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Foreword 

This volume contains papers which have been selected for the Poster Session at the Sixth 
International Symposium on Methodologies for Intelligent Systems - ISMIS'9 1 , held in 
Charlotte, North Carolina, October 16-19, 1991. The Symposium was hosted by UNC-Charlotte 
and sponsored by IBM-Charlotte, ORNZJCESAR and UNC-Charlotte. 

The Organizing Committee has selected the €allowing major areas for ISMIS'9 1: 
* Expert Systems 
* Intelligent Databases 
* Knowledge Representation 
* Learning and Adaptive Systems 
* Logic for Artificial Lntelligence. 

These contributed papers have been selected from 55 full draft papers by the following Program 
Committee: A.W. Biemann (Duke), W. Bledsoe (Austin) , J. Calmet (Germany), J. Carbonell 
(CMU), B. Chandrasekaran (Ohio State), P.R. Cohen (UM-Amherst), C. Fields (New Mexico 
State), B.R. Gaines (Canada), P.E. Hart (Syntelligence), S.J. Hong (IBM-Yorktown Heights), 
M. Karpinski (Germany), W. Kohn (Boeing, Seattle), K. Konolige (SRI), C. 1,assez 
(IBM-Yorktown Heights), R. Lopez de Mantaras (Spain), J. Maitan (Lockheed), R.A. 
Meersrrian (The Netherlands), R. Michalski (George Mason), J. Minker (Maryland), M. 
Mukaidono (Japan), K. Parikh (CUNY), J. Pearl (UCLA), D. Perlis (Maryland), F.C. Pin 
(ORNL), H. Prade (France), Z.W. Ras (UNC-C), L. Saitta (Italy), E, Saridewall (Sweden), 7'. 
Sellis (Maryland), J. Sowa (TBM-Yorktown Weights), R. Thomason (Pittsburgh), D. Touretzky 
(CMU), R. Waldinger (SRI), S.K.M. Wong (Canada), M. Zemankova (NSF) and J. Zytkow 
(Wichita State). The activity of this Committee and all of the cooperating referees was a great help 
in completing the final program. This help is highly appreciated. 

The cooperating referees are listed below: 
J. Baker, B. Chu, I,. Console, M. Franco, €I. Geffner, A. Giordana, L. Giordano, J. 
Grzymala-Busse, M. Maher, A. Martelli, S. Matwin, E. Mays, Z. Michalewicz, E. Plaza, H. 
Rasiowa, P. Torasso, J. Xiao, R. Yap and W. Zadrozny. 

The Symposium has been organized by the University of North Carolina at Charlotte with the 
following Organizing Committee: Rill Chu (UNC-C), Karen S. Harber (ORNL), Zbigniew 
Michalewicz (UNC-C), M.S. Narasimha (IBM-Charlotte), Francois G. Pin (ORNL), Zbigniew 
W. Ras (Symposium Co-Chair, UNC-C), Jing Xiao (UNC-C), Maria Zemankova (Symposium 
Co-Chair, NSF). 

We wish to express our thanks to Alan Riemann, Jon Doyle, Larry Kerschberg, Tom Mitchell, 
and Gio Wiederhold who gave invited talks at ISMIS'91. We would also like to express our 
appreciation to ISMIS'91 sponsors, to all who submitted papers for presentation at the 
symposium and publication in this proceedings, to ISMIS'91 Organizing Committe, to Karen 
Harber at ORNL without whose help the present volume could not have been completed and to 
all of those who contributed to the symposium program. 

Francois G. Pin 
Zbigniew W. Ras 
Maria Zemankova 
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Charlotte, N.C. 
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Robotic Mobility and Cognitive Maps 

Carl M. Benda 
IBM 

Charlotte 
Charlotte, NC 28257 

Abstract 

This paper focuses on the acquisition and storage of environmental information by a 
mobile robot. The environment includes obstacles which must be ma@ by the robot. A 
method for representing a robot moving h u g h  its environment is described. Algorithms used for 
storage and retrieval of environmental data are presented. The goal is to represent the data in what 
i s  known as 3 cognitive map which allows faster retrieval of the environmental data becaw of this 
representation's compact nature. 

1. Introduction 
The paper focuses on tools and algorithms used to show how a mobile rabot could map out an area 

of his environment and store that map for later use. The environment of the robot contains various 
obstacles which will be stored in the cognitive map of the environment. Specifically, this paper will focus 
on three main areas of the project: 

1. 
2. 
3. Creating a Cognitive Map 

The robot, by processing information obtained through the use of these mapping algorithms can detect 
exactly where obstructions me. This paper will present the software structure and algorithms employed to 
generate the final goal, wbich is a "Cognitive Map" [6]  of the original environment information. 

Circular Quadtxee Data Stntctures ([31, I41) 
Depicting the Data in Polar Coordinates ({31,[41) 

2. Circular Quadtree 
The "Quadtree Data Structute" 8s described in [2,3,4,5] is used to store the information that has 

been scanned. There are in fact many methods available for storing environment infomation, from simple 
memory dumps to complex compression algorithms. The quadtree data structure provides a useful yet 
efficient method of storing environmentad idormation. Figure 2.1 graphically depicts the metbod used by 
the robot to store the scanned data and the order in wbich tbe data is examined. 
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1 

2 

4 

3 
Figure 2.1. Circular Quadtree 

In the quadtree data structure, elements are assigned values depending upan the data contained 
within these elements. The elements have a value of either 0, 1, or 2. A value of zero means that for the 
sector scannedd, there is no environmental information. To put it another way, the environment contains no 
obstacles in that particular sector. A value of 1 means that for the particular sector, the environment 
contains an obstacle which must be avoided. For a value of 2, the environment sector being scanned must 
be subdivided into four subsectors to further determine the extent of the object. These subsectors are then 
recursively scanned in a counter clockwise fashion. This recursive algorithm continues until the subsector 
is found to contain an object or be devoid of an object. When all four quadrants have been scanned, the 
resulting quadtree represents all of the visible local environmental data. A tree is created to represent the 
storage of the environmental information. Figure 2.2 shows how the data structure in Figure 2.1 is stored 
in a hierachid format. 

1 2 3 4 

Figure 2.2. Circular Quadtree Hierarchical Structure. 

3. Scanning Technique 
The first element to be determined is the scanning radius of the robot. After the radius has been 

set, the scanning method must be chosen. The direction of the scan is not as important as the final quadtree, 
as any direction would produce an equivalent quadtree. 
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3.1 Data Transformation 
The scanned environment is stored as It, Theta polar coordinates. To display the location of the 

objects scanned, the data is translated into X,Y coordinates which the display hardware uses. See Figure 
3.1. 

3.1. Transformation from polar coopdinates to positive integer Cartesian coordinates takes place using a 
simple software algorithm. 

Scanned as R. Theta 

I memory as 
R, Theta 

______e)L 

r di r ec ti 0-1 

Coord inate Trans la ti on Usage 
Figure 3.1. Data Representdons 

3.2. The Scanning and Subdivision Algorithms 
In order to be as efficient as possible, the seanning algorithm only s a n s  until the area of concern 

is known to contain an object. In this way, the subdivided area is completely scanned only when it is 
devoid of an object. Using a single subsector, figure 3.2 depicts the scanning sequence used by the 
algorithm. Once the area of detail is resolved, the algorithm stores &e location of the subsector in a 
table. This infomation is stored along With the level of resolution required to resolve the subseetor. The 
level of resolution is the number of SuMivisions required to ascertain whether the subsector in question is 
devoid of an object or filled with an object. In practice however, as will be shown, the number of 
subdivisions is limited to the ability of the machine to t m l a t e  from p l a r  coordinate information to 
integer relative points in the environment. After four subdivisions within a given sector, if the subsector i s  
still known to be gray, the robot stores that information into the table. Because subdivision i s  done using 
polar coordinates, the areas close to the center of the environment can not be resolved lxyond the fourth 
level. The level of subdivision is the number of times the subdivision algorithm calls itself within a given 
subsector of the environment. 
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Section being scanned 

Section being scanned 

Area of Detail 
Only one Scan line 
is used because an 
object has been found. 
This area must be 
subdivided 

Multiple Scan lines 
required to decern 
that object is present 
in area. The area must 
be subdivided. 

/ 

Entire area is scanned 
without encountering the 1 Q b iect . 

Figure 3.2. Scanning Example 
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Information is stored in memory in a simple format. The data consists of level, color, starting 
angle, ending angle, and two radial values, (one indicating the starting radius, and the second indicating the 
fmd radius of the subsector, both outward from the position of the robot). The level is a number from 1 to 
4. The mlor is stored as an ASCII character which is one of either b, w, or g. The radius values are stored 
as a relative distance value from 0 to 240. For example, in figure 3.2, the sector being scanned in the final 
view would have a starting radius value of 210, mending radius value of 240, and a starting angle of 168. 

The major difficulty in scanning the environment is that all of the points on the environment are 
in reality only addresses in memory, and thus can be referenced only in an integer fashion. The scanning 
process, however, requires floating point calculations in order to more realistidly depict the vision process. 
The floating point calculations are handlied with the float data structure in C. In view 3 of Figure 3.2, 
using the above formula, the calculatian for the starting angle works out to be 168.75, but because it is 
evaluated to an integer, the starting angle stored onto the would be 168 degrees. In application this 
approximation performs satisfactorily. Moreover, when an algorithm which incorporated rounding was 
used, it proved not to add a significant change in the overall accuracy of the robot. However, the more 
complicated algorithm did add quite a lot of overhead to the program thus slowing execution down 

Determinirag how and when to subdivide the current sector if it does contain an obstacle is the job 
of the subdivision algorithm. Starting with the cutrent position of the sector that is being scanned, the 
subdivision algorithm determines where the next subsector to be scanned is located. The key to the 
successful completion of the subdivision algorithm is its use of recursion. One point not shown, howevee, 
is the fact that there i s  a practical limitatiod to the amount of subdivision that can be done. In theory, 
subdivision of the area can continue to infiiity. The practical limitation is based solely on the resolution 
of the environment. llhrough trial and error it was found subdivision would be allowed to continue as long 
BS necessary or until a depth of 4 was reached. Figure 3.3 is a quadtree representation of a single quadrant 
showing that an end node does not have to be either all black or all white, but because a depth of four has 
been reached no f W r  subdivision will take place on that subsector. 

significantly. 

level 

1 ev 

level 4 

unresolved 
end node 

Figure 3.3. Quadtree with an Wmsolved End Node. 

level 

level 

1 ev 

4 

unresolved 
end node 

Figure 3.3. Quadtree with an Wmsolved End Node. 

2 

.e 1 3 
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4. Robotic Mobility and Creating the Cognitive Map 
The study of cognitive maps is not new, but has been around since the 19th century 161. In this 

paper, cognitive maps are used to create a data base for information used to show where the Robot i s  in 
relation to the objects that are to be avoided. 

within the scope of and its domain is a 
radius of 240 relativ ironment. There are 

at will collect the 
lements that must 

purposes of edification, the 
g the shape of objects within the domain of 

ability the iobot to Wavel, the domain of expeiience ~ Q W S  as the iobot moves within the environment. 
Typically, the primitive elements may be one of either a limited local descriptor or a more general area 
descriptor, and since the concern is to compute the spatial layout, i.e. the Cognitive Map, of the 
~ ~ ~ u ~ ~ m ~ n ~ ~  the choice i s  to use an area descriptor. An mea descriptor describes the space in which the 
robot is traveling [ 6 ] .  Attributes ofthis space include Empty Space d NON-Empty Space. In Figure 5.1 
below, the iobot’s initial perception of its envir ent i s  shown. The lines represent the robots line of 
sight, and the polygonal shapes are objects w&ic robot cannot sen past. 

Figure 4.1. Initial Space Representation for the Robot. 
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2) The second element which must be decided upon is the choice of coordinate system. In 
[6] ,  the discussion concludes with the author selecting a nonegocentric framework. This means that since 
the world is stable and it is the robot that keeps changing position on the environment, the Cognitive Map 
should be computed independent of the perceiver's point of view. Originally, the quadtree data structure 
nqxesentation of the objects on the environment had been pre-calculated. 

These first two elements, although important in themselves, an! more or less a means of 
coming to the tbkd element of the Cognitive Map, the organization. There are two possible alternatives for 
organizing the primitive elements to represent the structure of the environment. The fmt is to describe the 
relationship between individual objects as they are perceived, and the second is to partition the objects into 
groups of objects which are then c ~ m ~ e d  together as a dole .  

3) 

4.2. Computing the Cognitive Map 
To compute the entire data base, referred to as the domain of experience for the robot, an algorithm 

$as been generated which collects environmental data based cm the quadtree recreation of the environment. 
A set of cognitive maps are produced which are written to tables. These tables collectively are known as 
the domain of experience for the robot. The path, along with the environmental data is entered by the 

Collected data is stored in a table. The data describes at what angle the object was first observecl t~ 
be located and the relative distance from the robot. After scanning a complete 360 degrees, the robot then 
moves a specified distance along the selected jath and repeats the scanning process at the new location. 

travels at a known rate, and along the way stops to obtain new cognitive mapping data. 

4.3. How the Cognitive Map is Created. 
The objective of depicting a Cognitive Map for environmental representation is to provide a 

comprehensive depiction of whether or not the planned path is viable. The idea of mapping out exactly 
where the objects in the environment are located is not as important for robot navigation as showing a 
blocked path. 

Using the Cognitive Map, the robot is able to avtaid aneas where obstacles exist. The Cognitive 
Map defines regions of the environment which are not passable, rather than storing the size and location of 
the obstacles. "'he data used to create the Cognitive Map is stored in a Table . 

A Cognitive Map is an important tool for the use of robot navigation when the goal is to achieve 
navigation to a destination point. Clearly if the g is to gather data about the environment for later study, 
as is the case with a probe, the Cognitive Map as s employed here would require modification. Perhaps 
the best reason for creating a Cognitive Map for data representation of environmental data can be summed 

If the relative sizes measured in bytes of the Wrheta table and a randomly selected 
m p d ,  the R/Theta data table would be an order of magnitude larger than that of the 
kr $he n e t a  data table, each data table contributing to the Cognitive Map is used 

to show where the objects in the environment are losated. This means that the amount of data that the 
to make a decision about which direction to travel, is far less if the Cognitive Map is 
RA'heta data table. It staou kept in mind that the development of the Cognitive 
e &Theta representation be nd manipulated at least one time. If the robot moves 

into a new region, which bas not been previously scmed, ional scanning of t h i s  new region would be 
requid. If, however, one considers the complexity of th represented by the two formats, it is also 
clear that the Cognitive map has less complex idomt ion .  

The advantage to the &Theta data table is that it gives an additional view of the entire scanned-in 
data. It provides i domt ion  on where the environment has subsectors that are gray, black, and white. In 
the Cognitive Map, the only information that matters i s  the visible contour the obstacles, i.e. how far away 
they are, and in what direction they lie. 

The Cognitive Map is a simple way to get around the burden of knowing everything about all of 
the environment. It relies on the R/p?leta mapping process, but really only once. 
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ABSTRACT 

For reasoning systems, it is sometime useful to cache away the 
inferred values. Meanwhile, when the system works in a dynamic 
environment, cache coherence has to be performed, and this can be 
achieved with the help of a reasoning maintenance system (RMS). The 
questions to be answered, before implementing such a system for a 
particular application, are: how much is caching useful ? Does the 
system need a dynamicity management system ? Is a RMS suited (what 
will be its overhead) ? 

We provide an application driven evaluation framework in order to 
answer these questions. The evaluation is based on the real work to be 
processed on the reasoning of the application. First, we express the 
action of caching and maintaining with two concepts: backward and 
forward cone effects. l h e n  we quantify the inference time for those 
systems and find the quantification of the cane effects in  the formulas. 

For reasoning systems such as knowledge bases, it is often necessary to record 
the result of the inference process even if it is god driven. Recording the result of a 
computation is called caching in co~npu ter science. Caching is necessary when the 
produced inferences are costly and used several times. 

When knowledge in the base does not evolve, caching is safe and very efilcient. 
But in real world applications, the knowledge base is usually dynamic. This is true for 
systems that interact with the environment (through sensors) OH with \he user who can 
set hypotheses and change the knowledge in  the base. So, caching requires dynamicity 
management. Mast of the t h e ,  it is performed by using a RMS (Reasoning 
Maintenance System) based on dependency graph manipulation. But is a RMS: always 
interesting ’? Should i t  be more attractive to treat dynamkity problems by ignoring RMS 
solutions ? 

We develop here a quantitative analysis of the reasoning graph in order to answer 
these questions. Numeric criteria defined on properties of the dependency graph are 
used. Real world applications give evidence of such properties, especially for spatial 
knowledge bases and spatial reasoning. 

After a short description of reasoning maintenance systems and their advantages 
in the context of knowledge bases, we will briefly describe an object-based knowledge 
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base management system called ShirkalTMS which uses a RMS ($2). We will show 
some numeric results from that system and give expectations about its behavior. More 
recently, observations have been performed on a real world application ELSA ($3) 
dedicated to the analysis of snow avalanche path. This application uses the inference 
mechanisms in order to compute spatial properties of a geographic area such as 
connected sub-areas or close ridges which are used very often. The benchmark results 
obtained with ELSA are very surprising. 

We are able to explain them with the help of a new concept: backward and 
forward cone effects. They are formalized ($4) in order to draw general conclusions 
about RMS use i n  reasoning systems. In fact, the advantage of a RMS toward rough 
caching is a tradeoff between backward and forward cone effect. 

2. A SPATIAL REASONING APPLICATION 

The motivations for using a RMS in knowledge based systems are first presented. 
Then, Shirka/TMS will be introduced together with some tests and expectations about 
its behavior. 

2.1. REASONTNG MAINTENANCE SYSTEM 

When using an inference system in backward chaining mode, the result of each 
inference, would it  be an attribute value or the validity status of a proposition, can be 
cached i.e. recorded in memory. Cached values do not have to be inferred twice or 
more. In fact, caching is useful when a value is used several times by the system and is 
as useful as the number of times the value is needed. But, while caching uses additional 
memory space and time, it has to be used with care. 

Moreover, in evolving systems or when the inferences allowed by the system can 
be nonmonotonic, something which is considered as holding (a value considered as the 
value of an attribute or a proposition considered as true) can be discarded. In such 
cases, the cached values must be invalidated, i.e. not cached anymore. This is the job 
of a RMS. 

Fig. 1. A dependency graph is here 
represented with circles as nodes and 
triangles as justifications where the nodes 
in the IN-list come through a full line 
while nodes in the OUT-list come through 
a doted line. Nodes  that have a 
justification whose IN- and OUT-lists are 

0 node justification empty (e,g D) represent true formulas 
because they do not need to be inferred. 

1. 

Reasoning maintenance systems (RMS) are aimed at managing a knowledge base 
considering different kinds of reasoning. Such a system is connected to a reasoner (or 
problem solver or inference engine) which communicates every inference made. The 
RMS has in charge the maintenance of the reasoner’s current belief base. R M S  
developed so far focussed on nonmonotonic reasoning or multiple contexts reasoning. 
They record each inference in a justification that relates nodes representing 
propositional formulas plus a special atom (1 ) representing contradiction. A 
justification (<(i l ,  ... in)(ol,.,.om)>: c) is made of an IN-list ({il, ... in]) and an OUT- 
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list ({oi, ... om)). Such a justification is said to be valid if and only if all the nodes in 
the TN-IiSt are known to hold while those in the OLJT-list are riot; a node, in  turn, is 
known to hold if and only if it is the consequent (c) of a valid justification. The 
recursion of the definition is stopped by nodes without justification and by the axioms 
that we nodes with a justification containing empty IN- and om-lists. 

Shirka is a traditional object based knowledge representation system written in 
Lisp [I]. Everylhing, in Shirka, is an object (including inference ~ncthsds.. .). Each 
object belongs to a class which defines its structure - in ternis of a list of fields and 
constraints oil tlhe fields values .- and its inferential capabilities in terns of inference 

in order to determine the vdues of unfilled fields. Inference meth 
among value passing, procedural attachment, pattern matching and default values. 

Classes are organized in a direct acyclic graph structured by the a-kind-of 
relationship between classes. This relationship enables bheritance from a class to its 
specializations. Inheritance is used through class refinement - a class strongly 
inherits, i.e. possesses, its constraints on fields from its super-class - and inference 
specialization -- a class weakly inherits, Le. inherits by default, its inference methods. 

A RMS has been implemented on Shirka. It i s  standard except that it records and 
propagates field values 121. The underlying assumption of the i m ~ l e m e ~ t ~ ~ ~ o n  of a RMS 
in an abject-based knowledge representation is that the hase is queried very often (or 
not often rndified). The performances are very attractive because re-infering is avoided 
(and so, the answers are given very quickly). On another hand, the modifications - 
that are safely dealt with -- and initial inferences are processed more slowly. This 
assumption was enforced by the observations made with the very simple tests below. 

2.3. ELSA: A SPATIAL REASONING APPETCAT 

In the context sf spatial seasoning, the RMS is vcry attractive. In other words, 
spatial reasoning appears as a good application domain. Meanwhile, some effects 
which have not been presented yet can be observed in that kind of ~ ~ p ~ ~ c a ~ ~ o ~ s :  they are 
“forward and backward cone effects”. These obsewarions were performed on a real 
world application dedicated to the analysis of SIIQW avdarache paths: ELSA. 

We first present ELSA and the advantage of using a RMS in the context s f  spatial 
reasoning. Then, a set of numeric tests are discussed which demonstrates the advantage 
of using a RMS in ELSA. At last, tlhobc results are summarized in two principles called 
backward and forward cone effect, 

ELSA is a problem solving environment which offers to a snow specialist the 
different tools available in order to perform an avalanche path analysis and choose the 
best protection devices. As it has been explained elsewhere 13, 41, ELSA is built OD 
ShirkOMS. EL$A i s  a knowledge based system which uses both symbolic simulation 
based on expert knowledge and numerical simulation based on fluid rnechanics 
conservative laws. 

Because of the spatial extension of the phenomena involved in snow avalanches 
(snowdrift, snow-cover stability, fracture propagation, avalaalche flowing.. .), ELSA 
needs spatial information on the path. In order to get this information or to use it, ELSA 
perfoms an actual spatial reasoning as i t  has been defined in [3]. As a matter of fact, 
from p r l y  relevant spatial knowledge such as contour line, vegetation or ridge maps, 
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ELSA must infer the definition of special units of terrain called “small panels” by snow 
specialists and which are relevant for analysis (they are homogeneous from the analysis 
criteria points of view). Meanwhile this definition in sinal1 panels is not relevant enough 
and ELSA must also infer the properties of these small panels to perform its analysis. 

These inferences are taken into account by the knowledge base system. In this 
paper we emphasize on terrain inference: the inference of spatial relevant properties 
from poor spatial knowledge. For example, here is the spatial definition of a small- 
panel called ppi. At the beginning of the session, this small panel is defined only by the 
list of triangles included in it. As it has been written in Shirka, the syntax is frame like. 

I PPI 
is-a = small-panel ; 
contains = tr2 tr93 } 

In order to make an analysis of the avalanche starting zone, ELSA needs more 
relevant information and, to that extent, infers a more complete description of the small 
panel ppi. All the fields inferred by E I S A  are obtained by the use of inference methods 
(as presented above), particularly, pattern-matching inference and procedural 
attachment. 

t PPI 
is-a = small-panel ; 
area = 6850. ; 

di ame t e r = 115. ; 
slope-% = 68. ; 
is-in = tende ; 
contains = tr2 tr93 ; 
boundary-points = po4 p06 po5 pol ; 
connected-panels = pp2 pp3 ; 
borders = %border-589 %border-590 ; 
c 1 os e - ridges = arl ar3 ar4 ar5 ; 

c-gravity = %point-552 ; 

above = PP3 I 

Reasoning maintenance is interesting in an interactive environment for spatial 
reasoning. As a matter of fact, the caching of inferences is necessary because of the size 
of the spatial knowledge base and the amount of inferences. In ELSA, an avalanche path 
can easily contain more than 500 triangles and 50 small panels and ridges. Without 
caching the time taken for the inferences will forbid any interactive use of the system, 
while ELSA is dedicated to decision support and thus needs interactive use. 

But, i n  this kind of context, the user is also supposed to modify given 
knowledge. In ELSA, the user can change the vegetation of a part of a small panel (in 
order to simulate protection works for instance), or modify the definition of a small 
panel (toward a more accurate decomposition of space). As a result, the spatial 
properties of these small panels m u s t  be re-inferred. In order to keep the base 
consistent, a RMS is necessary. 

Although EISA is based on  Shirka/”rMS, it can take advantage of the RMS in order 
to manage dynamicity in spatial reasoning. Fig. 2 gives a good example of interest of 
such a RMS. 



13 

Fig. 2. In a triangulation of space, two polygons are defined through the set of 
triangles which are includcd in bhcrn. The inferences describcd bclow are made on those 
polygons. Ifa wianglc changcs its owner, thc RMS must invalidate the cached inferences 
which were concerned by thcsc two polygons. Meanwhile, the inferences conducted. on 
the other polygons arc not mndificd. Ihc invdidalion remains local. 

As a summary, it appears that spatial reasoning applications can trike advantage of 
classical RMS abilities. More precisely, the spatial locality can be translated in the 
dependency graph. 

2.5. PERFORMANCE m s T s  ON THE ELSA SYSTEM 

Some inference times are given i n  order to illustrate OUT claims. They show how 
the caching is attractive and also why the RMS is useful. The tests Rave been performed 
on the same hardware as above, 

Table 1. This first sct of queries concerns caching; cach query requires the computation 
of thc close ridgcs of a pancl. This second sct of queries also concerns caching but queries 
cornpu~e the set of panels connected lo a prccisc pancl. No results about Shirka alone are 
providcd bccausc response times are prohibitive (in fact, from this unique test, we can 
concludc that ELSA i s  not viable without caching). 

ShiAa: Val? pp26 conncctcd-pmcls 
Shirka: val? pp27 connected-pels 
Shirka: vd? pp27 connected-panels 
Shirka: val? pp30 connecteri-panels 

0. 
2.21 
2,49 
1.74 
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Table 2. After thc tests that produccd Table I ,  the user changes the terrain description 
transferring one triangle (tr78) from a pancl to another Gust as in Fig. 2). The former 
queries arc processed at new. In the first case (single caching), the user must clear the 
base and load it again. The time rcquired for Lhose operations is not taken into account. 

naintenance level 
Shirka: sup-val pp26 contains tr78 
Shirka: aj-Val pp27 contains tr78 
Shirka: val? pp34 close-ridges 
Shirka: val? pp33 close-ridges 
Shirka: val? pp3 1 close-ridges 
Shirka: val? ppl close-ridges 
Shirka: val? pp2 close-ridges 
Shirka: val? pp26 connected-panels 
Shirka: val? pp27 connected-panels 
Shirka: val? pp30 connected-panels 
Shirka: Val? PPI connccted-panels 

Caching 
0.89 
0.1 
4.2 
1.81 
2.14 
1.49 
1.16 

65.87 
5.17 
4.17 
3.7 .. 

Shirka: Val? pp2 connected-panels 3.52 5.49 
I Total (initial inference I- modification + re-inference) 134.21 

With single caching, inference time is considerably reduced. A further discussion 
will give some explanations of some surprising results (especially the reduction of the 
firsf inference time). With the RMS, inference times are slightly increased in comparison 
with single caching inference times but the gain toward Shirka is obvious. 

The second kind of queries shows the gain of time thanks to reasoning 
maintenance system. The comparison is made between single caching and RMS. The 
total line in Table 2 shows that the gain provided by the RMS is very important. 

2.6. NEW EXPLANATIONS FOR THESE RESULTS: CONE EFFECTS 

The observation made (comparing ELSA with or without RMS) are counter- 

Of course, the second call to the same inference takes no  time with the RMS 
while, in  spite of its the filtering capabilities, in Shirka, it still takes a while. 
Even the first call is faster with the RMS than without (with a factor 12)! 
Moreover, the time required to answer the same query against another object is 
reduced of a factor 8. 

intuitive at first sight: 
1) 

2) 
3) 

So these evaluations reveal a synergistic effect between inferences. These effects 
can be summarized as: 

Backward cone eflect: there is a backward cone effect when a datum is used 
several times in the Computation of another. This can be stated in another way: the more 
used the datum, the better the caching. This effect is as much interesting as the datum is 
expensive to compute. Backward cone effect is able to explain the results above for 
points (2) and (3). Intermediate inferences performed use each other several times in 
order to obt&n the high-level (or requested) data. With the RMS, these intermediate data 
are computed only once. For the same reason that the inferences of different data share 
the same intermediate inferences, after the computation of an item, the required time to 
answer the same query against another object is reduced. The two former points explain 
why the system is also faster on the re-computation after a change. 
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Fig. 3. In order to obtain C31, the 
system must infer C21 and C22 which in 
turn necessitates other inferences. Their 
cornputalion can take advantage of caching 
because they share common inferences. 
This explains that the inferences produced 
with caching are faster even for their first 
coinputation. 

Forward cone eflect: the more used the datum, the worse the invalidation. As 
before, there is a forward cone effect when a datum is used for the inference of a 
important number of other pieces of knowledge. The forward cone effect is a negative 
effect, it reflects the necessary work in order to invalidate a cached result. It explains 
the classical results of observation (1) with ShirkflMS. 

c12 

Fig. 4. Thc whole graph rcprescnts the 
infcrences made by the inference engine. 
Thc shadcd part of the graph is invalidatcd 
al‘tcr the suppression of C15. We can scc, 
q u d i f n l i v e f y ,  that this shaded part looks 
like a “forward cone”. The larger is this 
cone, thc less interesting is the RMS 
because the number of inferences to 
launch is nearer from the numbers of all 
Lhe inferences. 

The problem that will be addressed in the remaining is: how is it possible to 
quantify these effects? and which conclusions to draw for the use of a RMS in a 
particular application. It is obvious that the attraction of a RMS in an application will 
result in a wade off between backward and forward cone effects. 

3. A SPACE OF REASONING: THE DEPENDENCY GRAPH 

Here is an attempt to generalize the results we obtained with the E L S A  
experiments in order to state what kind of reasoriing/application can benefit from a 
RMS. 

Real efficiency of RMS is very difficult to evaluate because a lot of factors have to 
be taken into account: not only the number of nodes and justifications but also the way 
they are organized in cycles of different kind and the order of firing rules, Moreover, 
the performances of RMS depend heavily of the kind of use. Here, we do not address 
these complexity problems but the conditions under which a RMS is useful in order to 
maintain a reasoning. So, worst case analysis is not a suited measure of the 
performances of the system and an abstract computation of the algorithm complexity is 
not very useful. What is important for real applications is not the theoretical complexity 
analysis of the program used for reasoning maintenance but the real complexity of the 
RMS when confronted with the rea! reasoning. To that extent, we exhibit some results 
for graphs with pmicular restrictions that do not trigger the whole machinery of a RMS. 
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This section will, first, set some definitions to be used in the quantitative analysis 
and the restrictions used in the present study. Then the analysis is achieved for both 
kinds of cone effect before summarizing the results of the rradeoff between backward 
and forward cone effect. 

3.1. NOTATION AND RESTRICTION 

In order to give some precise results, some hypotheses have been done about the 
dependency graph. We assume that: 
H1) There is no nonmonotonic inferences. This is not an important restriction when 

assumed the second hypothesis, In fact, nonmonotonic inference in a graph 
without loops is a problem for the inference system but not for the RMS. 

H2) There is no loops in the graph. This assumption is quite restrictive. In fact, it is 
restrictive regarding the complexity analysis of RMS,  but it is not for a lot of 
applications. 

H3) The analysis below only considers average values and hypothesizes the 
homogeneity of the graph, With regards to real application, this is the most 
restrictive hypothesis. The general aspect of reasoning will be evaluated and 
quantified on the basis of average values considered that the graph can itself be 
decomposed i n  several little sub-graphs in which it  is possible to cancel or 
activate reasoning maintenance. 
All those hypotheses are set for reason of simplicity. Of course, the quantitative 

analysis of reasoning for RMS have to be fulfilled with the relaxation of those 
hypotheses. 
First, some notations have to be introduced. Let B be a knowledge base dedicated to a 
given application. We consider all the inferences launched all along the typical session 
of the application; this is called the reasoning. A particular reasoning can be represented 
as a dependency graph such as the one used in the R M S .  If we do not care for 
nonmonotonic inferences (Hl), i t  is an AND-OR graph (each inference is an and-node 
linking the antecedents to the consequent, each formula is an or-node linking together 
the possible inference of this formula). 

Note that the dependency graph (as it does in RMS) does not represent the 
potential inference of B, but the inferences really committed. The formulas in the graph 
constitute the set F of formulas used in the reasoning (they can either be given by the 
user or inferred by the reasoning system). N is the number of all formulas in F. In F, 
we distinguish two sets of formulas: I is the set of initial formulas which are given and 
not inferred, and Q is the set of interesting formulas which are the goal of the reasoning 
process. 

We call a chain, a sequence fo, j l ,  fi,.. . jn, fn of formulas and justifications such 
that, for each iE [ 1 ,n], 6-1 is an antecedent of ji and fi is the consequent of ji in the 
graph. n is the length of the chain (the number of justifications). 
The forward depth (df(f)) at node f is the length of the longest chain beginning at node f 
(and ending at a node in Q). The backward depth (db(f)) at node f is the length of the 
longest chain ending by node f (and beginning at a node in I). Backward depth is also 
called the level off. 

The forward width (wf(f)) at node f is the number of and-node f is linked with as 
antecedent. The backward width (wb(f)) at node f is the number of and-node f is linked 
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with as consequent. So, wf(f) and wb(0 are the number of connections at front or back 
of an OR-node. Note that width can also be called branching factor at node f. 

wf is the average number of justifications based on one fornula of nQ (where nQ={x; 
XEF~XGQJ). wb is the average number of justifications of a formnula of N. In this 
paper, we will consider that wb = 1 (this means that a datum is inferred by only one 
way). So, 

c. wb(f) 
f€N 

c wf(f) 

1Rl1 w b = -  f - W  
wf== I I q l - y  

~ ( f )  is the number of times f is used during the session, this i s  not the number of 
inferences in which it appears but the number of times these inferences are drawn. In a 
lot of applications these inferences are used a lot. 

" f  
Thus, here p= lnQ' -~~F\II , because of the value of wb. It is the 

IRQI*wf p is the ratio 'F--- IF\Il*wb' 
average number of antecedents per justification in the reasoning graph, 

We distinguish several constant times which are: 
T jnf: the average time taken for an inference for which a11 the premisses are available. 
rrW: the average time taken for recording a value (result of an inference). 
rdcp: the average time taken for recording a dependency (representing an inference). 
rSup: the average time taken for suppressing a dependency and a cwhed value. 

Fig. 5. Examples of typical graphs 

An additional important constant time also appears, but is not taken into account 
in our argumentation. Tt is Treset, the time required for quitting and loading the 
application again. e guess that all these values can be easily evaluated for 
homogeneous reasoning. Two archetypical examples are given in Fig. 5. 

Table 3. Ttic average values of the variables for the graphs given above. 
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3.2. INFERENCE AND PROPAGATION ANALYSIS 

At first sight, the time taken in order to produce the reasoning is 

But, if the backward cone effect is accounted 
time taken to infer the formula f is: 

for, we can say (if p#l)  that the 

db(0 -1 

e - 1  
because - is the size of a complete p-ary tree of depth db(f). If p=1, then 

T B ( 9 =  'tinf * db(f). Hence, the total time for the inferences of the session, if no result 
of inference is recorded (and p l ) ,  is: 

It is noteworthy that the ratio used in T B ( 9  is the number of inferences in the 
backward cone. If other hypotheses are taken into account (no homogeneity, no tree 
structure.. .), the formula can be replaced in TB(f) by another expressing the number of 
inferences in the cone. With the recording of all the inferred formulas the time is: 

and 

the formula is the same for caching without the reference to Tdep 

Table 4. The values for the graphs given as examples. Notes that they are not 
mirltiplicd by the same factors. As a result, case (1) do not profit from caching (and this 
is true whatever is the total dcpth of the graph). 

3.3. INVALIDATION ANALYSIS 

A RMS is useful for invalidation (otherwise, rough caching is enough as it is in 
forward chaining systems). Invalidation will lead to the forward cone effect. This effect 
is now evaluated. We consider that one given formula f in I is modified and that the 
user asks the same queries Q as before. Because of the caching system, the answers 
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recorded are no valid any more. With a single caching system, we need to re-infer all 
the formulas. The time required is so 

where m c a c h  = IFlII * (Tinf+Trw) as above. 
w a c h  "E3cac- + I;cxt I- T B c X h  

Another solution uses a reasoning maintenance system. In that case, 

T ~ M S  = TBRMS -t Tinv + Treirlf 

with T B R M ~  = 1 I * (rinf+rra+rdep) as above, 

and Tinv = Ninvd'rsup and Treinf = Ninval"(zin~~rcc3"cdep). 

and Ninval -1 if wf+l and df(0 ofherwise, this is, agdin, the size of a wf- 

ary tree of depth df(9, so this is the size of the forward cone starting at f. The 
branching factor is wf because it has been considered justifications with only one 
consequent, otherwise, the branching factor would have k e n  wf*nksq (in which 
nlxsy is the average number of consequents). 

wfdf(Q+l -1 
w f -  1 

As a result, the gain given by the RMS is: 

If we ignore resetting time and set that (Tjnf-t.rrec)*k = rin~-tr,,+rdep+~sup, the 
W = N*(Tmf+rrec) + Tresct - Ninval*(rin~+rrec+r.de~+Tsup) 

RMS must be attractive when Ninval*k < N which MUSE be tme most of the time. 

Table 5. Thc results of the invalidation phase for the graphs given above 
(+ex11=+inf+rrec and -rRMS='iraf+rrcc+':dep+~sup). The graphs are n8t big- enough t0 
illustrate interesting properties: both cases do not appeal for a RMS. In particular, 
locality do not a p w r  (after each modification, an important part of the graph must be 
revised). It kcornes more attractive if wc consider 10 irndcpendcait graphs as in case 2' in 
which thc invalidation is useful. 

A pure static evaluation cari be given with p modifications of data and the whole 
set of queries between them: 

V P )  = p * 
Tcach(p> = p * Treset + @+1> * T b a c h  

TKMS(p) = TBKMS 4- Ninval * P * (Tinf+rrcc+rdep+rsup) 

EASONTNG (ABOUTIFROM) 'THE GRAPH 

As said above, the main problem consists in  evaluating the tradeoff between both 
cone effects. T&G important questions to ask for a pxtiicular application are: Can it 
benefit from caching ? Does caching need dynamicity management ? Is a RMS suited for 
dynamicity management or is i t  better to recompute everything ? 
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It is noteworthy that these questions cannot be answered independently. 
Moreover, they are not directive; in  particular, dynamicity management does not imply 
the use of a RMS. Nevertheless, reasoning dynamics must be taken into account. As a 
matter of fact, the performances of the system depend on the relations between query 
and modification time. The result will not be the same if there is a new query after each 
modification or if there is an important number of modifications between each query 
phase. 

4. CONCLUSION 

The problem we addressed was the evaluation of the benefits of caching and RMS 
in knowledge based applications. To that extent, we first show some results expected 
on a general purpose tool and some results obtained on a real world application. The 
results, at the advantage of the RMS, were not expected. We explained then by 
producing two informal models of the actions of caching and RMS on the reasoning: the 
so-called cone effects. Then, we quantified the amount of work required in order to 
demonstrate some facts (or resolve one problem). The equations we obtained revealed 
the presence of the cone in the quantifications of the number of inferences they contain. 

This is a first attempt in order to characterize the usefiilness of caching and RMS. 
It has to be continued by a better knowledge of reasoning dynamics and by relaxing the 
hypotheses we assumed on the graphs. Finally, the advantage of using a RMS in an 
application is seen as a tradeoff between both principles. More examples and 
experiments, together with a discussion of further and related works can be found in 
PI. 
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Abstract 

We consider nun-Horn Deductive Data  Bases (DDR) represented in a First Order 
language withoii t fiirrctiori syrnbols. In this context the DDB is an incomplete description 
of tlie world. A first. appro;ich to reduce the incompleteness is to add to the DDB 
some kind of default rules, in order to  autorniitically assume missing information. rl’hc: 
second approach, which is adopted i n  this paper, is t>o provide t,o the user the conditions 
which guarantee the validity of the  answer. These conditional answers are generated by 
standard reasoning, and not by default reasoning. 

Then  the  problem is tlie following : if T represents tlie DDB and (1 the query, and if 
there i s  no direct answer to q,  we \vatit to derive the more general conditions c such tha t  
: ‘T t- q - c. We present a strategy, GASP, designed for this purpose. I t  is defined by 
rneta, rules, and these meta rules can he used for a least fixpoint operator definition. We 
show tha t  the GASP strategy is always more efficient than another usual strategy called 
GALP. Since in the case of recursive definitions the answers triay be infinite GASP has 
been adapted into GRASP in order to only compute ground conditional answers. We 
show tha t  the least fixpoint, operator associated to GRASP computes the a.nswer in a 
finite nirrnl)er of steps, even if the DUB contains recursive defnitioiis. 

._..___.-_.I___ 
“This work h u  been partially supported by the CEC, in the context of the Basic Research “kLio11, called 

MEDLAR. 
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1 Introduction 

Many works have been devoted to  the standard approach of Deductive Data Bases (DDLI) 
[I, 12, 5 ,  131. In this approach a DDB is composed of two parts : a set of rules, the Intensional 
Data Base (IDB), which is a set of definite Horn clauses, and a set of facts, the Extensional 
Data Base (EDB), which is a set of ground atoms. More recently this approach has been 
extended to disjunctive DDB where the rules are not necessarily Horn clauscs [8, 3, 61 , and 
facts may be ground positive clauses. 

In this paper we extend disjunctive DDB to the case where EDD may contain any kind 
of ground clauses. But the most significant contribution is t o  consider a new kind of answcrs 
called Coriditiorial Answers. We consider two kinds of Conditional Answers : the Intension- 
al Conditional Answers [ 2 ] ,  which are derived from IDR, and tlie Extensional Conditional 
Answerb, which are derived from IDB U EDB. Conditional answers are another way to  deal 
with incompleteness. Indeed the usual appraoch is to reduce the incompleteiiess with some 
kind of meta rule like Closed World Assumption (CWA), or Generalised Closed World As- 
sumption (GCWA) [7], in the context of disjiinctive DUB, or default rules in the context of 
non-monotonic reasoning [lo].  In the Conditional Answer approach no assumption is added 
to  the DDB by applying some kind of default reasoning. When there is not enough informa- 
tion in the UDB to  answer a given query, the answer provide tlie less restrictive assumptions 
which allow to infer the query. 

Let’s consider for example the very simple DDB : A V I3 +-- C A D, C, and the query : 
A?. 

In that case we cannot provide a direct answer to  the query, but we can provide the 
conditional answer : A - D A l B .  Then the user knows that A is true under the assumptions 
: D and l B ,  and he can take the decision himself t o  assume or not D and 1 B .  

In the next section is presented a general definition of conditional answers. Then we 
present a strategy to compute conditional answers. Its efficiency is compared with another 
standard stmtegy, and we point out the pa.rticular problem of infinite answers. In the last 
section we propose a modification to  this strategy in order to compute extensional conditional 
answers i n  a finite number of steps. 

2 General definition of Conditional Answers 

We consider queries which are positive literals. This assumption does not restrict generality. 
Indeed, if the query is a general formula F(x), we define a new predicate symbol q(x), we 
add to the DDB the formula Q = (q(x) +- F(x))Vx, and the query is represented by the 
positive literal q(x). 
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EDIU is a set of ground formulas. IDB is a set of formulas. We coiisider the theory 
T = IDB U EDB U Q, whtrc all the formulas are represented in clausal form, arid each clause 
is Range Restricted. Moreover, as usual in the UDU context, we consider cla,iises without 
functional symbols. 

