stage checks the transferred information to see if the current goals
have be attained. In this example, since a “CAUSE” fink has been transferred to the target,
the goal has been satisfied. The action predicted by ASTRA in this situation is that “Romeo
will kiss Juliet”. If the transferred information merely elaborates the target representation
and the goal is not satisfied, then the system will re-activate the new representation of the
target to see if any further information can be conjectured.

5. RELATED WORK

In Sun i l l] , a connectionist model of rule-based reasoning is developed, called CON-
SYDERR. This connectionist system has two levels: one is a connectionist network with a
localist representation, and one is a connectionist network with a distributed representation.
The two networks are linked by connecting the distributed nodes which make up a concept
with the localist version of the concept. A rule-defining “knowledge link” is simply a
weighted connection between the antecedent and consequent of the rule. The representation

42

differs in that the knowledge links emanating from the localist nodes are duplicated in the
distributed network so that every node in the distributed representation of the local node
has a knowledge link to the group of nodes in the distributed representation of the conse-
quent node. This arrangement is beneficial in that nodes which share features with a node
in the antecedent of a rule will also have some ability to fire that rule, based on the similarity
in their representation. However, this implementation has the “multiple instantiation” prob-
lem common in connectionist networks for high-level reasoning [12]: The rule cannot be
applied to two instances of the antecedent because there is only one node representing the
consequent. The problem is solved in ASTlU by having rule-firing create a new instance
of the consequent mode.

Falkenhainer [3] describes an approach to explanation and theory formation that at-
tempts to unify deduction, assumption, induction, and analogy. The reasoning methods are
discriminated not by mechanism, but identifying different types of similarity with the tar-
get. Deduction is defined as a complete match of identical features; Assutnption is a partial
match of identical features, which if augmented by a finite set of consistent assumptions
will allow an explanation to be deduced; Induction is the case where matches are made be-
tween features with a close common generalization; and Analogy, where a wide range of
features and relations are matched, This approach differs from ASTRA in that it does not
take discriminate on the source retrieved, but on the matches that are produced during map-
ping. Falkenhainer’s implementation is entirely symbolic and discrete approach to integrat-
ed reasoning, and thus is polarized with the ASTRA work.

Kokinov [1,2] has developed a system called AMBR in which deduction, induction and
analogy are also treated as slightly different manifestations of associative memory-based
retrieval. As with the continuous analogical reasoning theory, the differences of deduction,
induction and analogy lie only in the outcome of the associative retrieval process. Koki-
nov’s work differs from the ASTRA work in the knowledge organization and processing
mechanisms. The knowledge representation used in AMBR is entirely symbolic, based on
a frame system. However, connectionist networks are dynamically built to select the best
interpretation or mapping for the analogy. The processing mechanisms include a relaxation
search (spreading activation), marker passing, and traditional procedural code. It is not
clear as to the extent any interactions between stages play a role in the processing of an
analogy. Since networks are dynamically created to select a mapping, much of the corre-
spondence information generated by source retrieval may be lost.

Psychological experiments by Kokinov[2] have demonstrated common priming effects
in tests of deduction, induction and analogy. Because of these common effects, Kokinov
concludes the claim that deduction, induction and analogy are performed by a single uni-
form retrieval mechanism. Burstein and Collins [131 also conclude that the type of knowl-
edge retrieved determines the particular line of inferencing produced. The work presented
here is further evidence of how a single mechanism can be used to produce the different
reasoning behaviors.

6. CONCLUSIONS

We have presented a hybrid connectionist-symbolic model in which not only can de-
ductive, inductive, and analogical reasoning behaviors be produced, but integrated to work
together during problem solving. In the example, deductive reasoning is used to enhance
the representation of the target analog. Inductive generalization is used when a number of
similar source analogs are activated, resulting in a new structure that is composed of their
common features. This type of induction has been shown to be useful in analogical reason-
ing also serves as a learning and memory organization mechanism [14].

4 3

The ASTRA system is written in CornrnonLisp and runs on Sun and Macintosh work-
stations, and Symbolics and Explorer Lisp machines. The system has been tested in simple
domains such as the examples given in this paper which have only 90 nodes and 300 links,
to large domains such as database of plays which require 3076 nodes and 13148 links. Fu-
ture work will integrate ASTRA into a problem solving system to more fully test the theory.
Another area of future work involves simplifying the model by implementing the knowl-
edge representation and processing mechanisms in an completely connectionist frame-
work. Realizing ASTRA in a connectionist network may further extend its natural ability
to handle novel input situations. The use of induction as a memory structuring mechanism
will also be investigated. We believe that the integrated reasoning features of ASTRA can
produce memory organization results comparable to Pazzani’s OCCAM program for inte-
grating similarity-based, theory-driven, and explanation-based reasoning 1151.

7. ACKNOWLEDGEMENTS

Discussions with Jeff Shrager and Brian Falkenhainer were helpful in the early devel-
opment some of the ideas in the paper. Discussions with John Barnden and the members of
the Metaphor and Analogy group at New Mexico State University were helpful in specify-
ing the processes involved in the ideas presented.

8. REFERENCES

1. B.N. Kokinov, “Associative Memory-Based Reasoning: How to Represent and Retrieve
Cases,” Artificial Intelligence 111: Methodology, Systems, Applications, 5 1 - 58 (1988).
2. B.N. Kokinov, “Associative Memory-Based Reasoning: Some Experimental Results,”
Proceedings of the Twelfth Annual Meeting of the Cognitive Science Society, 1990, pp.

3. B. Falkenhainer, “A Unified Approach to Explanation and Theory Formation,” Compu-
tational Models of Scientific Discovery and Theory Formation, 157-196 (1990).
4. T.C. Eskridge, “A Continuous Approach to Analogical Reasoning,” Proceedings of the
Third Rocky Mountain Conference on Axtificial Intelligence, Denver, CO, 1988.
5. T.C. Eskridge, “Principles of Continuous Analogical Reasoning,” in Journal of Theo-
retical and Experimental Artifiicial Intelligence 1 (31, 179-194 (1989a).
6. T.C. Eskridge, “Continuous Analogical Reasoning: A Summary of Current Research,”
Proceedings of the DARPA Workshop on Case-Based Reasoning, Pensacola Beach, FL,
May 20-23, 1989b, pp. 253-257.
7. T.C. Eskridge, “A Hybrid System for Analogical Reasoning,” submitted to Advances in
Connectionist and Neural Computation Themy, Vol2 : Connectionist Approaches to Anal-
ogy, Metaphor and Case-Based Reasoning.
8. M. Mitchell and D.R. Hofstadter, “The Emergence of Understanding in a Computer

Model of Concepts and Analogy-Making,” Emergent Computation, 322-334 (1990).
9. D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, Parallel Distributed

Processing: Explorations in the Microstructure of Cognition Volume I : Foundations, MIT
Press, Cambridge, MA (1986).
10. J. Anderson, ‘^Spreading Activation,” TutoriaZs in Learning and Memory, 61-90 (1984).
11. R. Sun, “Connectionist Models of Rule-Based Reasoning,” to appear in Proceedings of
the 13th Cognitive Science Conference, Chicago, IL, 1991.

74 1-749.

44

12. J.A. Barnden and J.B. Pollack, “Introduction: Problems for High-Level Connection-
ism,” Advances in Connectionist and Neural Computation Theory, Vol I : High-Level Con-
nectionist Models, (1991).
13. M. Burstein and A. Collins, “Modeling a Theory of Human Plausible Reasoning,” Ar-
tificial Intelligence III: Methodology, Systems, Applications, (1988).
14. M. Gick and K. Holyoak, “Schema induction in analogical transfer,” Cognitive Psy-

15. M. Pazzani, Creating a memory of causal relationships: An integration of empirical
and explanation-based learning methods. LEA, (1990).

chology 15(l), 1-38 (1983).

45

A FIRST ORDER THEORY FOR REPRESENTING SPACE
IN KNOWLEDGE-BASED SCENE GENERATION

Eiirico Giunchiglia and Alessandro A.rrnando

Mechanized Reasoning Group
DIST - University of Genoa

Via Opera Pia l l A , 16145 Genoa, Italy
enrico@dist .dist.unige.it

arrnando@dist .dist .unige.it

ABSTRACT

The key idea of the wqrk described in this paper is to use a
declarative representation of space (based on first order logic) as
well as a procedural one (based on a semantic network). The link
between the two representation is made by semantic attachment
[l], defining the seniantic network to be the intended model of the
first order thewry. The paper describes how we have modeled space,
both syntactically and scmantically,

1. INTRODUCTION

In the past several space representations have been proposed [2, 3, 4, 5 , 63.
Early papers (for exaniple [7, 81) and receiit papers (notably [9, lo]) have been
written 011 this topic by some meiiibers of our group.

The aim of this paper is to give same furtlim leading ideas and results which
seem useful in order to build a suitable reprcsentation of space for systems ablc
to reason in a “human-like” way. The key idea of the work described in this
paper is to have a first order description as well as a semantic network [ll]
(containing a more extensive description) of the same space. The two world are
related cicfining the semantic rittwork to be the model of the first order theory:
the first order objects and relations are linked to the objccts and relations of
the semantic network by means of semantic attachment 112, I].

We are not faced with the philosophical reasons of our approach or of
others; this topic has becn already faced in [S, 91. Neithcr are we faced with
the aim of tlic coniplcte work and its possible applications (see 17, I O]) . The
reader is recommended to read that papers to have a complete view of the
historical developments and related work of our theory.

‘This work is part of a joint project among all the members of the Mechanized Rea5oning
Group. All of them are thanked for the invaluable support and discussions we took togetlm
and for allowing us to build on their previous work.

46

The paper follows this path: in the next section we present some com-
prehensive ideas which have driven the system implementation. In the third
section we try to formalize some ideas on how it is possible to reason about
space when generating a scene, starting from a human-like ambiguous descrip-
tion, made for instancc in natural language. We propose a not complete (and
not completely described) first order theory enriched with first order default
rules [13]. In the fourth section we focus on a representation of space (even
using multiple valuedlfuzzy semantics [14, 81) which can be seen as an ex-
tensional model of the logic/ syntactic theory. Finally in the fifth section it
is shown how the “semantic attachment” between the first order theory and
procedural reasoning is performed.

2. A PROCEDURAL/DECLARATIVE APPROACH TO SPACE
REPRESENTATION

In the past, when speaking about data representation, people were con-
cerned with new data structures, of whichever complexity. From this point
of view, data were seen as a declarative part, modified and elaborated by
programs. New trends in computer science research tend to eliminate the di-
chotomy data/ procedure (or declarative/ procedural information storage) in
order to create new, more abstracted structures, which join the two aspect-
s (LISP, PROLOG and present research on data abstraction are only some
trivial examples).

Human knowledge is a special kind of information (even if more and more
complex), whose representation (namely knowledge representation) should be
faced with the same criteria used for the “classical” data representation [l l , 151.
This consideration led us to face the problem of space representation from both
a procedural and declarative point of view. This state of mind was enforced
by the consideration that in order to build a system with human-like with an
approach as general as possible, a purely algorithmic/ not structured approach
would not have been sufficiently powerful. Human reasoning (about space
and object positioning) is very structured. At least we can recognize a first
qualitative step of general evaluation of the problem and a final quantitative
step of numerical values handling.

The reasoning we propose is largely qualitative. Our approach, extensively
adopted by some A.I. researchers, for instance in [16, 17, 31, is based on the
following considerations: first, it allows to reach conclusions with very little
information available and, consequently, hard to formalize with quantitative
models; second, qualitative reasoning can be very effective to reach approxi-
mate conclusions, sufficicnt in everyday life, at the right level of detail.

A second consideration, which directly followed from the previous, led us
to the use of logic. Logic allows a well formed definition of the problem and the
possibility of moving within an extensively studied and well known environ-
ment. In this approach first order rules implement the syntactical reasoning

47

about space and arc in some way relatcd to the system qualitative reasoning.
Procedural reasoning can be seen as the semantics of the first order theory of
space and is in some way related to the system quantitative reasoning (even if
it is quite difficult to define an uniwocally defined border between qualitative
and quantitative reasoning, logic and procedural implerrientation). ‘I’hc link
between the two worlds is made by a sort of “sernantic attachment” [l2, 11
which allows the system to switch on semantic rcasoning when syntactic rea-
soning docs not seein sufficient.

More specifically the representation of space we propose is compounded of
thfee parts:

1. First order theory of space (written in some logic language, namcly PRO-
LOG). At this level deduction is perforrried both syntactically (as in any
“classical” proof checker) and through semantic evaluation of functions
and predicates (performing the “semantic attachment” informally stated
in the previous section. This lopic is deeply faced in the next section).

2. Sernantic network (which implements the domain of the interpretation
of the extensional model of space). That is, space is represented through
a graph where the nodes are the objects being in the scene and the links
are marked by the (natural language) spatial relations holding twtween
them.

3. Procedural evaluation of the semantic network (written in some proce-
dural language, namely the C-language). Such procedural evaluation is
performed by a deduction supervisor which knows all the couples:

(the intended meaning of a syntactic object is a member of the domain
D (of the intended model [IS]) if the object is a constant, arid a pro-
cedure, if the object is a functional or predicative symbol). Evaluating
a syntactic expression corresponds to the activation of the associated
(semantic) procedure given the semantic meaning of its sub-expressions.
The equality between the syntactic object whose iiiterided rneariirig is
the computed result and the expression being evaluated, is then assert-
ed in the first order, ground theory. Taking an example by arithmetic,
attaching the numbers “2,3,5” respectively to the first order constants
”two, three, five” and the procedure computing the sum of two niim-
bers to the function symbol “plus”, cvaluating “plus(two,three)” makes
“plus(two,three)=five” being asserted in the theory.

< syntactic object, intended nzeuning >

3. FIRST ORDER REASONING ABOUT SPACE AND OBJECT
POSITIONING

The system accepts, as input, natural language-like scene descriptions. In
particular input phrases are codified in a first order language (with sorts). For
instance the phrase “there is a pen on the table” is codifiied:

48

ON(a,b) where:
“ON” is p r e d i c a t e wi th two arguments

l l a l l i s a v a r i a b l e of sort ‘lpen’l
“b” i s a v a r i a b l e of s o r t “ t a b l e ”

Logical reasoning is performed in two steps:

1. First it is tried to disambiguate the input relation that is to define which
among all the possible spatial meanings of the input proposition (for
instance “on”) is the most ‘ L ~ ~ i t a b l e ” . In this step default reasoning
plays a basic role [7].

2. Second, it is tried to deduce more information about the predicates de-
rived in the previous step. For instance it is obvious that if RIGHT(a,b)
holds also LEFT(b,a) holds. This part of the theory is completely inde-
pendent of the previous and can be seen as a first order description of
the relations which exist among object positions.

The first step is mostly performed syntactically (even if the holding of
several predicates is tested semantically) while the second is mostly performed
procedurally.
First step rilles have the form:

Pl(xl,x2, . . .) and P2(ylJy2, . . .)
==>

P(.) and Q(. . . .)

where the predicates P l (...), P2(...) ... can be procedurally evaluated on the
basis of two different kinds of information: i) the a-priori knowledge of the
world (this problem is not faced here, for a deeper insight see [7]) and ii) the
current state of the world, that is the semantic network above introduced.
Note that the semantics of the first kind of predicates is intensional, while
that of those of the second kind is extensional. The major difference between
the predicates in our formalization and the standard logical ones lies in their
semantics (that is in their procedure of evaluation): the nonlogical symbols
of a standard logical language (that is functions and predicate symbols) are
taken to be independent and primitive, on the contrary our predicates can be
definitionally related to each other.
As far as default reasoning is concerned each rule can be generally described

where M is to be read ‘<it is consistent to assume”. The whole rule is to be
read in this way “if {wffi} holds and it is consistent to believe that (wff2)

holds then infer {wffi}” (note the difference between the implication sign
(4) and the assumption sign (====+)). Some considerations must be made on
the (1): {wffl} is evaluated testing the knowledge base and its holding is the
basis for the activation of a default; M{wff2}, that is the considerations of

[19] as: { . l U f f l } : WYff2) __--j (wff21 (1)

49

consistency with the real, present world, is evalrxated testing the semantic net-
work. It tests the compatibility of what has been inferred previously with the
output of the knowledge base and decides if backtracking has to bc activated
when exceptions arisc.

These rules are an attempt to formalize (to give a cognitive model of)
common sense rcasoning about space. They do not take in consideration all
the possible combinatorial situations. In fact some of them are cogni tively
impossible and are automatically impossible for how the knowledge basc lias
been built. To understand what they mean it is necessary to apply them to
real situations.

An interesting example may be:

RIGHT(typewriter, nick-nack)
--- --->

H-CONTACT(typewriter, table) and
H-CONTACT(nick-nack, shelf) and
M-CONTA@T(table, f l o o r) and
H-CONTACT(she1f , f l o o r)

As it can be secn we first deduce that the typewriter is horizontally support-
ed by the table and then w e recursively deduce the positions of all the inferred
objects till the bordcr of the environment [7, 91. The rule applied when de-
riving I~_CONTACT(tyyewriter, table) is a simplified form of the “rule of the
independent typical positions” [7] . Formally, it can be so described:

W-CONC(s ,o>

/* the input conceptualization is a weak
/* conceptualization (derived from on the

*/
*/

/* right, in front of , near, . . . I . */

/* the object has a

/* (evaluated intensionally on the

typical position */

*/
/* in the defined environment */

/* a-priori data base) */

and

NEAR-POSIZ(s,o)

/* the subject and the object of the */
/* conceptualization are near to each */
/* other if positioned in their own */
/* typical positions */

50

/* (eva lua ted e x t e n s i o n a l l y on a */
/* p o s s i b l e s ta te of t h e semant ic */
/* network) */

/* i f p o s i t i o n e d i n t h e i r own t y p i c a l p o s i t i o n */
/* bo th t h e s u b j e c t and t h e o b j e c t are suppor ted */
/* e i t h e r by an h o r i z o n t a l o r v e r t i c a l s u r f a c e */
/* (eva lua ted as TP(o)) */

and
no t COMMON-MATRIX(s,o,m)

/* an o b j e c t m which is t h e common ma t r ix f o r t h e */
/* o b j e c t and t h e s u b j e c t does n o t e x i s t . The common */
/* mat r ix of n o b j e c t s i s an o b j e c t t o which a l l t h e */
/* o b j e c t s refer when p o s i t i o n e d i n t h e i r t y p i c a l */
/* p o s i t i o n */
/* (eva lua ted as TP(o)) */

> --- ---
TP-CONC (S , s , kb-tp-obj (s)) and
TP-CBNC(~,~,kb-tp-obj(o))

/* bo th t h e s u b j e c t and t h e o b j e c t are p o s i t i o n e d i n */
/* t h e i r t y p i c a l p o s i t i o n , e x t r a c t e d from t h e d a t a */
/* base a - p r i o r i w i t h t h e f u n c t i o n kb-tp-obj (0) */

Note that we have supposed that the nearness of the two typical positions
holds. Of course this is not always true, the contrary may happen even in this
case, depending on how the table and the shelf are positioned. In this case the
analysis changes: we position the object in its position but we do not know
anything about the subject position. Thus we have:

W-CONC(s,o) and TP(o)
and

(((TP-H(s) and TP-H(o)) o r

(TP-V (s) and TP-V (0)))
and

and
n o t NEAR-POSIZ(s,o)

n o t COMMON-MATRIX(s,o,m)

51

E==>

TP-CONC(o,o,kb-tp-obj(o))
and IND-POS(s)

/* t h e o b j e c t i s p o s i t i o n e d i n */
/* i t s t y p i c a l p o s i t i o n , f o r */
/* what concerns the s u b j e c t , */
/* w e are n o t able t o d e c i d e */
/* and ask */

This last rule is a subset of the “rule of the unknown subject position”.
As far as the second step is Concerned examples of rules are:

f o r a l l x. f o r a l l y . (RIGRT(X,Y) --> (LEFT(~,x))
f o r a l l x . f o r a l l y . f o r a l l z .

(H-CONTACT(x,y) --> n o t H-CONTACT(x,z))

Two considerations must be made:

1. This theory is largely incomplete. This is due to the extreme complexity
of the problem which makes the problem unsolvable with this approach.
To point out this fact it is sufficient to think to the infinite mutual
positions that two objects may have.

2. As a consequence of the above consideration, in this step most reasoning
is performed procedurally, on the basis of the semantic network; only
simple cases, such as those stated above are treated symbolically. Thus,
this topic is treated in the following sections.

4. SPACE AS A SEMANTIC NETWORK

A first important consideration must be made. We have approached the
problem of space representation and object positioning from two points of
view (with double valued and multiple valued logics). As far as syntactically
reasoning is concerned, till now on1.y the double valued version has been im-
plemented; as far as the the semantic network and procedural reasoning are
concerned both versions exist. In the following we will treat space as a lin-
guistic variable [14], that is we describe the multiple valued approach. This is
not correct (a double valued theory must havc a double valued interpretation).
We describe space in this way because we think i t is morc interesting; in the
following, when we refcr to the semantic network as the interpretation of the
previous described theory, assume that we refer to the multiple valued version.

Let us focus on how space is represented. In the following we give only
some ideas (for more details st- [9, 101).

52

When working about space representation we noted that, in an everyday
discussion, object positions are nearly always defined relatively to the posi-
tions of other objects whose positions are recursively ill-defined. On the other
hand, people seem able to infer the positions of objects with respect to the en-
vironment reference system. Thus, for instance, people are able to say that, if
“pen1 is on the right of book2” and “pen3 is on the left of book2” then it is im-
possible that “pen1 is on the left of pen3”. Moreover, when trying to position
objects in a limited space people are also able to shift them maintaining all the
known (ambiguous) constraints. Our solution has been to memorize the single
compatibility functions within a graph whose links represent object-subject
couples.

Working in this way we are able to build all the absolute references, walking
through the graph and composing functions using a generalized AND opera-
tor, but we memorize space within a structure which is strictly related to its
natural language description [lo]. Every link is marked by an input (ambigu-
ous) constraint and has associated a compatibility function which describes
the set of all the possible mutual object-subject positions with their compati-
bility/ possibility/ truth values. Again, how compatibility functions are built
is largely explained in [lo]; here only some notes are given.

First of all, in the fuzzy approach we assume that all the input phrases are
elliptical; that is that some key words, necessary to understand the meaning
of the input phrase, due to the common use/position of the objects, are left
unmentioned. So, for instance, “book on the table”, means not only that the
book is horizontally supported by the table but also that, maybe, is in its
centre (or in a side ...) with an orientation which guarantees a high degree
of equilibrium ... Of course the words we suppose are left unmentioned are
strictly dependent on the objects mentioned (i.e. a book is usually in the
centre of the table while the phone is maybe on one side, more usually the
right side). The functions which describe the mutual positions of the object
and the subject of the spatial prepositions have some interesting features:

i) they depend on the given spatial preposition, in fact any spatial prepo-
sition refers to different object parts or characteristics (for instance 011

relates the volume of the subject to a surface of the object while in
relates the two volumes);

ii) the influence of an object on the function shape depends on its syntactic
role in the spatial relationship (whether it is subject or object of the
spatial relation;

iii) each function is built independently of any contextual check, the “con-
textual” space state is taken into account only when the overall “free
space” compatibility function is synthesized and iv) the relation (defined

53

a-priori) between the above parameters and the function values, because
of the very nature of common sense, is necessarily fuzzy and not crisp.

5 . PROCEDURAL REASONING ABOUT SPACE

Procedural reasoning i s performed through a set procedures which are ac-
tivated by the “deduction supervisor” and modify or read the state of the
semantic network. These procedures can be divided in two classes:

1. The first are activated when a new predicate (such as
11-CONTAC‘I’(typewriter, table) is deduced) and modify the semantic
network. These procedures are responsible of maintaining a Full compat-
ibility between the theory and the semantic network.

2. The second are activated when the validity of a predicate must be tested.
They test if the predicate i;; compatible with the senmntic network.

A complete description of their behavior is beyond the aim of this work;
see [lo]. An example can be the analysis given in section 3. In that example
the same input may give two different answers depending on thc semantic
evaluation of the predicate NEAR-POSIZ(s,o). This may be a good example
of how semantics and syntactics cooperate and how the semantic attachment is
performed. In fact the deduction supervisor, when working on NEAR-POSIX,
iinderstands that the evaluation must be made procedurally and switchcs to
the semantic level.

A very interesting note. Most backtracking is activated at this level. In
fact, when syntactically reasoning, the system activates a lot of default rules.
This may he misleading and give some wrong deductions. The absurd is mostly
verified at this level, usually when it is tried to deduce a new predicate which
is inconsistent with the network state. Note that the backtracking routines are
also able to give some information about which default has bccn wroneously
activated.

Finally, it is worth noting that our representation of space completely fits
with standard extensional semantics definition (as, for instance in [ls]). T,vt
us consider the doiible valued version of our semantic network:

- D, that is the domain of the interpretation, that is space described, for in-
stance by means of Cartesian coordinates is

D = R x It x R

- any constant, that is any object instantiated, i s associated a.11 clenierit be-
longing to D, that is a triple (x,y,z);

- any variable, that is any object not instantiated i s assumed to vary within
D (we do not know where it is);

54

- any function is assumed to get values in DxD and to take values in D;

- the standard logical operators are assuriied to have their propositional value.
So for, instance, the holding of a set of input phrases is interpreted as
the set intersection of all the single sets;

- the predicates we have defined in our theory are interpreted as subsets of D.
For instance, €1-CONTACT(pen, tablc) is associated the set of all the
points which are above the upper surface of the table.

6. CONCLUSIONS

We think that ten pagcs are too few in order to give a complete explanation
of how we have modeled space and what we think about logic and knowledge
representation. We have tried to give only some general ideas, never explaining
the details of the formalization. This has probably resulted in a sometimes
not clear, always too brief and not precise, explanation. We hope that people
reading this paper do not care of style and formal matters and understand thc
underlying ideas. A paper with a more precise and complete formalization is
forthcoming.

REFERENCES

[l] P. Pecchiari. Meccanizzazione del concetto di niodello di un dimostratore
interattivo. Master's thesis, University of Trento, Dcpt. of Mathematics,
1990. 1RS'I'-Thesis 9009-15.

[2] K. Lynch. The image o f the city. MIT Press, 1960.

[3] B. Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129--153,
1978.

[4] D. Mcnermott and E. Uavis. Planning routes through uncertain territory.
Artificial Intelligence, 2211 07- 156, 1984.

[5] B. Faltings. Qualitative kinematics in mechanisms. In Proc. IJCAI con-
ference, pages 436-442. International Joint Conference on Artificial Intel-
ligence, 1987.

[6] E. Davis. A framework for qualitative reasoning about solid objects. In
Proc. of the workshop on space telerobotics, pages 369-375, 1957.

[7] A . Adorni, M. DiManzo, and F. Giunchiglia. From descriptions to irn-
ages: what reasoning in between? In Proc. 6th European Conference on
A rtzficial Intelligence, September 1984.

55

[8] M. DiManzo and F. Giunchiglia. A representation of space for knowledge
based scene generation. In Cogriitiva $5, June 1985.

[9] F. Giunchiglia, C. Ferrari, P. Traverso, and E. ‘I’rucco. Understanding
scenc descriptions by integrating different sources of knowledge. Technical
report, Dep, Comp. Science, University of Genoa, October 1990. Technical
Report DIST-90-54. To be published in the International Journal of Man
Machines Studies.

[lo] A. Armando, A. Cimatti, E. Giunchiglia, and P. Traverso. A system for
natural language driven 3-d generation. Technical report, Dep. Comp.
Science, University of Genoa, January 1991. Technical Report DIST-91-
03.

[ll] R.J. Brachman. What is-a is and isn’t: An analysis of taxonomic links in
semantic &works. Computer IEEE, October 1983.

[12] R.W. Weyhrauch. Prolegomena to a theory of mechanized formal reason-
ing. Artificial Intelligence, 13, 1980.

[13] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13, 1980.

[I41 L A . Zadeh. The concept of a linguistic variable and its application to
approxirnate reasoning 1-11-111. InJorniation Sciences, 5-9:199 --249, 301 .-

.
357, 43-80, 1975.

[15] W.A. Woods. What’s important about knowledge representation? Com-
puter IEEE, October 1983.

[161 K. D. Forbus. Qualitative process theory. Artificial Int ellige rice., 24: 85.-
168, 1984.

[17] J. Dekleer. Qualitative and quantitative reasoning in classical mechanics.
In P.J. Winston and R.H. Brown, editors, Artificial Intelligence: an hlIT
perspective. MIT Press, 1979.

[18] Z. Manna. Mutheinnticul theory of computation. Mc Graw hill Book
Company, 1974.

[19] D. McDermott and J. Doyle. Non-monotonic logic ii. Artificial Irztelli-
gence, 13(1), April 1980.

5 7

LEARNING INTERMEDIATE CONCEPTS
A DIRECT METHOD

IN CAUSAL TREES:

Jean-Louis Golmard

Inserm U 194 et Departement de Biomathkmatiques,
91, Bd de I'hbpital, 75634 Paris, France.

email: Golmard@frsim51

ABSTRACT

We propose an empirical but a direct method used to learn partially
unknown causal tree structures. More specifically, we suppose that
the intermediate layer of a three-layered causal tree is completely
unknown. A set of examples where the root node and the bottom
layer nodes are observed is available. The principle of the method is
to compute a correlation matrix which is block diagonal according to
the model. This structure is then found using a clustering algorithm.
A simulation experiment highlights the potential usefulness of the
method in practical situations. Finally, open problems are briefly
reviewed.

1. INTRODUCTION

This paper describes a method used to solve the following problem: one supposes that
a domain universe can be represented as a causal tree with three layers, the structure of
which is partly unknown. More precisely, the root node of the tree and the bottom layer
correspond to observable random variables, while the intermediate layer is unknown,
that is, nor the number of intermediate nodes nor their linked nodes are known. The
problem is then to find the hidden structure of the causal tree from a set of samples
which consists in observed values of the root node and the bottom layer nodes. In a
previous work [Golmard and Mallet 19891, a method for estimating the probabilities of a
three-layered causal tree with a hidden intermediate layer has been described. The
structure of the tree was supposed known. This current paper therefore completes the
preceding one, although the method described here is to be used before the one of the
previous work.

The interest of learning hidden tree-structured causal smictures has already been
outlined IPearl 1985, 19881. The advantage of using tree structures comes partly from
the simplicity of the required computations. Furthermore, they allow simple
interpretations of the causality relationships. Intermediate concepts are usually used in
many domains, like the medical domain, where they are often called "syndromes",
because they facilitate the description and the memorization of cases, and thus, the
reasoning process of human brains. As already stated in our previous work, syndromes
may be viewed as ill-defined concepts, since their "structure", that is the signs entering
their definition, is known, but it is difficult to assess their presence, given a case, when a
part of these signs is observed. Learning the structure of the causal tree can be interesting
in several types of situations: the domain may be almost unknown, so the problem is to
learn the structure, or the expert may have some doubts about a part of the structure he
can detail. In this latter ease, the learning method may be aimed at validating an already
stated causal tree model. The theory of the comparison between a learned structure and a
theoretical one is not well established, and therefore research work remains to be done in
this field. Another possible use of a structural learning method is to find a good
approximation of a more complicated underlying model.

58

Methods for learning causal tree structures have already been described. The powerful
algorithm of [Chow and Liu 19681 is to be recommended when all the variables are
observable. Spiegelhalter and Lauritzen [19891 have proposed a method based on
sequential Bayesian estimation for general probabilistic networks. Roizen and Pearl
[19861 have described an iterative algorithm for estimating the probabilities when a part
of the variables are unobservable and the causal tree structure is known. Their method is
related to the stochastic approximation algorithms (see, for example, [Kushner and Clark
19781). The algorithm we proposed in the same context [Golmard and Mallet 19911 is
based on maximum likelihood estimation. When the structure is not known, the problem
is then to learn “hidden causes”, or to learn structures. An algorithm for learning hidden
causes in causal trees has been proposed by Pearl [1985, 19881. However, this
algorithm involves many comparisons between mples of variables, and is not robust
relatively to the randomness of experimental data, as noticed by Pearl himself. Finally,
our method is related to the clustering methods, which cannot be all cited here.

The method will be described in section 2. In order to evaluate the accuracy of the
method in various experimental setting, we have performed a simulation experiment.The
results of this experiment are detailed in section 3. Finally, possible directions of future
works are outlined in the conclusion.

2. METHOD

2.1 NOTATION§ AND PROBLEM FORMULATION

The notations we propose emphasize the three layered structure of the causal tree, and
they are related with the diagnostic problem field. The data consist of a set of samples.
For each sample, the values of the diagnosis and the values of the set of signs are
provided. The vector of the signs is noted S. We note D the random variable
“diagnosis”, and d one of its possible values, and similarly for all the random variables.
We suppose that the intermediate (unknown) layer of the causal tree is composed of k
hypotheses, noted H = (Hi, .., Hk). The value of k is unknown. Each hypothesis Hi is
the direct cause of ni signs, denoted Si,nl, .., Si,ni . The structure being a tree, each
sign is linked with exactly one parent hypothesis. The signs may then be partitioned into
several groups, each group corresponding to one hypothesis. The problem of finding the
“me” hidden causal tree structure from the data may then be formulated as the problem
of finding the “true” partition of the signs. The proposed method, however, is not
guaranteed to find the true structure: the probability of finding the true structure will be
dependent of many features, three of which have been used in the simulation experiment
described in section 3.

2.2 PRINCIPLE

We suppose that all the random variables are of binary type. The probability distribution
of a causal tree is then expressed as:

From expression (l), it is easy to compute the conditional probabilities of the signs when
the diagnosis is known. We have:

59

Expression (2) illustrates the conditional independence of the groups of signs, since
the global probability function is divided into a product of k probabilities. Two signs
which do not belong to the same group (they have not a common cause), are independent
conditionally to the diagnosis d. This independence property is the key of the method. In
fact, computing the conditional covariance of two signs Sij and StYu, we get:

In matrix notation, cov(S I d) is the matrix of the conditional covariances of couple of
signs. The proposed method could be used from each such conditional covariance
matrix. However, in order to obtain an unique covariance matrix, a weighted sum of the
conditional covariance is computed as follows:

2
cov = cov(S I d) P(d)

d = 1

Note that the conditional covariances are not supposed to be equal, and therefore the
final covariance is not an estimate of any individual covariance. Its interest is just to
resume in one matrix the two conditional covariance matrices. Finally we compute the
correlation matrix, using:

cov(i, j)
icov(i, i) covu , j)

cor(i, j) =

This matrix is block diagonal. This structure may be found using a principal
component analysis on the variables (see, for example, [Mardia et al. 19791 or [Morrison
1976]), since the k largest eigenvalues must correspond to the k blocks of the correlation
matrix. The algorithm we actually use is described below.

2.3 IMPLEMENTATION

2.3.1 Correlation matrix computation

Each sample consists in one value of the diagnosis node and N sign values. We
suppose NIND samples are available and we first compute the usual experimental
covariance matrix for each class of diagnosis. Since we are dealing with binary
variables, there are two classes, each class corresponding to an experimental conditional
covariance matrix. Let us suppose that Nd samples are in the class {D = d) , d = 1, 2.
The final covariance matrix is computed as follows:

60

d = 1
cov(S) =

N l + N 2 - 2

2.3.2 Clustering method

The experimental correlation mamx deduced from the above covariance matrix is the
input of a clustering program. We have actually used the VARCLUS procedure of the
SAS statistical package. The clustering algorithm can be informally described as follows:

1. Initialization: (1 cluster of N variables)

a) Nbcluster := 1
b) Compute the eigenvalues of the initial correlation matrix

c) Sort the eigenvalues by decreasing order. Let h1 be the second eigenvalue.

d) Denote Lax = h i , Cmax = 1

2.100~: repeat while hax > 1 and Nbcluster < N

a) Split the cluster CmaX into two clusters, corresponding to the two greatest
eigenvalues, according to the correlation of the variables with the two principal
components, respectively. Rearrange all the variables (not necessarily contained in the
cluster Cmax) by assigning them to the cluster the principal component of which the
correlation is the highest.

b) Nbcluster := Nbcluster + 1
c) Compute the eigenvalues of the modified or created clusters and sort them for each

cluster, let be the second eigenvalue of the i th cluster, i E (1, ..., Nbcluster).

d) Let hmax = sup(h i , ..., hNbcluster), and Cmax the corresponding cluster

e) end of the loop.
number.

A summary of the results listing based on an example is shown in figure 1. The 16
initial variables are finally divided into 4 clusters. Note that, in the step 4, variable 19 has
been removed from cluster 3, and is eventually a member of the last created cluster 4.
The correlations between variables and clusters are not displayed, because the lack of
space, but the correlation variable 14 - cluster 3 is 0.1688 at step 3, and 0.0560 at step 4,
while the correlation variable 14 - cluster 4 is 0.4745.

Note that the method we propose does not need to specify the number of clusters to
be found. The result of the procedure is a partition of the initial set of N variables into 1
to N clusters. We are only interested here in the structural part of the learning. The
estimation of the probabilities could be done using the method described in [Golmard
and Mallet 19911.

61

Fig. 1. Summary of a result listing.

Nbcluster Cluster Members Variables

Step 1
1 1 16 1-16

step 2
2 1 11 5-13, 15-16

2 5 1-4, 14

3

4

Step 3
1 7 5-8, 13, 15-16
2 5 1-4, 14
3 4 9- 12

Step 4
1 4 5-8

2 4 1-4
3 4 9-12
4 4 13-16

Second Cluster

eigenvalue to split

2.2891 1

1.8187 1
0.9494

1.6770 1

0.9494
0.8490

Notation: i-j means { k I i 5 k 5 j 1,

3. A SIMULATION EXPERIMENT

0.7450 -
0.7292
0.8490
0.7080

The learning method described in the previous section is not guaranteed to find the
true hidden structure in all the encountered situations. The asymptotic convergence of the
method seems very probable, since the experimental conditional covariance matrices
converge toward the "true" ones, but the fact remains to be proved. Furthermore,
simulations are useful for illustrating the kind of results which can be found, depending
of various experimental features.

62

3.1 SIMULATION SETTING

We have tried to minimize the number of parameters required to describe the
simulation experiment. All the variables are binary ones.

. The structure of the causal tree is then resumed by only one parameter, which is
denoted NS (for Number of Signs by hypothesis). We suppose that the causal tree is
composed by a root node D, NS hidden intermediate hypotheses Hi , ..., HNS, and that
each hypothesis Hi is linked with NS signs Si,1, ..., si,NS. Using the notations of
section 2.1., we have: k = n1 = ... = nk = NS. The final number of nodes in the
simulated structures is then 1+NS+NS2. We have performed the experiment with two
values of NS, namely 2 and 4. The corresponding total numbers of nodes are then 7 and
21, respectively.

. The quantification of the causal tree also required one parameter, denoted PSV (for
Probability of the Same Value). For all the causal trees, we have:

- P (D = 1) = P(D = 2) = 0.5
- P (Xi = x / X,(i = X) = PSV, x=l, 2

where Xi is any node of the causal tree, except the root node, and Xc(i) is its parent
node (its cause). Note that PSV is not the probability that the values of Xi and Xc(i> are
equal, but actually PSV is the probability that the value of Xi is x, conditionally to the
fact that x is the value of Xc(i). PSV may be viewed as a measure of the strength of the
links between the nodes. For each value of NS, PSV was instantiated with two values:
0.6 (weak links) and 0.9 (strong links). Thus, four probabilistic models were used in the
experiment.

. Once the values of the parameters NS and PSV are provided, the probabilistic model
is completely specified. The last parameter entering the simulation setting is NIND, the
number of samples (Number of INDividuals) which will be used to learn the hidden
causal tree structure. The simulation using has been performed using three values of
NIND: 100,1OOO, and 10000.

- For each value of the triple (NS, PSV, NIND), 100 sets of samples were generated
according to the probabilistic model, using a random number generator of a Vax
computer. For each sample, the value of the root node d and the values of the sign nodes
were stored, while the values of the intermediate hypotheses were discarded.

3.2 CRITERION OF EVALUATION

For each set of NIND samples, the method described in section 2.3. was performed.
The result of the method is a partition of the NS2 signs into m non-overlapping clusters,
where m is not a priori fixed, and thus varies from a set to another. The chosen criterion
to evaluate the method is simply the proportion of successes of the method. We consider
a result as a success when the partition resulting from the clustering algorithm is exactly
the true one. In all other cases, the result is a failure. Since 100 sets were generated for
each value of (NS, PSV, NIND), the number of successes for each situation is also the
experimental percentage of successes of the method.

63

3.3 RESULTS

The results of the simulation experiment are shown in table 1. One must note that
these results are experimental proportions, and thus they are random variables: we would
find different results if we perform the same experiment again. The results are so
contrasted (from 0 to 100) that the confidence intervals are not required for interpreting
the results.

The marginal role of each parameter is clearly recovered, as expected, but the
interesting part of the analysis of the results is the comparison between the influences of
the three parameters.

The most important feature, at least in the ranges we have chosen, is the importance
of the strength of the links, which is measured using the parameter PSV. We did not
expect this result before performing the experiment. The number of samples, NIND, is
known as a very important feature in any statistical learning method, and the complexity
of the structure, measured by the parameter NS, was also expected to play a very
important role: the number of possible partitions with 16 signs is very large, and the
percentage of successes obtained when PSV = 0.9 and NS = 4 appears to us as quite
satisfying.

The practical consequence of these results could be formulated as follows: it is very
difficult to learn a hidden intermedidte concept when the probabilistic relationships
between the signs entering its definition are weak, even if the sample size is large (35%
of successes with NIND = 10000, NS = 4, and PSV = 0.6). On the other hand, if these
probabilistic relationships are strong, it is possible to learn hidden structures, even with
moderately large sample sizes (100% of successes with NIND = 1000, NS = 4, and
PSV = 0.9). An other way to state a practical advice could be: “for learning hidden
concepts, choose a small number of very specific signs”.

4. CONCLUSIONS

The results displayed in the previous section show that the method described may be
quite efficient in practical situations. As already mentioned, the first practical interest of
our method is to learn “true” causal tree structures, as Far as true mathematical models are
able to exist. An important tool in this context would be a method for estimating the
probability that the found structure is the good one. A related problem is to study the
results of our method (or any concurrent method) when the true hidden structure is not a
causal tree, but a more complicated graphical model. We may be interested by this
situation according to related, but different, points of view. If we are interested in
proving causal relationships, we need tests between the causal tree models and the more
complicated ones. If we are building diagnostic advisor systems (or expert systems), we
need to know if the causal tree model is a good approximation of the more complicated
model. The problem is then to estimate the accuracy of an approximation.

REFERENCES

Chow, C.K., and Liu, C.N. (1968) Approximating discrete probability distributions
with dependence trees, IEEE Trans. on Info. Theory, 14,462-467.

Golmard, J.L., and Mallet, A. (1991) Learning probabilities in causal trees from
incomplete databases. Revue dhtelligence Artificielle, 5,93- 106.

Kushner, H.J., and Clark, D.S. (1978) Stochastic approximation methods for
constrained and unconstrained systems. Springer-Verlag, New-York.

64

Mardia, K.V., Kent, J.T., and Bibby, J.M. (1979) Multivariate analysis. Academic

Morrison, D.F. (1976) Multivariate statistical methods. McGraw-Hill, Ney-York.
Press, London.

Pearl, J. (1985) Learning hidden causes from empirical data. In: Proc. IJCAI 85, p 567-
572.

Pearl, J. (1988) Probabilistic reasoning in intelligent systems. Morgan Kaufmann, San

Roizen, I., and Pearl, J. (1986) Learning link-probabilities in causal trees. In: Proc. 2nd

Spiegelhalter, D.J., and Lauritzen, S.L. (1989) Sequential updating of conditional

Mateo.

Workshop on Uncertainty, AAAI, 21 1-214.

probabilities on directed graphical structures, Technical report R 89- 10, Aalborg
University, Aalborg.

Table 1. _-Its o f the s imulation exneriment

NIND

100 1000 10000

PSV = 0.6 N S = 2 19 48 100

NS = 4 0 0 35

PSV = 0.9 N S = 2 99 100 100

NS = 4 78 100 100

For each value of (PSV, NS, NIND), the experimental percentage of successes is

displayed. The meaning of the parameters PSV, NS, and NIND is explained in section

3.1.

6 5

TR A N S F 0 1234 AT1 0 ?\T - 0 R D ERIK G I T E R AT IV I?- D EEP EN IN G - A'

Lawrence 0. Hall, Diane J. Cook, and Willard Tliomas
Department of Computer Science aiid Engineering

University of South Florida
Tampa, F1. 33620

e- m ai 1: I i a 11 Q sol. u sf. ed u

A 11s t rac t

Iterati.\e-Deepeiiiiig-,~" (IDA-) is an optiiiial seal ch trchiiique which iequires no
inteiinediate state storage. It is suitable for Inrge search spaces. It uses a fixed
order for the children of a node to be expanded. 'I'i.insfoi illation-Ordeiing Iterative-
Deepelling- Al' (TOIDA') attempts t o iiiipiove upon the perfoirnaiice of IDA" by
dynamically iiiipioving tlic older nodes ale expanded, based on iesults froin previous
depth limits. Using the Fifteen puzzle as an e\;ample, it is shoivvn that TOIDA* may
choose the optirnal fixed ordering and geneially chooses a good ordelirig saving ,i
substantial number of node expanTions. Einpiiical iesults sltoiv that the sequential
version can provide significant iinpio-iwnents iii tlie speed with which a solution is
discovered and 110 penalty in storage iquiirmPnts.

1. INTRODUCTION

Search permeates all aspects of artificial intelligence including problem solving, plan-
ning, learning, decision making, and natural language understanding [7]. Because of the
large state spaces that have to be searched, the peifoimaiice of the search algoiithm is crit-
ical t o tlie overall performance of the artificial intelligence ap1)licatioiis. Tlic programming
communit,y is coiltinually trying to improi-e the peiforinance of tlic search algorithms and
t o develop new more efficient search algorit Iiiiis. 'The !*ai ious iiieans that have been used
to improve search perforinance include domain-spccific heui istic knowledge, subgoals, and
abstractions [3] .