Definition 1 : Conditional Answer 

Let q be a positive literal, the conditional answer to the query q is the set of clauses : 

{ qa V c I T t- qa V c ,  and qo V c is not a tautology, and qa V c is minimal wrt 
subsumption } 

A clause d is minimal with regard to subsumption, in the context of T, if there is no 
clause d’ dcrivnble from T such that d’ siihsutnes d.  A clause d’ subsumes a clause d if there 
exists a substitution 0 such that : d’cr C d.  

The clause c is called by Reiter and de lilcer, in [ l l] ,  a niiniinal support for qa. The 
clauses qcr V c satisfying these properties are called miniinal iniplicants. 

It is important t o  notice that copmuting Conditional Answers is a new kind of problem 
with regard to  Theorem Proving and Logic Programming. I he itew feature comes froin 
the fact that  an a,nswer is neither a truth value, like in Theorem Proving, nor a set of 
substitutions, like in Logic Progra.mming, but i i  set of clauses. 

r ,  

This prohlcrn is deeply related to  Abductive reasoning, with some particular features due 
t o  the DDB coiltext. 

Definition 2 : Extended Conditional Answer 

With the same notations we define an extended conditionial answer as the set of claiises : 

{ qa V c I T !- qo V c, and qo V c is not a tautology. and there is no clause c’ such that 
: T t- qa V c’ and c’ subsumrs c } 

We can <wi ly  see that,  for a given qiiery, tlic extended conditional answer contains the 
conditional a~is\vcr. The only diffweiice is that  for claiiscs i n  the extended conditional answer 
there is no guctrantee that c is not a theorem of 1’; this means that 7c may he an inconsistent 
assumption. 
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3 Intuition of the strategy 

The strategy presented in this section has been specifically designed to  compute extended 
conditional answers, and i t  is based on the L-inference presented in [4]. To get a conditional 
a.nswer from an extended conditional answer we have to  test, for every given clause qa V c 
in the extended conditional answer, if c is derivable or not from T. For this purpose we can 
use any strategy designed for Theorem Proving. 

The strategy is called GASP, an abreviation for Generate As Soon as Possible. It is 
informally described in this section with a simple example. For this decription we shall cad1 
relevant theorem for a given query, a clause derivable form T containing the query, or one of 
its instances. 

The idea is, in a first step, t o  select the axioms in T which are relevant theorerns.In the 
current step one, or several, generated relevant theorems are resolved with an axiom in T. 
The resolvelit is a new relevant theorem which can be used in the next step. At each step 
tautologies and subsumed clauses are removed. 

Let's consider, for exa.mple, the theory T with the axioms : 

(1) Px V -iQx (2)  PX V ~ I L x  (3) QX V RX V i s> ;  (4 )  TJx V IPX 
( 5 )  Pc V 1 U c  V T c  (6) Sa V iTa (7) Sb V Ub 

and the query : Px? 

The clauses generated by the GASP strategy are : 

Step 1 : (1) Px V 1 Q x  
Step 2 : (S) [Px V Rx V lSx ]  
Step 3 : (12) PaV 1Ta 

(2) Px V 1 R x  

(13) Pb V Uh 

(5) Pc V 1 U c  V T c  
(9) [Px V Qs V ~ S X ]  (10) Px  V l S x ( l 1 )  [Pc V 1 P c  V Tc] 

In the Step 1 arc generated the axioms in T containing an instance of the query Px. In 
the Step 2 a standard resolution generates (S) (resp. (9)) from (1) (resp. (2)) and (3). The 
clause (11) is generated from (4) and ( 5 ) .  An hyperresolution generates (10) from (l),  (2) 
and (3).  Notice these resolutions prescrve Px, or an instance of Px, in the resolvent. At 
the end of Step 2 the clauses (S) and (9) are removed because they are subsumed by ( l o ) ,  
and (11)  is removed because it is a tautology. The removed clauses are represented between 
brackets. In the Step 3 (12) and (13) are respectively generated by resolving (6) and (7)  
with (10) .  

Though GASP generates only relevant theorems the final result, here the clauses : ( l ) ,  

''The predicate arguments are not  between parenthesis to have simpler notations. For example, P(x,a) i s  
noted Psa. 
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(2), (5), ( lo) ,  ( l a ) ,  and (13), is not tlie conditional ansrvcr but the extended conditional 
answer. For instance the clause (13)  is not in the conditional answer because it is subsumed 
by (14) Ub, which is derivable from (4) a id  (13).  

A s  we said before for each clause in the extended conditional answer it would be possible 
to check if the condition is consistent or not with 'I' in a further phase. For example to  check 
if [Jb or T'Ya are theorems, we coiild apply again the GASP strategy to the queries : Ub?, 
or l T a ? ,  in order to  test if TJb or YTa are theorenis of T. 

4 Formal definition of the strategy 

In this section the strategy is formally defi~ied by aileta rules. These rules express, at a nieta 
lrvel, the derivation control. It is important not to confuse the strategy used for meta rule 
evaluation, and the derivation strategy, at the object level, which is decribed by these meta 
rules. We use tire following notations. 

Meta-variables : 

0 q, 1; : literal variable; thew variables hrt-' instantiated by 1itcra.l~ a t  the object level 

0 -11; : literal variables; such a variable is iristrtntiatcd by a literal which is the complement 
of 1;. 

e ci : clause variables; these variables are instantiated by sets of literals at the object 
level; this set may be the empty set. 

a 1 v li v ci : denotes tlie set of literals : {I} u {li} u ci. 

a 1 V c1 V . . . ?/ c, V clJ : denotes the set of literals : (1) U c1 U . . . U c, U CO. 

Meta-predicates : 

a Query(1) : this predicate means that ws haw to  find the extmded conditional answer 
to  the query 1. 

e Ax(c) : tbis.predicate means that c is an axiom of T. 

m Tti(c) : this predicate mems  that c is a theorem of T. 
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Definition 3 : GASP Strategy 

(1) Query(q) A Ax(q V c) - Th(q V c) 

(2)  Query(q) A ‘Ih(q V 11 V C I )  A . . . A ’l’li(q V 1, V c,) A Ax(1l1 V . . . -11, v CO) 

+ Th(q V ~1 V . . . V C, V CO) 

One could notice that it is not usual to ha.ve dots in a formal definition. We have used 
dots here to ma.ke the definition more easy to  rea.d, however it would not be difficult to 
replace the dots by recursive definitions without dots. 

We define a meta theory M T  containing the rules (1) and (a ) ,  tlie sentence Ax(c), for 
each clause c in T, and the sentence Query(q), where q is the literal denoting the initial 
query. 

The meta rules are evalua.ted with a trivial strategy which is an incremental saturation 
by level, with eliminatioii of subsumed cla,uses and tautologies. Here incremental means that 
when a new sentence is generated by a meta rule , at least one of its premisses in tlie ineta 
rule has to be a. new sentence in the computa.tion of the previous level. 

The sets of sentences generated by saturation by level are denoted by : SO, S I ,  . . . , Si, . . .. 

So contains all the sentences derivable in one step by the rules (1) and (2) from MT. 
A sentence is derivable by a rule if there exist a rule instance whose consequence is this 
sentence, and all its premisses are satisfied by MT. ,411 the tautologies, and all the sentences 
subsumed by a sentence in M T  or So are removed from S O .  We call AS0 the resulting set of 
derived sentences. 

We define Si+l and AS;+, in function of S; and AS, i n  the following way. We consider 
all the sentences derivable using the rules (1) and (2) from M T  and Si and we remove from 
this set all the tautologies and all the sentences subsumed by a sentence in MT or Si. The 
resulting set of sentences is called AS;+, . Then S;+1 is defined by : S;+1 = Si U AS;+,- 

If M is any meta predicate, we say that the sentence M(c’) subsumes the sentence M(c) 
iff the clause c’ subsumes the clause c. We also say that M(c) is a tautology if c is tautology. 

We say that the premisses of the rule (2)  (a similar definition applies t o  rule (1)) are 
satisfied by a set of sentence S iff : 

0 the following set of sentence is in S, or S contains sentences whose some factors are : 
Query(&), Tli(Q1 v L1 V Cl) ,  . . . , Tli(Qn V L, V Cn), AX(TL’, V . .  . V  TLL V CO); where 
Q, & I ,  L I ,  C1, . . . , Qn, L,, C,, Co are literals or cla.uses at the object level, 

0 there exists a most general unifier (T which is solution of the equa.tions : 
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Tn that case the instantiation of the meta variables is : 

arid the generated sentelice is Th(q V c1 V . . . V Cn V cg). 

The eqiiatiions I,=L’, where L arid L’denote P(t1,. . . , tP) and P(t{, . . . , t;), or lP(t1,. . ., tI,) 
and lP(t;,  . . . , t;>, are short hands for the set of equations : 

t l  = t; tz = t; . . . t, = t; 

It is easy to  show that the interpretation we have defined for the meta rules defining 
GASP provides a definition for a least fixpoint operator. 

5 Comparison with other strategies 

It is interesting to compare GASP with another very intuitive strategy based on the idea 
of the decompositiorr of problems into sub-problems L‘ & la Prolog”. Here the problem is to 
compute tlte estencied conditional answer to a query : A?, If there is an axiom containing 
A in clie theory T of the form : A V 1 1 3 1  V . . . V ~ € 3 ,  V . . . V 7 B n ,  where the B;s may be 
positive or negative literals, we caii generate sub-problems, i.e. new queries, of the form : 
B,?, B,?, . . . ,E;?,  . . . , B,?. Indeed wc know that any answer to a query like B,? is of the 
from : B; V ci, and thercfore any set of answers can be resolved by an hyperresolution with 
the axiom to  generate new answers of tlic form : A V c1 V . . . V c, V l R j + I  V . . . V l&,. This 
strategy i s  called CALLP, whicli is a11 alx-eviation for Generate As Late as Possible. It can 
he defined by mcta rules in thc S ~ I W  style as for GASP. 

Definition 4 : GALP Strategy 

E’or each i i n  [ 1,p] : 

Endfor; 

(2)  Query(1) A Th(ll V c1) A . . . A T€i(ll, V c , )  A Ax(1 V 1 l 1  V . . .11, V c g )  - Tii(1 V CI V . . . V c,, V c g )  
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In the particular case where we impose the lis to be positive literals, and cg, c l , .  . . , c, 
denote the empty clause, the GALP strategy is very close to  stmtegies like : Magic Sets [l], 
ALEXANDER [la], QSQ [13], or APEX [5]. In that case the axioms in (2.i) are Definite 
Horn clauses, and the generated theorems are ground a,toms. The only difference is that 
in these strategies the answers to sub-queries are not computed in parallel. GALP can be 
easily adapted in order t o  impose to  compute the sub-queries in sequence, as we did in [3]. 

Unfortunately it can be shown tha.t i n  every cases GALP generates a superset of the 
clauses generated by GASP, and then it is always less efficient. However, as it is noticed in 
[4], GASP may generate an infinite set of clauses when the initial theory contains recursive 
definitions. Nevertheless if we are interested in Extensional Conditional Answers containing 
only ground clauses, it is possible to  adapt GASP in order t o  prevent infinite derivations. 
T1ia.t is the purpose of the next section. 

6 Strategy for Extensional Conditional Answers 

The adapted strategy is based on the following interesting property of Range Restricted 
clauses : if a ground clause is derivable, by Resolution, from a set of Range Restricted 
clauses, and if s is the composition of all the most general unifiers used in the proof of that 
clause, then, if we apply s t o  any cla.use in the proof, we get a ground clause. The idea is 
to design a strategy, based on this property, which generates only “ground proof trees”, i.e. 
proof trees where all the clauses are ground clauses. The intuition of the strategy can be 
presented with the following example : 

(1) Lxy V 1Pxy  V TP’xy 
(2) LXY V 1Rxy V TR’xy 
(5) P’XY V R‘XY V 1Sxy 

(3 )  Pa.y V 1Ty 
(4) Rxb V TUX 

Let’s consider the corresponding connection graph, as defined by Naqvi and Heiischen in 
[9] (see Figure 1 ) .  In this graph the nodes are clauses, and we can imagine these clauses as 
active agents able to send or to receive queries or answers, and able to  store the answers. The 
role of these queries and answers is to find the unifiers of the proofs whose composition can 
lead to ground unifiers. They are of a different sort than the initial query and the conditional 
answers. 

For example if the clause (1) receives the query Lxy?, then it sends the two queries Pxy? 
and P’xy? along the edges starting from the clause (1). 

When the clause (1) sends to  the clause (3) the query Pxy?, the meaning of this query is 
: “what would be the most general unifier if the clause (1) would be resolved with the clause 
( 3 )  on the literal Pxy ?”. The returned answer in that ca.se is Pay!. 
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We can also imagine that each clause can store the answers i t  lias received from the other 
clauses, and that  these stored iiiiswers can be used to generate new answers. For example 
the clause (1) can use the answer Pay! received from (3 )  to send the answer Lay! to the 
query Lxy?. 

We can easily sce that  after receiving the query I”xy? the clause ( 5 )  sends to  the clause 
(2) the query TFL‘sy?, and the clause (2) sends to the clause (4) the query Rxy?. The clause 
(4) returns to the clause (2) tlie answer Rxb!, and the clause (2) returns t o  the clause(5) the 
answer TR‘xb!. Tlien the clause (5) returns to the clause (1) the answer P’xb!. 

At this stage the clause (1) knows, froin tlie answcrs Yay! a i d  P’xb!, that  there exists a 
proof, involving the clause ( l) ,  where the composition of all the iiiost general unifiers defined 
in that proof transforms the clause (1) into a ground clause. Tlien the clause (1) call generate 
tlie corresponding grouiid instance : (6) Idah V 1Pab V lP’alJ, which is a ground conditioiial 
aiiswer t o  the initial query. 

In the furter steps the clause ( G )  can  be resolved, arording to  GASP strategy, with ( 3 )  to 
gencrate : (7) Lab V 1Tb V ~P’a l t ,  or with (5)  t o  generate : (8) Cab V 1Pab V It‘ab v +ab, 
or with both ( 3 )  and (5) to geiierate : (9)  Lah V 1 T b  V Rab V 1Sah.  

(3 )  1 Kxb I - . ux  1 
Figure 1: Connection Graph 

The strategy we have infornially presented is called : GRASP, for “Generate gRound As 
Soon As Possible”. Its description in t e r m  of meta-rules is presented in the DefinitioIi 5 ,  
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where we use the iiotatioiis : 

GrAx(c) : c is a ground insta.nce of a.n a.xiom. 

l? : we have to find the 1 instances which appear in soiiie derived clause of the form 1 v c. 

l! : there exists a derived clause of the form 1 V c. 

Definition 5 : GRASP Strategy 

For ea.ch i i n  [I,.] : 

(2.i) l? A Ax(1 V 11 V . . . V 1; V . . . V ln') - i l i ?  

Eiidfor; 

( 4 )  Query(q) A i l j l !  A . . . l l j p !  A GrAx(q V 11 V . . . V 1,) + Th(q V 11 V . . . V I n )  

(5) Query(q) A Th(q V 11 V c1) A . . . A Th(q V 1, V c ,~ )  A 
I,,! A . . . A lip! A GrAs(i l1  V . . . 11, V CO) - Th(q V ~1 V . . . V C, V CO) 

where i ,  j1,. . . , j, are in [1,11]. 

In this deliiiition the meta-rules (2.i) generate sub-queries in  the same way as GALP 
does. An important difference is that  tlie answers to  queries of the form : l? are not clauses 
but literals like : l.!. That is the reason why the computation always stops. Indeed, even 
if there are recursive definitions the number of answers, up  to the variable names, is finite 
when we do not have function syinbols. 

The meta-rules (4 )  and (5) are very similar to the corresponding ones in the GASP 
definition, and tlie ineta-rule (3)  generates t,he solutions of the form l'!. 

The evalna.tion of these rules, with the technique defined for GASP, generates only ground 
theorems which are ground conditional answers. 
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7 Conclusion 

We have presritted a strategy (GASP) to  geiierate conditional answers in the context of a 
non-Horn Dpductivc Data  Base. ‘The basic idea is to focus the derivation process on clauses 
which are relevant for the query. 

We have compared this strategy (GASP) with an another btrategy (GALP) similar to 
standard strategies used in the contest of L)eductive Data Dases for Horn clauses, and we 
have shown that GASP is always more efliricrit than C;ALP. GASP is defined by ineta. rules, 
and a least fixpoint operator can be associated to  these rules. ‘fhis computation technique 
prevents to repeat several times the same coinpiit ation. This is a significant brncfit with 
respect t o  compiitatioii techniques ‘‘A la Prolog”, or based o i i  SI,-resolution. 

In the case of reciirsive definitions tlict answer may be infinite. For this p r t i cu la r  case 
we have desigiied tlie GRASP strategy, a,ii adapttitioil of GASP i n  order t o  derive oiily 
ground clauses. ‘I’ho associated least fixpoint operator always compute tlre a.nswer i n  a finite 
iiiiiiiher of steps. Ilowever a t  this t,iirie we have no  result allout the completeness of GRASP, 
because we ha,ve iio clenota,tiona.l tlefiiiitioit of w h a t  is comyutcd by GRASP. That  needs 
more investigations, aud as to  be considered as a work i n  progress. 

It should also be clear that  the defiiritions of these strategies have to he considered as a 
general fra.inework for further refincments. Iitdcetl t.liere are  m a n y  open choices to irtiplerrient 
these stra,legies, and,  depeiidiiig on these cliniccs, the performa.iices can be strongly improved. 

Acknowleclgcinents : Many thanks to Luis Farifias del Cerro for all our fruitfill1 and 
stimulating discussions. 
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ABSTRACT 

Deduction, induction and analogy have traditionally been treated as separate 
processes each requiring specialized machinery. We present a hybrid con- 
nectionist - symbolic approach that seamlessly integrates these forms of rea- 
soning by way of associative retrieval. 

1. INTRODUCTION 

Traditional research in machine learning has taken a componential view of reasoning 
where deduction, induction, and analogy are studied separately with a different computa- 
tional mechanism proposed for each. While this approach has value in identifying key is- 
sues for each technique, it also has problems in that the research generally does not make 
any attempt to integrate the techniques in an overall cognitive architecture. 

We have designed and implemented a computational model in which small variations 
on a single mechanism, associative retrieval, can perform deductive, inductive and analog- 
ical reasoning. Similar notions of using a uniform mechanism to perform the three reason- 
ing tasks have been proposed [1,2,31. Our notion differs from these in that we employ the 
principles embodied in the Continuous Analogical Reasoning theory to constrain and focus 
what is retrieved, ensuring the retrieval. of the most relevant, useful information available 
r4,51. 

This paper begins with a discussion of Continuous Analogical Reasoning, motivating 
the need for interactions between the stages of analogy and comparing it to Discrete Ana- 
logical Reasoning. It then describes the hybrid symbolic-connectionist knowledge repre- 
sentation and processing mechanisms of the ASTRA program. It is the unique combination 
of structure and processing in ASTRA which allows the complex, continuous interactions 
to take place among all stages of the analogical reasoning process. The system’s behavior 
under different forms of reasoning is then discussed, which shows success in achieving in- 
tegrated reasoning and provides impetus For future research. 

2. ASTRA: AN OVERVIEW 

Analogical reasoning is typically divided into three stages: retrieval, mapping, and 
evaluation & use. The retrieval stage involves accessing knowledge from long-term mem- 
ory (called the source) that can be applied to the current problem. In the mapping stage, the 
objects and relations of the source are placed into correspondence (also called a mapping) 
with the objects and relations in the target. By extension of the mapping, the evaluation 8r 
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use stage takes knowledge present in the source but not in the target (conjectures) and in- 
troduces them into the target domain. The conjectures are transferred to the target by re- 
placing objects from the source with their corresponding objects in the target, and asserting 
the modified conjecture in the target. The evaluation & use stage then evaluates the new 
knowledge, checking to see if the current goal has been met, and setting new goals for the 
system. 

ASTRA is a computational model of human analogical reasoning developed to encom- 
pass the entire range of analogical reasoning, rather than an isolated phenomenon [6,7]. As 
prescribed by the Continuous Analogical Reasoning theory, ASTRA models the three stag- 
es mentioned above and their interactions. The interactions between stages can be consid- 
ered as soft constraints or “preferences” [8] which modify the processing done in each stage 
to reduce the search space and focus reasoning on relevant information. The interactions 
make the analogical reasoning process more efficient by reducing the search space, as well 
as more robust by focussing reasoning on relevant information. 

Discrete Analogical Reasoning systems are those systems that do not promote interac- 
tion among the stages of analogy. These systems generally model only one stage of the an- 
alogical reasoning process. One justification is that the researcher is only interested in one 
of the stages, thus modeling only it. Another justification of this approach is that it is easier 
to implement one component at a time, with the idea that, once components are developed 
for each stage of analogy they can be tied together to create a complete system. I argue that 
modeling a single stage of the analogical reasoning process will be inadequate for two rea- 
sons: l) The modeled portion will also include mechanisms to perform processing that 
would normally be done by another stage. An example of this is the mechanism that creates 
an initial mapping when modelling only the mapping stage. This information would nor- 
mally be created by the analog retrieval process, where the source is examined with respect 
to features of the target to determine its relevance to the current situation. Thus, to ade- 
quately model just a single stage, the interactions with the other stages must be taken into 
account; 2) When combined into a complete system, the discrete approach will lack the ef- 
ficiency of the continuous approach because it discards search constraining information 
generated by the stages instead of making it available to the other stages. As in the previous 
example, the search for a source analogy will necessarily involve the comparison of the tar- 
get to prospective sources. Generally, the source that shares the most features with the tar- 
get will be selected. If the correspondence infomation is not passed on to the mapping 
stage, the mapping stage must reproduce portions of the search done previously by the re- 
trieval process in order to find the initial mapping. As in many cases in computer science, 
the lack of efficiency of an algorithm can result in lack of capability as well. Thus, I argue 
that from a psychological standpoint, it is more difficult to determine what parts of a dis- 
crete modelled stage are actually part of the stage and what parts are required due to the 
lack of interaction. From a computer science standpoint, the redundant search of required 
by a discrete analogical reasoning system can result in a limited ability to handle scaled-up 
problems. Our hypothesis is that a better understanding of analogy will result from looking 
at analogy as a continuous process rather than as a set of discrete components. 

The premise of this paper is that a cognitive architecture can be built based on the con- 
tinuous interaction mechanisms in ASTRA that makes no procedural distinctions between 
deduction, induction and analogy. Instead, the style of reasoning performed depends entire- 
ly on the type of information retrieved during the retrieval process. If the information is a 
rule, the mapping stage unifies the antecedent and instantiates the consequent. The evalua- 
tion & use stage transfers the consequent to the target and starts a new remeval on the en- 
hanced target. If the information retrieved is a set of sources, then a generalization process 
may be invoked to induce a description of the set. This description can then be used as the 
source from which to transfer information to the target. Tf the information retieved by the 
retrieval process is a single source, analogy can proceed as usual. 
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Extension of Initial 
Correspondences 

Fig. 1. Architecture of ASTRA. Like a blackboard system, all interactions 
between processes occurs in the hybrid symbolic-connectionist network. 

3.0 ASTRA ARCHITECTURE AND PROCESSES 

The architecture of the ASTRA system is shown in Fig. 1. This figure shows the bidi- 
rectional communication between each of the three processes mediated by the hybrid sym- 
bolic-connectionist knowledge representation network. The processes communicate by 
varying activation levels on nodes relevant to the current task. The principal mechanism for 
this is spreading activation. One of the difficulties in dealing with activation alone is the 
credit assignment problem: What nodes most significantly influenced a highly active node? 
To overcome this, spreading activation is augmented by a marker passing scheme which 
deposits on each node a pointer to the source of the activation. 

The task of the retrieval process is to activate a set of sources which are semantically 
similar to the target problem, creating a set of initial correspondences in the process. The 
mapping stage interacts with retrieval by directed activation and marker passing, pressuring 
the retrieval stage towards analogs which are syntactically and systematically similar to the 
target. The evaluation & use stage spreads activation from the goal or context related as- 
pects of the target description, pressuring retrieval towards sources that are pragmatically 
relevant to the target goals. 

The task of the mapping process is to extend the initial correspondences to unmapped 
nodes in the source and target. The extension is done using the initial correspondences from 
the retrieval stage, pragmatic constraints from the evaluation & use stage, and systematicity 
principles to constrain the possible matches in the target. Nodes in the source that have no 
mapping after extension are considered to be conjectures and are marked for transfer by the 
evaluation & use stage. 

The evaluation & use stage is responsible for exerting pragmatic goal and context-re- 
lated pressures on retrieval and mapping. The symbolic procedures for the creation of new 
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nodes and links resulting from the transfer of a conjecture reside in the evaluation & use 
stage. Procedures for determining if current goals are satisfied and the generation of new 
goals also reside here. Retrieval influences this stage by suggesting new goals to pursue 
based on previous experiences and by suggesting different evaluation contexts for the anal- 
ogy based on the type of source retrieved. The context for evaluation of the analogy will 
change depending on if the source analog is described in behavioral, causal, componential, 
or other terms. 

Before presenting the details of the system, it would be useful to look at the process in 
overview. At the start of problem solving activities, the initial target analog description or 
representation is presented to the system, starting the retrieval process. The retrieval pro- 
cess uses a combination of marker passing and spreading of activation to both search the 
knowledge base for a suitable source analog and to elaborate the target analog description 
with deductive pattern completion inferences. Goal and context related information, if 
present in the initial target analog description is activated and used as a source of activation 
spread by the evaluation & use process. The mapping process is awakened by markers fiom 
the target analog touching nodes in other experience descriptions. Since the markers passed 
in the network reference the origin of the marker, the mapping process is primed with a par- 
tial mapping between the target and the potential source when it is awakened. Extension of 
the mapping is done for only the most highly active analogs, or any one marked by the eval- 
uation & use’s marker spreading process. 

The following section describes the hybrid knowledge representation scheme and the 
mix of connectionist and symbolic processing used in ASTRA. There are both theoretical 
and practical benefits of using a hybrid representation and processing scheme. Hybrid sys- 
tems are theoretically interesting simply because they are new and there is not much infor- 
mation available concerning their capabilities. This work can be considered to be an 
empirical study of the capabilities of hybrid systems for performing high-level integrated 
reasoning. The other benefits are purely practical: symbolic and connectionist systems have 
different strengths and weaknesses that are orthogonal and complementary. I believe that 
more powerful systems can be built with properties not present in either paradigm alone us- 
ing each technique where natural and appropriate. 

3.1 KNOWLEDGE REPRESENTATION 

The knowledge representation used in ASTRA is a tightly-coupled integration of sym- 
bolic semantic networks with unweighted, labeled links, and sub-symbolic connectionist 
networks with unlabeled, weighted links. Each knowledge-level concept in ASTRA is rep- 

Fig. 2. Graphic representation of “Because John loves Mary, he kisses her”. 
All links are bi-directional, with reverse links not shown. 
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resented by a labeled node. These nodes are shared by both the symbolic and sub-symbolic 
portions of the knowledge representation. Each node also has associated with it a set of mi- 
crofeatures which describe the concept [9 l. For example, the concept “LOVE” has (adore,  
respect honor, dote, fancv, desire, -1 as its set of microfeatures. The concept 
“LIKE” has (adore, fancv, esteem, favor) as  its set of microfeatures. The similarity 
between these two concepts are represented in the overlap between their microfeature sets. 
The similarity is determined by the activation spread from one node to the other. Thus, the 
more microfeatures shared between concepts, the more similar they will be. 

Abstracting from the implementation level, the knowledge representation can be divid- 
ed into four parts: The hierarchy of concepts, the story representation, rules, and the pro- 
cess-created data structures. The hierarchy defines the concepts that are known by the 
system and how they are related to one another by ancestry and packaging. The story rep- 
resentation ties together instances of concepts found in the hierarchy with relational infor- 
mation, forming a conceptual representation of the actors and actions of a story. Fig. 2 
shows graphically the representation for the short story “Because John loves Mary, he kiss- 
es her.” Rules are represented in much the same manner as stories: concepts in the anteced- 

Fig. 3. Rule link “IMPLIES” in rule definition. The special “AND” node is 
not shown for clarity. Shaded “LOVE” node is created on rule application. 
Dashed links show connection of arguments to created node. 

ent of a rule are tied together by a special “AND” node which is connected to the consequent 
nodes by an “IMPLIES” link. Fig. 3 shows an example of a simple rule. The process-created 
data structures are structures created in response to the actions taken by the retrieval, map- 
ping, and evaluation & use processes. There are two such data structures: markers and 
bridges. A marker is simply a pointer to the node originating the mark. A bridge is a special 
type of link that has pointers to other bridges that it uses or that use it. The functionality of 
these data structures will be discussed in the next section. 

3.2 PROCESSING MECHANISMS 

The continuous analogical reasoning theory places some special processing requirements 
for a computational implementation. The greatest difficulty lies in the need for communi- 
cation among the three stages during processing. There are four basic processing mecha- 
nisms used in ASTRA to implement the continuous analogical reasoning process: 
automatic spreading of activation, marker passing, directed retrieval, and traditional sym- 
bolic procedures. Automatic spreading of activation passes activation from a node to all 
neighbouring nodes [lo]. A user specified decay rate attenuates the activation as it is spread 
in the network. The default activation rule is: 
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i 

where a,.,(t) is the activation of node n at time t, we is the incoming weight from node i to 
node n, oi(t) is the output of node i at cycle t, and &is the activation decay rate. The output 
function of a node i is: 

. . .. . . . . . .- 

Oi(t) = 1 7:;) ai(t> 2 e 
o otherwise 

where a. is the number of links connected to node i, and 8 is the activation threshold I 11 cutoff. 

SAR-2: If the link is marked as special because of the goals 
or context of the problem solver, increase activation by 
specified amount. 

SAR-3: If the link‘s head-node has the same label as the or- 
igin of the activation, then double the amount of activa- 
tion on that node. 

y of the marker given to the node 

s on a node from a different story 
symbolic process that will build 

Fig. 4. Spreading Activation and Marker Passing Rules. A set of transition 
rules define exceptions to the default activation transfer equation. Two sim- 
ple rules define the marker passing procedure. 

The marker passing mechanism follows the activation spreading process and puts 
markers containing information about the origin of the activation on each node receiving 
activation. When a marker is placed on a node from a different story representation, a 
bridge link can be created between it and the target node. The directed retrieval process 
complements the above two processes in that it allows activation and markers to be spread 
between nodes only over specified links. The symbolic procedures used include procedures 
for creating bridge links and for determining untouched portions of story representations. 
More detail on the processing mechanisms can be found in [7]. 
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4. REASONING IN ASTRA 

In this section we describe the reasoning methods ASTRA can produce. To do this we 
present the discussion in terms of an example from our test domain of interpersonal rela- 
tionships. For this example, ASTRA has four stories represented in memory from which to 
draw information. The stories are: 

1: “Because John loves Mary, he kisses her” (shown in Fig. 2), 
2: “Because Carol dislikes Ted, she slaps him”, 
3: “Because Jenny loves Tom, she kisses him”, and 
4: “Because Fred loves Wilma, he kisses her” 

and the rule: 
R1: “If a person looks longingly at another person, the first person loves the second per- 
son” 
Given the target “Romeo looks longingly at Juliet” shown in Fig. 5 ,  what predictions 

can be made from this? 

4.1 DEDUCTION IN ASTRA 

Automatic spreading of activation is begun when the target is presented to AS‘TKA. The 
target nodes “LOOK-L-AT”, “PERSON( 1)” (the agt node), “ROMEO”, “PERSON(2)” (the 
pat node), “JULIET”, “MALE”, and “FEMALE” act as sources from which activation is 
spread. A marker is created for each of the target nodes and is passed along with the acti- 
vation, continuing until the activation level falls below a user-specified threshold. Activa- 
tion from each of the target nodes moves up into the hierarchy and back down to nodes in 
the same class, but in different story representations. At the same time, the evaluation & 
use process uses a directed retrieval process to increase the activation of any node that pass- 
es over a ‘TAUSE” link. The evaluation & use stage emphasizes “CAUSE” links since the 
goal of the system is to answer “What will happen because Romeo looks longingly at Juli- 
et?” 

Activation 
from “LOOK-L-AT” spreads up the hierarchy and back down to node “LOOK-L-AT” where 
rule R l  is connected. When activation reaches the rule, a symbolic process is triggered that 
creates a bridge link between the “LOOK-L-AT” in the target and the “LOOK-L-AT” in the 
rule. Activation also travels from the target nodes across microfeatures to other nodes, and 

Activation spreads from each activation source to all connected nodes. 

Fig. 5. Target representation of “Romeo looks longingly at Juliet”. The goal 
is to determine what will come of this situation. 
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bridges are created for them also. A strength is associated with each bridge that corresponds 
to the degree of evidence for that correspondence. The bridge strength is the amount of ac- 
tivation at the bridge’s head node that can be attributed to the node at the tail of the bridge. 
Since the target “LOOK-L-AT” and its correspondent in R1 have identical labels, the acti- 
vation at “LOOK-L-AT” in R1 and the bridge is doubled by rule SAR-3. Thus, it has the 
highest activation of all bridges emanating from “‘LOOK-L-AT” in the target. The other 
nodes in the target also spread activation and set up bridges with corresponding nodes in 
the knowledge base. 

Once all activation has fallen below a user specified threshold, a symbolic process is 
invoked to which selects the source analog from the group of competing analogs. The se- 
lection is made by choosing the maximum of the sumied activation of all nodes in the story 
representation, combined with the activation along the bridges between the target and the 
story representation. In this example, rule R I  has the highest activation and is chosen as the 
source. The mapping process enforces systematicity in determining which set of bridges 
created by retrieval will yield the best mapping. This is done by preferring bridges that re- 
late identical case relations between head and tail nodes of the bridge with the highest ac- 
tivation. By focussing on the bridges with high activation, the mapping process pairs the 
target with rule R1. In this pairing, the rule node “LOVES” is left unmapped, and so is 
marked as a potential node for transfer. 

Evaluation & use notices that there is a node marked €or transfer and sets up a symbolic 
process to create a new instance of that node, and create links to the corresponding nodes 
in the target. The evaluation & use process checks to see if what has been transferred to the 
target is enough to solve the current goal “What will happen because Romeo looks long- 
ingly at Juliet?” In this case, the information transferred does not provide a solution to the 
goal, but rather, the deduction provides a means for restructuring the target situation into 
an new problem, “What will happen because Romeo loves Juliet?” Evaluation & use sets 
this problem up as the new goal for the system. 

4.2 INDUCTION IFV ASTRA 

Armed with a new target situation, ASTRA restarts the retrieval process. Activation 
spreads from the deduced target node “LOVES” through the hierarchy to the “LOVES” 
nodes in sources 1, 3 and 4. Activation will also go to the “DISLIKES” node of source 2 if 
the activation level does not fall below threshold after climbing an extra step up in the hi- 
erarchy to reach a common generalization. Once activation does reach a “LOVES” node in 
the source stories, the mapping process creates a bridge between the “LOVES” node in the 
source and the “LOVES” node in the target. The strength of this link will be high relative to 
the strength of a bridge between “DISLIKES” and “LOVES”, because of their close proxirn- 
ity in the concept hierarchy. At the point where activation from the target is spread from the 
“LOVES” nodes in sources 1, 3 and 4, the activation is increased by the evaluation & use 
process because of the “CAUSE” links connecting the nodes. 

Target nodes spreading activation now have new paths to explore along the newly cre- 
ated bridges. Activation levels that would normally not be strong enough to go through the 
hierarchy to other sources can now go there directly by way of the bridges. When a node 
sends activation along a bridge, another directed retrieval process is created by the mapping 
stage that checks if the relationship between the origin of the activation and the head node 
of the bridge is present on the tail-node. If it is, then a new bridge is set up between those 
nodes. Thus when “PERSON(1)” passes activation and its marker along the bridge between 
the target “LOVES” and the “LOVES” in 1, a similar relationship is found between the target 
“PERSON( 1)” and the source “PERSON( 1)” nodes. A new bridge is set up to reflect this re- 
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lationship. The new bridge is also connected to the bridge traversed as a component of that 
bridge and increments its strength by the amount of activation in the new bridge. The bridg- 
es then form a network of competing mapping hypotheses. In this example, the bridges that 
map the target to sources 1 and 4 have greater strength than those mapping the target to 
source 3. Source 3 requires a mapping of “MALE” =$ “‘FEMALE” and “FEMALE” * 
“MALE” which will have lower strength than the identical mapping of the bridges to sourc- 
es 1 and 4. Thus, sources 1 and 4 will have the greatest activation and will be selected as a 
set of sources. 

When the retrieval process proposes a set of sources instead of a rule or a single source, 
an induction process is spawned to produce a generalized story which encompasses the sto- 
ries in the set. The induction process is done by simple hierarchy climbing and replacing 
differing constants by variables. In this case, the generalization procedure will produce 
“When a male person with any name loves a female person with any name, he will kiss 
her”. The new structure is placed into memory with appropriate links to sources in the set. 
The bridges from the target to the different sources in the set are similarly generalized. The 
generalized bridges are connected to the target and the generalization. The strength of each 
generdlized bridge will be the sum of the strengths of the member bridges between the tar- 
get and the sources in the set. Thus, the generalization will now have the highest activation 
of the story representations in memory. 

4.3 ANALOGY IN ASTRA 

Now that the generalized story created by the induction process has the highest activa- 
tion of any story representation linked to the target, the mapping process again enforces 
systematicity in selection a set of bridges which represent the mapping. Nodes in the source 
that have received activation but do not have a bridge associated with them are selected €or 
transfer to the target. The evaluation & use stage checks the nodes linked to the selected 
nodes for bridges. If a bridge exists, the corresponding node in the target is linked by the 
same relation to the newly created target node. If a bridge does not exist, a ‘‘sk~lem’~ node 
is built and is then treated as if a bridge had been found. This is done for each link connected 
to the selected source nodes. In this example, the generalized “KISS” node is transferred 
over to the target situation due to activation gained by spread over the cause link. Since 
bridges exist from the agt and pat of the “KISS” node, the nodes at the other end of the 
bridges are linked to the new node. 

The evaluation & use stage checks the transferred information to see if the current goals 
have be attained. In this example, since a “CAUSE” fink has been transferred to the target, 
the goal has been satisfied. The action predicted by ASTRA in this situation is that “Romeo 
will kiss Juliet”. If the transferred information merely elaborates the target representation 
and the goal is not satisfied, then the system will re-activate the new representation of the 
target to see if any further information can be conjectured. 

5. RELATED WORK 

In Sun i l l] ,  a connectionist model of rule-based reasoning is developed, called CON- 
SYDERR. This connectionist system has two levels: one is a connectionist network with a 
localist representation, and one is a connectionist network with a distributed representation. 
The two networks are linked by connecting the distributed nodes which make up a concept 
with the localist version of the concept. A rule-defining “knowledge link” is simply a 
weighted connection between the antecedent and consequent of the rule. The representation 
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differs in that the knowledge links emanating from the localist nodes are duplicated in the 
distributed network so that every node in the distributed representation of the local node 
has a knowledge link to the group of nodes in the distributed representation of the conse- 
quent node. This arrangement is beneficial in that nodes which share features with a node 
in the antecedent of a rule will also have some ability to fire that rule, based on the similarity 
in their representation. However, this implementation has the “multiple instantiation” prob- 
lem common in connectionist networks for high-level reasoning [12]: The rule cannot be 
applied to two instances of the antecedent because there is only one node representing the 
consequent. The problem is solved in ASTlU by having rule-firing create a new instance 
of the consequent mode. 

Falkenhainer [3] describes an approach to explanation and theory formation that at- 
tempts to unify deduction, assumption, induction, and analogy. The reasoning methods are 
discriminated not by mechanism, but identifying different types of similarity with the tar- 
get. Deduction is defined as a complete match of identical features; Assutnption is a partial 
match of identical features, which if augmented by a finite set of consistent assumptions 
will allow an explanation to be deduced; Induction is the case where matches are made be- 
tween features with a close common generalization; and Analogy, where a wide range of 
features and relations are matched, This approach differs from ASTRA in that it does not 
take discriminate on the source retrieved, but on the matches that are produced during map- 
ping. Falkenhainer’s implementation is entirely symbolic and discrete approach to integrat- 
ed reasoning, and thus is polarized with the ASTRA work. 

Kokinov [ 1,2] has developed a system called AMBR in which deduction, induction and 
analogy are also treated as slightly different manifestations of associative memory-based 
retrieval. As with the continuous analogical reasoning theory, the differences of deduction, 
induction and analogy lie only in the outcome of the associative retrieval process. Koki- 
nov’s work differs from the ASTRA work in the knowledge organization and processing 
mechanisms. The knowledge representation used in AMBR is entirely symbolic, based on 
a frame system. However, connectionist networks are dynamically built to select the best 
interpretation or mapping for the analogy. The processing mechanisms include a relaxation 
search (spreading activation), marker passing, and traditional procedural code. It is not 
clear as to the extent any interactions between stages play a role in the processing of an 
analogy. Since networks are dynamically created to select a mapping, much of the corre- 
spondence information generated by source retrieval may be lost. 

Psychological experiments by Kokinov[2] have demonstrated common priming effects 
in tests of deduction, induction and analogy. Because of these common effects, Kokinov 
concludes the claim that deduction, induction and analogy are performed by a single uni- 
form retrieval mechanism. Burstein and Collins [ 131 also conclude that the type of knowl- 
edge retrieved determines the particular line of inferencing produced. The work presented 
here is further evidence of how a single mechanism can be used to produce the different 
reasoning behaviors. 

6. CONCLUSIONS 

We have presented a hybrid connectionist-symbolic model in which not only can de- 
ductive, inductive, and analogical reasoning behaviors be produced, but integrated to work 
together during problem solving. In the example, deductive reasoning is used to enhance 
the representation of the target analog. Inductive generalization is used when a number of 
similar source analogs are activated, resulting in a new structure that is composed of their 
common features. This type of induction has been shown to be useful in analogical reason- 
ing also serves as a learning and memory organization mechanism [14]. 
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The ASTRA system is written in CornrnonLisp and runs on Sun and Macintosh work- 
stations, and Symbolics and Explorer Lisp machines. The system has been tested in simple 
domains such as the examples given in this paper which have only 90 nodes and 300 links, 
to large domains such as database of plays which require 3076 nodes and 13148 links. Fu- 
ture work will integrate ASTRA into a problem solving system to more fully test the theory. 
Another area of future work involves simplifying the model by implementing the knowl- 
edge representation and processing mechanisms in an completely connectionist frame- 
work. Realizing ASTRA in a connectionist network may further extend its natural ability 
to handle novel input situations. The use of induction as a memory structuring mechanism 
will also be investigated. We believe that the integrated reasoning features of ASTRA can 
produce memory organization results comparable to Pazzani’s OCCAM program for inte- 
grating similarity-based, theory-driven, and explanation-based reasoning 1151. 
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ABSTRACT 

The key idea of the wqrk described in this paper is to use a 
declarative representation of space (based on first order logic) as 
well as a procedural one (based on a semantic network). The link 
between the two representation is made by semantic attachment 
[l], defining the seniantic network to be the intended model of the 
first order thewry. The paper describes how we have modeled space, 
both syntactically and scmantically, 

1. INTRODUCTION 

In the past several space representations have been proposed [2, 3, 4, 5 ,  63. 
Early papers (for exaniple [7, 81) and receiit papers (notably [9, lo])  have been 
written 011 this topic by some meiiibers of our group. 

The aim of this paper is to give same furtlim leading ideas and results which 
seem useful in order to build a suitable reprcsentation of space for systems ablc 
to reason in a “human-like” way. The key idea of the work described in this 
paper is to have a first order description as well as a semantic network [ll] 
(containing a more extensive description) of the same space. The two world are 
related cicfining the semantic rittwork to be the model of the first order theory: 
the first order objects and relations are linked to the objccts and relations of 
the semantic network by means of semantic attachment 112, I]. 

We are not faced with the philosophical reasons of our approach or of 
others; this topic has becn already faced in [S,  91. Neithcr are we faced with 
the aim of tlic coniplcte work and its possible applications (see 17, I O ] ) .  The 
reader is recommended to read that  papers to have a complete view of the 
historical developments and related work of our theory. 

‘This work is part of a joint project among all the members of the Mechanized Rea5oning 
Group. All of them are thanked for the invaluable support and discussions we took togetlm 
and for allowing us to build on their previous work. 
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The paper follows this path: in the next section we present some com- 
prehensive ideas which have driven the system implementation. In the third 
section we try to formalize some ideas on how it is possible to reason about 
space when generating a scene, starting from a human-like ambiguous descrip- 
tion, made for instancc in natural language. We propose a not complete (and 
not completely described) first order theory enriched with first order default 
rules [13]. In the fourth section we focus on a representation of space (even 
using multiple valuedlfuzzy semantics [14, 81) which can be seen as an ex- 
tensional model of the logic/ syntactic theory. Finally in the fifth section it 
is shown how the “semantic attachment” between the first order theory and 
procedural reasoning is performed. 

2. A PROCEDURAL/DECLARATIVE APPROACH TO SPACE 
REPRESENTATION 

In the past, when speaking about data representation, people were con- 
cerned with new data structures, of whichever complexity. From this point 
of view, data were seen as a declarative part, modified and elaborated by 
programs. New trends in computer science research tend to eliminate the di- 
chotomy data/ procedure (or declarative/ procedural information storage) in 
order to create new, more abstracted structures, which join the two aspect- 
s (LISP, PROLOG and present research on data abstraction are only some 
trivial examples). 

Human knowledge is a special kind of information (even if more and more 
complex), whose representation (namely knowledge representation) should be 
faced with the same criteria used for the “classical” data representation [ l l ,  151. 
This consideration led us to face the problem of space representation from both 
a procedural and declarative point of view. This state of mind was enforced 
by the consideration that in order to build a system with human-like with an 
approach as general as possible, a purely algorithmic/ not structured approach 
would not have been sufficiently powerful. Human reasoning (about space 
and object positioning) is very structured. At least we can recognize a first 
qualitative step of general evaluation of the problem and a final quantitative 
step of numerical values handling. 

The reasoning we propose is largely qualitative. Our approach, extensively 
adopted by some A.I. researchers, for instance in [16, 17, 31, is based on the 
following considerations: first, it allows to reach conclusions with very little 
information available and, consequently, hard to formalize with quantitative 
models; second, qualitative reasoning can be very effective to reach approxi- 
mate conclusions, sufficicnt in everyday life, at the right level of detail. 

A second consideration, which directly followed from the previous, led us 
to the use of logic. Logic allows a well formed definition of the problem and the 
possibility of moving within an extensively studied and well known environ- 
ment. In this approach first order rules implement the syntactical reasoning 
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about space and arc in some way relatcd to the system qualitative reasoning. 
Procedural reasoning can be seen as the semantics of the first order theory of 
space and is in some way related to the system quantitative reasoning (even if 
it is quite difficult to  define an uniwocally defined border between qualitative 
and quantitative reasoning, logic and procedural implerrientation). ‘I’hc link 
between the two worlds is made by a sort of “sernantic attachment” [l2, 11 
which allows the system to switch on semantic rcasoning when syntactic rea- 
soning docs not seein sufficient. 

More specifically the representation of space we propose is compounded of 
thfee parts: 

1. First order theory of space (written in some logic language, namcly PRO- 
LOG). At this level deduction is perforrried both syntactically (as in any 
“classical” proof checker) and through semantic evaluation of functions 
and predicates (performing the “semantic attachment” informally stated 
in the previous section. This lopic is deeply faced in the next section). 

2. Sernantic network (which implements the domain of the interpretation 
of the extensional model of space). That is, space is represented through 
a graph where the nodes are the objects being in the scene and the links 
are marked by the (natural language) spatial relations holding twtween 
them. 

3. Procedural evaluation of the semantic network (written in some proce- 
dural language, namely the C-language). Such procedural evaluation is 
performed by a deduction supervisor which knows all the couples: 

(the intended meaning of a syntactic object is a member of the domain 
D (of the intended model [IS]) if the object is a constant, arid a pro- 
cedure, if the object is a functional or predicative symbol). Evaluating 
a syntactic expression corresponds to the activation of the associated 
(semantic) procedure given the semantic meaning of its sub-expressions. 
The equality between the syntactic object whose iiiterided rneariirig is 
the computed result and the expression being evaluated, is then assert- 
ed in the first order, ground theory. Taking an example by arithmetic, 
attaching the numbers “2,3,5” respectively to the first order constants 
”two, three, five” and the procedure computing the sum of two niim- 
bers to the function symbol “plus”, cvaluating “plus( two,three)” makes 
“plus(two,three)=five” being asserted in the theory. 

< syntactic object, intended nzeuning > 

3. FIRST ORDER REASONING ABOUT SPACE AND OBJECT 
POSITIONING 

The system accepts, as input, natural language-like scene descriptions. In 
particular input phrases are codified in a first order language (with sorts). For 
instance the phrase “there is a pen on the table” is codifiied: 
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ON(a,b) where: 
“ON” is p r e d i c a t e  wi th  two arguments 

l l a l l  i s  a v a r i a b l e  of sort ‘lpen’l 
“b” i s  a v a r i a b l e  of s o r t  “ t a b l e ”  

Logical reasoning is performed in two steps: 

1. First it is tried to disambiguate the input relation that is to  define which 
among all the possible spatial meanings of the input proposition (for 
instance “on”) is the most ‘ L ~ ~ i t a b l e ” .  In this step default reasoning 
plays a basic role [7]. 

2. Second, it is tried to deduce more information about the predicates de- 
rived in the previous step. For instance it is obvious that if RIGHT(a,b) 
holds also LEFT(b,a) holds. This part of the theory is completely inde- 
pendent of the previous and can be seen as a first order description of 
the relations which exist among object positions. 

The first step is mostly performed syntactically (even if the holding of 
several predicates is tested semantically) while the second is mostly performed 
procedurally. 
First step rilles have the form: 

Pl(xl,x2, . . .)  and P2(ylJy2, . . . )  . . . . . .  
==> 

P( . . . . .  ) and Q( . . . .  ) . . . .  

where the predicates P l (  ...), P2( ...) ... can be procedurally evaluated on the 
basis of two different kinds of information: i) the a-priori knowledge of the 
world (this problem is not faced here, for a deeper insight see [7]) and ii) the 
current state of the world, that is the semantic network above introduced. 
Note that the semantics of the first kind of predicates is intensional, while 
that of those of the second kind is extensional. The major difference between 
the predicates in  our formalization and the standard logical ones lies in their 
semantics (that is in their procedure of evaluation): the nonlogical symbols 
of a standard logical language (that is functions and predicate symbols) are 
taken to be independent and primitive, on the contrary our predicates can be 
definitionally related to each other. 
As far as default reasoning is concerned each rule can be generally described 

where M is to be read ‘<it is consistent to assume”. The whole rule is to be 
read in this way “if {wffi} holds and it is consistent to believe that (wff2) 

holds then infer {wffi}” (note the difference between the implication sign 
(4) and the assumption sign (====+)). Some considerations must be made on 
the (1): {wffl} is evaluated testing the knowledge base and its holding is the 
basis for the activation of a default; M{wff2}, that is the considerations of 

[19] as: { . l U f f l }  : WYff2) __--j (wff21 (1) 
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consistency with the real, present world, is evalrxated testing the semantic net- 
work. It tests the compatibility of what has been inferred previously with the 
output of the knowledge base and decides if backtracking has to bc activated 
when exceptions arisc. 

These rules are an attempt to formalize (to give a cognitive model of) 
common sense rcasoning about space. They do not take in consideration all 
the possible combinatorial situations. In fact some of them are cogni tively 
impossible and are automatically impossible for how the knowledge basc lias 
been built. To understand what they mean it is necessary to apply them to 
real situations. 

An interesting example may be: 

RIGHT(typewriter, nick-nack) 
--- ---> 

H-CONTACT(typewriter, table) and 
H-CONTACT(nick-nack, shelf) and 
M-CONTA@T(table, f l o o r )  and 
H-CONTACT(she1f , f l o o r )  

As it can be secn we first deduce that the typewriter is horizontally support- 
ed by the table and then w e  recursively deduce the positions of all the inferred 
objects till the bordcr of the environment [7, 91. The rule applied when de- 
riving I~_CONTACT(tyyewriter, table) is a simplified form of the “rule of the 
independent typical positions” [7] .  Formally, it can be so described: 

W-CONC(s ,o> 

/* the input conceptualization is a weak 
/* conceptualization (derived from on the 

*/ 
*/ 

/* right, in front of , near, . . . I .  */ 

/* the object has a 

/* (evaluated intensionally on the 

typical position */ 

*/  
/* in the defined environment */ 

/* a-priori data base) */ 

and 

NEAR-POSIZ(s,o) 

/* the subject and the object of the */ 
/* conceptualization are near to each */ 
/* other if positioned in their own */ 
/* typical positions */ 
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/* ( eva lua ted  e x t e n s i o n a l l y  on a */ 
/* p o s s i b l e  s ta te  of t h e  semant ic  */ 
/* network) */ 

/* i f  p o s i t i o n e d  i n  t h e i r  own t y p i c a l  p o s i t i o n  */ 
/* bo th  t h e  s u b j e c t  and t h e  o b j e c t  are suppor ted  */ 
/* e i t h e r  by an h o r i z o n t a l  o r  v e r t i c a l  s u r f a c e  */ 
/* ( eva lua ted  as TP(o))  */ 

and 
no t  COMMON-MATRIX(s,o,m) 

/* an o b j e c t  m which is t h e  common ma t r ix  f o r  t h e  */ 
/* o b j e c t  and t h e  s u b j e c t  does  n o t  e x i s t .  The common */ 
/* mat r ix  of n o b j e c t s  i s  an o b j e c t  t o  which a l l  t h e  */ 
/* o b j e c t s  refer when p o s i t i o n e d  i n  t h e i r  t y p i c a l  */ 
/* p o s i t i o n  */ 
/* ( eva lua ted  as TP(o)) */ 

> --- --- 
TP-CONC (S , s , kb-tp-obj ( s )  ) and 
TP-CBNC(~,~,kb-tp-obj(o)) 

/* bo th  t h e  s u b j e c t  and t h e  o b j e c t  are p o s i t i o n e d  i n  */ 
/* t h e i r  t y p i c a l  p o s i t i o n ,  e x t r a c t e d  from t h e  d a t a  */ 
/* base a - p r i o r i  w i t h  t h e  f u n c t i o n  kb-tp-obj (0) */ 

Note that we have supposed that the nearness of the two typical positions 
holds. Of course this is not always true, the contrary may happen even in  this 
case, depending on how the table and the shelf are positioned. In this case the 
analysis changes: we position the object in its position but we do not know 
anything about the subject position. Thus we have: 

W-CONC(s,o) and TP(o) 
and 

(((TP-H(s) and TP-H(o)) o r  

(TP-V ( s )  and TP-V (0) ) ) 
and 

and 
n o t  NEAR-POSIZ(s,o) 

n o t  COMMON-MATRIX(s,o,m) 
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E==> 

TP-CONC(o,o,kb-tp-obj(o)) 
and IND-POS(s) 

/* t h e  o b j e c t  i s  p o s i t i o n e d  i n  */ 
/* i t s  t y p i c a l  p o s i t i o n ,  f o r  */ 
/* what concerns  the s u b j e c t ,  */ 
/* w e  are n o t  able t o  d e c i d e  */ 
/* and ask */ 

This last rule is a subset of the “rule of the unknown subject position”. 
As far as the second step is Concerned examples of rules are: 

f o r a l l  x. f o r a l l  y .  (RIGRT(X,Y) --> (LEFT(~,x)) 
f o r a l l  x .  f o r a l l  y .  f o r a l l  z .  

(H-CONTACT(x,y) --> n o t  H-CONTACT(x,z)) 

Two considerations must be made: 

1. This theory is largely incomplete. This is due to the extreme complexity 
of the problem which makes the problem unsolvable with this approach. 
To point out this fact it is sufficient to think to the infinite mutual 
positions that two objects may have. 

2. As a consequence of the above consideration, in this step most reasoning 
is performed procedurally, on the basis of the semantic network; only 
simple cases, such as those stated above are treated symbolically. Thus, 
this topic is treated in the following sections. 

4. SPACE AS A SEMANTIC NETWORK 

A first important consideration must be made. We have approached the 
problem of space representation and object positioning from two points of 
view (with double valued and multiple valued logics). As far as syntactically 
reasoning is concerned, till now on1.y the double valued version has been im- 
plemented; as far as the the semantic network and procedural reasoning are 
concerned both versions exist. In the following we will treat space as a lin- 
guistic variable [14], that is we describe the multiple valued approach. This is 
not correct (a double valued theory must havc a double valued interpretation). 
We describe space in this way because we think i t  is morc interesting; in  the 
following, when we refcr to the semantic network as the interpretation of the 
previous described theory, assume that we refer to the multiple valued version. 

Let us focus on how space is represented. In the following we give only 
some ideas (for more details st- [9, 101). 
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When working about space representation we noted that, in an everyday 
discussion, object positions are nearly always defined relatively to the posi- 
tions of other objects whose positions are recursively ill-defined. On the other 
hand, people seem able to infer the positions of objects with respect to the en- 
vironment reference system. Thus, for instance, people are able to say that, if 
“pen1 is on the right of book2” and “pen3 is on the left of book2” then it is im- 
possible that “pen1 is on the left of pen3”. Moreover, when trying to position 
objects in a limited space people are also able to shift them maintaining all the 
known (ambiguous) constraints. Our solution has been to memorize the single 
compatibility functions within a graph whose links represent object-subject 
couples. 

Working in this way we are able to build all the absolute references, walking 
through the graph and composing functions using a generalized AND opera- 
tor, but we memorize space within a structure which is strictly related to its 
natural language description [lo]. Every link is marked by an input (ambigu- 
ous) constraint and has associated a compatibility function which describes 
the set of all the possible mutual object-subject positions with their compati- 
bility/ possibility/ truth values. Again, how compatibility functions are built 
is largely explained in [lo]; here only some notes are given. 

First of all, in the fuzzy approach we assume that all the input phrases are 
elliptical; that is that some key words, necessary to understand the meaning 
of the input phrase, due to the common use/position of the objects, are left 
unmentioned. So, for instance, “book on the table”, means not only that the 
book is horizontally supported by the table but also that, maybe, is in its 
centre (or in a side ...) with an orientation which guarantees a high degree 
of equilibrium ... Of course the words we suppose are left unmentioned are 
strictly dependent on the objects mentioned (i.e. a book is usually in the 
centre of the table while the phone is maybe on one side, more usually the 
right side). The functions which describe the mutual positions of the object 
and the subject of the spatial prepositions have some interesting features: 

i) they depend on the given spatial preposition, in fact any spatial prepo- 
sition refers to different object parts or characteristics (for instance 011 

relates the volume of the subject to a surface of the object while in 
relates the two volumes); 

ii) the influence of an object on the function shape depends on its syntactic 
role in the spatial relationship (whether it is subject or object of the 
spatial relation; 

iii) each function is built independently of any contextual check, the “con- 
textual” space state is taken into account only when the overall “free 
space” compatibility function is synthesized and iv) the relation (defined 
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a-priori) between the above parameters and the function values, because 
of the very nature of common sense, is necessarily fuzzy and not crisp. 

5 .  PROCEDURAL REASONING ABOUT SPACE 

Procedural reasoning i s  performed through a set procedures which are ac- 
tivated by the “deduction supervisor” and modify or read the state of the 
semantic network. These procedures can be divided in two classes: 

1. The first are activated when a new predicate (such as 
11-CONTAC‘I’(typewriter, table) is deduced) and modify the semantic 
network. These procedures are responsible of maintaining a Full compat- 
ibility between the theory and the semantic network. 

2. The second are activated when the validity of a predicate must be tested. 
They test if the predicate i;; compatible with the senmntic network. 

A complete description of their behavior is beyond the aim of this work; 
see [lo]. An example can be the analysis given in section 3. In that example 
the same input may give two different answers depending on thc semantic 
evaluation of the predicate NEAR-POSIZ(s,o). This may be a good example 
of how semantics and syntactics cooperate and how the semantic attachment is 
performed. In fact the deduction supervisor, when working on NEAR-POSIX, 
iinderstands that the evaluation must be made procedurally and switchcs to 
the semantic level. 

A very interesting note. Most backtracking is activated at this level. In 
fact, when syntactically reasoning, the system activates a lot of default rules. 
This may he misleading and give some wrong deductions. The absurd is mostly 
verified at this level, usually when it is tried to deduce a new predicate which 
is inconsistent with the network state. Note that the backtracking routines are 
also able to give some information about which default has bccn wroneously 
activated. 

Finally, it is worth noting that our representation of space completely fits 
with standard extensional semantics definition (as, for instance in [ls]). T,vt 
us consider the doiible valued version of our semantic network: 

- D, that is the domain of the interpretation, that is space described, for in- 
stance by means of Cartesian coordinates is 

D = R x It x R 

- any constant, that is any object instantiated, i s  associated a.11 clenierit be- 
longing to D, that is a triple (x,y,z); 

- any variable, that is any object not instantiated i s  assumed to vary within 
D (we do not know where it is); 



54 

- any function is assumed to get values in DxD .... and to take values in D; 

- the standard logical operators are assuriied to have their propositional value. 
So for, instance, the holding of a set of input phrases is interpreted as 
the set intersection of all the single sets; 

- the predicates we have defined in our theory are interpreted as subsets of D. 
For instance, €1-CONTACT(pen, tablc) is associated the set of all the 
points which are above the upper surface of the table. 

6. CONCLUSIONS 

We think that ten pagcs are too few in order to give a complete explanation 
of how we have modeled space and what we think about logic and knowledge 
representation. We have tried to give only some general ideas, never explaining 
the details of the formalization. This has probably resulted in a sometimes 
not clear, always too brief and not precise, explanation. We hope that people 
reading this paper do not care of style and formal matters and understand thc 
underlying ideas. A paper with a more precise and complete formalization is 
forthcoming. 
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ABSTRACT 

We propose an empirical but a direct method used to learn partially 
unknown causal tree structures. More specifically, we suppose that 
the intermediate layer of a three-layered causal tree is completely 
unknown. A set of examples where the root node and the bottom 
layer nodes are observed is available. The principle of the method is 
to compute a correlation matrix which is block diagonal according to 
the model. This structure is then found using a clustering algorithm. 
A simulation experiment highlights the potential usefulness of the 
method in practical situations. Finally, open problems are briefly 
reviewed. 

1. INTRODUCTION 

This paper describes a method used to solve the following problem: one supposes that 
a domain universe can be represented as a causal tree with three layers, the structure of 
which is partly unknown. More precisely, the root node of the tree and the bottom layer 
correspond to observable random variables, while the intermediate layer is unknown, 
that is, nor the number of intermediate nodes nor their linked nodes are known. The 
problem is then to find the hidden structure of the causal tree from a set of samples 
which consists in observed values of the root node and the bottom layer nodes. In a 
previous work [Golmard and Mallet 19891, a method for estimating the probabilities of a 
three-layered causal tree with a hidden intermediate layer has been described. The 
structure of the tree was supposed known. This current paper therefore completes the 
preceding one, although the method described here is to be used before the one of the 
previous work. 

The interest of learning hidden tree-structured causal smictures has already been 
outlined IPearl 1985, 19881. The advantage of using tree structures comes partly from 
the simplicity of the required computations. Furthermore, they allow simple 
interpretations of the causality relationships. Intermediate concepts are usually used in 
many domains, like the medical domain, where they are often called "syndromes", 
because they facilitate the description and the memorization of cases, and thus, the 
reasoning process of human brains. As already stated in our previous work, syndromes 
may be viewed as ill-defined concepts, since their "structure", that is the signs entering 
their definition, is known, but it is difficult to assess their presence, given a case, when a 
part of these signs is observed. Learning the structure of the causal tree can be interesting 
in several types of situations: the domain may be almost unknown, so the problem is to 
learn the structure, or the expert may have some doubts about a part of the structure he 
can detail. In this latter ease, the learning method may be aimed at validating an already 
stated causal tree model. The theory of the comparison between a learned structure and a 
theoretical one is not well established, and therefore research work remains to be done in 
this field. Another possible use of a structural learning method is to find a good 
approximation of a more complicated underlying model. 
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Methods for learning causal tree structures have already been described. The powerful 
algorithm of [Chow and Liu 19681 is to be recommended when all the variables are 
observable. Spiegelhalter and Lauritzen [ 19891 have proposed a method based on 
sequential Bayesian estimation for general probabilistic networks. Roizen and Pearl 
[ 19861 have described an iterative algorithm for estimating the probabilities when a part 
of the variables are unobservable and the causal tree structure is known. Their method is 
related to the stochastic approximation algorithms (see, for example, [Kushner and Clark 
19781). The algorithm we proposed in the same context [Golmard and Mallet 19911 is 
based on maximum likelihood estimation. When the structure is not known, the problem 
is then to learn “hidden causes”, or to learn structures. An algorithm for learning hidden 
causes in causal trees has been proposed by Pearl [1985, 19881. However, this 
algorithm involves many comparisons between mples of variables, and is not robust 
relatively to the randomness of experimental data, as noticed by Pearl himself. Finally, 
our method is related to the clustering methods, which cannot be all cited here. 

The method will be described in section 2. In order to evaluate the accuracy of the 
method in various experimental setting, we have performed a simulation experiment.The 
results of this experiment are detailed in section 3. Finally, possible directions of future 
works are outlined in the conclusion. 

2. METHOD 

2.1 NOTATION§ AND PROBLEM FORMULATION 

The notations we propose emphasize the three layered structure of the causal tree, and 
they are related with the diagnostic problem field. The data consist of a set of samples. 
For each sample, the values of the diagnosis and the values of the set of signs are 
provided. The vector of the signs is noted S. We note D the random variable 
“diagnosis”, and d one of its possible values, and similarly for all the random variables. 
We suppose that the intermediate (unknown) layer of the causal tree is composed of k 
hypotheses, noted H = (Hi, .., Hk). The value of k is unknown. Each hypothesis Hi is 
the direct cause of ni signs, denoted Si,nl, .., Si,ni . The structure being a tree, each 
sign is linked with exactly one parent hypothesis. The signs may then be partitioned into 
several groups, each group corresponding to one hypothesis. The problem of finding the 
“me” hidden causal tree structure from the data may then be formulated as the problem 
of finding the “true” partition of the signs. The proposed method, however, is not 
guaranteed to find the true structure: the probability of finding the true structure will be 
dependent of many features, three of which have been used in the simulation experiment 
described in section 3. 

2.2 PRINCIPLE 

We suppose that all the random variables are of binary type. The probability distribution 
of a causal tree is then expressed as: 

From expression (l), it is easy to compute the conditional probabilities of the signs when 
the diagnosis is known. We have: 
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Expression (2) illustrates the conditional independence of the groups of signs, since 
the global probability function is divided into a product of k probabilities. Two signs 
which do not belong to the same group (they have not a common cause), are independent 
conditionally to the diagnosis d. This independence property is the key of the method. In 
fact, computing the conditional covariance of two signs Sij  and StYu, we get: 

In matrix notation, cov(S I d ) is the matrix of the conditional covariances of couple of 
signs. The proposed method could be used from each such conditional covariance 
matrix. However, in order to obtain an unique covariance matrix, a weighted sum of the 
conditional covariance is computed as follows: 

2 
cov = cov(S I d) P(d) 

d =  1 

Note that the conditional covariances are not supposed to be equal, and therefore the 
final covariance is not an estimate of any individual covariance. Its interest is just to 
resume in one matrix the two conditional covariance matrices. Finally we compute the 
correlation matrix, using: 

cov(i, j) 
icov(i, i) covu , j) 

cor(i, j) = 

This matrix is block diagonal. This structure may be found using a principal 
component analysis on the variables (see, for example, [Mardia et al. 19791 or [Morrison 
1976]), since the k largest eigenvalues must correspond to the k blocks of the correlation 
matrix. The algorithm we actually use is described below. 

2.3 IMPLEMENTATION 

2.3.1 Correlation matrix computation 

Each sample consists in one value of the diagnosis node and N sign values. We 
suppose NIND samples are available and we first compute the usual experimental 
covariance matrix for each class of diagnosis. Since we are dealing with binary 
variables, there are two classes, each class corresponding to an experimental conditional 
covariance matrix. Let us suppose that Nd samples are in the class {D = d) ,  d = 1, 2. 
The final covariance matrix is computed as follows: 
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d =  1 
cov(S) = 

N l + N 2 - 2  

2.3.2 Clustering method 

The experimental correlation mamx deduced from the above covariance matrix is the 
input of a clustering program. We have actually used the VARCLUS procedure of the 
SAS statistical package. The clustering algorithm can be informally described as follows: 

1. Initialization: (1 cluster of N variables) 

a) Nbcluster := 1 
b) Compute the eigenvalues of the initial correlation matrix 

c) Sort the eigenvalues by decreasing order. Let h1 be the second eigenvalue. 

d) Denote Lax = h i ,  Cmax = 1 

2.100~: repeat while hax > 1 and Nbcluster < N 

a) Split the cluster CmaX into two clusters, corresponding to the two greatest 
eigenvalues, according to the correlation of the variables with the two principal 
components, respectively. Rearrange all the variables (not necessarily contained in the 
cluster Cmax ) by assigning them to the cluster the principal component of which the 
correlation is the highest. 

b) Nbcluster := Nbcluster + 1 
c) Compute the eigenvalues of the modified or created clusters and sort them for each 

cluster, let be the second eigenvalue of the i th cluster, i E (1, ..., Nbcluster). 

d) Let hmax = sup( h i ,  ..., hNbcluster ), and Cmax the corresponding cluster 

e) end of the loop. 
number. 

A summary of the results listing based on an example is shown in figure 1. The 16 
initial variables are finally divided into 4 clusters. Note that, in the step 4, variable 19 has 
been removed from cluster 3, and is eventually a member of the last created cluster 4. 
The correlations between variables and clusters are not displayed, because the lack of 
space, but the correlation variable 14 - cluster 3 is 0.1688 at step 3, and 0.0560 at step 4, 
while the correlation variable 14 - cluster 4 is 0.4745. 

Note that the method we propose does not need to specify the number of clusters to 
be found. The result of the procedure is a partition of the initial set of N variables into 1 
to N clusters. We are only interested here in the structural part of the learning. The 
estimation of the probabilities could be done using the method described in [Golmard 
and Mallet 19911. 
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Fig. 1. Summary of a result listing. 

Nbcluster Cluster Members Variables 

Step 1 
1 1 16 1-16 

step 2 
2 1 11 5-13, 15-16 

2 5 1-4, 14 

3 

4 

Step 3 
1 7 5-8, 13, 15-16 
2 5 1-4, 14 
3 4 9- 12 

Step 4 
1 4 5-8 

2 4 1-4 
3 4 9-12 
4 4 13-16 

Second Cluster 

eigenvalue to split 

2.2891 1 

1.8187 1 
0.9494 

1.6770 1 

0.9494 
0.8490 

Notation: i-j means { k I i 5 k 5 j 1, 

3. A SIMULATION EXPERIMENT 

0.7450 - 
0.7292 
0.8490 
0.7080 

The learning method described in the previous section is not guaranteed to find the 
true hidden structure in all the encountered situations. The asymptotic convergence of the 
method seems very probable, since the experimental conditional covariance matrices 
converge toward the "true" ones, but the fact remains to be proved. Furthermore, 
simulations are useful for illustrating the kind of results which can be found, depending 
of various experimental features. 
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3.1 SIMULATION SETTING 

We have tried to minimize the number of parameters required to describe the 
simulation experiment. All the variables are binary ones. 

. The structure of the causal tree is then resumed by only one parameter, which is 
denoted NS (for Number of Signs by hypothesis). We suppose that the causal tree is 
composed by a root node D, NS hidden intermediate hypotheses Hi ,  ..., HNS, and that 
each hypothesis Hi is linked with NS signs Si,1, ..., si,NS. Using the notations of 
section 2.1., we have: k = n1 = ... = nk = NS. The final number of nodes in the 
simulated structures is then 1+NS+NS2. We have performed the experiment with two 
values of NS, namely 2 and 4. The corresponding total numbers of nodes are then 7 and 
21, respectively. 

. The quantification of the causal tree also required one parameter, denoted PSV (for 
Probability of the Same Value). For all the causal trees, we have: 

- P ( D  = 1) = P(D = 2) = 0.5 
- P (Xi = x / X,(i = X )  = PSV, x=l, 2 

where Xi is any node of the causal tree, except the root node, and Xc(i) is its parent 
node (its cause). Note that PSV is not the probability that the values of Xi and Xc(i> are 
equal, but actually PSV is the probability that the value of Xi is x, conditionally to the 
fact that x is the value of Xc(i). PSV may be viewed as a measure of the strength of the 
links between the nodes. For each value of NS, PSV was instantiated with two values: 
0.6 (weak links) and 0.9 (strong links). Thus, four probabilistic models were used in the 
experiment. 

. Once the values of the parameters NS and PSV are provided, the probabilistic model 
is completely specified. The last parameter entering the simulation setting is NIND, the 
number of samples (Number of INDividuals) which will be used to learn the hidden 
causal tree structure. The simulation using has been performed using three values of 
NIND: 100,1OOO, and 10000. 

- For each value of the triple (NS, PSV, NIND), 100 sets of samples were generated 
according to the probabilistic model, using a random number generator of a Vax 
computer. For each sample, the value of the root node d and the values of the sign nodes 
were stored, while the values of the intermediate hypotheses were discarded. 

3.2 CRITERION OF EVALUATION 

For each set of NIND samples, the method described in section 2.3. was performed. 
The result of the method is a partition of the NS2 signs into m non-overlapping clusters, 
where m is not a priori fixed, and thus varies from a set to another. The chosen criterion 
to evaluate the method is simply the proportion of successes of the method. We consider 
a result as a success when the partition resulting from the clustering algorithm is exactly 
the true one. In all other cases, the result is a failure. Since 100 sets were generated for 
each value of (NS, PSV, NIND), the number of successes for each situation is also the 
experimental percentage of successes of the method. 
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3.3 RESULTS 

The results of the simulation experiment are shown in table 1. One must note that 
these results are experimental proportions, and thus they are random variables: we would 
find different results if we perform the same experiment again. The results are so 
contrasted (from 0 to 100) that the confidence intervals are not required for interpreting 
the results. 

The marginal role of each parameter is clearly recovered, as expected, but the 
interesting part of the analysis of the results is the comparison between the influences of 
the three parameters. 

The most important feature, at least in the ranges we have chosen, is the importance 
of the strength of the links, which is measured using the parameter PSV. We did not 
expect this result before performing the experiment. The number of samples, NIND, is 
known as a very important feature in any statistical learning method, and the complexity 
of the structure, measured by the parameter NS, was also expected to play a very 
important role: the number of possible partitions with 16 signs is very large, and the 
percentage of successes obtained when PSV = 0.9 and NS = 4 appears to us as quite 
satisfying. 

The practical consequence of these results could be formulated as follows: it is very 
difficult to learn a hidden intermedidte concept when the probabilistic relationships 
between the signs entering its definition are weak, even if the sample size is large (35% 
of successes with NIND = 10000, NS = 4, and PSV = 0.6). On the other hand, if these 
probabilistic relationships are strong, it is possible to learn hidden structures, even with 
moderately large sample sizes (100% of successes with NIND = 1000, NS = 4, and 
PSV = 0.9). An other way to state a practical advice could be: “for learning hidden 
concepts, choose a small number of very specific signs”. 

4. CONCLUSIONS 

The results displayed in the previous section show that the method described may be 
quite efficient in practical situations. As already mentioned, the first practical interest of 
our method is to learn “true” causal tree structures, as Far as true mathematical models are 
able to exist. An important tool in this context would be a method for estimating the 
probability that the found structure is the good one. A related problem is to study the 
results of our method (or any concurrent method) when the true hidden structure is not a 
causal tree, but a more complicated graphical model. We may be interested by this 
situation according to related, but different, points of view. If we are interested in  
proving causal relationships, we need tests between the causal tree models and the more 
complicated ones. If we are building diagnostic advisor systems (or expert systems), we 
need to know if the causal tree model is a good approximation of the more complicated 
model. The problem is then to estimate the accuracy of an approximation. 
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Table 1. _-Its o f the s imulation exneriment 

NIND 

100 1000 10000 

PSV = 0.6 N S = 2  19 48 100 

NS = 4  0 0 35 

PSV = 0.9 N S = 2  99 100 100 

NS = 4  78 100 100 

For each value of (PSV, NS, NIND), the experimental percentage of successes is 

displayed. The meaning of the parameters PSV, NS, and NIND is explained in section 

3.1. 
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Iterati.\e-Deepeiiiiig-,~" (IDA-) is an  optiiiial seal ch trchiiique which iequires no 
inteiinediate state storage. It is suitable for Inrge search spaces. It uses a fixed 
order for the children of a node to be expanded. 'I'i.insfoi illation-Ordeiing Iterative- 
Deepelling- Al' (TOIDA') attempts t o  iiiipiove upon the perfoirnaiice of IDA" by 
dynamically iiiipioving tlic older nodes ale expanded, based on iesults froin previous 
depth limits. Using the Fifteen puzzle as an e\;ample, it is shoivvn that TOIDA* may 
choose the optirnal fixed ordering and geneially chooses a good ordelirig saving ,i 
substantial number of node expanTions. Einpiiical iesults sltoiv that the sequential 
version can provide significant iinpio-iwnents iii tlie speed with which a solution is 
discovered and 110 penalty in storage iquiirmPnts. 

1.  INTRODUCTION 

Search permeates all aspects of artificial intelligence including problem solving, plan- 
ning, learning, decision making, and natural language understanding [7]. Because of the 
large state spaces that have to be searched, the peifoimaiice of the search algoiithm is crit- 
ical t o  tlie overall performance of the artificial intelligence ap1)licatioiis. Tlic programming 
communit,y is coiltinually trying to improi-e the peiforinance of tlic search algorithms and 
t o  develop new more efficient search algorit Iiiiis. 'The !*ai ious iiieans that have been used 
to improve search perforinance include domain-spccific heui istic knowledge, subgoals, and 
abstractions [ 3 ] .  

The heuristic Iterati.i.e-Deepening--~' (IDA") search algorithni has been accepted as 
being asyniptotically optimal i n  tiine and space o ~ ~ r  the class of best-first tree searches 
that find optimal solutions [3 ] .  An optimal solution will be defined a s  a miniinurn cost 
solution. 

1.1 ITER.~'rI\ 'E-DIEEPENISG-~* 

'rhe IDA" search algorithm consists of a series of depth first searches. On each search 
iteration 5 depth limit is set, and \vhen a node's total cost exceeds the limit, the search of 
that  node's subtree is abandoned. The total cost of a node n is calculated as the sum of 
the accumulated cost in reaching the node froin the initial node (g(n)), and the estimated 
cost of continuing until a goal node is reached (l i(n)).  A s  with A*, in order for optirnality 
to  be assured the heuristic cost estimating function must be an underestimate of the true 
cost to reach the goal. On the initial search the limit is set t o  the estimated cost of the 
initial node. If the depth first search runs to completion without finding a goal node, 
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Figure 1: The fifteen puzzle 

another depth first search is performed with the depth limit set t o  the smallest total cost 
that  exceeded the limit of the prei-ious search. This process is continued until a goal node 
is reached. For a more detailed description of the IDA* algorithm, refer to [a]. 

Ei-en though ID.4. provides an optimal solution in terms of cost, it can suffer a sig- 
nificant penalty, or realize a significant benefit, depending upon the (fixed) state transfor- 
mation evaluation order used. IVe 1ial.e de\reloped a Irersion of IDA* that tries t o  find the 
optimal st ate transforination e~a lua t ion  order while finding the minimum cost solution. 

2. ‘rKANSFOIth4ATTON-ORDERlr\TG ITERATIVE-DEEPENING-A” 

Transformation-Ordering Iterati\ie-Deepening-A* (TOIDA*) is based upon the idea 
that by choosing a “good” fixed ordering for node expansions (or state transformations) 
on the final iteration substantial savings i n  node expansions may be achieved. Imagine 
that solutions may be anywhere in  a final l a j w  of node expansions and we expand children 
from left to right in a depth fiist search. If the solution is in the leftmost expansion subtree, 
vie will nct have to expand aiiy of the nodes to the right. However, if the solution is in the 
rightmost subtree all of the nodes must be expanded on the last iteration possibly leading 
to much more woik depending upon the branching factor of the problem. The  idea behind 
TOIDA* is to choose a fixed node expansion order that  brings the solution over t o  the left 
side of the search tree (allowing this simplification). 

For example in the Fifteen puzzle shonn in Figure 1, there are 4 possible moves from 
any node (or state of the puzzle). They are up,  down, right or left. The  blank may be 
moiyed in one of these four waj’s (of course in some places there will be illegal moves, 
because J O U  can’t ino\*e u p  if ).ou are a t  the top of the puzzle, etc.). In IDA* a fixed 
ordering is always tried from any state or node in the search space. It could be (down, 
right, left, up) ,  which has been used by Korf in several studies [2,  31. Again using the 
Fifteen puzzle as an example, there are 24 possible fixed orderings for transforinations from 
one puzzle state (node in the search space) t o  the next. One of these will find the optimal 
solution with the fewest node expansions and one with the most possible node expansions. 
It is most desirable to minimize the number of expansions. 

TOIDA* atteinpts to do this by remembei ing the order of state transformations that 
leads to the minimum h (heuristic estimate of the distance to  the goal) on the next to last 
iteration. It then uses this fixed order on the last iteration. This order of evaluation may 
or may not be the same as the one it begins with. 

Specifically, when the depth first search abandons a search subtree because the depth 
limit has been reached, the transformation ordering algorithm checks the estimated solu- 
tion cost of the abandoned node. \\’hen a new minimum estimated solution cost is found, 
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the new J z e d  order of evaluation for the nest depth-first search is set to quickly find the 
corresponding node. This order is determined by scanning the stack of state transforma- 
tions made from the initial node, and setting the order to the relative order of the first 
occurrence of each state transformation. If any of the state transformations are absent 
from the stack, they are placed at  the end of the state transformation order, keeping their 
same relative order as used in the search with the current depth limit. 

2.1 O'I'IIER NODE ORDERIKG SCHEhlES 

Recently node ordering has been used to increase tlie speed of IDA* and similar search 
techniques [ I ,  6, 51. Powley and lioif [C] have sliown that by saving an early frontier set 
of nodes (of the Fifteen puzzle scaicli space), a n d  ordering the nodes in the frontier set for 
expansion on the next depth-limit search, significant savings in terms of node expansions 
can be achieved. A frontier set of nodes in the search space is the set of nodes which have 
a cost over the limit on a n  abandoned search path. 'I'lley older the nodes based upon the 
rninimuin h (heuristic estimate to goal) values of the paths that emanate from these nodes. 
When coiiibined with parallel window search, they report some impressive speed increases 
(and decreases in the number of node espansioiis). 

Poaley and Korf originally tried saving the entire frontier set of nodes and ordering 
them based on the minimum h valuc for expansion. Althougli this decreased the number 
of node expansions, it did not decrease the actual search time. Chakrabarti et.al. [l] 
also report improved results, in the number of nodes expanded, with a form of depth-first 
search using a node ordering technique. So the benefits of ordering the nodes seems clear. 
TOIDA" does not perform complete node ordering since it only changes the fixed order of 
evaluation. However, fised evaluation ordering achieves some of the same effects as total 
node ordering. 

3. FIFTEEN PUZZLE 

The Fifteen Puzzle consists of a four by four fralne which holds fifteen movable square 
tiles with one blank spot, as illustrated i n  Figure 1. The tiles which are horizontally or 
veitically adjacent to the empty spot may he slid into the blank spot. The object of the 
puzzle is T O  find a sequence of tile iuovenients that will transform the initial tile formation 
into a specified goal formation. Figure 1 shows tlie goal formation used in our experiments, 
which is consistent with that used in experiments by other researchers [l, 2,4] .  The optimal 
heuristic for the Fifteen Puzzle is the 3lanhattan Distance Function. The Manhattan 
Distance Function sums the number of horizontal and vertical grid positions that each tile 
is from its goal position. The value of the heuristic is this sum of the tile distances. 

3.1 I MPLET\I EN TAT10 N 

Tlie IDA*, TOIDA", and Fifteen Puzzle algori thins are implemented in C on a Hyper- 
cube. Each search algorithm is implemented using exactly the same application interface 
so the search techniques are interchangeable. The Fifteen Puzzle algorithm is totally iso- 
lated from the search algorithms, so the searches are reusable without modification. The 
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97 
19 

-Solution I Nodes Expanded I Time (1nin:sec) 

.... 

44 1002927 9.50913 14:32 13:47 
46 128049.5 13'73043 18:33 19:55 

. 

# 
T9 42 540860 411617 7:.50 5:5s 
12 4 5 546344 166664 7:55 2 2 5  

9272E- 397057 13:26 5:45 

Table 1: ID.4* vs. TOIDA" 

Fifteen P;izzle \vas also generalized to handle any ineinber of the square-sliding tile puzzle 
family. Hence, we have obtained flexiliility and generality a t  the cost of some efficiency. 

During the implementation of the search algorithms, a decision was made not t o  store 
the incremental state spaces during the search. Instead, a single state space, representing 
the current problem state, and a stack of state transformations applied are maintained. 
This decision requires that every state transformation be reversible, a t  least in the pro- 
gramming model used. .4s a benefit, larger problems ivith larger state spaces can be 
searched. 

4. RESULTS FROM SEQUENTIAL COhlPARISOIYS 

A number of reasonable size puzzle instances have been run through TOIDA* and 
IDA* in our implementation. Clearly, the niimber of nodes expanded in our (general, but 
ineficient) implementation of IDA" and others \rill lie the same, but we are interested in 
the time penalty of determining the search order for the next iteration in TOIDA*. As 
will be sem, the overhead in TOIDAT is minimal. 

For an overhead compaIison, the IDA" and TOID.4* search algorithms were tested 
against eight (of the 100) problem instances given by Korf in [3] for which the nuinher 
of nodes expanded was less than 1.5 million. This limitation was necessary to  get a 
reasonable problem set, and still have a representative sample of problems. On six of the 
eight puzzle instances, the TOIDA" algorithm performed better than the IDA* algorithm. 
The TOIDA* algorithm performance. measured 1)y nodes expanded, ranged from 90% less 
to  8% more than the IDA* algorithm, w i t h  a n  a\.erage of 53% less. The  TOIDA* algorithm 
showed airnost identical performance increayes \vhen the index \\!as processing time. The 
results of the test are shown in Table 1. 

These results only indicate that the TOIDA+ algorithm performs better (for these 
problems) than the IDA" algorithm with the state transformation evaluation order used 
by Korf in [2]. Since the performance of IDA* algorithm is dependent upon the state 
transformation evaluation order selected, the IDA* test program was modified to  solve all 
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031320 
9005S7 

411617 

166664 

-225515 

13:32 
13:02 

68141G 
951214 
139557 
386395 
633833 
22.5515 
62730.5 
1 0 2 9 0 9 6 

44 

4G 

____._______I 

5 3 

47 

553 

950913 2732GG4 13:47 39:34 
45i0051 GG:10 
1057.599 15:18 

1373048 21.50176 19:.55 31:08 
3.5 2 8 1764 51:OG 
13694.3- 1:59 

13093:3 r57s43 1 5 9  1055 
13i5.560 19:55 
1115298 1G:O9 

1523089 2622S-48 22:06 38340 
40511749 5.5:40 

2 2 5  

3:16 

9:51 

5:35 
9:lO 

The three values displayed for the IDA* performance represent the minimuin, average, and 
maximum values for all 24 s ta te  transforination evaluation orders. 