The heuristic Iterati.i.e-Deepening--~' (IDA") search algorithni has been accepted as
being asyniptotically optimal i n tiine and space o ~ ~ r the class of best-first tree searches
that find optimal solutions [3] . An optimal solution will be defined a s a miniinurn cost
solution.

1.1 ITER.~'rI\ 'E-DIEEPENISG-~*

'rhe IDA" search algorithm consists of a series of depth first searches. On each search
iteration 5 depth limit is set, and \vhen a node's total cost exceeds the limit, the search of
that node's subtree is abandoned. The total cost of a node n is calculated as the sum of
the accumulated cost in reaching the node froin the initial node (g(n)), and the estimated
cost of continuing until a goal node is reached (l i(n)). A s with A*, in order for optirnality
to be assured the heuristic cost estimating function must be an underestimate of the true
cost to reach the goal. On the initial search the limit is set t o the estimated cost of the
initial node. If the depth first search runs to completion without finding a goal node,

66

1 2- 3
4 5 6 7

. 12 7% 14 15
s 9 10- 1 1 -

-

Figure 1: The fifteen puzzle

another depth first search is performed with the depth limit set t o the smallest total cost
that exceeded the limit of the prei-ious search. This process is continued until a goal node
is reached. For a more detailed description of the IDA* algorithm, refer to [a].

Ei-en though ID.4. provides an optimal solution in terms of cost, it can suffer a sig-
nificant penalty, or realize a significant benefit, depending upon the (fixed) state transfor-
mation evaluation order used. IVe 1ial.e de\reloped a Irersion of IDA* that tries t o find the
optimal st ate transforination e~a lua t ion order while finding the minimum cost solution.

2. ‘rKANSFOIth4ATTON-ORDERlr\TG ITERATIVE-DEEPENING-A”

Transformation-Ordering Iterati\ie-Deepening-A* (TOIDA*) is based upon the idea
that by choosing a “good” fixed ordering for node expansions (or state transformations)
on the final iteration substantial savings i n node expansions may be achieved. Imagine
that solutions may be anywhere in a final l a j w of node expansions and we expand children
from left to right in a depth fiist search. If the solution is in the leftmost expansion subtree,
vie will nct have to expand aiiy of the nodes to the right. However, if the solution is in the
rightmost subtree all of the nodes must be expanded on the last iteration possibly leading
to much more woik depending upon the branching factor of the problem. The idea behind
TOIDA* is to choose a fixed node expansion order that brings the solution over t o the left
side of the search tree (allowing this simplification).

For example in the Fifteen puzzle shonn in Figure 1, there are 4 possible moves from
any node (or state of the puzzle). They are up, down, right or left. The blank may be
moiyed in one of these four waj’s (of course in some places there will be illegal moves,
because J O U can’t ino*e u p if).ou are a t the top of the puzzle, etc.). In IDA* a fixed
ordering is always tried from any state or node in the search space. It could be (down,
right, left, up) , which has been used by Korf in several studies [2, 31. Again using the
Fifteen puzzle as an example, there are 24 possible fixed orderings for transforinations from
one puzzle state (node in the search space) t o the next. One of these will find the optimal
solution with the fewest node expansions and one with the most possible node expansions.
It is most desirable to minimize the number of expansions.

TOIDA* atteinpts to do this by remembei ing the order of state transformations that
leads to the minimum h (heuristic estimate of the distance to the goal) on the next to last
iteration. It then uses this fixed order on the last iteration. This order of evaluation may
or may not be the same as the one it begins with.

Specifically, when the depth first search abandons a search subtree because the depth
limit has been reached, the transformation ordering algorithm checks the estimated solu-
tion cost of the abandoned node. \\’hen a new minimum estimated solution cost is found,

67

the new J z e d order of evaluation for the nest depth-first search is set to quickly find the
corresponding node. This order is determined by scanning the stack of state transforma-
tions made from the initial node, and setting the order to the relative order of the first
occurrence of each state transformation. If any of the state transformations are absent
from the stack, they are placed at the end of the state transformation order, keeping their
same relative order as used in the search with the current depth limit.

2.1 O'I'IIER NODE ORDERIKG SCHEhlES

Recently node ordering has been used to increase tlie speed of IDA* and similar search
techniques [I , 6, 51. Powley and lioif [C] have sliown that by saving an early frontier set
of nodes (of the Fifteen puzzle scaicli space), a n d ordering the nodes in the frontier set for
expansion on the next depth-limit search, significant savings in terms of node expansions
can be achieved. A frontier set of nodes in the search space is the set of nodes which have
a cost over the limit on a n abandoned search path. 'I'lley older the nodes based upon the
rninimuin h (heuristic estimate to goal) values of the paths that emanate from these nodes.
When coiiibined with parallel window search, they report some impressive speed increases
(and decreases in the number of node espansioiis).

Poaley and Korf originally tried saving the entire frontier set of nodes and ordering
them based on the minimum h valuc for expansion. Althougli this decreased the number
of node expansions, it did not decrease the actual search time. Chakrabarti et.al. [l]
also report improved results, in the number of nodes expanded, with a form of depth-first
search using a node ordering technique. So the benefits of ordering the nodes seems clear.
TOIDA" does not perform complete node ordering since it only changes the fixed order of
evaluation. However, fised evaluation ordering achieves some of the same effects as total
node ordering.

3. FIFTEEN PUZZLE

The Fifteen Puzzle consists of a four by four fralne which holds fifteen movable square
tiles with one blank spot, as illustrated i n Figure 1. The tiles which are horizontally or
veitically adjacent to the empty spot may he slid into the blank spot. The object of the
puzzle is T O find a sequence of tile iuovenients that will transform the initial tile formation
into a specified goal formation. Figure 1 shows tlie goal formation used in our experiments,
which is consistent with that used in experiments by other researchers [l, 2,4] . The optimal
heuristic for the Fifteen Puzzle is the 3lanhattan Distance Function. The Manhattan
Distance Function sums the number of horizontal and vertical grid positions that each tile
is from its goal position. The value of the heuristic is this sum of the tile distances.

3.1 I MPLET\I EN TAT10 N

Tlie IDA*, TOIDA", and Fifteen Puzzle algori thins are implemented in C on a Hyper-
cube. Each search algorithm is implemented using exactly the same application interface
so the search techniques are interchangeable. The Fifteen Puzzle algorithm is totally iso-
lated from the search algorithms, so the searches are reusable without modification. The

68

97
19

-Solution I Nodes Expanded I Time (1nin:sec)

....

44 1002927 9.50913 14:32 13:47
46 128049.5 13'73043 18:33 19:55

.

T9 42 540860 411617 7:.50 5:5s
12 4 5 546344 166664 7:55 2 2 5

9272E- 397057 13:26 5:45

Table 1: ID.4* vs. TOIDA"

Fifteen P;izzle \vas also generalized to handle any ineinber of the square-sliding tile puzzle
family. Hence, we have obtained flexiliility and generality a t the cost of some efficiency.

During the implementation of the search algorithms, a decision was made not t o store
the incremental state spaces during the search. Instead, a single state space, representing
the current problem state, and a stack of state transformations applied are maintained.
This decision requires that every state transformation be reversible, a t least in the pro-
gramming model used. .4s a benefit, larger problems ivith larger state spaces can be
searched.

4. RESULTS FROM SEQUENTIAL COhlPARISOIYS

A number of reasonable size puzzle instances have been run through TOIDA* and
IDA* in our implementation. Clearly, the niimber of nodes expanded in our (general, but
ineficient) implementation of IDA" and others \rill lie the same, but we are interested in
the time penalty of determining the search order for the next iteration in TOIDA*. As
will be sem, the overhead in TOIDAT is minimal.

For an overhead compaIison, the IDA" and TOID.4* search algorithms were tested
against eight (of the 100) problem instances given by Korf in [3] for which the nuinher
of nodes expanded was less than 1.5 million. This limitation was necessary to get a
reasonable problem set, and still have a representative sample of problems. On six of the
eight puzzle instances, the TOIDA" algorithm performed better than the IDA* algorithm.
The TOIDA* algorithm performance. measured 1)y nodes expanded, ranged from 90% less
to 8% more than the IDA* algorithm, w i t h a n a\.erage of 53% less. The TOIDA* algorithm
showed airnost identical performance increayes \vhen the index \\!as processing time. The
results of the test are shown in Table 1.

These results only indicate that the TOIDA+ algorithm performs better (for these
problems) than the IDA" algorithm with the state transformation evaluation order used
by Korf in [2]. Since the performance of IDA* algorithm is dependent upon the state
transformation evaluation order selected, the IDA* test program was modified to solve all

69

031320
9005S7

411617

166664

-225515

13:32
13:02

68141G
951214
139557
386395
633833
22.5515
62730.5
1 0 2 9 0 9 6

44

4G

____._______I

5 3

47

553

950913 2732GG4 13:47 39:34
45i0051 GG:10
1057.599 15:18

1373048 21.50176 19:.55 31:08
3.5 2 8 1764 51:OG
13694.3- 1:59

13093:3 r57s43 1 5 9 1055
13i5.560 19:55
1115298 1G:O9

1523089 2622S-48 22:06 38340
40511749 5.5:40

2 2 5

3:16

9:51

5:35
9:lO

The three values displayed for the IDA* performance represent the minimuin, average, and
maximum values for all 24 s ta te transforination evaluation orders.

Table 2: TOIDX" vs. IDA* (all orders)

eight yro1)lems ~ i t h each of the 2-2 conibiciations of the four state transformations, and the
results compared with the TOIDX" algoiithm results. On four of the cjglit puzzle instances,
the TOIDA* algorithiii correctly identified the optimal state transformation evaluation
order, and suffered no execution time penalty for the cs t ra work of transformation ordering
(The execution time cost for the state traitsformation evaluation ordering routine was
below the timing fuiiction resolution of 1 second). On the remaining four puzzle instances,
the TOIDA" algorithm identified a suboptimal state transfoiiiiation evaluation order that
required an average of 25% more node expansions than required by the optimal state
transformation evaluation order. \I'lien all eight puzzle instances are considered, the extra
work required drops to 1SyO. The test also sho\ved that the *ark required for a suboptimal
evaluation order can he 900% more than that required liy the optimal evaluation order.
The results of this second test are shown in Table 2.

70

Table 3: 20 puzzle instances

Now in Table 3, \re show results from 21 initial puzzle configurations. Here we only
compare iiode expansions agaiiist the fixed order that Korf used, primarily because some
of the puzzles will require prohibiti\.ely many node expansions to test all possible fixed
node orderings. The time oiwliead of TOIDA* is being ignored since it appears to be a
non-factor in the comparison. One must remember that the one fixed ordering used by
IDA* may be the optimal ordering for the problenis in which jt outperforms TOIDA*.
Overall, TOIDA* expands about 96% of the nodes that the fixed order IDA* expands
on the 21 examples shown. It performs badly (in comparison) on a couple of the larger
problems. Below, we examine its performance on one of these.

On problem 93, TOID.4" is about three times worse i n the number of node expansions.
Problem 93 has between 1.5 and -5.7 million node espansions or state transformations for
the two orderings which takes hours of cpu time on the Intel Hypercube 2/386. We did,
however, examine all 24 possible node orderings for problem 93. It was found the the
fixed order tested against was within 99.96% of optimal. The worst case for problem 93
was 8,490,547 expansions which was 1.5 times more than the order chosen by TOIDA*

7 1

r , required. I h e average over tlie 21 possible orders \$as 5,0-14,Sil expansions or 1'2% less
expansions than TOIDX" incurred. 'Ihe point of this analysis is that TOIDA" was only
slightly worse than average in this case arid significantly hetter than the woist fixed order
in riumher of nodes expanded.

5. EVA1,TJATION O F TOIDA"

The TOIDA* algorithm can correctly identify a "good" transformation evaluation or-
der with rnininial time penalty. The IDA* algorith~n can provide more efficient search
performances if the optirnal state transf(miiation e\.aluatioii order is known prior to tlie
search, bu t if the optimal order is not l<iiouw thc TOIL)A* algorithm has been sho\vn to
provide a solution that is (in general) iiiucli more eificieiit than tlie average performance of
the IDA* algorithm with all evaluation orders. The TOTDA" algorithni is therefore likely
to be more cficicnt than the IDA" algorithm with an arbitrary state transformation evalu-
ation order for an arbitrary prohlem. Furtlier, TOIDA* requires that niiniiiial information
be saved during an iteration. It only needs a mininiuni 11 value and a relative ordering to
be used with the nest depth limit. Hence, the space and tinie overhead of using TOIDA"
are rnininial, making it a good candidate search algoritlim m-heii nieinoiy resourccs are
limited.

In this paper we preseiil a. T~ausfor~natiori-Orderii~g Iterati\.e-Deepening A* (TOIDA*)
search that improves the performance of IDX" by dj.namically improving the search or-
der. This results in a n improved eff;ciency of the firial search iteration. We describe an
implementation of the technique, arid picseiit the iesults of a series of tests performed on
the Fifteen puzzle prohlern. 'The results are compared with IDA* in terms of search time
and number of node expansions, and TOIDA" is sho\vu t o outperform IDA" in inany of
the tests.

Improving the computational cost of lieuristic search is an active area of research in
Artificial Intelligence, because search dominates many AI algorithms. \Ire have shown that
i t is possible to improve the performance of IDA" search w21hout requiring a substantial
increase i n storage space, by inipio\.ing 1 he fixed node expansion order on each iteration
through the search space. The research we present i n this paper opens up a great many
areas of continuing wor!~, which we intend to pursue. These areas include investigating and
comhinin:~ parallel irnl'leiiientatioiis of 'IOIDA", anal>.zing the potential gain of transfor-
ination 01 dering, discovering the optimal fixed search order, and extending the algorithm
to save portions of the frontier space.

This research was partially supported l y grant C'D.ASY2OSSO from tlie National Science
Foundation and by a grant from the Florida High Technology and Industry Council Soft-
ware Sect ion.

72

References

[l] P. P. Chakrabarti, S. Ghose, A . Acharj.a, and S. C. de Sarkar. Heuristic search in
restricted memory. Artificial Iijtelligence, 41 (2):197-221, 19S9.

[2] R. E. Korf. Depth-first iterati\~e-deepening: An optimal admissible tree search. ArtiJi-
cia1 Intelligence, 27:97--109, 19S5.

[3] IC. E. Korf. Optiiiial path-finding algorithms. I n L. Kana1 and \I. Kurnar, editors,
Starch in Artificial IntelligeIice, pages 22:3-267. Springer-I’erlag, 19SS.

[4] 1’. Iiuinar and V. S . Rao. Scalable parallel formulations of deptli-first search. In Kumar,
Kanal, and Gopalakrishan, editors, Pa? allel ,4lgor7lhnzs for J f a c h i n e Intelligence and
Vis ion, pages 1-41. Springer-\’ellag, 1990.

[5] C. Powely and R. E. Korf. Single agent parallel wiiidow search: A summary of results.
In Internat ional Joint Conference on Arti f icial Intelligence, pages 36 -41, 19S9.

[GI C. Powley, C. F’erguson, and R. E. Kerf. Parallel lieuristic search: ‘I’wo approaches. In
P a T a l 1 el A lgo 1% if h m s for i1 l a ch in e I n t e 1 l ig e 11 ce n n d V i s ion , pages 12-6 5. S p r i nger-Ver lag,
1930.

[7] V. N. Rao, V. Kuiiiar, and I<. Rainesli. A parallel implementation of Iterative-
Deepening-.4*. In Proctedir~gs of A.4.4 1-87’, pages 178-182, 19S7.

7 3

AN IMPROVEMENT OF WEIGHTING STRATEGY IN
RESOLUTION-BASED AUTOMATED REASONING

Yong-Gi KIM and Ladislav J. KOHOUT

The Center for Expert Systems and Robotics
Department of Computer Science

Florida State University
Tallahassee, Florida 32306, USA.

A.bst rac t

The fast fuzzy algorithm is used in resolution based automated reasoning
to produce the weights of terms automatically. By using the weights extracted
by the fast fuzzy algorithm, some of the fuzzy implication operators were
cornpared.

1. INTRODUCTION

Resolution theorem prover systems form an important category of logical architcc-
tures in the field of Automated Reasoning. In this paper we outline a method for
control of inferential strategies of resolution based architectures which employs the
triangle fuzzy relational products and fast fuzzy relational algorithms. The method
for speeding up the logical inference is tested in corijunction with the thcorem prover
called ITP.

ITP has been one of the most important, system in thc field [l], devel-
oped by Aragonne Laboratory. The Aragonne group used ITP extensivcly in ATP
research [a], proving many theorems, using it to verify software and hardware, solv-
ing algebraic word problcms as well as some other open mathematical problems. The
I'fP was distributt:d ovcr 200 sites, and used extensively by other workers as publi-
cations in the Journal of Automated Reasoning indicate. Boyer used this system for
proving some basic niatliematical theorems in Giidel's axiomatization of set theory

[31.

In our approach, ITP is used as the basic architecture, embedded in a
many-valucd logic based systcm which controls the selection and priorities the infer-
ence strategies by means of many-valued and fuzzy logics based relational algorit h i m
[4] and heuristics, respcctivcly.

After siirvcying the stnicture and functional activity of the ITP in section
2 and 3, a new strategy using fuzzy preorder relations is proposed. The preliminary

7 4

experimental results and comparison of a whole spectrum of fuzzy implication oper-
ators is presented in the sections 5 and 6, respectively.

2. THE USE OF STRATEGIES IN AUTOMATED REASONING
SCHEMES

Current automated theorem prover ITP adopts strategies called s e t uf s u p p o r t strat-
egy and weight ing strategy. The reason for using strategies is that the automated
reasoning program can avoid many fruitless paths by their judicious and ”informed”
application. Without a suitable strategy guiding the inference, too many often irrel-
evant clauses may derive, and those clauses may lead the program easily into a blind
alley. Therefore, the strategies are the must in any serious use of automated reason-
ing. The set of support strategy is one of the most powcrful restriction stratcgies
in the resolution-based automated inference systems. The set of support strategy
forbids a reasoning program from applying an inference rule unless at least one of
the potential parents to which it is being applied has been deduced from some spec-
ified siibsct of the input clauses. Even though the set of support strategy eliminates
many fruitless clauses from the inference stream, it is often not powerful enough to
produce the conclusion in acceptable time. Hence, weighting strategy is being used
with the set of support strategy, in the current theorem prover ITP in addition to
the set of support. The weighting strategy assigns some priorities to each term,
literal, and clause. With the weighting, one can assist the reasoning program by
contributing some of one’s own experience capturing one’s intuition, in order to give
the program hints. Weighting means assigning ”weights” to various concepts. The
lighter the wcight is , the sooncr the program will look a t the clause. Unfortunately,
this weighting strategy is too hcuristic and too dependable on the subjective side of
one’s experience or intuition.

Here, we propose to apply the fast fuzzy relational algorithms [4] as an
automatic technique for extractiiig the weighting strategy. Instead of determining
weighting patterns heuristically by an trial and error approach, the new scheme pro-
vides €or selecting the weights automatically [5], thus replacing by a fuzzy algorithm,
the manual selections that have been previously done by the users of the ITP heuris-
t ically.

3. THE GLOBAL ACTIVITY OF THE TTP

In order to elucidate the new scheme further, we have to have a closer look at the
global activity of ITP. The user of ITP enters theorems which are cha.nged into clause
form to ITP. The clauses consist of four clauses which are the axiornc list, the set
of support list, the have-been-given list, arid the demodulator list. The fundamental
operation consists of the following steps:

75

I. Choose a clause from the set of support list, Call this clause "the given clause)'.

2. Infer a set of clauses that have the given clause as one premiss; as other pre-
misses the clauses are selected from the axioms list, the have-been-given list, and the
demodulator list, depending on the chosen type of inference process.

3.
checks, etc.).

For each generated clause) "proce~s"it (;.e., simplify it, perform subsumption

4. Move the given clause from the set of support list to the have-been-given list.

The operation of thc ITP consists of repeated execution of these four
steps until either the set of support list has become exhausted or a contradiction
has been found. The user enters selections (Le. which inference rule should be used
and how the given clause is picked up) into the ITP with the clauses of the axioms
defining the problem. The user-contrylld options govern the step 1, 2, and 3 above.
These user-controlled options include selection of tile inference rules (e.g. binary
resolution, unit resolution, and hyperresolution, etc.) and the weighting scheme for
each term, literal, and clause. Since1 too many clauses are generated through the
repeated steps, specific weights are assigned to each term, literal. The clause to be
picked up first is the one with the lowest weight.

4. REPLACEMENT OF WEIGHTING STRATEGY BY A FUZZY
INFORMATION RETRIEVAL SCHEME

The priority of the second premiss, in the activity step 2 of the previous section, is
determined by the weight heuristically assigncd by the user of the ITP. We replace
this heuristic weighting strategy by fast fuzzy relational algorithms. To apply these
algorithms to this particular problem domain, we have to determine the semantic
conceptual descriptors [6] characterising the actions [7] of the theorem proving strate-
gies. This is achieved by the application of the Fuzzy Information Retrieval (FIR)
scheme [$I, thus rnaking the value of the assigned priority the function of fuzzy logi-
cal request and fuzzy relutinnal request [9] of FIIE. The major advantage of our new
scheme is the fact that the order-like relations determining the priority of the clauses
selected to be entered into the inferential stream of the ITP can be identified from
the experimental data by fast fuzzy relational algorithms [4].

The functional specification of the activity of FTR used to select the
relevant clause is as follows [$I:

What8 i s involved in fuzzy Information Retrieval of clauses can be ex-
pressed essentially by means of the following four i terns:

76

1. A set D of clauses d.

2. A set T of descriptors t j (for example properties of clauses).

3. A clause-descriptor relation R, which is a fuzzy relation such that

RERg(D --+ T) .

Then R;j is the degree to which clause d; is related to descriptor t j , which can be
viewed as the degree of relevance of the features described by descriptor t j to clause
di.

The appropriate characteristics of descriptors have to be determined em-
pirically by a series of carefully designed experiments, or from appropriate theoretical
considerations. It is clear that the set of relevant properties of the elements involved
in these identification experiments is strongly dependent on the mathematical char-
acteristics of the problems presented to the ITP. In the next section we shall describe
one method of constructing the relational matrix, relating the axioms describing the
problem to be solved by the ITP with the descriptors characterising its axioms. This
fuzzy relational matrix is then used by the TRISYS system [4],[10],[11] to extract
the descriptor hierarchy. The automatically extracted descriptor hierarchy is conse-
yuantly used to speed up the inferential process of the ITP.

5 . CONSTRUCTION OF A FUZZY MATRIX FOR BIJILDING A
DESCRIPTOR HIERARCHY

In order to construct a descriptor hierarchy in the problem domain of resolution
based automatic reasoning, the automatic reasoning system needs a matrix which
consists of clauses and descriptors which describe the properties of the clauses. The
matrix is used for constructing the descriptor hierarchy. This hierarchy consists of the
descriptors organized in such a way that the highest descriptor is the most relevant
to deriving the conclusion (the empty clause), from clauses by means of inference
rules such as binary resolution, and hyperresolution, etc.

Our particular application of the fuzzy information retrieval technique
uses a relational matrix which conceptually represent a relation from the set of
clauses, to the other set, the properties. The set of clauses used in the fuzzy ma-
trix is formed from the logical axioms of the problem to be solved, and from the
immediate consequences of these axioms. Both are unified with the set of support
by a suitable unification algorithm. The immediate consequences consist of the very
first level resolvent that is generatred by applying the selected inference rules to the
axioms and set of support, by means of breadth first search. The set of properties
is formed from the terms which appear in the clauses representing the axioms and

71

the immediate consequences. T h e fuzzy relational matrix D, gives the degree of

relatedness between the i-th element of the set clauses and the j-th element of the
set of properties. The fuzzy degrees are determined by application of the following
rules:

1. If the property j is an element of the clause i, then the degree of the relatedness
D;j is 1.

2. If the property; is not an element of the clause i , then the degree of the relatedness
D,, is 0.

3. If the property j is an element of a subterm (i.e.7 g(a)) of the clause i, then the
degree of the relatedness D;j is 0.5.

4. If the property j is an element of a subterm of a subterm (is . , g(g(a)) of the clause
i, then the degree of the relatedness D;, is 0.5 x 0.5, and so on.

5. If the property j is an element of the clause i, and the property j is an element
of a subterm of the clause i at the same time (;.e., Y(a,b,g(a))), then the degree of
the relatedness D , j will be bigger one applied to the case using the above steps 1 to 4.

6. EFFECT OF THE NEW WEIGHTING TECHNIQUE BASED ON
FUZZY DESCRIPTOR HIERARCHY

Our new weighting technique has been applitd to several classes of problems that are
amene2ble to the automated reasoning approach. The first example illustrating the
results of the new weighting technique to be described here is the following theorem
of the group theory: "In a group, if the square of every element is the identity, the
group is c~mrnuiulive~'. Selecting the hyperresolution as the inference rule of the
IT€', the default weighting (which assignes no specific weight for each variable but
assignes value 1 to each variable by default) produced the conclusion in 146 seconds
in 121 inference steps. On the other harid, the new fuzzy method, which used the
weighting pattern derived as dacribed above, reached the conclusion in 52 seconds
with 49 deduced steps.

The second applicaiion listed in the comparison below, involves a digital
circuit problem of verifying the correct function of the full adder [12]. The result
of the test of the condition when the inputs to the circuit are high, low, and high,
then the outputs levels o f t h e device are low and high is prtYjentcd below. Using hy-
perresolution and UR-resolution simultaneously as the inference rules, the weighting
pattern derived by the new technique yields the conclusion in 21 seconds with 49
deduced steps while the default weighting get the empty clause in 26 seconds with
72 steps.

78

The third demonstration of our technique presented here is concerned
with the well known AI problem called "the block problem [12],[13]. In our compar-
ison below we present the microworld of three blocks, in the following arrangement:
The initial state o f the block world problem is that block A is on block B, and block B
is block C, and the goal state i s that the block A is on the table. Green's method [12],
which is a planning procedure based on resolution, was used to solve the block world
problem. Using the hyperresolution as the only inference rule, the ITP obtained the
conclusion in 55 seconds in 119 steps when using the breadth first search method;
in 22 seconds in 65 inference steps while using the default weighting pattern, and
in 15 seconds in 37 steps by using the weighting pattern derived by our new fuzzy
technique.

The new weighting pattern derived automatically by the fast fuzzy re-
lation algorithms encapsulated in the TRISYS system [4] was tested in preliminary
experiments significantly reduced the total number of steps and CPU time that the
ITP needed to reach the conclusion. The performance results of the solution to all
the three problems just described are listed in the table below. The experiments
were run on SUN 3/50 under UNIX, where tlie ITP was installed.

group theorem digital circuit block world
_I________________---------_---_---- .
inference hyperresolution hyperresolution hyperresolution
rule & UR-resolution

default 121 steps 72 steps 65 steps
weighting 146 seconds 26 seconds 22 seconds

weighting 49 steps 49 steps 37 steps
of new tech. 52 seconds 21 seconds 15 seconds
---------__--_____-I--_------_----- .

The Hasse diagrams extracted by TRISYS that provided the weighting leading to
the results listed in the above table were computed by the algorithm described in [4]
using the implication operators as follows: group theorem - L5 (a-cut at 3 9 , mean
level); digital circuit --- L6 (a-cut at .93, half-upper level); block world - L55 (a-cut
at .95, half-upper level);

7. COMPARISON OF RESULTS USING VARIOUS IMPLICATION
OPERATORS

To investigate the effect of various many-valued logic operators on the process of
extractions of the weighting hierarchies derived by the fast fuzzy relational algorithms

7 9

two of the three problems described in the previous section were selected for further
study :

0 The theorem of the group theory.

0 The problem of the verification of the digital circuit called “full adder”.

The extracted weighting hierarchies and number of steps and CPU time
t o get the conclusion are given below. Eleven diEerent operators were compared for
each problem. Among them, selected tro show the effect are 1,5, L55, and LG. L5 is
Lukusiewicz, L55 is H e m e - l l i c n e s Luknsiewicz and LG is Kleene-Dienes, respectively.

Shown in the tables below is the number of steps which it took to produce
the conclusion, followed by the numbers in parenthesis which represciit the CPU time
taken to reach the conclusion.

1. The theorem of group theory: 2. The logical circuit:

.95 50 50 50 87 85 78
(1 : O l) (1 : O l) (1 : O l) (2 3) (:23) (:20)

.9 49 49 49 107 105 105
(54) (54) (54) (:32) (:31) (:31)

.s5 49 49 49 107 100 105
(:54) (5 4) (:54) (:32) (:29) (:31)

----_-_-l_-_l______---------------------

----lll--------_l---_lll--------__-l______

The inference rilles were hyperwsolution arid UR-resoldion, used sirnultaneously.
For comparison, the default weighting produced the conclusion (the empty clause)
in 2 minutes 27 seconds, in 83 steps for the group theorem, and in 28 seconds in 98
inference steps for the logic circuit, rmpectively.

The Figure shows somc Ilasse diagrams, depicting the automatically ah-
tained weighting hierarchies cxtracttd by TILISYS, based 011 methods dcscribed in
Sec.4 and 5 above. Note the diffcrenccs in Nasse diagrams lor diffcrerit knowledge
domains to which t h e theorern prover is applied. The lighter the weight is, the scmner

the mechariical theorern prover picks the clause. Therefore, the term located at the
highest in the descriptor liicrarchy will be assigned a lightest weight.

80

Gl

b1 P

L5.L55.L6
m-.W
6ddp.195

G1
il f l
I I

unrelated elements: unrelated elements:
(i l ,i2,i3,fl ,pl , {il ,i2,i3,f1,plI

I 1 0
{a1 ,ol) i3 {i2,pl,p2,

h , W I p2.al la2,01) p2,al ,@,ol)

b.96 1 4 6
bl

{il ,i2,fl ,hJ) {il j2,fl ,h,l]

1 1 f l

{il ,i2) h,l} (i3,pl ,p2,al,a2,01] (i3,pl ,p2,al ,a2,ol} b
{i3,pl ,p2,al ,a2,01)

16
m-.07
61.106

hrarchies of the mat h theorem I ” ’ - full @dQG

81

REFERENCES

1. Lusk, E., and Overbeek, R., T h e automated reasoning system ITP,” Technical
Report ANL-84-27, Argonne National Laboratory, Argonne, IL, 1984.

2. Wos, I,., Overbeek, It., Lusk, E., and Boyle, J., “Autornuted Reasoning: Intro-
duc t ion and Applications”, Prentice Hall, Englewood Cliffs, NJ, 1984.

3. Boyer, I t . S. et al., Y e t theory for first order logic: Clauses for Godel axioms,”
in ,Journal of Automated Reasoning, 1986.

4. Handler, W. and Kohout, L.J., “Special properties, closures, and interiors of
crisp and fuzzy relations,” in Fuzzy Sets and Systems,” pages 26(3):317-332,
June, 1988.

5. Kohout, L.J. , and Kim, Yong-Gi, “Use of fuzzy relational information retrieval
techniques for generating control strategies in resolution-based automated rea-
soning,” in “FLAIRS - 90 Proceedings, The Florida Artificial Intelligence Re-
search Society, pages 140-144, 1990.

6, Kohout, L.J., “Activity Structures: a methodology for design of rnulti-environment
and rnulli-context, knowlcdge-bsscd systemr,,” in Kohout, L.J., Anderson, .J.,
and Bandler, W., editors, “M~lt i -~~naironm,entul Knowledge-Based Systems,”
chapter 5 , Gower, Aldershot, U.K., 1991.

7. Iiohout, L.J., “ A perspective on Intelligent Systems: A Framework for Analysis
New York, 1991. and Design, Chapnian arid IIall & Van Nostrand, London

8. Kohout, L.J., and Bmdler, W., “?‘he use of fuzzy information retrieval tech-
nique in construction of Inulti center knowlcdge bascd sys tcms” , in Bouchon,
B., and Yager, R.R., editors, U~icertainty in Knowledge-Based Systpnzs, pages
257-264, Springer-Verlag, Berlin, 1987.

9. Kohout, L.J., Keravnou, E., and Bandler, W., ““Automa,tic documentary infor-
mation retrieval by rncans of fuzzy relational produ~ts”, in Gaines, B.R., %adell,
L.A., and Zininiermann, H.-J., cditors, b i m y Sets in Decision R nalysis, pages
308-404, North-Holland, Amstcrdain, 1984.

10. Kohoiit, I,. J., and 13andler, W., editors, “Krzowledge Keyresentuliorz in MedicinP
and Clirhiccd Behaoiouml Science, ” Abacus Book, Gordon and Breach, Tmidon
and New York, 1986.

11. f3andler, W. arid Kohout, L.J. , ‘‘TEierarehia in Symptoms arid Paticnts through
Computation of Fuzzy triangle prodiicts and closures,” in Parslow R.D. ed.
BSC’SI Information Technology for the Eighties, Heyden St Son LTI)., 29S1.

82

12. Genesereth, M., and Nilsson, N., Logical Foundations of Artificial Intelligence,
’’ Morgan Kaufmann Publishers, Inc., Los Altos, CA, 1987.

13. Shirai Y., and Tsujii, J., Artificial Intelligence: concepts, techniques, and up-
plications, John Wiley & Sons, 1984.

83

PA!J!'TERN RECOGNITION USING
THE THIRD AND TBE FIFTH CLASSES OF DYWAMICAL SYSTEMS

Ping Liu Hede Ma

D e p t . of Math. and Comp. Sei. Delpt* of Eng. Tech
School of Sciences and Technology

University S y s t e m of Georgia
Savannah State College

Savannah, Georgia 31404

In this paper, dynamical systems are classified into
eight classes by the authors. Thereafter, efficient methods
are developed in this paper to recognize an input vector using
the third and the fifth classes of dynmical systems defined
by the authors. Patterns classified and recognized by a
dynamical system are based on attractors of the system.
Wolfram's cellular automata, Barnsley's iterated function
systems (IFS), and o-orbit Finite automata proposed by the
authors are used to illustrate the idea that how patterns can
be recognized by the third and the fifth classes of dynamical
systems, which is a more efficient approach than the existing
methods.

Key words: Iterated functions systems, finite automata,
attractor, fractal, cellular automata, configuration space,
pattern recognition, neural network, dynamical systems, o-
orbit finite automata.

1. INTRODUCTION

Because of the computation complexity, it is difficult to recognize
arbitrary patterns at a reasonable cost Many problems of how to xecognize
patterns efficiently remain open. Zn a simplified approach to pattern
recognition, a pattern recognizer operates as a "black box" which
receives an input vector x and produces a response qi on one of its output
ports i, each port being assigned to a different class of observed items
[l]. If x belongs to class i, q i = 1 and qj = 0 for all j not equal to
i.

The theoretical problem is to devise an adaptive process such that
given a set of input pairs { (xk, qk) , k = 1, 2, . . . K }, one finally
hope to obtain a recognizer that will recognize all the input vectors.

Neural network models of the Hopfield type have drawn intensive
attention in the past years mainly because of their capacities as
associative memory and fast computing device [1,2,3]. When an unknown
pattern is imposed on a Hopfield net, the net iterates in discrete time
steps using a given formula. The net is considered to have converged when
outputs no longer change on successive iterations. This fixed pattern
determines which class the unknown pattern belongs ta.

84

A network can be operated in two different modes. Let a net has N
neurons. In synchronous operation, each of the N neurons simultaneously
evaluates and updates its state according to a rule. In asynchronous
operation, the components of the current state x are updated one at a
time according to a rule. Hopfield and his colleague [2] proved that a net
evolves toward a stable configuration if the mapping rules specified by a
matrix are symmetric and the mode of operation is asynchronous.

The Hopfield model has several unsolved problems as follows, which
motivates our research work to establish more efficient methods in pattern
recognition.

(1) N o theory is available to specify the conditions under which a net
evolves toward a stable configuration if the mode of operation is
synchronous (the synchronous mode is more favorable because of fast
convergence) .

(2) The information capacity of the Hopfield nets is limited. The
number of arbitrary vectors that can be made stable in a Hopfield network
of N neurons is proved to be O(N) [3]. It is very expensive and
unattractive to use N neurons for storing O(N) patterns.

(3) In order to specify a system with N-bits configurations, O (N 2) real
parameters must be used (16 - 32 bits for each real number) . With
introducing more parameters (O(N2)) to specify fewer bits (O(N)), it is
expected that a direct construction of a net from a given set of input
pairs can be achieved. Therefore, the time complexity of neural network
inference could be reduced. one of such approach is the outer product
construction of a Hopfield net from a given set of input pairs [2]. But
such a direct inference has not been achieved for synchronous net. If no
such direct inference algorithm can be found, it is necessary to introduce
some search algorithms in the parameter space (O(N2) dimensional) for
inference of a net from a given set of input pairs. The parameter space
for a neural network has high dimensions. Consequently, the time
complexity for inference is high.

The problems listed above motivate us to develop some new approaches.
We have extended the Hopfield models in two directions (both use dynamical
systems [5,10]). one of the two direction is presented in this paper, and
the other one will be presented in [4] .

In this paper, efficient methods are developed to recognize an input
vector using the third and the fifth classes of dynamical systems defined
in this paper. Patterns classified and recognized by a dynamical system is
based on attractors of the system. Wolfram's Cellular Automata (CA) [lo],
Barnsley's Iterated Function Systems (IFS) [5], and o-Orbit Finite
Automata (o-OFA) [9] proposed by authors are special cases of dynamical
systems. They can be used as models for implementing a pattern recognition
procedure.

In Hopfield model [1,2,3], a net has a memory. Given a set of input
pairs which is used to train the net, the input vectors are stored in the
memory. Vectors that are in the memory are also fixed point of the neural
net. These fixed points exercise a region of influence around them.
Configurations which are sufficiently similar to a fixed point are mapped
to the memory by repeated iterations of the system operation. In other
words, input vectors that are used to train a net are treated as fixed
points or point attractors of the net.

Our scheme can be considered as a generalization of the Hopfield
model, which will be more powerful and efficient in pattern recognition.
An input vector x is recognized according to its attractor. These
attractor can be cyclic attractors instead of fixed points. For the case
of fixed points, these attractors are in general not the same as the set

85

of the input vectors which are used to train the net. In the set of
training input pairs, many different input vectors can be in the same
class. For a trained dynamical system, let x be an input vector, if the
evolution of a dynamical system with the initial configuration x leads to
an attractor i, x belongs to class i.

In this paper, section 2 introduces several basic concepts. Section
3 introduces our classifications of dynamical systems. In section 4, we
explain our idea in detail. In section 5, Wolfram's cellular automata are
used to implement our idea. In section 6 and 7, Barnsley's iterated
function system [5] and the o-Orbit Finite Automata proposed by the
authors used for the same purpose. Finally, a conclusion is drawn in
section 8 .

2. DEFINITIONS

In this section, we introduce several basic definitions.

Definition 1
Let X be a complete metric space. Then the set of all compact subsets
of X except the empty set is denoted as H(X) [5].

A dynamical system consists of a configuration space G(X) G H(X)
together with a mapping F: H(X) ---> H(X). G(X) is closed under F.
Formally,

Definition 2

D = (G(X), F) e

Definition 3
Let D = (G(X), F) be a dynamical system. Let

Q (O) = G(X)
Q(1) = F (Q (0))

Qln) - - .($p-l)) ,

then

is called an attractor set of D [5,10].

Definition 4
A null attractor po is the empty set [IO];
A point attractor p1 is a configuration such that

F (P J = P I ;

A cyclic attractor is a set of configurations

A regular infinity attractor is a cyclic attractor where k is infinity
and the set can be specified by a finite amount of information;

A strange attractor is the one which has an infinity number of

86

configurations and which can not be specified by a finite amount
of information.

Definition 5
Let (X,d) be a complete metric space. Then the Hausdorff distance [5]
between points A and B in H(X) is defined by

h(A,B) = Max{ d(A,B),d(B,A) 1
d (A , B) = Max{ d (x , B) : x E A 1

d (x , B) = M i n { d (x , y) : y E B 1 .

Definition 6
A transformation f : X ---> X is called a contraction mapping on

[a,b] if
(1) f(x) is continuous on [a,b];
(2) f(x) is in [a,b] for all x in [a,b];

(3) I P(x) I 5 s (1, x ~ [a , b l

where 1.1 means absolute value. The minimum number of such s is called a
contractive factor for f(x).

Definition 7
An Iterated Function Systems (IFS) [5] consists of a complete metric
space (X,d) together with a finite set of contractive mapping I: [5].
Formally, an IFS, A, is written as

B = { X I 2 j, z = {wo, w,, . . . , WkJ.
Here w’s are contractive mappings.

Definition 8
~n o-orbit Finite AUtOmata(o-OFA), A, is a 5-tuple [9]

A = { R; z; M; I; F)

where (1) R is a finite set of states

R = { X,, X,, . . . Xi, . . . X,
and Xi is a metric space. (2) I: is an affine alphabet, which is similar to
an IFS transformation alphabet. (3) M is an (n X n) transition matrix.
Each elements of this matrix, Mijr is a subset of I:. The transition rule
is

(X,, w) Xi, if w E Mij.

The set Mij can be empty. (4) The initial state is I = { XI }, and (5) the
final states F is a subset of R.

An o-OFA, A, accepts an o-regular language L (A) [6 , 7] . The alphabet
of L(A) is a set of affine transformations 2 . L(A) is also defined as the
orbit language of o-OFA: O(A) = L(A). The images defined by 0-OFA are

87

where

As a special example, an IFS A = {x, E} is an one-state o-OFA

A = { X; E; M l , = z ; X; X

Hence the orbit language of an IFS is

O(A) = L (A) = E(".

Definition 9

and E is a mapping rule. For one dimensional binary CA,
A binary CA [lo] is C = {X, E}, where X is a finite or infinity array

= w1 = { r , R , k 1 .

(1) k = 2 and each site value is specified in the range 0 through k-1. (2)
The site values evolve by iteration of the mapping

and (3)

1 2 2r+1 R E (2 , 4 , . . . ,

is the code number for a mapping.

For example, {r, R, k} = (2, 20, 2) means site value = { 0, 1 },
neighborhood size is 2r+l=5, and the CA uses rule 20.

3 . CLASSIFICATIONS OF DYNAMICAL SYSTEMS

First of all, a dynamical system is described by a state x e X of the
system. Such a state x is also called a configuration of the system [IO].
All such configurations together form a space H (X) , called a configuration
space [lo]. some dynamical systems o n l y use a subspace of H (X) . secondly,
an evolution of a system in its configuration space is specified by a set
of production rules [lo]. Examples of discrete dynamical systems are
cellular automata (CA) [lo], and examples of continuous dynamical systems
are iterated function systems (IFS) [5] . The advantage of CA is that the
mapping rule of a system in its configuration space is determined locally
[lo]. Therefore, CA can be used t5 simulate a large variety of natural
phenomena. The advantage of IFS is that the mapping of a system in its
configuration space is continuous. Therefore, mathematically, IFS can be

88

handled easily.

A specification o f a dynamical system includes a definition of a
configuration space and a set of rules for motions in the configuration
space [5,10]. Most of dynamical system evolutions are irreversible [lo].
An orbit of a system is a trajectory in its configuration space. orbits
merge with time, and after many time steps, orbits starting all possible
initial configuration become concentrated onto bkattractors" [5,10]. These
attractors typically contain only a very small fraction of possible
configurations. Evaluation to attractor from an arbitrary initial
configuration allows for pattern recognition behaviors.

DynaItIiCal systems can be classified by its attractors [lo]. wolfram
classified dynamical system into four classes[lO]. In this section, we
first define 8 classes of dynamical systems. Then we classify dynamical
systems into 8 classes, from the graph topology of possible orbits of a
system in its configuration space.

Definition: Let D = { G(X); F } be a dynamical system, where X has
infinite elements. A dynamical system D is said to be in

class 1 if it only has a null attractor

class 2 if it only has a point attractor

8, = I P1 I ;

class 3 if it has more than one but a finite number of point
attractors

class 4 if it has an infinite number of point attractors;

class 5 if it has an finite number of cyclic attractors;

class 6 if it has an infinite number of cyclic attractors;
class 7 if it has at least one regular infinite attractors;
class 8 if it has at least one strange attractors.

For a dynamical system where x is a finite set, then D must be in
class 1, 2, 3, or 5. However, we can extend D=(G(X),F) to Dr=(G(Xr),F)
where Xf is an infinity set. Then the classification of D and Df might be
different.

Examples of the class 2 dynamical systems are IFS[S] and o-OFA[9].
Examples of the class 3 dynamical systems are asynchronous neural
networks[l,2]. Many CA and synchronous neural nets are in class 5.

Theorem 1: A dynamical systems must be in one o f the eight classes.

89

This theorem can be proved by the topology of orbits of a dynamical
system in its configuration space. since space are limited, the proof of
the above theorem will be omitted. If a system has more than one
attractors, some of them might not be stable. The null attractor and the
single point attractor will always be stable.

Different attractor systems can serve for different purposes. In [4 1 ,
we are interested in the single point attractor system, i.e. the second
class of dynamical system because the single point attractor will be used
as a container for input vectors. Here we interested the third and the
fifth classes for efficient pattern recognition, which is discussed in
detail in the next section.

4. AN EFFICIENT SCHEME FOR PATTERN RECOGNITION

In this section, we first show the current version of neural net might
not be efficient because of its limitation on information capacity. Then
we present our approach. Finally, we compare our approach and the Hopfield
model.

4.1 INFORMATION CAPACITY OF THE HOPFIELD MODEL

We first show that in general, it is impossible to construct a neural
net from a given set of training input pairs. TO proof this, consider the
information capacity theorem of Ah-Mostafa and Jaques [3] . The number of
arbitrary configurations that can be made stable in a Hopfield net with N
neurons is up Bounded by N [3]. Let a training set of input pairs contain
more than N classes of patterns, then it is simply impossible to infer a
net to recognize all the input vectors. An extended neural net might
escape this limit [12]. If the storing capacity is O(N), the relative
storing capacity is

which shows that the Hopfield neural net is not efficient.

4 . 2 PATTERN RECOGNITION usrw CLASS 3 AND 5 DYNAMICAL SYSTEMS

we now present our approach. Note that both class 3 and class 5
dynamical systems have a finite number of attractors. Given a pattern,
that is, given an input vector x where the size of x is typically between
one million to one billion, we can treat x as an initial configuration of
a third or a fifth dynamical system. The dynamical system subsequently
evolves to its attractor. Let a system have a finite number K > 1 of
attractors, if the evolution of the dynamical system with the initial
configuration x leads to an attractor pKi, where i is in { 1,2,3, ... , K
1, x belongs to the class i. since the system only has K attractors, a l l
the possible input vectors are classified into K classes.

The pattern recognition problem using the third and the fifth class
dynamical systems is defined as follows: to devise an adaptive process
such that given a s e t of pairs of input and output, one finally hopes to
recognize all the input vectors by choosing a proper dynamical system,
that is, by choosing a proper configuration space together with a mapping
rule. We also call this problem as an inference problem. In a simplest

90

approach, the configuration space is determined by the input vectors,
Therefore, the inference problem is to find a mapping rule such that the
inferred dynamical system can recognize all the input vectors. There are
examples where the configuration space are different from the input image
space. we will discuss this in [12].

4 . 3 A COMPARISON OF OUR APPROACH AND HQPFIELD MODEL

The difference between our approach and the Hopfield model are given
as follows. (1) In the Hopfield approach, the fixed points are the input
patterns used to train the net. In our approach where the third class
dynamical systems are used, the input pattern xi evolves to an attractor
pKi, where xi and pKi are different. The adaptive process is to train a
dynamical system from a set of input pairs. The trained system will has a
set of attractor {pKi, i=l,2,...,K}. The system with the initial state xi
will lead to the attractor pKi. Therefore, this approach is a
generalization of the Hopfield model. (2) In our approach where the fifth
class dynamical system is used, i.e., cyclic attractors are used, no
similar approach can be found in the Hopfield model. This approach covers
a larger class of dynamical systems. (3) There is no O(N) information
storing limit for our approach. Therefore. it is more powerful and
efficient.

5 . CA APPROACH

CA are discrete dynamical systems with simple construction but complex
self-organizing behavior [lo]. They are mathematical models for complex
natural systems containing a large number of simple identical components
with local interaction. This structure is specially favored by massive
parallel computation. CA consist of a lattice of sites, each with a finite
of possible values. The values of the sites evolve synchronously in
discrete time steps according to identical rules. The value o f a
particular site is determined by the previous values of a neighborhood of
sites around it. The hardware implementation of CA constructs a special
type of systolic arrays.

A CAI C = { X, }, with a finite X can be in the third or the fifth
class using our definition. Therefore, our ideas can be applied by
choosing CA as dynamical systems. In the following, we first present a
fifth class CA. Then we show how the fifth class dynamical system is used
in pattern recognition. Finally, a comparison of this approach with neural
net is given.

5.1 AN EXAMPLE OF CLASS 5 DYNAMICAL SYSTEM

Let a CA be specified by

1. X = { 0 , 1, 2, ..., N-1 }, N = 100, i.e. we have an one-

2. { R, r, K} = { 2, 20, 2 }, i.e.
dimensional ring CA of size 100;

k = 2 , i.e. site values can be either 0 or 1;
r = 2 , i.e. the site value of the i'th site is determined by the
previous site values of sites i-2,i-1,i,i+1,i+2, in MOD N;
code number = 20, i.e. if the sum of previous site values of the
sites i-2, i-1, i, i+l and i+2 is 2 or 4 , the site value of the
site i is 1. otherwise, it is 0.

9 1

If we omit the translational invariance, repetition, and combinations (
See the explanation below) , this CA has 12 attractor atoms [lo]. These
attractors are represented by digital numbers:

Period Minimal configuration in decimal number

1
2
9R
1
22
9L
1R
1L
38
4
4
4

0 (Null Attractor
151 (00...0010010111)
187 (00...0010111011
189 (00...0010111101)
195 (... ...)
22 1
635
889
125231
595703
610999
624623 (00..~0010011000011111101111)

All other attractors can be made in the following ways:

1. A spacial translation of the above attractors. For example, from
the attractor 151, we can generate new attractors 151x2, 151x4:

Period configuration

2
2

151x2 (00...00 100101110)
152x4 (00 0 1001011100)

2 . A repetition of a above attractors. For example, from 189 one can

Period Configuration

1 198 x(1 f 21°) (00.. .00101111010010111101)

3. A combination of two or more above attractors. For exam le, from
an attractor 189 + 151 X 218 can be

generate a new attractor:

the attractors 151 and 189,
constructed.

This CA has a finite number of attractors, including a few cyclic
attractors. Therefore, it is in the class 5. In the limit where the size
of the CA goes to infinity, it is in class 7 , because of the attractor 9R,
9L, lR, and 1L.

5.2 PATTERN RECOGNITION USING CA

SY
el

Now we apply our idea by using the above CA as a fifth class dynamical
-stem. There are total of 2loo - 1 input vector x in H(x) . They are
assified according to the attractors. The attractors are labeled by

digital numbers. Given an input vector x, if the evolution of the CA with
the initial input vector x leads to the attractor 151, x belongs to the
class 151. For example,

input vector: x = 00...0010111111000
CA evolution: 00...0010110010100

00...0010010111100
00...0001110111010
00...0010011101010
00...0001000100110

92

00...0000010010111 (151)
00...0000001111001
00...0000010010111 (151)

The above input vector x is recognized as in the class 151. The attractor
151 is a cyclic attractor.

5.3 A COMPARISON WITH HOPFIELD MODEL

Compared with Artificial Neural Network (A"), we observe
(1) No theory is valuable to specify the condition under which a CA of
size N is in the third class. The only algorithm for this testing is
enumerative search, which is apparently not very practical for large N.
This is similar to the situation of synchronous ANN.
(2) we have extended the pattern recognition algorithm to include the
fifth class of CAI as seen in the above example. As a result, we expect
the information capacity to be increased.
(3) The information capacity of CA is observed to be O(N), which is not
better than ANN. However the power of CA can be extended easily to
increase its information capacity at a very low cost. The cost to extend
A" is more expensive. we will discuss these extensions in [12].
(4) There has been no intention to directly construct a CA from a given
set of input pairs, like the outer product construction of ANN. However,
a direct inference of ANN from a given set of input pairs has not been
successful SO far. considering a search algorithm, the parameter space for
CA is much smaller. For one dimensional case, these parameter spaces are
specified by

T = u TI, T, = {K, R } , R f {2, 4 , . . . I 22r+l}

where r = { 1, 2, ... , N/2 } is the neighborhood size, and R is the rule
code. Even the CA is extended to more powerful classes [121, the parameter
space is still relatively small, as compared with ANN. Therefore, the
inference of a CA from a given set of input pairs is much easier than ANN.

6. PIFS APPROACH

An IFS [5] consists of a complete metric space X together with a
mapping rule: X-->X. It has been shown that [5] if the mapping rules are
contractive, a single point attractor system is created. In this paper, we
study piecewise IFS (PIFS).

6.1 AN EXAMPLE OF CLASS 3 DYNAMICAL SYSTEM

In this section, we extend Barnsley's IFS to piecewise IFS (PIFS). Let
A1 = { X1, Wl } and A2 = {X2, W2) be two IFS. Let A = {X,W} be a new PIFS
constructed such that X is the union of X1 and X2 and W is the union of W1
and W2. Then the IFS A has three attractors: the attractor of Al, the
attractor of A2, and the union of A1 attractor and A2 attractor. In
general, if we compose a Piecewise IFS A from L IFS, the PIFS A has 2=-1
attractors. In the following, we will present an example of PIFS to show
how PIFS can be used in pattern recognition.

As an example, let a PIFS be specified as follows

1. X = [0,1], i.e. the Configuration space H (X) is the set of all

93

compact subsets of X;
2 . Let the mapping rule be

WIY) = Y/2, y in [O, 0.5);
W(Y) = 1 - y/2, Y in r0.5, 11.

This system has three attractors {0), (1) and {O,l}. This PIFS is in the
class 3 since it has a finite nunher of point attractors.

6 . 2 PATTERN RECOGNITION USING PIFS

In the above example, the PIFS has three attractors which correspond
to three classes of image:

A. (0 } for all images in [0,0.5);
I3. { 1 } for all images in [0,5, 11;
C. { 0, 1 } for all images other than class 1 and class 2.

For simplicity, let the size of input vectors be 30. Let an input vector
be

x = 11111 11111 11110 00000 Q O O O O 00000

The subsequent evolution will be

input vector x = 11111 11111 11110 00000 00000 00000
IFS evolution 11111 11000 00000 00000 00000 00000

11110 00000 00000 00000 00000 00000
11000 00000 00000 00000 00000 00000
10000 00000 00000 00000 00000 00000

(attractor) 10000 00000 00000 00000 00000 00000

Therefore this input vector x is recognized as in the class A, because the
evolution if the PIFS with initial configuration x hits the attractor (0)

7 . w-ORBIT F I N I T E AUTOMATA (a-OFA) APPROACH

o-OFA [8 , 9] , proposed by the authars, is a generalization of IFS
which is more powerful than IFS in image generation. An one-state o-OFA is
an SFS. using a finite automata as control device in an IFS , an o-OFA iS
generated. Formally, an o-OFA is a 5-tuple, just like a finite automata,
except its alphabet is a set of transformations [9] . Also, only o-strings
[7] are used to define its attractors.

There are images which can riot be produced by IFS [SI but can be
produced easily by O-OFA. o-OFA can be used in pattern recognition in the
same way as I F S . A piecewise 0-OFA can be defined in a similar way as the
case a€ I F S . Therefore, they construct a third class dynmical system and
can be used to implement our idea.

8. CONCLUSION

In conclusion, we have suggested that dynamical systems can be used to
recognize patterns. we have shown a powerful and efficient approach for
pattern recognition using class 3 and class 5 dynamical systems, defined
by the authors in this paper. specially, wolfram's CA, BarnsLey's IFS and
o-OFA introduced by authors has been demonstrated in playing this role in
this paper.

94

In [12], we will apply the above ideas to four other types of
dynamical systems: LMO and LM1 cellular automata, and LMO and LM1 neural
networks. These four type dynamical systems are proposed by the authors.
The inference algorithm for dynamical systems from a set of input pairs
will be presented in the coming papers. A complete different approach
using class 2 dynamical systems will be presented in [4].

REFERENCES

1. T. Kohonen, An introduction to Neural Computing, Neural Networks,
V01.1, pp.3-16, 1988.
R. Lippmann, In introduction to Computing with Neural. Nets, IEEE ASSP
MAGAZINE, APRIL, 1987, 4-22.

2. J. J. Hopfield, "neural networks and physical systems with emergent
collective computation abilities," in Proc. Nat. Academy Sci., USA,
V O ~ . 81, pp.3088-92, 1984.

3. Y. S . Abu-Mostafa and J. st. Jayues, ** Information capacity of the
Hopfield model," IEEE trans. Inform. Theory vol. IT-31, pp.461-464,
1985.
R. J. McEliece, et al., "The capacity of the Hopfield Associative
Memory," IEEE Tran. Inform. Theory vol. IT33, pp.461-482, 1987.

4. Ying Liu and Hede ma, "Algorithms for moving object pattern
recognition using @-Orbit Finite Automata,'' to appear in Proceedings
of simulation Technology Conference International 1991, Orlando, Fl.,
oct. 1991.

5 . M.F. Barnsley, Fractals Everywhere, Academic Press, 1988.
M.F. Barnsley, The Desktop Fractal Design Handbook, Academic PreSS,
1989.
M.F. et. al. Barnsley, Construction Approximation, V5, pl, 1989.

6. J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory,

7. L. Boasson and M. Nivat, Adherence of Languages, Technical Preprint,
Universite Paris 7, Uer De Mathematilques, 1979.

Ying Liu and nede Ma, "a-Orbit Finite automata and Image Compression,"
Proceeding of 44th Annual Conference, the Society of Imaging Science
and technology, St. Paul, Minnesota, May 1991, 489 - 491.

9. Ying Liu and Hede Ma, "a-orbit Finite for Data compression,''

Language, and Computation, Addison-Wesley, 1979.

8.

Proceeding of Data Compression Conference '91, IEEE Computer Press,
Snowbird, Utah, April, 1991, 165 - 174.

10. S. Wolfram, "universality and complexity in cellular AUtOmata",
Physica 10D, (1984) 1-35.

11. Ying Liu, "A parallel algorithm for traversing a tree", Proceedings of
the ISMM International symposium on Industrial, Vehicular and Space
Applications of Microcomputers, pp.58 - 59, New York, October 10 - 11,
1990.

12. Ying Liu and Hede Ma, "A parallel pattern recognition algorithm using
LM cellular automata and LM neural networks" , to appear in Proceedings
Of Fourth ISMM International Conference on Parallel and Distributed
Computing and Systems, Washington, D.C., October 8 - 11, 1991.

95

SENSORY INTEGRATION

G. T. McKee
Department of Computer Science, University of Reading, Engiand.

&
E. ‘P. Powner

Department of Electrical Engineering and Electronics,
UMIST, Manchester, England.

ABSTRACT

This p w r is concerned with the integration of sensory data drawn from a
heterogeneous set of sensors. A basic architecture for the sensory subsystem of
an intelligent machine is developed, single modality and multiple modality
sensory information processing are introduced, three levels are identified for
sensory integration (single sensor, multiple sensor and multiple modality) and
the forms of sensory integration required at each level are introduced and
discussed.

11. INTRODUCTION

We are moving slowly but surely towards the age of “multi-sensor” machines. Primitive
versions of such machines have been around for some time. Primitive, that is, when compared
to human beings, for they do not possess the full complement of sensors possessed by human
beings, and the sensors they do possess ate only a shadow of their human counterparts.
Industrial robots are the typical example. The primitive character of these machines is
reflected in the lack of any detailed theory of sensory systems, or indeed of any systematic
methodology for engineering their sensory mechanisms. Of course, given their primitive
nature, a detailed theoretical understanding is obviously of little imporrance, and likewise an
engineering methodology. However, as technology moves towards more sophisticated sensory
machines, and as the demand for the comct and eficient engineering of these machine
increases, the need for this theory and methodology becomes both obvious and urgent.

A number of problems need to be addressed when providing machines with a sensory
capability. There is, first, the “selection” problem: the problem of determining the set of
sensors required by a particular machine. The answer to this question will be determined by
the function the machine is to perform and will be explicitly stated in the machine
specification. This paper is concerned with the fact that this specification may include sensors
of many different types (vision, tactile, pressure, force, sound, and others).

A second problem is the “strategic” problem: How is the sensory data provided by the sensors
to be used in problem solving? This problem, like the first, is not the direct concern of this
paper. This paper is concerned, rather, with a third problem, the “multi-sensor” problem. This
is the problem of processing the sensory data provided by the multitude of senso~s possessed
by the machine, drawing that raw and/or processed sensory data together within and across
many senson, and transforming it into a form suitable for use by the problem solving

96

mechanisms of the machine. In this paper a Sensory Systems Theory is posed as the proper
solution to this problem.

Given that one wishes to configure a machine with a specified complement of sensors, this
theory would indicate:

the sensory processing associated with individual sensors,

how data from across a single sensor (say a vision sensor) is to be integrated

how data from across a set of sensors of the same type (say two vision sensors) is to be
integrated,

how data from different sensor types (say vision and tactile sensors) is to be integrated.

In short, if one defines, for each sensor, an associated sensory information processing
mechanism, forming what one can term “sensor modules,” then this theory will indicate not
only the structure of each module (that is, its algorithms), but also the links that are to be
forged when a number of these modules are assembled together to fomi a complex sensory
system. Vision research to date has focused primarily on sensory information processing
associated with single sensors, or multiple .sensors of the same type. In this paper we wish to
focus on the integration of sensory information drawn from sensors of different types.

In the immediately following section, the components of a multi-sensor machine are outlined.
In section 3 a model for the sensory subsystems of these machines is outlined, and the goals of
a Sensory Systems Theory are defined. In section 4 various forms of sensory integration are
introduced and discussed with reference to the human sensory system. Finally, in section 5,
research problems which need addressing are presented.

2. SENSORY SUBSYSTEMS

Assume an intelligent machine possessing a non-empty set of heterogeneous sensors. This
machine is to be applied to solve a range of tasks. For each of these tasks an algorithm is
developed and a corresponding computer program implemented. Each program embodies a
particular behavioural pattern, so the set of programs together embodies the set of behaviours
of the intelligent machine. For example, if there are ten tasks there will be ten programs and,
therefore, ten behaviours. In the succeeding discussion we will refer to these programs as
“behaviours” or “behavvioural programs”.

Assume that each of these programs is independent of every other, in the sense that they do not
share subroutines. Assume also that each program draws on a non-empty subset of the set of
sensors possessed by the machine. In addition, assume that there i s no preprocessing of
sensory data prior to its access by each program. This means that each program directly
accesses raw sensory data and embodies all the necessary signal processing required for it to
make use of this raw data. Similarly for effectors with respect to control. This means that each
program acts independently of the others, from the sensors through to the effectors (Fig. 1).

We will investigate this architecture now. What we will find are sensory processing
requirements, at the sensory integration level, which could be provided as a central resource
for these programs. What will emeGe is a sensory integration database which can be accessed
by tliese programs. This database will perform sensory integration continually in response to
changes in the sensory signals. As such it will be continually updated. It is appropriate,

97

therefore, to refer to it as a “sensory integration engine”’. Sensory Systems Theory can then be
seen as the solution to the problem of designing this engine, for it will tell us how this engine
is to be put together.

The process of extricating this sensory integration engine from the architecture developed
above is as follows. We note first ~f all tha extracting useful information from a particular
sensor requires processing algorithms tailored to that sensor. Visual sensory signals, for
example, undergo their own unique processing in the brain, as also do auditory and tactile
sensory signals. We will assume that the precise form of this processing will be determined by
the information sought from the sensor. It will also be assumed that a particular sensor can
supply a number of items of information. The nunber will vary from sensor to sensor. We will
also assume that for each item of information, one can define an algorithm for extracting that
information from the sensor. Therefore, for each Sensor one can define a set of algorithms for
extracting useful information from that sensor.

Stimuli Sensors Behavioural modules Effectors

visual

tilcI.de .4

23
i

auditory

Fig. 1. Independent behavioural modules

As indicated above, each behavioural program will access a subset of the system’s sensors.
Each semor, therefore, will be a member of a number of these subsets. Th is means hat a
particular item of information may be requested from a particular sensor by a number of
behavioural programs. If these programs embody all their own processing requirements, the
algorithm for extracting an item of infomation from a particular sensor will be implemented a
number of times. Similarly for other items of infomation associated with that sensor, and for
other sensors. It makes sense, therefo~, to provide this item of information as a central
resource, and to decouple the extraction of useful sensory information from the individual
behavioural progrdms which require that information. This will eliminate redundancy and
improve efficiency.

This central resource will be a database. However, the information it provides will be extracted
from the raw sensory data. This extraction process will be an integral component of the
resource. Therefore, it is appropriate to refer to this resource as a “database engine”, though
the sense in which “engine” is used he^ is different to its conventional use in the database
community. A better term is “sensory integration engine”, but we will delay discussion of
sensory integration until the following sections.

This engine may operate in one of two basic modes. In the first, it extracts an item of
information from sensory data only when a behavioural program makes a request for that item
of information. If the computing resources are available, a more eficient mode is to
continually update that item of information as the sensory signal changes. It can then be made
available immediately on request. If many items of information necd to be extracted, this
immediate response can only be achieved thmugh some form of parallel architecture. For

98

example, each processing element of a parallel processor architecture may be dedicated to
extraction of a single item of information.

We can usefully view this engine in terms of a conventional database. First, it will be queried
by behavioural programs for infomation as and when that information is required by the
program. Second, it will facilitate the development of further behavioural programs, a process
which can be likened to database application software development. Third, developing this
engine for a particular intelligent system, and therefore for a particular set of sensors, can be
likened to the process of data analysis and modelling familiar in conventional database
development.

A Sensory Systems Theory will define the structure of the sensory integration engine
(database) just introduced. It will tell us, that is, how that engine is put together. Since we have
associated a set of algorithms with each sensor, for the extraction of items of information from
the corresponding sensory data, this integration amounts to little more than setting a set of
processing modules (one for each sensor) side by side. “Integration” is the only required at the
interface between the sensor modules and the behavioural programs, and this integration is
trivial.

Bebavioural programs may need to call on information, however, which is nor directly
available from individual S~IISOIS alone, but which can be derived Irom the integration of
sensory data from a number of sensors. The form of this integration will be discussed shortly,
but typical elementary examples include the extraction of depth information from a pair of
visual sensors, the extraction of the direction of a sound from a pair of auditory sensors, and
the determination of the direction of a sound measured with respect to visual space.

As before, a dedicated central resource could be made available for extracting this
information. Our conception of the sensory integration engine presented above would
correspondingly be adapted to accommodate this additional component. Now it is appropriate
to refer to this central resource as a “sensory integration engine”. In the modified conception,
we retain the dynamic database idea, but it no longer consists of independent modules sitting
side by side. Rather, links are forged between the modules to form an integrated structure (Fig.
2). Sensory Systems Theory will tell us where these links are, and how they are to be forged. It
will teU us, that is, how to design a subsystem for sensory integration.

Stiniuli Sensors Sensory integration Programs of
module behaviour

visual

tactile

auditory

2
3
3
8

Fig. 2. Integrating sensory systems

99

3. THREE LEVELS OF INTEGRATION

From the previous section we have identified two levels of sensory information processing: the
single-sensor level and the multi-sensor level. At each of these levels there is some form of
sensory integration. At the single-sensor level, this integration involves gathering together
data from diffe17ent regions of the sensor (different regions of visual space for example). At the
multi-sensor level it involves integration of data from different sensors, the classic example
again being stereoscopic vision. In the following section these forms of integration will be
discussed in more detail. h the present section we will introduce a third level of integt-dtion,
which we will call “multi-modality” integmtion.

The term “multi-sensor” currently refers equally It0 a pair of visual scnsors as to a combination
of a visual sensor and an auditory sensor. However, these is an obvious distinction between
these two cases. While a visual feature will sdmulate both visual sensors, assuming the sensors
have overlapping sensitivities and the stirnu4ns falls within this region 01 overlap [I], a visual
feature, or indeed an auditory Eeature, will not simultaneously stimulate both a visual sensor
and an auditory sensor. This is due to the visual and auditory sensors being sensitive to
different types of stimuli; electmmagnetic radiation and sound, respectively. This in turn
significantly alters the form of integration possible between two visual sensors and between a
visual sensor and an auditory sensor.

To reflect this distinction we in turn distinguish between “multi-sensor” integration and
“multi-modality” integration. Both involve multi-sensor integration. However? the first refers
to sensors responding to the same stimulus type, for example two visual sensors, whereas the
second refers w senson responding to different stimulus types, for example a visual and an
auditofiy sensor. The term “modality” is drawn fmm Physiology where it is used to refer to the
different human sensing systems. Indeed, human beings are multi-modality sensing systems.

It is useful to view the introduction of this third level of integration in the context of specifying
the sensory subsystem of an intelligent machine. Specifically, defining this sensory subsystem
would involve specifying the sensory modalities possessed by the machine and hen the
components of each sensory modality. The latter in turn would includc reference to the number
of sensors possessed by each modality.

multiple modality

Fig. 3. Three levels of integration

It is apparent now that there are two important aspects to Sensory Systems Theory (Fig. 3).
The first is the single modality aspect, and we see the objective of such a theory being that of
developing a model for sensory information processing which is not tied to my one sensory
modality, but says something about the processing of sensory information in all modalities.

100

This theory will accommodate sensory information processing within single sensors and
across multiple sensors. The second is the multiple modality component, and we see the
objective of such a theory being that of describing the mechanisms by which links can be
forged between a set of sensory modalities to form a unified functional sensing module for an
intelligent machine. In tuum, three levels of sensor integration (single-sensor, single-modality
multi-sensor, and multi-modality) need to be tackled by the theory. In the following section the
forms of integration seen at each of these levels will be discussed in more detail.

4. TYPES OF INTEGRATION

4.1 SINGLE-SENSOR INTEGRATION

At the single-sensor level we will distinguish two basic forms of integration pig. 4). The first
we will term “lateral integration”, and concern integration of data from different “regions” of
the same sensor. These regions may correspond, for example, to different regions of the
electromagnetic spectrum (in the case of vision) or to different regions of the sensory space
(diffemnt regions of a one- or two-dimensional visual image). This integration can operate on
raw sensory data or on the products of processed sensory data, such as edge features. Familiar
examples of integration at this level include region growing and edge chaining algorithms [2].
At the highest levels it involves integrating data about individual objects and sub-scenes in the
context of forming an understanding of the complete scene captured by a sensor. The basic
character of this form of integration, following from the examples above, is that of
aggregation, or association, to contrast it with “sensor fusion”, which we will discuss
presently.

lateral integration

Fig. 4. Single-sensor integration

The second form of integration we will term “vertical” integration. It corresponds to the
integration of shading, texture, motion and contour visual modules in the interests of
extracling intrinsic images 131. The stereo visual module is not included here for it is based on
multiple sensors and is categorised, therefore, under multi-sensor integration. The basic
character of this form of integration is that of “fusion”, in the sense, at least, that visual
components are combined to form a single component which transcends the former, and riiere
may be mutual modification of each of the former in order to achieve the latter, In the sense of
combining a number of images to form a single image, it is like stereo fusion, but it does not
depend on multiple senson.

101

These two forms of integration, lateral and vertical, fit together in the following way. The
lateral form of integration provides the mechanism by which the shading, texture, motion and
contour visual mdules are extracted from the raw visual image, making them available for
vertical integration.

4.2 MULTI-SENSOR INTEGRATION

One of the characteristic features of single-sensor integration is that multiple images are
produced from the same raw visual image. In consequence, all of these generated images are
in “register” with the original image and with each other. In moving from the single-sensor
level to the multi-sensor level, and indeed to the multi-modality level, this regismtion is no
longer given, and indeed much of the problem of integration at these lcvels concerns bringing
images, obtained from diffemt sensors, into registration.

The product of this integration is generally further useful information. The two cases in point
are vision and audition. In stereoscopic vision data from two visual sensors is combined to
give information about the three-dimensional struchm: of visual space (Fig. 5). This generates
the stereo visual module which was mentioned above. In audition, on the other hand,
integration of data from two auditory sensors enables information about the direction of
sounds in space to be generated,

Example: vision

~ r] right i;timages

feature-based fusion (+ registration)

output data image

Fig. 5. Multi-sensor hte,wtbn

While registration is what is to be achieved, the mechanism for achieving that registration
depends on there being a representation of the same feature(s) in the two images
simultaneously. In stereoscopic vision the features m usually taken to be lines and edges.
Finally, the basic character of multi-sensor integration is that of a genemtor of new, useful,
information. At the same time, though, there is “fusion”, since two separate images combine to
form a single image. Whatever its useful product may be, however, multi-sensor fusion is at
least registration.

4 3 MULTI-MODALITY INTEGRATION

l b o forms of integration can be identified at the multi-modality level (Fig. 6). The first is
“spatial integration”. This involves bringing the spaces of the dilTerent sensory systems into
register with each other. It is equivalent to the registration seen at the multi-sensor level, but is
between sensors sensitive to different types of sensory stimuli. The exemplar is visual-

102

visual space

auditory integration. It is characteriscd, generally, by the lack of a feature-based mechanism
€or achieving registration. That is, although the same object may stimulate the visual and
auditory sensors simultaneously (for example a person speaking), the same feature will not be
represented in both senses. Also, multi-modality integration contrasts with multi-sensor
registration in that the registration is more of a “mapping” than an “alignment” of sensory
fields. There are circumstances, however, where this form of multi-modality integration
reduces to multi-sensor integration.

-
mapping auditory space * *

I 1 1 I

Associative integration:
I 1 I 1

visual feature auditory feature
space

I 1 1 1

Fig. 6. Multi-modality integration

An example is integrating visual and range sensory systems. A ranging sensor produces a two-
dimensional depth map. At the raw image level there is no basis for integrating these sensory
systems, for they do not respond to the same features. This justifies regarding them as distinct
modalities. However, luminance discontinuities in the visual image may correspond to depth
discontinuities in thc range image. If these discontinuities are extracted from each image
separately, they can then be used to achieve registration, and therefore visual space can be
mapped into range space, and vice versa.

The second form of multi-modality integration we term “associative” integration. Associative
integration mediates the high-level transformation of features from one sensory modality to
another, and vice versa. The typical exam e is hearing a voice and associating it with a face
which is not cumntly in the visual field, or vice versa. Another example is being able to
picture in one’s mind the visual form of an object which is manipulated out of sight. The term
“associative” is used to describe this form of integration because what binds the features
belonging to the different sensory modalities together is their co-occurrence with each other in
the environment (for example, a face associated with a voice).

There is significantly more to associative integration thaw this example would indicate..
Picturing in the mind’s eyc an objec ceived through tactile manipulation may require

gether individual tactile-vis sociations to create a picture of an object which,
ncountcred tactualily, may not previously have been encountered visually. In other

words, the transformation may not necessarily depend on a prior association of features
belonging to separate modalities, but should be seen, rather, as a problem solving process.

Also, the association may in certain cases be complex, involving not two sensory modalities,
but a number of sensory modalities. In the example just described, the proprioceptive sensory
modalities are also required, for they provide information about the posture of the hand and
arm manipulating the object, If a three-dimensional visual representation of the object is to be

103

word -> word *

object c- word

achieved, this proprioceptive information needs to be available, needs to integrated with the
tactile sensory modality, and the two used to assemble a visud representation of the object.

1
auditory
representation
of words

In visual-auditory modality integration, molther form of transformation across modalities is
also loud: the transformation of a symbolic description of an object into a visual
representation. This symbolic description may be obtained through the spoken word (the
auditory sensory modality) or the written symbol (the visual sensory modality). Obviously the
construction of a visual representation from the latter would net seem to involve a modality
other than the visual modality. On the other hand, the written symbols may first be transformed
into their auditory counterparts, and these latter used as the basis for picturing the object
captured by the description, in which caSe the visual and auditory modalities are involved in a
complex multi-modality integration process (Fig. 7). In general, however, the basic character
of multi-modality integration is one of mapping and association.

visual feature

visual
representation
of words

object I]
depiction

Fig. 7. Visualisation via associative integration

Table 1 summarises the types of integration discussed in this section.

TABLE 1. T y j x s of Integration

level of intgration

single sensor lateral

multiple sensor registration

twe of intemtion

vertical

(feam-based)
(non feahuebased)

associative
multiple modality spatial

5. DISCUSSION

In summary, we have proposed a model for the sensory subsystems of intelligent machines,
consisting of three levels of integration: single sensor, multiple sensor, and multiple modality.
We define the objective of a Sensory Systems Theory as that of developing a theoretical
understanding of the integration of sensory infomation within single sensors, across multiple

104

sensos of a single modality, and across multiple modalities. The theory should tell us, first, the
structure of a single scnsory modality and, second, how to forge links between a number of
sensory modalities to create a multiple modality sensory subsystem for an intelligent machinc.

It should be noted that the sensory subsystem model we have proposed is not a procedural
model. We are not partitioning the sensory subsystem into a single-sensor processing module,
providing inputs to a multi-sensor processing module and this in turn driving a multi-modality
processing module. In many instances this processing model will make sense, but the whole
objective of developing a Sensory Systems Theory is to tell us what the appropriate processing
model for a particular sensory subsystem is. Thus, although we separate the stereo visual
module from the shading and texture visual modules, associating the former with the multi-
sensor level and the latter with the single-sensor level, we by no means imply that the former is
in a processing module further down the line from the latter. On the contrary, indeed, the
extraction of the stereo module begins immediately the visual information enters the visual
comx of the brain [4].

The basic objectives of a Sensory Systems Theory include developing a generic model for the
integration of data within a single sensory modality. This at first seems an enormous task given
the diversity in sensors found both at the single modality level and across multiple modalities.
On the one hand, for example, the theory would have to cope with a single modality where the
sensors alp. the sanie (for example, two human-like visual sensors) or different (for example, a
human-like visual sensor and an infra-red sensor), and with any number of each. On the other
hand, it would have to cope with sensory modalities as diverse as the visual, auditory arid
tactile modalities. Nevertheless, the advantages to be gained are enormous.

One advantage would be the ability to develop generic computer architectures and algorithms
for sensory information processing which could be deployed flexibly in the development of
modality-specific information processing mechanisms, and could accommodate a number of
different sensory modalities within the same architecture. An extension to this architecturc to
take account of multiple modality integration would then enable it to be used for the complete
sensory subsystem of an intelligent machine.

‘me greatest strain on achieving multi-modality integration within such a generic architecture
will be “spatial” integration; mapping together the. “sensory spaces” of different sensory
modalities. In the case of integrating visual and auditory space this may reduce to simple
geometry. In the case of visual and tactile, howevcr, the form of spatial integration required
may be much more sophisticated. Research, therefore, is required to determine the precise
form of this visual-tactile integration, and indeed to determine the nature of other forms of
spatial integration.

The issue of spatial mapping poses a major research problem, but motivates aIso a distinction
to be drawn in Sensory Systems Theory between the mechanisms of sensory integration and
the development of those mechanisms. The question raised by the latter is how, in humans or
other animals, the integration of the sensory systems hac; developed. Multi-modality spatial
integration is particularly interesting since there is no apparent basis for it. For example, the
auditory sensory modality does not respond to visual stimulation, and the visual sensory
modality, in turn, does not respond to auditory stimulation; nevertheless, in human beings the
two sensory spaces are mapped together, such that visual gaze can be oriented to fixate on the
source of an auditory stimulus.

105

If there is no basis in the features stimulating the two sensory modalities for integration, we
must look elsewhere. An obvious place to look, though it may not be the only possible solution
to the problem, is evolution. The assumption is that evolution favourcd the development of a
visual-auditory spatial mapping. If so, there is an obvious implication for the engineering of
intelligent machines, for it means that these spatial mappings will need to be preprogrammed
prior to the introduction of the machine into its target environment.

A counter to this might be the mapping together of a visual and a range sensory modality,
where edges of different types (hninance and depth) can form the basis for integration, and
the same mechanism may operate for integration in this case as for integration across two
visual sensors in stereoscopic vision. That is, simple feature-based registration. But this in turn
raises the issue of the mechanism by which this form of integration develops. That is, how do
corresponding edges in images from different sensors know that they are one and the same. r’

This distinction is also motivated by the converse requirements of robustness. If a mapping has
k e n established, and some event then intervenes to disrupt the mapping, it is observed in
humans [5] , and it is desirable in machines, that the situation be retrieved. This calls for an
adaptive ability on the part of the machine. It may happen that this adaptive ability is the very
same that supports the development of the mapping in the first place. Research is required to
resolve these issues.

A useful paradigm for robustness here is eye-hand coordination. This depends on mapping the
space of arm postures onto visual space. It would appear that thc basis for this is partly innate
and partly experiential. In essence, innatcness provides a crude mapping which experience fine
tunes. An event which might intervene to disrupt this mapping, for example attaching it to the
hip rather than the shoulder, would give the m a new placement relative to the visud sensors,
requiring a completely new mapping. Retrieving this disruption would require an adaptive
mechanism which might need facilities above and beyond those for the experiential fine tuning
of the crude innate mapping.

An understanding of both the mechanism of integration and he processes by which those
mechanisms develop is particularly important in the context of engineering intelligent
machines. Its importance lies in establishing a trade-off between the “pre-programming” of
the sensory subsystem prior to its introduction into lhe environment in which it will operate,
and the subsequent “experiential learning” required to bring it to its desired level of
performance. From a programming point of view, the objective would be to reduce the amount
of prior programming and, therefore, to leave as much of the development of sensory
integration mechanisms to experience. This in tuum puts a major emphasis on developing a
suitable substrate in which this experiential learning can take place.

T a n g into account the requirement for robustness, and assuming ha t this robustness depends
on mechanisms other than those required for the development of serisory integration
mechanisms, three aspects to the problem of developing sensory integration mechanisms for
intelligent machines can be identilied: preprogramming, development (training), adaplabili ty
(robustness). To solve these problems a good starting point would be to study human sensory
integration. Here the corresponding issue to the relation between preprogramming and
experiential learning, is the relation between nature and nurture. How much of human
behaviour, that is, is due to innate mechanisms and how much is due to experiencc?

Consider visual-auditory integration as an example. When a child hears a click to the right or
left of its head it orients in such a way as to direct its gaze in the direction of the sound. This is

106

an example of the mapping of the auditory and visual spaces together, so that a signal in one
can be located in the space of the other. This orienting behaviour is an innate response
mediated by the Superior Colliculi in the Thalamus of the brain. Neurophysiological
experiments clearly show the mapping together of visual and auditory stimuli in the Superior
Colliculi [61.

This innate mechanism mediates the development of higher levcl rneclaanisms of visual-
auditory spatial integration in the cerebral coi-tex. In turn, it provides a fall-back mechanism
when the former fails. We can see here, therefore, a trade-off between innate preprogramming
and experiential learning. Whether this mechanism represents the optimal trade-off between
innateness and experienee is another matter, though one would favour an affirmative answer
given the remarkable achievements of evolution in other respects.

This innate versus experiential trade-off can be seen in other facets of development, including
eye-hand coordination mentioned above. A first step to understanding this trade-off and the
mechanisms for achieving both innate preprogramming and experiential learning, would
obviously be, therefore, a study of the corresponding human mechanisms. This is a useful
stming point, therefore, for pursuing a Sensory Systems Theory.

Finally, hi this paper we have focused on the sensory subsystem of a multi-sensor machine.
The theory suggested here will be just one component of a more elaborate intelligent machine
theory. This more elaborate theory will include details of the representation of knowledge and
skill, the integration of sensory data with effector actions, and ultimately the coordination of
sensors and effectors under the guidance of knowledge and skill. It will tell us how to put
together intelligent machine. As part of that theory, the Sensory Systems Theory will tell. us
how to put together one vital component of that machine.

REFERENCES

G . McKee. What can be fused? In J. K. Aggarwal, editor, Multisensor Fusion for
Computer Vision. Springer Verlag. To be published.
D. M. Ballard and C. M. Brown Computer Vision. Prentice-Hall, 1982.
J. Y. Aloimonos and D. Shulman. Integration of Visual Modules: An Extension of the
Marr Paradigm. Academic Press, 1989.
G . E Poggio and €3. Fischer. Binocular interaction and depth sensitivity in striate and
prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40(6): 1392-
1405, 1977.
R. Weld. Plasticity in sensory-motor systems. Scientific American, November 1965,
M. A. Meredith and B. E. Stein. Interactions among converging sensory inputs in the
superior colliculus. Science, 221:389-391, July 1983.

[I]

[2]
[3]

[4]

[5]
[6]

DATA STRUCTURES -+ GENETIC OPERATORS = EVOLUTION
PROGRAMS

Zbigniew Michalewicz, Joseph Schell, and David Seniv

Department of Computer Science
University of North Carolina
Charlotte, NC 28223, USA

This paper discusses a new approach €or soh~inp, constrained optimization
problems using m a s tandard gemtic a1gorithn:t- We call this approach: “evo-
lution progranmiing” . We q u e that a “natm J” representation of a solution
for a given problem plus a family of applicable gwietic operators might be quite
useful in the approximation of solutions of constrained optimization problems.
We describe some experiments of using this approach.

1 INT‘RQDIJCTION

To solve a nontrivial problem using a genetic algorithm approach we can either trans-
form the problem (it need not be an easy task) into a form appropriate €or the genetic,
algorithm, or we can transform the gcnctic algorithm to suit the problem. This paper
represents thc latter approach. We discuss applications of nonstandard genetic algorithms
to approxiriiate constrained optimization problems. We depart from classical genetic al-
gorithms which sperate 011 strings of bits: rather, we search for richer data structurcs arid
applicable “genetic” operators for thesr: structures.

The binary alphabet offers the maxiriaurn number of schemata per bit of information of
any coding (sce [SI) and consequently the bit string representation of solutions bas dom-
inated genetic algorithm research. This coding also facilitates theoretical analysis and
allows elegant genetic operators. Rut the ‘implicit parallelism’ result does not depend on
using bit strings (see [I]) and it may be worthwhile to cxperirrient with richer d a h struc-
tures and other types of genetic operators. We argue here that these rnodificattions rnay
be useful when the problem to hc solvcd involves non-trivial constrsin t s that conliniially
have to be msintaincd during the genetic operations.

We bclieve that a promising dircction for incorporating constraints for genetic algo-
rithms is with the introduction of richer data structures together with a family of applica-
ble “genetic” operators, which would “hide” the constraints present in the problem. These
richer data structures, with appropriate genetic operators, would constitute an ewol7ition

108

program. The structure of an evolution program is identical to the structure of a classical
genetic algorithm. The differences are hidden on the lower level: each chromosome need
not be represented by a bit-string. Moreover, for the recombination process we introduce
“genetic” operators appropriate for thc given structure and the given problem.

Three experiments (the transportation problem, the graph drawing problem, and the
traveling salcsman problem) based on the proposed methodology are discussed in the
paper. All of these adopt “natural” data structures and specialized “genetic” operators.
The results are more than encouraging. We discuss them in turn.

2 EVOLUTION PROGRAM FOR THE TRANSPORTa4TION PROBLEM

In this section we describe an optimization problem, known as the transportation problem,
and show how it can be formulated as an evolution program.

2.1 THE TRANSPORTATION PROBLEM

Suppose that a commodity is available at a number of sources and that certain quan-
tities of this commodity are required at a number of destinations. The demand at each
destination may be satisfied from one or more sources. The objective of the transportation
problem is to determine the amount to be shipped from each source to each destination
such that the total transportation cost is minimized.

If the transportation cost on every route is directly proportional to the number of units
transported, we have a linear transportation problem. Otherwise, we have a nonlinear
transport at ion pro b le rn.

Suppose that there are n sources and k destinations, that the amount of supply at
source i is sozlr[i] and the demand at destination j is d e s t k] , and that the unit trans-
portation cost between source i and destination j is given as a function f d j .

Let xij be the amount transported from source i to destination j; then the transporta-
tion problem is to minimize

subject to the following constraints:

(1)
(2)
(3)

xtz1 xdj = sour[i], for i = 1,. . . , n
xij = d e s t [j] , for j = 1, . . . , IC

q j 2 0, for i = 1,. . . ,n and j = 1,. . . , k
This, in fact, is the balanced transportation problem, due to equalities in (1) and (2).

If all the so~sr[i]’s and de.st l j] ’s are integer, any optimal solution to a balanced linear
transportation problem is an integer solution, L e . all xij (1 5 i 5 n, 1 5 i 5 k) are
integers. Moreover, it can be shown that the number of non-zero values among the z;j’s
is at most k + n - 1. However, it is not the case for a nonlinear transportation problem,
where q j ’ s need not be integers and the number of non-zero elements may be arbitrary.

109

2.2 FORMULATING THE TRANSPORTATION PROBLEM AS AN
EVOLUTION PROGRAM

In order to build an evolution program for the transportation problem, we need to
find a representation for caIididate solutions and create appropriate genetic operators for
this representation.

It seems that for the transportation problem a matrix representation is clearly the
most natural one - after all, this is how it i s presented and solved by hand. So let lis

assume a matrix V = (v;j) (1 5 .i 5 I C , 1 5 j 5 n) represents a possible solution to the
transport at ion problem.

There is a large group of possible “genetic” operators we can apply to matrices. Differ-
ent operators may be selected for linear and nonlinear cases of the transportation problem.
Let us consider these two cases separately.

2.2.1 Linear Transportation Problem

We search for a solution expressed as a table of nonnegative integers. Because of
nontrivial constraints, we can create the following “genetic operators”:

mutation: this operator would select part of a matrix, find mariginal sums, erase
all entries in the selected part, and place some random integers for all entries such
that the new numbers satisfy constraints for mariginal sunis.

arithmetical-crossover: this operator would create a matrix which is an arith-
metical average of two parent matrices. Additionally, the resulting matrix (which
need not contain only integers) is rounded in a special way to preserve all mariginal
constraints .

We have built an evolution program for solving the linear transportation problem
using a matrix structure and the above operators [IT]. A number of examples from the
transportation problem chapters of textbooks in Operations Research were chosen as
the base set of problems. They were supplemented by a number of other examples with
randomly generated unit costs, supply values, and demands. For the purposc of evaluation
of the evolution program, each example was first solved using a standard transportation
algorithm so that the optimum value was known for later comparison. Since the optimum
tmmsportation plan in the linear case can be determined easily, we have selected the
percent above optimum in 100 generations as an evaluation of the “goodness” of our
approach. In all cases, this number was below 2%.

For a further discussion on the lineax transportation problem and possibilities of ap-
plying classical genetic algorithms to this problem, see [l?].

110

2.2-2 Nonlinear Transportation Problems

We have investigated the effectiveness of our approacLl dea ing with non inear trans-
portation problems. This leads to further opportunities in selecting genetic operators.
Wc have created the following “genetic operators” :

mutation-1: this operator would select part of a matrix, find mariginal sums, erase
all entries in the selected part, and place some random integers for all entries such
that the new numbers satisfy constraints for rnariginal sums. At the same time, this
operator attempts to introduce as many zero entires into the matrix as possible.

e mutation-2: this operator is identical to the previous one except it avoids choosing
zero entries by selecting values from a range.

a arithmetical crossover: this operator is simpler than its counterpart for integer
numbers. Two matrices VI and V2 would produce two offspring, Wl and W2, such
that W1 = c1- V, -t c2. K, and W2 = c2 V, -+- c1. &, where c1 and c2 are any positive
reals such that c1 + c2 = 1. Note that this operator would preserve the constraints
(sums for rows and columns).