Table 2: TOIDX" vs. IDA* (all orders) 

eight yro1)lems ~ i t h  each of the 2-2 conibiciations of the four state transformations, and the 
results compared with the TOIDX" algoiithm results. On four of the cjglit puzzle instances, 
the TOIDA* algorithiii correctly identified the optimal state transformation evaluation 
order, and suffered no execution time penalty for the cs t ra  work of transformation ordering 
(The execution time cost for the state traitsformation evaluation ordering routine was 
below the timing fuiiction resolution of 1 second). On the remaining four puzzle instances, 
the TOIDA" algorithm identified a suboptimal state transfoiiiiation evaluation order that 
required an average of 25% more node expansions than required by the optimal state 
transformation evaluation order. \I'lien all eight puzzle instances are considered, the extra 
work required drops to 1SyO. The test also sho\ved that the \\*ark required for a suboptimal 
evaluation order can he 900% more than that required liy the optimal evaluation order. 
The results of this second test are shown in Table 2. 
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Table 3: 20 puzzle instances 

Now in Table 3, \re show results from 21 initial puzzle configurations. Here we only 
compare iiode expansions agaiiist the fixed order that Korf used, primarily because some 
of the puzzles will require prohibiti\.ely many node expansions to test all possible fixed 
node orderings. The time oiwliead of TOIDA* is being ignored since it appears to be a 
non-factor in the comparison. One must remember that the one fixed ordering used by 
IDA* may be the optimal ordering for the problenis in which jt outperforms TOIDA*. 
Overall, TOIDA* expands about 96% of the nodes that the fixed order IDA* expands 
on the 21 examples shown. It performs badly (in comparison) on a couple of the larger 
problems. Below, we examine its performance on one of these. 

On problem 93, TOID.4" is about three times worse i n  the number of node expansions. 
Problem 93 has between 1.5 and -5.7 million node espansions or state transformations for 
the two orderings which takes hours of cpu time on the Intel Hypercube 2/386. We did, 
however, examine all 24 possible node orderings for problem 93. It was found the the 
fixed order tested against was within 99.96% of optimal. The worst case for problem 93 
was 8,490,547 expansions which was 1.5 times more than the order chosen by TOIDA* 
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r ,  required. I h e  average over tlie 21 possible orders \$as 5,0-14,Sil expansions or 1'2% less 
expansions than TOIDX" incurred. 'Ihe point of this analysis is that  TOIDA" was only 
slightly worse than average in this case arid significantly hetter than the woist fixed order 
in riumher of nodes expanded. 

5. EVA1,TJATION O F  TOIDA" 

The TOIDA* algorithm can correctly identify a "good" transformation evaluation or- 
der with rnininial time penalty. The IDA* algorith~n can provide more efficient search 
performances if the optirnal state transf(miiation e\.aluatioii order is known prior to tlie 
search, bu t  if the optimal order is not l<iiouw thc TOIL)A* algorithm has been sho\vn to  
provide a solution that is (in general) iiiucli more eificieiit than tlie average performance of 
the IDA* algorithm with all evaluation orders. The TOTDA" algorithni is therefore likely 
to  be more cficicnt than the IDA" algorithm with an  arbitrary state transformation evalu- 
ation order for an arbitrary prohlem. Furtlier, TOIDA* requires that  niiniiiial information 
be  saved during an  iteration. It only needs a mininiuni 11 value and a relative ordering to 
be used with the nest  depth limit. Hence, the space and tinie overhead of using TOIDA" 
are rnininial, making it a good candidate search algoritlim m-heii nieinoiy resourccs are 
limited. 

In this paper we preseiil a. T~ausfor~natiori-Orderii~g Iterati\.e-Deepening A* (TOIDA*) 
search that  improves the performance of IDX" by dj.namically improving the search or- 
der. This results in a n  improved eff;ciency of the firial search iteration. We describe an 
implementation of the technique, arid picseiit the iesults of a series of tests performed on 
the Fifteen puzzle prohlern. 'The results are compared with IDA* in terms of search time 
and number of node expansions, and  TOIDA" is sho\vu t o  outperform IDA" in inany of 
the tests. 

Improving the computational cost of lieuristic search is an active area of research in 
Artificial Intelligence, because search dominates many AI algorithms. \Ire have shown that 
i t  is possible to  improve the performance of IDA" search w21hout requiring a substantial 
increase i n  storage space, by inipio\.ing 1 he fixed node expansion order on each iteration 
through the search space. The research we present i n  this paper opens up a great many 
areas of continuing wor!~, which we intend to pursue. These areas include investigating and 
comhinin:~ parallel irnl'leiiientatioiis of 'IOIDA", anal>.zing the potential gain of transfor- 
ination 01 dering, discovering the optimal fixed search order, and extending the algorithm 
to save portions of the frontier space. 

This research was partially supported l y  grant C'D.ASY2OSSO from tlie National Science 
Foundation and by a grant from the Florida High Technology and Industry Council Soft- 
ware Sect ion. 
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A.bst rac t 

The fast fuzzy algorithm is used in resolution based automated reasoning 
to produce the weights of terms automatically. By using the weights extracted 
by the fast fuzzy algorithm, some of the fuzzy implication operators were 
cornpared. 

1. INTRODUCTION 

Resolution theorem prover systems form an important category of logical architcc- 
tures in the field of Automated Reasoning. In this paper we outline a method for 
control of inferential strategies of resolution based architectures which employs the 
triangle fuzzy relational products and fast fuzzy relational algorithms. The method 
for speeding up the logical inference is tested in corijunction with the thcorem prover 
called ITP. 

ITP has been one of the most important, system in thc field [l], devel- 
oped by Aragonne Laboratory. The Aragonne group used ITP extensivcly in ATP 
research [a], proving many theorems, using it to verify software and hardware, solv- 
ing algebraic word problcms as well as some other open mathematical problems. The 
I'fP was distributt:d ovcr 200 sites, and used extensively by other workers as publi- 
cations in the Journal of Automated Reasoning indicate. Boyer used this system for 
proving some basic niatliematical theorems in Giidel's axiomatization of set theory 

[31. 

In our approach, ITP is used as the basic architecture, embedded in a 
many-valucd logic based systcm which controls the selection and priorities the infer- 
ence strategies by means of many-valued and fuzzy logics based relational algorit h i m  
[4] and heuristics, respcctivcly. 

After siirvcying the stnicture and functional activity of the ITP in section 
2 and 3, a new strategy using fuzzy preorder relations is proposed. The preliminary 
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experimental results and comparison of a whole spectrum of fuzzy implication oper- 
ators is presented in the sections 5 and 6,  respectively. 

2. THE USE OF STRATEGIES IN AUTOMATED REASONING 
SCHEMES 

Current automated theorem prover ITP adopts strategies called s e t  uf s u p p o r t  strat- 
egy and weight ing strategy.  The reason for using strategies is that the automated 
reasoning program can avoid many fruitless paths by their judicious and ”informed” 
application. Without a suitable strategy guiding the inference, too many often irrel- 
evant clauses may derive, and those clauses may lead the program easily into a blind 
alley. Therefore, the strategies are the must in any serious use of automated reason- 
ing. The set of support strategy is one of the most powcrful restriction stratcgies 
in the resolution-based automated inference systems. The set of support strategy 
forbids a reasoning program from applying an inference rule unless at least one of 
the potential parents to which it is being applied has been deduced from some spec- 
ified siibsct of the input clauses. Even though the set of support strategy eliminates 
many fruitless clauses from the inference stream, it is often not powerful enough to 
produce the conclusion in acceptable time. Hence, weighting strategy is being used 
with the set of support strategy, in the current theorem prover ITP in addition to 
the set of support. The weighting strategy assigns some priorities to each term, 
literal, and clause. With the weighting, one can assist the reasoning program by 
contributing some of one’s own experience capturing one’s intuition, in order to give 
the program hints. Weighting means assigning ”weights” to various concepts. The 
lighter the wcight is , the sooncr the program will look a t  the clause. Unfortunately, 
this weighting strategy is too hcuristic and too dependable on the subjective side of 
one’s experience or intuition. 

Here, we propose to apply the fast fuzzy relational algorithms [4] as an 
automatic technique for extractiiig the weighting strategy. Instead of determining 
weighting patterns heuristically by an trial and error approach, the new scheme pro- 
vides €or selecting the weights automatically [5],  thus replacing by a fuzzy algorithm, 
the manual selections that have been previously done by the users of the ITP heuris- 
t ically. 

3. THE GLOBAL ACTIVITY OF THE TTP 

In order to elucidate the new scheme further, we have to have a closer look at  the 
global activity of ITP. The user of ITP enters theorems which are cha.nged into clause 
form to ITP. The clauses consist of four clauses which are the axiornc list, the set 
of support list, the have-been-given list, arid the demodulator list. The fundamental 
operation consists of the following steps: 
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I. Choose a clause from the set of support list, Call this clause "the given clause)'. 

2. Infer a set of clauses that have the given clause as one premiss; as other pre- 
misses the clauses are selected from the axioms list, the have-been-given list, and the 
demodulator list, depending on the chosen type of inference process. 

3. 
checks, etc.). 

For each generated clause) "proce~s"it (;.e., simplify it, perform subsumption 

4. Move the given clause from the set of support list to the have-been-given list. 

The operation of thc ITP consists of repeated execution of these four 
steps until either the set of support list has become exhausted or a contradiction 
has been found. The user enters selections (Le. which inference rule should be used 
and how the given clause is picked up) into the ITP with the clauses of the axioms 
defining the problem. The user-contrylld options govern the step 1, 2, and 3 above. 
These user-controlled options include selection of tile inference rules (e.g. binary 
resolution, unit resolution, and hyperresolution, etc.) and the weighting scheme for 
each term, literal, and clause. Since1 too many clauses are generated through the 
repeated steps, specific weights are assigned to each term, literal. The clause to be 
picked up first is the one with the lowest weight. 

4. REPLACEMENT OF WEIGHTING STRATEGY BY A FUZZY 
INFORMATION RETRIEVAL SCHEME 

The priority of the second premiss, in the activity step 2 of the previous section, is 
determined by the weight heuristically assigncd by the user of the ITP. We replace 
this heuristic weighting strategy by fast fuzzy relational algorithms. To apply these 
algorithms to this particular problem domain, we have to determine the semantic 
conceptual descriptors [6] characterising the actions [7] of the theorem proving strate- 
gies. This is achieved by the application of the Fuzzy Information Retrieval (FIR) 
scheme [$I, thus rnaking the value of the assigned priority the function of fuzzy logi- 
cal request and fuzzy relutinnal request [9] of FIIE. The major advantage of our new 
scheme is the fact that the order-like relations determining the priority of the clauses 
selected to be entered into the inferential stream of the ITP can be identified from 
the experimental data by fast fuzzy relational algorithms [4]. 

The functional specification of the activity of FTR used to select the 
relevant clause is as follows [$I: 

What8 i s  involved in fuzzy Information Retrieval of clauses can be ex- 
pressed essentially by means of the following four i terns: 
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1. A set D of clauses d. 

2. A set T of descriptors t j  (for example properties of clauses). 

3. A clause-descriptor relation R, which is a fuzzy relation such that 

RERg(D --+ T ) .  

Then R;j is the degree to which clause d; is related to descriptor t j ,  which can be 
viewed as the degree of relevance of the features described by descriptor t j  to clause 
di. 

The appropriate characteristics of descriptors have to be determined em- 
pirically by a series of carefully designed experiments, or from appropriate theoretical 
considerations. It is clear that the set of relevant properties of the elements involved 
in these identification experiments is strongly dependent on the mathematical char- 
acteristics of the problems presented to the ITP. In the next section we shall describe 
one method of constructing the relational matrix, relating the axioms describing the 
problem to be solved by the ITP with the descriptors characterising its axioms. This 
fuzzy relational matrix is then used by the TRISYS system [4],[10],[11] to extract 
the descriptor hierarchy. The automatically extracted descriptor hierarchy is conse- 
yuantly used to speed up the inferential process of the ITP. 

5 .  CONSTRUCTION OF A FUZZY MATRIX FOR BIJILDING A 
DESCRIPTOR HIERARCHY 

In order to construct a descriptor hierarchy in the problem domain of resolution 
based automatic reasoning, the automatic reasoning system needs a matrix which 
consists of clauses and descriptors which describe the properties of the clauses. The 
matrix is used for constructing the descriptor hierarchy. This hierarchy consists of the 
descriptors organized in such a way that the highest descriptor is the most relevant 
to deriving the conclusion (the empty clause), from clauses by means of inference 
rules such as binary resolution, and hyperresolution, etc. 

Our particular application of the fuzzy information retrieval technique 
uses a relational matrix which conceptually represent a relation from the set of 
clauses, to the other set, the properties. The set of clauses used in the fuzzy ma- 
trix is formed from the logical axioms of the problem to be solved, and from the 
immediate consequences of these axioms. Both are unified with the set of support 
by a suitable unification algorithm. The immediate consequences consist of the very 
first level resolvent that is generatred by applying the selected inference rules to the 
axioms and set of support, by means of breadth first search. The set of properties 
is formed from the terms which appear in the clauses representing the axioms and 
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the immediate consequences. T h e  fuzzy relational matrix D, gives the degree of 

relatedness between the i-th element of the set clauses and the j-th element of the 
set of properties. The fuzzy degrees are determined by application of the following 
rules: 

1. If the property j is an element of the clause i, then the degree of the relatedness 
D;j is 1. 

2. If the property; is not an element of the clause i ,  then the degree of the relatedness 
D,, is 0. 

3. If the property j is an element of a subterm (i.e.7 g(a)) of the clause i, then the 
degree of the relatedness D;j is 0.5. 

4. If the property j is an element of a subterm of a subterm ( is . ,  g(g(a)) of the clause 
i, then the degree of the relatedness D;, is 0.5 x 0.5, and so on. 

5. If the property j is an element of the clause i, and the property j is an element 
of a subterm of the clause i at  the same time (;.e., Y(a,b,g(a))), then the degree of 
the relatedness D , j  will be bigger one applied to the case using the above steps 1 to 4. 

6. EFFECT OF THE NEW WEIGHTING TECHNIQUE BASED ON 
FUZZY DESCRIPTOR HIERARCHY 

Our new weighting technique has been applitd to several classes of problems that are 
amene2ble to the automated reasoning approach. The first example illustrating the 
results of the new weighting technique to be described here is the following theorem 
of the group theory: "In  a group, if the square of every element is the identity, the 
group is c~mrnuiulive~'. Selecting the hyperresolution as the inference rule of the 
IT€', the default weighting (which assignes no specific weight for each variable but 
assignes value 1 to each variable by default) produced the conclusion in 146 seconds 
in 121 inference steps. On the other harid, the new fuzzy method, which used the 
weighting pattern derived as dacribed above, reached the conclusion in 52 seconds 
with 49 deduced steps. 

The second applicaiion listed in the comparison below, involves a digital 
circuit problem of verifying the correct function of the full adder [12]. The result 
of the test of the condition when the inputs to the circuit are high, low, and high, 
then the outputs levels o f t h e  device are low and high is prtYjentcd below. Using hy- 
perresolution and UR-resolution simultaneously as the inference rules, the weighting 
pattern derived by the new technique yields the conclusion in 21 seconds with 49 
deduced steps while the default weighting get the empty clause in 26 seconds with 
72 steps. 
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The third demonstration of our technique presented here is concerned 
with the well known AI problem called "the block problem [12],[13]. In our compar- 
ison below we present the microworld of three blocks, in the following arrangement: 
The initial state o f the  block world problem is that block A is on block B, and block B 
is block C, and the goal state i s  that the block A is on the table. Green's method [12], 
which is a planning procedure based on resolution, was used to solve the block world 
problem. Using the hyperresolution as the only inference rule, the ITP obtained the 
conclusion in 55 seconds in 119 steps when using the breadth first search method; 
in 22 seconds in 65 inference steps while using the default weighting pattern, and 
in 15 seconds in 37 steps by using the weighting pattern derived by our new fuzzy 
technique. 

The new weighting pattern derived automatically by the fast fuzzy re- 
lation algorithms encapsulated in the TRISYS system [4] was tested in preliminary 
experiments significantly reduced the total number of steps and CPU time that the 
ITP needed to reach the conclusion. The performance results of the solution to all 
the three problems just described are listed in the table below. The experiments 
were run on SUN 3/50 under UNIX, where tlie ITP was installed. 

group theorem digital circuit block world 
_I________________---------_---_---- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
inference hyperresolution hyperresolution hyperresolution 
rule & UR-resolution 

default 121 steps 72 steps 65 steps 
weighting 146 seconds 26 seconds 22 seconds 

weighting 49 steps 49 steps 37 steps 
of new tech. 52 seconds 21 seconds 15 seconds 
---------__--_____-I--_------_----- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

The Hasse diagrams extracted by TRISYS that provided the weighting leading to 
the results listed in the above table were computed by the algorithm described in [4] 
using the implication operators as follows: group theorem - L5 (a-cut at 3 9 ,  mean 
level); digital circuit --- L6 (a-cut at .93, half-upper level); block world - L55 (a-cut 
at .95, half-upper level); 

7. COMPARISON OF RESULTS USING VARIOUS IMPLICATION 
OPERATORS 

To investigate the effect of various many-valued logic operators on the process of 
extractions of the weighting hierarchies derived by the fast fuzzy relational algorithms 
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two of the three problems described in the previous section were selected for further 
study : 

0 The theorem of the group theory. 

0 The problem of the verification of the digital circuit called “full adder”. 

The extracted weighting hierarchies and number of steps and CPU time 
t o  get the conclusion are given below. Eleven diEerent operators were compared for 
each problem. Among them, selected tro show the effect are 1,5, L55, and LG. L5 is 
Lukusiewicz, L55 is H e m e - l l i c n e s  Luknsiewicz and LG is Kleene-Dienes, respectively. 

Shown in the tables below is the number of steps which it took to produce 
the conclusion, followed by the numbers in parenthesis which represciit the CPU time 
taken to reach the conclusion. 

1. The theorem of group theory: 2. The logical circuit: 

.95 50 50 50 87 85 78 
( 1 : O l )  ( 1 : O l )  ( 1 : O l )  ( 2 3 )  ( :23) ( :20) 

.9 49 49 49 107 105 105 
( 54) ( 54) ( 54) ( :32) ( :31) ( :31) 

.s5 49  49 49 107 100 105 
( :54) ( 5 4 )  ( :54) ( :32) ( :29) ( :31) 

----_-_-l_-_l______--------------------- 

----lll--------_l---_lll--------__-l______ 

The inference rilles were hyperwsolution arid UR-resoldion, used sirnultaneously. 
For comparison, the default weighting produced the conclusion (the empty clause) 
in 2 minutes 27 seconds, in 83 steps for the group theorem, and in 28 seconds in 98 
inference steps for the logic circuit, rmpectively. 

The Figure shows somc Ilasse diagrams, depicting the automatically ah- 
tained weighting hierarchies cxtracttd by TILISYS, based 011 methods dcscribed in 
Sec.4 and 5 above. Note the diffcrenccs in Nasse diagrams lor diffcrerit knowledge 
domains to which t h e  theorern prover is applied. The lighter the weight is, the scmner 

the mechariical theorern prover picks the clause. Therefore, the term located at the 
highest in the descriptor liicrarchy will be assigned a lightest weight. 
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In this paper, dynamical systems are classified into 
eight classes by the authors. Thereafter, efficient methods 
are developed in this paper to recognize an input vector using 
the third and the fifth classes of dynmical systems defined 
by the authors. Patterns classified and recognized by a 
dynamical system are based on attractors of the system. 
Wolfram's cellular automata, Barnsley's iterated function 
systems (IFS), and o-orbit Finite automata proposed by the 
authors are used to illustrate the idea that how patterns can 
be recognized by the third and the fifth classes of dynamical 
systems, which is a more efficient approach than the existing 
methods. 

Key words: Iterated functions systems, finite automata, 
attractor, fractal, cellular automata, configuration space, 
pattern recognition, neural network, dynamical systems, o- 
orbit finite automata. 

1. INTRODUCTION 

Because of the computation complexity, it is difficult to recognize 
arbitrary patterns at a reasonable cost Many problems of how to xecognize 
patterns efficiently remain open. Zn a simplified approach to pattern 
recognition, a pattern recognizer operates as a "black box" which 
receives an input vector x and produces a response qi on one of its output 
ports i, each port being assigned to a different class of observed items 
[l]. If x belongs to class i, q i  = 1 and qj = 0 for all j not equal to 
i. 

The theoretical problem is to devise an adaptive process such that 
given a set of input pairs { ( xk, qk ) ,  k = 1, 2, . . . K }, one finally 
hope to obtain a recognizer that will recognize all the input vectors. 

Neural network models of the Hopfield type have drawn intensive 
attention in the past years mainly because of their capacities as 
associative memory and fast computing device [1,2,3]. When an unknown 
pattern is imposed on a Hopfield net, the net iterates in discrete time 
steps using a given formula. The net is considered to have converged when 
outputs no longer change on successive iterations. This fixed pattern 
determines which class the unknown pattern belongs ta. 
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A network can be operated in two different modes. Let a net has N 
neurons. In synchronous operation, each of the N neurons simultaneously 
evaluates and updates its state according to a rule. In asynchronous 
operation, the components of the current state x are updated one at a 
time according to a rule. Hopfield and his colleague [2] proved that a net 
evolves toward a stable configuration if the mapping rules specified by a 
matrix are symmetric and the mode of operation is asynchronous. 

The Hopfield model has several unsolved problems as follows, which 
motivates our research work to establish more efficient methods in pattern 
recognition. 

(1) N o  theory is available to specify the conditions under which a net 
evolves toward a stable configuration if the mode of operation is 
synchronous (the synchronous mode is more favorable because of fast 
convergence ) .  

( 2 )  The information capacity of the Hopfield nets is limited. The 
number of arbitrary vectors that can be made stable in a Hopfield network 
of N neurons is proved to be O(N) [3]. It is very expensive and 
unattractive to use N neurons for storing O(N) patterns. 

( 3 )  In order to specify a system with N-bits configurations, O ( N 2 )  real 
parameters must be used ( 16 - 32 bits for each real number ) .  With 
introducing more parameters ( O(N2) ) to specify fewer bits ( O(N)), it is 
expected that a direct construction of a net from a given set of input 
pairs can be achieved. Therefore, the time complexity of neural network 
inference could be reduced. one of such approach is the outer product 
construction of a Hopfield net from a given set of input pairs [2]. But 
such a direct inference has not been achieved for synchronous net. If no 
such direct inference algorithm can be found, it is necessary to introduce 
some search algorithms in the parameter space ( O(N2) dimensional ) for 
inference of a net from a given set of input pairs. The parameter space 
for a neural network has high dimensions. Consequently, the time 
complexity for inference is high. 

The problems listed above motivate us to develop some new approaches. 
We have extended the Hopfield models in two directions (both use dynamical 
systems [5,10]). one of the two direction is presented in this paper, and 
the other one will be presented in [ 4 ] .  

In this paper, efficient methods are developed to recognize an input 
vector using the third and the fifth classes of dynamical systems defined 
in this paper. Patterns classified and recognized by a dynamical system is 
based on attractors of the system. Wolfram's Cellular Automata (CA) [lo], 
Barnsley's Iterated Function Systems (IFS) [5], and o-Orbit Finite 
Automata (o-OFA) [9] proposed by authors are special cases of dynamical 
systems. They can be used as models for implementing a pattern recognition 
procedure. 

In Hopfield model [ 1,2,3], a net has a memory. Given a set of input 
pairs which is used to train the net, the input vectors are stored in the 
memory. Vectors that are in the memory are also fixed point of the neural 
net. These fixed points exercise a region of influence around them. 
Configurations which are sufficiently similar to a fixed point are mapped 
to the memory by repeated iterations of the system operation. In other 
words, input vectors that are used to train a net are treated as fixed 
points or point attractors of the net. 

Our scheme can be considered as a generalization of the Hopfield 
model, which will be more powerful and efficient in pattern recognition. 
An input vector x is recognized according to its attractor. These 
attractor can be cyclic attractors instead of fixed points. For the case 
of fixed points, these attractors are in general not the same as the set 
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of the input vectors which are used to train the net. In the set of 
training input pairs, many different input vectors can be in the same 
class. For a trained dynamical system, let x be an input vector, if the 
evolution of a dynamical system with the initial configuration x leads to 
an attractor i, x belongs to class i. 

In this paper, section 2 introduces several basic concepts. Section 
3 introduces our classifications of dynamical systems. In section 4,  we 
explain our idea in detail. In section 5,  Wolfram's cellular automata are 
used to implement our idea. In section 6 and 7, Barnsley's iterated 
function system [ 5 ]  and the o-Orbit Finite Automata proposed by the 
authors used for the same purpose. Finally, a conclusion is drawn in 
section 8 .  

2. DEFINITIONS 

In this section, we introduce several basic definitions. 

Definition 1 
Let X be a complete metric space. Then the set of all compact subsets 
of X except the empty set is denoted as H(X) [5]. 

A dynamical system consists of a configuration space G(X) G H(X) 
together with a mapping F: H(X) ---> H(X). G(X) is closed under F. 
Formally, 

Definition 2 

D = ( G(X), F ) e  

Definition 3 
Let D = ( G(X), F ) be a dynamical system. Let 

Q ( O )  = G(X) 
Q(1) = F ( Q ( 0 ) )  

Qln)  - - .($p-l)) , . . .  . . .  

then 

is called an attractor set of D [5,10]. 

Definition 4 
A null attractor po is the empty set [IO]; 
A point attractor p1 is a configuration such that 

F ( P J  = P I ;  

A cyclic attractor is a set of configurations 

A regular infinity attractor is a cyclic attractor where k is infinity 
and the set can be specified by a finite amount of information; 

A strange attractor is the one which has an infinity number of 
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configurations and which can not be specified by a finite amount 
of information. 

Definition 5 
Let (X,d) be a complete metric space. Then the Hausdorff distance [5] 
between points A and B in H(X) is defined by 

h(A,B) = Max{ d(A,B),d(B,A) 1 
d ( A , B )  = Max{ d ( x , B )  : x E A 1 

d ( x , B )  = M i n {  d ( x , y )  : y E B 1 .  

Definition 6 
A transformation f : X ---> X is called a contraction mapping on 

[a,b] if 
(1) f(x) is continuous on [a,b]; 
( 2 )  f(x) is in [a,b] for all x in [a,b]; 

( 3 )  I P(x) I 5 s (1, x ~ [ a , b l  

where 1.1 means absolute value. The minimum number of such s is called a 
contractive factor for f(x). 

Definition 7 
An Iterated Function Systems (IFS) [5] consists of a complete metric 
space (X,d) together with a finite set of contractive mapping I: [5]. 
Formally, an IFS, A, is written as 

B = { X I  2 j, z = {wo, w,, . . . , WkJ. 
Here w’s are contractive mappings. 

Definition 8 
~n o-orbit Finite AUtOmata(o-OFA), A, is a 5-tuple [9] 

A = { R; z; M; I; F )  

where (1) R is a finite set of states 

R = { X,, X,, . . . Xi, . . . X, 
and Xi is a metric space. ( 2 )  I: is an affine alphabet, which is similar to 
an IFS transformation alphabet. ( 3 )  M is an ( n X n ) transition matrix. 
Each elements of this matrix, Mijr  is a subset of I:. The transition rule 
is 

( X,, w ) Xi, if w E Mij. 

The set Mij  can be empty. ( 4 )  The initial state is I = { XI }, and (5) the 
final states F is a subset of R. 

An o-OFA, A, accepts an o-regular language L ( A )  [ 6 , 7 ] .  The alphabet 
of L(A) is a set of affine transformations 2 .  L(A) is also defined as the 
orbit language of o-OFA: O(A)  = L(A). The images defined by 0-OFA are 



87 

where 

As a special example, an IFS A = {x, E} is an one-state o-OFA 

A = { X; E; M l , = z ;  X; X 

Hence the orbit language of an IFS is 

O(A)  = L ( A )  = E(". 

Definition 9 

and E is a mapping rule. For one dimensional binary CA, 
A binary CA [lo] is C = {X, E}, where X is a finite or infinity array 

= w1 = { r ,  R ,  k 1 .  

(1) k = 2 and each site value is specified in the range 0 through k-1. (2) 
The site values evolve by iteration of the mapping 

and ( 3 )  

1 2 2r+1 R E ( 2 , 4 , .  . . , 

is the code number for a mapping. 

For example, {r, R, k} = (2, 20, 2) means site value = { 0, 1 }, 
neighborhood size is 2r+l=5, and the CA uses rule 20. 

3 .  CLASSIFICATIONS OF DYNAMICAL SYSTEMS 

First of all, a dynamical system is described by a state x e X of the 
system. Such a state x is also called a configuration of the system [IO]. 
All such configurations together form a space H ( X ) ,  called a configuration 
space [lo]. some dynamical systems o n l y  use a subspace of H ( X ) .  secondly, 
an evolution of a system in its configuration space is specified by a set 
of production rules [lo]. Examples of discrete dynamical systems are 
cellular automata (CA)  [lo], and examples of continuous dynamical systems 
are iterated function systems (IFS) [ 5 ] .  The advantage of CA is that the 
mapping rule of a system in its configuration space is determined locally 
[lo]. Therefore, CA can be used t5 simulate a large variety of natural 
phenomena. The advantage of IFS is that the mapping of a system in its 
configuration space is continuous. Therefore, mathematically, IFS can be 
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handled easily. 

A specification o f  a dynamical system includes a definition of a 
configuration space and a set of rules for motions in the configuration 
space [5,10]. Most of dynamical system evolutions are irreversible [lo]. 
An orbit of a system is a trajectory in its configuration space. orbits 
merge with time, and after many time steps, orbits starting all possible 
initial configuration become concentrated onto bkattractors" [5,10]. These 
attractors typically contain only a very small fraction of possible 
configurations. Evaluation to attractor from an arbitrary initial 
configuration allows for pattern recognition behaviors. 

DynaItIiCal systems can be classified by its attractors [lo]. wolfram 
classified dynamical system into four classes[lO]. In this section, we 
first define 8 classes of dynamical systems. Then we classify dynamical 
systems into 8 classes, from the graph topology of possible orbits of a 
system in its configuration space. 

Definition: Let D = { G(X); F } be a dynamical system, where X has 
infinite elements. A dynamical system D is said to be in 

class 1 if it only has a null attractor 

class 2 if it only has a point attractor 

8, = I P1 I ;  

class 3 if it has more than one but a finite number of point 
attractors 

class 4 if it has an infinite number of point attractors; 

class 5 if it has an finite number of cyclic attractors; 

class 6 if it has an infinite number of cyclic attractors; 
class 7 if it has at least one regular infinite attractors; 
class 8 if it has at least one strange attractors. 

For a dynamical system where x is a finite set, then D must be in 
class 1, 2, 3, or 5. However, we can extend D=(G(X),F) to Dr=(G(Xr),F) 
where Xf is an infinity set. Then the classification of D and Df might be 
different. 

Examples of the class 2 dynamical systems are IFS[S] and o-OFA[9]. 
Examples of the class 3 dynamical systems are asynchronous neural 
networks[l,2]. Many CA and synchronous neural nets are in class 5. 

Theorem 1: A dynamical systems must be in one o f  the eight classes. 
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This theorem can be proved by the topology of orbits of a dynamical 
system in its configuration space. since space are limited, the proof of 
the above theorem will be omitted. If a system has more than one 
attractors, some of them might not be stable. The null attractor and the 
single point attractor will always be stable. 

Different attractor systems can serve for different purposes. In [ 4 1 ,  
we are interested in the single point attractor system, i.e. the second 
class of dynamical system because the single point attractor will be used 
as a container for input vectors. Here we interested the third and the 
fifth classes for efficient pattern recognition, which is discussed in 
detail in the next section. 

4. AN EFFICIENT SCHEME FOR PATTERN RECOGNITION 

In this section, we first show the current version of neural net might 
not be efficient because of its limitation on information capacity. Then 
we present our approach. Finally, we compare our approach and the Hopfield 
model. 

4.1 INFORMATION CAPACITY OF THE HOPFIELD MODEL 

We first show that in general, it is impossible to construct a neural 
net from a given set of training input pairs. TO proof this, consider the 
information capacity theorem of Ah-Mostafa and Jaques [ 3 ] .  The number of 
arbitrary configurations that can be made stable in a Hopfield net with N 
neurons is up Bounded by N [3]. Let a training set of input pairs contain 
more than N classes of patterns, then it is simply impossible to infer a 
net to recognize all the input vectors. An extended neural net might 
escape this limit [12]. If the storing capacity is O(N), the relative 
storing capacity is 

which shows that the Hopfield neural net is not efficient. 

4 . 2  PATTERN RECOGNITION usrw CLASS 3 AND 5 DYNAMICAL SYSTEMS 

we now present our approach. Note that both class 3 and class 5 
dynamical systems have a finite number of attractors. Given a pattern, 
that is, given an input vector x where the size of x is typically between 
one million to one billion, we can treat x as an initial configuration of 
a third or a fifth dynamical system. The dynamical system subsequently 
evolves to its attractor. Let a system have a finite number K > 1 of 
attractors, if the evolution of the dynamical system with the initial 
configuration x leads to an attractor pKi, where i is in { 1,2,3, ... , K 
1, x belongs to the class i. since the system only has K attractors, a l l  
the possible input vectors are classified into K classes. 

The pattern recognition problem using the third and the fifth class 
dynamical systems is defined as follows: to devise an adaptive process 
such that given a s e t  of pairs of input and output, one finally hopes to 
recognize all the input vectors by choosing a proper dynamical system, 
that is, by choosing a proper configuration space together with a mapping 
rule. We also call this problem as an inference problem. In a simplest 
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approach, the configuration space is determined by the input vectors, 
Therefore, the inference problem is to find a mapping rule such that the 
inferred dynamical system can recognize all the input vectors. There are 
examples where the configuration space are different from the input image 
space. we will discuss this in [12]. 

4 . 3  A COMPARISON OF OUR APPROACH AND HQPFIELD MODEL 

The difference between our approach and the Hopfield model are given 
as follows. (1) In the Hopfield approach, the fixed points are the input 
patterns used to train the net. In our approach where the third class 
dynamical systems are used, the input pattern xi evolves to an attractor 
pKi, where xi and pKi are different. The adaptive process is to train a 
dynamical system from a set of input pairs. The trained system will has a 
set of attractor {pKi, i=l,2,...,K}. The system with the initial state xi 
will lead to the attractor pKi. Therefore, this approach is a 
generalization of the Hopfield model. ( 2 )  In our approach where the fifth 
class dynamical system is used, i.e., cyclic attractors are used, no 
similar approach can be found in the Hopfield model. This approach covers 
a larger class of dynamical systems. ( 3 )  There is no O(N) information 
storing limit for our approach. Therefore. it is more powerful and 
efficient. 

5 .  CA APPROACH 

CA are discrete dynamical systems with simple construction but complex 
self-organizing behavior [lo]. They are mathematical models for complex 
natural systems containing a large number of simple identical components 
with local interaction. This structure is specially favored by massive 
parallel computation. CA consist of a lattice of sites, each with a finite 
of possible values. The values of the sites evolve synchronously in 
discrete time steps according to identical rules. The value o f  a 
particular site is determined by the previous values of a neighborhood of 
sites around it. The hardware implementation of CA constructs a special 
type of systolic arrays. 

A CAI  C = { X, }, with a finite X can be in the third or the fifth 
class using our definition. Therefore, our ideas can be applied by 
choosing CA as dynamical systems. In the following, we first present a 
fifth class CA. Then we show how the fifth class dynamical system is used 
in pattern recognition. Finally, a comparison of this approach with neural 
net is given. 

5.1 AN EXAMPLE OF CLASS 5 DYNAMICAL SYSTEM 

Let a CA be specified by 

1. X = { 0 ,  1, 2, ..., N-1 }, N = 100, i.e. we have an one- 

2. { R, r, K} = { 2, 20, 2 }, i.e. 
dimensional ring CA of size 100; 

k = 2 ,  i.e. site values can be either 0 or 1; 
r = 2 ,  i.e. the site value of the i'th site is determined by the 
previous site values of sites i-2,i-1,i,i+1,i+2, in MOD N; 
code number = 20, i.e. if the sum of previous site values of the 
sites i-2, i-1, i, i+l and i+2 is 2 or 4 ,  the site value of the 
site i is 1. otherwise, it is 0. 
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If we omit the translational invariance, repetition, and combinations ( 
See the explanation below ) ,  this CA has 12 attractor atoms [lo]. These 
attractors are represented by digital numbers: 

Period Minimal configuration in decimal number 

1 
2 
9R 
1 
22 
9L 
1R 
1L 
38 
4 
4 
4 

0 ( Null Attractor 
151 ( 00...0010010111 ) 
187 ( 00...0010111011 
189 ( 00...0010111101 ) 
195 ( ... ... ) 
22  1 
635 
889 
125231 
595703 
610999 
624623  (00..~0010011000011111101111) 

All other attractors can be made in the following ways: 

1. A spacial translation of the above attractors. For example, from 
the attractor 151, we can generate new attractors 151x2, 151x4: 

Period configuration 

2 
2 

151x2 ( 00...00 100101110 ) 
152x4  ( 00  0 1001011100 ) 

2 .  A repetition of a above attractors. For example, from 189 one can 

Period Configuration 

1 198 x( 1 f 21° ) (00.. .00101111010010111101) 

3. A combination of two or more above attractors. For exam le, from 
an attractor 189 + 151 X 218 can be 

generate a new attractor: 

the attractors 151 and 189, 
constructed. 

This CA has a finite number of attractors, including a few cyclic 
attractors. Therefore, it is in the class 5. In the limit where the size 
of the CA goes to infinity, it is in class 7 ,  because of the attractor 9R, 
9L, lR, and 1L. 

5.2 PATTERN RECOGNITION USING CA 

SY 
el 

Now we apply our idea by using the above CA as a fifth class dynamical 
-stem. There are total of 2loo  - 1 input vector x in H(x) . They are 
assified according to the attractors. The attractors are labeled by 

digital numbers. Given an input vector x, if the evolution of the CA with 
the initial input vector x leads to the attractor 151, x belongs to the 
class 151. For example, 

input vector: x = 00...0010111111000 
CA evolution: 00...0010110010100 

00...0010010111100 
00...0001110111010 
00...0010011101010 
00...0001000100110 
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00...0000010010111 ( 151 ) 
00...0000001111001 
00...0000010010111 ( 151 ) ... ... 

The above input vector x is recognized as in the class 151. The attractor 
151 is a cyclic attractor. 

5.3 A COMPARISON WITH HOPFIELD MODEL 

Compared with Artificial Neural Network (A"), we observe 
(1) No theory is valuable to specify the condition under which a CA of 
size N is in the third class. The only algorithm for this testing is 
enumerative search, which is apparently not very practical for large N. 
This is similar to the situation of synchronous ANN. 
(2) we have extended the pattern recognition algorithm to include the 
fifth class of CAI as seen in the above example. As a result, we expect 
the information capacity to be increased. 
( 3 )  The information capacity of CA is observed to be O(N), which is not 
better than ANN. However the power of CA can be extended easily to 
increase its information capacity at a very low cost. The cost to extend 
A" is more expensive. we will discuss these extensions in [12]. 
(4) There has been no intention to directly construct a CA from a given 
set of input pairs, like the outer product construction of ANN. However, 
a direct inference of ANN from a given set of input pairs has not been 
successful SO far. considering a search algorithm, the parameter space for 
CA is much smaller. For one dimensional case, these parameter spaces are 
specified by 

T = u TI, T, = {K, R } ,  R f {2, 4 , .  . . I 22r+l}  

where r = { 1, 2, ... , N/2 } is the neighborhood size, and R is the rule 
code. Even the CA is extended to more powerful classes [ 121, the parameter 
space is still relatively small, as compared with ANN. Therefore, the 
inference of a CA from a given set of input pairs is much easier than ANN. 

6. PIFS APPROACH 

An IFS [5] consists of a complete metric space X together with a 
mapping rule: X-->X. It has been shown that [ 5 ]  if the mapping rules are 
contractive, a single point attractor system is created. In this paper, we 
study piecewise IFS (PIFS). 

6.1 AN EXAMPLE OF CLASS 3 DYNAMICAL SYSTEM 

In this section, we extend Barnsley's IFS to piecewise IFS (PIFS). Let 
A1 = { X1, Wl } and A2 = {X2, W2) be two IFS. Let A = {X,W} be a new PIFS 
constructed such that X is the union of X1 and X2 and W is the union of W1 
and W2. Then the IFS A has three attractors: the attractor of Al, the 
attractor of A2, and the union of A1 attractor and A2 attractor. In 
general, if we compose a Piecewise IFS A from L IFS, the PIFS A has 2=-1 
attractors. In the following, we will present an example of PIFS to show 
how PIFS can be used in pattern recognition. 

As an example, let a PIFS be specified as follows 

1. X = [0,1], i.e. the Configuration space H ( X )  is the set of all 
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compact subsets of X; 
2 .  Let the mapping rule be 

WIY) = Y/2, y in [O, 0.5); 
W(Y) = 1 - y/2, Y in r0.5, 11. 

This system has three attractors {0), (1) and {O,l}. This PIFS is in the 
class 3 since it has a finite nunher of point attractors. 

6 . 2  PATTERN RECOGNITION USING PIFS 

In the above example, the PIFS has three attractors which correspond 
to three classes of image: 

A. ( 0 } for all images in [0,0.5); 
I3. { 1 } for all images in [0,5, 11; 
C. { 0, 1 } for all images other than class 1 and class 2. 

For simplicity, let the size of input vectors be 30. Let an input vector 
be 

x = 11111 11111 11110 00000 Q O O O O  00000 

The subsequent evolution will be 

input vector x = 11111 11111 11110 00000 00000 00000 
IFS evolution 11111 11000 00000 00000 00000 00000 

11110 00000 00000 00000 00000 00000 
11000 00000 00000 00000 00000 00000 
10000 00000 00000 00000 00000 00000 

( attractor ) 10000 00000 00000 00000 00000 00000 

Therefore this input vector x is recognized as in the class A, because the 
evolution if the PIFS with initial configuration x hits the attractor (0) 

7 .  w-ORBIT F I N I T E  AUTOMATA (a-OFA) APPROACH 

o-OFA [ 8 , 9 ] ,  proposed by the authars, is a generalization of IFS  
which is more powerful than IFS in image generation. An one-state o-OFA is 
an SFS. using a finite automata as control device in an IFS ,  an o-OFA iS 
generated. Formally, an o-OFA is a 5-tuple, just like a finite automata, 
except its alphabet is a set of transformations [ 9 ] .  Also, only o-strings 
[7] are used to define its attractors. 

There are images which can riot be produced by IFS  [SI but can be 
produced easily by O-OFA. o-OFA can be used in pattern recognition in the 
same way as I F S .  A piecewise 0-OFA can be defined in a similar way as the 
case a€ I F S .  Therefore, they construct a third class dynmical system and 
can be used to implement our idea. 

8. CONCLUSION 

In conclusion, we have suggested that dynamical systems can be used to 
recognize patterns. we have shown a powerful and efficient approach for 
pattern recognition using class 3 and class 5 dynamical systems, defined 
by the authors in this paper. specially, wolfram's CA, BarnsLey's IFS and 
o-OFA introduced by authors has been demonstrated in playing this role in 
this paper. 
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In [12], we will apply the above ideas to four other types of 
dynamical systems: LMO and LM1 cellular automata, and LMO and LM1 neural 
networks. These four type dynamical systems are proposed by the authors. 
The inference algorithm for dynamical systems from a set of input pairs 
will be presented in the coming papers. A complete different approach 
using class 2 dynamical systems will be presented in [4]. 
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ABSTRACT 

This p w r  is concerned with the integration of sensory data drawn from a 
heterogeneous set of sensors. A basic architecture for the sensory subsystem of 
an intelligent machine is developed, single modality and multiple modality 
sensory information processing are introduced, three levels are identified for 
sensory integration (single sensor, multiple sensor and multiple modality) and 
the forms of sensory integration required at each level are introduced and 
discussed. 