The experimental application of this approach for solving nonlinear transportation
problems is more than encouraging. We compared the results obtained using a commercial
system, GAMS (see [a]), with our evolution program (called GENETIC-2) on six nonlinear
cases (nonlinear functions A - I?). For a full discussion on the selection and classification
of these functions, see [12].

A typical comparison of the optima between GENETIC-2 (averaged over 5 seeds) and
GAMS for all six functions is shown in the table below.

111

3 EVOLUTION PROGRAM FOR THE GRAPH DRAWING PROBLEM

In this section we describe the graph drawing problem and show how it can be formu-
lated as an evolution program.

3.1 THE GRAPH DRAWING PROBLEM

The graph drawing problem (see [4]) is the dcterrnination of an algorithm for drawing
pictorial diagrams of a dirccted graph which is easy to understand and remember. A large
number of algorithms havc becri proposed for drawing graphs. The kinds of algorithms
used, and their costs, vary according to thc class of graph for which they are intended
(e.g. trees, planar graphs, hierarchical graphs or general undirected graphs), the aesthetic
criteria they consider, and the methods they use for optimizing the layout. In most cases,
finding optimal layouts for large graphs is prohibitively expensive, so a number of heuristic
methods have been investigated that find approximate solutions in a rcasonable amount
of time. A good discussion of the problem of drawing graphs, aesthetic criteria that have
been considered, and various methods that have been proposed is given in [16]. A more
extensive bibliography is given in [4].

The aesthetic criteria (for ease in understanding and remembering) can be viewed as
goals of the optimization problem and include:

C1: Arcs pointing upward should be avoided,

Cz: Nodes should be distributed evenly over the page,

C,: There should be as few arc crossings as possible.

3.2 FORMULATING THE GRAPH DRAWING PROBLEM AS AN
EVOLUTION PROGRAM

The representation of a solution for the graph drawing probkxn consists of a 2 x N
matrix which stores the row and column coordinates of each node on a page (N i s the
total number of nodes). Figure l(a) give an example of 18 nodes graph and Figure 2
provides its genetic representation.

The evaluation of each chromosome M i s based on three aesthetic criteria discussed
earlier a id is expresscd as:

where ad, u,, and (11 represent the weights associated with arcs pointing down, arcs cross-
ing, and nodes that lie on the same level; nd(M) and n , (M) denote the numbers of such
arcs; q(M) denote the number of nodes that lie on the same level.. ‘The horizontal arcs
are handled the same as arcs that point upward.

The “genetic” operators uscd in the system were:

112

(a> (b)

Figure 1: Diagram of graph G (a); output from evolution program for the same graph

(b).

Figure 2: Genetic representation of diagram of graph G.

o standard mutation: this operator changes randomly a node’s coordinate: either
row or colunm.

a smart mutation: this operator attempts to use problem specific knowledge to
It focuses on getting all arcs pointing down by moving mutate a chromosome.

nodes without parents lip, and positioning child nodes below their parents.

o crossover: this operator takes a random number of nodes from the first parent and
remaining nodes from the other parent. If the row and column of a node from the
second parent is already represented in nodes from the first parent, then the node
is randomly assigned.

The results are quite interesting: Figure l(b) provides the shape of the best chromo-
some after 200 generations for graph G. This graph has no arcs pointing up or horizontal,
one arc that crosses another, and 11 of 13 siblings are on the correct level.

Two other “evolution programs” (one of these uses a r x c matrix for its chromosomes,
where T and c are the number of rows and columns available on the output page; both

113

programs use different “genetic operators”) for the graph drawing problem are described
in [8].

4 EVOLUTION PROGRAM FOR TRAVELING SALESPERSON
PROBLEM

In this section we describc the traveling salesman problem and show how it can be
formulated as an evolution program.

4.1 THE TRAVELING SALESMAN PROBLEM

The statement of the TSI’ is simple: a traveling salesman must visit every city in
his teritory exactly once and then return to the starting point; given the cost of travel
between all pairs of cities, how should he plan his itinerary so that the total cost of his
entire tour is minimum‘?

4.2 FORMULATING THE TRAVELING SALESMAN PROBLEM AS AN
EVOLUTION PROGRAM

The representation of a solution for TSP is a two-dimensional binary matrix V = (zjj).
If the tour goes from the city i directly to the city j, then x I j I= 1, othewise xij = 0. This
means that there is o d y one nonzero entry for each row and each column in the matrix
(for each city c there is exactly one city visited prior to c, and exactly one city visited
next to c) . For example, a chromosome in Figure 3(a) represents a tour that visits the
cities (1, 2, 4, 3, 8, 6, 5 , 7) in this order. Note also that this representation avoids the
problem of specifying the starting city, i.e. the Figure 3(a) represents also tours (2, 4, 3,
8, 6, 5 , 7, l), (4, 3, 8, 6, 5, ‘7, 1, 2), etc .

(a)

Figure 3: f3ina.r~ Matri

It is interesting to note, that each complete tour is represented as a binary matrix with
only one bit in each row and one bit in each column set to one; however, not every matrix

1 1 4

with these properties would represent a single tour. Binary matrix chromosomes may
represent multiple sub-tours: each sub-tour will eventually loop back onto itself, without
connecting to any other sub-tour in the chromosome. For example, the chromosome from
Figure 3(b) represents two subtours

(1, 2, 4, 5, 7) and (3, 8, 6).

We decided to allow sub-tours in the hope that natural clustering would take place. After
the NGA algorithm had terminated, the best chromosome would be reduced to a single
tour by successively combining pairs of sub-tours using a deterministic algorithm. Sub-
tours of one city (a tour leaving a city to travel right back to itself) having a distance
cost of zero would make no sense and were not allowed. We arbitrarily set a lower limit of
three cities in a sub-tour, in an attempt to prevent the GA from reducing a TSP problem
to a large number of sub-tours each with very few cities.

To demonstrate the significance of this representation, and of allowing subtours to
exist within chromosomes, the example in Figure 4 was devised. Figure 4(a) depicts the
subtours resulting from a sample run of the algorithm 011 a number of cities intentionally
placed in clusters. As expected, the algorithm developed isolated subtours. Figure 4(b)
depicts the tour after the subtours have been combined.

i
.

Figure 4: Separate subtours (a) and the final tour (b)

115

The “genetic” operators used in the system were:

e mutation: this operator takes a chromosome, randomly selects several rows arid
columns in that chromosome, removes the set bits in the intersections of those TOWS

and columns, and randomly replaces them (in possibly a different configuration).

0 crossover: the crossover operator begins with a child chromosome that has all bits
reset (zero). The operator first examines the two parent chromosomes, and when
it discovers the same bit (identical row and column) set in both parents, it sets
a corresponding bit in the child. The operator then alternately copies one set bit
frorn each parent, until no bits exist in either parent which may be copied without
violating the basic restrictions of chromosoxn.e construction. Finally, if any rows in
the child chromosome still do nut contain a set bit, the chromosome will be filled
in randomly. As the crossover traditionally produces two child chromosonies, the
operator is executed a second time with the parent chromosonies transposed.

In an attempt to evaluate the results of our algorithm, we used an empirical formula
for the expected length of L* of a minimal TST) tour:

where N is the number of cities, R is the area of the square box within which the cities
were randomly placed, and K i s an empirical colustant of approximately 0.765. The square
box to contain thc random cities was selected to be 13.071895 units per side. This resulted
in an L* of 100.00.

Typical results from the algorithm, as applied to 100 cities randomly placed, are
displayed in Figure 5(a), where the resultant chromosome contained 12 subtours, with a
combined cost of 108.3. After the subtours were combined into a single tour, the cost of
the entire tour was 112.9 (Figure 5(h)).

The early results are promising, since they are oiily slightly worse than those reported
in [7] , where 20,000 generations were used (twice a s much). (For more details the reader
is refcrred to [Is]). Additionally, the proposed method leaves some room for further
improvements. Firstly, our deterministic algorithm for combining several sub-lours into a
single tour is far froin perfect (see, for example, crossing lines on Figure 5(b): these can
be easily removed rearranging the sequence of nodes to be visitcd). Secondly, there are
other “genetic” operators on binary matrices, which may be cven bettcr than the current
ones for the TSP. Currently, we explore this possibility further.

CONCLUSIONS

We plan to build evolution systems for different problems, using different structures
and different operators. Later, all systems would be combined in a single software product
suitable for various types of optimization. The only responsibility of a user (apart from
supplying the evaluation function) would be to select an appropriate data structure and

116

Figure 5: ‘l’he best chromosome (a) and the final tour (b)

meaningful genetic operators, the latter selccted from a library provided for each data
structure,

It is too early to give convincing evidence of the soundness of the proposed approach;
however, the first results are very encouraging. Additionally, it seems that that a “nat-
ural” representation of a solution for a given problem plus a family of applicable genetic
operators might be more efficient in solving some constrained optimization problems

ACKNOWLEDGMENTS

This research was supported by a grant from the North Carolina Supercomputing Center.

References

[l] Antonisse, J., A New Interpretation of Schema Notation that Overturns the Binary
Encoding Constraint, in [14], pp.86-91.

[2] Brooke, A., Kendrick, D., and Meeraus, A., GAMS: A User’s Guide, The Scientific
Press, 1988.

[3] Davis, L., (Editor), Genetic Algorithms and Simulated Anneahg, Pitman, London,
1987.

117

Eades, P., and Xuemin, L., How to Draw a Directed Graph, Technical Report, De-
partment of Computer Science, Brown University, 1988.

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning,
Addison Wesley, 1989.

Grefenstette, J.J., (Editor), Proceedings of the First International Conference on Ge-
netic Algorithms, Pittsburg, July 24-26, Lawrence Erlbaum Associates, Publishers,
1985.

Grefenstette, J.J., Incorporating Problem Specific Knowledge into Genetic Algo-
rithms, in [3], pp.42-60.

Groves, L., Michalewicz, Z. , Elia, P., Janikow, C., Genetic Algorithms for Drawing
Directed Graplq Proceedings of the Fifth International Symposium on Methodologies
of Tritelligent Systems, Knoxville, pp.268-276, October 25-27, 1990.

Janikow, C., and Michalewicz, Z., Specialized Genetic Algorithms for Numerical Op-
timization Problems, Proceedings of the International Conference on Tools for AI,
Washington, pp.798-804, November 6-9, 1990.

Michalewicz, Z. and Janikow, C., Genetic Algorithms for Numerical Optimization,
Sta-tistics and Computing, Vol.1, No.1, 1991.

Michalewicz, Z., Kazemi, M., Krawczyk, J., Janikow, C., Genetic Algorithms and
Optimal Control Problems, Proceedings of the 29th IEEE Conference on Decision
and Control, Honolulu, pp. 1664-1666, December 5-7, 1990.

Michalewicz, Z., Vignaux, G.A., and M. Wobbs, A Genetic Algorithm for the Non-
linear Transportation Problem, ORSA Journal on Computing, Vol.3, No.4, 1991.

Michalewicz, Z. and Janikow, C., GENOCOP: Genetic Algorithm for Numerical Op-
timization of Constrained Problems, to appear in the Communications of the ACM,
1991.

Schaffer, J. David (Editor), Proceedings of thc Third International Conference on
Genetic Algorithms, June 4-7, 1989, Morgan Kaufmann Publishers, 1989.

Seniv, D. and Michalewicz, Z., A Non-Standard Genetic Algorithm for Traveling
Salesman Problem, UNCC Technical Report, 1991.

Tamassia, R., Di Battista, G. and Batini, C., Automatic Graph D~uwing and Read-
ability of Diagrams, IEEE Transactions on Systcrns, Man, and Cybernetics, Vo1.18,
No.1, pp.61-79.

Vignaux, G.A. and Michalewicz, Z., A Genetic Algorithm for the Linear Tr-ansporta-
tion Problem, IEEE Transactions on Systems, Man, and Cybernetics, V01.21, No.2,
1991.

119

Generic Problem Solving Models in a Computer Aided Methodology for
the Construction of Knowledge Based Systems

Andre R. Probst
University of Lausanne (HEC) and IBM Switzerland

Alex I. Horvifz

University o f Lausanne (HEC) and Banque Cantonale Vaudoise, Lausanne, Switzerland

Dieter Wenger

Swiss Bank Corporation, Basel, Switzerland

ABSTRACT

This paper describes a Computer Aided Knowledge Engineering (CAKE) tool that

embodies a development methodology specially suited f o r the construction of
knowledge based systems. The computer based tool also includes a library of
predefined problem solving models called G-TEGS (Generic Techniques). Categories
of G-TECS are defined as classes and are organized in hierarchies. The inheritance

and instanciation mechanism substantially ease the generation of specific applications,
Reusability of predefined models is supported at a broad level.

1. INTRODUCTION

T H E NEED FOR COMPUTER AIDED KNOWLEDGE ENGINEERING TOOLS

Knowledge-based systems (KBSs) are, despite the myths and hypes which accompanied their
early stages, information processing systems (IF'S). It is true that there a re significant differences
between implementation techniques used for constructing MBSs and traditional IPSs. However, the

great deal of experience gained in the field of information system development is still valid and
very useful.

Developers of knowledge-based systems must profit from the years of experience in
developing IPSs. Therefore, it must be realized that a well defined development methodology is vital

for the successful construction of a knowledge-based system as it is the case for any commercial
software system. It can also be gathered from the IPS experience that there a re substantial benefits
to be derived from embodying a development methodology into a computer-based tool or Computer
Aided Knowledge Engineering (CAKE) tool.

Based on our experience building numerous commercial KBSs we propose a development
methodology specially suited for the construction of this type of software systems. This methodology
has been embodied in a computer-based tool which supports knowledge engineers from the
knowledge acquisition phase down to the design of the system. The tool allows for the generation of
operational code as soon as any subset of the KBS's design has been completed. The architecture of

120

the KBSs produced by the tool reflects the principles of the underling development methodology.

These principles emphasize highly parallel and modular architectures.

The software engineering community has taught us through the Object-Oriented Approaches
the importance of reusability; that is, the possibility of using and adapting off the shelves
subsystems. Researchers in the A I community have tackle the problem of providing predefined

problem-solving modules: for instance, Chandrasekaran's group work on generic tasks, and the

KADS project. We have tried to reconcile the views of generic tasks and the KADS project together

with an object oriented approach. 'The main objective is to provide designers of expert systems with

predefined problem solving models. These models are made available in our CAKE tool to the

knowledge engineer through out the design process. Our efforts have been concentrated in providing

hierarchies of "canned" generic problem solving models, which we call G-TECS for generic
techniques.

2. hlETHODOLOGJCAL APPROACHES TO T H E DEVELOPMENT OF

KNOWLEDGE-BASED SYSTEMS

There are a number of lessons that the developers of KBSs have learned from the

construction of successful and unsuccessful systems. The use of ad-hoc techniques, trial-and-error

procedures, and rapid prototyping not based on sound models resulted in some disasters. These
experiences have demonstrated that the construction of knowledge-based systems must be guided by

a strict development methodology specially tailored for this kind of software systems. Methodologies
for the construction of conventional IPS appear to be lacking some essential features required to

support the development of KBSs. We believe that this i s mainly due to the fact that these
methodologies are mostly concerned with data modeling and functional decomposition. Moreover,

these methodologies d o not support activities such as knowledge modeling and knowledge
processing. Therefore, no assistance i s provided for tasks such as knowledge elicitation and

knowledge structuring, which are essential in the construction of KBSs. This problem has been
recognized by researchers in the area and some development methodologies have been proposed (I 4),
(3), (4), (5) , (6), and (I) , (2), (8) A comparison between the main features of some of these
approaches and ours will be presented in section 6.

The methodology we have developed is called the Agent/Concept methodology (AC) (9).
This methodology has been embedded in a computer based tool called EMA fo r Executable
Methodology for the development of knowledge-based Applications (12) and (1 3) due to the fact

that the AC methodology is fully contained in EMA, we use the name EM.4 to refer to both, the
methodology and the tool. EMA supports the acquisition of knowledge, the design and construction
of knowledge-based applications as well as the automatic generation of executable code. It is
important to notice that the applications generated by EMA reflect the underlying principles and
paradigms upon which the methodology is based.

Another important aspect of EMA is the use of a predefined library of problem solving
models. These problem solving models are available to the designer of KBSs through out the
developing process. This will be described in detail in section 5. EMA has so f a r been used to

develop several banking KBSs and the results obtained have been very encouraging.

1 2 1

3. THE KNOWLEDGE MODEL

The knowledge model is a representation of a set of actions and coiicepts necessary to
perform some task in a certain domain. The knowledge model organizes these activities and concepts
by identifying the dependencies between activities and concepts, and by recognizing the

relationships among concepts. The building blocks of the knowledge model are concepts, agents, and
events. Concepts and their relationships are organized in structures, which form the Information
Structure. Agents are organized in global views and their internal functioning is described in local

views.

3.1 CONCEPTS / INFORMATION STRUCTURES.

Concepts a re used to model the static knowledge needed to accomplish a specific task.
Concepts can represent classes of abstract objects such as a loan, a client, or a car. These are

referred to as object-types. Concepts can also be used to refer to specific information regarding the
attributes of an object-type such as the anioutil of a lomi, the iianze of a client, or fhe colour of a
car.

Concepts a re related by relationships, the methodology distinguishes between two main

a) Universal Relationships : They express relations between concepts which are permanently

classes of relationships :

valid. More specifically, all the instances of the concept appearing in such a relationship must
satisfy the relationship. Generalisation and Aggregation relationships belong to this class. For

example, imagine a system distinguishes between two types of loans, namely commercial and
personal. In this system, every instance of a loan must belong to either type of loan.

one concept could be used to describe a set of concepts with similar characteristics (subclass/class
relationships). For example "a car is-a vehicle" or "A truck is-a vehicle".

Generalisation (is-a / a-kind-of) : This relationship is used to express the idea that

Aggregation (is-part-of): Used to describe the fact that a concept can be made up

of other concepts. For example, "A wheel is--part-of a car" and "an engine i sga r t -o f a car".
b) Existential Relationships : They express relationships between instances of concepts

which may (temporarily) apply. The Association-Relation belongs to this class.
Association-Relations : This is the same kind of relationship used in the Entity

Relationship data models. It is used to express a special kind of relation between concepts. For
instance, "a client O W H S a vehicle" this statement expresses the relationship owns between the

instance of the concept client and the instance of the concept vehicle. Notice that this relationship is
of the class of existential relationships since a client might or might not own a car.

The collection of all the modelled concepts and their relationships form the Information
Structure. The information structure represents a map of all the static knowledge that a system

contains.

As it was mentioned above, concepts represent object-types, the instances of these object-
types are called objects. For example, in an application dealing with the scheduling of inter-banking
money transfer we would find a concept like "Message 001 from Banque Cantonale Vaudoise to

1 2 2

Swiss Bank Corp.". This is an object which is an instance of the object-type "message". The simplest
form of information in the methodology is called information-unit (info-unit). Info-units are made

up of an object, one of its attributes and the value of this attribute. For example, "The amount of

message 001 from Banque Cantonale Vaudoise to Swiss Rank Corp. is of Sfr. 15,000,000" which

implies that the attribute anaount of the object message 001 has the value Sfr. 15,000,000. A
generalisation of an information-unit is called an inforrnation-type (info-type). For example, every

message has an amount. A set of info-units of the same info-type is called an information-set

(info-set).

3.2 AGENTS

Info-sets a r e related among themselves by dependency relationships, This type of
relationship indicates the logical dependency between one dependent info-set and one or more
causal info-sets. This dependency makes explicit the infosets necessary to produce a specific info-

set and also describes the specific conditions that have to be satisfied for this to take place. This
type of dependency relationship determines an agent. Agents are the active elements in the

methodology. They describe the processing required to produce a dependent info-set. This
processing requires different types of knowledge, namely : 1) Activation Knowledge, 2) Input

Knowledge, 3) Constraint Knowledge, 4) Processing Context, 5) Functional Knowledge.

It is important to notice that agents are self-contained, they possess all the knowledge to

control themselves and to process the info-sets that are sent to them. Agents d o not "know" about

the existence of other agents. The only communication among agents takes place through info-sets.

Figure 1 .O shows how communication among agents takes via a blackboard (1 5).

1tS

Figure 1 .O Implementation of the blackboard paradigm in the methodology.

This principle permits the systems developed with the methodology to be extremely flexible.
Agents can be implemented using very distinct technologies (rule-programming, object-oriented

programming, procedural programming, etc). Agents can be modified or replaced without affecting
the activities of other agents.

123

3.3 EVENTS

An event is information or stimulus coming from the environment that surrounds an
application. They represent external request for processing or external submission of information to

the system. Events can be information coming from the user (user-interface events), o r information
coming f rom other application, or information coming directly from the domain (such as input

coming from real-time sensors).

As it can be seen events are used to model the interaction o f a system with the external

world. The interaction includes dialogue with the user, query requests to DBs or messages coming to

the system f rom external instrumentation.

3.4 VIEWS OF THE KNOWLEDGE MODEL

The role o f a knowledge model's Agent and Information Views i s to represent the system's

behaviour and the knowledge structures used to produce this conduct. The views also serve as an
intellectual map of an application. They put in evidence the relationships among concepts, as well as
the behaviour of the application at the macro and micro level.

3.4.1 Agent Views

Agent views are divided into global and local view. The first presents a view of a system a t

a macro-level and the second presents a view of an application a t a micro-level.

3.4.2 Information View

The information view is a representation of the information structure i.e describes all the
system's concepts and all the reIationships that link them. This view provides a map of all the static

knowledge contained in the system.

4, A CAKE TOOL : EhiA

The main goal of EMA is to support the design and development of knowledge-based

systems through the use of a computer based tool. EMA encompasses the knowledge about the
methodology, and as it was stated before, its final objective is to automatically generate
knowledge-based applications with architectures that are akin to the principles and paradigms of the
methodology. This implies that users of E N A are guided towards the construction of a systems

consisting of autonomous but cooperating agents that react to stimuli.

EMA is made u p of several components such as interactive graphical editors a repository, a

set of guide-lines that facilitate consistency checking and an automatic generator of executable code.
A knowledge engineer can use EMA to build the three different aspects of an application's
knowIedge model (information view and agents global and local views) by using the different
specialized interactive graphical editors. The knowledge engineer i s also supported by having at his

disposal a library of predefined problem solving models. The user can select a specific model and
tailor i t to the application that he is currently implementing.

1 2 4

During the construction of the knowledge model some verifications are performed and
warnings regarding possible inconsistencies are generated. Currently the code generator of EMA

produces a skeleton of the final code, therefore this has to be manually completed through the use
of a conventional editor in order to obtain a complete executable KBS.

€MA manages all the information about the application under development with the help of

a repository containing all the concepts, information structures and agents views (global and local).

At any given time a graphical navigator system allows the user to browse and inspect all the
available relationships and a hypertext like feature allows the user to focus on a specific aspect of

the application under development.

The applications generated by EEMA are based on a multiagent model. This model emphasizes

a highly parallel and modular organization of the components of the computer application, and it
also distributes the interaction mechanisms among a set of cooperating units. Beside the modularity

aspect, parallelism and distribution are interesting features for supporting interactive design without
loosing the objective of global systems thinking- and for implementing physically distributed

appljcations (workstation/host cooperation is the first step towards distributed processing). This is
one of our current areas of research.

Eh4A has been successfully used to design and develop several user-centered banking

applications. Some of the systems already deployed include: Fundamental Corporate Analysis

(evaluation of corporations), Credit Assessrnent Support System f o r Small and Medium Size

Commercial Customers, and a system for the Assessment of Personal Loan Applications.

5 . G-TECS (GENERIC TECHNIQUE).

5.1 MOTIVATIONS

The main motivation behind the idea of providing a generic description of problem solving

at a high level of abstraction is to furnish knowledge engineers with predefined problem solving

models that can be reused in the implementation of different systems. Therefore, the knowledge

engineer can be supported from knowledge acquisition all through the actual construction of a KBS.
l h e intent of this being that one should avoid reinventing the wheel every time one develops a new
knowledge-based system. This sounds like a moral that object-oriented practitioners have been
preaching to the software engineering community for a long time. We believe that the KBS field has

matured enough such that we can provide libraries of problem solving models that knowledge
engineers have compiled (implicitly and even explicitly sometimes) through the experienced

acquired in the development of KBS.

There are multiple problems associated with the creation of any sort of library. First, the
problem of what to classify must be solved. And second, a classification system must be devised.

The classification of a set of problem solving models evidently involves these two problems. First,
we must determine the granularity of the Droblem solving models. That is, with what level of detail
we want to express a generic problem solving model. Second, once the granularity of the problem
solving models has been determined, we must figure a way to classify these models. We must
remembered that for knowledge engineer to be able to navigate through a library of problem solving

125

models, we must devise an organization scheme that is as natural as possible to the user of the

library.

5.2 DESCRIPTION

The 6-TECs approach consists in providing a library of problem solving models. This has
some similarities to what is refer to as interpretation models in the KADS project, and what is
called Generic Tasks by Chandrasekaran's group. The differences between our approach an the two

mention above will be presented in section 5.
In order to be able to define the G-TEC's approach we must present our conception of what

problem solving entitles.

The input of the problem solving process is the structure of the information that describes a

problem. The processing is done by a set (one or many) of problem solving techniques. The output
of the process is the information structure of a solution to 3 problem. For instance, we can imagine

the problem of assessing the financial position of a company. The input to the problem solving

process would be the structure of the financial information of the company (a hierarchical

description of all the assets and liabilities of the company). The output of the process would be the
judgment of the financial position of each of the a e a s of the company structured in some

hierarchical fashion. The techniques to achieve the financial assessment of the company can vary,
but they must include : a way to describe what to evaluate; and a way to describe how to evaluate
it. Notice that these requirements are derived from the structure o f the problem and the structure of
the solution.

This very simple description of the problem solving process allows us to define and classify
a set of problem solving frameworks that we have named G-TECs for Generic Techniques. It is
intuitive that one can achieve a solution to a problem using many different techniques. And that a
solution to a problem is linked to at least one specific technique. Based on these ideas we define

two concepts for studying problem solving. The first concept is Technical G-TEC. For instance,

optimization techniques such as simulated annealing, or search methods such as depth-first.

Technical G-TEC are independent of the domain of application. The type of solution that Technical
G-TECs provide and the way in which this solution i s achieved is very well defined (algorithmic

form). The second concept that we need to define is Problem Specific C-TEC. A Problem Specific
G-TEC is a combination of the information structure of the solution to a problem and the specific

technique used to produce the solution. The following are examples or Probkm Specific 6-TECs :
Predicted Behaviour, Judgment, Diagnose, Plan, Design, Configuration. In EMA, 6-TECs are seen
as any other KBS, therefore, they are described via agents and information structures. That is , the
information described corresponds to the value of attributes, the kind of general information

structure it operates on and the type of actions that are allowed to be executed by the corresponding
agents.

The example that it was presented above regarding the evaluation of the financial position of
a company can be described with the G-TEC "Judgement". This type of G-TEC is characterised by
the fact that the information described can be decomposed in hierarchies, and that partial
evaluations are performed on the substructures of the hierarchies. Results are then combined to
arrive to a final judgement. It is important to notice that the combination of the partial results is

126

done in an "intelligent manner" derived from the knowledge of experts in the domain. This specific
knowledge would obviously vary for different domains.

6. COMPARISON BETWEEN G-TECS AND T H E APPROACHES OF CHANDRASEKARAN AND

T H E KADS PROJECT.

We have selected to compare our approach and the one taken by the KADS project and
Chandrasekaran's group (Generic Tasks or G T) because we are fairly familiar with them and also
because they represent two main streams in the modeling of knowledge-based systems. There are

some other approaches that are also very interesting, but for the sake of limiting the size of the
paper, we have not included them

The comparison will present the differences between our approach, and GTs and KADS. In

order to make the comparison as neutral and as comprehensive as possible we have selected (10) as a
basis. Karbach's article presents the comparison of four approaches for the modeling o f KBS. This

comparison is based on three main hypothesis: 1) It is useful to describe problem solving at an

abstract level; 2) Models of problem solving can be specified in a problem specific, but application

independent manner; 3) Models should guide rhe knowledge acquisition process and aid in the

structuring of the knowledge base.

6.1 HYPOTHESIS 1 : I t is useful to describe problem solving on a more adequate, abstract level
than that offered by general purpose knowledge representation languages.

We believe that G T and KADS provide descriptions of problem solving methods at a level of
abstraction that satisfies the requirements expressed by hypothesis number one. The difficulty that

we encounter is that once the abstraction of a real world problem has been done and once that this
abstraction has been modelled, eventually an operational system must be produced, we have called

this the abstraction-modeling-working problem. The approach taken by G T allows a knowledge
engineer to achieve this goal by means of specialised environments that produce working systems.

KADS, on the other hand, provides a set of interpretation models and also a language for the
definition of new model. Nevertheless, KADS does not provide concrete problem solving techniques

for the models that makes available to the KE.

G'T solves the abstraction-modeling-working system problem in a way that we believe is not
very efficient. GT's solution is not very efficient since a knowledge engineer is forced to learn each
of the different environments that have been defined for each specific problem domain. In the

assumption that a KE can become proficient in all these environments, he is then confronted with
the problem of making all these environnients communicate with each other which could be a minor

problem compared with the challenge of having to integrate them into a large scale information

processing system. From the software engineering point of view we believe that this process is
cumbersome. KADS provides a very elaborated solution for the problem of abstracting-modeling,
but it does not provide much support for the actual generation of working systems.

The approach that we have taken aims to solve the abstraction-modeling-working system by
providing hierarchies of predefined G-TECS. G-TECS can be used or described a t any level of
abstraction along the hierarchy. The higher one moves on the hierarchy the more abstract the G-
T E C becomes, and the lower one goes the more detail the G - T E C becomes (down to the

127

Domain I
Problem

lndep

implementation level). The hierarchies of G-TECS are contained in EMA such that the automatic

generation of working knowledge-based system can be supported. Figure 2.0 show a schematic

representation of the abstraction and implementation mechanisms of G-TECs.

I--.j - e E t K d
Part of the

G-TECs
Model of
G-TECS
lllll._

G-TECs 4

Specific I I I

Domain
Specific

Applic.
Speci fk

___I__

-Model of G-TECs - G-TEC code
I_.___

- Code generated Inn
the knowladpe model

withovt G-TECm - Hand coded part

Non-operational Operational

Figure 2.0 Abstraction and Implementation of G-TECS

6.2 HYPOTHESIS 2 : Models of problem solving can be specified in a problem specific, but

application independent manner.

It is clear that problem solving models should be described for specific problems, but this

should be independent of the instance of the problem being solved. There are substantial rewards on
providing a knowledge engineer with a library of predefined problem solving models. On the other

hand, it is extremely difficult if not impossible to provide a library of these methods that can

satisfy the needs of every single knowledge engineer. This lead us to the requirement of providing a
formal way of describing new models. The need fop. formality comes from the requirement of :
combining the newly defined model with the old ones; and from the implicit requirement that the

eventual automatic generation of systems must be accomplished. Both of the approaches that we
have compared 6-TECS with satisfy the requirements stated above in a partial manner and using
different approaches.

The GT approach, provides a set of predefined problem solving models. This models have to
be filled in with the actual data corresponding to the problem being modelled. Once the knowledge

engineer has done this, these problem solving models are able tb) generate operational systems. As it
can be seen this approach partially satisfy the requirements expressed above. Nevertheless, it does
not satisfy the very important requirement of providing a formal manner of defining new problem
solving models. This condition is essential since as it can be imagine knowledge engineer are very
likely to be confronted with problems that require a model that has not being pre-defined.

128

KADS provides a set of predefined problem solving models (interpretation models). It also
furnishes a formal language for defining new problem solving models. This language i s very general
and operates at a high-level of abstraction. This is a desirable quality since this provides high

flexibility one can define new problem solving methods with a considerable ease. On the other

hand, the high abstraction of the language implies in this case, a great difficulty in expressing the

actual functioning of a newly defined model. This in turn, implies a tremendous difficulty for
automatically generating an operational system.

The situation that we have described above it must sound extremely paradoxical. On the one
hand, we want models to be specific enough such that systems can be easily implemented from this

description. On the other hand, we want to be able to define new models by using an abstract and
very flexible description languages. The approach that we have taken to compromise these two
points of view. We believe that we should provide building block that a re specific enough that can

be used to precisely define a problem solving method, but that are small enough that can be
combined in order to satisfy the requirement of high flexibility. The building blocks that we use for
defining new G-TECs in EMA are the same that are used for defining any new knowledge-based

system, namely agents and information structures. Once the new G-TEC has been defined using

these building blocks, it is classified by the knowledge engineer in the corresponding level of a new

or an existing hierarchy of G-TECs. At this point the G-TEC can be described in more detail by
expanding the hierarchy downwards. The knowledge described at higher level of the hierarchy is
available through the use of inheritance. The lowest level of the hierarchy should contain a
description of a G-TEC specific enough that code can be generated from it. Notice that the K E is
not obliged to provide a detail description of a G-TEC, but if he does not furnish this description,
then EMA cannot automatically generate executable code for the specific G-TEC.

6.3 HYPOTHESIS 3 : Models should guide the knowledge acquisition process and aid in the

structuring of the knowledge base.

The implication of this hypothesis is that the generation of operational systems based on

models of problems solving should be as straight forward as possible. We believe that the most

direct and precise way to perform this mapping between a model and an operational system is by,
as much as possible, supporting the automatic generation of these systems. The structuring of the
knowledge base is implicitly assured automatically generating the knowledge-based.

The approach taken by G T supports to some extent the requirements implied in hypotheses
number three. If a knowledge engineer selects a predefined problem solving method in the GT
approach, it is possible to automatically support knowledge acquisition, since the knowledge

engineer is guided to filling the instances of the problem being modelled. Nevertheless, the lack of

a unique procedure for defining all problem solving models implies that each GT can be structured
according to a defined model, but the overall model that consist of different GTs is not necessarily
structured according to any model.

KADS fulfilment of the requirements brought along by hypothesis three is amply less
satisfactory than the one put forward by GT. The model for a given problem can be predefined or

129

defined by a knowledge engineer, Once this model has been completed and the knowledge engineer

feels that the modeling process is finished, then the implementation starts. At this point KADS
provides virtually no more support than advising that the final architecture of the system should

reflect the model of the problem. This reflexion must be automated as it is the case in the tool that
we have developed (EMA). We believe that the automatic generation of final operational systems is

crucial since a great deal of the effort that was invested in correctly modeling a system could be
lost if the implementation is not well controlled. Moreover, in phases such as validation,

maintenance, and enhancement the needed to trace instruction in the system to parts of the model is
crucial.

The approach that we take with G-TECS is to start from the requirement that the automatic
generation of code is primordial to achieve any stable systems. Therefore, we believe that the

knowledge engineering process must be supported by a computer based tool from knowledge
acquisition to implementation. EMA furnishes this support by providing some automated aid at the

knowledge acquisition phase. The modeling is fully automated and the automatic production of
executable code is partially supported.

7. CONCLUDING COMMENTS

EMA is a self contained cooperative and comprehensive methodology for the development of

expert systems. It is self contained because the methodology is embedded in the tool in the form of

a knowledge-based system. It is cooperative because the user is seen as a partner in the development
of new KBS. EMA is comprehensive because it encompasses all the information required to support

the entire development cycle of an expert system. The applications generated by EMA are based on
a multi-agent model. This model emphasizes a highly parallel and modular organization of the

components of the computer application, and it also distributes the interaction mechanisms among a
set of cooperating units. Beside the modularity aspect, parallelism and distribution are crucial

features for supporting interactive design without loosing the objective of global systems thinking-
and for implementing physically distributed applications (workstation/host cooperation is a big step

towards distributed processing).

EMA is not yet fully functional but i t has gone through several versions of irnprovernents.

Several user centered banking applications have been already successfully implemented with EMA,
The results obtained in the deployment of these systems have been very encouraging. Some of these

systems include: Fundamental Corporate Analysis (evaluation of corporations), credit assessment
support system for small and medium size commercial customers, and a system for the assessment of

request of personal loans. The latest application developed with EMA is in the domain of
configuration. Our current efforts are directed towards enlarging the library of G-TEChs as well as

improving the automation of the support for knowledge acquisition. Regarding improvements to the
methodology, we are working on providing modelling support for the integration of KBS and

conventional information processing systems.

130

REFERENCES

1. [Breuker et a! 19831 Breuker, J. , Wielinga, B., VanSomeren, M., De Koog, R., Schreiber, G., De
Greef, P., Bredeweg, B., Wielemaker, J., Billaut, J. P., Davoodi, M. & Hayward, S. (1987). Model-
Driven Knowledge Acquisition: Interpretation Model$. Technical Report Esprit Project 1098,
Deliverable Task A 1 . Amsterdam: University of Amsterdam, Social Sciences Informatics.

2 . [Breuker & Wielinga 19891 Breuker, J . , Wielinga, B., (1989). Models of Expertise in Knowledge
Acquisition. In G. Guida & C. I'asso, Eds. Topics in Expert Systems Design, Methodologies and

Tools. Amsterdam: North - Holland.
3. [Brown & Chandrasekaran 19891 Brown, T. & Chandrasekaran, B. (1989). Design Problem

Solving: Knowledge Structures and Control Strategy, Research Notes in Artificial Intelligence.

London: Pitman.

4. [Bylander & Chandrasekaran 19871 Bylander, T. & Chandrasekaran, B. (1987). Generic Tasks for
Knowledge-based Reasoning: The 'right' Level of ABSTRACTION for Knowledge Acquisition.
Technical Report 87-TB-KNOWAC, Technical Research Report, Ohio State University, Laboratory
for Artificial Intelligence Research, Columbus, Ohio.

5. [Chandrasekaran 861 Chandrasekaran B., "Generic Tasks in Knowledge-Based Reasoning: High-
Level Building Blocks for Expert System Design" IEEE Expert, Vol 1, No. 3, pp 23-30, Fall 1986.

6. [Chandrasekaran 19881 Chandrasekaran, B. (1988). Generic Tasks as Building Blocks for
Knowledge-based Systems. The Knowledge Engineering Review, October, 1988.

7. [Hendler SS] Hendler J.A., (ed) "Expert Systems: the User Interface", Ablex Publishing Corp.,
1988.
8. [Hichrnan et a! 891 Hichman R., Killin J. L., Land L., Mulhall T., Porter D., Taylor R. M. I'

Analysis for Knowledge-based Systems. A Practical Guide to the MADS Methodology" Elis

Horwood, 1989.
9. [Horvitz Probst Wenger 901 Horvitz A.1, Probst A X , Wenger D., " A n Information Engineering
Methodology for the Development of Knowledge-Based Systems" Proceedings of Expert Systems 90,
London, Cambridge IJniversity Press, Sept. 1990.

10. [Karbach e t al 901 Karbach W., I h s t e r M., Voss A., 1990 "Models, Methods, Roles and Tasks:
Many Labels - one idea?", Knowledge Acquisition 2, Academic Press Limited, pp 279-299.

11. [Norman & Draper 861 Norman D.A:, Draper S.W. "User Centered Systems Design", Lawrence
Erlbaum ASSQC. Publ. 1986.

12. [Probst & M'enger 901 Probst A.R., Wenger D., "Knowledge-Based Systems: Towards a design
methodology which smooths away interface problems" 3rd International Symposium in Commercial

Expert Systems in Banking and Insurance, Lugano Switzerland, May 15 -16, 1990.
13. [Spirgi, Prohst & Wenger 901 Spirgi S., Probst A., Wenger D., 1990 "Knowledge Acquissition in

a Methodology f ro Knowledge-based Applications", Proceedings of IJKAW 1990, p p 382-397.
14. [Swaffield Rr Knight 901 Swaffield G., Knight B., "Applying systems analysis techniques to
knowledge engineering" Expert Systems, Vol 7, No 2, pp 82-93, May 1990.
15. [Winston 19841 Winston, P. H., Artificial Intelligence. Second Edition. Addison-Wesley 1984.

131

GENERAT I O N OF PRODUCT I ON RULES BY BACKWARD
SEARCH FROM NEURAL NETWORKS

Da Qun Qian, Piero Scaruffi and Dario Russi

Olivetti Artificial Intelligence Center
Olivetti Systems and Networks

Via Jervis 77,10015 Ivrea(TO), Italy

ABSTRACT

In this paper, heuristic backward search strategies for generating
production rules from neural networks proposed. By these heuristic search
strategies, various types of production rules and explanations of behavior
of neural networks to users can be generated.

1. INTRODUCTION

The rapid development of neural networks has attracted much attention of A I
researchers. IIowever, compared with the advantages that symbolic
representations of knowledge in A I systems can be stated in a clear and
relatively simple way, and can be easily documented, explained, taught and
learned, neural networks have some disadvantages, i. e., the neural networks
fail to offer an explanation function to the users. The users nearly always
want to know why a neural network comes up with a particular answer.
Sometimes they try to learn how the neural network makes decisions so that
they can improve their own understanding of the problems; sometimes they want
to verify that the neural network i s working correctly. Therefore, by
integrating neural networks with A I systems, the realization of some
connectionist systems in different application areas have proven the
viewpoint, i.e., the connectionist systems are more powerful than either of
neural networks and AI systems. In order to overcome the above disadvantages
of neural networks, this paper studies the generation of explicit
representation of knowledge, namely, knowledge acquisition, from neural
networks and explanation of the conclusions inferred by neural networks . In
this paper, some heuristic backward search strategics for generating
production rules and presenting some explanations to users are proposcd.

The generation of production rules is based on the following principle
idea. A neural network is viewed as a knowledge base where the knowledge is
not cncoded in the form in which people usually express their knowlcdge and
which people can easily undcrstand, such as a production rule. Howevcr,
people may acquire the knowledge from the currently known behavior of the
neural network. Therefore, i t is possible that the production rules may be
generatcd from this behavior. For example, assume each node in Fig. l (a)
denotes a proposition, then it may be thought that there exist some logic
relationships between nodes in layer i-1 and nodes in layer i since the

132

states of the former influence the states of the latter, so that the states
of the former may be regarded as premises and the states of the latter may
be regarded as conclusions inferred from the logic relationships and the
states of the former(i=2. 3).

The neural network discussed in this paper has the following features:
(a).Every node denotes a proposition or a variable, i.e., a symbolic

description of the proposition or the variable is attached to every node.
(b). Every node has a discrete (discontinuous) activation function, i. e.,

the transfer function has the following form:
s(k. l)=f(s) (1)
s = Z s(i, j)lw(i, j, k, 1) (2)
i, j

where s(i, j) denotes the state of node x(i, j) , and w(i, j , k. 1) denotes the
weight on the arc directly from node x(i. j) to node x(k, 1). the i and j in
x(i. j) respectively denote the number of the layer and the number of the node
at this layer where x(i, j) is located. The formula (1) is called activation
function, and formula (2) is called input function.

(c). The neural network does not contain cycles.
Some terminology on the neural network of this kind is explained first. If

an arc in the neural network is directed from node x(i. 1) to node x(k. 1).
then node x(k, 1) i s said to be a successor of node x(i. j) , and node x(i, j) is
said to be a parent of node x(k, 1) . A node in the neural network having no
parent is called a root node. A node in the neural network having no
successors is called a tip node. If node x(k, 1) is accessible from node
x(i. j), node x(k, 1) is then a descendant of node x(i. j) , and node x(i. j) is
an ancestor of node x(k, 1). For example, in F i g . l(a), nodes x(3, 1) and
x(3,2) are tip nodes, x(l,l), x(1,2), x(l.3) and x(1,4) are root nodes, and
they are also parents of x(2, 1). x(2,2) and x(2,3), and correspondingly
x(2, 1). x(Z,2) and ~(2.3) are successors of x(1,l). x(l,2), x(l,3) and
x(1, 4), further, nodes ~(3.1) and x(3. 2) are descendants or grandchildren of
x(1, 1). x(1, 2) , x(1. 3) and x(1, 4), and correspondingly x(l,l), x(1, 21 , x(1, 3)
and x(1,4) are ancestors of x(3, 1) and x(3.2). n(i) denotes the number of
the nodes in layer i. m denotes the number of the layers in the neural
network. X(i, j) denotes a symbolic description of node x(i, j) , which
describes a variable or a proposition. A domain of a state is defined as a
domain of an activation function on which the state holds, as shown in Fig.
1 (b).

2. SEARCH PROCEDURES

2. 1. CUT-OFF SEARCH PROCEDURE(A)

I t is a backward search procedure. The backward search procedure can
generate a group of production rules by which why a conclusion is inferred
can be explained. I t is used in the case of binary activation function(i.e.
the state of a node should be in one of two possible states either sl or -s2,
s1>0, s2>0) , but i t is also easily extended to the case of multi-value

133

activation functions as the modified forward search procedure given intll. The
production rules derived from the currently known information should have the
minimal number of premises that is sufficient for inferring the corresponding
conclusions as long as the states of nodes remain unchanged, which means that
a minimal number of premises must be searched for.

(a). Let set S be equal to the node x(k, 1) which is selected for
explanation.
k is assigned to the number of layers of the neural network.

(b). DO W H I L E k=>l

(bl) Denote all the parent nodes x(i, j) of x(k,I) as set S(1) which have
each direct contribution for each node x(k, 1) in S . i.e.
S(l)=(x(i, j) l w (i , j, k, 1)=/=0], 1=1, 2, . . . , n(k).