11. INTRODUCTION 

We are moving slowly but surely towards the age of “multi-sensor” machines. Primitive 
versions of such machines have been around for some time. Primitive, that is, when compared 
to human beings, for they do not possess the full complement of sensors possessed by human 
beings, and the sensors they do possess ate only a shadow of their human counterparts. 
Industrial robots are the typical example. The primitive character of these machines is 
reflected in the lack of any detailed theory of sensory systems, or indeed of any systematic 
methodology for engineering their sensory mechanisms. Of course, given their primitive 
nature, a detailed theoretical understanding is obviously of little imporrance, and likewise an 
engineering methodology. However, as technology moves towards more sophisticated sensory 
machines, and as the demand for the comct and eficient engineering of these machine 
increases, the need for this theory and methodology becomes both obvious and urgent. 

A number of problems need to be addressed when providing machines with a sensory 
capability. There is, first, the “selection” problem: the problem of determining the set of 
sensors required by a particular machine. The answer to this question will be determined by 
the function the machine is to perform and will be explicitly stated in the machine 
specification. This paper is concerned with the fact that this specification may include sensors 
of many different types (vision, tactile, pressure, force, sound, and others). 

A second problem is the “strategic” problem: How is the sensory data provided by the sensors 
to be used in problem solving? This problem, like the first, is not the direct concern of this 
paper. This paper is concerned, rather, with a third problem, the “multi-sensor” problem. This 
is the problem of processing the sensory data provided by the multitude of senso~s possessed 
by the machine, drawing that raw and/or processed sensory data together within and across 
many senson, and transforming it into a form suitable for use by the problem solving 
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mechanisms of the machine. In this paper a Sensory Systems Theory is posed as the proper 
solution to this problem. 

Given that one wishes to configure a machine with a specified complement of sensors, this 
theory would indicate: 

the sensory processing associated with individual sensors, 

how data from across a single sensor (say a vision sensor) is to be integrated 

how data from across a set of sensors of the same type (say two vision sensors) is to be 
integrated, 

how data from different sensor types (say vision and tactile sensors) is to be integrated. 

In short, if one defines, for each sensor, an associated sensory information processing 
mechanism, forming what one can term “sensor modules,” then this theory will indicate not 
only the structure of each module (that is, its algorithms), but also the links that are to be 
forged when a number of these modules are assembled together to fomi a complex sensory 
system. Vision research to date has focused primarily on sensory information processing 
associated with single sensors, or multiple .sensors of the same type. In this paper we wish to 
focus on the integration of sensory information drawn from sensors of different types. 

In the immediately following section, the components of a multi-sensor machine are outlined. 
In section 3 a model for the sensory subsystems of these machines is outlined, and the goals of 
a Sensory Systems Theory are defined. In section 4 various forms of sensory integration are 
introduced and discussed with reference to the human sensory system. Finally, in section 5, 
research problems which need addressing are presented. 

2. SENSORY SUBSYSTEMS 

Assume an intelligent machine possessing a non-empty set of heterogeneous sensors. This 
machine is to be applied to solve a range of tasks. For each of these tasks an algorithm is 
developed and a corresponding computer program implemented. Each program embodies a 
particular behavioural pattern, so the set of programs together embodies the set of behaviours 
of the intelligent machine. For example, if there are ten tasks there will be ten programs and, 
therefore, ten behaviours. In the succeeding discussion we will refer to these programs as 
“behaviours” or “behavvioural programs”. 

Assume that each of these programs is independent of every other, in the sense that they do not 
share subroutines. Assume also that each program draws on a non-empty subset of the set of 
sensors possessed by the machine. In addition, assume that there i s  no preprocessing of 
sensory data prior to its access by each program. This means that each program directly 
accesses raw sensory data and embodies all the necessary signal processing required for it to 
make use of this raw data. Similarly for effectors with respect to control. This means that each 
program acts independently of the others, from the sensors through to the effectors (Fig. 1). 

We will investigate this architecture now. What we will find are sensory processing 
requirements, at the sensory integration level, which could be provided as a central resource 
for these programs. What will emeGe is a sensory integration database which can be accessed 
by tliese programs. This database will perform sensory integration continually in response to 
changes in the sensory signals. As such it will be continually updated. It is appropriate, 
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therefore, to refer to it as a “sensory integration engine”’. Sensory Systems Theory can then be 
seen as the solution to the problem of designing this engine, for it will tell us how this engine 
is to be put together. 

The process of extricating this sensory integration engine from the architecture developed 
above is as follows. We note first ~f all  tha extracting useful information from a particular 
sensor requires processing algorithms tailored to that sensor. Visual sensory signals, for 
example, undergo their own unique processing in the brain, as also do auditory and tactile 
sensory signals. We will assume that the precise form of this processing will be determined by 
the information sought from the sensor. It will also be assumed that a particular sensor can 
supply a number of items of information. The nunber will vary from sensor to sensor. We will 
also assume that for each item of information, one can define an algorithm for extracting that 
information from the sensor. Therefore, for each Sensor one can define a set of algorithms for 
extracting useful information from that sensor. 

Stimuli Sensors Behavioural modules Effectors 

visual 

tilcI.de .4 

23 
i 

auditory 

Fig. 1. Independent behavioural modules 

As indicated above, each behavioural program will access a subset of the system’s sensors. 
Each semor, therefore, will be a member of a number of these subsets. Th is  means hat  a 
particular item of information may be requested from a particular sensor by a number of 
behavioural programs. If these programs embody all their own processing requirements, the 
algorithm for extracting an item of infomation from a particular sensor will be implemented a 
number of times. Similarly for other items of infomation associated with that sensor, and for 
other sensors. It makes sense, therefo~, to provide this item of information as a central 
resource, and to decouple the extraction of useful sensory information from the individual 
behavioural progrdms which require that information. This will eliminate redundancy and 
improve efficiency. 

This central resource will be a database. However, the information it provides will be extracted 
from the raw sensory data. This extraction process will be an integral component of the 
resource. Therefore, it is appropriate to refer to this resource as a “database engine”, though 
the sense in which “engine” is used  he^ is different to its conventional use in the database 
community. A better term is “sensory integration engine”, but we will delay discussion of 
sensory integration until the following sections. 

This engine may operate in one of two basic modes. In the first, it extracts an item of 
information from sensory data only when a behavioural program makes a request for that item 
of information. If the computing resources are available, a more eficient mode is to 
continually update that item of information as the sensory signal changes. It can then be made 
available immediately on request. If many items of information necd to be extracted, this 
immediate response can only be achieved thmugh some form of parallel architecture. For 
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example, each processing element of a parallel processor architecture may be dedicated to 
extraction of a single item of information. 

We can usefully view this engine in terms of a conventional database. First, it will be queried 
by behavioural programs for infomation as and when that information is required by the 
program. Second, it will facilitate the development of further behavioural programs, a process 
which can be likened to database application software development. Third, developing this 
engine for a particular intelligent system, and therefore for a particular set of sensors, can be 
likened to the process of data analysis and modelling familiar in conventional database 
development. 

A Sensory Systems Theory will define the structure of the sensory integration engine 
(database) just introduced. It will tell us, that is, how that engine is put together. Since we have 
associated a set of algorithms with each sensor, for the extraction of items of information from 
the corresponding sensory data, this integration amounts to little more than setting a set of 
processing modules (one for each sensor) side by side. “Integration” is the only required at the 
interface between the sensor modules and the behavioural programs, and this integration is 
trivial. 

Bebavioural programs may need to call on information, however, which is nor directly 
available from individual S~IISOIS alone, but which can be derived Irom the integration of 
sensory data from a number of sensors. The form of this integration will be discussed shortly, 
but typical elementary examples include the extraction of depth information from a pair of 
visual sensors, the extraction of the direction of a sound from a pair of auditory sensors, and 
the determination of the direction of a sound measured with respect to visual space. 

As before, a dedicated central resource could be made available for extracting this 
information. Our conception of the sensory integration engine presented above would 
correspondingly be adapted to accommodate this additional component. Now it is appropriate 
to refer to this central resource as a “sensory integration engine”. In the modified conception, 
we retain the dynamic database idea, but it no longer consists of independent modules sitting 
side by side. Rather, links are forged between the modules to form an integrated structure (Fig. 
2). Sensory Systems Theory will tell us where these links are, and how they are to be forged. It 
will teU us, that is, how to design a subsystem for sensory integration. 

Stiniuli Sensors Sensory integration Programs of 
module behaviour 

visual 

tactile 

auditory 

2 
3 
3 
8 

Fig. 2. Integrating sensory systems 
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3. THREE LEVELS OF INTEGRATION 

From the previous section we have identified two levels of sensory information processing: the 
single-sensor level and the multi-sensor level. At each of these levels there is some form of 
sensory integration. At the single-sensor level, this integration involves gathering together 
data from diffe17ent regions of the sensor (different regions of visual space for example). At the 
multi-sensor level it involves integration of data from different sensors, the classic example 
again being stereoscopic vision. In the following section these forms of integration will be 
discussed in more detail. h the present section we will introduce a third level of integt-dtion, 
which we will call “multi-modality” integmtion. 

The term “multi-sensor” currently refers equally It0 a pair of visual scnsors as to a combination 
of a visual sensor and an auditory sensor. However, these is an obvious distinction between 
these two cases. While a visual feature will sdmulate both visual sensors, assuming the sensors 
have overlapping sensitivities and the stirnu4ns falls within this region 01 overlap [I], a visual 
feature, or indeed an auditory Eeature, will not simultaneously stimulate both a visual sensor 
and an auditory sensor. This is due to the visual and auditory sensors being sensitive to 
different types of stimuli; electmmagnetic radiation and sound, respectively. This in turn 
significantly alters the form of integration possible between two visual sensors and between a 
visual sensor and an auditory sensor. 

To reflect this distinction we in turn distinguish between “multi-sensor” integration and 
“multi-modality” integration. Both involve multi-sensor integration. However? the first refers 
to sensors responding to the same stimulus type, for example two visual sensors, whereas the 
second refers w senson responding to different stimulus types, for example a visual and an 
auditofiy sensor. The term “modality” is drawn fmm Physiology where it is used to refer to the 
different human sensing systems. Indeed, human beings are multi-modality sensing systems. 

It is useful to view the introduction of this third level of integration in the context of specifying 
the sensory subsystem of an intelligent machine. Specifically, defining this sensory subsystem 
would involve specifying the sensory modalities possessed by the machine and hen the 
components of each sensory modality. The latter in turn would includc reference to the number 
of sensors possessed by each modality. 

multiple modality 

Fig. 3. Three levels of integration 

It is apparent now that there are two important aspects to Sensory Systems Theory (Fig. 3). 
The first is the single modality aspect, and we see the objective of such a theory being that of 
developing a model for sensory information processing which is not tied to my one sensory 
modality, but says something about the processing of sensory information in all modalities. 
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This theory will accommodate sensory information processing within single sensors and 
across multiple sensors. The second is the multiple modality component, and we see the 
objective of such a theory being that of describing the mechanisms by which links can be 
forged between a set of sensory modalities to form a unified functional sensing module for an 
intelligent machine. In tuum, three levels of sensor integration (single-sensor, single-modality 
multi-sensor, and multi-modality) need to be tackled by the theory. In the following section the 
forms of integration seen at each of these levels will be discussed in more detail. 

4. TYPES OF INTEGRATION 

4.1 SINGLE-SENSOR INTEGRATION 

At the single-sensor level we will distinguish two basic forms of integration pig. 4). The first 
we will term “lateral integration”, and concern integration of data from different “regions” of 
the same sensor. These regions may correspond, for example, to different regions of the 
electromagnetic spectrum (in the case of vision) or to different regions of the sensory space 
(diffemnt regions of a one- or two-dimensional visual image). This integration can operate on 
raw sensory data or on the products of processed sensory data, such as edge features. Familiar 
examples of integration at this level include region growing and edge chaining algorithms [2]. 
At the highest levels it involves integrating data about individual objects and sub-scenes in the 
context of forming an understanding of the complete scene captured by a sensor. The basic 
character of this form of integration, following from the examples above, is that of 
aggregation, or association, to contrast it with “sensor fusion”, which we will discuss 
presently. 

lateral integration 

Fig. 4. Single-sensor integration 

The second form of integration we will term “vertical” integration. It corresponds to the 
integration of shading, texture, motion and contour visual modules in the interests of 
extracling intrinsic images 131. The stereo visual module is not included here for it is based on 
multiple sensors and is categorised, therefore, under multi-sensor integration. The basic 
character of this form of integration is that of “fusion”, in the sense, at least, that visual 
components are combined to form a single component which transcends the former, and riiere 
may be mutual modification of each of the former in order to achieve the latter, In the sense of 
combining a number of images to form a single image, it is like stereo fusion, but it does not 
depend on multiple senson. 
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These two forms of integration, lateral and vertical, fit together in the following way. The 
lateral form of integration provides the mechanism by which the shading, texture, motion and 
contour visual mdules are extracted from the raw visual image, making them available for 
vertical integration. 

4.2 MULTI-SENSOR INTEGRATION 

One of the characteristic features of single-sensor integration is that multiple images are 
produced from the same raw visual image. In consequence, all of these generated images are 
in “register” with the original image and with each other. In moving from the single-sensor 
level to the multi-sensor level, and indeed to the multi-modality level, this regismtion is no 
longer given, and indeed much of the problem of integration at these lcvels concerns bringing 
images, obtained from diffemt sensors, into registration. 

The product of this integration is generally further useful information. The two cases in point 
are vision and audition. In stereoscopic vision data from two visual sensors is combined to 
give information about the three-dimensional struchm: of visual space (Fig. 5). This generates 
the stereo visual module which was mentioned above. In audition, on the other hand, 
integration of data from two auditory sensors enables information about the direction of 
sounds in space to be generated, 

Example: vision 

~ r] right i;timages 

feature-based fusion (+ registration) 

output data image 

Fig. 5. Multi-sensor hte,wtbn 

While registration is what is to be achieved, the mechanism for achieving that registration 
depends on there being a representation of the same feature(s) in the two images 
simultaneously. In stereoscopic vision the features m usually taken to be lines and edges. 
Finally, the basic character of multi-sensor integration is that of a genemtor of new, useful, 
information. At the same time, though, there is “fusion”, since two separate images combine to 
form a single image. Whatever its useful product may be, however, multi-sensor fusion is at 
least registration. 

4 3  MULTI-MODALITY INTEGRATION 

l b o  forms of integration can be identified at the multi-modality level (Fig. 6). The first is 
“spatial integration”. This involves bringing the spaces of the dilTerent sensory systems into 
register with each other. It is equivalent to the registration seen at the multi-sensor level, but is 
between sensors sensitive to different types of sensory stimuli. The exemplar is visual- 
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visual space 

auditory integration. It is characteriscd, generally, by the lack of a feature-based mechanism 
€or achieving registration. That is, although the same object may stimulate the visual and 
auditory sensors simultaneously (for example a person speaking), the same feature will not be 
represented in both senses. Also, multi-modality integration contrasts with multi-sensor 
registration in that the registration is more of a “mapping” than an “alignment” of sensory 
fields. There are circumstances, however, where this form of multi-modality integration 
reduces to multi-sensor integration. 

- 
mapping auditory space * * 

I 1 1 I 

Associative integration: 
I 1 I 1 

visual feature auditory feature 
space 

I 1 1 1 

Fig. 6. Multi-modality integration 

An example is integrating visual and range sensory systems. A ranging sensor produces a two- 
dimensional depth map. At the raw image level there is no basis for integrating these sensory 
systems, for they do not respond to the same features. This justifies regarding them as distinct 
modalities. However, luminance discontinuities in the visual image may correspond to depth 
discontinuities in thc range image. If these discontinuities are extracted from each image 
separately, they can then be used to achieve registration, and therefore visual space can be 
mapped into range space, and vice versa. 

The second form of multi-modality integration we term “associative” integration. Associative 
integration mediates the high-level transformation of features from one sensory modality to 
another, and vice versa. The typical exam e is hearing a voice and associating it with a face 
which is not cumntly in the visual field, or vice versa. Another example is being able to 
picture in one’s mind the visual form of an object which is manipulated out of sight. The term 
“associative” is used to describe this form of integration because what binds the features 
belonging to the different sensory modalities together is their co-occurrence with each other in 
the environment (for example, a face associated with a voice). 

There is significantly more to associative integration thaw this example would indicate.. 
Picturing in the mind’s eyc an objec ceived through tactile manipulation may require 

gether individual tactile-vis sociations to create a picture of an object which, 
ncountcred tactualily, may not previously have been encountered visually. In other 

words, the transformation may not necessarily depend on a prior association of features 
belonging to separate modalities, but should be seen, rather, as a problem solving process. 

Also, the association may in certain cases be complex, involving not two sensory modalities, 
but a number of sensory modalities. In the example just described, the proprioceptive sensory 
modalities are also required, for they provide information about the posture of the hand and 
arm manipulating the object, If a three-dimensional visual representation of the object is to be 
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word -> word * 

object c- word 
# 

achieved, this proprioceptive information needs to be available, needs to integrated with the 
tactile sensory modality, and the two used to assemble a visud representation of the object. 

1 
auditory 
representation 
of words 

In visual-auditory modality integration, molther form of transformation across modalities is 
also loud:  the transformation of a symbolic description of an object into a visual 
representation. This symbolic description may be obtained through the spoken word (the 
auditory sensory modality) or the written symbol (the visual sensory modality). Obviously the 
construction of a visual representation from the latter would net seem to involve a modality 
other than the visual modality. On the other hand, the written symbols may first be transformed 
into their auditory counterparts, and these latter used as the basis for picturing the object 
captured by the description, in which caSe the visual and auditory modalities are involved in a 
complex multi-modality integration process (Fig. 7). In general, however, the basic character 
of multi-modality integration is one of mapping and association. 

visual feature 

visual 
representation 
of words 

object I] 
depiction 

Fig. 7. Visualisation via associative integration 

Table 1 summarises the types of integration discussed in this section. 

TABLE 1. T y j x s  of Integration 

level of intgration 

single sensor lateral 

multiple sensor registration 

twe of intemtion 

vertical 

(feam-based) 
(non feahuebased) 

associative 
multiple modality spatial 

5. DISCUSSION 

In summary, we have proposed a model for the sensory subsystems of intelligent machines, 
consisting of three levels of integration: single sensor, multiple sensor, and multiple modality. 
We define the objective of a Sensory Systems Theory as that of developing a theoretical 
understanding of the integration of sensory infomation within single sensors, across multiple 
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sensos of a single modality, and across multiple modalities. The theory should tell us, first, the 
structure of a single scnsory modality and, second, how to forge links between a number of 
sensory modalities to create a multiple modality sensory subsystem for an intelligent machinc. 

It should be noted that the sensory subsystem model we have proposed is not a procedural 
model. We are not partitioning the sensory subsystem into a single-sensor processing module, 
providing inputs to a multi-sensor processing module and this in turn driving a multi-modality 
processing module. In many instances this processing model will make sense, but the whole 
objective of developing a Sensory Systems Theory is to tell us what the appropriate processing 
model for a particular sensory subsystem is. Thus, although we separate the stereo visual 
module from the shading and texture visual modules, associating the former with the multi- 
sensor level and the latter with the single-sensor level, we by no means imply that the former is 
in a processing module further down the line from the latter. On the contrary, indeed, the 
extraction of the stereo module begins immediately the visual information enters the visual 
comx of the brain [4]. 

The basic objectives of a Sensory Systems Theory include developing a generic model for the 
integration of data within a single sensory modality. This at first seems an enormous task given 
the diversity in sensors found both at the single modality level and across multiple modalities. 
On the one hand, for example, the theory would have to cope with a single modality where the 
sensors alp. the sanie (for example, two human-like visual sensors) or different (for example, a 
human-like visual sensor and an infra-red sensor), and with any number of each. On the other 
hand, it would have to cope with sensory modalities as diverse as the visual, auditory arid 
tactile modalities. Nevertheless, the advantages to be gained are enormous. 

One advantage would be the ability to develop generic computer architectures and algorithms 
for sensory information processing which could be deployed flexibly in the development of 
modality-specific information processing mechanisms, and could accommodate a number of 
different sensory modalities within the same architecture. An extension to this architecturc to 
take account of multiple modality integration would then enable it to be used for the complete 
sensory subsystem of an intelligent machine. 

‘me greatest strain on achieving multi-modality integration within such a generic architecture 
will be “spatial” integration; mapping together the. “sensory spaces” of different sensory 
modalities. In the case of integrating visual and auditory space this may reduce to simple 
geometry. In the case of visual and tactile, howevcr, the form of spatial integration required 
may be much more sophisticated. Research, therefore, is required to determine the precise 
form of this visual-tactile integration, and indeed to determine the nature of other forms of 
spatial integration. 

The issue of spatial mapping poses a major research problem, but motivates aIso a distinction 
to be drawn in Sensory Systems Theory between the mechanisms of sensory integration and 
the development of those mechanisms. The question raised by the latter is how, in humans or 
other animals, the integration of the sensory systems hac; developed. Multi-modality spatial 
integration is particularly interesting since there is no apparent basis for it. For example, the 
auditory sensory modality does not respond to visual stimulation, and the visual sensory 
modality, in turn, does not respond to auditory stimulation; nevertheless, in human beings the 
two sensory spaces are mapped together, such that visual gaze can be oriented to fixate on the 
source of an auditory stimulus. 
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If there is no basis in the features stimulating the two sensory modalities for integration, we 
must look elsewhere. An obvious place to look, though it may not be the only possible solution 
to the problem, is evolution. The assumption is that evolution favourcd the development of a 
visual-auditory spatial mapping. If so, there is an obvious implication for the engineering of 
intelligent machines, for it means that these spatial mappings will need to be preprogrammed 
prior to the introduction of the machine into its target environment. 

A counter to this might be the mapping together of a visual and a range sensory modality, 
where edges of different types (hninance and depth) can form the basis for integration, and 
the same mechanism may operate for integration in this case as for integration across two 
visual sensors in stereoscopic vision. That is, simple feature-based registration. But this in turn 
raises the issue of the mechanism by which this form of integration develops. That is, how do 
corresponding edges in images from different sensors know that they are one and the same. r’ 

This distinction is also motivated by the converse requirements of robustness. If a mapping has 
k e n  established, and some event then intervenes to disrupt the mapping, it is observed in 
humans [ 5 ] ,  and it is desirable in machines, that the situation be retrieved. This calls for an 
adaptive ability on the part of the machine. It may happen that this adaptive ability is the very 
same that supports the development of the mapping in the first place. Research is required to 
resolve these issues. 

A useful paradigm for robustness here is eye-hand coordination. This depends on mapping the 
space of arm postures onto visual space. It would appear that thc basis for this is partly innate 
and partly experiential. In essence, innatcness provides a crude mapping which experience fine 
tunes. An event which might intervene to disrupt this mapping, for example attaching it to the 
hip rather than the shoulder, would give the m a new placement relative to the visud sensors, 
requiring a completely new mapping. Retrieving this disruption would require an adaptive 
mechanism which might need facilities above and beyond those for the experiential fine tuning 
of the crude innate mapping. 

An understanding of both the mechanism of integration and he processes by which those 
mechanisms develop is particularly important in the context of engineering intelligent 
machines. Its importance lies in establishing a trade-off between the “pre-programming” of 
the sensory subsystem prior to its introduction into lhe environment in which it will operate, 
and the subsequent “experiential learning” required to bring it to its desired level of 
performance. From a programming point of view, the objective would be to reduce the amount 
of prior programming and, therefore, to leave as much of the development of sensory 
integration mechanisms to experience. This in tuum puts a major emphasis on developing a 
suitable substrate in which this experiential learning can take place. 

T a n g  into account the requirement for robustness, and assuming ha t  this robustness depends 
on mechanisms other than those required for the development of serisory integration 
mechanisms, three aspects to the problem of developing sensory integration mechanisms for 
intelligent machines can be identilied: preprogramming, development (training), adaplabili ty 
(robustness). To solve these problems a good starting point would be to study human sensory 
integration. Here the corresponding issue to the relation between preprogramming and 
experiential learning, is the relation between nature and nurture. How much of human 
behaviour, that is, is due to innate mechanisms and how much is due to experiencc? 

Consider visual-auditory integration as an example. When a child hears a click to the right or 
left of its head it orients in such a way as to direct its gaze in the direction of the sound. This is 
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an example of the mapping of the auditory and visual spaces together, so that a signal in one 
can be located in the space of the other. This orienting behaviour is an innate response 
mediated by the Superior Colliculi in the Thalamus of the brain. Neurophysiological 
experiments clearly show the mapping together of visual and auditory stimuli in the Superior 
Colliculi [ 61. 

This innate mechanism mediates the development of higher levcl rneclaanisms of visual- 
auditory spatial integration in the cerebral coi-tex. In turn, it provides a fall-back mechanism 
when the former fails. We can see here, therefore, a trade-off between innate preprogramming 
and experiential learning. Whether this mechanism represents the optimal trade-off between 
innateness and experienee is another matter, though one would favour an affirmative answer 
given the remarkable achievements of evolution in other respects. 

This innate versus experiential trade-off can be seen in other facets of development, including 
eye-hand coordination mentioned above. A first step to understanding this trade-off and the 
mechanisms for achieving both innate preprogramming and experiential learning, would 
obviously be, therefore, a study of the corresponding human mechanisms. This is a useful 
stming point, therefore, for pursuing a Sensory Systems Theory. 

Finally, hi this paper we have focused on the sensory subsystem of a multi-sensor machine. 
The theory suggested here will be just one component of a more elaborate intelligent machine 
theory. This more elaborate theory will include details of the representation of knowledge and 
skill, the integration of sensory data with effector actions, and ultimately the coordination of 
sensors and effectors under the guidance of knowledge and skill. It will tell us how to put 
together intelligent machine. As part of that theory, the Sensory Systems Theory will tell. us 
how to put together one vital component of that machine. 
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This paper discusses a new approach €or soh~inp, constrained optimization 
problems using m a s  tandard gemtic a1gorithn:t- We call this approach: “evo- 
lution progranmiing” . We q u e  that a “natm J” representation of a solution 
for a given problem plus a family of applicable gwietic operators might be quite 
useful in the approximation of solutions of constrained optimization problems. 
We describe some experiments of using this approach. 

1 INT‘RQDIJCTION 

To solve a nontrivial problem using a genetic algorithm approach we can either trans- 
form the problem (it need not be an easy task) into a form appropriate €or the genetic, 
algorithm, or we can transform the gcnctic algorithm to suit the problem. This paper 
represents thc latter approach. We discuss applications of nonstandard genetic algorithms 
to approxiriiate constrained optimization problems. We depart from classical genetic al- 
gorithms which sperate 011 strings of bits: rather, we search for richer data structurcs arid 
applicable “genetic” operators for thesr: structures. 

The binary alphabet offers the maxiriaurn number of schemata per bit of information of 
any coding (sce [SI) and consequently the bit string representation of solutions bas dom- 
inated genetic algorithm research. This coding also facilitates theoretical analysis and 
allows elegant genetic operators. Rut the ‘implicit parallelism’ result does not depend on 
using bit strings (see [I]) and it may be worthwhile to cxperirrient with richer d a h  struc- 
tures and other types of genetic operators. We argue here that these rnodificattions rnay 
be useful when the problem to hc solvcd involves non-trivial constrsin t s  that conliniially 
have to be msintaincd during the genetic operations. 

We bclieve that a promising dircction for incorporating constraints for genetic algo- 
rithms is with the introduction of richer data structures together with a family of applica- 
ble “genetic” operators, which would “hide” the constraints present in the problem. These 
richer data structures, with appropriate genetic operators, would constitute an ewol7ition 



108 

program. The structure of an evolution program is identical to the structure of a classical 
genetic algorithm. The differences are hidden on the lower level: each chromosome need 
not be represented by a bit-string. Moreover, for the recombination process we introduce 
“genetic” operators appropriate for thc given structure and the given problem. 

Three experiments (the transportation problem, the graph drawing problem, and the 
traveling salcsman problem) based on the proposed methodology are discussed in the 
paper. All of these adopt “natural” data structures and specialized “genetic” operators. 
The results are more than encouraging. We discuss them in turn. 

2 EVOLUTION PROGRAM FOR THE TRANSPORTa4TION PROBLEM 

In this section we describe an optimization problem, known as the transportation problem, 
and show how it can be formulated as an evolution program. 

2.1 THE TRANSPORTATION PROBLEM 

Suppose that a commodity is available at a number of sources and that certain quan- 
tities of this commodity are required at a number of destinations. The demand at  each 
destination may be satisfied from one or more sources. The objective of the transportation 
problem is to determine the amount to be shipped from each source to each destination 
such that the total transportation cost is minimized. 

If the transportation cost on every route is directly proportional to the number of units 
transported, we have a linear transportation problem. Otherwise, we have a nonlinear 
transport at ion pro b le rn. 

Suppose that there are n sources and k destinations, that the amount of supply at 
source i is sozlr[i] and the demand at destination j is d e s t k ] ,  and that the unit trans- 
portation cost between source i and destination j is given as a function f d j .  

Let xij be the amount transported from source i to destination j; then the transporta- 
tion problem is to minimize 

subject to the following constraints: 

(1) 
(2) 
(3) 

xtz1 xdj = sour[i], for i = 1,. . . , n 
xij = d e s t [ j ] ,  for j = 1, . . . , IC 

q j  2 0, for i = 1,. . . ,n and j = 1,. . . , k 
This, in fact, is the balanced transportation problem, due to equalities in (1) and (2). 

If all the so~sr[i]’s and de.st l j ] ’s are integer, any optimal solution to a balanced linear 
transportation problem is an integer solution, L e .  all xij (1 5 i 5 n,  1 5 i 5 k) are 
integers. Moreover, it can be shown that the number of non-zero values among the z;j’s 
is at most k + n - 1. However, it is not the case for a nonlinear transportation problem, 
where q j ’ s  need not be integers and the number of non-zero elements may be arbitrary. 
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2.2 FORMULATING THE TRANSPORTATION PROBLEM AS AN 
EVOLUTION PROGRAM 

In order to build an evolution program for the transportation problem, we need to 
find a representation for caIididate solutions and create appropriate genetic operators for 
this representation. 

It seems that for the transportation problem a matrix representation is clearly the 
most natural one - after all, this is how it i s  presented and solved by hand. So let lis 

assume a matrix V = (v;j) (1 5 .i 5 I C ,  1 5 j 5 n )  represents a possible solution to the 
transport at ion problem. 

There is a large group of possible “genetic” operators we can apply to matrices. Differ- 
ent operators may be selected for linear and nonlinear cases of the transportation problem. 
Let us consider these two cases separately. 

2.2.1 Linear Transportation Problem 

We search for a solution expressed as a table of nonnegative integers. Because of 
nontrivial constraints, we can create the following “genetic operators”: 

mutation: this operator would select part of a matrix, find mariginal sums, erase 
all entries in the selected part, and place some random integers for all entries such 
that the new numbers satisfy constraints for mariginal sunis. 

arithmetical-crossover: this operator would create a matrix which is an arith- 
metical average of two parent matrices. Additionally, the resulting matrix (which 
need not contain only integers) is rounded in a special way to preserve all mariginal 
constraints . 

We have built an evolution program for solving the linear transportation problem 
using a matrix structure and the above operators [IT]. A number of examples from the 
transportation problem chapters of textbooks in Operations Research were chosen as 
the base set of problems. They were supplemented by a number of other examples with 
randomly generated unit costs, supply values, and demands. For the purposc of evaluation 
of the evolution program, each example was first solved using a standard transportation 
algorithm so that the optimum value was known for later comparison. Since the optimum 
tmmsportation plan in the linear case can be determined easily, we have selected the 
percent above optimum in 100 generations as an evaluation of the “goodness” of our 
approach. In all cases, this number was below 2%. 

For a further discussion on the lineax transportation problem and possibilities of ap- 
plying classical genetic algorithms to this problem, see [l?]. 
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2.2-2 Nonlinear Transportation Problems 

We have investigated the effectiveness of our approacLl dea ing with non inear trans- 
portation problems. This leads to further opportunities in selecting genetic operators. 
Wc have created the following “genetic operators” : 

mutation-1: this operator would select part of a matrix, find mariginal sums, erase 
all entries in the selected part, and place some random integers for all entries such 
that the new numbers satisfy constraints for rnariginal sums. At the same time, this 
operator attempts to introduce as many zero entires into the matrix as possible. 

e mutation-2: this operator is identical to the previous one except it avoids choosing 
zero entries by selecting values from a range. 

a arithmetical crossover: this operator is simpler than its counterpart for integer 
numbers. Two matrices VI and V2 would produce two offspring, Wl and W2, such 
that W1 = c1- V, -t c2. K, and W2 = c2 V, -+- c1. &, where c1 and c2 are any positive 
reals such that c1 + c2 = 1. Note that this operator would preserve the constraints 
(sums for rows and columns). 

The experimental application of this approach for solving nonlinear transportation 
problems is more than encouraging. We compared the results obtained using a commercial 
system, GAMS (see [a]), with our evolution program (called GENETIC-2) on six nonlinear 
cases (nonlinear functions A - I?). For a full discussion on the selection and classification 
of these functions, see [12]. 

A typical comparison of the optima between GENETIC-2 (averaged over 5 seeds) and 
GAMS for all six functions is shown in the table below. 
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3 EVOLUTION PROGRAM FOR THE GRAPH DRAWING PROBLEM 

In this section we describe the graph drawing problem and show how it can be formu- 
lated as an evolution program. 

3.1 THE GRAPH DRAWING PROBLEM 

The graph drawing problem (see [4]) is the dcterrnination of an algorithm for drawing 
pictorial diagrams of a dirccted graph which is easy to understand and remember. A large 
number of algorithms havc becri proposed for drawing graphs. The kinds of algorithms 
used, and their costs, vary according to thc class of graph for which they are intended 
(e.g. trees, planar graphs, hierarchical graphs or general undirected graphs), the aesthetic 
criteria they consider, and the methods they use for optimizing the layout. In most cases, 
finding optimal layouts for large graphs is prohibitively expensive, so a number of heuristic 
methods have been investigated that find approximate solutions in a rcasonable amount 
of time. A good discussion of the problem of drawing graphs, aesthetic criteria that have 
been considered, and various methods that have been proposed is given in [16]. A more 
extensive bibliography is given in [4]. 

The aesthetic criteria (for ease in understanding and remembering) can be viewed as 
goals of the optimization problem and include: 

C1: Arcs pointing upward should be avoided, 

Cz: Nodes should be distributed evenly over the page, 

C,: There should be as few arc crossings as possible. 

3.2 FORMULATING THE GRAPH DRAWING PROBLEM AS AN 
EVOLUTION PROGRAM 

The representation of a solution for the graph drawing probkxn consists of a 2 x N 
matrix which stores the row and column coordinates of each node on a page ( N  i s  the 
total number of nodes). Figure l(a) give an example of 18 nodes graph and Figure 2 
provides its genetic representation. 

The evaluation of each chromosome M i s  based on three aesthetic criteria discussed 
earlier a id  is expresscd as: 

where ad, u,, and (11 represent the weights associated with arcs pointing down, arcs cross- 
ing, and nodes that lie on the same level; nd(M) and n , (M)  denote the numbers of such 
arcs; q(M) denote the number of nodes that lie on the same level.. ‘The horizontal arcs 
are handled the same as arcs that point upward. 

The “genetic” operators uscd in the system were: 
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(a> (b) 

Figure 1: Diagram of graph G (a); output from evolution program for the same graph 

(b). 

Figure 2: Genetic representation of diagram of graph G. 

o standard mutation: this operator changes randomly a node’s coordinate: either 
row or colunm. 

a smart mutation: this operator attempts to use problem specific knowledge to 
It focuses on getting all arcs pointing down by moving mutate a chromosome. 

nodes without parents lip, and positioning child nodes below their parents. 

o crossover: this operator takes a random number of nodes from the first parent and 
remaining nodes from the other parent. If the row and column of a node from the 
second parent is already represented in nodes from the first parent, then the node 
is randomly assigned. 

The results are quite interesting: Figure l(b) provides the shape of the best chromo- 
some after 200 generations for graph G. This graph has no arcs pointing up or horizontal, 
one arc that crosses another, and 11 of 13 siblings are on the correct level. 

Two other “evolution programs” (one of these uses a r x c matrix for its chromosomes, 
where T and c are the number of rows and columns available on the output page; both 
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programs use different “genetic operators”) for the graph drawing problem are described 
in [8]. 

4 EVOLUTION PROGRAM FOR TRAVELING SALESPERSON 
PROBLEM 

In this section we describc the traveling salesman problem and show how it can be 
formulated as an evolution program. 

4.1 THE TRAVELING SALESMAN PROBLEM 

The statement of the TSI’ is simple: a traveling salesman must visit every city in 
his teritory exactly once and then return to the starting point; given the cost of travel 
between all pairs of cities, how should he plan his itinerary so that the total cost of his 
entire tour is minimum‘? 

4.2 FORMULATING THE TRAVELING SALESMAN PROBLEM AS AN 
EVOLUTION PROGRAM 

The representation of a solution for TSP is a two-dimensional binary matrix V = (zjj). 
If the tour goes from the city i directly to the city j, then x I j  I= 1, othewise xij = 0. This 
means that there is o d y  one nonzero entry for each row and each column in the matrix 
(for each city c there is exactly one city visited prior to c,  and exactly one city visited 
next to c ) .  For example, a chromosome in Figure 3(a) represents a tour that visits the 
cities (1, 2, 4, 3, 8, 6, 5 ,  7) in this order. Note also that this representation avoids the 
problem of specifying the starting city, i.e. the Figure 3(a) represents also tours (2, 4, 3, 
8, 6,  5 ,  7, l), (4, 3, 8, 6, 5, ‘7, 1, 2), etc .  

(a) 

Figure 3: f3ina.r~ Matri 

It is interesting to note, that each complete tour is represented as a binary matrix with 
only one bit in each row and one bit in each column set to one; however, not every matrix 
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with these properties would represent a single tour. Binary matrix chromosomes may 
represent multiple sub-tours: each sub-tour will eventually loop back onto itself, without 
connecting to any other sub-tour in the chromosome. For example, the chromosome from 
Figure 3(b) represents two subtours 

(1, 2, 4, 5, 7) and (3, 8, 6). 

We decided to allow sub-tours in the hope that natural clustering would take place. After 
the NGA algorithm had terminated, the best chromosome would be reduced to a single 
tour by successively combining pairs of sub-tours using a deterministic algorithm. Sub- 
tours of one city (a tour leaving a city to travel right back to itself) having a distance 
cost of zero would make no sense and were not allowed. We arbitrarily set a lower limit of 
three cities in a sub-tour, in an attempt to prevent the GA from reducing a TSP problem 
to a large number of sub-tours each with very few cities. 

To demonstrate the significance of this representation, and of allowing subtours to 
exist within chromosomes, the example in Figure 4 was devised. Figure 4(a) depicts the 
subtours resulting from a sample run of the algorithm 011 a number of cities intentionally 
placed in clusters. As expected, the algorithm developed isolated subtours. Figure 4(b) 
depicts the tour after the subtours have been combined. 

i 
. 

Figure 4: Separate subtours (a) and the final tour (b) 
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The “genetic” operators used in the system were: 

e mutation: this operator takes a chromosome, randomly selects several rows arid 
columns in that chromosome, removes the set bits in the intersections of those TOWS 

and columns, and randomly replaces them (in possibly a different configuration). 

0 crossover: the crossover operator begins with a child chromosome that has all bits 
reset (zero). The operator first examines the two parent chromosomes, and when 
it discovers the same bit (identical row and column) set in both parents, it sets 
a corresponding bit in the child. The operator then alternately copies one set bit 
frorn each parent, until no bits exist in either parent which may be copied without 
violating the basic restrictions of chromosoxn.e construction. Finally, if any rows in 
the child chromosome still do nut contain a set bit, the chromosome will be filled 
in randomly. As the crossover traditionally produces two child chromosonies, the 
operator is executed a second time with the parent chromosonies transposed. 

In an attempt to evaluate the results of our algorithm, we used an empirical formula 
for the expected length of L* of a minimal TST) tour: 

where N is the number of cities, R is the area of the square box within which the cities 
were randomly placed, and K i s  an empirical colustant of approximately 0.765. The square 
box to contain thc random cities was selected to be 13.071895 units per side. This resulted 
in an L* of 100.00. 

Typical results from the algorithm, as applied to 100 cities randomly placed, are 
displayed in Figure 5(a), where the resultant chromosome contained 12 subtours, with a 
combined cost of 108.3. After the subtours were combined into a single tour, the cost of 
the entire tour was 112.9 (Figure 5(h)). 

The early results are promising, since they are oiily slightly worse than those reported 
in [7 ] ,  where 20,000 generations were used (twice a s  much). (For more details the reader 
is refcrred to [Is]). Additionally, the proposed method leaves some room for further 
improvements. Firstly, our deterministic algorithm for combining several sub-lours into a 
single tour is far froin perfect (see, for example, crossing lines on Figure 5(b): these can 
be easily removed rearranging the sequence of nodes to be visitcd). Secondly, there are 
other “genetic” operators on binary matrices, which may be cven bettcr than the current 
ones for the TSP. Currently, we explore this possibility further. 

CONCLUSIONS 

We plan to build evolution systems for different problems, using different structures 
and different operators. Later, all systems would be combined in a single software product 
suitable for various types of optimization. The only responsibility of a user (apart from 
supplying the evaluation function) would be to select an appropriate data structure and 
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Figure 5:  ‘l’he best chromosome (a) and the final tour (b) 

meaningful genetic operators, the latter selccted from a library provided for each data 
structure, 

It is too early to give convincing evidence of the soundness of the proposed approach; 
however, the first results are very encouraging. Additionally, it seems that that a “nat- 
ural” representation of a solution for a given problem plus a family of applicable genetic 
operators might be more efficient in solving some constrained optimization problems 
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ABSTRACT 

This paper describes a Computer Aided Knowledge Engineering (CAKE) tool that 

embodies a development methodology specially suited f o r  the construction of 
knowledge based systems. The  computer based tool also includes a library of 
predefined problem solving models called G-TEGS (Generic Techniques). Categories 
of G-TECS are defined as classes and are organized in hierarchies. The inheritance 

and  instanciation mechanism substantially ease the generation of specific applications, 
Reusability of predefined models is supported at  a broad level. 

1. INTRODUCTION 

T H E  NEED FOR COMPUTER AIDED KNOWLEDGE ENGINEERING TOOLS 

Knowledge-based systems (KBSs) are, despite the myths and hypes which accompanied their 
early stages, information processing systems (IF'S). It is true that there a re  significant differences 
between implementation techniques used for  constructing MBSs and  traditional IPSs. However, the 

great deal of experience gained in the field of information system development is still valid and 
very useful. 

Developers of knowledge-based systems must profit from the years of experience in 
developing IPSs. Therefore, it must be realized that a well defined development methodology is vital 

for the successful construction of a knowledge-based system as it is the case for any commercial 
software system. It can also be gathered from the IPS experience that there a re  substantial benefits 
to be derived from embodying a development methodology into a computer-based tool or Computer 
Aided Knowledge Engineering (CAKE) tool. 

Based on our  experience building numerous commercial KBSs we propose a development 
methodology specially suited for the construction of this type of software systems. This methodology 
has been embodied in a computer-based tool which supports knowledge engineers from the 
knowledge acquisition phase down to the design of the system. The  tool allows for  the generation of 
operational code as soon as any subset of the KBS's design has been completed. The  architecture of 
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the KBSs produced by the tool reflects the principles of the underling development methodology. 

These principles emphasize highly parallel and modular architectures. 