(b2). Classify S (1) into two subsets: S(1,l) and S (I . 2) . S(1,l) contains
all the nodes which disconfirm the state of x(k, 11, and S (l , 2) contains all
the nodes which confirm the state of node x(k. 1). S(1,l) can be deleted
without affecting the state of node x(k, 1) . Arrange the nodes in set S(1 , 2)
in ascending order of their contribution f o r the current state of successor
node x(k, 1) . which i s calculated by multiplqing the wcight on the arc
starting from each node in S (1 . 2) t o x(k, 1) with the corresponding state of
this node in S (l , 2) .

(b3). Delete the contributions of these nodes in S (1 , 2) in order arranged
above until the state of node x(k, 1) has been changed since x(k, 1) lacks the
contribution of the node being deletcd so that fails to maintain the state of
nodes in S(j, 1).

(b4). Generate production rules from these remaining nodes in S(l,2) for
node x(k, 1). The rules have the following form:

X(i, 1) (s(i. 1)) (w(i, 1, k. 1)) and X(i, 2) (s(i, 2)) (w(i, 2 , k, 1)) and . . . and
X(i, t) (s(i, t)) (w(i, t, k. 1)) ---> X (k , 11 (s(k, 1))

where X(i. j) is a symbolic description of the corresponding node x(i, j) ; if
x(i. j) denotes a proposition, then s(i, j) may be used as a certainty factor
of node x(i, j); If x(i, j) denotes a variable, then s(i, j) is the value of the
variable; w(i, j , k, 1) may be used to represnet the certainty factor of x(i, j)
if x(i, j) is a variable or the importance of x(i, j) in the production rule,
or the weighted logic operator AND. (s (i , j)) (w(i. j , k. 1)) can also be replaced
by s (i . j)tw(i, j , k, 1) according to input function (2) . k<=k-1, denote these
unmarked nodes in S (l , 2) which are hidden nodes as set S , and mark these
nodes.

1

I

Since there may exist several paths connecting x(k,1) and some ancestor of
its, all the nodes having been expanded i n this backward search should be
marked in step 0 in order to avoid to be selected for expansion again. This
search procedure may not guarantee that these generated production rules have
the minimal number of premises.

Examplc 1: The following steps show the use of the cut-off search proccdure
fo r node ~ (3 . 1) in the neural network i n Fig. 2.

In step (a), k=3, S=(x(3. 1)).
In step (bl), S (1) = (~ (2 , I) , x!2, 2)) .
In step (b2). S(1.1) is an empty set, and S (1 , Z) is arranged as

134

(x(2,2), x(2. 1)).
In step (b3), x(2,2) is deleted.
In step (b4). generate a production rule as follows:

Set S=(x(2, l)), ~(2.1) is marked, k=2, go to step (a.
In step (bl). S(l)=(x(l, 11, x(1, 2) . x(1, 3)) .
In step (b 2) , S(l,l)=(x(l, 1)) and x(l.1) are deleted, and S(1,2) is

In step (b3), x(1, 2) is deleted.
In step (b4). generate a production rule as follows:

k=l. stop.

X(2,l) (1) (0.5)-------> X(3.1) (1)

arranged as (x (1, 21 , x (1, 3) I .

X(1.3) (1) (0.5) --------> X(2,l) (1)

2. 2. SET-BASED SEARCH PROCEDURE

In this search procedure, a new restriction is added. i.e., the number of
the root nodes used in generation of production rules is required to be
minimized. This restriction means that the least amount of input information
is used for generating all the production rules. The set-based search
procedure is a backward search procedure for generating the production rules
with the minimal number of root nodes.

A set L(i, j) is said to contain a l l the root nodes which are connected with
x(i, j) by some paths. The sets L(i, j)(i=2,3 , . . . , k-1, for a l l j:
w(i. j, k, 1)=/=0) should be reached at first for each node x(k, 1) selected for
explanation. Compared with the cut-off search procedure, in this set-based
search procedure the nodes are selected fo r expansion which only need the
minimal number of root nodes to maintain their states, namely, the selection
of parent nodes x(i, j)[(i, j) belongs to ((il. j l) . (i2, j2), . . . , (it, jt))] of
x(k, 1) for expansion should meet both the condition that they can maintain
the state of x(k, 1) and the following condition:

I U L(i,j) I = minlU(i, j) L(i. j) I (3)
(i. j)=(il, jl), . . , (it, jt) U(i, j)J,(i. j) can maintain the state of x(k, 1)

where IL(i. j)l denotes the number of nodes contained in L(i. j) . The
condition means that the parent nodes of x(k, 1) are selected for expansion
towards the direction where the number of the root nodes eventually used may
be minimized possibly.

Example 2: In Fig. 3, L(3, l)=(x(l, j) I j=1, 2 , . . . 51,
L(3, 2)={x(1, j) Ij=2. 3,4. 51 , (~(1. j) I j=l, 2, 3,4),
L(2, 2)={x(1, j) I j=2. 3, 4). L (2 , 3)=(x(1. j) I j=1. 3, 4, 51, L (2 , 4)=(x(1, j) 1j=3, 4, 5).
Therefore, nodes x(Z,2) or ~(2.4) can be selected for expansion first
according to formula (3).

L(2,1)=

2. 3. CUT-OFF SEARCH PROCEDURE(B)

In this search procedure, a new restriction is added, namely, the nodes can
be deleted so long as the states of the nodes selected for explanation,
assuming they are tip nodes, remain unchanged. Compared with cut-off search

135

procedure (A) . in this search procedure, the following heuristics may be
used :

(a). A parent of a node can be sclected for expansion if the parent node
satisfies the restrictions stated in 2 . 2 and this section better than other
parents of this node.

Example 3: In Fig. 4. in order to generate production rules that is
sufficient for inferring the corresponding conclusions even if the states of
the deleted nodes have changed, at first the children of tip nodes ~(3.1) and
x(3,2) are selected for expansion and there are three selections as follows:

x(3, 1): x(2. 1),x(2,2) or ~(2.1). x(2, 3) or x(2,2), ~(2.3)
x(3, 2) : x(2,2),x(2,3) or x(2,3), x(2,4) or x(2,2), ~(2.4)

The node group containing ~(2.2) and x(2,3) i s selected for expansion
because this x(2, 2) and x (2 , 3) are the common parents of x(3, 1) and x(3, 2)
and only need 4 root nodes at most to maintain their states. In fact, only
x(1, 3) and x(1, 4) are needed. Therefore, the generated production rules are:

X(1, 3) (1) (1) and X(1, 4) (1) (1) -----> X(2. 2) (1) (1)
X(1, 3) (1) (1) and X(1, 4) (1) (1) -----> X(2, 3) (1) (13
X(2. 2) (1) (1) and X (2 , 3) (1) (1) -----> X(3.1) (1) (1)
X (2 , 2) (1) (1) and X(2, 3) (1) (1) -----> X(3, 2) (1) (1)

(b). Then a parent of a node can be selected for expansion if it has more
redundancy than other parents of this node.
Example 4 : In Fig. 5, production rules can be generated as follows: x(Z,2)

and x(2,3) are selected for expansion because they are the common parents of
x(3, 1) and ~(3.2). they can maintain the states of ~(3.1) and ~(3.2). and
they connect the minimal number of root nodes, 4 in all. Since there exists
some redundancy of x(3,l) and ~(3.2). the following inequality describing the
redundancy of x(3,l) and x(3,2) should be satisfied:

Therefore, the solutions f o r this inequality include:
x(2, 2) t2tx (2,3) >2

~ (2 , 2)=-1, ~ (2 , 3 1 ~ 2 ; ~ (2 , 2)=0, ~ (2 , 3)=2; ~ (2 , 2)=1, ~ (2 , 3) ~ l ; ~ (2 , 2)=1,
x(2, 3)=2; x(2, 2) = 2 , x(2, 3)=1; x(2, 2) = 2 , x(2, 3)=2

Considering the constraint of (x(2, 2)=0 or x (2 , 2)=1) and (x(2, 3)=0 or
x(2,3)=2) by their parent nodes. the remaining solutions now are:

From the solutions, the root nodes x(l,4)(=1) and x(l,5)(=1) are selected to
maintain x(2, 2) = 0 and x(2, 3)=2 or x(2, 2)=1 and x(2, 3) = 2 , i. e.,

x(2, 2)=0, x(2, 3)=2 ; x (2 , 2)=1, x (2 , 3) = 2

X(1, 5) (1) (0. 6) -----> X (2 , 2) (0)
X(1, 4) (1) (1) and X(1, 5) (1) (2) -----> X (2 , 3) (2)

X (1 , 4) (1) (1) and X(1, 5) (1) (0. 6) -----> X(2, 2) (1)
X(1, 4) (1) (1) and X(1, 5) (1) (2) -----> X (2 , 3) (2)

(c). The backward search should satisfy the condition as follows: I f the
state of a node can not be maintained by the states of its parent nodes in
layer 1 due to the last deletion of some its descendant node, thcn backtrace
to some point along backward search path where the node was deleted, reserve
the deleted node, start again.

or

136

3. EXTENSION OF SEARCH PROCEDURES

The above search procedures can be extended in the following cases:

3.1. EXTENSION OF NEURAL NETWORKS

(a). The input function (2) can be extended to other forms, such as, in the
case of applications of neural networks in approximate reasoning, the
Multiply-Add operation (2) is often replaced by a Max-!din operation , and a
binary activation function i s used to activate the node which has a certainty
factor higher than the threshold of the binary activaition function and
inactivate the node which has a certainty factor lower than the threshold of
the binary activation function. The search procedures proposed above can be
used easily in this case.

Evcn if the activation function is continuous, i t is also possible that
these search procedures are applied if the input function is discrete. An
example is the fuzzy petri net implemented by using Looney's neural network
for rule-based decisionmaking [ZI Looney gave an group of production rules as
follows:

C1 and C2 ----> C4
C4 ---> C6
c5 ---> c3
c5 ---> c1
C6 ---> C' (external node)

and known input information(certainty factors) C2=0. 8 and C5=0. 5, and then
used the fuzzy petri net to infer conclusions of the production rules and
known input informalion as shown in Fig. 6 which is an illustrative graph of
the fuzzy petri net. Each node C(i) (i=l,2 , . . . , 6) denotes Ci in production
rules and has a Max input function, and each node N(i) (i=l,2 , . . . , 5) denotes
a relation between premises and a conclusion of a production rule and has a
Min input function. The Max and Min input fuctions are used for approximate
reasoning, and the activation function employed by each node i s a unit
function. By using above search procedures in which the delation of nodes is
replaced by dccreasing values of certainty factors Ci of nodes C(i)
(i=l,Z, . . . , 6), the inputs of Min activation function, to the maximum, i t can
be seen that C2=0.8 can be decreased to C2=0.5 without affecting the
previously inferred conclusions, i.e.. the necessary certainty factors of
premises supporting their conclusion can therefore be determined.

I t is also possible to apply the search procedures to the case of both
continuous input function and continuous activation function. If the state of
root nodes is restricted within discrete domain. then the continuous transfer
function can be regarded as discrete one since only finite values of the
transfer function will be taken a t each layer; otherwise, there are two
strategies for generating production rules. The first one is that all the
nodes are used for generating production rules since each node has its own
contribution for its successor nodes so that the deletion of a node will
result in the change of the slates of its successor nodes. The second one is
that this continuous activation function should first be made discrete. Thus,
a continuous activation function nay be treated equally as a discrete

137

activation function in above search procedures except f o r that each generated
production rule has an error equal to the error resulting from the discretion
of the continous activation function.

by employing the following two ideas: First, a node in a cyclic path should
first be selected to be deleted so that the cycle can be broken(see Fig.
7(a)). Second, if a node in a cyclic path i s reserved, then the states of
other nodes in the cyclic path should be maintained; otherwise, the state of
the node may be changed by the changed states of other nodes in the cyclic
path so that the search has to be repeated along the cyclic path (see Fig.
7 (b) 1.

(c). In some cases, except for t i p nodes and root nodes, hidden nodes in a
neural network have not any meanings. such as nodes x(4, l) , x(4, 2) and x(4, 3)
in example 19. They are used only f o r realization of a mapping from input
information to output information. If these nodes are included in generated
production rules, the production rules will become meaningless. Therefore,
the nodes should and could be deleted from the production rules.

For example, the production rules containing the meaningless nodes x(2, 2)
and x (2 , 3) are as follows:

X (1 , l) (1) (2) and X (1 , 2) (2) (1) ---> X (2 . 1) (2)
X (1 , 1) (1) (1) and X (1 , 3) (1) (1) ---> X (2 , 2) (1)
X (2 . 1) (1) (2) and X (2 , 2) (1) (1) ---> X (3 . 1) (1)
X (1 , 1) (1) (3) and X (2 , 1) (1) (2) ---> X (3 , 2) (1)

(X (1 . 1) (1) (2) and X (1 , 2) (2) (1)) (2) and (X (1 . 1) (1) (1) and X (1 , 3) (1) (1)) (1)
---> X (3 , l) (1)

X (1 , 1) (1) (3) and (X (1 , 1) (1) (2) and X (1 . 2) (2) (1)) (2) ---> X (3 , 2) (1)

(b). The search procedures can also be used in neural networks with cycles

Then they can be equivalently transferred into the following form:

(d). Nodes in neural networks may also be used to denote other terms, such
as, word, object and entity, when a neural network is used as semantic
network or used in sentence processing. It is possible that the generated
production rules can be used to describe the necessary and major
relationships between nodes.

3 . 2. P A R A L L E L SEARCH

A major advantage of neural networks is that they can run in a parallel
way. However, the generation of production rules by the above search
procedures is based on a serial way. In order to realize the parallel search,
the neural network should be reconstructed as follows:

(a). The computational ability of every node should further include:
comparison operation, ordering operation, classification operation, solution
for inequality and so on, since they are needed by every node in above search
procedures.

(b). Nodes can communicate t o each other by adding new arcs between these
nodes fo r transmitting messages, since the realization of some heuristic
ideas in search procedures require the communication among nodes.

(c). The neural network should be reconstructed, i.e., some nodes and arcs
should be added into the neural network. Fig. 8(b) gives a typical extension

138

of the neural network Fig. 8(a). The added nodes A and B respectively
represent the relations between x(1, 1) and x(2, j) s (j = l , 2) . Since in procedures
whether a node should be deleted from some or all of production rules is
determined by its corresponding success nodes, the arcs, starting from x(2,l)
to A and from ~ (2 . 2) to B, and starting from A to x(1. 1) and from B
to x(1, 1). represent the control-wires of x(2, 1) and ~(2.2) by which x(2, 1)
and x(Z,2) can control the states of A and B, and eventually control the
states of ~(1.1). The activated state of A means that the relation between
x(1, 1) and x(2.1) should be reserved in the production rule for inferring
x(2, 1). The inactivated state of A means that the relation between x(1, 1)
and x (2 , l) should be deleted from the production rule for inferring ~ (2 . 1) .
The state of x(l.1) is inactivated only when both the states of A and B are
inactivated. The inactivated state of x(l.1) means that x(1,l)should be deleted
from all the production rules. Therefore, in parallel computation, evcry
node will either be activated or be inactivated by its successor nodes through
issuing Corresponding commands to i t along the control-wires. Finally, the
neural network will converge to a stable state, in which the state of every
node, such as x(1, l) , A and B, stand for whether it or a relation represented
by i t is reserved in production rules. For example, in Fig. 8(b), if
A is inactivated and B is activated, then node x(1,l) is reserved in
the production rule for inferring the state of x(2,2) and is deleted from
the production rule for inferring the state of x(2. 1).

Generally speaking, the realization of the heuristic ideas proposed in this
paper in a parallel way needs a complex structure of the neural network.

4 . R E L A T E D W O R K AND CONCLUSIONS

In the field of A I heuristic algorithms, such as , algorithm A and Alpha-
beta procedure, are used in tree structure for graph scarch. Every node in
the graph denodes a state of a database, and production rules are repeatedly
used to update the state of the database under guidance of a control strategy
until the state of the database matches with some goal searched for [3 1 . The
search procedures proposed in this paper are used in neural networks for
generating production rules. The heuristic search is dependent on the current
state of a neural network, where states of nodes influence each other.

Gallant[$] also proposed a strategy for generating production rulcs from
neural networks. But his strategy is restricted within a specific neural
network which only permit using the activation function with three state
values, (-1, 0. tl), and can only be used in a neural network of small size
since the heuristics used in this strategy are very limited, otherwise the
number of implicitly encoded production rulcs will grow exponentially with
the number of node inputs. Moreover, the strategy can only generate one type
of production rules. Saitoh and Nakano [51 tried to derive rules out of the
causal relationship of input/output layers. B u t the derived rules were based
on binary logic, and the certainty of rule and importance of proposition were
unknown. Hayashi and Nakai [6, 71 proposed a method for acquiring fuzzy
inference rules from the causal relationship of input/output of neural
network. The lingustic truth values included in each fuzzy proposition and

139

certainty of each rule can be determined by this method. However, each node
is also only permitted t o output three values(True(1). Unknown(0) and False(-
1)). i.e., the activation function employed by each node is restricted to a
three-value function, and only the causal relationship between input layer
and output layer can be described by fuzzy inference rules. Bochereau and
Bourgine [8,9] gave a method for solving the NP-complete problem of rule
extraction from a multilayer neural network by restricting the domain of
input of the multilayer neural network. However, satistical information or
prior knowledge is needed in the method, the state of root nodes is
restricted within boolean domain, moreover, some error may be brought about
due to the use of the satistical information.

REF EKE CE S
I

1. D. Q. Qian, P. Scaruffi, and D. Russi. "Generation of Production Rules
from Neural Networks by Forward Search Procedures, " Proceedings of
International Young Computer Scientists Conference, Rei jing, China, July,
1991. 2. C. G. Looney, "Fuzzy Petri Nets fo r Kule-based Decisionmaking, "
accepted for publication in I E E E Trans. SMC, 18(1) (1988). 3. N. J. Nilsson,
Principles of Artificial Intelligence. Tioga Publishing Co., Palo Alto,
CA, USA (1980).
4. S . I . Gallant, "Connectionist Expert Systems," accepted €or publication in
Comm. of ACM, 31 (2) (1988).
5 . K. Saitoh and R. Nakano, "Medical Diagnostic Expert System Based an PDP
Model," Proceedings of I E E E Conference on Neural Networks, 1988, Vol. I.
255,
6. Y. Hayashi and M. Nakai, "Automated Extraction of Fuzzy Production Rules
Using Neural Networks. Proceedings of 5th Fuzzy Systems Symposium,
1989,169
7. Y. Hayashi and M. Nakai. " Automatcd Extraction of Fuzzy IF-THEN Rules
using Neural Networks, " accepted for publication in Trans. IEE Japan,

8. I,. Bochereau and P. Bourgine. " Rule Extraction and Validity Domain on a
Multilayer Neural Network, " Porceedinigs of IEEE and INNS Joint Conference
on Neural Networks, San Diego, 1990, Vol. I , 97.
9. L. Bochereau and P. Rourgine, Extraction of Semantic Features and Logical
Rules from a Multilayer Neural Network," Proceedinigs of IEEE and INNS
Jiont Conf. Neural Networks, Washington, DC, 1990.

110-C(3) (1990).

140

iransferfmclion

1 1- I
I

domain of S

(b)

Fig. 1 Neural network and transfer function

activation fundian

1
1.4)

Fig. 2 Example 1

141

ahation function

- 1

142

5

delay of one
computational unit

p (5) = 0.5

I external node C'

Fig. 6 Afuzzy petri net implemented by using a
neural network for rule - based decisionmaking

(a) The cycle can be broken if node x is deleted and
nodey is reserved in backward search

(b) The stale of node z can be changed
by changing the states of other nodes
i, j, ..., s, x

Fig. 7 Treatment on cyclic path

Fig. 8 Parallel search

143

Computational Nonmonotonisrn and
The Qualification Problem

Arcot Rajasekar

Depart men{, of Coinputcr Science
IJriiversity of Kentucky, Lexington, Kentucky 40506

Abstract

Iiiirrian beings isolatc qualification checking frotn general problem solving and
do nut check for all qiialifirations all the t ime. Biit, they are prepared to allow
erroneous conc-liisions in favour of exhaustive checking. A strategy which has these
human traits can bc accepted ab a possible solution for the qualification problem.
In tliib paper we tlevclop a stratcyg, called computational nonmonotonisni (CN),
which niirnics ttir above paradigrri. In a CN system a qualification is applied only if
it is rdevant to a context or if it has a priority greater than a certain level warranted
by the situation or scenario. The. conclusions from a scenario can bc different from
another because of different qualifit ations which become applicable depending on
the scenario. We apply computational norinlonotonism to a systcin of rules arid
qiialifications and provide declarative and operational semantics for inferring from
the system WP also show the generality of the approach, by applying the compu-
tational nonmoriotonism tecliniquc to default reasoning and circumscription. The
three applicatioits capture differing intuitions of computational nonmonotonism.
We also point out that the approa<li can bc adapted for real-time, time-constrained
nonmonotonic reasoning.

1 Introduction

Oiie of the dillicul t problems in common sense reasoning is the qualification problem:
the problem of checking for abnorrrialjty conditions which can invalidate a conclusion.
Ttierc are two aspects to thc qualification problem. One a.ipect is that it is a n important
prohlrm that weds to be solved in ccmmon-smse rmsoriiiig since it provides a basis for
noii11ioiiot oriic reasoning. In ar1othc.r respect it i y a difficult problem to solve since in
real world situations there can be nurnerous qualifications that need to be checked before
validating a conclusion. EIuinan beings seem to tacklr the two aspects very well, they are
able to make nonrnoriolonic infcwiiw wilhout being unduly bogged down w i t h checking
for niirtierws qualifications. Tlic rtirthod that huruan heirigs swmingly crriploy is that
thc y isnlatc qualification chctkiriy f r o m ytner-a1 problem solving and do iiot check for all
quulifications all the t i m e . Hut, t h e y urc pi-cpnrcd t o allow crroncovs conclusions an favour
of erhaust iuc checking. In real life, we rnigtit check €or some (obvious) qualifications, b u t
may not s p n d that much tirrie for checking for obscure qualifications, which might actu-
ally annul our conclusions. When hard pressed for time, we even ignore to check obvious
qualifications. That is, liiiirittns, cvcn thoiigh they can deduce information which might

144

contradict their conclusions, might conclude erroneously. due to lack of time, space (fa-
tigue) and or ot1ic.r reasons. A strategy which has these human traits can be accepted as
a possible solution for the qualification problem. In this paper we study a strategy, called
coriiput a t ional nonmonotonism, which mimics, in home fashion, the above paradigm. We
apply the concept of computational nonnioriotoism to t h e e nonmonotonic reasoning sys-
tcm:i: rules with exceptions [3] , default reasoning [la] and circurnscription [SI. Each of
these applications capture a different aspect of computational ironmonotonism.

Thc qualification problem was first identified by McCarthy [4] in the context of the
Inissionai ies arid canriibals puzde. He dercribed circumscription [SI as a paradigm for
solvirig the qualific~tion problenr. Since then, the qualificatiori problem has been inves-
tigated in the framework of nonmonotoiiic reasoning and several paradigms have been
introduced. Sonic of the techniques that address the qualification problem include default
reasoning [12, 11, 31, modal-based logic [lo], inheritance theory [a], temporal reasoning
[13], reasoning about action [l], etc.,. In existing artificial intelligence systems, the qual-
ification problem is solved by encoding qualifications as part of the theory and finding
an extension which miniriiizes the conclusions that can be inferred from the theory. Var
ious minimization policies are employed which lead to different reasoning paradigms and
differerit sets of conclusions.

The problem of riunim-ous qualifications is solved, by these systems, by ignoring several
qiialifications and encoding only a few relevant ones. I'hat is, the number of qualifica-
tions tha t are checked are limited but the limits are applied a priorz through encoding.
The encoded qualifications are checked in all situations, every time. This might lead to
unnecessary checking for inapplicable qualifications. For example, consider tha t we know
that tweety is a tropical hird and we want to find out if i t flies. Even in this case, tweety
is checked to sce if it is a penguin. Such checking is unnecessary since, by coiltext, tweety
caririot be a penguin. The reason for thc imnccessary checkiiig done in vxisting systems
is due to the fact that the qualification which need to be checked are interlocked with
gcncral problem sol.ving and hence gets checked every time.

In this paper, our appioach is not to provide a different representation schema for
the qualificdtion pro1)lcm fiom those suggested in the literature. Instead, we provide an
effective coniputatioiial rilean2 to address the qualification problem in a real-life situation,
where the riuiiiber of qualifications to be checked might overwhelm a system and where
every qualification need riot be checkcd in all situations. The distinguishing features of
computational nonrnonotonisrn is that , thc qualification problem is considered in isolation
from the gc~ieral causality-bdsed problem solving, because of which the processing of
qualifications p,roceeds i~id(~p(mdent of t h e general problem solving and can be controlled
by comideratiori~ s i i c l i as priority, context, time and space. That is, not all qualifications
will be checked but only those which are of high priority or those that are relevant to
the context, or those which can be checked within certain time and space limits. Because
of this, our approach also shares with human reasoning, the property of being fallible:
that is, it may make unsound co~~clusioi~s. But we show that, within the limits of the
above coiistrairits the conclusions made by the system is sound. u'e make this concept of

soundness clear later in the paper.

145

TIIP motivation lwliintl our approach is to conf rol the qualification problem and to
provic- lcb (z~~s,wcrs to qtieries within SOIIL(’ realistic constraints. We call our approach as
cornyiifutional noni/)onofoni.srrl (C:!) since chaiiging the context or scenario in wllicll a
query is asked changcs thc aiiswer to that query.

In this papcr we provide a, syntax and a scri~nnties for a computational nonnioriotonic
system by hpplying i t to three noni.rionotonic reasoning systems. We discuss, in detail, the
case of rules and exccptions [3] and develop dccldrative and opcrnt,iorial semantics for a
coniputational rionmonotonic system. lZ7e also show how the technique of computational
noiirriotiotonism can be applied t u other normonotonic reasoning sys t em such as default
reasoiriiig [la] and circumscription [5 , 61. In this paper we consider only computational
Iioiimonotoaisni dchieved through context a n d priority -control and do not cove'^ time and
space limited noiinionotonicity.

2 Rules and Exceptions

‘rlrci semantics of a system of rules aiid exceptions have been developed by Poole [ll]
aiid Sadri arid Kowalslii [33. W c . ruodif.y the scrriaiitics of [3] to provide a coniputational
nonnwnotonic (CiV) systcm of rules and exceptions. ‘The systrm consists of t w o types of
sciitences: rides a i d qualifications. ‘I’lic d f s arc’ of t h e form

where i i 2 0, arid the A,s are dtonis. Tlic qualifications ltre of thc form

where 71 2 I), the A,s are atorris ant1 !V,M 2 0. ?‘li(. nuruber N denotes a priori ty number
and captiires thc priority of the qiialification with respect to other qualifications (the
smaller thc . priority niimbcr tlien higher is its priority). The number &I denotes a coiitert
nurnbrr w h i t h defines ttic. context in which the qualification app1ic.s. Notc that there
are no ncgative literals in tlic aritecedent of (1,2). The reason being that such ncgativc
anteccdcnts can be encodcd as qualifications with N = i\f = 0. ‘I’he conclusions made
from t h e rules alia1 the qualifications depend upor i a particular situation, called scenario,

Definition 2.1 ;2 scenarm 5’ is a four-tuple < U,Q, M s , N s >, where 13 is a a set of
rules D , Q is a set of cpalificatioris. NLq and hfs a r c s two system-tvidcb nurnhers denoting

0

(1) AD t - - Ai 7 . . . , A n

(2) [N , nil] -A, +- ill,. . . , A,

respectively the priority number and tlw context nurnter of the scenario.

A qualificat,ion get4 checkcd in a scenario S if its priority nuniber N 5 N,Y and if its
context riurtrber hI = &I,>. There are two special cases. When hl = 0 the qualification
always gets cht3cked provided thc priority is not lowc*r than the systemwide priority. That
is, a qualification wi th M = 0 can Le seen as a dcfaault qualification which gets checked
always indqwndeiit of the context. Sirnilarly when Ms = 0 <very qualification in the
scenario gets checked inclqxmdent of theii individiidl context rimnher. This can be i ised
when one wants to provide an answer which is correct in all coritcxts. By assigning a
vcry large value to N s and liaving A4,s : 0 the system degrades to d traditional rules and
exceptions system where every defaiil t rule and every exception becomes applicahlc. The
use of context sensitive qualifications can be illustrated as follows.

146

Exaniple 2.1 C'orisiclci a plan geiicration system iniplcmented using the CN system.
'Iliere tar1 be two pos4blc scenario5: a fair wedther scenario and a snowing scenario. One
can query the system to generate a plan for reaching from A to B. If the weather i s fine,
the fair wcdtlic~- scenario can be chosen and a plan is generated which complies to certain
qualificatioris. If i t is s~iowiiig, the scenario in the system can be changed t o a snowing
scenario arid a diffeitmt plan is generated, since a new 5et of qualifications, such as using
only 5 1 1 0 ~ ~ tmiergcricy routes and avoiding steep-hill climbing. become appropriate. These
ne\\ qualifications die irrelevant in a fair weather scenario and their checking should be
avoiclcd. 0

Thc iisc of prioritics for chccking qualifications can be illustrated with a planning example.

Example 2.2 ('onsidcr a fair-weather scenario in the example above. There can be two
ciualific-ations which can constrain a plan as follows:

&I : plan is lcoit l if therc. i, construction on road from A to B
C,l2 : plaii is void i f there is a traffic backup 011 road from A to I)

1,c.t the priority-nuIlil~ers of Ql and Qt be 1 and 2 respectively.
Now, coiisiclcr tliat 0110 is doing high-level planning and checks only the qualifications

which arc of high priority (say iVs - 1). I'hcri, only Q, is checked. If there is a road
from A to B wliicli is not under construction, the plan is approved. Consider another
scenaiio, where one is doing low-levcl planning arid even low level qiialifications need to
tw chccked. Tliv~i, onc can query the system with (say) iVs = 5 and might get a different
aIis\n'Cr (t o that given for high level planning) depending upon whether the road is having
a traffic hackup or riot. ITence, prioritization of qualifications allows one to choose the
level of detail (or risk) one is willing t,o consider as appropriate to the sccnario. 0

I n order to firid the set of applicable rilles and qualifications in a particular scenario
wc define a belief basc a,\ 1 1 ~ 1 0 ~ :

147

Helief base of SI =< D , Q , I , 20 > is given by

Bclicf base of S2 =< D, Q. 2,30 > is givcu by
B1 = D u { 1 conrzecfcd(A, B) e- coristr-uction(A , 13))

R2 = /1 U { -1 connecttd(A, 1)) t norisizowenicrgrzcyr.tc(A, U)} 0

3 Semantics of CNR systems

We first dcfirie an extension which provides a declarative meaning of a scenario in a
cornputational rioririioriotonic reasoning systcm usirig rules antl qidifications. First, we
rieed the notion of a IIerhrantl base of a belief set. The EIcrbrand Base of a helief set B,
denoted as HB(R) , is the set of all ground a t o m that can l x forrried using the predicate
symbols, function syiiibols antl constant syrrrhols that appear in B. An extcnsion is a set
of atorris wliich can hc clerivcd from thc rulcs of the scenario and which is consistent with
the belicf sct of tlic scenario.

Definition 3.1 Let ,5’ be a scenario arid B = D U Q bc; it,s helief set. Then an extension
of S , E (S) , is the sndlest subset of H B (B) such thai for any clause A t ill, . . . , A , in
D , if ‘41,. . . ,A , E &(,s) and il # C-)(S) theii A E E (S) .
‘:I.’ht: qualification set of S , Q (S) , is the sniallest subset of I-[!?(13) defined as follows:
for any clause -.A t- A I , . . . , A , in Q , if /I l , . . . ,A,, E E (S) thcn A E Q (S) 0

, l I h e definitiori cif extensions can be seen as a niodificstioii of answer sets defined in [3].

Next, we provide a procedural nrethod for computirig from a CN systcm.

Procedure 3.1 CN Procedure Givcri a scei~ario: S --< I) , Q, N.9, Ms >, to find if R
is trur in S, where K is a sct of atoms

recursive solve(R)
L1 = Irvc
while R # Cn and 1,1 = true

{ A is an clerricrit in R
R = R - {‘4}
il’ - sct of riilts in D such t,hat

A4‘ c .41,. . . , A, E LI and A = A’
Lz = f a l s e
while 7 ’ # 8 and L2 = f a l s e

{ A’ e- A,, . . . , A, is an eleriieiit in 7‘

L2
7 = 7’ - {A’ +-- A I , . . . ,An)

solve({Al , . . . , A , , }) } end while

148

if L L = t r u e then L1 7 qualify(A)
else L1 = f a l . s f } end while

return L1

T = set of qualifications in Cj such that
recursive qualify(A)

[lY, M] 1’4’ t ill,. . . ,A, E Q and A -= A‘
and 1Y 5 nirs and (A I = Ms or AI = 0 or IZfs = 0)

I , - fn ls t
while 7 ’ # 0 and L = f a l s e

{ [N , A I] 7.4’ t .I1,. . . , A , i s an elenierit in 1‘

I, = solve({ A1.. . . , A n }) } end while
T 7 T - { [YY. 1\11 7.1’ t A i , A , }

if L - t r u e then return f a l s e
else return t r u e U

Example 3.2 C‘orisitler Example 2.3. Let the query be to find if y a t h (/ a , .sf) is true in
scuiario S2. A computation of the CN procedure can be:
(1) solvf({yath(la,sf)})
(2) S O l I I € ({ C o ? m F cted(la, sf)})
(3) solut({}) returns true
(/I) q u a l i f y ({connccted(la, .sf)})

(5)
(6) s o l ~ ‘ c ({ }) returns t r u e

(’7)
(8)
(9)
(10)
(11)

(12)

solzv ({ noii s i iol~eni ergn cy r t e(l a , sf)})

q u a l i f y ({ ,zonsnowenzergncyrte(la, sf)}) returns true
f i x e is rcturned for solre({ n o n ~ n o w e m e r g n c y ~ t e (la , sf)}

f a l s e is retiirrred for q u a / i f y ({ connec t td (l a , sf)})
f o l s ~ is returned for solve({ connected(l a , .sf)})
steps (2) to (10) gct repeated for

J ~ S E is returned for solve({ p a t h (l a , sf)})
solve({ coi?nccted(la, C), path(C, sf)}) and returns false

7 ’ 1 1 ~ 3 query fails arid p a t h (l a , sf) is not true in scenario Sz 0

I‘he following theoreill SllOWS the equivalence between the extensions of a CN system
of rules and yualificatioiis and the answer set generated using the CN procedure.

Theorem 3.1 Soundness and Completeness of CN Procedure
Let S be a sccm<irio wliosc helief set is propositional. Then, a ground atom A is in E (S)
if arid olily if tlie qucry s o l ~ ~ t (i 1) to tlie CN procedure returns the value tr74e.

Proof Sketch: From the definition of E (S) it can be seen that A is true if and only if
it matches the head of a rule in 11 provided (1) the body is also true and (2) A is not
disqualified hy Q. The recursive call of solve({ ,41, . . . , il,}) in the procedure solve takes
care of coiitlition (1). Condition (2) is taken care of by the call q u n l i f y (A) which should
succeed to meet condition (2) . From the definition of Q (S) it can be seen that -A is

149

riot in Q (S) if and only if all proofs of from D U Q fail to succeed. The while loop
in thc procedure qualify tests for all such proofs for Til by testirrg if the bodies of all
the matching qualification rules fail. Since, we are dealing with a propositional belief set,
calls made to procedures solve and qualify are decidable. Hence, solve(A) returns true
if and only if A E E(.9). 0

4 CNR and other NMR paradigms

In the prwecdirig sections we provided it general approach to computational nonmono-
tonism in the coritext of a systerri of rules and exccptions. Even though we described a
particular syntax and semantics tlic notions enibcddd in compiitational nonrrionotonism
can be easily transported to other nonmonotonic rmsoning systems to provide a richer
normlonotonic capability wi th a facility to reason under diff'ercnt situations based on con-
text and priority. First, we show lrow we can extend ILeitcrs's default reasoning to provide
coiriputatiorial noumonotonism.

4.1 Default Reasoning

We considw a rcstricted form of lleiter's [la] default reasoning. Iteiter's default theory
consists of a set of formulas and a set of defaults. Computational noiimonotonism can
be achieved by restric ting the application of dcfaults depcnding upon the context and
priority. is a set of
well formed formulas, N s and hils are two system-wide pararric.tcrs defining con text and
priority as shown iri Scction 2. I1 is a set of drfaults of'the form:

A CN-dcfuult throry is a four tuple < W, D, N s , Ms > where

[N , MI (Y M P , , . . . , hipn
Y

'rlie above formula meam that if a is proven and each ,BL is consistent then y can be
infcrrrd proviclcd tlic rlefaultj rule is noit rest ricted by system-wide parameters of context
number il4s and priority number N.9. A d e € d t rule is applicable if its contcxt number
A4 = 2cfs or if M == 0 (see Si ion 2 for explanation) and when N 5 N s . 'I'hc consistcncy
of each PI can be taken as that - l / j t is not, provablc from the systcm in a particular scenario.
In this paper, we are only considering the propositional default theory.

We next define the expansion computed using a CN-default theory.

Definition 4.1 Lct S =< W , D , Ns, May > be a CN-default theory. A CN-default exten-
sion of S is defincd as the srriallest set sat isfyirig the following propcirties:

(1) w t- y thcn y E E (S)
(2) [f tlicrc is a CN-default rule o f the form given above, then

and iV 5 N S and (M = &IS or A4 = 0 or MS = 0)
if cy E E (S) and V i , n 2 i 2 1 , E (S)

then y E & (S)

The following example illustratcs the approach of CS-default theory.

150

Example 4.1 Consider the Nixon diamond problem: Most quakers are pacifists. Most
republicans are rionpacifists. Nixon is a quaker and a republican. The problem does not
allow any inference regarding Nixon’s pacifism. Ru t let us consider two scenarios as part
of the problem. The statement that ‘most quakers are pacifists’ applies only when we
arc dcalilig with mild-pacifists and the stateincrit that ‘most republicans are nonpacifists’
applies only when we are dealing with hawkish-republicans. The extended problem can
be encoded as the following CN-default theory:
W = { ~ u u ~ ~ ~ (? z ~ x o T z) , T e p b l Z C U ? Z (n i X O n) }

[0,1] q u a k e r (X) : JM p a c ~ f i s t (X) [0,2] republ ican(X) : M i p a c i f i s t (X)

D = { paclf7st(X) 7 -1pacifist(X) 1
Consider scenario SI =< W, U , 0, m i l d q u a k e r s >. Then,

E(5’1) = {paci f zs t (nzxon) , quaker(niaon), republzcan(nixon)}
Next, consider scenario 5’2 =< W, U , 0, hawkish-republicans >. Then,

E(S2) = { l p ~ ~ 2 f i ~ t (n i ~ o n) , guaker(niXon), r e p u b l i c ~ n (n i ~ ~ n) }
Finally, considering a scenario, S3 =< b’, U , 0,O >, where all defaults apply, we get either

0

By restricting the application of particular default rules, extensions are generated which
correspond to different scenarios. For example, scenario given by S3 reduces the problem
to default reasoning as defined by Iteiter [12].

E(S3) = E (S l) or E (&) = E (&) since both the defaults become applicable in S3.

4.2 Circumscription

Applying the concept of compiitational nonmoriotonism was natural in the case of rules
with qualification and in the case of default reasoning. The reason for this is that the
qualifications and defaults are isolated and can be controlled through system wide con-
text and priority relationships. In the case of circumscription, achieving computational
~ion~nonotoriism is not so easy since the theory is a monolith and is acted upon by the
circurnscriptive schema as a whole. But, one method suggests itself, that of controlling
the circumscriptive minimization of certain predicates depending upon the scenario. This
is an extension of the concept of protection introduced by Minker and Perlis [8, 9, 71. That
is, we can use scenarios to inhibit the minimization of some of the predicates. The value
of these predicates will be inhibited from being considered false due to circumscription.
We can motivate computational circumscription using the following example.

ICxample 4.2 [Y] Someone asks whether you have ever known the phone number of a
movie star. You pause only split seconds before answering ‘No’. Later, on being asked
whether you ever known the phone number of your uncle in Chattanooga, you hesitate,
frown, and end up saying that you are not sure. We apparently circumscribe on a movie
star’s phone number, but not on a relative’s. In this case, we ‘protect’ the answer from
taking on a value ’No’. That is, certain things are circumscribed whereas the uncertairiity

R of certain other things are protected.

15 I

In the above examplc, we can ascribe two contexts, one, called moviestars-context, where
we allow the circumscription on a phone number aiirl another, called relatives-context,
w h c w no circumscription i s allowed on a phone number. We make precise the idea of
restricted circuniscriptiori by exttviding the definition of protected circumscription.

A comyiitationally protected set is a set of elerrleiits of the form:
[N 7 h.lr] pz, where p1 is a predicatc (posiibly instantiated) and N is its priority iiurnber

and M is it,s context nuiiiber.

Definition 4.2 A computationdy prolr.ctcd theory is a four tuple defined by a scenario
S, A =< 7’, 12, N,y, it& > where 7’ is a set of well formed formulas, I? is a computationally
protcctcd set of prrtlicatcs and Ns and &Is are two system-wide parameters defining
context arid priority of thc scenario S , i ~ s in the case of the systcrns defined in Sections 2
and 4. n

In the definition below EPs stands fur the set of predicates which are protected in a given
scenario S dcfined hy system-wide parameters iVls and N s . Given a compiitatiorially
protccted theory A =< T , R, iVs, Ms >,
EPs = (p z I [N , M] p , E li a i d N 5 N s aiid (M = ills or A4 = 0 or A4 = 0).
That is, EPs-things are protected in S.

Definition 4.3 (modified from [7]) Let T be a theory and EPs be a protected set defined
by a scenario S . Let f’ arid 2 he two disjoint set of predicates where thc predicates in 1’
are circuniscribcd arid those in Z are allowed to vary. Then the computa t iondy protected
c i rc u m.5 c rip t io ri sc h e m n is

CIRC(?‘; P; EP,; X) =
T (Y , x) A VP’, 2’((7’(F”, 2‘) A Y‘/h’& =+ P) =+ P’/EPs .($ P)

where P’ and %’ are sets of predicate symbols similar to I’ and %. Notation T / U denotes
T&lCT. 0

Tlie following examplc shows how scenarios can be used to protect predicates from being
minimized through circumscription.

Example 4.3 Coiisidcr thc following encoding of Exaniple 4.2.
r ! I = { k . , ~ 0 ~ ~ _ ~ 7 ~ 1 ? r ~ b e r (, ~) t kiiow-person(S) ; krtoiuprr.sorz(niofh€r) ;

p~rsnn(7mcZe) ; person(f i lrnstar) }
Let R = { [O,2] krzow_nvrnbfr (u i i~ l f) } . ‘I’hat is, predicate know-nurnher(uncle) is pro-
tcLtd whcn N s I 0 and (Ms = 2 or Ms = 0). Consider the scenario S where
A =< T , 12, 0 , 2 >. ‘Then, EPs = { k.now_riui7bber(uncle)}. Applying computationally
protected circ.iiniscription for P = { li*riow-riurnbc r } , Z = { k n o w - p P r s m } , we get

C“IRt‘ (7 ’ ; P; 6,’P.q; Z) = ‘I’ u { - 1 k ? 1 0 ~ - n ~ m b t r (f z l i n ~ t (l ~) } .
This allows the infcrcncc of ~linow_rz~~~~zher(f2/7nStnT) , whereas the question whether
you ever kricw the phone niimbcr of ytmr uncle does not produce a negative answer,
since the predicate kiioiu_nu7nbcr(~iric.bp) is riot rriiriirnized in scenario S . ‘X’he predicate

0 know_izun~hc,r(inotiier) is true in all scenarios.

152

5 lo is c ussio n

Computational nonnionotonisnl provides a facility to make conclusions depending upon
the situation or scenario. Nonnionotonism occurs because of the changing context and the
changing priority level of the system. We have discussed computational nonmonotonism
in the light of three systems: rules with exceptions, default reasoning and protected
circuniscription. l h c CN theory of rules and qualifications extends the semantics of rules
arid exceptions [3] to include context and priority. Our application of CN theory to
default reasoning can be seen as an extension of Poole’s default reasoning system [ll].
He applies constraints to defaults, hut the constraints are applied all the time with no
notion of context or priority. Our application of CN theory also extends the concept
of protected circuniscription [9] to scenarios. The three cases capture different aspects
i n their application of the CN paradigm. CN theory applied to rules and exceptions
providcs a means to trim and/or enlarge an expansion depending upon the applicable
set of qualifications. CN-default theory provides a method to restrict the application of
certain default rules and thereby controlling the default assumptions that can be made
froiri the systern. CN-default theory provides a method for choosing one extension among
rniiltiple extensions depending upon the situation. In the case of circumscription, the CN
technique allows one to control the set of predicates which is minimizrd by circumscription.
We have shown the utility of computational iionmonotonism by applying it to several
rionmonotonic reasoning paradigms.

The approach developed in this paper can be easily adapted for real time applications
where one needs to provide results within certain time constraints. Because of the way
the knowledge base is bifurcated. as rules and qualifications, the rule-processing and
qualificatioii-checkiIig can proceed in parallel. The number of qualifications that are
checked is a funtlion of the time available. If the arnount of time given is short, the number
of qiialifications that get checked is also small and the answer given is consistent only with
the qualifications checked. kt’hen more time is given, a larger number of qualifications
gct chccked and the answer provided is ‘more correct’ compared to the answer given
with less qiialification processing. This type of processing provides yet another type
of corriputational nonnioi~otonism. The approach can also be generalized by providing

context (or situation) iiifoririation for individual rules in the CN-system of rules arid
exceptions, and for individual axioms in L V in a (“-default theory.

References

[l] M.1,. Ginsberg and D.E. Smith. Reasoning about Action 11: The Qualification ProL-
leni. ArliJicial Intclligi ricc, 33:311-342, 1988.