The software engineering community has taught us through the Object-Oriented Approaches 
the importance of reusability; that is, the possibility of using and adapting off the shelves 
subsystems. Researchers in the A I  community have tackle the problem of providing predefined 

problem-solving modules: for instance, Chandrasekaran's group work on generic tasks, and the 

KADS project. We have tried to reconcile the views of generic tasks and the KADS project together 

with an object oriented approach. 'The main objective is to provide designers of expert systems with 

predefined problem solving models. These models are made available in our CAKE tool to the 

knowledge engineer through out the design process. Our efforts have been concentrated in providing 

hierarchies of "canned" generic problem solving models, which we call G-TECS for  generic 
techniques. 

2. hlETHODOLOGJCAL APPROACHES TO T H E  DEVELOPMENT OF 

KNOWLEDGE-BASED SYSTEMS 

There are a number of lessons that the developers of KBSs have learned from the 

construction of successful and unsuccessful systems. The use of ad-hoc techniques, trial-and-error 

procedures, and rapid prototyping not based on sound models resulted in some disasters. These 
experiences have demonstrated that the construction of knowledge-based systems must be guided by 

a strict development methodology specially tailored for  this kind of software systems. Methodologies 
for  the construction of conventional IPS appear to be lacking some essential features required to 

support the development of KBSs. We believe that this i s  mainly due  to the fact that these 
methodologies are mostly concerned with data modeling and functional decomposition. Moreover, 

these methodologies d o  not support activities such as knowledge modeling and knowledge 
processing. Therefore, no assistance i s  provided for  tasks such as knowledge elicitation and 

knowledge structuring, which are essential in the construction of KBSs. This problem has been 
recognized by researchers in the area and some development methodologies have been proposed ( I  4), 
(3), (4), ( 5 ) ,  (6), and ( I ) ,  (2), (8) A comparison between the main features of some of these 
approaches and ours will be presented in section 6. 

The methodology we have developed is called the Agent/Concept methodology (AC) (9). 
This methodology has been embedded in a computer based tool called EMA fo r  Executable 
Methodology for the development of knowledge-based Applications (12) and ( 1  3) due  to the fact 

that the AC methodology is fully contained in EMA, we use the name EM.4 to refer to both, the 
methodology and the tool. EMA supports the acquisition of knowledge, the design and construction 
of knowledge-based applications as well as the automatic generation of executable code. It is 
important to notice that the applications generated by EMA reflect the underlying principles and 
paradigms upon which the methodology is based. 

Another important aspect of EMA is the use of a predefined library of problem solving 
models. These problem solving models are available to the designer of KBSs through out the 
developing process. This will be described in detail in section 5. EMA has so f a r  been used to 

develop several banking KBSs and the results obtained have been very encouraging. 
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3. THE KNOWLEDGE MODEL 

The knowledge model is a representation of a set of actions and coiicepts necessary to 
perform some task in a certain domain. The knowledge model organizes these activities and concepts 
by identifying the dependencies between activities and concepts, and by recognizing the 

relationships among concepts. The building blocks of the knowledge model are concepts, agents, and 
events. Concepts and  their relationships are organized in structures, which form the Information 
Structure. Agents are organized in global views and their internal functioning is described in local 

views. 

3.1 CONCEPTS / INFORMATION STRUCTURES. 

Concepts a re  used to model the static knowledge needed to accomplish a specific task. 
Concepts can represent classes of abstract objects such as a loan, a client, or a car. These are 

referred to as object-types. Concepts can also be used to refer to specific information regarding the 
attributes of an object-type such as the anioutil of a lomi, the iianze of a client, or fhe  colour of a 
car. 

Concepts a re  related by relationships, the methodology distinguishes between two main 

a )  Universal Relationships : They express relations between concepts which are permanently 

classes of relationships : 

valid. More specifically, all the instances of the concept appearing in such a relationship must 
satisfy the relationship. Generalisation and Aggregation relationships belong to this class. For  

example, imagine a system distinguishes between two types of loans, namely commercial and  
personal. In this system, every instance of a loan must belong to either type of loan. 

one concept could be used to describe a set of concepts with similar characteristics (subclass/class 
relationships). For example "a car is-a vehicle" or "A truck is-a vehicle". 

Generalisation (is-a / a-kind-of) : This relationship is used to express the idea that 

Aggregation (is-part-of): Used to describe the fact that a concept can be made up 

of other concepts. For example, "A wheel is--part-of a car" and "an engine i sga r t -o f  a car". 
b) Existential Relationships : They express relationships between instances of concepts 

which may (temporarily) apply. The  Association-Relation belongs to this class. 
Association-Relations : This is the same kind of relationship used in the Entity 

Relationship data models. It is used to express a special kind of relation between concepts. For 
instance, "a client O W H S  a vehicle" this statement expresses the relationship owns between the 

instance of the concept client and the instance of the concept vehicle. Notice that this relationship is 
of  the class of existential relationships since a client might or might not own a car. 

The collection of all the modelled concepts and their relationships form the Information 
Structure. The  information structure represents a map of all the static knowledge that a system 

contains. 

As it was mentioned above, concepts represent object-types, the instances of these object- 
types are called objects. For example, in an application dealing with the scheduling of inter-banking 
money transfer we would find a concept like "Message 001 from Banque Cantonale Vaudoise to 
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Swiss Bank Corp.". This is an object which is an instance of the object-type "message". The simplest 
form of information in the methodology is called information-unit (info-unit). Info-units are made 

up  of an  object, one of its attributes and the value of this attribute. For example, "The amount of 

message 001 from Banque Cantonale Vaudoise to Swiss Rank Corp. is of Sfr. 15,000,000" which 

implies that the attribute anaount of the object message 001 has the value Sfr. 15,000,000. A 
generalisation of an  information-unit is called an inforrnation-type (info-type). For example, every 

message has an amount. A set of info-units of the same info-type is called an information-set 

(info-set). 

3.2 AGENTS 

Info-sets a r e  related among themselves by dependency relationships, This type of 
relationship indicates the logical dependency between one dependent info-set and one or more 
causal info-sets. This dependency makes explicit the infosets necessary to produce a specific info- 

set and also describes the specific conditions that have to be satisfied for  this to take place. This 
type of dependency relationship determines an agent. Agents are the active elements in the 

methodology. They describe the processing required to produce a dependent info-set. This 
processing requires different types of knowledge, namely : 1) Activation Knowledge, 2) Input 

Knowledge, 3)  Constraint Knowledge, 4)  Processing Context, 5 )  Functional Knowledge. 

It is important to notice that agents are self-contained, they possess all the knowledge to 

control themselves and to process the info-sets that are sent to them. Agents d o  not "know" about 

the existence of other agents. The only communication among agents takes place through info-sets. 

Figure 1 .O shows how communication among agents takes via a blackboard ( 1  5). 

1tS 

Figure 1 .O Implementation of the blackboard paradigm in the methodology. 

This principle permits the systems developed with the methodology to be extremely flexible. 
Agents can be implemented using very distinct technologies (rule-programming, object-oriented 

programming, procedural programming, etc). Agents can be modified or replaced without affecting 
the activities of other agents. 
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3.3 EVENTS 

An event is information or stimulus coming from the environment that surrounds an  
application. They  represent external request for processing or external submission of information to 

the system. Events can be information coming from the user (user-interface events), o r  information 
coming f rom other application, or information coming directly from the domain (such as input 

coming from real-time sensors). 

As it  can be seen events are used to model the interaction o f  a system with the external 

world. The  interaction includes dialogue with the user, query requests to DBs or messages coming to 

the system f rom external instrumentation. 

3.4 VIEWS OF THE KNOWLEDGE MODEL 

The role o f  a knowledge model's Agent and Information Views i s  to represent the system's 

behaviour and  the knowledge structures used to produce this conduct. The  views also serve as an 
intellectual map of an application. They put in evidence the relationships among concepts, as well as 
the behaviour of the application at the macro and  micro level. 

3.4.1 Agent Views 

Agent views are  divided into global and  local view. The  first presents a view of a system a t  

a macro-level and the second presents a view of an  application a t  a micro-level. 

3.4.2 Information View 

The information view is a representation of the information structure i.e describes all the 
system's concepts and all the reIationships that link them. This view provides a map of all the static 

knowledge contained in the system. 

4,  A CAKE TOOL : EhiA 

The main goal of EMA is to support the design and development of knowledge-based 

systems through the use of a computer based tool. EMA encompasses the knowledge about the 
methodology, and as it was stated before, its final objective is to automatically generate 
knowledge-based applications with architectures that are akin to the principles and paradigms of the 
methodology. This implies that users of E N A  are guided towards the construction of a systems 

consisting of autonomous but cooperating agents that react to stimuli. 

EMA is made u p  of several components such as interactive graphical editors a repository, a 

set of guide-lines that facilitate consistency checking and an automatic generator of executable code. 
A knowledge engineer can use EMA to build the three different aspects of an application's 
knowIedge model (information view and agents global and local views) by using the different 
specialized interactive graphical editors. The knowledge engineer i s  also supported by having at  his 

disposal a library of predefined problem solving models. The user can select a specific model and 
tailor i t  to the application that he is currently implementing. 
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During the construction of the knowledge model some verifications are performed and 
warnings regarding possible inconsistencies are generated. Currently the code generator of EMA 

produces a skeleton of the final code, therefore this has to be manually completed through the use 
of a conventional editor in order to obtain a complete executable KBS. 

€MA manages all the information about the application under development with the help of 

a repository containing all the concepts, information structures and agents views (global and local). 

At any given time a graphical navigator system allows the user to browse and inspect all the 
available relationships and a hypertext like feature allows the user to focus on a specific aspect of 

the application under development. 

The applications generated by EEMA are based on a multiagent model. This model emphasizes 

a highly parallel and modular organization of the components of the computer application, and it 
also distributes the interaction mechanisms among a set of cooperating units. Beside the modularity 

aspect, parallelism and distribution are interesting features for  supporting interactive design without 
loosing the objective of global systems thinking- and for  implementing physically distributed 

appljcations (workstation/host cooperation is the first step towards distributed processing). This is 
one of our current areas of research. 

Eh4A has been successfully used to design and develop several user-centered banking 

applications. Some of the systems already deployed include: Fundamental Corporate Analysis 

(evaluation of corporations), Credit Assessrnent Support System f o r  Small and Medium Size 

Commercial Customers, and a system for the Assessment of Personal Loan Applications. 

5 .  G-TECS (GENERIC TECHNIQUE). 

5.1 MOTIVATIONS 

The main motivation behind the idea of providing a generic description of problem solving 

at a high level of abstraction is to furnish knowledge engineers with predefined problem solving 

models that can be reused in the implementation of different systems. Therefore, the knowledge 

engineer can be supported from knowledge acquisition all through the actual construction of a KBS. 
l h e  intent of this being that one should avoid reinventing the wheel every time one develops a new 
knowledge-based system. This sounds like a moral that object-oriented practitioners have been 
preaching to the software engineering community for a long time. We believe that the KBS field has 

matured enough such that we can provide libraries of problem solving models that knowledge 
engineers have compiled (implicitly and even explicitly sometimes) through the experienced 

acquired in the development of KBS. 

There are multiple problems associated with the creation of any sort of library. First, the 
problem of what to classify must be solved. And second, a classification system must be devised. 

The classification of a set of problem solving models evidently involves these two problems. First, 
we must determine the granularity of the Droblem solving models. That is, with what level of detail 
we want to express a generic problem solving model. Second, once the granularity of the problem 
solving models has been determined, we must figure a way to classify these models. We must 
remembered that for  knowledge engineer to be able to navigate through a library of problem solving 



125 

models, we must devise an organization scheme that is as natural as possible to the user of the 

library. 

5.2 DESCRIPTION 

The 6-TECs approach consists in providing a library of problem solving models. This has 
some similarities to what is refer to as interpretation models in the KADS project, and what is 
called Generic Tasks by Chandrasekaran's group. The differences between our approach an the two 

mention above will be presented in section 5. 
In order to be able to define the G-TEC's approach we must present our conception of what 

problem solving entitles. 

The input of the problem solving process is the structure of the information that describes a 

problem. The processing is done by a set (one or many) of problem solving techniques. The output 
of the process is the information structure of a solution to 3 problem. For instance, we can imagine 

the problem of assessing the financial position of a company. The input to the problem solving 

process would be the structure of the financial information of the company (a hierarchical 

description of all the assets and liabilities of the company). The output of the process would be the 
judgment of the financial position of each of the a e a s  of the company structured in some 

hierarchical fashion. The techniques to achieve the financial assessment of the company can vary, 
but they must include : a way to describe what to evaluate; and a way to describe how to evaluate 
it. Notice that these requirements are derived from the structure o f  the problem and the structure of 
the solution. 

This very simple description of the problem solving process allows us to define and classify 
a set of problem solving frameworks that we have named G-TECs for Generic Techniques. It is 
intuitive that one can achieve a solution to a problem using many different techniques. And that a 
solution to a problem is linked to at least one specific technique. Based on these ideas we define 

two concepts for studying problem solving. The first concept is Technical G-TEC. For instance, 

optimization techniques such as simulated annealing, or search methods such as depth-first. 

Technical G-TEC are independent of the domain of application. The type of solution that Technical 
G-TECs provide and the way in which this solution i s  achieved is very well defined (algorithmic 

form). The second concept that we need to define is Problem Specific C-TEC. A Problem Specific 
G-TEC is a combination of the information structure of the solution to a problem and the specific 

technique used to produce the solution. The following are examples or Probkm Specific 6-TECs : 
Predicted Behaviour, Judgment, Diagnose, Plan, Design, Configuration. In EMA, 6-TECs are seen 
as any other KBS, therefore, they are described via agents and information structures. That is , the 
information described corresponds to the value of attributes, the kind of general information 

structure it operates on and the type of actions that are allowed to be executed by the corresponding 
agents. 

The example that it was presented above regarding the evaluation of the financial position of 
a company can be described with the G-TEC "Judgement". This type of G-TEC is characterised by 
the fact that the information described can be decomposed in hierarchies, and that partial 
evaluations are performed on the substructures of the hierarchies. Results are then combined to 
arrive to a final judgement. It is important to notice that the combination of the partial results is 
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done in an  "intelligent manner" derived from the knowledge of experts in the domain. This specific 
knowledge would obviously vary for  different domains. 

6. COMPARISON BETWEEN G-TECS AND T H E  APPROACHES OF CHANDRASEKARAN AND 

T H E  KADS PROJECT. 

We have selected to compare our approach and the one taken by the KADS project and 
Chandrasekaran's group (Generic Tasks or  G T )  because we are fairly familiar with them and also 
because they represent two main streams in the modeling of knowledge-based systems. There are 

some other approaches that are also very interesting, but for  the sake of limiting the size of the 
paper, we have not included them 

The comparison will present the differences between our approach, and GTs  and KADS. In 

order to make the comparison as neutral and as comprehensive as possible we have selected (10) as a 
basis. Karbach's article presents the comparison of four approaches for  the modeling o f  KBS. This 

comparison is based on three main hypothesis: 1) It is useful to describe problem solving at  an 

abstract level; 2) Models of problem solving can be specified in a problem specific, but application 

independent manner; 3)  Models should guide rhe knowledge acquisition process and aid in the 

structuring of the knowledge base. 

6.1 HYPOTHESIS 1 : I t  is useful to describe problem solving on a more adequate, abstract level 
than that offered by general purpose knowledge representation languages. 

We believe that G T  and KADS provide descriptions of problem solving methods at  a level of 
abstraction that satisfies the requirements expressed by hypothesis number one. The  difficulty that 

we encounter is that once the abstraction of a real world problem has been done and once that this 
abstraction has been modelled, eventually an  operational system must be produced, we have called 

this the abstraction-modeling-working problem. The  approach taken by G T  allows a knowledge 
engineer to achieve this goal by means of specialised environments that produce working systems. 

KADS, on the other hand, provides a set of interpretation models and also a language for the 
definition of new model. Nevertheless, KADS does not provide concrete problem solving techniques 

for the models that makes available to the KE. 

G'T solves the abstraction-modeling-working system problem in a way that we believe is not 
very efficient. GT's solution is not very efficient since a knowledge engineer is forced to learn each 
of the different environments that have been defined for  each specific problem domain. In the 

assumption that a KE can become proficient in all these environments, he  is then confronted with 
the problem of making all these environnients communicate with each other which could be a minor 

problem compared with the challenge of having to integrate them into a large scale information 

processing system. From the software engineering point of view we believe that this process is 
cumbersome. KADS provides a very elaborated solution for  the problem of abstracting-modeling, 
but it does not provide much support for the actual generation of working systems. 

The approach that we have taken aims to solve the abstraction-modeling-working system by 
providing hierarchies of predefined G-TECS. G-TECS can be used or described a t  any level of 
abstraction along the hierarchy. The higher one moves on the hierarchy the more abstract the G- 
T E C  becomes, and the lower one goes the more detail the G - T E C  becomes (down to the 
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Domain I 
Problem 

lndep 

implementation level). The hierarchies of G-TECS are contained in EMA such that the automatic 

generation of working knowledge-based system can be supported. Figure 2.0 show a schematic 

representation of the abstraction and implementation mechanisms of G-TECs. 
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Figure 2.0 Abstraction and Implementation of G-TECS 

6.2 HYPOTHESIS 2 : Models of problem solving can be specified in a problem specific, but 

application independent manner. 

It is  clear that problem solving models should be described for specific problems, but this 

should be independent of the instance of the problem being solved. There are substantial rewards on 
providing a knowledge engineer with a library of predefined problem solving models. On the other 

hand, it is extremely difficult if not impossible to provide a library of these methods that can 

satisfy the needs of every single knowledge engineer. This lead us to the requirement of providing a 
formal way of describing new models. The need fop. formality comes from the requirement of : 
combining the newly defined model with the old ones; and from the implicit requirement that the 

eventual automatic generation of systems must be accomplished. Both of the approaches that we 
have compared 6-TECS with satisfy the requirements stated above in a partial manner and using 
different approaches. 

The GT approach, provides a set of predefined problem solving models. This models have to 
be filled in with the actual data corresponding to the problem being modelled. Once the knowledge 

engineer has done this, these problem solving models are able tb) generate operational systems. As it 
can be seen this approach partially satisfy the requirements expressed above. Nevertheless, it does 
not satisfy the very important requirement of providing a formal manner of defining new problem 
solving models. This condition is essential since as it can be imagine knowledge engineer are very 
likely to be confronted with problems that require a model that has not being pre-defined. 
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KADS provides a set of predefined problem solving models (interpretation models). It also 
furnishes a formal language for defining new problem solving models. This language i s  very general 
and operates at  a high-level of abstraction. This is a desirable quality since this provides high 

flexibility one can define new problem solving methods with a considerable ease. On the other 

hand, the high abstraction of the language implies in this case, a great difficulty in expressing the 

actual functioning of a newly defined model. This in turn, implies a tremendous difficulty for  
automatically generating an operational system. 

The situation that we have described above it must sound extremely paradoxical. On the one 
hand, we want models to be specific enough such that systems can be easily implemented from this 

description. On the other hand, we want to be able to define new models by using an  abstract and 
very flexible description languages. The approach that we have taken to compromise these two 
points of view. We believe that we should provide building block that a re  specific enough that can 

be used to precisely define a problem solving method, but that are small enough that can be 
combined in order to satisfy the requirement of high flexibility. The  building blocks that we use for 
defining new G-TECs in EMA are the same that are used for  defining any new knowledge-based 

system, namely agents and information structures. Once the new G-TEC has been defined using 

these building blocks, it is classified by the knowledge engineer in the corresponding level of a new 

or an  existing hierarchy of G-TECs. At this point the G-TEC can be described in more detail by 
expanding the hierarchy downwards. The knowledge described at  higher level of the hierarchy is 
available through the use of inheritance. The lowest level of the hierarchy should contain a 
description of a G-TEC specific enough that code can be generated from it. Notice that the K E  is 
not obliged to provide a detail description of a G-TEC, but if he does not furnish this description, 
then EMA cannot automatically generate executable code for  the specific G-TEC. 

6.3 HYPOTHESIS 3 : Models should guide the  knowledge acquisition process and  aid in the 

structuring of the  knowledge base. 

The implication of this hypothesis is that the generation of operational systems based on 

models of problems solving should be as straight forward as possible. We believe that the most 

direct and precise way to perform this mapping between a model and an  operational system is by, 
as much as possible, supporting the automatic generation of these systems. The  structuring of the 
knowledge base is implicitly assured automatically generating the knowledge-based. 

The approach taken by G T  supports to some extent the requirements implied in hypotheses 
number three. If a knowledge engineer selects a predefined problem solving method in the GT 
approach, it is possible to automatically support knowledge acquisition, since the knowledge 

engineer is guided to filling the instances of the problem being modelled. Nevertheless, the lack of 

a unique procedure for  defining all problem solving models implies that each GT can be structured 
according to a defined model, but the overall model that consist of different GTs is not necessarily 
structured according to any model. 

KADS fulfilment of the requirements brought along by hypothesis three is amply less 
satisfactory than the one put forward by GT. The  model for a given problem can be predefined or 
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defined by a knowledge engineer, Once this model has been completed and the knowledge engineer 

feels that the modeling process is finished, then the implementation starts. At  this point KADS 
provides virtually no more support than advising that the final architecture of the system should 

reflect the model of the problem. This reflexion must be automated as it is the case in the tool that 
we have developed (EMA). We believe that the automatic generation of final operational systems is 

crucial since a great deal of the effort that was invested in correctly modeling a system could be 
lost if the implementation is not well controlled. Moreover, in phases such as validation, 

maintenance, and enhancement the needed to trace instruction in the system to parts of the model is 
crucial. 

The approach that we take with G-TECS is to start from the requirement that the automatic 
generation of code is primordial to achieve any stable systems. Therefore, we believe that the 

knowledge engineering process must be supported by a computer based tool from knowledge 
acquisition to implementation. EMA furnishes this support by providing some automated aid at the 

knowledge acquisition phase. The modeling is fully automated and the automatic production of 
executable code is partially supported. 

7. CONCLUDING COMMENTS 

EMA is a self contained cooperative and comprehensive methodology for the development of 

expert systems. It is self contained because the methodology is embedded in the tool in the form of 

a knowledge-based system. It is cooperative because the user is seen as a partner in the development 
of new KBS. EMA is comprehensive because it encompasses all the information required to support 

the entire development cycle of an expert system. The applications generated by EMA are based on 
a multi-agent model. This model emphasizes a highly parallel and modular organization of the 

components of the computer application, and it also distributes the interaction mechanisms among a 
set of cooperating units. Beside the modularity aspect, parallelism and distribution are crucial 

features for supporting interactive design without loosing the objective of global systems thinking- 
and for implementing physically distributed applications (workstation/host cooperation is a big step 

towards distributed processing). 

EMA is not yet fully functional but i t  has gone through several versions of irnprovernents. 

Several user centered banking applications have been already successfully implemented with EMA, 
The results obtained in the deployment of these systems have been very encouraging. Some of these 

systems include: Fundamental Corporate Analysis (evaluation of corporations), credit assessment 
support system for small and medium size commercial customers, and a system for  the assessment of 

request of personal loans. The latest application developed with EMA is in  the domain of 
configuration. Our current efforts are directed towards enlarging the library of G-TEChs as well as 

improving the automation of the support for  knowledge acquisition. Regarding improvements to the 
methodology, we are working on providing modelling support for  the integration of KBS and 

conventional information processing systems. 
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ABSTRACT 

In this paper, heuristic backward search strategies for generating 
production rules from neural networks proposed. By these heuristic search 
strategies, various types of production rules and explanations of behavior 
of neural networks to users can be generated. 

1. INTRODUCTION 

The rapid development of neural networks has attracted much attention of A I  
researchers. IIowever, compared with the advantages that symbolic 
representations of knowledge in A I  systems can be stated in a clear and 
relatively simple way, and can be easily documented, explained, taught and 
learned, neural networks have some disadvantages, i. e., the neural networks 
fail to offer an explanation function to the users. The users nearly always 
want to know why a neural network comes up with a particular answer. 
Sometimes they try to learn how the neural network makes decisions so that 
they can improve their own understanding of the problems; sometimes they want 
to verify that the neural network i s  working correctly. Therefore, by 
integrating neural networks with A I  systems, the realization of some 
connectionist systems in different application areas have proven the 
viewpoint, i.e., the connectionist systems are more powerful than either of 
neural networks and AI systems. In order to overcome the above disadvantages 
of neural networks, this paper studies the generation of explicit 
representation of knowledge, namely, knowledge acquisition, from neural 
networks and explanation of the conclusions inferred by neural networks . In 
this paper, some heuristic backward search strategics for generating 
production rules and presenting some explanations to users are proposcd. 

The generation of production rules is based on the following principle 
idea. A neural network is viewed as a knowledge base where the knowledge is 
not cncoded in the form in which people usually express their knowlcdge and 
which people can easily undcrstand, such as a production rule. Howevcr, 
people may acquire the knowledge from the currently known behavior of the 
neural network. Therefore, i t  is possible that the production rules may be 
generatcd from this behavior. For example, assume each node in Fig. l ( a )  
denotes a proposition, then it  may be thought that there exist some logic 
relationships between nodes in layer i-1 and nodes in layer i since the 
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states of the former influence the states of the latter, so that the states 
of the former may be regarded as premises and the states of the latter may 
be regarded as conclusions inferred from the logic relationships and the 
states of the former(i=2. 3). 

The neural network discussed in this paper has the following features: 
(a).Every node denotes a proposition or  a variable, i.e., a symbolic 

description of the proposition or  the variable is attached to every node. 
(b). Every node has a discrete (discontinuous) activation function, i. e., 

the transfer function has the following form: 
s(k. l)=f(s) (1) 
s = Z  s(i, j)lw(i, j, k, 1) (2)  
i, j 

where s(i, j )  denotes the state of node x(i, j ) ,  and w(i, j ,  k. 1) denotes the 
weight on the arc directly from node x(i. j )  to node x(k, 1). the i and j in 
x(i. j) respectively denote the number of the layer and the number of the node 
at this layer where x(i, j )  is located. The formula (1) is called activation 
function, and formula ( 2 )  is called input function. 

(c). The neural network does not contain cycles. 
Some terminology on the neural network of this kind is explained first. If 

an arc in the neural network is directed from node x(i. 1) to node x(k. 1). 
then node x(k, 1) i s  said to be a successor of node x(i. j ) ,  and node x(i, j )  is 
said to be a parent of node x(k, 1 ) .  A node in the neural network having no 
parent is called a root node. A node in the neural network having no 
successors is called a tip node. If node x(k, 1) is accessible from node 
x(i. j), node x(k, 1 )  is then a descendant of node x(i. j ) ,  and node x(i. j )  is 
an ancestor of node x(k, 1). For example, in F i g .  l(a), nodes x(3, 1) and 
x(3,2) are tip nodes, x(l,l), x(1,2), x(l.3) and x(1,4) are root nodes, and 
they are also parents of x(2, 1). x(2,2) and x(2,3), and correspondingly 
x(2, 1). x(Z,2) and ~(2.3) are successors of x(1,l). x(l,2), x(l,3) and 
x(1, 4), further, nodes ~(3.1) and x(3. 2)  are descendants or  grandchildren of 
x(1, 1). x(1, 2) ,  x(1. 3) and x(1, 4), and correspondingly x(l,l), x(1, 21 ,  x(1, 3) 
and x(1,4) are ancestors of x(3, 1) and x(3.2). n(i) denotes the number of 
the nodes in layer i. m denotes the number of the layers in the neural 
network. X(i, j )  denotes a symbolic description of node x(i, j ) ,  which 
describes a variable or a proposition. A domain of a state is defined as a 
domain of an activation function on which the state holds, as shown in Fig. 
1 (b). 

2. SEARCH PROCEDURES 

2. 1. CUT-OFF SEARCH PROCEDURE(A) 

I t  is a backward search procedure. The backward search procedure can 
generate a group of production rules by which why a conclusion is inferred 
can be explained. I t  is used in the case of binary activation function(i.e. 
the state of a node should be in one of two possible states either sl or -s2, 
s1>0, s2>0) ,  but i t  is also easily extended to the case of multi-value 
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activation functions as the modified forward search procedure given intll. The 
production rules derived from the currently known information should have the 
minimal number of premises that is sufficient for inferring the corresponding 
conclusions as long as the states of nodes remain unchanged, which means that 
a minimal number of premises must be searched for.  

(a). Let set S be equal to the node x(k, 1) which is selected for 
explanation. 
k is assigned to the number of layers of the neural network. 

(b). DO W H I L E  k=>l 

(bl) Denote all the parent nodes x(i, j )  of x(k,I) as set S(1) which have 
each direct contribution for each node x(k, 1) in S .  i.e. 
S(l)=(x(i, j) l w ( i ,  j, k, 1)=/=0], 1=1, 2, .  . . , n(k). 

(b2). Classify S ( 1 )  into two subsets: S(1,l) and S ( I . 2 ) .  S(1,l) contains 
all the nodes which disconfirm the state of x(k, 11, and S ( l , 2 )  contains all 
the nodes which confirm the state of node x(k. 1). S(1,l) can be deleted 
without affecting the state of node x(k, 1 ) .  Arrange the nodes in set S(1 ,  2) 
in ascending order of their contribution f o r  the current state of successor 
node x(k, 1) .  which i s  calculated by multiplqing the wcight on the arc 
starting from each node in S ( 1 . 2 )  t o  x(k, 1) with the corresponding state of 
this node in S ( l , 2 ) .  

(b3). Delete the contributions of these nodes in S ( 1 ,  2) in order arranged 
above until the state of node x(k, 1) has been changed since x(k, 1) lacks the 
contribution of the node being deletcd so that fails to maintain the state of 
nodes in S(j, 1). 

(b4). Generate production rules from these remaining nodes in S(l,2) for 
node x(k, 1). The rules have the following form: 

X(i, 1) (s(i. 1)) (w(i, 1, k. 1)) and X(i, 2) (s(i, 2 ) )  (w(i, 2 ,  k, 1)) and . . . and 
X(i, t) (s(i, t)) (w(i, t, k. 1)) ---> X ( k ,  11 (s(k, 1)) 

where X(i. j )  is a symbolic description of the corresponding node x(i, j ) ;  if 
x(i. j )  denotes a proposition, then s(i, j )  may be used as a certainty factor 
of node x(i, j); If x(i, j )  denotes a variable, then s(i, j) is the value of the 
variable; w(i, j ,  k, 1) may be used to represnet the certainty factor of x(i, j )  
if x(i, j )  is a variable or  the importance of x(i, j) in the production rule,  
or the weighted logic operator AND. ( s ( i ,  j)) (w(i. j ,  k. 1 ) )  can also be replaced 
by s ( i .  j)tw(i, j ,  k, 1 )  according to input function ( 2 ) .  k<=k-1, denote these 
unmarked nodes in S ( l , 2 )  which are hidden nodes as set S ,  and mark these 
nodes. 

1 

I 

Since there may exist several paths connecting x(k,1) and some ancestor of 
its, all the nodes having been expanded i n  this backward search should be 
marked in step 0 in order to avoid to be selected for expansion again. This 
search procedure may not guarantee that these generated production rules have 
the minimal number of premises. 

Examplc 1: The following steps show the use of the cut-off search proccdure 
fo r  node ~ ( 3 . 1 )  in the neural network i n  Fig. 2. 

In step (a),  k=3, S=(x(3. 1)). 
In step (bl), S ( 1 ) =  ( ~ ( 2 ,  I ) ,  x!2, 2 ) ) .  
In step (b2). S(1.1) is an empty set, and S ( 1 , Z )  is arranged as 
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(x(2,2), x(2. 1)). 
In step (b3), x(2,2) is deleted. 
In step (b4). generate a production rule as follows: 

Set S=(x(2, l)), ~(2.1) is marked, k=2, go to step (a. 
In step (bl). S(l)=(x(l, 11, x(1, 2 ) .  x(1, 3 ) ) .  
In step ( b 2 ) ,  S(l,l)=(x(l, 1)) and x(l.1) are deleted, and S(1,2) is 

In step (b3), x(1, 2)  is deleted. 
In step (b4). generate a production rule as follows: 

k=l. stop. 

X(2,l) (1) (0.5)-------> X(3.1) (1) 

arranged as (x (1, 21 ,  x (1, 3) I .  

X(1.3) (1) (0.5) --------> X(2,l) (1) 

2. 2. SET-BASED SEARCH PROCEDURE 

In this search procedure, a new restriction is added. i.e., the number of 
the root nodes used in generation of production rules is required to be 
minimized. This restriction means that the least amount of input information 
is used for generating all the production rules. The set-based search 
procedure is a backward search procedure for generating the production rules 
with the minimal number of root nodes. 

A set L(i, j) is said to contain a l l  the root nodes which are connected with 
x(i, j) by some paths. The sets L(i, j)(i=2,3 , . . . ,  k-1, for a l l  j: 
w(i. j, k, 1)=/=0)  should be reached at first for each node x(k, 1) selected for 
explanation. Compared with the cut-off search procedure, in this set-based 
search procedure the nodes are selected fo r  expansion which only need the 
minimal number of root nodes to maintain their states, namely, the selection 
of parent nodes x(i, j)[(i, j) belongs to ((il. j l ) .  (i2, j2), . . . , (it, jt))] of 
x(k, 1) for expansion should meet both the condition that they can maintain 
the state of x(k, 1) and the following condition: 

I U L(i,j) I = minlU(i, j )  L(i. j) I (3) 
(i. j)=(il, jl), . . , (it, jt) U(i, j)J,(i. j )  can maintain the state of x(k, 1) 

where IL(i. j)l denotes the number of nodes contained in L(i. j ) .  The 
condition means that the parent nodes of x(k, 1) are selected for expansion 
towards the direction where the number of the root nodes eventually used may 
be minimized possibly. 

Example 2: In Fig. 3, L(3, l)=(x(l, j )  I j=1, 2 , .  . . 51, 
L(3, 2)={x(1, j )  Ij=2. 3,4. 51 ,  (~(1. j) I j=l, 2, 3,4), 
L(2, 2)={x(1, j) I j=2. 3, 4). L ( 2 ,  3)=(x(1. j) I j=1. 3, 4, 51, L ( 2 ,  4)=(x(1, j) 1j=3, 4, 5). 
Therefore, nodes x(Z,2) or  ~(2.4) can be selected for expansion first 
according to formula (3). 

L(2,1)= 

2. 3.  CUT-OFF SEARCH PROCEDURE(B) 

In this search procedure, a new restriction is added, namely, the nodes can 
be deleted so long as the states of the nodes selected for explanation, 
assuming they are tip nodes, remain unchanged. Compared with cut-off search 
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procedure ( A ) .  in this search procedure, the following heuristics may be 
used : 

(a). A parent of a node can be sclected for  expansion if the parent node 
satisfies the restrictions stated in 2 . 2  and this section better than other 
parents of this node. 

Example 3: In Fig. 4. in order to generate production rules that is 
sufficient for inferring the corresponding conclusions even if the states of 
the deleted nodes have changed, at first the children of tip nodes ~(3.1) and 
x(3,2) are selected for expansion and there are three selections as follows: 

x(3, 1): x(2. 1),x(2,2) or ~(2.1). x(2, 3) or x(2,2), ~(2.3) 
x(3, 2 ) :  x(2,2),x(2,3) or x(2,3), x(2,4) or x(2,2), ~(2.4) 

The node group containing ~(2.2) and x(2,3) i s  selected for expansion 
because this x(2, 2)  and x ( 2 ,  3) are the common parents of x(3, 1) and x(3, 2) 
and only need 4 root nodes at most to maintain their states. In fact, only 
x(1, 3) and x(1, 4 )  are needed. Therefore, the generated production rules are: 

X(1, 3) (1) (1) and X(1, 4)  (1) (1) -----> X(2. 2)  (1) (1) 
X(1, 3) (1) (1) and X(1, 4)  (1) (1) -----> X(2, 3) (1) (13 
X(2. 2)  (1) (1) and X ( 2 ,  3) (1) (1) -----> X(3.1) (1) (1) 
X ( 2 ,  2) (1) (1) and X(2, 3) (1) (1) -----> X(3, 2) (1) (1) 

(b). Then a parent of a node can be selected for expansion if it has more 
redundancy than other parents of this node. 
Example 4 :  In Fig. 5, production rules can be generated as follows: x(Z,2) 

and x(2,3) are selected for expansion because they are the common parents of 
x(3, 1) and ~(3.2). they can maintain the states of ~(3.1) and ~(3.2). and 
they connect the minimal number of root nodes, 4 in all. Since there exists 
some redundancy of x(3,l) and ~(3.2). the following inequality describing the 
redundancy of x(3,l) and x(3,2) should be satisfied: 

Therefore, the solutions f o r  this inequality include: 
x(2, 2)  t2tx (2,3) >2 

~ ( 2 ,  2)=-1, ~ ( 2 ,  3 1 ~ 2 ;  ~ ( 2 ,  2)=0,  ~ ( 2 ,  3)=2; ~ ( 2 ,  2)=1, ~ ( 2 ,  3 ) ~ l ;  ~ ( 2 ,  2)=1, 
x(2, 3)=2; x(2, 2 ) = 2 ,  x(2, 3)=1; x(2, 2 ) = 2 ,  x(2, 3)=2 

Considering the constraint of (x(2, 2)=0 or x ( 2 ,  2)=1) and (x(2, 3)=0 or 
x(2,3)=2) by their parent nodes. the remaining solutions now are: 

From the solutions, the root nodes x(l,4)(=1) and x(l,5)(=1) are selected to 
maintain x(2, 2 ) = 0  and x(2, 3)=2 or x(2, 2)=1 and x(2, 3 ) = 2 ,  i. e., 

x(2, 2)=0,  x(2, 3)=2 ; x ( 2 ,  2)=1, x ( 2 ,  3 ) = 2  

X(1, 5 )  (1) (0. 6 )  -----> X ( 2 ,  2) (0) 
X(1, 4 )  (1) (1) and X(1, 5) (1) ( 2 )  -----> X ( 2 ,  3) ( 2 )  

X ( 1 ,  4 )  (1) (1) and X(1, 5 )  (1) (0. 6 )  -----> X(2, 2) (1) 
X(1, 4)  (1) (1) and X(1, 5) (1) ( 2 )  -----> X ( 2 ,  3) ( 2 )  

(c). The backward search should satisfy the condition as follows: I f  the 
state of a node can not be maintained by the states of its parent nodes in 
layer 1 due to the last deletion of some its descendant node, thcn backtrace 
to some point along backward search path where the node was deleted, reserve 
the deleted node, start again. 

or 
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3. EXTENSION OF SEARCH PROCEDURES 

The above search procedures can be extended in the following cases: 

3.1. EXTENSION OF NEURAL NETWORKS 

(a). The input function ( 2 )  can be extended to other forms, such as, in the 
case of applications of neural networks in approximate reasoning, the 
Multiply-Add operation ( 2 )  is often replaced by a Max-!din operation , and a 
binary activation function i s  used to activate the node which has a certainty 
factor higher than the threshold of the binary activaition function and 
inactivate the node which has a certainty factor lower than the threshold of 
the binary activation function. The search procedures proposed above can be 
used easily in this case. 

Evcn if the activation function is continuous, i t  is also possible that 
these search procedures are applied if the input function is discrete. An 
example is the fuzzy petri net implemented by using Looney's neural network 
for rule-based decisionmaking [ZI Looney gave an group of production rules as 
follows: 

C1 and C2 ----> C4 
C4 ---> C6 
c5 ---> c3 
c5 ---> c1 
C6 ---> C' (external node) 

and known input information(certainty factors) C2=0. 8 and C5=0. 5, and then 
used the fuzzy petri net to infer conclusions of the production rules and 
known input informalion as shown in Fig. 6 which is an illustrative graph of 
the fuzzy petri net. Each node C(i) (i=l,2 , . . . ,  6) denotes Ci in production 
rules and has a Max input function, and each node N(i) (i=l,2 , . . . ,  5 )  denotes 
a relation between premises and a conclusion of a production rule and has a 
Min input function. The Max and Min input fuctions are used for approximate 
reasoning, and the activation function employed by each node i s  a unit 
function. By using above search procedures in which the delation of nodes is 
replaced by dccreasing values of certainty factors Ci of nodes C(i) 
(i=l,Z, . . . ,  6), the inputs of Min activation function, to the maximum, i t  can 
be seen that C2=0.8 can be decreased to C2=0.5 without affecting the 
previously inferred conclusions, i.e.. the necessary certainty factors of 
premises supporting their conclusion can therefore be determined. 

I t  is also possible to apply the search procedures to the case of both 
continuous input function and continuous activation function. If the state of 
root nodes is restricted within discrete domain. then the continuous transfer 
function can be regarded as discrete one since only finite values of the 
transfer function will be taken a t  each layer; otherwise, there are two 
strategies for generating production rules. The first one is that all the 
nodes are used for generating production rules since each node has its own 
contribution for its successor nodes so that the deletion of a node will 
result in the change of the slates of its successor nodes. The second one is 
that this continuous activation function should first be made discrete. Thus, 
a continuous activation function nay be treated equally as a discrete 
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activation function in above search procedures except f o r  that each generated 
production rule has an error equal to the error resulting from the discretion 
of the continous activation function. 

by employing the following two ideas: First, a node in a cyclic path should 
first be selected to be deleted so that the cycle can be broken(see Fig. 
7(a)). Second, if a node in a cyclic path i s  reserved, then the states of 
other nodes in the cyclic path should be maintained; otherwise, the state of 
the node may be changed by the changed states of other nodes in the cyclic 
path so that the search has to be repeated along the cyclic path (see Fig. 
7 (b) 1. 

(c). In some cases, except for t i p  nodes and root nodes, hidden nodes in a 
neural network have not any meanings. such as nodes x(4, l ) ,  x(4, 2)  and x(4, 3)  
in example 19. They are used only f o r  realization of a mapping from input 
information to output information. If these nodes are included in generated 
production rules, the production rules will become meaningless. Therefore, 
the nodes should and could be deleted from the production rules. 

For example, the production rules  containing the meaningless nodes x(2, 2)  
and x ( 2 , 3 )  are as follows: 

X ( 1 , l )  (1) (2) and X ( 1 ,  2 )  (2) (1) ---> X ( 2 . 1 )  ( 2 )  
X ( 1 ,  1) (1) (1) and X ( 1 ,  3 )  (1) (1) ---> X ( 2 ,  2 )  (1) 
X ( 2 . 1 )  (1) ( 2 )  and X ( 2 ,  2 )  (1) (1) ---> X ( 3 . 1 )  (1) 
X ( 1 ,  1) (1) ( 3 )  and X ( 2 ,  1) (1) ( 2 )  ---> X ( 3 ,  2) (1) 

( X ( 1 . 1 )  (1) ( 2 )  and X ( 1 , 2 )  ( 2 )  (1)) ( 2 )  and ( X ( 1 . 1 )  (1) (1) and X ( 1 ,  3 )  (1) (1)) (1) 
---> X ( 3 , l )  (1) 

X ( 1 ,  1) (1) ( 3 )  and ( X ( 1 ,  1) (1) ( 2 )  and X ( 1 .  2 )  ( 2 )  (1)) ( 2 )  ---> X ( 3 ,  2 )  (1) 

(b). The search procedures can also be used in neural networks with cycles 

Then they can be equivalently transferred into the following form: 

(d). Nodes in neural networks may also be used to denote other terms, such 
as, word, object and entity, when a neural network is used as semantic 
network or used in sentence processing. It  is possible that the generated 
production rules can be used to describe the necessary and major 
relationships between nodes. 

3 .  2. P A R A L L E L  SEARCH 

A major advantage of neural networks is that they can run in a parallel 
way. However, the generation of production rules by the above search 
procedures is based on a serial way. In order to realize the parallel search, 
the neural network should be reconstructed as follows: 

(a). The computational ability of every node should further include: 
comparison operation, ordering operation, classification operation, solution 
for  inequality and so on, since they are needed by every node in above search 
procedures. 

(b). Nodes can communicate t o  each other by adding new arcs between these 
nodes fo r  transmitting messages, since the realization of some heuristic 
ideas in search procedures require the communication among nodes. 