[a] .J. IIorty, R. ‘l’ho~riason, and D. Touretzky. A Skeptical Theory of Inheritance in
‘I’echnical Report CMU-CS-87-175, Computer Nonrnonotonic Semantic Networks.

Secieiice Department, Cariiegie Mcllon University, 1987.

153

[3] K.A. Kowalski arid F. Sadri. Logic Programs with Exceptions. In I1.II.I). Warrcn
and P. Szerdi, editors, I’roce~dinys of ICL1’.90, pages ,598 613, 1990.

[4] J . McC‘artliy. ISpistcrnological ProLleins in Artificial Intelligence. In Pror. .51h Inter-
iintionnl Confriu ricc on Arti f icial In t f l l ig t i ice , pagcs 1038 1044, 1977.

[Ti] *J. McC‘arthy. Circurriscription - a Form of non-monotonic rrasoning. Artificial I n l ~ l -
l i g ~ n c e , 13(1 and 2):27 39, 1980.

[6] J. McCarthy. Applications of circumscription to fom-ralizing coiiinion sense knowl-
ctlge. I’rooc. AL4i4 I CZ’ork.h)p on ilroii-hdonotonic Rcnsoning, pages 295 3‘23, 1984.

[7] .J. hliiiker arid U . I’crlis. Computing protected Circurnscription. Jouriiul of Logic
Proglnnznzitrg, 2(4):235 -249, Tkcciiibcr 198s.

[9] J . Minker and 11. Perlis. I’rotectcd circumscription. l’roc. W o i k d ~ o p on Non-
M O ~ O ~ O T L ~ C lCfasonirtg, ~) < I , ~ C S 3.37 343, O c t ~ b ~ ~ 17-19, 1984.

[lo] 13. C . Moore. Srmantical Considerations on Nurirnonotonic Logic. A r t i J i c d Iritelli-
gcncc, 2.5(1):75-04, 198.5.

[111 D. Poolc. A I q i c a l Framework For Default Reasoning. ArtiJirial Intelligence, 36:27 -
47, 1988.

[12] I-t. k i t e r . A Tmgic for Defaidt Iteasoning. .4rtiJicial Intclliyencc, 13(1 arid 2):81 -132,
April 1980.

[13] Y. Shohani and 1). McDermott. I-’robki115 in Formal ’I’ernporal Reasoning. Artificial
Intelligencr, 36:49- 61, 1988.

155

TASK ALLOCATION BY A TEAM OF LEARNING AUTOMATA

Franciszek Seredyiiski

Institute of Computer Science, Polish Academy of Sciences
00-901 Warsaw PKiN, P.O.Box 22, Poland

Abstract

Parallel algorithm of static allocation of a program into parallel computer is proposed.
The algorithm is seen xj a sequence of games of learning automata team migrating in a
computer system graph.

1. INTRODUCTION

As corriputcr architecturcs evolve towards massive parallelism, a major research question
that has developed is the question of assigning modules of a program into a parallel computer
for maximum performance. The problem belongs to a class of combinatorial optimization
problems and is known as NP-complete. Various techniques have been treated lately for pos-
sible solutions. These solutions are based ori application of mathematical programniing [I] ,
graph theory [2], branch arid bound algorithms [3], or queuing theory [4].

Allocation algorithms can be generally classified into static allocation algorithms [a , 51
and dynamic load balancing algorithms [C,, 71. While load balancing algorithms are often
parallel and distributcd, static allocation algorithms are typically sequential and represent
a bottleneck in execution oti a parallel machine. In this paper we concentrate on working
out pardlel and distributed algorithms of static allocation of program graphs in message
passing miiltiprocessor systems.

Stochastic search techniques such as genetic algorithms [8, 9, 101 or Boltzmann Ma-
chine [ll, 121 modelling biological mechanisms existing in nature have been applied lately
t o difficult problems of combinatorid optimization . We propose in the paper another bio-
logically motivated technique using a concept of a learning automaton [13, 14, 15, 16, 171
and based on self-organizing features of learning automata teams [18, 16, 171.

In the paper Section 2 contains a computational model and a structure of an alloc a t' 1011
algorithm. Section 3 provides a theoretical background for learning automata team models.
In Section 4 an algorithm of static allocakion as a sequence of dynamic automata games
is presented. Section 5 discusses the algorithm and presently available results. Section 6
makes some concluding remarks.

'Currmtly at Laborntoire de Genie Informntique, IMAG B.P.53x-38041-Grenoble cedcx, France

156

Figure 1: Examples of (a) a program graph, (b) a system graph

2. COMPUTATIONAL MODEL AND A STRUCTURE
OF ALLOCATION ALGORITHM

As a general model of a distributed computer system we employ the system graph
G, -< V,, E, >, where vertices V, represent the nodes of multiprocessor system containing
N , identical processors and edges E, represent the interconnection pattern of the system. As
a general model of a parallel program we use a directed weighted graph G, =< V,, Ep > with
set V, of N , nodes representing program modules and with collection of arcs EP representing
connections between moduls. Fig.1 shows examples of a program graph and a system graph.

To develop a distributed representation of the system graph for the purpose of the
allocation algorithm our structural discription of vi system node (i = 1 ,2 , . . . , N ,) will
contain

a) a list {vi(et,)} of neighbour nodes available from the node vi through arcs {et,} incident
with this node,

b) a list of the shortest distances dkzn(v i , vi) between the system node vt and each node
vi (j = 1 ,2 , . . . , N , } , measured as the length of the shortest path between vi and vi.

To work out a structural description of a distributed algorithm of the static allocation
of a parallel program we will let partition the program graph G, into N p nodes and suppose
that with each program node vk (k = 1 ,2 , . . . , N p) is conjugated a decision-making entity
consisting of a local environment interpreter Ek and a local decision-making unit U k (see
Fig. 2) .

The structural description of the local environment interpreter Ek contains

a) information about the neighbour relations of a program node vk, i.e. a list {aTk} of

its neighbour program nodes, where Tk- a number of neighbours of the node vi,

b) a list (u l k , 1 3 2 ~ , . . . , a r k) of weights of edges incident with the node I# and a weight b k

of the node,

157

Figure 2: A decision-making entity consisting of a local environment interpreter Ek and a
local decision-making unit U k is corijugatpd with k - th node of a program graph.

c) an actual location of a given node 71; and its neighbours in the system graph, i.e. a

list {si(#), (S ~ < V ~ * ' ~))) of corresponding system nodes,

~f where actually is located a given node I$, i.e. a list {s~,,($)},
d) a list of actual locations of programs nodes which have visited lately the system node

e) a local function C;k describing some actual cost relations in the system graph between
given program node v$ arid its neigltbour program nodes .upark and its previous value

c:,d*
A semantics of the distributed algorithm of the static allocation of a program graph is

given in Section 4.

3. AUTOMATA GAMES WITH LIMITED INTERACTIONS

To provide a theoretical background for learning automata (for a concept of learning
aiitomaton and some its applications, see p.g. [15]) based algorithm of allocation we present
below a model of automata games with limited interactions. In the model [18, lG, 171 we
suppose that

a) given a team of automata players A', A 2 , . . ., A k , . . . , A N ,
b) for each automaton Ak giver1 a firiitc set {yk} of its actions,

c) for each Ak given a payoff function P k (y k , y"'k , y a 2 k , . . . , y%) which depends only on
limited number of automata - players: its action yk and actions of its rk neighbours
in the game (r k << N) . 'The rneaning of Pk is the expected value of a reward for
an automaton Ak for given its action y k and given actions of its neigh1)ours. It is
convenient to represent an interaction in the game by a directed graph where vertices
correspond to automata - players, input arcs define players whose strategies influence
the payoff function of a player and output arcs define players whose payoff functions
depend on a strategy of a given player (see Fig 3),

158

Figure 3: Example of an interaction graph of automata game with limited interactions with
a number of players N = 6.

the game is played this way that at discrete moment of time t = 0,1,2, . . . each player
selects independently his own strategy to maximize its own payoff. I t is supposed that
automata have no a priori information about the game, i.e. about payoff functions,
their neighhours or a number of players in the game. They choose their actions only
on the base of their single rewards and penalties,

a solutiort for such a game is the Nash equlibriurn point i.e. an N-tuple of actions,
one for each player, such that anyone who deviates from it unilaterally cannot possibly
improve its payoff.

It is known [16, 171 that aiitomata team is able to find in the dynamic process of the
game the Nash equilibrum point. The question which arises here concerns the average value

N -
P(y’*, y2*, . . . , yN*) = (23 Yk(y1*, y2*, ...,yN*))/ N

k= 1

of the payoff received by automata’ team in the Nash equilibrium point (yl*, y2*, . . . , yN*).
Calculating the average automata team payoff for all combinations of automata actions in
the game we may find the actions’ combination, corresponding to the maximal price point
(or points) i.e. the point providing the maximal average payoff received by the automata
team. Unfortunatelly, the maximal price point very often does not correspond to the Nash
point and the average payoff’ received by automata team can be very low.

The solution for the problem in the case of homogeneous autornata games with limited
interactions (the interaction graph of the game is reguIar) is introducing into the game a
distributed procedure of a conjugate exchange process [18, 201. The following theorem is
the result of introducing the notion of the conjugate exchange process:

Theorem 1 Introducing the conjugate ezchange process into the homogeneous game with
limited interactions transforms the maximal price point into the Nash point.

159

0.7
0.6
0.5
0.4
0.3
a2
0.1

:od: 0.

-03
-0.4 - 0.5

- - - - I - -rnEiEo(Lris point -
- N - 8
- v3

process
-
-
-

- '___ game without of number 64 of -0.1 - number of automoton
conjugate exci-uqe automoton -QZ - states per action

process states
I per action -0.3 .

- - - 2'3 O_tN"5hPO' r - - _L
- -0.4 -

price of Nash point -0.5 --- - - - I- -- -

Figure 4: The average winning of the automata team in a homogenous automata game with
limited interaction (number of players N = 8): (a) game without the conjugate exchange
process, (b) game with the conjugate exchange process.

The conjugate exchange process in a game is equivalent an organization of a coalition
between neighbours in the game, where each player takes part simultaneusly in r coalitions,
where r is the degree of the interaction graph.

Fig. 4 shows some results of simulation study of homogeneous automata games with the
conjugate exchange process. It can be secn that the team of learning automata is able to
find the maximal price point providing for the team the maximal average payoff possible in
the game (for more details, see [lG]).

4. PARALLEL AND DISTRIBUTED ALGORITHM
OF STATIC: ALLOCATION

We will coiisider a process of searching of arr optimal static allocation of a program
graph in a parallel compiiter as a dynamic learning automata game with limited interac-
tions [18, 191. We interpret a program giraph (Fig. la) as an interaction graph (Fig. 3)
of automata' game. We use a learning automaton Ak as a local decision-making unit U k
(Fig. 2) interacting with an environment by a local environment interpreter Ek. We sup-
pose that each automaton Ak (k = 1,2,. . , , N p) is iniately placed into some system node v i
(i = 1 , 2 , . . . , N ,) as a part of a decision-making unit conjugated with a program node v i .

We suppose that in each node vi of the system graph exists a standart description of the
type (e : , e ; , . . . , e;) of edges incident with this node. Each automaton Ak will have a set of
its T k + 1 actions, 1.e. the set (yo, y1, y ~ , . . . , y T k) which can be interpreted the following way:
yo-do not move (stop), y1, y2,. . . , yrk-move to a neighbour system node which is available
by edges e:, e;, . . . , ef, respectively (Fig. 5) .

'.k

This way we allow for each automaton to migrate in a system graph together with the
decision-making entity and conjugated with it the program node. The aim of each migrating

160

c;, = {

Figure 5 : Automaton Ak (with a program node v; and a local environment interpreter E k)
is located in some node of a system graph. Its actions correspond to alternatives to move
to a neighbour system node or stay a t given location.

‘ bk, if program node .,” is located
in the system node wf
without nodes being its neighbours
or nodes having common neighbours with i t

bk + E,”!-, b,, if program node w,” is located in the vf
together with its neighbow nodes

\ or nodes having common neighours with i t ,

automaton i s t o minimize a local cost function Cc of a program node v,” located actually in
a system node vi.

We suppose that the cost functions Cc will be defined as

c; = c;i + c;i,

where Clk; is a heuristics measuring the average communication time between given pro-
gram node w; located a t the system node wf and neighbour program nodes of the node $,
located in some system nodes, and C!, is a heuristics responsible for balancing of computa-
tional load of program nodes. We sugest t o define these functions the following way:

‘k

CFi = 0 . 5 x ~ k l * d,;,(s‘(u,k),s~(~~~)),
1=1

where: ukr-the time needed to transfer data in the given computer system between
neighbour program nodes v,” and v; when they are located in the neighbours system nodes;
di>Lin(si(v,”), .d($))-the minimal distance between system nodes i and j where are located
program nodes v,” and vb repectively; rk - --a number of neighbour program nodes of the node
v:, and

161

where: b k , b,-running times of program nodes T$ and v; respectively, located in the
system node vi; n, a number of neighbour program nodes of the t# or nodes having common
neighbours with it, located in the system node vi.

We can see that the local function of each automaton depends on its location in the
system graph and locations only its neighbour program nodes. A location of each program
node is in its turn a function of automaton parameters - automaton actions, which give
possibility of migration of the automaton. The automata migration is an adaptive, stochastic
ancl cooperative process of minimizing local cost functions assigned to automata and necds
maintaining a communication between given automaton and its neighbours. After each
automaton decision concerning its moving the automaton should inform its neighbours about
its new position in the next step, and it also should receive messages from its neighbours
about their new positions to be able to calculate a new value of its cost function.

In the result of the process of local interactions between automata we can expect achiev-
ing by the automata team an equilibrium point characterized by a set of locations of au-
tomata in the system graph which will provide for them stable values of their local cost
functions. To avoid reaching local minima and provide the possibility to achieve by the
automata team a global minimum it is necessary to introduce the exchange process [18, 201
between automata. The conjugate exchange process is a process of exchanging between
neighbour automata information about local values of their cost functions C! and calcula-

tion a modified cost function $:

where Ci-a value of the cost function of 1 - t h neighbour of k - th automaton. The
global equilibrium point reached by the automata team is connected with minimization by
the automata in a distributed manner the following global function:

In the case when weights of edges and nodes of the graph G, are equal 1, the global function
describes the total average distance between the nodes of the graph G p in the graph G,. It
is equivalent to the mapping problem [21].

The algorithm of a distributed allocation of a program graph into a system graph can
be presented now. The algorithm has a sequential part providing a computational model of
a distributed environment and parallely implemented dynamic process of a program graph
allocation.

162

Algorithm

SEQ

1. Partition the program graph G, into N p nodes and provide for each k - th node:

(* numbers of neighbour nodes *)
(* weights of edges *)

(* weight of the node k *)

2. Assign initially (e.g. randomly) each k - t h program node with conjugated with it an
automaton Rk and a local environment interpreter Ek into i - th system node and
define (s ” (v , ~) , s ~ ~ (v ; ~ ~) , . . . , & (v ; ~ ~)) (* locations of k - th program node

and its neighboiirs in the system graph *)

PAR
Ek : (* local environment interpreter *)

1. Set: &,. := 0, l k := o
(* i k - counter of interactions between automata team

for a given configuration of automata locations in the system graph, &.-
counter of iterations (games) of the allocation algorithm *)

Ak : (* E - automaton *)

2. Choose (e.g. randomly) your current action y k (i.e. imitate moving to the neighbour
system node), send to your r k neighbours a message concerning the new action and
wait for messages concerning their new actions

E k :

3. Calculate the cost function C/

4. Send the value C/ t o your Tk neighbours and receive values of their Cj

5. Calculate modified cost function Ck

(* exchanging process *)

-k
6. Store: c t / d := c; and y,kld := 7Jk

Ak :

7. Define (randomly) a new action y k

8. Perform Steps 3, 4 and 5

9. Accept as y k r w :

163

Figure 6: Initial allocation of the first three program nodes in the system graph.

y k , with probability 1 - E (0 < E < I), if 2 etld or ykid,if C!ld > Cf
and with probability & / (r k -+ 1) any of Tk + 1 actions of the autoinatori

(* L- a number of interactions *)

12. l k := 0

Ek :

13. Move to neighboiir system node corresponding to current action yk , send your new
address to your Tk neighbours and wait for messages concerning their new locations

14. Set: n!t,, := rift,, + 1

15. If ntteT < T then goto Step 8
(* 1'- a number of iterations (games) of the allocation algorithm *)

5. AUTOMATA BASED ALLOCATION ALGORITHM
- A SIMULATION BY HAND

'I'o provide a better insight into proposed allocation algorithm we discuss here the most
essential steps of the algorithm. For this reason we suppose that Steps 1 and 2 ((SEQ)
were performed and nodes of the program graph from Fig. l a were randomly located into
the system graph from Fig. lb . Fig. 6 shows possible initial allocation of the first three
program nodes in the system graph, i.e. the program node 1 is located in the system node
4, the prograin node 2 is located in the system node 3 and so on.

Let 11s have a look at the steps of the algorithm from point of view of learning au-
tomaton (we use a stochasic E - automaton [18-191 suitable to operate i n a deterministic
environment) conjugated with e.g. the prograin node 1. The automaton A1 has the set of

164

actions {4,1,5,6,7} with the following meanning: 4 - do not move, 1 - move to the system
node 1 and so on. According to Step 2 (PAR) the automaton Al chooses randomly its action,
c.g. y1 = 7 (i.e. imitate moving to the system node 7) and informs neighbours automata A2
and A3 about its current action, waiting a.t the same system node for messages concerning
their current actions. To simplify our discussion we assume that weights of nodes and edges
of the program graph are equal 1 and actions of neihgbours automata A2 and A3 are equal
y2 = 3, y3 = 9 (i.e., do not move) respectively and they do not change them in time.

After receiving messages random environment interpreter El can calculate the cost func-
tion G,4 (Step 3). I t evaluates first a minimal distance (a number of single hops) to its
neighbours. The minimal distance is evaluated between the system node pointed by the
action of the automaton A' (node 7) and nodes pointed by the automata A2 and A3 (nodes
2 and 9 respectively). These values are equal 2 and 1 respectively and a value of the cost
function is is equal C,l = 1.5 (see the la.st column of Table 1).

Table 1. Minimal Distances of the Program Node 1 to Its Neighbours
Depending on an Action of the Automaton A' and Its Current Value of the Cost Function

E G n i of automaton A' I 4 I 1 I 5 I 6 I 7 I

.... L. I I

In a similar way the automaton evaluates its next action (Steps 7, 8) to find the best one
in Step 9. In Step 11 the algorithm returns control t o Step 8 and the sequence of Steps 8
- 10 is again repeated, eventually L times. During L iteractions automata do not change
their locations but only simulate changing and evaluate their best actions. As can be seen
from Table 1 the action G minimazing local function is the best for the automaton A' and
one can expect that the automaton will finally move to the system node 6 at Step 13 of the
algorithm.

Real situation defined by the algorithm (Steps 2 - 11) is however more complex because
the algorithm allows all automata to change their actions a t the same step (Step 10). Fortu-
natelly, this sequence of steps exactly corresponds to the model of learning automata team
playing the game with limited interactions (see, Section 3), with the payment function P
corresponding t o given allocation of the program nodes in the system graph. Initial alloca-
tiori of the program graph nodes in the system graph defines the payment function P' of
the game. The game is played L times and a t the end of the game automata actions point a
new plan of allocation minimazing the average value of computer and communication delays
between program nodes for given stage. The new plan of allocation is performed in Step 13
where a new game with a payment function P 2 is established. This way the allocation algo-
rithm may be considered as a sequence of T games with payment functions P', P 2 , . . . , PT,
each improving a plan of allocation.

165

6. CONCLUSIONS

The problem of static allocation of a program graph in a parallel computer was consid-
ered. Parallel and distributed algorithm of the static allocation problem was presented. The
allocation process was interpreted as a sequance of dynamic games of learning automata.
Some results concerning a global hehaviour of the automata team achieved only by a local
cooperation of automata taking part in games with limited interactions were applied. It
is expected that the algorithm will be able to produce a suboptimal or optimal allocation
corresponding t o the minimum of the average total value of locally defined cost functions.

References

[l] C. C. Price and S. Krishnaprasad, "Soflware Allocation Models for Distributed Com-
puting Systems", Proc. 4th. Int Conf. Dist. Comp. Systems, May 1984.

[2] F. Berman, "On Mapping Parallel Algorithms into Parallel Architectures7',

[3] P. Y. R. Ma, E. Y. S. Lee and J. Tsuchiya, "A Task Allocation Model for Distrib.
Comp. Syst.", IEEE Trans. on Computers 31(1) (1982).

[4] C. P. Kruskal and A. Weiss, "Allo~i~t ing Indepent Siibtasks Parallel Processors Ex-
tended Abstract", Int. Cord. Parallel Proc., 1984.

[5] J . T,. Gaudiot and J. I. Pi, "Program Graph Allocation in Distributed Multicomputers",
Parallel Conzput. 7 (1989).

[6] G. Cybenko, "Dynamic Load Balancing for Distributed Memory Multiprocessors", J .
of Parallel and Distributed Computing 7 (1989).

[7] F. C. H. Link and R. M. Keller, "The Gradient Moclcl Load Balancing Method", IEEE
Trans. Software Eng. 13(1) (1987).

[SI L. Davis, Genetic Algorithms and Simulated Aiznealing, Morgan ICaufman Publishers,
Los Altos, California (1990).

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Publ. Cornp.,Tnc. (1989).

[lo] Z. Michalewicz, J. Krawczyk, M. Kazemi and C. Janikow, "Genetic Algorithms and
Optimal Control Proble~ns", P r o c d the 29th IEEE Conf. on Decision and Contr.,
Honolulu, Dec. 5-7, 1990.

[11] E. 1%. L. Aarts and J. 11. M. Korst, "I3oltzmann Machines for Travelling Salesman
Problems", European Journal of Opercitional Research 39 (1989). J . of Parallel and
DistriDuted Computing 4 (1987).

[12] L . Xu and E. Oja, "Improved Simulated Annealing, Boltzmann Machine and Attributed
Graph Matching", Proc. of the Neural Networks :EUKASIP Workshop 1990, Sesirnbra,
Portugal 1990

166

[131 S.Lakshmivarhan, Learning Algorithms Theory and Applications, Springer-Verlag, New
York Heidelberg Berlin, (1981).

[14] K . S. Narendra and M. A. L. Thathacher, "Learning Automata - a Survey", IEEE
Trans. Syst., Man, Cybern., 4 (1974).

[15] n. J. Oomen and D. C. Y. Ma, "Deterministic Learning Automata Solutions to the
Eqiiipartitioning Problem" , IEEE Trans. on Computers (37)(1) (1988).

[16] M. I,. Tsetlin, Automaton Theory and Modelling of Biological Systems, New York:
Academic, (1973)

[17] V. I. Varshavskii, Collective Behaviour of Automata, Moscow, Nauka, (in Russian)
(1973)

[18] F.Seredynski, "Self-organization in IIomogenous Networks of Learning Automata", t o
appear in Proceedings of the 6th Czechoslovak Annual AI Conference, Prague, June
25-27, 1991.

[19] F.Seredynski ,"Allocation of a Program Graph in Parallel Computers by Learning Au-
tomata", Proc. of the 5-th Int. Workshop on Parall. Proc. by Cellular Automata a,nd
Arrays PARCELA '90, Berlin, Germany, Sept. 17-21, 1990.

[20] V. I. Varshavskii, A. M. Zabolotny and F. Seredynski, ~'IIomogenous Games with a
Conjugate Exchange Process", Izw. Acad. of Science USSR Tech. Kibern. (6), in Rus-
sian) (1977).

[21] S. H. Bokhari, "On the Mapping Problem", IEEE Trans. on Computers 30(3) (1981).

167

NOTES ON ROUGH INFERENCE

B r i a n Shay

Depar tment o f Ma themat i c s and S t a t i s t i c s
H u n t e r C o l l e g e , C U N Y

695 P a r k Avenue
New York, New York 10021

A B STRA CT

I p r o p o s e a g e n e r a l s t r a t e g y f o r d e f i n i n g t h e o r i e s o f
non-monotonic i n f e r e n c e , and a p a r t i c u l a r t h e o r y f o r
u s e i n c o n n e c t i o n w i t h methods f o r mode l ing u n c e r t a i n
b e l i e f and r e a s a n a b l e a c t i o n . A l though non-monotonic
i n f e r e n c e i s d e f i n e d w i t h o u t r e f e r e n c e t o s u b j e c t i v e
p r o b a b i l i t y , my methods f o r mode l ing u n c e r t a i n b e l i e f
and r e a s o n a b l e a c t i o n a r e b a s e d on s i i ' j j e c t i v e p r o b a b i l i t y .
I c a n g u a r a n t e e t h a t t h e l o t t e r y pa radox w i l l n o t a r i s e
i n a p p l i c a t i o n of t h e p a r t i c u l a r t h e o r y i n c o n n e c t i o n
w i t h t h e s e methods .

1. I N T R O D U C T I O N

These n o t e s a r e i n t e n d e d a s a b r i e f i n t r o d u c t i o n t o i n t e r l o c k i n g
m a t h e m a t i c a l f o r m a l i s m s f o r non-monotonic i n f e r e n c e , u n c e r t a i n b e l i e f
and r e a s o n a b l e a c t i o n . I have p r e s e n t e d t h e s e f o r m a l i s m s e l s e w h e r e
w i t h s u b s t a n t i a l m a t h e m a t i c a l deve lopment . Here, t h e t r e a t m e n t w i l l
be i n f o r m a l and i n t e r p r e t i v e . The comprehens ive model i s a s w e l l
s u i t e d f o r machine r e a s o n i n g a s f o r r e a s o n i n g a b o u t e v e r y d a y m a t t e r s :
t h a t i s , t h e r e a r e no e s s e n t i a l g a p s i n t h e m a t h e m a t i c a l deve lopmen t .

T h e r e a r e ferd i n f l u e n c e s on t h i s p r o j e c t from t h e A I l i t e r a t u r e ,
p a r t i c u l a r l y t h e l i t e r a t u r e on non-monotonic r e a s o n i n g . The model
f o r u n c e r t a i n b e l i e f i s r e l a t e d t o a model o f F a g i n and H a l p e r n ,
b u t I worked i n d e p e n d e n t l y , e v e n r e p o r t i n g r e s u l t s a f e w months e a r l i e r
(s e e Shay [l] , F a g i n / H a l p e r n [2]) . The i n d e p e n d e n t deve lopment s h o u l d
n o t be s u r p r i s i n g , s i n c e i t p r o c e e d e d f rom c l a s s i c a l (i n n e r and o u t e r)
measu re t h e o r y , whose r u d i m e n t s a r e f a m i l i a r t o e v e r y m a t h e m a t i c i a n .

'There a r e s u b s t a n t i a l s i m i l a r i t i e s t o S h a f e r ' s t h e o r y of e v i d e n c e
i n t h e method f o r mode l ing u n c e r t a i n b e l i e f . My e x p l i c i t i n t e n t i o n
was t o d e v e l o p a f o r m a l i s m t h a t c o u l d r e p r e s e n t S h a f e r ' s mode l s ,
b u t t o s u p p l a n t D e m p s t e r ' s r u l e w i t h an a l t e r n a t e method f o r combining
models, namely , n o n d e t e r m i n i s t i c p r o b a b i l i t y e x t e n s i o n s . N e c e s s a r y
and s u f f i c i e n t c o n d i t i o n s f o r s u c h c o m b i n a t i o n and many t e c h n i c a l
d e t a i l s a r e t o be found i n [l] . F a g i n and H a l p e r n had o t h e r g o a l s ,
b u t o b s e r v e d a l s o t h a t c l a s s i c a l measu re t h e o r y was a d e q u a t e t o

168

represent belief function models. This result was surprising, as
there had been much debate about whether or not classical probability
theory was adequate to cover the concerns of Shafer and other adherents
to his approach.

The method for modeling reasonable action is patterned, to
an extent, on the notion of random variable, and is a natural accretion
to the method for modeling uncertain belief. It is intended as a
substitute for utility-based decision theory. I have seen no similar
model in the literature.

Neither have I seen any close counterpart to the strategy for
defining theories of non-monotonic reasoning, or the particular theory
that I have defined for the comprehensive model. In particular,
unlike many approaches to non-monotonic reasoning, my approach is
not intrinsically "probabilistic", though there is an excellent fit
with subjective probabilistic ideas. Moreover, my approach, in
combination with probabilistic ideas, can readily circumvent the
lottery paradox. This must be counted as unusual (see e.g. Kyburg
[3]) . A similar claim has been made by Bacchus [4] for his own
approach. However, in [4] he has far more limited goals in his
approach to non-monotonic inference, limiting its application to
default reasoning concerning "statistical" probabilities. I don't
know of any other such claim, but I have little access to work in
progress.

The present account might appear at first to be over-burdened
with discussion, at the expense of mathematical development. I am
liniited by space, but I also regard the present emphasis as suitable.
There has been substantial confusion concerning Dempster-Shafer
formalism, for example, focused on multiple interpretations of
"evidence", "be 1 ie f " , "updat ing" , etc . Nevert he less , the mathemat ica 1
formalism that underlies much quarreling is utterly simple. Recent
examples of interpretive essays, intended to clarify these issues,
are of Dubois and Prade [5] , and Pearl [6] . The inner and outer
measure approach t o belief representation that I offer here is
superficially a special case of Shafer's belief function formalism.
However, it can be demonstrated as well that the belief function
formalism is a special case in measure theory. But these embeddings
are not inverses. This subtlety indicates at least the need for
clear distinctions, including distinct terminology. Ample discussion
is otherwise intended to prevent the quarreling that has erupted
in the Dempster-Shafer arena from spilling over.

Ideas for this project came t o me as a result of focusing on
Aristotle's "Art of Rhetoric" [7] rather than on current literature
in AI. Aristotle is concerned in part with speci.fying what is
rhetorical syllogism ("enthymeme"), wrought from probabilities and
signs. My concern, in the comprehensive model, is to represent
accumulation of uncertain belief in considering arguments that might
be defeasible, and a relationship between beliefs and reasonable
action. There is a natural link between these concerns and themes

169

of classical rhetoric (that has not greatly influenced AI methodology,
I think). Although action can be based on defeasible arguments,
there are no regrettable actions in my approach: any action taken
as a result of accepting a defeasible argument might have been taken
reasonably without such acceptance. This resilience is surprising
(to me).

2. BELIEF

I choose subjective probabilities for measuring beliefs. A
belief is an idea that is believed to an extent between 0 and 1.
This is conventional, but I do not require that every idea be believed.
A Boolean algebra of ideas under consideration (an agenda) contains
a sub-algebra of beliefs. A probability €unction measures extents
of belief in beliefs.

The ideas can serve a s an agenda for more than one actor.
However, the beliefs of one actor might differ from the beliefs of
another (different subalgebras), and should a n idea be held as a
belief by each of two actors, there needn't be agreement as to the
extents o f belief (different probability measures on the intersection
of the two subalgebras).

Truth and falsity are not concerns o f this project. The units
of Boolean algebras will be CERTAINTY and NONSENSE.

Inference i s based primarily on the structure of the Boolean
algebras (material implication). However, 1 assume that actors
judgments are summarized in part by compatibility relations between
beliefs and ideas. If a belief is not compatible with the negation
of an idea (in the judgment of an actor) then that belief is a E
sign (for him) of that idea. For one actor, "He is a Republican"
is a sure sign that "He is hard-hearted"; for another actor, "He
is a Republican" is compatible with "He is hard-hearted" and with
"He is not hard-hearted". The notion of sure-sign is intended to
represent Aristotle's notion of necessary sign. Compatibility is
intended to represent Aristotle's notion of sign. (There is a natural
definition of to be a sign to an extent, but it is an outcome, rather
than presupposition, of the theory). Compatibility relations satisfy
axioms that guarantee that sure-significance is a (partial
representation of material implication in quotient Boolean algebras.
Thus, different actors appear to be reasoning about the same
propositions (elements in a common Boolean algebra), yet exhibit
a form of variation that is common in everyday speech (and even in
formal deliberations) that can be interpreted as reasoning from distinct
(quotient) Boolean algebras. An example of an axiom is: a belief
is compatible with another if and o n l y if their conjunction is believed
t o extent greater than 0. Another is: a belief is compatible with
the disjunction of two ideas if and only if it is compatible with
one of them. Naturally implication is a special case of
sure-significance, if the antecedent is a belief.

170

S u r e - s i g n i f i c a n c e i s a s s o c i a t e d w i t h i n f e r e n c e , n o t rough
i n f e r e n c e , t h a t i s r e a s o n i n g w i t h o u t p a y i n g heed t o e v e r y s p e c i a l
c a s e . The a c t o r who b e l i e v e s R e p u b l i c a n s a r e h a r d - h e a r t e d i s n o t
p r e p a r e d t o c o n s i d e r e x c e p t i o n s . I t i s , t o him, n o n s e n s i c a l t h a t
t h e r e a r e
s c i e n t i f i c
p r i n c i p 1 e s
"ontogeny
p r i n c i p l e s
c a s e s .

e x c e p t i o n s . More c l e a r - c u t i n s t a n c e s c-an be found i n
d i s c o u r s e . One g e n e r a t i o n of s c i e n t i s t s will a d o p t
t h a t w i l l b e o v e r t u r n e d by t h e n e x t g e n e r a t i o n (e . g .

r e c a p i t u l a t e s phy logeny") . U n t i l new d i s c o v e r i e s , such
a r e u s e d a s " laws o f n a t u r e " , i n t e n d e d t o c o v e r a l l s p e c i a l

3 . CUMULATING B E L I E F

To come t o b e l i e v e a n i d e a t h a t i s n o t a b e l i e f i s t o choose
an e x t e n t of b e l i e f f o r t h a t i d e a . The c h o i c e i .s c o n s t r a i n e d , f o r
t h e laws o f s u b j e c t i v e p r o b a b i l i t y w i l l a p p l y t o t h e e x t e n d e d s e t
of b e l i e f s . The c o n s t r a i n t s a r e t h e s e : i) i f a p r e s e n t b e l i e f i s
a s u r e s i g n o f an i d e a , t h e n t h e e x t e n t o f b e l i e f i n t h a t p r e s e n t
b e l i e f i s a lower bound f o r t h e f e a s i b l e e x t e n t s o f b e l i e f f o r t h a t
i d e a ; i i) i f an e x t e n t o f b e l i e f i s f e a s i b l e f o r an i d e a , 1 minus
t h a t e x t e n t o f b e l i e f i s f e a s i b l e f o r t h e n e g a t i o n of t h a t i d e a .

T o g e t h e r , t h e s e c o n s t r a i n t s d e f i n e f o r e a c h i d e a an i n t e r v a l
o f f e a s i b l e e x t e n t s o f b e l i e f . I f an i d e a i s a b e l i e f , t h a t i n t e r v a l
i s d e g e n e r a t e , a s i n g l e t o n . To come t o b e l i e v e an i d e a t h a t i s n o t
a b e l i e f i s t o c h o o s e a f e a s i b l e e x t e n t of b e l i e f f rom t h e i n t e r v a l
a s s o c i a t e d w i t h i t .

E v i d e n t l y , t h e lower and uppe r bounds a r e c l o s e l y a s s o c i a t e d
wi-th t h e b e l i e f and p l a u s i . b i l i t y f u n c t i o n s o f Dempster -Shafer t h e o r y .
They a r e i n n e r and o u t e r measu res of c l a s s i c a l measure t h e o r y . However,
b e l i e f and p l a u s i b i l i t y f u n c t i o n s a r e n o t g e n e r a l l y i n n e r and o u t e r
m e a s u r e s , y e t c a n o n i c a l i n n e r and o u t e r measu res c a n be a s s o c i a t e d
w i t h a b e l i e f o r p l a u s i b i l i t y f u n c t i o n . C o n s e q u e n t l y , t h e r e i s c e r t a i n
t o be c o n f u s i o n i f I r e l y on t h e t h e Dempster -Shafer t e r m i n o l o g y .

I s a y t h a t t h e lower bound o f f e a s i b l e e x t e n t s o f b e l i e f i s
t h e a s s u r a n c e o f an i d e a , and t h e uppe r bound of f e a s i b l e e x t e n t s
o f b e l i e f i s t h e p r o m i s e of an i d e a . E v i d e n t l y , p romise i s t h e uppe r
l i m i t o f a s s u r a n c e t h a t d e v e l o p s a s o t h e r i d e a s a r e a d o p t e d f i r s t
a s be l i e f s .

N o n - t r i v i a l t heo rems c o n c e r n i n g e x t e n s i o n s o f p r o b a b i l i t y measu res
a r e r e q u i r e d t o s u p p o r t t h e s e comments. They a r e p roved i n [l] .

E v i d e n t l y , t h e r e i s a s e n s e i n which t h i s a p p r o a c h s u p p o r t s
i n t e r v a l i s t i c p r o b a b i l i t y models . However, I do n o t i d e n t i f y an
i n t e r v a l w i t h e x t e n t of b e l i e f . A b e l i e f f u n c t i o n i n Dempster -Shafer
t h e o r y d e t e r m i n e s a p l a u s i b i l i t y f u n c t i o n (s e e S h a f e r [8]) and ,
c o n s e q u e n t l y , t h i s i d e n t i f i c a t i o n h a s been e f f e c t i v e l y a d o p t e d t h e r e .

171

4 . RULES GOVERNrNG REASONABLE A C T I O N

I n [9] I l i n k a c t i o n s t o a n agenda by r u l e s o f t h e s o r t s :

X w i l l do A i f he b e l i e v e s O K comes t o b e l i e v e B
t o e x t e n t l y i n g i n i n t e r v a l I ;

X w i l l do A o n l y i f he b e l i e v e s o r comes t o b e l i e v e B
t o e x t e n t l y i n g i n i n t e r v a l I ;

and s i m p l e g e n e r a l i z a t i o n s .

A c t i o n s , t o o , a r e e l e m e n t s of a l g e b r a s , and c o n s i s t e n c y o f
a c t i o n s i s d e f i n e d i n a manner a n a l o g o u s t o c o m p a t i b i l i t y o f b e l i e f s
and i d e a s . R u l e s c a n t r i g g e r i n c o n s i s t e n t a c t i o n . A se t of r u l e s
t h a t c a n n o t t r i g g e r i n c o n s i s t e n t a c t i o n i s a c o n s i s t e n t p l a n o f a c t i o n .

Suppose B i s n o t b e l i e v e d t o a n y e x t e n t , b u t i t s f e a s i b l e e x t e n t s
o f b e l i e E l i e w i t h i n i n t e r v a l I . Shou ld X u n d e r t a k e t o do A? The
s u r e - t h i n g p r i n c i p l e s u g g e s t s t h a t h e s h o u l d , b u t t h e r e w i l l be
d i f f e r e n c e s o f o p i n i o n on t h i s p o i n t .

S i n c e a n a c t o r ' s r e g u l a c o n c e r n i n g an agenda c a n r e f e r t o i d e a s
n o t b e l i e v e d , he c a n be m o t i v a t e d t o choose a f e a s i b l e e x t e n t o f
b e l i e f j u s t s o t h a t h e i s t h e r e b y r e g u l a t e d t o u n d e r t a k e a n a c t i o n ,
o r p e r m i t t e d t o u n d e r t a k e an n c t j o n . T h i s i s r e a l i s t i c , and a welcome
f e a t u r e .

5 . THEORIES OF ROUGH INFERENCE

I c o n s i d e r a non-monotonic i n f e r e n c e o p e r a t o r , . r i . , t o be
a r e l a t i o n on a Boolean a l g e b r a : P . r i . Q s i g n i f i e s t h a t P c a n be
i n f e r r e d , r o u g h l y s p e a k i n g , f rom (I.

I o f f e r a p a r t i c u l a r l y s i m p l e s t r a t e g y f o r d e t e r m i n i n g w h e t h e r
o r n o t a r e l a t i o n i s t o be c a l l e d a rough i n f e r e n c e o p e r a t o r :

f rom a c h a r a c t e r i z a t i o n o f m a t e r i a l i m p l i c a t i o n by ax ioms ,
i n c l u d i n g consequence m o n o t o n i c i t y ,

remove con s e que n c e mono t o n i c i t y .
The r e s i d u a l ax ioms, a t h e o r y f o r rough i n f e r e n c e , e i t h e r

c h a r a c t e r i z e m a t e r i a l i m p l i c a t i o n o r f a l l s h o r t o f i t b a r e l y , f a i l i n g
t o g u a r a n t e e consequence m o n o t o n i c i t y . The re a r e numerous non-monotonic
i n f e r e n c e t h e o r i e s of t h i s s o r t . A r e l a t i o n i n a Boolean a l g e b r a
s a t i s f y i n g t h e ax ioms f o r a t h e o r y f o r rough i n f e r e n c e i s a rough
i n f e r e n c e o p e r a t o r . I do n o t r e q u i r e t h a t t h e r e l a t i o n b e t h e l a r g e s t
(p e r f e c t) r e l a t i o n s a t i s f y i n g t h o s e ax ioms. Techn iques o f T o u r e t z k y
[l o] [l l] c a n be a p p l i e d t o e d i t and e x t e n d rough i n f e r e n c e o p e r a t o r s
t owards p e r f e c t i o n .

172

As simple and appropriate as this strategy is, I have not seen
it proposed elsewhere. Whether an author proposes axioms for a weak
inference relation or inference o r deduction rules, almost always
the Cartesian product relation will satisfy the restrictions. An
example is the propositional logical system, C y of Kraus et a l . [12].
There seems to be a scholarly penchant for ensuring that monotonicity
can't be deduced, rather than ensuring that inference is characterized
if monotonicity is an additional requirement.

It should be noted that my strategy has no intrinsic connection
with probabilistic ideas.

The followirig axioms are a theory of rough inference:

REFLEXIVITY: each proposition is a rough antecedent o f
itself;

SEPARATION: a proposition and its negation have no rough
antecedents in common other than NONSENSE;

ANT ECEDENCE MONOTONICITY : a rough antecedent of a
proposition is a rough antecedent of every consequence
of that proposition.

II_

For constrast, I will state the axiom of consequence monotonicity.
If this axiom is joined to any theory of rough inference, in particular
the t-heory consisting of the three axioms above, than any operator
in a Boolean algebra satisfying the axioms will be a sub-relation
of material implication.

CONSEQUENCE MONOTONICITY: every antecedent of a rough
antecedent of a proposition is a rough antecedent of
that proposition.

To illustrate: If a man works hard then, roughly speaking,
he will succeed in life; if a man is a prisoner in a state
penitentiary, then he works hard. Conclude from consequence
monotonicity that: if a man is a prisoner in a state penitentiary
then, roughly speaking, he will succeed in life. This is clumsy.
The focus of non-monotonic reasoning is to preclude such accounts.

On the other hand: If a man speaks French then, roughly speaking,
he will be able to read signs written in French; if a man can read
signs written in French, then he will not be easily lost in Paris.
According to antecedence monotonicity: if a man speaks French then,
roughly speaking, he will not be easily lost in Paris. This account
is more natural. The occasional blind speaker of French is an
exception, but not a troublesome exception.

The axioms of reflexivity, separation, and antecedence
monotonicity seem to be a reasonable core for more specialized theories.

173

I w i l l add s e v e r a l ax ioms t o s p e c i f y a t h e o r y t h a t c a n be
i n t e g r a t e d smoo th ly w i t h t h e i n n e r and o u t e r measure a p p r o a c h t o
r e p r e s e n t i n g b e l i e f . However, i t w i l l be h e l p f u l t o c o n s i d e r f i r s t
how rough i n f e r e n c e might be u s e d t o advance o v e r a l l p r o j e c t g o a l s .

B e l i e f f o r m a t i o n i s i n c r e m e n t a l ; c u m u l a t i o n o f b e l i e f l e a d s
t o more complex a c t i v i t y . I n f e r e n c e , a s s o c i a t e d w i t h s u r e - s i g n i f i c a n c e ,
i s t h e d e t e r m i n a n t of i n t e r v a l s o f f e a s i b l e e x t e n t s of b e l i e f , and
t h e r e b y , a p a r t i a l d e t e r m i n a n t o f a d m i s s i b l e a c t i o n .

Rough i n f e r e n c e migh t t h e n be used t o s p e c i f y s e t s o f f e a s i b l e
e x t e n t s of b e l i e f , s u b s e t s o f t h e f e a s i b l e s e t s s p e c i f i e d by i n f e r e n c e ,
f o r rough i n f e r e n c e domina te s i n f e r e n c e . How migh t such f e a s i b l e
s u b s e t s be u s e d ? A c o n s e r v a t i v e u s e would be t h i s : an a c t o r might
modi fy h i s p l a n o f a c t i o n by a p p l i c a t i o n of t h e s u r e - t h i n g p r i n c i p l e
and r u l e s g o v e r n i n g a c t i o n , b u t s u b s t i t u t i n g f e a s i b l e s e t s i d e n t i f i e d
by rough i n f e r e n c e f o r f e a s i b l e s e t s i d e n t i f i e d by i n f e r e n c e . The
emphas i s of t h i s a p p r o a c h i s on how t o mod i fy p l a n s of a c t i o n , n o t
how t o mod i fy b e l i e f . But t h i s i s a t r a d i t i o n a l g o a l o f A I : t o
l e a r n how t o a c t w i t h o u t r e g a r d f o r t roub le so rae s p e c i a l cases .