(c). The neural network should be reconstructed, i.e., some nodes and arcs 
should be added into the neural network. Fig. 8(b) gives a typical extension 
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of the neural network Fig. 8(a). The added nodes A and B respectively 
represent the relations between x(1, 1) and x(2, j ) s ( j = l ,  2 ) .  Since in procedures 
whether a node should be deleted from some or  all of production rules is 
determined by its corresponding success nodes, the arcs, starting from x(2,l) 
to A and from ~ ( 2 . 2 )  to B, and starting from A to x(1. 1) and from B 
to x(1, 1). represent the control-wires of x(2, 1) and ~(2.2) by which x(2, 1) 
and x(Z,2) can control the states of A and B, and eventually control the 
states of ~(1.1). The activated state of A means that the relation between 
x(1, 1) and x(2.1) should be reserved in the production rule for inferring 
x(2, 1). The inactivated state of A means that the relation between x(1, 1) 
and x ( 2 , l )  should be deleted from the production rule for inferring ~ ( 2 . 1 ) .  
The state of x(l.1) is inactivated only when both the states of A and B are 
inactivated. The inactivated state of x(l.1) means that x(1,l)should be deleted 
from all the production rules. Therefore, in parallel computation, evcry 
node will either be activated or  be inactivated by its successor nodes through 
issuing Corresponding commands to i t  along the control-wires. Finally, the 
neural network will converge to a stable state, in which the state of every 
node, such as x(1, l ) ,  A and B, stand for whether it  or  a relation represented 
by i t  is reserved in production rules. For example, in Fig. 8(b), if 
A is inactivated and B is activated, then node x(1,l) is reserved in 
the production rule for inferring the state of x(2,2) and is deleted from 
the production rule for inferring the state of x(2. 1). 

Generally speaking, the realization of the heuristic ideas proposed in this 
paper in a parallel way needs a complex structure of the neural network. 

4 .  R E L A T E D  W O R K  AND CONCLUSIONS 

In the field of A I  heuristic algorithms, such as ,  algorithm A and Alpha- 
beta procedure, are used in tree structure for graph scarch. Every node in 
the graph denodes a state of a database, and production rules are repeatedly 
used to update the state of the database under guidance of a control strategy 
until the state of the database matches with some goal searched for [ 3 1 .  The 
search procedures proposed in this paper are used in neural networks for 
generating production rules. The heuristic search is dependent on the current 
state of a neural network, where states of nodes influence each other. 

Gallant[$] also proposed a strategy for generating production rulcs from 
neural networks. But his strategy is restricted within a specific neural 
network which only permit using the activation function with three state 
values, (-1, 0. tl), and can only be used in a neural network of small size 
since the heuristics used in this strategy are very limited, otherwise the 
number of implicitly encoded production rulcs will grow exponentially with 
the number of node inputs. Moreover, the strategy can only generate one type 
of production rules. Saitoh and Nakano [51 tried to derive rules out of the 
causal relationship of input/output layers. B u t  the derived rules were based 
on binary logic, and the certainty of rule and importance of proposition were 
unknown. Hayashi and Nakai [6, 71 proposed a method for acquiring fuzzy 
inference rules from the causal relationship of input/output of neural 
network. The lingustic truth values included in each fuzzy proposition and 
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certainty of each rule can be determined by this method. However, each node 
is also only permitted t o  output three values(True(1). Unknown(0) and False(- 
1)). i.e., the activation function employed by each node is restricted to a 
three-value function, and only the causal relationship between input layer 
and output layer can be described by fuzzy inference rules. Bochereau and 
Bourgine [8,9] gave a method for solving the NP-complete problem of rule 
extraction from a multilayer neural network by restricting the domain of 
input of the multilayer neural network. However, satistical information or  
prior knowledge is needed in the method, the state of root nodes is 
restricted within boolean domain, moreover, some error may be brought about 
due to the use of the satistical information. 
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Fig. 6 Afuzzy petri net implemented by using a 
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nodey is reserved in backward search 

(b) The stale of node z can be changed 
by changing the states of other nodes 
i, j, ..., s, x 

Fig. 7 Treatment on cyclic path 
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Abstract 

Iiiirrian beings isolatc qualification checking frotn general problem solving and 
do nut check for all qiialifirations all the t ime. Biit, they are prepared to allow 
erroneous conc-liisions in favour of exhaustive checking. A strategy which has these 
human traits can bc accepted ab a possible solution for the qualification problem. 
In tliib paper we tlevclop a stratcyg, called computational nonmonotonisni (CN), 
which niirnics ttir above paradigrri. In a CN system a qualification is applied only if 
it is rdevant to a context or if it has a priority greater than a certain level warranted 
by the situation or scenario. The. conclusions from a scenario can bc different from 
another because of different qualifit ations which become applicable depending on 
the scenario. We apply computational norinlonotonism to a systcin of rules arid 
qiialifications and provide declarative and operational semantics for inferring from 
the system WP also show the generality of the approach, by applying the compu- 
tational nonmoriotonism tecliniquc to default reasoning and circumscription. The 
three applicatioits capture differing intuitions of computational nonmonotonism. 
We also point out that the approa<li can bc adapted for real-time, time-constrained 
nonmonotonic reasoning. 

1 Introduction 

Oiie of the dillicul t problems in common sense reasoning is the qualification problem: 
the problem of checking for abnorrrialjty conditions which can invalidate a conclusion. 
Ttierc are two aspects to thc  qualification problem. One a.ipect is that it is a n  important 
prohlrm that weds to  be solved in ccmmon-smse rmsoriiiig since it provides a basis for 
noii11ioiiot oriic reasoning. In ar1othc.r respect it i y  a difficult problem to  solve since in 
real world situations there can be nurnerous qualifications that need to be checked before 
validating a conclusion. EIuinan beings seem to tacklr the two aspects very well, they are 
able to make nonrnoriolonic infcwiiw wilhout being unduly bogged down w i t h  checking 
for niirtierws qualifications. Tlic rtirthod that huruan heirigs swmingly crriploy is that 
thc y isnlatc qualification chctkiriy f r o m  ytner-a1 problem solving and do iiot check for all 
quulifications all the  t i m e .  Hut, t h e y  urc pi-cpnrcd t o  allow crroncovs conclusions an favour 
of erhaust iuc checking. In real life, we rnigtit check €or some (obvious) qualifications, b u t  
may not s p n d  that  much tirrie for checking for obscure qualifications, which might actu- 
ally annul our conclusions. When hard pressed for time, we  even ignore to check obvious 
qualifications. That  is, liiiirittns, cvcn thoiigh they can deduce information which might 



144 

contradict their conclusions, might conclude erroneously. due to  lack of time, space (fa- 
tigue) and or ot1ic.r reasons. A strategy which has these human traits can be accepted as 
a possible solution for the qualification problem. In this paper we study a strategy, called 
coriiput a t  ional nonmonotonism, which mimics, in home fashion, the above paradigm. We 
apply the concept of computational nonnioriotoism to t h e e  nonmonotonic reasoning sys- 
tcm:i: rules with exceptions [ 3 ] ,  default reasoning [ la]  and circurnscription [SI. Each of 
these applications capture a different aspect of computational ironmonotonism. 

Thc qualification problem was first identified by McCarthy [4] in the context of the 
Inissionai ies arid canriibals puzde. He dercribed circumscription [SI as a paradigm for 
solvirig the qualific~tion problenr. Since then, the qualificatiori problem has been inves- 
tigated in the framework of nonmonotoiiic reasoning and several paradigms have been 
introduced. Sonic of the techniques that address the qualification problem include default 
reasoning [12, 11, 31, modal-based logic [lo],  inheritance theory [a], temporal reasoning 
[13], reasoning about action [l], etc.,. In existing artificial intelligence systems, the qual- 
ification problem is solved by encoding qualifications as part of the theory and finding 
an extension which miniriiizes the conclusions that can be inferred from the theory. Var 
ious minimization policies are employed which lead to different reasoning paradigms and 
differerit sets of conclusions. 

The problem of riunim-ous qualifications is solved, by these systems, by ignoring several 
qiialifications and encoding only a few relevant ones. I'hat is, the number of qualifica- 
tions tha t  are checked are limited but the limits are applied a priorz through encoding. 
The encoded qualifications are checked in all situations, every time. This might lead to  
unnecessary checking for inapplicable qualifications. For example, consider tha t  we know 
that tweety is a tropical hird and we want to find out if i t  flies. Even in this case, tweety 
is checked to sce if it is a penguin. Such checking is unnecessary since, by coiltext, tweety 
caririot be a penguin. The  reason for thc imnccessary checkiiig done in vxisting systems 
is due to the fact that  the qualification which need to be checked are interlocked with 
gcncral problem sol.ving and hence gets checked every time. 

In this paper, our appioach is not to provide a different representation schema for 
the qualificdtion pro1)lcm fiom those suggested in the literature. Instead, we provide an  
effective coniputatioiial rilean2 to address the qualification problem in a real-life situation, 
where the riuiiiber of qualifications to be checked might overwhelm a system and where 
every qualification need riot be checkcd in all situations. The distinguishing features of 
computational nonrnonotonisrn is that ,  thc qualification problem is considered in isolation 
from the gc~ieral causality-bdsed problem solving, because of which the processing of 
qualifications p,roceeds i~id(~p(mdent of t h e  general problem solving and can be controlled 
by comideratiori~ s i i c l i  as  priority, context, time and space. That is, not all qualifications 
will be checked but only those which are of high priority or those that are relevant to  
the context, or those which can be checked within certain time and space limits. Because 
of this, our approach also shares with human reasoning, the property of being fallible: 
that is, it may make unsound co~~clusioi~s.  But we show that,  within the limits of the 
above coiistrairits the conclusions made by the system is sound. u'e make this concept of 

soundness clear later in the paper. 
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TIIP motivation lwliintl our approach is to conf rol the qualification problem and to 
provic- lcb (z~~s,wcrs to qtieries within SOIIL(’ realistic constraints. We call our approach as 
cornyiifutional noni/)onofoni.srrl (C:!) since chaiiging the context or scenario in wllicll a 
query is asked changcs thc aiiswer to that query. 

In this papcr we provide a, syntax and a scri~nnties for a computational nonnioriotonic 
system by hpplying i t  to three noni.rionotonic reasoning systems. We discuss, in detail, the 
case of rules and exccptions [3] and develop dccldrative and opcrnt,iorial semantics for a 
coniputational rionmonotonic system. lZ7e also show how the technique of computational 
noiirriotiotonism can be applied t u  other normonotonic reasoning sys t em such as default 
reasoiriiig [la] and circumscription [5 ,  61. In this paper we consider only computational 
Iioiimonotoaisni dchieved through context a n d  priority -control and do not  cove'^ time and 
space limited noiinionotonicity. 

2 Rules and Exceptions 

‘rlrci semantics of a system of rules aiid exceptions have been developed by Poole [ll] 
aiid Sadri arid Kowalslii [33. W c .  ruodif.y the scrriaiitics of [3] to provide a coniputational 
nonnwnotonic (CiV) systcm of rules and exceptions. ‘The systrm consists of t w o  types of 
sciitences: rides a i d  qualifications. ‘I’lic d f s  arc’ of t h e  form 

where i i  2 0, arid the A,s are dtonis. Tlic qualifications ltre of thc form 

where 71 2 I), the A,s are atorris ant1 !V,M 2 0. ?‘li(. nuruber N denotes a priori ty  number 
and captiires thc priority of the qiialification with respect to other qualifications (the 
smaller thc .  priority niimbcr tlien higher is its priority). The number &I denotes a coiitert 
nurnbrr w h i t h  defines ttic. context in which the qualification app1ic.s. Notc that there 
are no ncgative literals in tlic aritecedent of (1,2). The reason being that such ncgativc 
anteccdcnts can be encodcd as qualifications with N = i\f = 0. ‘I’he conclusions made 
from t h e  rules alia1 the qualifications depend upor i  a particular situation, called scenario, 

Definition 2.1 ;2 scenarm 5’ is a four-tuple < U,Q,  M s , N s  >, where 13 is a a set of 
rules D ,  Q is a set of cpalificatioris. NLq and hfs  a r c s  two system-tvidcb nurnhers denoting 

0 

(1) AD t - -  Ai 7 . . . , A n  

(2) [ N ,  nil] -A, +- ill,. . . , A, 

respectively the priority number and tlw context nurnter of the scenario. 

A qualificat,ion get4 checkcd in a scenario S if its priority nuniber N 5 N,Y and if its 
context riurtrber hI  = &I,>. There are two special cases. When hl = 0 the qualification 
always gets cht3cked provided thc priority is not lowc*r than the systemwide priority. That 
is, a qualification wi th  M = 0 can Le seen as a dcfaault qualification which gets checked 
always indqwndeiit of the context. Sirnilarly when Ms = 0 <very qualification in the 
scenario gets checked inclqxmdent of theii individiidl context rimnher. This can be i ised 
when one wants to provide an answer which is correct in all coritcxts. By assigning a 
vcry large value to N s  and liaving A4,s : 0 the system degrades to  d traditional rules and 
exceptions system where every defaiil t rule and every exception becomes applicahlc. The 
use of context sensitive qualifications can be illustrated as follows. 
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Exaniple 2.1 C'orisiclci a plan geiicration system iniplcmented using the CN system. 
'Iliere tar1 be two pos4blc scenario5: a fair wedther scenario and a snowing scenario. One 
can query the system to generate a plan for reaching from A to B. If the weather i s  fine, 
the fair wcdtlic~- scenario can be chosen and a plan is generated which complies to  certain 
qualificatioris. If i t  is s~iowiiig, the scenario in the system can be changed t o  a snowing 
scenario arid a diffeitmt plan is generated, since a new 5et of qualifications, such as using 
only 5 1 1 0 ~ ~  tmiergcricy routes and avoiding steep-hill climbing. become appropriate. These 
ne\\ qualifications die irrelevant in a fair weather scenario and their checking should be 
avoiclcd. 0 

Thc iisc of prioritics for chccking qualifications can be illustrated with a planning example. 

Example 2.2 ('onsidcr a fair-weather scenario in the example above. There can be two 
ciualific-ations which can constrain a plan as follows: 

&I : plan is lcoit l  if therc. i, construction on road from A to B 
C,l2 : plaii is void i f  there is a traffic backup 011 road from A to I) 

1,c.t the priority-nuIlil~ers of Ql  and Qt be 1 and 2 respectively. 
Now,  coiisiclcr tliat 0110 is doing high-level planning and checks only the qualifications 

which arc of high priority (say iVs - 1).  I'hcri, only Q, is checked. If there is a road 
from A to B wliicli is not under construction, the plan is approved. Consider another 
scenaiio, where one is doing low-levcl planning arid even low level qiialifications need to  
tw chccked. Tliv~i, onc can query the system with (say) iVs = 5 and might get a different 
aIis\n'Cr ( t o  that given for high level planning) depending upon whether the road is having 
a traffic hackup or riot. ITence, prioritization of qualifications allows one to choose the 
level of detail (or risk) one is willing t,o consider as appropriate to the sccnario. 0 

I n  order to firid the set of applicable rilles and qualifications in a particular scenario 
wc define a belief basc a,\ 1 1 ~ 1 0 ~ :  
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Helief base of SI =< D ,  Q ,  I ,  20 > is given by 

Bclicf base of S2 =< D, Q. 2,30 > is givcu by 
B1 = D u { 1 conrzecfcd(A, B )  e- coristr-uction( A ,  13)) 

R2 = /1 U { -1 connecttd(A, 1))  t norisizowenicrgrzcyr.tc(A, U)} 0 

3 Semantics of CNR systems 

We first dcfirie an extension which provides a declarative meaning of a scenario in a 
cornputational rioririioriotonic reasoning systcm usirig rules antl qidifications. First, we 
rieed the notion of a IIerhrantl base of a belief set. The EIcrbrand Base of a helief set B,  
denoted as HB( R ) ,  is the set of all ground a t o m  that can l x  forrried using the predicate 
symbols, function syiiibols antl constant syrrrhols that appear in B. An extcnsion is a set 
of atorris wliich can hc clerivcd from thc rulcs of the scenario and which is consistent with 
the belicf sct of tlic scenario. 

Definition 3.1 Let ,5’ be a scenario arid B = D U Q bc; it,s helief set. Then an extension 
of S ,  E ( S ) ,  is the sndlest  subset of H B ( B )  such thai for any clause A t ill, . . . , A ,  in 
D ,  if ‘41,. . . ,A ,  E &(,s) and il # C-)(S) theii A E E ( S ) .  
‘:I.’ht: qualification set of S ,  Q ( S ) ,  is the sniallest subset of I-[!?( 13) defined as follows: 
for any clause -.A t- A I , .  . . , A ,  in Q ,  if /I l , .  . . ,A,, E E ( S )  thcn A E Q ( S )  0 

, l  I h e  definitiori cif  extensions can  be seen as a niodificstioii of answer sets defined in [3]. 

Next, we provide a procedural nrethod for computirig from a CN systcm. 

Procedure 3.1 CN Procedure Givcri a scei~ario: S --< I ) ,  Q, N.9, Ms >, to find if R 
is trur in S, where K is a sct of atoms 

recursive solve( R )  
L1 = Irvc 
while R # Cn and 1,1 = true 

{ A is an clerricrit in R 
R = R - {‘4} 
il’ - sct of riilts in D such t,hat 

A4‘ c .41,. . . , A, E LI and A = A’ 
Lz = f a l s e  
while 7 ’  # 8 and L2 = f a l s e  

{ A’ e- A,, . . . , A, is an eleriieiit in 7‘ 

L2 
7 = 7’ - {A’ +-- A I , .  . . ,An )  

solve( {Al ,  . . . , A , , } )  } end while 
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if L L  = t r u e  then L1 7 qualify(A) 
else L1 = f a l . s f  } end while 

return L1 

T = set of qualifications in Cj such that 
recursive qualify( A) 

[lY, M ]  1’4’ t ill,. . . ,A, E Q and A -= A‘ 
and 1Y 5 nirs and ( A I  = Ms or AI = 0 or IZfs = 0) 

I ,  - fn ls t  
while 7 ’  # 0 and L = f a l s e  

{ [ N ,  A I ]  7.4’ t .I1,. . . , A ,  i s  an elenierit in 1‘ 

I, = solve({ A1.. . . , A n } ) }  end while 
T 7 T - { [YY. 1\11 7.1’ t A i .  . . . , A , }  

if L - t r u e  then return f a l s e  
else return t r u e  U 

Example 3.2 C‘orisitler Example 2.3. Let the query be to find if y a t h ( / a ,  .sf) is true in 
scuiario S2. A computation of the CN procedure can be: 
(1) solvf({yath(la,sf)}) 
(2) S O l I I € (  { C o ? m F  cted(la,  sf)}) 
( 3 )  solut({}) returns true 
(/I)  q u a l i f y (  {connccted(la,  .sf)}) 

(5) 
(6)  s o l ~ ‘ c ( { } )  returns t r u e  

(’7) 
( 8 )  
(9)  
(10) 
(11) 

(12) 

solzv ( { noii s i iol~eni  ergn cy  r t  e( l a ,  sf)}) 

q u a l i f y (  { ,zonsnowenzergncyrte(la, sf)}) returns true 
f i x e  is rcturned for solre({ n o n ~ n o w e m e r g n c y ~ t e (  la ,  sf)} 

f a l s e  is retiirrred for q u a / i f y (  { connec t td (  l a ,  sf)}) 
f o l s ~  is returned for solve( { connected(  l a ,  .sf)}) 
steps ( 2 )  to  (10) gct repeated for 

J ~ S E  is returned for solve( { p a t h ( l a ,  sf)}) 
solve( { coi?nccted(la, C), path(C,  sf)}) and returns false  

7 ’ 1 1 ~ 3  query fails arid p a t h ( l a ,  sf) is not true in scenario Sz 0 

I‘he following theoreill SllOWS the equivalence between the extensions of a CN system 
of rules and yualificatioiis and the answer set generated using the CN procedure. 

Theorem 3.1 Soundness and Completeness of CN Procedure 
Let S be a sccm<irio wliosc helief set is propositional. Then, a ground atom A is in E ( S )  
if arid olily if tlie qucry s o l ~ ~ t ( i 1 )  to tlie CN procedure returns the value tr74e. 

Proof Sketch: From the definition of E ( S )  it can be seen that A is true if and only if 
it matches the head of a rule in 11 provided (1) the body is also true and (2) A is not 
disqualified hy Q. The recursive call of solve( { ,41, . . . , il,}) in the procedure solve takes 
care of coiitlition (1). Condition (2) is taken care of by the call q u n l i f y ( A )  which should 
succeed to meet condition (2) .  From the definition of Q ( S )  it can be seen that  -A  is 
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riot in Q ( S )  if and only if all proofs of from D U Q fail to succeed. The while loop 
in  thc procedure qualify tests for all such proofs for Til by testirrg if the bodies of all 
the matching qualification rules fail. Since, we are dealing with a propositional belief set, 
calls made to procedures solve and qualify are decidable. Hence, solve( A )  returns true 
if and only if A E E(.9). 0 

4 CNR and other NMR paradigms 

In the prwecdirig sections we provided it general approach to computational nonmono- 
tonism in the coritext of a systerri of rules and exccptions. Even though we described a 
particular syntax and semantics tlic notions enibcddd in compiitational nonrrionotonism 
can be easily transported to other nonmonotonic rmsoning systems to provide a richer 
normlonotonic capability wi th  a facility to reason under diff'ercnt situations based on con- 
text and priority. First, we show lrow we can extend ILeitcrs's default reasoning to provide 
coiriputatiorial noumonotonism. 

4.1 Default Reasoning 

We considw a rcstricted form of lleiter's [la] default reasoning. Iteiter's default theory 
consists of a set of formulas and a set of defaults. Computational noiimonotonism can 
be achieved by restric ting the application of dcfaults depcnding upon the context and 
priority. is a set of 
well formed formulas, N s  and hils are two system-wide pararric.tcrs defining con text and 
priority as shown iri Scction 2. I1 is a set of drfaults of'the form: 

A CN-dcfuult throry is a four tuple < W, D, N s ,  Ms > where 

[ N ,  MI (Y M P , ,  . . . , hipn 
Y 

'rlie above formula meam that if a is proven and each ,BL is consistent then y can be 
infcrrrd proviclcd tlic rlefaultj rule is noit rest ricted by system-wide parameters of context 
number il4s and priority number N.9. A d e € d t  rule is applicable if its contcxt number 
A4 = 2cfs or if M == 0 (see Si ion 2 for explanation) and when N 5 N s .  'I'hc consistcncy 
of each PI can be taken as that - l / j t  is not, provablc from the systcm in a particular scenario. 
In this paper, we  are only considering the propositional default theory. 

We next define the expansion computed using a CN-default theory. 

Definition 4.1 Lct S =< W ,  D ,  Ns, May > be a CN-default theory. A CN-default exten- 
sion of S is defincd as the srriallest set sat isfyirig the following propcirties: 

(1) w t- y thcn y E E ( S )  
(2) [f tlicrc is a CN-default rule o f  the form given above, then 

and iV 5 N S  and (M = &IS or A4 = 0 or MS = 0) 
if cy E E ( S )  and V i , n  2 i 2 1 ,  E ( S )  

then y E & ( S )  

The following example illustratcs the approach of CS-default theory. 
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Example 4.1 Consider the Nixon diamond problem: Most quakers are pacifists. Most 
republicans are rionpacifists. Nixon is a quaker and a republican. The problem does not 
allow any inference regarding Nixon’s pacifism. Ru t  let us consider two scenarios as part 
of the problem. The statement that ‘most quakers are pacifists’ applies only when we 
arc dcalilig with mild-pacifists and the stateincrit that ‘most republicans are nonpacifists’ 
applies only when we are dealing with hawkish-republicans. The extended problem can 
be encoded as the following CN-default theory: 
W = { ~ u u ~ ~ ~ ( ? z ~ x o T z ) ,  T e p b l Z C U ? Z ( n i X O n ) }  

[0,1] q u a k e r ( X )  : JM p a c ~ f i s t ( X )  [0,2] republ ican(X) : M i p a c i f i s t ( X )  

D = {  paclf7st(  X )  7 -1pacifist( X )  1 
Consider scenario SI  =< W, U ,  0, m i l d q u a k e r s  >. Then, 

E(  5’1) = {paci f zs t (nzxon) ,  quaker(niaon),  republzcan(nixon)} 
Next, consider scenario 5’2 =< W, U ,  0, hawkish-republicans >. Then, 

E(S2)  = { l p ~ ~ 2 f i ~ t ( n i ~ o n ) ,  guaker(niXon), r e p u b l i c ~ n ( n i ~ ~ n ) }  
Finally, considering a scenario, S3 =< b’, U ,  0,O >, where all defaults apply, we get either 

0 

By restricting the application of particular default rules, extensions are generated which 
correspond to different scenarios. For example, scenario given by S3 reduces the problem 
to default reasoning as defined by Iteiter [12]. 

E(S3)  = E ( S l )  or E ( & )  = E ( & )  since both the defaults become applicable in S3.  

4.2 Circumscription 

Applying the concept of compiitational nonmoriotonism was natural in the case of rules 
with qualification and in the case of default reasoning. The reason for this is that  the 
qualifications and defaults are isolated and can be controlled through system wide con- 
text and priority relationships. In the case of circumscription, achieving computational 
~ion~nonotoriism is not so easy since the theory is a monolith and is acted upon by the 
circurnscriptive schema as a whole. But, one method suggests itself, that  of controlling 
the circumscriptive minimization of certain predicates depending upon the scenario. This 
is an extension of the concept of protection introduced by Minker and Perlis [8, 9, 71. That 
is, we can use scenarios to inhibit the minimization of some of the predicates. The value 
of these predicates will be inhibited from being considered false  due to circumscription. 
We can motivate computational circumscription using the following example. 

ICxample 4.2 [Y] Someone asks whether you have ever known the phone number of a 
movie star. You pause only split seconds before answering ‘No’. Later, on being asked 
whether you ever known the phone number of your uncle in Chattanooga, you hesitate, 
frown, and end up saying that you are not sure. We apparently circumscribe on a movie 
star’s phone number, but not on a relative’s. In this case, we ‘protect’ the answer from 
taking on a value ’No’. That is, certain things are circumscribed whereas the uncertairiity 

R of certain other things are protected. 
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In the above examplc, we can ascribe two contexts, one, called moviestars-context, where 
we allow the circumscription on a phone number aiirl another, called relatives-context, 
w h c w  no circumscription i s  allowed on a phone number. We make precise the idea of 
restricted circuniscriptiori by exttviding the definition of protected circumscription. 

A comyiitationally protected set is a set of elerrleiits of the form: 
[ N 7  h.lr] pz,  where p1 is a predicatc (posiibly instantiated) and N is its priority iiurnber 

and M is it,s context nuiiiber. 

Definition 4.2 A computationdy prolr.ctcd theory is a four tuple defined by a scenario 
S, A =< 7’, 12, N,y, it& > where 7’ is a set of well formed formulas, I? is a computationally 
protcctcd set of prrtlicatcs and Ns and &Is are two system-wide parameters defining 
context arid priority of thc scenario S ,  i ~ s  in the case of the systcrns defined in Sections 2 
and 4. n 

In the definition below EPs stands fur the set of predicates which are protected in a given 
scenario S dcfined hy system-wide parameters iVls and N s .  Given a compiitatiorially 
protccted theory A =< T ,  R, iVs, Ms >, 
EPs = ( p z  I [ N , M ]  p ,  E li a i d  N 5 N s  aiid ( M  = ills or A4 = 0 or A4 = 0). 
That is, EPs-things are protected in S. 

Definition 4.3 (modified from [ 7 ] )  Let T be a theory and EPs be a protected set defined 
by a scenario S .  Let f’ arid 2 he two disjoint set of predicates where thc predicates in 1’ 
are circuniscribcd arid those in Z are allowed to vary. Then the computa t iondy  protected 
c i rc u m.5 c rip t io ri sc h e m n is 

CIRC(?‘; P;  EP,; X) = 
T ( Y ,  x) A VP’, 2’((7’( F”, 2‘) A Y‘/h’& =+ P )  =+ P’/EPs .($ P )  

where P’ and %’ are sets of predicate symbols similar to I’ and %. Notation T / U  denotes 
T&lCT. 0 

Tlie following examplc shows how scenarios can be used to protect predicates from being 
minimized through circumscription. 

Example 4.3 Coiisidcr thc following encoding of Exaniple 4.2. 
r !  I = { k . , ~ 0 ~ ~ _ ~ 7 ~ 1 ? r ~ b e r ( , ~ )  t kiiow-person( S) ; krtoiuprr.sorz(niofh€r) ; 

p~rsnn(7mcZe) ; person( f i lrnstar) } 
Let R = { [O,2] krzow_nvrnbfr (u i i~ l f ) } .  ‘I’hat is, predicate know-nurnher(uncle) is pro- 
tcLtd  whcn N s  I 0 and  (Ms = 2 or Ms = 0). Consider the scenario S where 
A =< T ,  12, 0 , 2  >. ‘Then, EPs = { k.now_riui7bber(uncle)}. Applying computationally 
protected circ.iiniscription for P = { li*riow-riurnbc r } ,  Z = { k n o w - p P r s m } ,  we get 

C“IRt‘ (7 ’ ;  P;  6,’P.q; Z )  = ‘I’ u { - 1 k ? 1 0 ~ - n ~ m b t r ( f z l i n ~ t ( l ~ ) } .  
This allows the infcrcncc of ~linow_rz~~~~zher( f2/7nStnT) ,  whereas the question whether 
you ever  kricw the phone niimbcr of ytmr uncle does not produce a negative answer, 
since the predicate kiioiu_nu7nbcr(~iric.bp) is riot rriiriirnized in scenario S .  ‘X’he predicate 

0 know_izun~hc,r(inotiier) is true in all scenarios. 
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5 lo is c ussio n 

Computational nonnionotonisnl provides a facility to make conclusions depending upon 
the situation or scenario. Nonnionotonism occurs because of the changing context and the 
changing priority level of the system. We have discussed computational nonmonotonism 
in the light of three systems: rules with exceptions, default reasoning and protected 
circuniscription. l h c  CN theory of rules and qualifications extends the semantics of rules 
arid exceptions [3] to include context and priority. Our application of CN theory to 
default reasoning can be seen as an extension of Poole’s default reasoning system [ll].  
He applies constraints to defaults, hut  the constraints are applied all the time with no 
notion of context or priority. Our application of CN theory also extends the concept 
of protected circuniscription [9] to scenarios. The three cases capture different aspects 
i n  their application of the CN paradigm. CN theory applied to rules and exceptions 
providcs a means to trim and/or enlarge an expansion depending upon the applicable 
set of qualifications. CN-default theory provides a method to restrict the application of 
certain default rules and thereby controlling the default assumptions that can be made 
froiri the systern. CN-default theory provides a method for choosing one extension among 
rniiltiple extensions depending upon the situation. In the case of circumscription, the CN 
technique allows one to control the set of predicates which is minimizrd by circumscription. 
We have shown the utility of computational iionmonotonism by applying it to several 
rionmonotonic reasoning paradigms. 

The approach developed in this paper can be easily adapted for real time applications 
where one needs to provide results within certain time constraints. Because of the way 
the knowledge base is bifurcated. as rules and qualifications, the rule-processing and 
qualificatioii-checkiIig can proceed in parallel. The number of qualifications that are 
checked is a funtlion of the time available. If the arnount of time given is short, the number 
of qiialifications that get checked is also small and the answer given is consistent only with 
the qualifications checked. kt’hen more time is given, a larger number of qualifications 
gct chccked and the answer provided is ‘more correct’ compared to the answer given 
with less qiialification processing. This type of processing provides yet another type 
of corriputational nonnioi~otonism. The approach can also be generalized by providing 

context (or situation) iiifoririation for individual rules in the CN-system of rules arid 
exceptions, and for individual axioms in L V  in a (“-default theory. 
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Abstract 

Parallel algorithm of static allocation of a program into parallel computer is proposed. 
The algorithm is seen xj a sequence of games of learning automata team migrating in a 
computer system graph. 

1. INTRODUCTION 

As corriputcr architecturcs evolve towards massive parallelism, a major research question 
that has developed is the question of assigning modules of a program into a parallel computer 
for maximum performance. The problem belongs to  a class of combinatorial optimization 
problems and is known as NP-complete. Various techniques have been treated lately for pos- 
sible solutions. These solutions are based ori application of mathematical programniing [ I ] ,  
graph theory [2], branch arid bound algorithms [3], or queuing theory [4]. 

Allocation algorithms can be generally classified into static allocation algorithms [a ,  51 
and dynamic load balancing algorithms [C,, 71. While load balancing algorithms are often 
parallel and distributcd, static allocation algorithms are typically sequential and represent 
a bottleneck in execution oti a parallel machine. In this paper we concentrate on working 
out pardlel and distributed algorithms of static allocation of program graphs in message 
passing miiltiprocessor systems. 

Stochastic search techniques such as genetic algorithms [8, 9, 101 or Boltzmann Ma- 
chine [ll, 121 modelling biological mechanisms existing in nature have been applied lately 
t o  difficult problems of combinatorid optimization . We propose in the paper another bio- 
logically motivated technique using a concept of a learning automaton [13, 14, 15, 16, 171 
and based on self-organizing features of learning automata teams [18, 16, 171. 

In the paper Section 2 contains a computational model and a structure of an alloc a t' 1011 
algorithm. Section 3 provides a theoretical background for learning automata team models. 
In Section 4 an algorithm of static allocakion as a sequence of dynamic automata games 
is presented. Section 5 discusses the algorithm and presently available results. Section 6 
makes some concluding remarks. 

'Currmtly at Laborntoire de Genie Informntique, IMAG B.P.53x-38041-Grenoble cedcx, France 
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Figure 1: Examples of (a) a program graph, (b) a system graph 

2. COMPUTATIONAL MODEL AND A STRUCTURE 
OF ALLOCATION ALGORITHM 

As a general model of a distributed computer system we employ the system graph 
G, -< V,, E, >, where vertices V, represent the nodes of multiprocessor system containing 
N ,  identical processors and edges E,  represent the interconnection pattern of the system. As 
a general model of a parallel program we use a directed weighted graph G, =< V,, Ep > with 
set V, of N ,  nodes representing program modules and with collection of arcs EP representing 
connections between moduls. Fig.1 shows examples of a program graph and a system graph. 

To develop a distributed representation of the system graph for the purpose of the 
allocation algorithm our structural discription of vi system node ( i  = 1 ,2 , .  . . , N , )  will 
contain 

a) a list {vi(et,)} of neighbour nodes available from the node vi through arcs {et,} incident 
with this node, 

b) a list of the shortest distances dkzn(v i ,  vi) between the system node vt and each node 
vi ( j  = 1 ,2 , .  . . , N , } ,  measured as the length of the shortest path between vi and vi. 

To work out a structural description of a distributed algorithm of the static allocation 
of a parallel program we will let partition the program graph G, into N p  nodes and suppose 
that with each program node vk (k = 1 ,2 , .  . . , N p )  is conjugated a decision-making entity 
consisting of a local environment interpreter Ek and a local decision-making unit U k  (see 
Fig. 2) .  

The structural description of the local environment interpreter Ek contains 

a) information about the neighbour relations of a program node vk, i.e. a list {aTk}  of 

its neighbour program nodes, where Tk- a number of neighbours of the node vi, 

b) a list ( u l k ,  1 3 2 ~ ,  . . . , a r k )  of weights of edges incident with the node I# and a weight b k  

of the node, 
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Figure 2: A decision-making entity consisting of a local environment interpreter Ek and a 
local decision-making unit U k  is corijugatpd with k - th  node of a program graph. 

c) an actual location of a given node 71; and its neighbours in the system graph, i.e. a 

list {si( #), ( S ~ < V ~ * ' ~ ) ) )  of corresponding system nodes, 

~f where actually is located a given node I$, i.e. a list {s~,,($)}, 
d)  a list of actual locations of programs nodes which have visited lately the system node 

e )  a local function C;k describing some actual cost relations in the system graph between 
given program node v$ arid its neigltbour program nodes .upark and its previous value 

c:,d* 
A semantics of the distributed algorithm of the static allocation of a program graph is 

given in Section 4. 

3. AUTOMATA GAMES WITH LIMITED INTERACTIONS 

To provide a theoretical background for learning automata (for a concept of learning 
aiitomaton and some its applications, see p.g. [15]) based algorithm of allocation we present 
below a model of automata games with limited interactions. In the model [18, lG, 171 we 
suppose that 

a) given a team of automata players A',  A 2 , .  . ., A k ,  . . . , A N  , 
b) for each automaton Ak giver1 a firiitc set {yk} of its actions, 

c) for each Ak given a payoff function P k ( y k ,  y"'k , y a 2 k , .  . . , y%) which depends only on 
limited number of automata - players: its action yk and actions of its rk neighbours 
in the game ( r k  << N ) .  'The rneaning of Pk is the expected value of a reward for 
an automaton Ak for given its action y k  and given actions of its neigh1)ours. It is 
convenient to represent an interaction in the game by  a directed graph where vertices 
correspond to  automata - players, input arcs define players whose strategies influence 
the payoff function of a player and output arcs define players whose payoff functions 
depend on a strategy of a given player (see Fig 3), 
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Figure 3: Example of an interaction graph of automata game with limited interactions with 
a number of players N = 6. 

the game is played this way that at discrete moment of time t = 0,1,2, .  . . each player 
selects independently his own strategy to  maximize its own payoff. I t  is supposed that 
automata have no a priori information about the game, i.e. about payoff functions, 
their neighhours or a number of players in the game. They choose their actions only 
on the base of their single rewards and penalties, 

a solutiort for such a game is the Nash equlibriurn point i.e. an N-tuple of actions, 
one for each player, such that anyone who deviates from it unilaterally cannot possibly 
improve its payoff. 

It is known [16, 171 that aiitomata team is able to  find in the dynamic process of the 
game the Nash equilibrum point. The question which arises here concerns the average value 

N - 
P(y’*, y2*, . . . , yN*) = (23 Yk(y1*, y2*, ...,yN*))/ N 

k= 1 

of the payoff received by automata’ team in the Nash equilibrium point (yl*, y2*, . . . , yN*). 
Calculating the average automata team payoff for all combinations of automata actions in 
the game we may find the actions’ combination, corresponding to  the maximal price point 
(or points) i.e. the point providing the maximal average payoff received by the automata 
team. Unfortunatelly, the maximal price point very often does not correspond to the Nash 
point and the average payoff’ received by automata team can be very low. 

The solution for the problem in the case of homogeneous autornata games with limited 
interactions (the interaction graph of the game is reguIar) is introducing into the game a 
distributed procedure of a conjugate exchange process [18, 201. The following theorem is 
the result of introducing the notion of the conjugate exchange process: 

Theorem 1 Introducing the conjugate ezchange process into the homogeneous game with 
limited interactions transforms the maximal price point into the Nash point. 
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Figure 4: The average winning of the automata team in a homogenous automata game with 
limited interaction (number of players N = 8): (a) game without the conjugate exchange 
process, (b) game with the conjugate exchange process. 

The conjugate exchange process in a game is equivalent an organization of a coalition 
between neighbours in the game, where each player takes part simultaneusly in r coalitions, 
where r is the degree of the interaction graph. 

Fig. 4 shows some results of simulation study of homogeneous automata games with the 
conjugate exchange process. It can be secn that the team of learning automata is able to 
find the maximal price point providing for the team the maximal average payoff possible in 
the game (for more details, see [lG]). 

4. PARALLEL AND DISTRIBUTED ALGORITHM 
OF STATIC: ALLOCATION 

We will coiisider a process of searching of arr optimal static allocation of a program 
graph in a parallel compiiter as a dynamic learning automata game with limited interac- 
tions [18, 191. We interpret a program giraph (Fig. la) as an interaction graph (Fig. 3) 
of automata' game. We use a learning automaton Ak as a local decision-making unit U k  
(Fig. 2) interacting with an environment by a local environment interpreter Ek. We sup- 
pose that each automaton Ak (k = 1,2,. . , , N p )  is iniately placed into some system node v i  
(i = 1 , 2 , .  . . , N , )  as a part of a decision-making unit conjugated with a program node v i .  

We suppose that in each node vi of the system graph exists a standart description of the 
type ( e : ,  e ; ,  . . . , e; ) of edges incident with this node. Each automaton Ak will have a set of 
its T k  + 1 actions, 1.e. the set (yo, y1, y ~ ,  . . . , y T k )  which can be interpreted the following way: 
yo-do not move (stop), y1, y2,. . . , yrk-move to a neighbour system node which is available 
by edges e:, e;,  . . . , ef, respectively (Fig. 5) .  

'.k 

This way we allow for each automaton to migrate in a system graph together with the 
decision-making entity and conjugated with it the program node. The aim of each migrating 
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c;, = { 

Figure 5 :  Automaton Ak (with a program node v; and a local environment interpreter E k )  
is located in some node of a system graph. Its actions correspond to alternatives to  move 
to a neighbour system node or stay a t  given location. 

‘ bk,  if program node .,” is located 
in the system node wf 
without nodes being its neighbours 
or nodes having common neighbours with i t  

bk + E,”!-, b,, if program node w,” is located in the vf 
together with its neighbow nodes 

\ or nodes having common neighours with i t ,  

automaton i s  t o  minimize a local cost function Cc of a program node v,” located actually in 
a system node vi. 

We suppose that the cost functions Cc will be defined as 

c; = c;i + c;i, 

where Clk; is a heuristics measuring the average communication time between given pro- 
gram node w; located a t  the system node wf and neighbour program nodes of the node $, 
located in some system nodes, and C!, is a heuristics responsible for balancing of computa- 
tional load of program nodes. We sugest t o  define these functions the following way: 

‘k 

CFi = 0 . 5 x ~ k l  * d,;,(s‘(u,k),s~(~~~)), 
1=1 

where: ukr-the time needed to  transfer data  in the given computer system between 
neighbour program nodes v,” and  v; when they are located in the neighbours system nodes; 
di>Lin(si(v,”), .d($))-the minimal distance between system nodes i and j where are located 
program nodes v,” and vb repectively; rk - --a number of neighbour program nodes of the node 
v:, and 
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where: b k ,  b,-running times of program nodes T$ and v; respectively, located in the 
system node vi; n, a number of neighbour program nodes of the t# or nodes having common 
neighbours with it,  located in the system node vi. 

We can see that the local function of each automaton depends on its location in the 
system graph and locations only its neighbour program nodes. A location of each program 
node is in its turn a function of automaton parameters - automaton actions, which give 
possibility of migration of the automaton. The automata migration is an adaptive, stochastic 
ancl cooperative process of minimizing local cost functions assigned to automata and necds 
maintaining a communication between given automaton and its neighbours. After each 
automaton decision concerning its moving the automaton should inform its neighbours about 
its new position in the next step, and it also should receive messages from its neighbours 
about their new positions to  be able to calculate a new value of its cost function. 

In the result of the process of local interactions between automata we can expect achiev- 
ing by the automata team an equilibrium point characterized by a set of locations of au- 
tomata in the system graph which will provide for them stable values of their local cost 
functions. To avoid reaching local minima and provide the possibility to  achieve by the 
automata team a global minimum it is necessary to  introduce the exchange process [18, 201 
between automata. The conjugate exchange process is a process of exchanging between 
neighbour automata information about local values of their cost functions C! and calcula- 

tion a modified cost function $: 

where Ci-a value of the cost function of 1 - t h  neighbour of k - th automaton. The 
global equilibrium point reached by the automata team is connected with minimization by 
the automata in a distributed manner the following global function: 

In the case when weights of edges and nodes of the graph G, are equal 1, the global function 
describes the total average distance between the nodes of the graph G p  in  the graph G,. It 
is equivalent to  the mapping problem [21]. 