An i l l u s t r a t i o n w i l l h e l p c l a r i f y t h i s p o i n t . L e t PW be t h e
p r o p o s i t i o n : a p e r s o n h a s been wounded a s v i c t i m o f a s t r e e t crime,
b u t t h e r e i s no l o n g e r a n y present . d a n g e r . L e t SF be t h e p r o p o s i t i o n :
I h e a r a s h o t f i r e d , a s c ream, and t h e sound o f someone r u n n i n g away.
SF i s c o m p a t i b l e w i t h PW, b u t i s n o t a s u r e s i g n of PW, i n my judgment ,
b u t I j u d g e SF t o be a rough s u r e s i g n o f PW. Suppose I have a r u l e :
i f I come t o b e l i e v e PW t o e x t e n t be tween .9 and 1 .0 , t h e n I w i l l
s e e k o u t t h e v i c t i m and t r y t o be h e l p f u l . On a n o c c a s i o n , I b e l i e v e
SF t o e x t e n t 1 (I h e a r , and t r u s t my s e n s e s) . I a c t , a c c o r d i n g
t o my r u l e , n o t b e c a u s e 1 a d o p t a b e l i e f t o e x t e n t 1 i n PW, b u t because
I have a m e t a - r u l e : I w i l l u n d e r t a k e t h o s e a c t i o n s t h a t would be
t r i g g e r e d were rough i n f e r e n c e t o r e p l a c e i n f e r e n c e i n s p e c i f y i n g
f e a s i b l e e x t e n t s of b e l i e f . T h i s m e t a - r u l e i s r e a s o n a b l e , a s r u l e s
a r e t h e b a s i s o f a p l a n t h a t is d e v e l o p e d b e f o r e b e l i e f s c o n c e r n i n g
a n agenda a r e f u l l y s p e c i f i e d , and t h e r e s h o u l d be some f l e x i b i l i t y
w i t h r e g a r d t o t h e i r a p p l i c a b i l i t y .

Note t h a t I do n o t a d o p t t h e b e l i e f t o any e x t e n t t h a t PW,
b u t o n l y a c t a s i f I had . I f I f i n d t h e “ v i c t i m ” t o be f r i g h t e n e d ,
b u t u n h u r t , 1 w i l l n o t r e g r e t the a c t i o n , a s I was f r e e t o b e l i e v e
i n PW t o e x t e n t 1, even w i t h o u t a p p l i c a t i o n of t h e m e t a - r u l e , and
c o n s e q u e n t l y t h e a c t i o n I t o o k was a r e a s o n a b l e a c t i o n , a c c o r d i n g
t o my p l a n , a t t h e t i m e .

T e c h n i c a l i s s u e s a s s o c i a t e d w i t h t he f e a s i b l e s e t s s p e c i f i e d
by rough i n f e r e n c e a r e t h e s e : i) migh t i t happen t h a t s u c h f e a s i b l e
s e t s b e i n t e r v a l s ? i i) migh t i t happen t h a t s u c h f e a s i b l e s e t s be
non-empty? i i i) migh t i t happen t h a t whenever t h e f e a s i b l e s e t s
a s s o c i a t e d w i t h two p r o p o s i t i o n s a r e b o t h [0 , 0] , t h a t t h e f e a s i b l e
s e t a s s o c i a t e d w i t h t h e i r d i s j u n c t i o n be a l s o [O , O] ? (i . e . migh t
i t happen t h a t t h e l o t t e r y paradox c a n n o t a r i s e ?)

174

I add ax ioms i n two s t a g e s : two ax ioms w i l l e n s u r e t h a t , i n
my comprehens ive model , f e a s i b l e s u b s e t s d e t e r m i n e d by rough i n f e r e n c e
w i l l be s u b - i n t e r v a l s o f f e a s i b l e e x t e n t s of b e l i e f d e t e r m i n e d by
i n f e r e n c e . A f i n a l axiom w i l l g u a r a n t e e t h a t t h e l o t t e r y pa radox
w i l l n o t a r i s e .

STRONG SEPARATION: i f one p r o p o s i t i o n and a second a r e
rough a n t e c e d e n t s of a t h i r d and of t h e n e g a t i o n of t h e
t h i r d r e s p e c t i v e l y , t h e n t h e f i r s t i.s a rough a n t e c e d e n t
of t h e n e g a t i o n of t h e second .

DISJUNCTIVE CLOSURE: i f one p r o p o s i t i o n and a s e c o n d
a r e rough a n t e c e d e n t s of a t h i r d , t h e n t h e d i s j u n c t i o n
of t h e f i r s t and second i s a rough a n t e c e d e n t o f t h e
t h i r d .

With a few t e c h n i c a l n i c e t i - e s (s e e Shay [13]) t h e rough i n f e r e n c e
t h e o r y s p e c i f i e d by t h e axioms o f r e f l e x i v i t y , s e p a r a t i o n , a n t e c e d e n c e
mono ton i . c i ty , s t r o n g s e p a r a t i o n , and d i s j u n c t i v e c l o s u r e w i l l s p e c i f y
non-empty s u b i n t e r v a l s o f f e a s i b l e e x t e n t s of b e l i e f d e t e r m i n e d by
rough i n f e r e n c e r a t h e r t h a n i n f e r e n c e . Fo r e v e r y i d e a ,
[r o u g h - a s s u r a n c e , rough-promise] i s a non-empty s u b i n t e r v a l o f
[a s s u r a n c e , p r o m i s e] . Fo r u s e i n c o n n e c t i o n w i t h t h e comprehens ive
model , I modify t h e s e axioms s l i g h t l y , t a k i n g i n t o a c c o u n t t h a t o n l y
b e l i e f s a r e t o be rough a n t e c e d e n t s , and t h a t " p r o p o s i t i o n " c a n be
i n t e r p r e t e d a s an e l emen t o f a q u o t i e n t a l g e b r a , s p e c i f i e d by an
(a n y) e x t e n s i o n o f t h e p r o b a b i l i t y measu re r e p r e s e n t i n g b e l i e f t h a t
i s c o n s i s t e n t w i t h s u r e - s i g n i f i c a n c e .

T h i s t h e o r y seems a d e q u a t e t o r e p r e s e n t b e l i e f f o r m a t i o n b a s e d
on " r h e t o r i c a l s y l l o g i s m " . A s b e l i e f f o r m a t i o n p r o c e e d s "one b c l i e f
a t a t i m e " , a l l t h a t i s needed f o r g u i d a n c e i s r e s t r i c t i o n of t h e

t h e l o t t e r y pa radox a r i s e s , i t i s r e s o l v e d i n t h e f o l l o w i n g manner:
an a c t o r c h o o s e s c o n v i n c i n g b u t d e f e a s i b l e a rgumen t s t o s u p p o r t a d o p t i n g
new b e l i e f s , whereupon he r e v i s e s h i s judgments c o n c e r n i n g rough
a n t e c e d e n c e non-mono ton ica l ly . S i n c e judgments of rough a n t e c e d e n c e
a r e d e f e a s i b l e i n p r i n c i p l e , t h i s i s n o t u n r e a s o n a b l e p r o g r e s s .
Thus , a l t h o u g h t h e l o t t e r y pa radox c a n a r i s e , i t i s n o t e v i d e n c e
of i n c o n s i s t e n t b e l i e f .

i n t e r v a l s of f e a s i b l e e x t e n t s o f b e l i e f w i t h o u t d e g e n e r a t i o n . I f

With t h e a d d i t i o n of a n o t h e r ax iom, t h e l o t t e r y p a r a d o x can
be a v o i d e d a l t o g e t h e r .

STRONG C O N J U N C T I V E CLOSURE: i f one p r o p o s i t i o n i s a
rough a n t e c e d e n t o f a s e c o n d , and a t h i r d i s a rough
an teceden t . o f a f o u r t h , t h e n t h e c o n j u n c t i o n o f t h e f i r s t
and t h e t h i r d i s a rough a n t e c e d e n t of t h e second and
t h e f o u r t h .

I

L e t t h e rough i n f e r e n c e t h e o r y s p e c i f i e d by t h e ax ioms o f
r e f l e x i v i t y , s e p a r a t i o n , a n t e c e d e n c e m o n o t o n i c i t y , s t r o n g s e p a r a t i o n ,

175

disjunctive closure, and strong disjunctive closure be called the
theory of almost-sure-significance. In a Boolean algebra with a
rough inference relation satisfying these axiomss if a proposition
is a rough antecedent of a second, then the first is said to be an
almost sure sign of the second.

If the corresponding rough-assurance and rough-promise functions
are denoted ra and r p , then, for propositions A and B of the Boolean
algebra,

ra(A) + ra(I3) <= ra(A and B) + ra(A or B);

rp(A) + rp(B) >e: rp(A and B) -I. rp(A or R) .

These are familiar properties of belief and plausibility functions
in Dempster-Shafer theory (see [8]) .

It follows immediately that the lottery paradox cannot arise:
i.e. the upper bound of roughly feasiblc extents of belief of the
disjunction of propositions must be 0 if the corresponding upper
bound for each disjunctive component is 0.

T h e most conservative use of this theory was introduced earlier:
to adapt a reasonable plan o f action by acting as if the feasible
extents of belief were specified by almost-sure-significance, rather
than sure-significance, carrying out only those actions triggered
by the sure-thing principle, while abstaining from any actual extension
of belief. This is a different use of rough inference from guiding
be lief format ion.

It is unreasonable to believe that my proposal for defining
theories of rough inference can capture the immense variety of Eorms
of commonsense reasoning. Nevertheless, I have been able to combine
simple principles t o model rigourously and in a realistic manner
two styles of commonsense reasoning, and it is not unreasonable to
expect more from this strategy.

6. THE LOTTERY

I offer a more complex illustration:

The following ideas generate a Boolean algebra:

Facts (whose negations are not compatible ith any ideas)
A lottery is in progress; there i s exactly one winning ticket; a
person who has no ticket will not wi.n the lottery.

Other ideas: I have a ticket; I have a winning ticket; there
are many Lickets; I will win; the lottery is fair; my friend has
no ticket; my friend will win; I would be better off without a ticket.

176

There i s a community o f b e t t o r s a t t e n t i v e t o t h e p r e s e n t l o t t e r y .
They s h a r e t h e f a c t s a b o u t t h e l o t t e r y , a t l e a s t .

I have these b e l i e f s : I b e l i e v e f a c t s t o e x t e n t 1. I b e l i e v e
t o e x t e n t 1 t h a t I have e x a c t l y one t i c k e t , t h a t my f r i e n d h a s no
t i c k e t , t h a t my f r i e n d w i l l l o s e . I b e l i e v e t o e x t e n t .99 t h a t t h e
l o t t e r y i s f a i r , t o e x t e n t .90 t h a t t h e r e a r e many t i c k e t s .

I do n o t b e l i e v e t o any e x t e n t t h a t I w i l l w in ; n o r do I b e l i e v e
t o any e x t e n t t h a t I w i l l w in . These a r e i d e a s t h a t I c o n s i d e r
b e l i e v i n g , b u t do n o t b e l i e v e .

O t h e r b e t t o r s w i l l have d i f f e r e n t e x t e n t s o f b e l i e f c o n c e r n i n g
t h e f a i r n e s s o f t h e l o t t e r , f o r example . I j udge t h a t u n f a i r n e s s
i n t h e l o t t e r y i s i n c o m p a t i b l e w i t h my winn ing . (I f i s i s u n f a i r ,
and I am n o t a c o n s p i r a t o r , t h e n I c o n s i d e r i t n o n s e n s i c a l t h a t I
be t h e b e n e f i c i a r y) . I t h i n k , t h e r e f o r e , t h a t t h e l o t t e r y i s n o t
f a i r i .s a s u r e s i g n t h a t I w i l l l o s e . O t h e r s migh t n o t s h a r e t h i s
judgment .

The a s s u r a n c e my b e l i e f s g i v e m e f o r t h e i d e a t h a t I will l o s e
i s .01; t h e p romise of t h e i d e a t h a t I w i l l l o s e i s 1 .0 , a s t h e r e
a r e no s u r e s i g n s (o t h e r t h a n N O N S E N S E) t h a t I w i l l w in .

I n e x t c o n s i d e r rough a n t e c e d e n t s : I judge t h a t my h a v i n g b u t
one t i c k e t i s , r o u g h l y s p e a k i n g , a s u r e s i g n t h a t I w i l l l o s e . I
p o s i t no o t h e r rough a n t e c e d e n t s t h a t a r e n o t s u r e s i g n s . I n
p a r t i c u l a r , I do n o t j u d g e t h a t my h a v i n g b u t one t i c k e t i s , r o u g h l y
s p e a k i n g , a s u r e s i g n t h a t I am b e t t e r o f f n o t h a v i n g bought a t i c k e t .

The rough-as su rance my b e l i e f s g i v e m e f o r t h e i d e a t h a t I
w i l l l o s e i s 1.0. The rough-promise i s 1.0 a s well .

I have a r u l e : t h a t i f I come t o b e l i e v e t o e x t e n t g r e a t e r
t h a n .95 t h a t I w i l l l o s e , t h e n I w i l l p u t t h e l o t t e r y o u t o f mind.
(T h a t i s n o t t o s a y I would be u n r e s p o n s i v e i f I were d e c l a r e d t h e
w i n n e r) . Us ing t h e f e a s i b l e e x t e n t s of b e l i e f a s s o c i a t e d w i t h a l m o s t -
s u r e - s i g n i f i c a n c e , I a p p l y t h e s u r e - t h i n g p r i n c i p l e , and p u t t h e
l o t t e r y o u t o f mind. I do n o t b e l i e v e t o e x t e n t 1 t h a t I w i l l l o s e ,
b u t I a c t a s i f I d i d .

7 . CLOSING REMARKS

The example p r e s e n t e d i n t h e p r e v i o u s s e c t i o n a p p e a r e d i n [13] ,
t o i l l u s t r a t e " r h e t o r i c a l s y l l o g i s m " . The r e s u l t s on t h e l o t t e r y
pa radox , and t h e t h e o r y of a l m o s t - s u r e - s i g n i f i c a n c e a r e r e p o r t e d
f o r t h e f i r s t t i m e h e r e . [13] w i l l be r e v i s e d t o f o l l o w t h i s a c c o u n t
more c l o s e l y . I t s h o u l d be c l e a r t h a t t h e frame problem i s a n a t u r a l
s o u r c e o f examples o f a s i m i l a r s t y l e . A c t o r s c a n a c t a s i f changes
o f s t a t e oE r e c o r d a r e t h e changes o f s t a t e i n f a c t , w i t h o u t b e l i e v i n g
t o e x t e n t 1 t h a t t h e y a r e .

1 7 7

REFERENCES

1.

2 .

3 .

4 .

5 .

6 .

7.

8.

9.

10.

11.

12.

13.

B. Shay, "A Mathematical Theory of Evidence", Hunter Col lege,
CUNY (1987).

R. Fagin and J. Y. Halpern, "[Uncertainty, Bel ief and P robab i l i t y" ,
IBM Research Report R J 6191, 1.BM (1988).

H. K y b u r g , V r o b a b i l i s t i c Inference and Non-monotonic Inference",
U n c e r t a i n t y i n A r t i f i c i a l I n t e l l i g e n c e 4, R. D . Schacter , T. S .
L e v i t t , L. N . Kanal, J . F. Lemmer eds . , Elsevier, New York (1990).

F. Bacchus , R e p r e s e n t i n g and R e a s o n i n g w i t h P r o b a b i l i s t i c Know-
l e d g e , MIT Press, Cambridge (1.990).

D. Dubois and H. Prade, "Evidence, Knowledge and Bel ief Functions",
submit ted t o I n t e r n a t i o n a l J o u r n a l of A p p r o x i m a t e R e a s o n i n g .

J. P e a r l , "Reasoning wi th Bel ief Funct ions: an Analysis of Compati-
b i l i t y " , I n t e r n a t i o n a l J o u r n a l of Approx.irnate R e a s o n i n g 4 (5) (1991).

A r i s t o t l e , T h e " A r t " of Rhetoric, J. H. Freese tr. , Loeb Classical
L ib ra ry , Harvard Univers i ty P res s , Cambridge (1926).

G . A. Shafer , A M a t h e m a t i c a l T h e o r y of E v i d e n c e , Pr ince ton Univer-
s i t y Press (1979).

B Shay , "A Sure Thing P r inc ip l e" , Hunter Col lege, CUNY (1990).

D. S . Touretzky, T h e M a t h e m a t i c s o f I n h e r i t a n c e , Pitman, London
(1986).

D. S. Touretzky and R. H. Thomason, "Non-monotonic Inhe r i t ance and
Generic Reflexives" , Proceedings of t h e Seventh Nat iona l Conference
on A r t i f i c i a l I n t e l l i g e n c e , AIII '88, pp. 433-438.

K. Kraus, D . Lehmann and M. Magidor, trNonmonotonic Reasoning, Pre-
f e r e n t i a l Models and Cumulative Logics", A r t i f i c i a l I n t e l l i g e n c e
44 (1990).

B. Shay, "Rough In fe rence and Rhe to r i ca l Syllogism", Hunter Col lege,
CUNY (1991).

179

BOTTOM-UP EVALUATION IN
INDEFINITE DEDUCTIVE DATABASES

Rajshekhar Sunderraman

Computer Science Department
The Wichita State University

Wichita, Kansas 67208

Abstract

A bottom-up approach to evaluate non-Horn rules in indefinite databases is presented.
Tabular structures, called C-tables, are used to represent disjunctive facts. Algebraic
operations on C-tables are used to evaluate non-Horn rules. The bottom-up approach
computes the fixpoint semantics of disjunctive deductive databases.

1 INTRODUCTION

In recent years, the field of deductive databases has been the focus of intense research and
there has been a dramatic advance in the understanding of the theoretical and practical issues
involved. A substantial amount of effort has gone into definite deductive databases, a subclass
of deductive databases in which only Horn clauses are allowed. The semantics of such databases
are fully understood and there has been a great deal. of research dealing with implementation
issues, particularly in query optimization in the presence of recursive rules. This research has
culminated in various experimental systems like NAIL! [MUG86], LDL [NT88], and Postgres
[SRSS], the utility of which have been successfully demonstrated. Therefore, it is not unrea-
sonable to assume that within the next decade, commercial systems with deductive capabilities
will become available.

In the presence of a large number of facts and relatively few rules, as is the case with defi-
nite deductive databases, the bottom-up evaluation of rules (with optimization techniques like
magic sets) performs much more efficiently than top-down evaluation. Moreover, the bottom-
up evaluation using the relational algebra can take advantage of the efficient database access
techniques involving joins that are a part of modern day relational database management sys-
tems. For these and other reasons the successful experimental systems like LDL and NAIL!
have opted for the bottom-up evaluation model.

Indefinite deductive databases, which allow non-Horn clauses, are a subject of study by
many researchers. Many of the semantic issues for indefinite deductive databases have recently
been solved. The declarative, fixpoint and procedural semantics for disjunctive logic programs
have been presented in [MR90]. Since deductive databases and logic programs share the same
form of representation (clausal form), most of the semantics for disjunctive logic programs can

180

be carried over to indefinite deductive databases. In particular, if we disallow function symbols
and restrict ourselves to pure non-Horn clauses (atoms on both sides of the +- symbol), the
semantics of indefinite deductive databases is very well understood. The declarative semantics
corresponds to the set of minimal models of the database and the fixpoint semantics is obtained
using the l'; operator. The equivalence of declarative and fixpoint semantics is shown in [MRyO].
These semantics will be the basis of our bottom-up approach to evaluate noo-Horn rules.

In this paper, we present a bottom-up algebraic approach to evaluate non-Horn clauses. We
use a modified version C-tables of [IJSl] to represent the extensional database of disjunctive
facts. The algebraic operations defined on C-tables are then used to evaluate the non-Horn
clauses of the intensional database.

2 BACKGROUND

As far as this paper is concerned, we shall restrict indefinite deductive databases to consist of
non-Horn clauses of the form

A i , . . . , A , t B1,. . . , R,,

where Ais and B,s are atomic formulas that do not contain function symbols.

2.1 Semantics of Indefinite Deductive Databases

The dedarative semantics of indefinite deductive databases is based on Herbrand models. Such
databases do not possess a unique smallest Herbrand model, but instead have a collection of
minimal Herbrand models [Min82]. The following theorem illustrates the declarative semantics:

Theorem 2.1 ([MinSZJ) For a n indefinite deductive database P and for every positive clause
E , P + E if and only if E is t rue in every m i n i m a l model of P .

The fixpoint semantics is based on the immediate consequence operator TL defined in
[MR90]. For this, we need the notion of the extended Herbrand Base , E H B p for database
P , which is defined to be the set of all finite disjunctions of different atoms of the Herbrand
Base H B p . 7'; is defined as follows:

TL(S) = {C E E H B p 1 C' +- B1,. . . , B, is a ground instance of a program
clause in B and is1 V C1,. . . , B, V C, are in S and
C" I= C'V C1 V
C is the smallest factor of C"}.

V C,, where Vi, 1 5 i 5 n, C, can be null, and

Define the powers of 7'; as follows:

T i f O = = O
T j 1 (i + 1) = TL(T,! T (i))
TL T w = Zub{T,! f (i)li < w }

Example 2.1 Consider the following database taken from [GM89]:

181

We shall return to this example at a later point in the paper.
The following theorem illustrates the fixpoint semantics of indefinite deductive databases:

Theorem 2.2 ([MR90]) For a n indefinite deductive database P and aposit ive clause E , P + E
if and only if TL 7 w E if and only if E is true in every min ima l model of P .

Essentially, TL f w is equivalent to the set of all disjunctions that are true in each minimal
model. The bottom-up algebraic method presented in this paper will essentially capture all the
disjuncts in T: 7 w .

2.2 C-tables and Disjunctive Facts

The C-table structure of [IJ81] is capable of representing more general kinds of incomplete
information, but we shall use them to represent disjunctive facts. We shall now define C-tables.

A domain is a set of values, usually finite. A relation scheme is a list of attribute names,
(A l , . . . , A , l) . We associate a domain with each attribute. Let D1,. . . , D,, be the domains
associated with the attributes A I , . . . , A , respectively. Let Y be a set of distinguished variables
and C be a set of distinguished constants. Let us define D c o n . ~ t o be a special domain of logical
conditions formed from the elements of Y , C. We shall associate the domain DCOAID with a
special attribute C O N D . A C-table T over the scheme (R , COiVD), where R = (A I , . . . ,A ,) ,
consists of tuples (t , c) where t E D1 x . - x D, and c E DCONU. The tuple (t , c) belonging to
the C-table T can be interpreted as the logical formula

182

NAME RGkOUP
John A
Tom A
Tom B
Gary A
Gary B
Gary 0

.___.

c + T (t)

i.e. if the condition c were true then the tuple t belongs to the relation 1'. The C-table can be
used to represent ground disjunctive facts. For example, the ground disjunctive fact ~ (t l) V ~ (t 2)

can be represented by the two tuples (t l , z = u) and (t 2 , z # u) in the C-table T for predicate
T . The justification for this is the fact that

((z = a) --+ T(t1)) A ((. # a) --$ T(t2))

+ l) V . . . V % (t r l)

logically implies l '(tl) V T(t2). In general, a ground disjunctive fact

will be represented by (n - 1) tuples of the form (t , , ~ : a ,) in the C-table T, for predicate
T , , 1 5 i 5 n - 1 and a tuple of the form (tn , z # a1 A A z # dT2-1) in the C-table T, for
predicate T,. Conversely, if there are n tuples of the form (t , , ~ ,) in C-table T,, 1 5 i 5 n, such
that cl V - - . V c, is a tautology, then we say that the ground disjunctive fact r l (t l) V - - V ~ ~ (t ~)
is represented in the C-tables, where TI is the C-table for the predicate T , .

Example 2.2 Let us consider the following disjunctive facts:

bg(John, A)
bg(Tom, A) V b g (T o m , B)
bg(Gary, A) V bg(Gary, B) V bg(Gary, 0)

These disjunctive facts can be represented in the following C-table:

C-b%D
true -
z = u
$ # a

(Y # 4 * (Y P b)

y 3 a

y - b

0

A C-table is said to be normalized if

1. it does not contain two tuples (t1,cl) and (t2,c2) with tl = t 2 and

2. it does not contain a tuple of the form (t , c) , where c is a contradiction.

To normalize a C-table, we simple delete all tuples of the form (t , c) , where c is a contradiction.
and combine the tuples (t , c l) , . . . , (t , c k) into one tuple (t , c1 V . - 'Vck) (It can be easily observed
that the logical formula (C I -+ T (t)) A - - A (c k + T (t)) is logically equivalent to (c1 V . V Ck -+
T(t))) . We shall assume that all C-tables are normalized. Often, we shall replace tuple (t , c)
by (t , c') where c and c' are equivalent. If T were a C-table then we denote its normalized form
by T'.

We now define the relevant extended relational algebraic operations for C-tables.

183

al
a2
a2

a3

Selection Let T be a C-table defined on the scheme (I? ,COND) and let F be a selection
formula involving the attributes of R. Then,

bl true
bl x = a

b2 y = a
b 2 2 # a

where F(t1) is F with all occurrences of attribute A replaced by t[.4]. An exa.mple of the
selection operation is shown below:

Projection Let T be a C-table defined on the scheme (R , C O N D) and let Y be a list of
attributes of R. Then,

An example of the projection operation is shown below:

Join Let T and W be two C-tables defined on the schemes (R , C U N D) and (S ,COND)
respectively. Then,

An example of the join operation is shown below:

184

A B C C O N D

al bl c1 true
al bl c2 z = a

a2 b2 c4 x c - a A w = a
a3 b2 c4 x f a A w = a '
a4 b3 c5 I y = a A w # a

.

a1 bl c3 z # a

I

- _

Union Let T1 and T2 be two C-tables defined on the scheme (R , C O N D) . Then,

An example of the union operation is given below:

Tl
TTc o N D

3 BOTTOM-UP APPROACH

In this section, we present a bottom-up algorithm to evaluate non-Horn clauses in an indefinite
deductive database. The projection operation is further generalized to be able to produce
disjunctive facts that can be derived from the multiple atoms in the head of non-Horn clauses.
Such a generalization is called project-or. We then define IDB equations which are based on the
algebraic operations on C-tables. An algorithm to solve the IDB equations is presented. The
solution to the IDB equations of an indefinite deductive database correspond to their fixpoint
semantics.

3.1 Project-Or operator

Consider the following non-Horn clause:

P(X, Y>, q k , 2) +--- T (X , Z) , 4 2 , Y)

The extended relationa.1 algebraic operations defined earlier can be used to compute the C-table
that corresponds to the body of the clause. The following algebraic expression corresponds to
the C-table, BODY for the body of the clause:

B O D Y (X , Y , 2) == ~.Y,Y,z(R(X, z) w S (z , Y)) ,

185

where R and S are the M-tables for the predicates T and s respectively. If this were a Horn
clause with only one atom in the head, we could use an appropriate projection operation to
compute the C-table for the head predicate. However, since we have two atoms in the head
of the clause, we need to further extend the projection operation. Such an operation, which
we shall term project-or, must take in as input a C-table (one that corresponds to the body of
the clause) and projection attribute lists, one for each atom in the head and return as output
C-tables, one for each distinct head predicate. We shall use the symbol U: for project-or. In
the example clause, the project-or operation is

P, Q = U[{(.~,~-)}.i(s,z)i(BODI.’(X’, Y, z)).
This operation will return two C-tables P and Q. Let us now discuss what the contents of P
and Q should be. Suppose that the C-table for the body of the clause is

BODY
IXTY I z I 1 COND

The project-or should produce the following C-tables:

P
I x I Y It C U N D I I x I 2 II C O N D
1 I I 1 i I I I 1 J

a2 x = a A u = a a2 x = a A u # a

a2 b3 x # a A v = a

where y, u, and v are newly generated variables used to express the disjunctions which can be
derived by using the non-Horn clause and the tuples of B O D Y .

We shall now present a formal operational definition of the project-or operation.

Project-or Let T be an input C-table defined on the scheme (R, C O N D) and let U,, . . . ,Y,
be a list of sets of projection attribute lists made up of attributes of R. Some of the Y,s
may be empty sets. Let X I , . . . , X , be the non-empty sets among x,. . ., Y, such that
Xi = Yk,, 1 5 i 5 m. Let the order of the Y,s be maintained among X t s , i.e. k 5 j iff
IC; 5 Icj, 1 5 i , j 5 m. If m = 1 and if X , is a singleton, then the project-or operation
simply reduces to the projection operation. So, we shall assume for the remaining of this
definition that m > 1. The sets Y i , . . . , Y, correspond to the output C-tables T I , . . . ,T,
respectively. The T,s are computed as follows:

Case 1:

Case 2:

1.

2.

Y , = 0 In this case Ti = 0.
E; # 8 Let Xi = { X i l , . . . ,X ip i} , 1 5 i 5 nz. For each tuple (t , c) in T ,

introduce tuples (IIxiL (t) , c A z = a, l) , . . . , (n [. ~ ~ ~ ~ (t) , c A z z aipi) in C-table Tki,
l < i < m ,

introduce tuples (r I . ~ , ~ ~ (t) , c A z = a,,,l), . . . , (r I .~ ,+ , -~~(t) , c A z = in
C-table Tkm, and

186

3.2

3. introduce the tuple (n . ~ , , , ~ ~ (t) , c A x # a l l A . - - A x # a,,3(pm-l)) in C-table Tk,,

where x is a unique variable symbol of Y and a, , s are different constants from C. Finally,
the resulting C-tables are normalized. An example of the project-or operation is shown
below:

P, Q ~ { (1 , 2) , (1 , 3) } . { (2 , 3) } (~)

T

P

a2 b2 x = = a A u = a ..

a2 b3 x # a A v = a
.

___I.-

IDB Equations and their Solution

Let D B = E D B U I D B be an indefinite deductive database where the E D B part is represented
as C-tables and the ID13 part consists of non-Horn rules. I’ve can partition the set of I D B
predicates based on the equivalence relation “predicate p is related to predicate q if and only if
p and q both appear in the head of the same non-Horn rule”. We can use this partition to define
a partition of the set of non-Horn rules in IDDB based on the equivalence relation “non-Horn
rule T I is related to non-Horn rule 7-2 if and only if there exists head predicate p l in T~ and head
predicate p2 in r2 such that p l and p2 appear in the same equivalence class of predicates”.

Let Tz = illl,. . . , Tz,} be the partition of the set of non-Horn rules of the I D B . We shall
obtain an I D B equation for each element of this partition. Let I l , = { T I , . . . , ~ k) define the
predicates p, , , . . . ,p i l (the head predicates in the rules of XI,) and let T E I& be the following
non-Horn rule:

The algebraic expression for the body of T can be obtained in a straightforward way using the
algorithm presented in Chapter 3 of [UUSS]. Let EVALRULE(r , & I , . . . , Q,I) be the algebraic
expression for the body of T , where Q; is the 6-table for the predicate 4;. Then, the algebraic
expression for the rule T is

where Zi = 0 if pi does not appear in the head of the rule and 2, = { X j , , . . . , X,,} if p , appears
in the head of T as pj , , . . . , p j , . The I D B equation for II, is

187

We shall now present an algorithm to solve a set of IDB equations. Let p l , . . . ,p,, be the
IDB predicates of an indefinite deductive database and P I , . , . , P, be the corresponding C-
tables. Also let R1,. . . , R, be the EDB C-tables of the database. Suppose that the partition of
the non-Horn rules in IDB is {Ill,. . . ,I&}, We shall denote the predicates defined in partition
I1, by p, , , . . . ,pi,, , 1 5 i 5 le. The algorithm to compute a solution to the IDB equations of an
indefinite deductive database is given in Figure 1.

Example 3.2 Let us reconsider the disjunctive database of Example 2.1. The extensional
database can be represented in the following C-table:

R3

x = a

188

a6

a3

a4

for i t 1 to m do P, = 0
repeat

for i t 1 to m do Q; = Pi
for i f- 1 to k do
Pil,***7Pini +- ~ ~ ~ ~ (~ i , Q ~ , . . . , Q ~ , R I , . . . , R ~)

until Q, = Pi, for all i, 1 5 i 5 m

output Q I , . , Q,,,

true
(z = u) v (u = u) v (v -- u)
(. # a) v (Y = a)
x = u A z = u

Figure 1: Algorithm to solve IDB equations

The IDB equations for the non-Horn rules are:

R4 = I I { (, Y J -) } (R ~ (X , Y)) U u{(A~,131(R3(X, 2) w R4(Z,Y))
R1, R2 = U { (X) ~ , O (R ~ (Y , X)) u ~{(.Y)) ,{ (I .)} (R~(X, Y))

Computing the solution to these equations, we obtain the following normalized C-tables:

R4

R2

Let us confirm if this solution indeed corresponds to T j t w of Example 2.1. Consider the tuples
(u l , z = a A I = u) E R1, (ug,z = a A z # u) E R2, and ((u3,a4) ,z # a) E R4. Since (z =
a A z = u) V (z = a A z # a) V (z # a) is a tautology, we conclude that q(q) V ~ 2 (~ 3) V r4(u3 , u4)
is represented in the C-tables. A tedious verification will indicate that for every set of tuples in
the C-tables such that the disjunction of their conditions is a tautology, we can find a disjunct in
TL t w that is represented by this set of tuples. Conversely, consider the disjunct r 1 (u 3) V r 2 (u 4)
in T j w. The tuples that correspond to this disjunct are (a3, (x = u) V (u := u) V (v = u)) E R1
and (u4 ,x # u A u # u> E R2. The disjunction of the conditions ((x = u) V (u = u) V (v =
u)) V (z # a A u # u) is a tautology and hence the disjunct q (u 3) V rZ(u4) is represented in
the C-tables. Once again, a tedious verification will indicate that every disjunct in TI! w is
represented in the C-tables. 0

4 CURRENT STATE O F KNOWLEDGE

As has been noted earlier, most of the research on implementation issues of deductive databases
has concentrated on definite deductive databases. A comprehensive discussion of these results

189

can be found in [U1188]. As far as indefinite deductive databases and their implementatioris are
concerned, one can find relatively few scattered work. We shall mention some of the bottom-up
methods for indefinite deductive databases.

Henschen and Park [€IF881 provide results with respect t o yes/no answers to queries posed
over indefinite deductive databases. They handle negation by using the Generalized Closed
World Assumption (GCWA). They present several fundamental results on compiling the GCWA
in indefinite deductive databases. They also present three representation schemes which sepa-
rate the rules from the facts. Using these schemes, they isolate the deduction part in answering
queries from the retrieval part. Several effective ways for compiling the GCWA inference on the
rules and evaluating it through the facts are presented for non-recursive databases. Recursive
rules are not adequately treated.

Grant and Minker [GM86] have developed algorithms to answer arbitrary queries in indef-
inite databases. They provide algorithms to check if a candidate answer is indeed an answer
to the query. Using this algorithm, they present an algorithm to find all minimal answers to
queries. Although this paper does not deal with rules, queries can be answered by straightfor-
ward extensions to the algorithms.

Imielinski's C-tables [IJSl] are capable of representing disjunctive facts. The extended
relational algebra can be used to answer queries in indefinite databases without rules.

Liu and Sunderraman [LS91] present a generalization to the relational model to represent
disjunctive facts in tabular structures called M-tables. Queries can be answered using the gen-
eralized relational algebra. In [LSgO], they apply the generalized model to indefinite deductive
databases.

References

[GM86]

[GMSS]

[HP88]

[IJSl]

[IS 901

John Grant and Jack Minker. Answering queries in indefinite databases and the null
value problem. In Advances in Computing Research, Volume 3, pages 247-267. JAI
Press Inc., 1986.

John Grant and Jack Minker. Deductive database theories. UMIACS-TR-89-77, CS-
TR-2293, Department of Computer Science, University of Maryland, College Park,
MD 20742, 1989.

Lawrence Henschen and Hyuing-Sik Park. Compiling the GCWA in indefinite de-
ductive databases. In Jack Minker, editor, Foundations of Deductive Databases and
Logic Programming, pages 395-438. Morgan Kaufmann, Los Altos, CA, 1988.

Tomasz Imieliriski and Witold Lipski Jr . On representing incomplete information in a
relational database. In Proceedings of the 7th International Conference on Very Large
Data Bases, Cunnes, France, pages 389-397, New York, September 1981. IEEE.

Ken-Chih Liu and Rajshekhar Sunderraman. An algebraic approach to indefinite de-
ductive databases. In Proceedings of the 5th International Symposium on Methodolo-
gies for InteZligent Systems, Knozvzlle, Tennessee, New York, October 1990. Elsevier
Press.

190

[LS91] Ken-Chili Liu and Rajshekhar Sunderraman. A generalized relational model for
indefinite and maybe information. IEEE Transactions o n Knowledge and Data En-
gineering, 3(1):65-77, 1991.

Jack Minker. On indefinite databases and the closed world assumption. In Lecture
Notes in Computer Science, N138, pages 292-308. Springer-Verlag, 1982.

Jack Minker and Arcot Rajasekar. A fixpoint semantics for disjunctive logic pro-
grams. Journal of Logic Programming, 9:45-74, 1990.

[Mi11821

[MR90]

[MUG861 K. Morris, J.D. Ullman, and A. Van Gelder. Design overview of the NAIL! system.
In E. Shapiro, editor, Proceedings of the Third International Conference on Logic
Programming, pages 554-56 8. S p rill ger- Verlag , New York, 1986.

Shamim Naqvi and Shalom Tsur. A Logic Language for Data and Knowuledge Bases.
Computer Science Press, Rockville, MD, 1988.

[NT88]

[SR86] Michael Stonebraker and Lawrence Rowe. The POSTGRES papers. UCB/ERT,
M86/85, Dept. of EECS, University of California a t Berkeley, 1986.

Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume I
and TI. Computer Science Press, Rockville, Maryland, 1988.

[Ull88]

191

INHERITANCE IN CONCEPTUAL NETWORKS’
Zeixuan Yang

Department of Computer Science
University of Ottawa

Ottawa, Ontario, Canada K1N 6N5

Stan Szpakowicz‘*

Computer Science Department
University of the Witwatersrand

Johannesburg 2050, South Africa

ABSTRACT
We present the inheritance system in a knowledge representation formalism called
Conceptual Network. Exceptions can be represented in this formalism by means of
conditions attached to conceptual relations. The explicit representation of exceptions
allows us to implement monotonic inference for the inheritance problem. We look at
the way in which our inheritance system works on some of the classical examples.
This system offers a new approach to the inheritance problem, with a new
representation method and a simple monotonic inference algorithm.

1. INTRODUCTION
An inheritance system is a representation system founded on the hierarchical structuring of
knowledge 10. This structuring is known in Artificial Intelligence as the inheritance
hierarchy. Methods of representing inheritance hierarchies include Fahlman’s NETL
system 47 5 , Etherington and Reiter’s system-the default logic approach 2l 3 , Padgham’s
lattice-based model 6, and Shasm’s evidential formalization 7+ 8. These systems all have
their limitations. For instance, in NETL the inferences are performed in parallel. As
Etherington and Reiter note, “there is the unfeasibility of completely general massively
parallel architectures for dealing with inheritance with exceptions” 3. They formulate the
problem of inheritance in terms of default logic, and provide a non-monotonic inference
method.

In this paper, we present the inheritance system in a knowledge representation system
called Conceptual Network (in short: CN). The representation of inheritance hierarchies in
CN allows US to implement a monotonic inference method for dealing with the problem of
inheritance. This offers a new approach to the inheritance problem. We first briefly
introduce CN. Next, the representation of inheritance hierarchies in CN is presented. We
give a monotonic inference algorithm for inheritance with exceptions, and apply it to some
classical examples. All of the ideas presented in this paper are now being implemented.

’ This work was supported by the Natural Sciences and Engineering Research Council of Canada, and by
Cognos Inc.

* * On leave from the University of Ottawa

192

2. CONCEPTUAL NETWORK
The Conceptual Network formalism l2* 13, l4 was developed with TANKA, a system for
semi-automatic knowledge acquisition by text analysis 9, and it is used there to represent
knowledge. TANKA will process technical text, and incrementally build a conceptual
network which models the domain; text understanding will be turned into knowledge
acquisition.

There are four basic elements in CN: concepts, relations, structures and conditions.
Knowledge is represented by a combination of these four elements. A concept represents a
number of instances in the world. We use Z(c) to denote the set of instances of concept c.
Concept cl is called a subclass of concept c2 (and c2 a superclass of c l) if and only if I (c l)
is a subset of Z(c2). Concepts are broadly classified into three groups: objects, activities,
and properties, Relations capture the relationships that hold between concepts. CN only
supports binary relations. Two hierarchical relations, specialization is - a and generalization
kind, are used to build the inheritance hierarchies.

Conditions represent contextual restrictions on the concepts involved in a relation. Let R be
a relation between concepts el and c2. A condition attached to R(cl, c2) can be regarded as
the description of a subclass cl’ of CZ and a subclass c2’ of c2: only cl’ and c2’ can be in
the relation R. The condition is a logical expression built of simple conditions. We will not
give the precise definition of simple conditions in this paper, because we have only special
forms of simple conditions in the hierarchies. The following are two examples of simple
conditions:

describes the set of instances of elephant, (i I i E I(e1ephQnt) \Z(royal-e1ephant))and
elephant i s royal-elephant

describes the set of instances of elephant, (i 1 i E I(e1ephant) n I(roya1-elephant)}. We say
that a simple condition Cond is satisfied by an instance i if and only if i is in the set of
instances described by Cond; Cond is unsatisfied by i if and only if i is not in the set of
instances described by Cond.

Structures are used to represent complex concepts, composed of other concepts. The
available structures are individual, sequence, collection, tupk, union, and intermdon.

In the textual notation for CN, every concept is associated with a cluster of concepts
directly linked to it by binary relations. We call such a cluster afrarne of this concept. A
frame is notated as a group of slots, each describing one link. The format of a frame of
concept c0 is:

elephant isnot royal-elephant

type-of-cO c0.
slots.
end c0.

where type-of-co is OBJECT, ACTIVITY or PROPERTY. There must be at least one slot in a
frame. Each slot denotes a relation between co and another concept. If the relation is a
hierarchical relation (is-a, kind), the slot is called a hierarchical slot. The format of a
hierarchical slot is:

[condition] relation-name: (structure-of-ci) ci

193

where relation-name must be is-a or kind. Such slots describe a hierarchical
relationship between concept c 0, whose type is type-Qf -C 0, and concept
(structure-of-ci) ci of the same type. If structure-of-ci is not individual,
(structure-of-ci) ci represents a complex concept. The default is individual:
(individual) ci is the same as ci. The default for condition is true. We introduce
conditions into hierarchical slots to deal with exceptions-this will be shown later.

3. REPRESENTING INHERITANCE HIERARCHIES IN CN

To deal with inheritance with exceptions, Etherington and Reiter have identified 5 link
types 3, used to represent the inheritance hierarchies. In CN these links are represented as
follows:

1) Strict IS-A
type-of-cl cl.
is-a: c2.

end cl
......

c l is c2, that is, any instance of CZ is always an instance of c2.

2) Strict IS-NOT-A
type-of-cl cl.
[false] is-a: c2.

end cl.
......

cl is not c2, that is, no instance of c1 is an instance of c2. No instance can satisfy the false
condition. For a given instance i, if a condition does not hold for i, it is called an
unsatisfied condition. Unsatisfied conditions are used to block inheritance from the
superclass-this will be discussed in detail in the next section.

3) Default IS-A
type-of-cl cl.
[this-frame i snot ce] is-a: c2.

end cl.
......

Normally C Z is c2, but there may be exceptions. In other words, any instance in Z(cZ) \
Z(ce) is an instance of c2. We should note that only the instances in l (c l) n I(ce), rather
than all the instances Z(ce), are not the instances of c2. When ce is a subclass of c l , the
condition implies that any ce is not c2.

4) Default ISN’T-A
type-of-cl cl.
[this-frame is cel is-a: c2.

end cl.
......

194

Normally c l is not c2, but there may be exceptions. In other words, instances of c l ,
excluding instances of ce, are not instances of c2. Thus, the instances in Z(cl) n Z(ce) are
c2. When ce is a subclass of c l , this condition implies that ce is c2.

5) Exception

The exception link in Etherington and Reiter’s method is already represented in the
conditions of our representation of default IS-A and ISN’T-A. Actually, exception links in
their method are always attached to other links, and they describe exceptions to the
knowledge represented by those links. That is why we do not have to represent them
separately.

Without the loss of generality, we consider only single exceptions. If there were more, we
would use complex conditions. A condition of the form

[this-frame isnot ce l AND this-frame isnot ce2 AND . . . I

with only the AND operator is for default IS-A (cel , ce2, ... are exceptions). A condition
of the form

[this-frame is cel OR this-frame is ce2 OR . . . I
with only the OR operator is for default ISN’T-A.

We illustrate our representation with the following example l:

F1: Elephants are grey things.

F2: Royal elephants are elephants.

F3: Royal elephants are not grey things.

Our representation of these facts is:
OBJECT elephant.
[this-frame isnot royal-elephant] is-a: grey-thing
end elephant.

OBJECT royal-elephant.
is-a: elephant.
end royal-elephant.

In Etherington and Reiter’s approach, assertions F1 - F3 would be represented as the
following default rule D 1, and first-order assertions A 1, A2:

elephant (x) : NOT royal-elephant (x)
D1:

grey-thing (x)

A1 : (x) royal-elephant (x) --> NOT grey-thing (x)
A2 : (x) royal-elephant (x) --> elephant (x)

Notice that we must encode F3 in the assertion A1 in spite of the fact that this information
is already implicit in the information encoded in A2 and D1. If royal-elephant is a subclass
of elephanr and elephants other than royal elephants are grey, then it follows that royal
elephants are not grey. The C N representation overcomes this drawback-no explicit

195

relation is required to encode F3, which is captured in the condition of the relation
is a(elephant, grey thing) and the hierarchical relation is-a(royal-elephant, elephant). The
condition in the fiizt frame shows that elephant is grey-thing unless it is royal-elephant,
and the hierarchical relation in the second frame means that each royal elephant is elephant.
The fact that royal-elephant is not grey-thing is captured by both this condition and this
hierarchical relation (see the CN representation of ‘default IS-A’).

4. MONOTONIC INFERENCE
For a given instance i, a concept c is called a positive concept of i if and only if it has i as its
instance. c is called a negative concept of‘ i if and only if it does not have i as its instance.
We are concerned with the following inheritance problem:

Given are two sets of concepts, P = { c p l , cp2, ..., cpk}, and N = { c n l , cn2, ..., cn,).
Concepts in P are positive concepts of an instance i . Concepts in N are negative concepts
of i. We have two inference rules.

Rulel
cl is a positive concept of i & is-a(cl, c2) &

i satisfies the condition of is - a(cl, c2)
+ c2 is a positive concept of i

Rule2
cl is a positive concept of i & is a(cl, c2) &

i does not satisfy the condition of is - a(cl, c2)

+ c2 is a negative concept of i

Let H be the set of all given hierarchical relations. We need to derive the theorems of the
theory (H u P u N , {Rulel, Rule2)), where the first element represents axioms and the
second one represents inference rules. All these derived theorems together are called the
extension of i . From the inference rules, we can see that a subclass c l can be extended to
its superclass c2 only if cl is a positive concept of the given instance. No extension can be
made from the negative concepts, which are only considered in the termination of
extensions.

Etherington and Reiter’s method allows extensions to be constructed by a series of
successive approximations. The previous approximations may be overridden by the current
one. When two successive approximations are the same, the procedure is said to converge
and the extension is the current approximation. This reasoning procedure is non-
monotonic, in the sense that new information can invalidate previously derived facts. In
this section, we present a monotonic inference method for finding extensions.

The main idea that underlies the monotonic inference method is to derive new facts only if
the truth values of the conditions of these facts have been determined. If the truth value of a
condition cannot be determined when we check it, this condition is undetermined and will
be suspended until new derived facts make it determined. This means that we always
reason with certainty, so that new facts will not invalidate the previously derived facts. In
this sense, we say that our inference method is monotonic.

194

We first define a few simple auxiliary operations. S denotes a set, C1, C2 are concepts.’
remove(S): remove from S and return a random element e
add(& e): add an element e to S
empty(9: return true if S is empty, otherwise false
member(e, S): return true if e is an element of S, otherwise false
condition(C1, C2): returns the condition of is-a(C1, C2)

The inference algorithm is described in pseudocode. The set of concepts not yet considered
for extension is maintained in the variable CSet (this stands for “concept-set”). Initially, it
contains the positive concepts. Two concept sets, PE and NE, initialized with the original
sets of positive and negative concepts, are gradually extended by the algorithm. There is a
main procedure, and two subroutines, Subroutine check-cond (Cond, i, Result) tests
whether condition Cond is satisfied by instance i. If yes, the extension can proceed from
the related concept by adding to the CSet. If not, no extension cai be made from the related
concept. If the condition Cond is undetermined, it will be suspended. The subroutine
applies negation-by-failure: if it cannot be derived that i is an instance of a concept c, it is
assumed that i is not an instance of c.

We only consider simple conditions in this algorithm. Complex conditions are composed of
simple conditions by means of the operators AND, OR. The fact that a complex condition

to the simple conditions of CCond. If CCond is composed of simple conditions by the
operator AND, then apply check-cond(-, --, I to a simple condition of CCorid each
time; repeat this process until a simple condition of CCond is unsatisfied or no more simple
conditions remain to be checked. If CCond is composed of simple conditions by the
operator OR, then apply check-cond (-, -,) to a simple condition of CCond each
time; repeat until a simple condition of CCond satisfied or no more simple conditions
remain. Whenever a new fact is derived, the suspended conditions will be examined to see
if any condition can be determined now. This is done by subroutine re-eval-cond (Sign,
Concept) , where Sign marks a concept as positive or negative. When the CSet is empty,
that is, no more extensions can be made, the main procedure is terminated. NE and P E

together form the extension of i.

The Inference Algorithm

Given: an instance i, a set P = { cpr, cp2, ..., cpk } of positive concepts of i, and a set N
= { cnl, cn2, ..., cn,) of negative concepts of i.
Sought: PE and NE-positive and negative extensions.

CCond is satisfied by an instance i can be determined by applying check-cond (-, -, - 1

PE := P; -- initialize PE
NE := N; -- initialize NE
susp := { I ; -- initia.l.ize Susp (will store suspended conditions)
CSet := P; -- initialize CSet (will store concepts

repeat -- for every element in CSet:
-- from which further extensions may be made)

C := remove (CSet) ;

P a r e n t L := the list of all parents of C in the is-a hierarchy;
-- get one concept and try to make extension from it

197

for Cnp i n ParentL do -- for every parent of C:
Cond := condition(C, Cnp) ;
i f not member{Cnp, P E) & not member{Cnp, NE) then
check-cond (Cond, i , Result) ;
i f Result = satisfied then
add(PE, Cnp) ; -- Cnp is a positive concept o f i
add(CSet, Cnp) ; -- further extension may be made from Cnp
re-eval-cond (pos, Cnp) ; -- try to "unsuspend"

add(NE, Cnp) ; -- Cnp is a negative concept of i
re-eval-cond (neg, Cnp) ; -- try to "unsuspend"

elsif Result = unsatisfied then

elsif Result = undetermined & Cond = [this-frame OP Ce] then
-- (OP is the relation operator in the condition)
-- suspend the undetermined condition

add(Susp, undet-cond(Cnp, Ce, Cond)) ;

e n d i f ;
e n d i f ;

endfor;
u n t i l empty (CSet) ;

procedure check-cond(Cond, i, Result) ;
-- is condition Cond satisfied for instance i?
-- Result: satisfied, unsatisfied, undetermined

i f Cond = [true] then Result := satisfied;
elsif Cond = [false] then Result := unsatisfied;
elsif Cond = [this-frame i s n o t Cel then

i f member(Ce, NE) then Result := satisfied;
els i f member (Ce, PE) then Result := unsatisfied;
else

i f no subclass of Ce is in the CSet then
Result := satisfied; -- we cannot determine whether i is an

-- instance of C e : negation by failure
else Result := undetermined;
e n d i f ;

end i f ;

i f member (Ce, NE) then Result := unsatisfied;
elsif member (Ce, PE) then Result := satisfied;
else

elsif Cond = [this-frame iS Cel then

i f no subclass of Ce is in the CSet then

else Result := undetermined;
e n d i f ;

Result := unsatisfied;

e n d i f ;
e n d i f ;

198

procedure re-eval-cond (Sign, Cnp) ;
-- re-evaluate suspended conditions

remove a l l undet-cond(Cnp, Cel, Condl) , . . ' I

undet-cond(Cnp, Cej, Condj) from Susp;

-- it was known before this subroutine has been called whether i is
-- an instance of Cnp; therefore all suspended conditions of the form
-- undet-cond(Cnp, -, -) will no longer need to be re-evaluated
Re-eval-set : =

Susp := Susp \ Re-eval-set;
case Sign i n
pos : -- Cnp is a positive concept of i

all suspended conditions of the form undet-cond(-, Cnp, -);

for RC i n Re-eval-set do
i f RC = undet--cond(Cg, Cnp, [this-frame i s n o t Cnpl) &

not member (Cg, NE) then
add(NE, Cg) ; -- Cg is a negative concept of i
re-eval-cond (n, Cg) ; -- try to "unsuspend" more

elsif RC = undet-cond(Cg, Cnp, [this-frame i S Cnpl 1 &

not member (Cg, PE) then
add(PE, Cg) ; -- Cg is a positive concept of i
add(CSet, Cg) ;
re-eval-cond (p, Cg) ; -- try to "unsuspend" more

endi f ;
endf or;

f o r RC i n Re-eval-set do
neg : -- Cnp is a negative concept of i

if RC = undet-cond(Cg, Cnp, [this-frame i snot Cnpl) &

not member (Cg, P E) then
add(PE, Cg); -- Cg is a positive concept of i
add (CSet, Cg) ;
re-eval-cond(p, Cg) ; -- try to "unsuspend" more

els i f RC = undet-cond(Cg, Cnp, [this-frame iS Cnpl) &

not member (Cg, NE) then
add(NE, Cg); -- Cg is a negative concept of i
re-eval-cond (n, Cg) ; -- try to "unsuspend" more

endif ;
endf or;

endca se ;

In this algorithm, we can see that only positive concepts can occur in the concept-set
(Cset). For any concept Cnp, we proceed to check if it is a positive (or negative) concept
only if it is not a member of P E (or N E) . This ensures that no concepts can occur in the
concept-set more than once, so the cost of this inference algorithm in the worst case is
O(N*S), where N is the number of concepts in the hierarchies, and S is the upper bound
on the number of suspended conditions. In the practical applications, we believe that there
would not be many suspended conditions during inference, so O(N*S) would be close to
linear.

199

5. EXAMPLES
We now look at some classical problematic examples of inheritance. We show how to
represent the hierarchical knowledge of these examples in CN, and how our inference
algorithm works on the represented knowledge. First, consider the “elephant” example of
section 3 with the following additional facts:

OBJECT african-elephant.
is-a: elephant,
end african-elephant.

OBJECT male-royal-elephant.
is-a: royal-elephant.
end male-royal-elephant.

OBJECT female-royal-elephant
is-a: royal-elephant.
end female-royal-elephant.

Now consider the instance Clyde, which is an instance of male royal-elephant, and an
instance of african e lephant ; we have i = Clyde, P {a f r i can e lephant ,
male_royal elephant), and N = { } . After elephant has been added to PE (because elephant
is a supercl&s of african elephant) and the condition of is a(elephant, grey thing) has
been checked (because grey - thing is a superclass of elephant) we will reach the following
state:

PE = (elephant, african-elephant, male-royal-elephant}
NE = { I
CSet = {male-royal-elephant]
Susp = {(grey-thing, royal-elephant,

[this - frame isnot royal-elephant]))
We have a suspended condition here. After royal-elephant has been added to PE (because it
is a superclass of male royal elephant), this suspended condition will be re-evaluatzd and
will become an unsatisfied condition, so that we can determine that grey - thing is a negative
concept of Clyde. The final state in this example is:

PE = {elephant, african-elephant,

NE = {grey-thing)
CSet = { I
susp = { I

Quaker is pacifist.
Pacifist is antimilitary.
Republican is not pacifist.
Republican is football fan.
Football fan is not antimilitary.

male-royal-elephant, royal-elephant)

The next example is quoted after (Padgham 1988) 6:

There are ambiguities in these sentences. That is to say, common-sense reasoning may give
a contradiction. For instance, given an instance Nixon, who is quaker and repuhlican, we

200

may conclude from these sentences that Nixon is pacifist and is not pacifist. As Shastri
pointed out, there are at least two distinct ways of dealing with this kind of conflict:
1) enumerate all the possible answers,
2) obtain more information to resolve such conflicts.

Etherington and Reiter’s default logic approach, Padgham’s lattice-based model approach,
and Touretzky’s fornializations lo essentially adopt the first approach to the problem of
conflict. Shastri’s evidential formalization tries to find the most likely solution by adding
the measures of likelihood of facts to the knowledge base; the limitation is that such
measures are not always available in the real world. We believe that the ambiguities result
from incomplete knowledge. There must be exceptions from the hierarchical relations
described in the above five scntences. The sentence “A is E3” may not mean “any instance
of A is an instance of B”. The missing exceptions are the source of conflict.

Assume that the real meaning of these sentences is as follows:
Only a typical quaker is pacifist.
Pacifist is antimilitary.
Only a typical republican is not pacifist.
Only a typical republican is a typical football fan.
Only a typical football fan is not antimilitary.

Suppose that every concept C has two subclasses, Cf and Ce, Cf is called a typical C, Ce is
called an exceptional C. An instance i of C belongs to C t if and only if it is a typical
instance of C; otherwise, it belongs to Ce. A typical feature of a concept is one which
subjects believe applies to typical instances of the concept l. For a concept C, we need to
ask the “operator” who interacts with the representation system to list the typical features of
C. We say that i is a typical instance of C if and only if it has all typical features of C. For
example, suppose that an elephant’s typical features are: four legs, one trunk, two big ears.
An elephant that has four legs, one trunk, and two big ears is regarded as a typical
elephant. An elephant that has only three legs or no trunk will not be regarded as typical.

Ce and Cr are complementary in the sense that any instance of C must belong either to Ce or
Cf. That is to say, we assume that typicality and exceptionality are mutually exclusive.
Complementary pairs of concepts are represented in C N by means of hierarchical slots with
a fa1 se condition (see the frames below). Our inference algorithm automatically concludes
that an instance of Cf is not an instance of Ce, and the other way around.

We denote the necessary typical and exceptional concepts in the “pacifist” example as
exceptional republican, exceptional quaker, exceptional f ootballfan, typical republican,
typical-quaker, and typical- football f a n . Only some of the frames of this example are
shown below; the unshown ones can be designed similarly.

OBJECT quaker.
[this-frame isnot exceptional-quaker] is-a: pacifist.
end quaker.

OBJECT republican.
[this-frame is exceptional-republ-ican] is-a: pacifist.
[this.-frame i s n o t exceptional-republican]

end republican.
is-a: typical-football-fan.

201

OBJECT exceptional-quaker.
is-a: quaker.
[false] is-a: typical-quaker.
end exceptional-quaker.

OBJECT typical-quaker.
is-a: quaker.
[false] is-a: exceptional-quaker.
end typicalguaker .

Given the instance Nixon (quaker but not a typical quuker, and typical-republican), the
initial values of PE, NE, CSet, and SUSP are

PE = {exceptional-quaker,, typical-republican)
NE = {typical-quaker)
CSet = {exceptional-quaker, typical-republican)
susp = I)

Apply the inference algorithm. When the procedure has been terminated, the values of these
parameters would be

PE = (exceptional-quaker, quaker,
typical-republican, republican,
typical-football-fan, football-fan)

NE = {typical-quaker, pacifist, exceptional-republican,
exceptional-football-fan, antimilitary]

CSet = (1
susp = I)

That means Nixon is a quaker, a republican, a football fan, but is neither a pacifist nor an
antimilitary.

In this and all the previous examples, and in general in CN, the representation is not
unique. One may ask what is the method that leads to a particular representation. We can
give a few general guidelines for designing a representation of hierarchies in CN:

1) There is a frame for every concept which has at least one superclass.
2) Every hierarchical relation is represented by one hierarchical slot.
3) If exceptions exist in a hierarchical relation, attach a condition to it.
4) Complementary pairs of concepts are represented by the hierarchical slots with a false

condition.

6 . CONCLUSION
The inheritance problem is dealt with in a new way in the inheritance system of Conceptual
Network. Exceptions can be expressed in C N without introducing any additional
mechanisms. They are explicitly represented in the conditions of the hierarchical relations;
this makes monotonic inference possible. Representing the inheritance hierarchies may not
be unique. So far, we can only provide a few general guidelines for designing a
representation of a given problem. One of the directions of our future work is to develop a
methodology of constructing a CN representation.

202

Our inheritance system does not include any special mechanism for resolving ambiguities,
because we assume that the knowledge to be represented does not contain them; when they
exist, the system will find one of the possible extensions.

REFERENCES
[11 Dahlgren, K. (1988) Naive Semantics for Natural Language Understanding. Kluwer

[2] Etherington, D. W. (1987) “Formalizing Nonrnonotonic Reasoning System”, Artificial

[3] Etherington, D. W. and R. Reiter (1983) “On Inheritance Hierarchies With

[4] Fahlman, S. E. (1979) NETL: A System for Representing and Using Real-world

[SI Fahlman, S. E., D. S. Touretzky and W. van Roggen (1981) “Cancellation in a Parallel

[61 Padgham, L. (1988) “A Model and Representation for Type Information and Its Use in

[7] Shastri, L. (1988) Semantic Network: An Evidential Formalization and Its Connecfion-

[8] Shastri, L. (1989) “Default Reasoning in Semantic Networks: A Formalization of

[9] Szpakowicz, S. (1990) “Semi-Automatic Acquisition of Conceptual Structure from

[101 Touretzky, D. (1986) The Mathematics of Inheritance Systems. Morgan Kaufman.

[113 Touretzky, D., J. F. Horty and R. H. Thornason (1987) “A Clash of Intuitions: The
Current State of Nonmonotonic Multiple Iriheritance Systems”. Proc ZJCAZ-87,
Milan, vol. 1, pp. 476-482.

[121 Yang, L. and S . Szpakowicz (1990) “A Knowledge Representation Formalism:
Conceptual Network”. TR-90-27, Dept. of Computer Science, Univ. of Ottawa.

[131 Yang, L. and S. Szpakowicz (1990) “Path Finding in Networks”. Proc SEARCC-90.
[141 Yang, L. and S . Szpakowicz (1991) “Planning in Conceptual Network”. Proc ZCCI-

Academic Publishers.

Zntelligerzce vol. 31, no.1, pp. 41-85.

Exceptions”, Proc AAAZ-83, Washington, D.C., pp. 104-108.

Knowledge. MIT Press.

Semantic Network”. Proc IJCAI-81 , pp. 257-263.

Reasoning with Defaults”. Proc AAAZ-88, vol. 2, pp. 409-414.

ist Realization. Morgan Kaufrnann.

Recognition and Inheritance”, Artijkial Iritelligence vol. 39, no. 3, pp. 283-355.

Technical Texts”. Int J of Man-Machine Studies, vol. 33, pp. 385-397.

91.

203

COMBINING SYMBOLIC AND NUMERIC
REPRESENTATIONS IN LEARNING FLEXIBLE CONCEPTS:

THE FCLS SYSTEM

Jianping Zhang'

Department of Computer Science
Utah State University

Logan, Utah 84322-4205

ABSTRACT

Many current methods of learning concepts from examples assume that
concepts are precise entities, representable by a pure symbolic
representation, and that concept examples are equally representative,
Human concepts, however, are often flexible. They inherently lack
precisely defined boundaries and have a central tendency, and their meaning
is often context-dependent. Examples of these concepts are usually not all
equivalent. This paper describes an approach to learning flexible concepts
from examples. In this approach, a novel hybrid representation was
introduced to represent flexible concepts. This hybrid representation is a
combination of symbolic and numeric representations. An associated
inductive learning algorithm was also presented. This approach was
implemented in the Flexible Concept Learning System (FCLS) and tested
on three different types of problems: the problems favorable for FCLS, the
problems unfavorable for FCLS, and real world problems. The
experimental results showed a strong support for the proposed flexible
concept learning method.

1 INTRODUCTION

In real world applications, rare concepts are precisely defined. Instead, the meaning of
concepts are often imprecise and context-dependent, these concepts are called flexible
concepts [6]. Concept representations used in many learning systems, e.g. decision trees
and logic- type representation, are not appropriate for describing flexible concepts. To
represent flexible concepts, a representation must be capable of describing their imprecise
and irregular boundary, context-dependency, central tendency and exceptions.

In the past, several representations were proposed to descx-ibe flexible concepts. These
include exemplars-based representation \ 10][1][2] and probabilistic representations [lo]
Although good results have been achieved by the systems using these representations on
some domains, each of these representations has its weakness 161.

1 This research was done, while the aulhor was with the Artificial Intelligence Center of George Mason
University. The activities of the Center arc supported in part by the Defence Advanced Research Projects
Agency under grant No. N00014-87-K-0874, ahinislered by the Office of Naval Research, and in part by
the Office of Naval Research under grant No. NOl4-88-K-0226 and NOOO14-88-K-0397.

204

This paper presents an approach that uses a hybrid representation to describe flexible
concepts. The representation is based on a simple but powerful form of two-tiered concepr
representation [5J and combines the logic a d papametric representations in which both
logical and parametric aspects are being adjusted in the process of learning. The meth
has been implcmentd in the system FCLS (Flexible Concept teaming System), arid tested
on a variety of problems. The problems included learning concepts with graded
membership, such as congress voting, lymphatic cancer diagnosis, and n-out-m concepts,
as well as concepts with sharp boundaries, such as multiplexer and DNF functions with
few disjuncts. For comparison, other methods, such as C4.5 [7].were tested on the same
problems. The results have shown a statistically meaningful advantage of the proposed
method over the other methods.both in terms of the classification accuracy and the
description simplicity. The work reported in this paper is related to Schlimmer's
STAGGER [9], Utgoff s Perceptron Trees [111, Bergadano et. al's POSETDON [3], and
Salzberg's NGE. [SI

2 CONCEPT REPRESENTATION

This section introduces the hybrid concept representation used in FCLS. In this
representation, a concept is described as a disjunction of extended complexes, and a
similarity measure. An extended complex consists of a base complex, a set of weights, and
a threshold. The similarity measure determines the degree of fit between an event and an
extended complex.

2.1 BASE COMPLEX

A base complex is a disjunct represented as a complex by the attribute based Logic
System VL1 [4]. A complex in VL1 is a conjunction of selectors. A selector is of the form:

[L # RI
where the attribute L is called the referee and R is called the referent, which is a set of
values from the domain of L. The symbol ## denotes one of the relational symbols =, <, >,
5,2, 2.

2.2 WEIGIITS

Each selector of a complex is associated with a weight which reflects the degree of
necessity of the selector. Its value ranges from 0 to 00. A selector weighted as 0 ~) is a
necessary condition of the complex, and a selector weighted as 0 is irrelevant condition.
Except 0 and 00, any other value of a weight reflects the relative importance of the selector
in cornparison with other selectors in the same complex.

2.3 THRESHOLD

In addition to weights, each extended complex is associated with a threshold that is a
real number between 0 and 1. The threshold of an extended complex defines the boundary
of the complex. An event is covered by an extended complex, if its degree of fit to the
complex is larger than or equal to the threshold of the complex. Degree of fit is computed
by the similarity measure. An extended complex with 1 as its threshold is equivalent to its
base complex. Decreasing a threshold relaxes the requirements of the extended complex
that have to be met by its instances, and generalizes the extended complex.

205

2.4 SIMILARITY MEASURE

The similarity measure (SM) measures the degree of fit between an event and an
extended complex. The specific SM used in our current implementation maps an event
from the set E and an extended complex from the set C to a real value between 0 and 1,
which is the degree of fit of the event to the complex.

SM: E x C --> [O..l]
The SM of an event e and an extended complex cpx is defined by a normalized distance

measure DIS as follows:

where MAXDIS(cpx) is the maximum distance between events in the set E and the
complex cpx. DIS(e, cpx) is defined as a .weighted sum of the distances between the event
e and all selectors of the complex cpx:

DIS(e, cpx) = X Wi * SELDIS(e, seli)
where Wi is the weight of seli. SEI,DIS(e, seli) i s the distance between the event e and the
selector seli and depends on the type of the variable in the selector. It is either 1 (match) or
0 (no match) for nominal variables. In case of linear variables, SELDIS(e, seli) inversely
depends on the distance of the event from the selector, normalized by dividing the largest
distance between a value in the domain of the corresponding attribute and the selector.

One of the nice feature of the simila&y measure is if any necessary selector of cpx is
not satisfied by an event e, SM(e, cpx) = 9. The weight of a necessary selector is 00, so if
the selector is not satisfied, DIS(e, cpx) = 00. When DIS(e, cpx) = 00, it is set to equal to
MAXDIS(cpx), thus SM(e, cpx) = 0.

2.5 CONCEPT RECOGNITION

In FCLS, an event belongs to an extended complex if the Normalized Degree of Fit
(NDF) of the event to the extended complex is the largest among all extended complexes.
The Normalized Degree of Fit (NDF) between an event e and an extended complexes cpx is
defined as follows:

c Certainty (cpx)
th(cpx) = 1

SM(e,cpx) 2 th(cpx)
SM(e ,cpx) <: tb(cpx)

W P X)

where Certainty(cpx) is the certainty of cpx which is defined as the inverse of the
sparseness of cpx, th(cpx) is the threshold of cpx.

EXAMPLES

To illustrate the idea of the hybrid representation, let US consider a simple imaginary
concept “R-bald”. The meaning of the concept R-ball is defined as three disjuncts:

(SHAPE = round) & (BOUNCES = yes) or
(SHAPE = round) & (SIZE = medium v large) or
(BOUNCES = yes) & (SIZE = medium v large)

By using the hybrid representation, these three disjuncts merge into one extended complex:
[SHAPE = round : 13 & [BOUNCES = yes : 11 & [SIZE = medium v large : 11

206

2
Threshold = 5 = 0.67

The number following ’:’ is the weight of the selector. The base complex:
[SHAPE = round] & [BOUNCES = yes] & [SIZE = medium v large]

represents the central tendency of the concept R-ball, all of the three selectors are equally
impoatant. ‘I’he meaning defined by the extended complex is that an object that satisfies any
two Or more of the three selectors is a R-ball, otherwise it i s not a R-ball. Furthemore, it
tells that balls that satisfy all of the three selectors are typical R-balls, while those which
only satisfy two of the three selectors are less typical.

Now suppose the meaning of the concept K-ball changes a little, and all R-balls must
be round. The new meaning of the concept R-ball is defined by two disjuncts:

(SHAPE = round) & (BOUNCES = yes) or
(S I N E = round) & (SEE = medium v large)

These two disjuncts are combined into one extended complex:
[SHAPE =I round : -3 & [BOUNCES = yes : 13 & [SIZE = medium v large : 11

1
Threshold = 5 = 0.5

In this extended complex, the selector [SHAPE = round] is necessary, and must be
satisfied by all R-balls. The other two selectors are not necessary, and one of them must be
satisfied by a R-ball,

3 THE LEARNING ALGORITHM

Table 1 defines the learning algorithm which works in an iterative fashion. In each
iteration, the concept whose description has the largest error omission is generalized by
generating a new acceptable extended complex to minimize the error omission of the
concept. FCLS provides users with two parameters: M A X - E R R - R A T E and M I N -
COVERAGE. These two parameters are used as thresholds. An extended corn
acceptable if

The error omission of a concept description is the percentage of the number of the positive
examples that are not covered by the description. If the fraction of correctly classified
examples are larger than MAX-ERR-RATE, the algorithm terminates and outputs the
current descriptions, otherwise it repeats.

I MAX-ERU-RATE.
n

(1) 2 MZN-COVERAGE, and (2) ~

POS P + n

Let DES be empty
Repeat

Select the concept CNPT that hay the largest error omission.
Generalize CNFT by generating an acceptable extended complex CPX
Add CPX and EXE into DES

Until error-rate(DES) < MAX-ERR-RATE
Return DES

Table 1. The Learning Algorithm in FCLS

207

3.1 THE COMPLEX GENERATION ALGORITHM

The complex generation algorithm generates the extended complex for a given concept
from a set of positive and negative examples. The process of generating the extended
complex is divided into two phases. The first phase generates a set of base complexes that
satisfy the consistency requirement specified by the parameter MAX-ERR-RATE. The base
complexes generated in the fist phase are optimized in the second phase. Before describing
the two algorithms in the two phases, we first introduce some terminology used in the
algorithms. Let us suppose e is an example, and cpx is an extended complex. e is called
strictly covered example, if SM(e, cpx) == 1, that is e satisfies all conditions of cpx. e is
flexibly covered by cpx, if SM(e, cpx) 2 th(cpx). e is nearly covered by cpx, if th(cpx) >
SM(e, cpx) 2 pth(cpx). Where th(cpx) is the threshold of cpx, pth(cpx) is the potential
threshold of cpx which is less than th(cpx) and used to decide nearly covered examples.

3.1.1 PHASE 1: THE BASE COMPLEXES GENERATION ALGORTTHM

The algorithm generates a set of the most general base complexes that satisfy the
consistency requirement. Table 2 specifies the algorithm. It starts with the most general
base complex which strictly covers the whole instance space. In order to find base
complexes that satisfy the consistency requirement, the strictly covered negative examples
must be excluded. The technique used in the algorithm is similar to the star algorithm of
AQ [4] that performs a beam search. During each cycle, the consistency of each base
complex in STAR is tested. If the consistency is high enough, the base complex is added to
the set of CONSISTENT-CPXES and removed from STAR. Otherwise, the base complex
is specialized by removing a value from one of its selectors. This specialization is repeated
for each of all selectors of the complex. The value removed from a selector is chosen to
maximize the number of negative examples and minimize the number of positive examples
excluded from the bast: complex. This yields several new base complexes, each of which
covers fewer negative examples. The new star is the union of these newly specialized base
complexes. A certain maximum number (MAXSTAR) of these base complexes are selected
for further processing. This set of base complexes is selected based on their potential
quality. When STAR is empty, the algorithm terminates with a set of base complexes
whose inconsistency (error rate) is smaller than MAX-ERR-RATE. Figure l(a) shows the
most general base complex that the algorithm starts with and Figure l(b) shows the set of
consistent base complexes that the algorithm ends up with.

Let STAR be the set containing the most general complex that covers all events.
Let CONSISTENT-CPXES be empty.
Repeat

Let NEWSTAR be empty
For each complex CPX in STAR

For each attribute
select a value LO remove from CPX so that a more specific complex NEWCPX is generated.
if error-rate(NEiWCPX) 5 MAX-ERR-RATE ,

then add NEWCPX into CONSISTENT-CPXES
else add NEWCPX into NEWSTAR

Let STAR be MAXSTAR complexes with the largest potential quality in NEWSTAR.
until STAR is empty
Return CONSISTENT-CPXES

Table 2: The Base Complex Generation Algorithm

208

xl xl

(a) (b)
Figure 1 : An illustration of the function of the phase 1

3.1.2 PHASE 2: THE EXTENDED COMPLEX OPTIMIZATION
ALGORITHM

The extended complex optimization algorithm optimizes the complexes generated in
phase 1 by decreasing the thresholds of the complexes so that more positive examples can
be covered. In order to decrease the threshold of an extended complex without increasing
inconsistency, the degree of fit of nearly covered negative examples must be reduced SO
that the threshold can be decreased without covering more negative examples. The way to
reduce the degree of fit of nearly covered negative examples is to specialize the base
complex by removing some values of selectors that occur on many nearly covered ne
examples and few nearly covered positive examples. The algorithm also performs a
general-to-specific beam search. In this algorithm, the threshold is adjusted (often
decreased) while the base complex is specialized. Thus, an extended complex is often
generalized although its base complex is specialized.

Table 3 specifies the extended complex optimization algorithm. The algorithm first
transfers the base complexes generated in phase 11 by computing its new weights and ne
threshold. Ttie weight learning algorithm will be introduced in section 3.2. The threshold is
determined so that the ‘best’ quality of the complex i s achieved. The STAR is initialized as
M A X S T A R of these complexes with the highest potential quality. Then the ‘best’
acceptable extended complex is selected from the set of optimized initial extended
complexes as the initial ‘best’ complex BEST-CPX. This ‘best’ extended complex is
subject to replacement by a better extended complex during the process of optimization.
After the algorithm terminates, REST-CPX is output. The ‘best’ extended complex is the
complex with the highest quality. If no acceptable extended complex can be generated,
BEST-CPX is empty when the algorithm terminates.

The algorithm repeats the beam search until the stop condition is satisfied. In each cycle
of the loop, a set of new extcnded complexes is generated. The quality and potential quality
of each newly generated extended complex are evaluated respectively. ‘The acceptable
complex with the highest quality replaces the complex in BEST-CPX, if its quality is larger
than or equal to the quality of the complex in BEST-CPX. The complexes with lo
potential quality are removed from NEWSTAR. Issues about quality and the potential
quality were discussed in [121. ‘141e MAXS?:4R new extended complexes with the highest
potential quality are selected for further improvement. MAX-TRIES is an integer
parameter which controls the execution of the loop. If BEST-CPX has not been improved
in MAX-TRIES steps, the algorithm stops.

209

For each complex CPX in CONSISTENT-CPXES (generated in Bhae 1)

Let STAR be MAXSTAR complexes with the highest potential quality in CONSISTENT-CBXES
If there exist some acceptable complexes in CONSISTENT-CPXES

Compute the weights and threshold for CPX

then let BEST-CPX be the acceptable complex with the highest quality
else let BEST-CPX be empty

Let NO-IMPROVEMENT be 0
Repeat

Let NEWSTAR be empty
For each complex CPX in STAR

For each attribute
select a value to remove from CPX to generdte a new complex NEWCPX
compute the weights and threshold for NEWCPX
if NEWCPX is acceplable and has equal or higher quality hhan BEST-CPX

then replace BEST-CPX by NEWCPX

else add 1 toN0-IMPROVEhENT

Remove all complexes that cannot be improved from NEWSTAR
Let STAR be MAXSTAR complexes with the largest potentid quality in NEWSTAR.

MAX-TRIES or STAR is empty

set NO-IMPROVEMENT 8

add NEWCPX into NEWSTAR

until NO-IMPROVEMENT
Return BEST-CPX

I.-

Table 3: The Extended Complex optimization algorithm

Fig. 2(a) shows the initial extended complexes that the algorithm starts with and Fig.
2(b) shows the extended complex that the algorithm ends up with. In Fig. 2(b), the circle
represents an extended complex, and the square inside the circle is its base complex. It can
be seen that the base complex in Fig. 2(b) is more specific than the two base complexes in
Fig. 2(a), but the extended complex is more general than both of the two base complexes.

x2 x2

(a) (b)
Figure 2: An illustration of the function the phase 2

3.2 WEIGHT LEARNING ALGORTTHM

In the hybrid representation, each selector of an extended complex is associated with a
weight which is the degree of necessity of the selector. A weight is a real value ranging
from 0 to +-. The larger a weight of a selector, the more necessary the selector. The
weights of an extended complex are computed during learning. In computing the weight of
a selector, the algorithm counts the number of positive and negative examples that do not

210

match the selector. In the method, the weight of the selector SEL w(SEL) is computed as
follows:

(unmatched I NEG)
w(SEL) =:(unmatched I POS)

where p(unmatched I NEG) and p(un;n'atched I POS) are the fraction of positive and
negative examples which do not match with SE,L. w(SEL) ranges from 0 to +-. When the
selector SEI, is satisfied by all positive examples, p(unmatched I POS) = 0 so that w(SEL)
= +m and the selector SEL is necessary. When the selector SEL is satisfied by all negative
examples, p(unmatched I NEC) = 0 so that w(SEL) = 0 and the selector is totally
unnecessary. This case occurs seldom, because such a selector is usually removed in the
process of complex generation. The fewer negative examples satisfy the selector SEL, the
larger p(unrnatched I NEG) and w(SEL). The more positive examples satisfy the selector
SEL, the smaller p(unmatched I POS), therefore the larger w(SEL).

IMENTS WITH FCLS

To evaluate the approach described in this paper, a number of experiments were
conducted on various domains with FCLS. This section first outlines the experimental
methods and the domains, then reports the details of the experimental results.

4.1 EXPERIMENTAL DESIGN

To thoroughly test FCLS, six artificial domains, three favorable to FCLS and three
unfavorable, were selected for the experiments. [121 also described experiments from two
real world domains. Three learning methods, the base-cpx, the no-weight, and the c-
weight, were involved in all experiments. The base-cpx method generates a disjunction of
base complexes as a concept description that is equivalent to a DNF expression. The base-
cpx method provides the performance baseline for other methods. The no-weight method
generates extended complexes with threshold adjusting only, no weight learning is
involved. The c-weight method generates an extended complex with both threshold
adjusting and weight learning. In addition to these three methods, the decision tree learning
system C4.5 [7] was run on the same domains with pruning. The pesfomance of FCLS
was evaluated on classification accuracy and description complexity. Classification
accuracy was measured as the percentage of correct classifications made by the concept
description on a set of 1000 test events. Description complexity was measured by the
number of extended complexes involved in a description. The complexity of decision trees
is measured by the number of leaves in a wee. In all experiments, FCLS was run on
randomly generated training sets of various sizes: 100, 200, 300, and 400 examples. For
each training set size, FCLS was run on four different randomly generated training sets.
The results reported in Figure 3 and 4 are the average of the four runs. The results
accompanied with a 95% confidence interval calculated using a Student t-test were reported
in 1121.

4.2 EXPERIMENTS ON THE DOMAINS FAVORABLE TO FCLS

The experiments described in this section were performed on three specially designed
domains, called designed domain I to 111. These domains were specially designed to test
the novel features of the hybrid representation and the associated learning algorithm in
FCLS. Designed Domain I contains two classes, positive and negative, and 10 nominal

211

attributes each of which has four values: 0, 1,2, and 3. The nile for distinguishing positive
class from negative class has the general form of “at least k of n conditions are satisfied.”
Specifically, the rule is “if the values of any 5 or more of the first 7 attributes of m event
are equal to 0 or 1, then the event belongs to positive class, otherwise it belongs negative
class”.

Designed Domain III consists two classes, positive and negative. Eight linear
attributes are involved in this domain. The domains of the eight hea r attributes are same
and include four values 0, 1, 2 and 3. The positive class is described by six conditions,
two of which are as twice important as the other four conditions. Specifically, the positive
class is expressed by one extended complex:

[xl=Ov1]:2& [X2=0V1:2&[X3=0V1]:18 [Xq=oV1]:1& [Xs=0V1]:1& [X6=0v1]: 1
Threshold = 5/8 = 0.625

Designed Domain 111 contains 15 nominal binary attributes, and two classes: positive
and negative. The events of the positive class are described by two extended complexes,
each of which consists of 6 selectors, two of which are as twice important as the other four.
The positive class is described by the disjunction of the following two extended complexes:
Complex 1: Complex 2:

[X I = 012 & [x2 = 03:2 & [x3 = 0]:1
[xq = 01:1 & [xg = 0]:1 & [x(j = 01: I

Figure 3 shows the results of the experiments from the three favorable domains. In all
three domains, improvements were achieved on both accuracy and complexity by the the
no-weight and the c-weight methods over the base-cpx method and C4.5 at all training set
sizes. A significant improvement was achieved in the Designed Domain I. The results from
Designed Domain I show that the no-weight and c-weight methods have very similar
performance. This is because all. conditions of the target concept description are equally
important, and weights play no role. The c-weight method outperformed the no-weight
method in Designed Domain II and Designed Domain In. These improvements are due to
the weight learning. In these two domains, selectors in extended complexes are weighted
differently.

~ x 7 = 0 1 2 & [Xg = 0112 & [Xg = 01:1
1x10 = 01:l & [X I 1 = 01:l L?L [XI2 = 01:1

Threshold = 5/8 = 0.625 ThEShOld - 5/8 = 0.625

4.3 EXPERIMENTS ON THE DOMAINS UNFAVORABLE TO FCLS

This section describes the experiments from three unfavorable domains: 11-
multiplexor, 3-term 3DNF and 4-temi 3DW. The hybrid representation has no advantage
over logic type representations in representing the concepts involved in these domains,
Adversely, the hybrid representation increases difficulties to learn these concepts because
of the less representational bias enforced by the representation.

The results from the three unfavorable domains are reported in Figure 4. Except in 11-
multiplexor at size 300 and 400, the accuracy of the c-weight method is worse than that of
the base-cpx and no-weight methods, especially at small training sizes. This result is due to
the week representational bias enforced by the hybrid representation. Tn spite of the
problem, the accuracy of the methods with weight learning is still comparable with the
accuracy of C4.5. Except in the domain of 1 1-multiplexor, the c-weight generated simpler
descriptions. One important and interesting result is that the accuracy obtained through the
no-weight method is similar to the accuracy of the base-cpx method in all three domains, in
some experiments, the accuracy of the no-weight method is even slightly better than the
base-cpx. In fact, in many experiments, the base-cpx method and the no-weight method
generated the exactly same descriptions. ‘This interesting result shows that the no-weight
method works very well in adjusting the representation for a given problem, but the weight
learning methods does not.

212

Complexity

0 100 200 300 400
Training set size Training set size

Experimental result5 from Designed Domain I

Complexity Accuracy A,.

1oQ.

90-

80 -
70-

60

JU-

25 -
20-

15 -
10 -

5-

0 loo 200 300 400
Training set size Training set size

Experimental results from Designed Domain III

9 The c-weight method 0 The neweight method * The base-cpx method 0 C4.

Figure 3: Experimental Results from Favorable Domains

213

0 100 200 303 400
Training set s i 7 ~

Exprimental results from 11

Complexity
30

25

20

15

10

5-i
0 0

0 loo 200 300 400
Training set size

-Multiplexor

Accuracy Complexity
1

Training set size Training set size
Experimental results from the 3-l~.?nn 3 D W boolean function

Accuracy
1

0 loo 200 300 400
Training set size Training set s i x

Experimental results from 4-term 3DNF boolean function

0 The c-weight method 0 The no-weight method * Thebase-cpxmethod 0 C4,

Figure 4: Experimental Results from Unfavorable Dotnains

2 1 4

5 CONCLUSION AND FUTURE WORK

This paper describe$ an novel approach to learning flexible concepts. In this approach,
a hybrid representation that combines symbolic and numeric representations was propos
to explicitly describe central tendencies of flexible concepts and extend the meaning of
concepts by a threshold and a similarity measure. An associated algorithm was designed
and implemented to automatically acquire both symbolic and numeric descriptions. The
experimental results are very promising and encouraging.

A number of problems need to be addressed in the future. First, FCLS should be
augmented with a knowledge based semantic similarity measure. Second, an incremental
version of the approach needs to be designed. Third, a better weight learning algorithm
should be studied. Finally, the method of constructive induction will be incorporated into
FCLS.

REFERENCES

1. Aha, D., Kibler, D., and Albert, M., "Instance-Based Learning Algorithms", Machine
Learning 6, (1991)

2 Bareiss, E.R., Porter, B.W., and Craig, C.W., "Protos: An Exemplar-based Learning
Apprentice," Machine Learning: An Artificial Iiitelligence Approach V III, 63-1 11
(1 990).

3 Bergadano, F., Matwin, S., Michalski, R.S., and Zhang, J., "Leaning Two-tiered
Descriptions of Flexible Concepts," accepted for publication in Machine Learning.

4. Michalski, R.S., "A Theory and Methodology of Inductive Learning." In Machine
Laming: An Art$cial Intelligence Approach, 83- 134 (1983).

5 . Michalski, R. S., "How to Learn Imprecise concept: A Method Employing a Two-
Tiered Representation for Learning", Proceedings. of the Fourth International
Workshop on Machine Learning, Irvine, CA, pp. 50-58, (1987).

6 . Michalski, R.S., "karning Flexible Concepts: Fundamental Ideas and a Method Bases
on Two-Tiered Representation," Machine Learning: An Artificial Intelligence Approach

7 . Quinlan, J, R., "Simplifying decision trees." In International Journal of Man-Machine
Studies, vol. 27, (1987).

8 Salzberg, S., "A Nearest Wyperrectangle Learning Method," Machine Learning 6,
(199 1)

9 Schlimmer, J. C., Concept Acquisition Through Representational Adjustment. PhD
thesis, Department of Information and Computer Science, University of California,
Irvine, (1987).

10 Smith, E.E. and Medin, D.L., Categories and Concepts, Harvard 1Jniversity Press,
Cambridge, MA, (1981)

11 Utgoff, P. E., "Perceptron Trees: A case study in hybrid concept representations." In
Proceedings of the seventh National Conference on Artificial lnielligence, (1988).

12 Zhang, J., "Learning Flexible Concepts from Examples: Employing the Ideas of Two-
Tiered Concept Representation." Ph.D Thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, (1990).

VIIZ, 63-111 (1990).

215

INTERNAL DISTRIBUTION

1. B. R. Appleton
2. J. E. Baker
3. A. L. Bangs
4. M. Beclcerman
5. R. J. Carter
6. J. R. Einstein
7. C. W. Glover

8-12. E(. S. Harber
13. J , P. Jones
14. H. E. Knee
15. G. Liepins

21. E. M. Oblow

27. S. A. Raby

16--20. R. C. Mann

22-26. F. G. Pin

28. D. B. Reister
29. J. C. Scliryver
30. P. F. Spelt
31. F. J. Sweeney
32. M. A. Unsereri
33. R. C. Ward

34-35. Laboratory Records
Department

36. Laboratory Records,

37. Document Reference

38. Central Research Library
39. ORNL Patent Section

0 R.N L-RC

Section

EXTERNAL DISTRIBUTION

40. Dr. Peter Allen, Department of Computer Science, 450 Computer Science,
Columbia University, New York, NY 10027

41. Dr. Wayne Book, Department of Mechanical Engineering, J . S. Coon
Btiilding, Room 306, Georgia Institute of Teclmology, Atlanta, GA 30332

42. Professor Roger W. Brockett, Wang Professor of Electrical Engineering
and Computer Science, Division of Applied Sciences, Harvard University,
Cambridge, MA 02138

43. Professor John J. Dorning, Departrnent of Nucleax Engineering and
Pliysics, Thornton Hall, McCormick Rd., University of Virginia,
Charlottesville, VA 22901

44. Dr. Steven Dubowsky, Massachusetts Institute of Technology, Biiilding 3,
Room 469A, 77 Massachusetts Ave., Cambridge, MA 02139

45. Dr. Avi Kak, Department of Electrical Engineering, Purdue University,
Northwestern Ave., Engineering Mall, Lafayette, IN 47907

46. Dr. James E. Leks, Rt. 2, Box 142C, Broadway, VA 22815
47. Dr. Oscar P. Manley, Division of Engineering, Mathematical, and

Geosciences, Office of Basic Energy Sciences, ER-15, U.S. Department
of Energy - Germantown, Washington, DC 20545

48. Professor Neville Moray, Department of Mechanical and Industrial
Engineering, University of Illinois, 1206 West Green St., Urbana, IL 61801

49-178. Dr. Zbigniew Ras, University of North Carolina at Charlotte, Department
of Computer Science, Kennedy Bldg., Charlotte, NC 28223

179. Dr. Wes Snyder, Department of Radiology, Bowman Gray School of
Medicine, 300 S. Hawthorne Dr., Winston-Salem, NC 27103

180. Professor Mary F. Wheeler, Department of Mathematical Sciences,
Rice University, P.O. Box 1892, Houston, TX 77251

181. Officc of Assistant Manager for Energy Research and Development, U.S.
Department of Energy, Oak Ridge Operations Office, F.O. Box 2001,
Oak Ridge, T N 37831-8600

182-191. Office of Scientific TechIlid Information, P.O. Box 62, Oak Ridge,
T N 37831