The algorithm of a distributed allocation of a program graph into a system graph can 
be presented now. The algorithm has a sequential part providing a computational model of 
a distributed environment and parallely implemented dynamic process of a program graph 
allocation. 
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Algorithm 

SEQ 

1. Partition the program graph G, into N p  nodes and provide for each k - th  node: 

(* numbers of neighbour nodes *) 
(* weights of edges * ) 

(* weight of the node k *) 

2. Assign initially (e.g. randomly) each k - t h  program node with conjugated with it an 
automaton Rk and a local environment interpreter Ek into i - th  system node and 
define ( s ” ( v , ~ ) , s ~ ~ ( v ; ~ ~ ) , .  . . , & ( v ; ~ ~ ) )  (* locations of k - th  program node 

and its neighboiirs in the system graph *) 

PAR 
Ek : (* local environment interpreter *) 

1. Set: &,. := 0, l k  := o 
(* i k  - counter of interactions between automata team 

for a given configuration of automata locations in the system graph, &.- 
counter of iterations (games) of the allocation algorithm *) 

Ak : (*  E - automaton *) 

2. Choose (e.g. randomly) your current action y k  (i.e. imitate moving to  the neighbour 
system node), send to your r k  neighbours a message concerning the new action and 
wait for messages concerning their new actions 

E k  : 

3. Calculate the cost function C/ 

4. Send the value C/ t o  your Tk neighbours and receive values of their Cj 

5. Calculate modified cost function Ck 

(* exchanging process *) 

-k 
6. Store: c t / d  := c; and y,kld := 7Jk 

Ak : 

7. Define (randomly) a new action y k  

8. Perform Steps 3, 4 and 5 

9. Accept as y k r w :  
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Figure 6: Initial allocation of the first three program nodes in the system graph. 

y k ,  with probability 1 - E (0 < E < I), if 2 etld or ykid,if C!ld > Cf 
and with probability & / ( r k  -+ 1) any of Tk + 1 actions of the autoinatori 

(* L- a number of interactions *) 

12. l k  := 0 

Ek : 

13. Move to neighboiir system node corresponding to current action yk , send your new 
address to  your Tk  neighbours and wait for messages concerning their new locations 

14. Set: n!t,, := rift,, + 1 

15. If ntteT < T then goto Step 8 
(* 1'- a number of iterations (games) of the allocation algorithm *) 

5. AUTOMATA BASED ALLOCATION ALGORITHM 
- A SIMULATION BY HAND 

'I'o provide a better insight into proposed allocation algorithm we discuss here the most 
essential steps of the algorithm. For this reason we suppose that Steps 1 and 2 ( (SEQ) 
were performed and nodes of the program graph from Fig. l a  were randomly located into 
the system graph from Fig. lb .  Fig. 6 shows possible initial allocation of the first three 
program nodes in the system graph, i.e. the program node 1 is located in the system node 
4, the prograin node 2 is located in the system node 3 and so on. 

Let 11s have a look at the steps of the algorithm from point of view of learning au- 
tomaton (we use a stochasic E -  automaton [18-191 suitable to operate i n  a deterministic 
environment) conjugated with e.g. the prograin node 1. The automaton A1 has the set of 
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actions {4,1,5,6,7} with the following meanning: 4 - do not move, 1 - move to  the system 
node 1 and so on. According to  Step 2 (PAR) the automaton Al chooses randomly its action, 
c.g. y1 = 7 (i.e. imitate moving to  the system node 7) and informs neighbours automata A2 
and A3 about its current action, waiting a.t the same system node for messages concerning 
their current actions. To simplify our discussion we assume that weights of nodes and edges 
of the program graph are equal 1 and actions of neihgbours automata A2 and A3 are equal 
y2 = 3, y3 = 9 (i.e., do not move) respectively and they do not change them in time. 

After receiving messages random environment interpreter El can calculate the cost func- 
tion G,4 (Step 3). I t  evaluates first a minimal distance (a number of single hops ) to its 
neighbours. The minimal distance is evaluated between the system node pointed by the 
action of the automaton A' (node 7) and nodes pointed by the automata A2 and A3 (nodes 
2 and 9 respectively). These values are equal 2 and 1 respectively and a value of the cost 
function is is equal C,l = 1.5 (see the la.st column of Table 1). 

Table 1. Minimal Distances of the Program Node 1 to  Its Neighbours 
Depending on an Action of the Automaton A' and Its Current Value of the Cost Function 

E G n i  of automaton A' I 4 I 1 I 5 I 6 I 7 I 

.... L. I I 

In a similar way the automaton evaluates its next action (Steps 7, 8) to  find the best one 
in Step 9. In Step 11 the algorithm returns control t o  Step 8 and the sequence of Steps 8 
- 10 is again repeated, eventually L times. During L iteractions automata do not change 
their locations but only simulate changing and evaluate their best actions. As can be seen 
from Table 1 the action G minimazing local function is the best for the automaton A' and 
one can expect that  the automaton will finally move to the system node 6 at  Step 13 of the 
algorithm. 

Real situation defined by the algorithm (Steps 2 - 11) is however more complex because 
the algorithm allows all automata to change their actions a t  the same step (Step 10). Fortu- 
natelly, this sequence of steps exactly corresponds to the model of learning automata team 
playing the game with limited interactions (see, Section 3), with the payment function P 
corresponding t o  given allocation of the program nodes in the system graph. Initial alloca- 
tiori of the program graph nodes in the system graph defines the payment function P' of 
the game. The game is played L times and a t  the end of the game automata actions point a 
new plan of allocation minimazing the average value of computer and communication delays 
between program nodes for given stage. The new plan of allocation is performed in Step 13 
where a new game with a payment function P 2  is established. This way the allocation algo- 
rithm may be considered as a sequence of T games with payment functions P', P 2 , .  . . , PT,  
each improving a plan of allocation. 
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6. CONCLUSIONS 

The problem of static allocation of a program graph in a parallel computer was consid- 
ered. Parallel and distributed algorithm of the static allocation problem was presented. The 
allocation process was interpreted as a sequance of dynamic games of learning automata. 
Some results concerning a global hehaviour of the automata team achieved only by a local 
cooperation of automata taking part in games with limited interactions were applied. It 
is expected that the algorithm will be able to  produce a suboptimal or optimal allocation 
corresponding t o  the minimum of the average total value of locally defined cost functions. 
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New York,  New York 10021 

A B  STRA CT 

I p r o p o s e  a g e n e r a l  s t r a t e g y  f o r  d e f i n i n g  t h e o r i e s  o f  
non-monotonic i n f e r e n c e ,  and  a p a r t i c u l a r  t h e o r y  f o r  
u s e  i n  c o n n e c t i o n  w i t h  methods  f o r  mode l ing  u n c e r t a i n  
b e l i e f  and  r e a s a n a b l e  a c t i o n .  A l though  non-monotonic 
i n f e r e n c e  i s  d e f i n e d  w i t h o u t  r e f e r e n c e  t o  s u b j e c t i v e  
p r o b a b i l i t y ,  my methods  f o r  mode l ing  u n c e r t a i n  b e l i e f  
and  r e a s o n a b l e  a c t i o n  a r e  b a s e d  on s i i ' j j e c t i v e  p r o b a b i l i t y .  
I c a n  g u a r a n t e e  t h a t  t h e  l o t t e r y  pa radox  w i l l  n o t  a r i s e  
i n  a p p l i c a t i o n  of t h e  p a r t i c u l a r  t h e o r y  i n  c o n n e c t i o n  
w i t h  t h e s e  methods .  

1. I N T R O D U C T I O N  

These  n o t e s  a r e  i n t e n d e d  a s  a b r i e f  i n t r o d u c t i o n  t o  i n t e r l o c k i n g  
m a t h e m a t i c a l  f o r m a l i s m s  f o r  non-monotonic  i n f e r e n c e ,  u n c e r t a i n  b e l i e f  
and r e a s o n a b l e  a c t i o n .  I have  p r e s e n t e d  t h e s e  f o r m a l i s m s  e l s e w h e r e  
w i t h  s u b s t a n t i a l  m a t h e m a t i c a l  deve lopment .  Here, t h e  t r e a t m e n t  w i l l  
be i n f o r m a l  and  i n t e r p r e t i v e .  The comprehens ive  model i s  a s  w e l l  
s u i t e d  f o r  machine  r e a s o n i n g  a s  f o r  r e a s o n i n g  a b o u t  e v e r y d a y  m a t t e r s :  
t h a t  i s ,  t h e r e  a r e  no e s s e n t i a l  g a p s  i n  t h e  m a t h e m a t i c a l  deve lopmen t .  

T h e r e  a r e  ferd i n f l u e n c e s  on t h i s  p r o j e c t  from t h e  A I  l i t e r a t u r e ,  
p a r t i c u l a r l y  t h e  l i t e r a t u r e  on non-monotonic r e a s o n i n g .  The model 
f o r  u n c e r t a i n  b e l i e f  i s  r e l a t e d  t o  a model o f  F a g i n  and  H a l p e r n ,  
b u t  I worked i n d e p e n d e n t l y ,  e v e n  r e p o r t i n g  r e s u l t s  a f e w  months e a r l i e r  
( s e e  Shay [ l ] ,  F a g i n / H a l p e r n  [ 2 ] ) .  The i n d e p e n d e n t  deve lopment  s h o u l d  
n o t  be  s u r p r i s i n g ,  s i n c e  i t  p r o c e e d e d  f rom c l a s s i c a l  ( i n n e r  and  o u t e r )  
measu re  t h e o r y ,  whose r u d i m e n t s  a r e  f a m i l i a r  t o  e v e r y  m a t h e m a t i c i a n .  

'There a r e  s u b s t a n t i a l  s i m i l a r i t i e s  t o  S h a f e r ' s  t h e o r y  of  e v i d e n c e  
i n  t h e  method f o r  mode l ing  u n c e r t a i n  b e l i e f .  My e x p l i c i t  i n t e n t i o n  
was t o  d e v e l o p  a f o r m a l i s m  t h a t  c o u l d  r e p r e s e n t  S h a f e r ' s  mode l s ,  
b u t  t o  s u p p l a n t  D e m p s t e r ' s  r u l e  w i t h  an  a l t e r n a t e  method f o r  combining  
models, namely ,  n o n d e t e r m i n i s t i c  p r o b a b i l i t y  e x t e n s i o n s .  N e c e s s a r y  
and  s u f f i c i e n t  c o n d i t i o n s  f o r  s u c h  c o m b i n a t i o n  and  many t e c h n i c a l  
d e t a i l s  a r e  t o  be  found i n  [ l ] .  F a g i n  and  H a l p e r n  had  o t h e r  g o a l s ,  
b u t  o b s e r v e d  a l s o  t h a t  c l a s s i c a l  measu re  t h e o r y  was a d e q u a t e  t o  
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represent belief function models. This result was surprising, as 
there had been much debate about whether or not classical probability 
theory was adequate to cover the concerns of Shafer and other adherents 
to his approach. 

The method for modeling reasonable action is patterned, to 
an extent, on the notion of random variable, and is a natural accretion 
to the method for modeling uncertain belief. It is intended as a 
substitute for utility-based decision theory. I have seen no similar 
model in the literature. 

Neither have I seen any close counterpart to the strategy for 
defining theories of non-monotonic reasoning, or the particular theory 
that I have defined for the comprehensive model. In particular, 
unlike many approaches to non-monotonic reasoning, my approach is 
not intrinsically "probabilistic", though there is an excellent fit 
with subjective probabilistic ideas. Moreover, my approach, in 
combination with probabilistic ideas, can readily circumvent the 
lottery paradox. This must be counted as unusual (see e.g. Kyburg 
[ 3 ] ) .  A similar claim has been made by Bacchus [ 4 ]  for his own 
approach. However, in [ 4 ]  he has far more limited goals in his 
approach to non-monotonic inference, limiting its application to 
default reasoning concerning "statistical" probabilities. I don't 
know of any other such claim, but I have little access to work in 
progress. 

The present account might appear at first to be over-burdened 
with discussion, at the expense of mathematical development. I am 
liniited by space, but I also regard the present emphasis as suitable. 
There has been substantial confusion concerning Dempster-Shafer 
formalism, for example, focused on multiple interpretations of 
"evidence", "be 1 ie f " , "updat ing" , etc . Nevert he less , the mathemat ica 1 
formalism that underlies much quarreling is utterly simple. Recent 
examples of interpretive essays, intended to clarify these issues, 
are of Dubois and Prade [ 5 ] ,  and Pearl [6 ] .  The inner and outer 
measure approach t o  belief representation that I offer here is 
superficially a special case of Shafer's belief function formalism. 
However, it can be demonstrated as well that the belief function 
formalism is a special case in measure theory. But these embeddings 
are not inverses. This subtlety indicates at least the need for 
clear distinctions, including distinct terminology. Ample discussion 
is otherwise intended to prevent the quarreling that has erupted 
in the Dempster-Shafer arena from spilling over. 

Ideas for this project came t o  me as a result of  focusing on 
Aristotle's "Art of Rhetoric" [7] rather than on current literature 
in AI. Aristotle is concerned in part with speci.fying what is 
rhetorical syllogism ("enthymeme"), wrought from probabilities and 
signs. My concern, in the comprehensive model, is to represent 
accumulation of uncertain belief in considering arguments that might 
be defeasible, and a relationship between beliefs and reasonable 
action. There is a natural link between these concerns and themes 
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of classical rhetoric (that has not greatly influenced AI methodology, 
I think). Although action can be based on defeasible arguments, 
there are no regrettable actions in my approach: any action taken 
as a result of accepting a defeasible argument might have been taken 
reasonably without such acceptance. This resilience is surprising 
(to me). 

2. BELIEF 

I choose subjective probabilities for measuring beliefs. A 
belief is an idea that is believed to an extent between 0 and 1. 
This is conventional, but I do not require that every idea be believed. 
A Boolean algebra of ideas under consideration (an agenda) contains 
a sub-algebra of beliefs. A probability €unction measures extents 
of belief in beliefs. 

The ideas can serve a s  an agenda for more than one actor. 
However, the beliefs of one actor might differ from the beliefs of 
another (different subalgebras), and should a n  idea be held as a 
belief by each of two actors, there needn't be agreement as to the 
extents o f  belief (different probability measures on the intersection 
of the two subalgebras). 

Truth and falsity are not concerns o f  this project. The units 
of Boolean algebras will be CERTAINTY and NONSENSE. 

Inference i s  based primarily on the structure of the Boolean 
algebras (material implication). However, 1 assume that actors 
judgments are summarized in part by compatibility relations between 
beliefs and ideas. If a belief is not compatible with the negation 
of an idea (in the judgment of an actor) then that belief is a E 
sign (for him) of that idea. For  one actor, "He is a Republican" 
is a sure sign that "He is hard-hearted"; for another actor, "He 
is a Republican" is compatible with "He is hard-hearted" and with 
"He is not hard-hearted". The notion of sure-sign is intended to 
represent Aristotle's notion of  necessary sign. Compatibility is 
intended to represent Aristotle's notion of sign. (There is a natural 
definition of to be a sign to an extent, but it is an outcome, rather 
than presupposition, of the theory). Compatibility relations satisfy 
axioms that guarantee that sure-significance is a (partial 
representation of material implication in quotient Boolean algebras. 
Thus, different actors appear to be reasoning about the same 
propositions (elements in a common Boolean algebra), yet exhibit 
a form of variation that is common in everyday speech (and even in 
formal deliberations) that can be interpreted as reasoning from distinct 
(quotient) Boolean algebras. An example of an axiom is: a belief 
is compatible with another if and o n l y  if their conjunction is believed 
t o  extent greater than 0. Another is: a belief is compatible with 
the disjunction of two ideas if and only if it is compatible with 
one of them. Naturally implication is a special case of 
sure-significance, if the antecedent is a belief. 
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S u r e - s i g n i f i c a n c e  i s  a s s o c i a t e d  w i t h  i n f e r e n c e ,  n o t  rough 
i n f e r e n c e ,  t h a t  i s  r e a s o n i n g  w i t h o u t  p a y i n g  heed  t o  e v e r y  s p e c i a l  
c a s e .  The a c t o r  who b e l i e v e s  R e p u b l i c a n s  a r e  h a r d - h e a r t e d  i s  n o t  
p r e p a r e d  t o  c o n s i d e r  e x c e p t i o n s .  I t  i s ,  t o  him,  n o n s e n s i c a l  t h a t  
t h e r e  a r e  
s c i e n t i f i c  
p r  i n c  i p  1 e s 
"ontogeny 
p r i n c i p l e s  
c a s e s .  

e x c e p t i o n s .  More c l e a r - c u t  i n s t a n c e s  c-an be  found i n  
d i s c o u r s e .  One g e n e r a t i o n  of  s c i e n t i s t s  will a d o p t  
t h a t  w i l l  b e  o v e r t u r n e d  by t h e  n e x t  g e n e r a t i o n  ( e . g .  

r e c a p i t u l a t e s  phy logeny" ) .  U n t i l  new d i s c o v e r i e s ,  such  
a r e  u s e d  a s  " laws  o f  n a t u r e " ,  i n t e n d e d  t o  c o v e r  a l l  s p e c i a l  

3 .  CUMULATING B E L I E F  

To come t o  b e l i e v e  a n  i d e a  t h a t  i s  n o t  a b e l i e f  i s  t o  choose  
an  e x t e n t  of  b e l i e f  f o r  t h a t  i d e a .  The c h o i c e  i .s c o n s t r a i n e d ,  f o r  
t h e  laws o f  s u b j e c t i v e  p r o b a b i l i t y  w i l l  a p p l y  t o  t h e  e x t e n d e d  s e t  
of  b e l i e f s .  The c o n s t r a i n t s  a r e  t h e s e :  i )  i f  a p r e s e n t  b e l i e f  i s  
a s u r e  s i g n  o f  an  i d e a ,  t h e n  t h e  e x t e n t  o f  b e l i e f  i n  t h a t  p r e s e n t  
b e l i e f  i s  a lower  bound f o r  t h e  f e a s i b l e  e x t e n t s  o f  b e l i e f  f o r  t h a t  
i d e a ;  i i )  i f  an  e x t e n t  o f  b e l i e f  i s  f e a s i b l e  f o r  an i d e a ,  1 minus 
t h a t  e x t e n t  o f  b e l i e f  i s  f e a s i b l e  f o r  t h e  n e g a t i o n  of  t h a t  i d e a .  

T o g e t h e r ,  t h e s e  c o n s t r a i n t s  d e f i n e  f o r  e a c h  i d e a  an  i n t e r v a l  
o f  f e a s i b l e  e x t e n t s  o f  b e l i e f .  I f  an  i d e a  i s  a b e l i e f ,  t h a t  i n t e r v a l  
i s  d e g e n e r a t e ,  a s i n g l e t o n .  To come t o  b e l i e v e  an  i d e a  t h a t  i s  n o t  
a b e l i e f  i s  t o  c h o o s e  a f e a s i b l e  e x t e n t  of  b e l i e f  f rom t h e  i n t e r v a l  
a s s o c i a t e d  w i t h  i t .  

E v i d e n t l y ,  t h e  lower  and  uppe r  bounds a r e  c l o s e l y  a s s o c i a t e d  
wi-th t h e  b e l i e f  and  p l a u s i . b i l i t y  f u n c t i o n s  o f  Dempster -Shafer  t h e o r y .  
They a r e  i n n e r  and o u t e r  measu res  of  c l a s s i c a l  measure  t h e o r y .  However, 
b e l i e f  and  p l a u s i b i l i t y  f u n c t i o n s  a r e  n o t  g e n e r a l l y  i n n e r  and  o u t e r  
m e a s u r e s ,  y e t  c a n o n i c a l  i n n e r  and  o u t e r  measu res  c a n  be  a s s o c i a t e d  
w i t h  a b e l i e f  o r  p l a u s i b i l i t y  f u n c t i o n .  C o n s e q u e n t l y ,  t h e r e  i s  c e r t a i n  
t o  be c o n f u s i o n  i f  I r e l y  on t h e  t h e  Dempster -Shafer  t e r m i n o l o g y .  

I s a y  t h a t  t h e  lower bound o f  f e a s i b l e  e x t e n t s  o f  b e l i e f  i s  
t h e  a s s u r a n c e  o f  an  i d e a ,  and t h e  uppe r  bound of  f e a s i b l e  e x t e n t s  
o f  b e l i e f  i s  t h e  p r o m i s e  of  an i d e a .  E v i d e n t l y ,  p romise  i s  t h e  uppe r  
l i m i t  o f  a s s u r a n c e  t h a t  d e v e l o p s  a s  o t h e r  i d e a s  a r e  a d o p t e d  f i r s t  
a s  be l i e f  s .  

N o n - t r i v i a l  t heo rems  c o n c e r n i n g  e x t e n s i o n s  o f  p r o b a b i l i t y  measu res  
a r e  r e q u i r e d  t o  s u p p o r t  t h e s e  comments. They a r e  p roved  i n  [ l ] .  

E v i d e n t l y ,  t h e r e  i s  a s e n s e  i n  which  t h i s  a p p r o a c h  s u p p o r t s  
i n t e r v a l i s t i c  p r o b a b i l i t y  models .  However, I do n o t  i d e n t i f y  an  
i n t e r v a l  w i t h  e x t e n t  of  b e l i e f .  A b e l i e f  f u n c t i o n  i n  Dempster -Shafer  
t h e o r y  d e t e r m i n e s  a p l a u s i b i l i t y  f u n c t i o n  ( s e e  S h a f e r  [ 8 ] )  and ,  
c o n s e q u e n t l y ,  t h i s  i d e n t i f i c a t i o n  h a s  been  e f f e c t i v e l y  a d o p t e d  t h e r e .  
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4 .  RULES GOVERNrNG REASONABLE A C T I O N  

I n  [ 9 ]  I l i n k  a c t i o n s  t o  a n  agenda  by r u l e s  o f  t h e  s o r t s :  

X w i l l  do A i f  he  b e l i e v e s  O K  comes t o  b e l i e v e  B 
t o  e x t e n t  l y i n g  i n  i n t e r v a l  I ;  

X w i l l  do A o n l y  i f  he b e l i e v e s  o r  comes t o  b e l i e v e  B 
t o  e x t e n t  l y i n g  i n  i n t e r v a l  I ;  

and  s i m p l e  g e n e r a l i z a t i o n s .  

A c t i o n s ,  t o o ,  a r e  e l e m e n t s  of a l g e b r a s ,  and  c o n s i s t e n c y  o f  
a c t i o n s  i s  d e f i n e d  i n  a manner a n a l o g o u s  t o  c o m p a t i b i l i t y  o f  b e l i e f s  
and  i d e a s .  R u l e s  c a n  t r i g g e r  i n c o n s i s t e n t  a c t i o n .  A se t  of r u l e s  
t h a t  c a n n o t  t r i g g e r  i n c o n s i s t e n t  a c t i o n  i s  a c o n s i s t e n t  p l a n  o f  a c t i o n .  

Suppose  B i s  n o t  b e l i e v e d  t o  a n y  e x t e n t ,  b u t  i t s  f e a s i b l e  e x t e n t s  
o f  b e l i e E  l i e  w i t h i n  i n t e r v a l  I .  Shou ld  X u n d e r t a k e  t o  do  A? The 
s u r e - t h i n g  p r i n c i p l e  s u g g e s t s  t h a t  h e  s h o u l d ,  b u t  t h e r e  w i l l  be 
d i f f e r e n c e s  o f  o p i n i o n  on t h i s  p o i n t .  

S i n c e  a n  a c t o r ' s  r e g u l a  c o n c e r n i n g  an  agenda  c a n  r e f e r  t o  i d e a s  
n o t  b e l i e v e d ,  he c a n  be  m o t i v a t e d  t o  choose  a f e a s i b l e  e x t e n t  o f  
b e l i e f  j u s t  s o  t h a t  h e  i s  t h e r e b y  r e g u l a t e d  t o  u n d e r t a k e  a n  a c t i o n ,  
o r  p e r m i t t e d  t o  u n d e r t a k e  an  n c t j o n .  T h i s  i s  r e a l i s t i c ,  and a welcome 
f e a t u r e .  

5 .  THEORIES OF ROUGH INFERENCE 

I c o n s i d e r  a non-monotonic  i n f e r e n c e  o p e r a t o r ,  . r i . ,  t o  be 
a r e l a t i o n  on a Boolean  a l g e b r a :  P . r i . Q  s i g n i f i e s  t h a t  P c a n  be  
i n f e r r e d ,  r o u g h l y  s p e a k i n g ,  f rom (I. 

I o f f e r  a p a r t i c u l a r l y  s i m p l e  s t r a t e g y  f o r  d e t e r m i n i n g  w h e t h e r  
o r  n o t  a r e l a t i o n  i s  t o  be  c a l l e d  a rough i n f e r e n c e  o p e r a t o r :  

f rom a c h a r a c t e r i z a t i o n  o f  m a t e r i a l  i m p l i c a t i o n  by  ax ioms ,  
i n c l u d i n g  consequence  m o n o t o n i c i t y ,  

remove con  s e que n c e mono t o n i c i t y . 
The r e s i d u a l  ax ioms,  a t h e o r y  f o r  rough i n f e r e n c e ,  e i t h e r  

c h a r a c t e r i z e  m a t e r i a l  i m p l i c a t i o n  o r  f a l l  s h o r t  o f  i t  b a r e l y ,  f a i l i n g  
t o  g u a r a n t e e  consequence  m o n o t o n i c i t y .  The re  a r e  numerous non-monotonic 
i n f e r e n c e  t h e o r i e s  of  t h i s  s o r t .  A r e l a t i o n  i n  a Boolean  a l g e b r a  
s a t i s f y i n g  t h e  ax ioms f o r  a t h e o r y  f o r  rough i n f e r e n c e  i s  a rough 
i n f e r e n c e  o p e r a t o r .  I do n o t  r e q u i r e  t h a t  t h e  r e l a t i o n  b e  t h e  l a r g e s t  
( p e r f e c t )  r e l a t i o n  s a t i s f y i n g  t h o s e  ax ioms.  Techn iques  o f  T o u r e t z k y  
[ l o ]  [ l l ]  c a n  be  a p p l i e d  t o  e d i t  and  e x t e n d  rough i n f e r e n c e  o p e r a t o r s  
t owards  p e r f e c t i o n .  
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As simple and appropriate as this strategy is, I have not seen 
it proposed elsewhere. Whether an author proposes axioms for a weak 
inference relation or inference o r  deduction rules, almost always 
the Cartesian product relation will satisfy the restrictions. An 
example is the propositional logical system, C y  of Kraus et a l .  [12]. 
There seems to be a scholarly penchant for ensuring that monotonicity 
can't be deduced, rather than ensuring that inference is characterized 
if monotonicity is an additional requirement. 

It should be noted that my strategy has no intrinsic connection 
with probabilistic ideas. 

The followirig axioms are a theory of rough inference: 

REFLEXIVITY: each proposition is a rough antecedent o f  
itself; 

SEPARATION: a proposition and its negation have no rough 
antecedents in common other than NONSENSE; 

ANT ECEDENCE MONOTONICITY : a rough antecedent of a 
proposition is a rough antecedent of every consequence 
of  that proposition. 

II_ 

For constrast, I will state the axiom of consequence monotonicity. 
If this axiom is joined to any theory of rough inference, in particular 
the t-heory consisting of the three axioms above, than any operator 
in a Boolean algebra satisfying the axioms will be a sub-relation 
of material implication. 

CONSEQUENCE MONOTONICITY: every antecedent of a rough 
antecedent of a proposition is a rough antecedent of 
that proposition. 

To illustrate: If a man works hard then, roughly speaking, 
he will succeed in life; if a man is a prisoner in a state 
penitentiary, then he works hard. Conclude from consequence 
monotonicity that: if a man is a prisoner in a state penitentiary 
then, roughly speaking, he will succeed in life. This is clumsy. 
The focus of non-monotonic reasoning is to preclude such accounts. 

On the other hand: If a man speaks French then, roughly speaking, 
he will be able to read signs written in French; if a man can read 
signs written in French, then he will not be easily lost in Paris. 
According to antecedence monotonicity: if a man speaks French then, 
roughly speaking, he will not be easily lost in Paris. This account 
is more natural. The occasional blind speaker of French is an 
exception, but not a troublesome exception. 

The axioms of reflexivity, separation, and antecedence 
monotonicity seem to be a reasonable core for more specialized theories. 
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I w i l l  add  s e v e r a l  ax ioms t o  s p e c i f y  a t h e o r y  t h a t  c a n  be  
i n t e g r a t e d  smoo th ly  w i t h  t h e  i n n e r  and o u t e r  measure  a p p r o a c h  t o  
r e p r e s e n t i n g  b e l i e f .  However, i t  w i l l  be h e l p f u l  t o  c o n s i d e r  f i r s t  
how rough i n f e r e n c e  might  be u s e d  t o  advance  o v e r a l l  p r o j e c t  g o a l s .  

B e l i e f  f o r m a t i o n  i s  i n c r e m e n t a l ;  c u m u l a t i o n  o f  b e l i e f  l e a d s  
t o  more complex a c t i v i t y .  I n f e r e n c e ,  a s s o c i a t e d  w i t h  s u r e - s i g n i f i c a n c e ,  
i s  t h e  d e t e r m i n a n t  of  i n t e r v a l s  o f  f e a s i b l e  e x t e n t s  of  b e l i e f ,  and  
t h e r e b y ,  a p a r t i a l  d e t e r m i n a n t  o f  a d m i s s i b l e  a c t i o n .  

Rough i n f e r e n c e  migh t  t h e n  be used  t o  s p e c i f y  s e t s  o f  f e a s i b l e  
e x t e n t s  of b e l i e f ,  s u b s e t s  o f  t h e  f e a s i b l e  s e t s  s p e c i f i e d  by i n f e r e n c e ,  
f o r  rough i n f e r e n c e  domina te s  i n f e r e n c e .  How migh t  such  f e a s i b l e  
s u b s e t s  be  u s e d ?  A c o n s e r v a t i v e  u s e  would be t h i s :  an  a c t o r  might  
modi fy  h i s  p l a n  o f  a c t i o n  by a p p l i c a t i o n  of t h e  s u r e - t h i n g  p r i n c i p l e  
and  r u l e s  g o v e r n i n g  a c t i o n ,  b u t  s u b s t i t u t i n g  f e a s i b l e  s e t s  i d e n t i f i e d  
by rough i n f e r e n c e  f o r  f e a s i b l e  s e t s  i d e n t i f i e d  by i n f e r e n c e .  The 
emphas i s  of  t h i s  a p p r o a c h  i s  on how t o  mod i fy  p l a n s  of  a c t i o n ,  n o t  
how t o  mod i fy  b e l i e f .  But t h i s  i s  a t r a d i t i o n a l  g o a l  o f  A I :  t o  
l e a r n  how t o  a c t  w i t h o u t  r e g a r d  f o r  t roub le so rae  s p e c i a l  cases .  

An i l l u s t r a t i o n  w i l l  h e l p  c l a r i f y  t h i s  p o i n t .  L e t  PW be t h e  
p r o p o s i t i o n :  a p e r s o n  h a s  been wounded a s  v i c t i m  o f  a s t r e e t  crime, 
b u t  t h e r e  i s  no l o n g e r  a n y  present .  d a n g e r .  L e t  SF be t h e  p r o p o s i t i o n :  
I h e a r  a s h o t  f i r e d ,  a s c ream,  and  t h e  sound o f  someone r u n n i n g  away. 
SF i s  c o m p a t i b l e  w i t h  PW, b u t  i s  n o t  a s u r e  s i g n  of  PW, i n  my judgment ,  
b u t  I j u d g e  SF t o  be a rough s u r e  s i g n  o f  PW. Suppose I have  a r u l e :  
i f  I come t o  b e l i e v e  PW t o  e x t e n t  be tween .9 and  1 .0 ,  t h e n  I w i l l  
s e e k  o u t  t h e  v i c t i m  and t r y  t o  be  h e l p f u l .  On a n  o c c a s i o n ,  I b e l i e v e  
SF t o  e x t e n t  1 ( I  h e a r ,  and  t r u s t  my s e n s e s ) .  I a c t ,  a c c o r d i n g  
t o  my r u l e ,  n o t  b e c a u s e  1 a d o p t  a b e l i e f  t o  e x t e n t  1 i n  PW, b u t  because  
I have  a m e t a - r u l e :  I w i l l  u n d e r t a k e  t h o s e  a c t i o n s  t h a t  would be  
t r i g g e r e d  were rough i n f e r e n c e  t o  r e p l a c e  i n f e r e n c e  i n  s p e c i f y i n g  
f e a s i b l e  e x t e n t s  of  b e l i e f .  T h i s  m e t a - r u l e  i s  r e a s o n a b l e ,  a s  r u l e s  
a r e  t h e  b a s i s  o f  a p l a n  t h a t  is d e v e l o p e d  b e f o r e  b e l i e f s  c o n c e r n i n g  
a n  agenda  a r e  f u l l y  s p e c i f i e d ,  and  t h e r e  s h o u l d  be some f l e x i b i l i t y  
w i t h  r e g a r d  t o  t h e i r  a p p l i c a b i l i t y .  

Note  t h a t  I do n o t  a d o p t  t h e  b e l i e f  t o  any  e x t e n t  t h a t  PW, 
b u t  o n l y  a c t  a s  i f  I had .  I f  I f i n d  t h e  “ v i c t i m ”  t o  be  f r i g h t e n e d ,  
b u t  u n h u r t ,  1 w i l l  n o t  r e g r e t  the  a c t i o n ,  a s  I was f r e e  t o  b e l i e v e  
i n  PW t o  e x t e n t  1,  even  w i t h o u t  a p p l i c a t i o n  of  t h e  m e t a - r u l e ,  and  
c o n s e q u e n t l y  t h e  a c t i o n  I t o o k  was a r e a s o n a b l e  a c t i o n ,  a c c o r d i n g  
t o  my p l a n ,  a t  t h e  t i m e .  

T e c h n i c a l  i s s u e s  a s s o c i a t e d  w i t h  t he  f e a s i b l e  s e t s  s p e c i f i e d  
by rough i n f e r e n c e  a r e  t h e s e :  i )  migh t  i t  happen t h a t  s u c h  f e a s i b l e  
s e t s  b e  i n t e r v a l s ?  i i )  migh t  i t  happen  t h a t  s u c h  f e a s i b l e  s e t s  be 
non-empty? i i i )  migh t  i t  happen  t h a t  whenever  t h e  f e a s i b l e  s e t s  
a s s o c i a t e d  w i t h  two p r o p o s i t i o n s  a r e  b o t h  [ 0 , 0 ] ,  t h a t  t h e  f e a s i b l e  
s e t  a s s o c i a t e d  w i t h  t h e i r  d i s j u n c t i o n  be  a l s o  [ O , O ] ?  ( i . e .  migh t  
i t  happen t h a t  t h e  l o t t e r y  paradox c a n n o t  a r i s e ? )  



174 

I add ax ioms i n  two s t a g e s :  two ax ioms w i l l  e n s u r e  t h a t ,  i n  
my comprehens ive  model ,  f e a s i b l e  s u b s e t s  d e t e r m i n e d  by rough i n f e r e n c e  
w i l l  be s u b - i n t e r v a l s  o f  f e a s i b l e  e x t e n t s  of  b e l i e f  d e t e r m i n e d  by 
i n f e r e n c e .  A f i n a l  axiom w i l l  g u a r a n t e e  t h a t  t h e  l o t t e r y  pa radox  
w i l l  n o t  a r i s e .  

STRONG SEPARATION: i f  one  p r o p o s i t i o n  and a second  a r e  
rough a n t e c e d e n t s  of a t h i r d  and  of  t h e  n e g a t i o n  of  t h e  
t h i r d  r e s p e c t i v e l y ,  t h e n  t h e  f i r s t  i.s a rough a n t e c e d e n t  
of  t h e  n e g a t i o n  of  t h e  second .  

DISJUNCTIVE CLOSURE: i f  one  p r o p o s i t i o n  and  a s e c o n d  
a r e  rough a n t e c e d e n t s  of  a t h i r d ,  t h e n  t h e  d i s j u n c t i o n  
of  t h e  f i r s t  and second  i s  a rough a n t e c e d e n t  o f  t h e  
t h i r d .  

With a few t e c h n i c a l  n i c e t i - e s  ( s e e  Shay [13]) t h e  rough i n f e r e n c e  
t h e o r y  s p e c i f i e d  by t h e  axioms o f  r e f l e x i v i t y ,  s e p a r a t i o n ,  a n t e c e d e n c e  
mono ton i . c i ty ,  s t r o n g  s e p a r a t i o n ,  and d i s j u n c t i v e  c l o s u r e  w i l l  s p e c i f y  
non-empty s u b i n t e r v a l s  o f  f e a s i b l e  e x t e n t s  of  b e l i e f  d e t e r m i n e d  by 
rough i n f e r e n c e  r a t h e r  t h a n  i n f e r e n c e .  Fo r  e v e r y  i d e a ,  
[ r o u g h - a s s u r a n c e ,  rough-promise]  i s  a non-empty s u b i n t e r v a l  o f  
[ a s s u r a n c e ,  p r o m i s e ] .  Fo r  u s e  i n  c o n n e c t i o n  w i t h  t h e  comprehens ive  
model ,  I modify  t h e s e  axioms s l i g h t l y ,  t a k i n g  i n t o  a c c o u n t  t h a t  o n l y  
b e l i e f s  a r e  t o  be rough a n t e c e d e n t s ,  and t h a t  " p r o p o s i t i o n "  c a n  be 
i n t e r p r e t e d  a s  an e l emen t  o f  a q u o t i e n t  a l g e b r a ,  s p e c i f i e d  by an  
( a n y )  e x t e n s i o n  o f  t h e  p r o b a b i l i t y  measu re  r e p r e s e n t i n g  b e l i e f  t h a t  
i s  c o n s i s t e n t  w i t h  s u r e - s i g n i f i c a n c e .  

T h i s  t h e o r y  seems a d e q u a t e  t o  r e p r e s e n t  b e l i e f  f o r m a t i o n  b a s e d  
on " r h e t o r i c a l  s y l l o g i s m " .  A s  b e l i e f  f o r m a t i o n  p r o c e e d s  "one b c l i e f  
a t  a t i m e " ,  a l l  t h a t  i s  needed  f o r  g u i d a n c e  i s  r e s t r i c t i o n  of  t h e  

t h e  l o t t e r y  pa radox  a r i s e s ,  i t  i s  r e s o l v e d  i n  t h e  f o l l o w i n g  manner:  
an  a c t o r  c h o o s e s  c o n v i n c i n g  b u t  d e f e a s i b l e  a rgumen t s  t o  s u p p o r t  a d o p t i n g  
new b e l i e f s ,  whereupon he  r e v i s e s  h i s  judgments  c o n c e r n i n g  rough 
a n t e c e d e n c e  non-mono ton ica l ly .  S i n c e  judgments  of  rough a n t e c e d e n c e  
a r e  d e f e a s i b l e  i n  p r i n c i p l e ,  t h i s  i s  n o t  u n r e a s o n a b l e  p r o g r e s s .  
Thus ,  a l t h o u g h  t h e  l o t t e r y  pa radox  c a n  a r i s e ,  i t  i s  n o t  e v i d e n c e  
of  i n c o n s i s t e n t  b e l i e f .  

i n t e r v a l s  of  f e a s i b l e  e x t e n t s  o f  b e l i e f  w i t h o u t  d e g e n e r a t i o n .  I f  

With t h e  a d d i t i o n  of  a n o t h e r  ax iom,  t h e  l o t t e r y  p a r a d o x  can  
be a v o i d e d  a l t o g e t h e r .  

STRONG C O N J U N C T I V E  CLOSURE: i f  one  p r o p o s i t i o n  i s  a 
rough a n t e c e d e n t  o f  a s e c o n d ,  and  a t h i r d  i s  a rough 
an teceden t .  o f  a f o u r t h ,  t h e n  t h e  c o n j u n c t i o n  o f  t h e  f i r s t  
and t h e  t h i r d  i s  a rough a n t e c e d e n t  of t h e  second  and  
t h e  f o u r t h .  

I 

L e t  t h e  rough i n f e r e n c e  t h e o r y  s p e c i f i e d  by t h e  ax ioms o f  
r e f l e x i v i t y ,  s e p a r a t i o n ,  a n t e c e d e n c e  m o n o t o n i c i t y ,  s t r o n g  s e p a r a t i o n ,  
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disjunctive closure, and strong disjunctive closure be called the 
theory of almost-sure-significance. In a Boolean algebra with a 
rough inference relation satisfying these axiomss if a proposition 
is a rough antecedent of a second, then the first is said to be an 
almost sure sign of the second. 

If the corresponding rough-assurance and rough-promise functions 
are denoted ra and r p ,  then, for propositions A and B of the Boolean 
algebra, 

ra(A) + ra(I3) <= ra(A and B) + ra(A or B); 

rp(A) + rp(B) >e: rp(A and B )  -I. rp(A or R ) .  

These are familiar properties of belief and plausibility functions 
in Dempster-Shafer theory (see [ 8 ] ) .  

It follows immediately that the lottery paradox cannot arise: 
i.e. the upper bound of roughly feasiblc extents of belief of  the 
disjunction of propositions must be 0 if the corresponding upper 
bound for each disjunctive component is 0. 

T h e  most conservative use of this theory was introduced earlier: 
to adapt a reasonable plan o f  action by acting as if the feasible 
extents of belief were specified by almost-sure-significance, rather 
than sure-significance, carrying out only those actions triggered 
by the sure-thing principle, while abstaining from any actual extension 
of belief. This is a different use of rough inference from guiding 
be lief format ion. 

It is unreasonable to believe that my proposal for defining 
theories of rough inference can capture the immense variety of Eorms 
of commonsense reasoning. Nevertheless, I have been able to combine 
simple principles t o  model rigourously and in a realistic manner 
two styles of commonsense reasoning, and it is not unreasonable to 
expect more from this strategy. 

6. THE LOTTERY 

I offer a more complex illustration: 

The following ideas generate a Boolean algebra: 

Facts (whose negations are not compatible ith any ideas) 
A lottery is in progress; there i s  exactly one winning ticket; a 
person who has no ticket will not wi.n the lottery. 

Other ideas: I have a ticket; I have a winning ticket; there 
are many Lickets; I will win; the lottery is fair; my friend has 
no ticket; my friend will win; I would be better off without a ticket. 
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There  i s  a community o f  b e t t o r s  a t t e n t i v e  t o  t h e  p r e s e n t  l o t t e r y .  
They s h a r e  t h e  f a c t s  a b o u t  t h e  l o t t e r y ,  a t  l e a s t .  

I have these  b e l i e f s :  I b e l i e v e  f a c t s  t o  e x t e n t  1. I b e l i e v e  
t o  e x t e n t  1 t h a t  I have  e x a c t l y  one  t i c k e t ,  t h a t  my f r i e n d  h a s  no 
t i c k e t ,  t h a t  my f r i e n d  w i l l  l o s e .  I b e l i e v e  t o  e x t e n t  .99  t h a t  t h e  
l o t t e r y  i s  f a i r ,  t o  e x t e n t  .90 t h a t  t h e r e  a r e  many t i c k e t s .  

I do n o t  b e l i e v e  t o  any  e x t e n t  t h a t  I w i l l  w in ;  n o r  do I b e l i e v e  
t o  any  e x t e n t  t h a t  I w i l l  w in .  These  a r e  i d e a s  t h a t  I c o n s i d e r  
b e l i e v i n g ,  b u t  do n o t  b e l i e v e .  

O t h e r  b e t t o r s  w i l l  have  d i f f e r e n t  e x t e n t s  o f  b e l i e f  c o n c e r n i n g  
t h e  f a i r n e s s  o f  t h e  l o t t e r ,  f o r  example .  I j udge  t h a t  u n f a i r n e s s  
i n  t h e  l o t t e r y  i s  i n c o m p a t i b l e  w i t h  my winn ing .  ( I f  i s  i s  u n f a i r ,  
and I am n o t  a c o n s p i r a t o r ,  t h e n  I c o n s i d e r  i t  n o n s e n s i c a l  t h a t  I 
be t h e  b e n e f i c i a r y ) .  I t h i n k ,  t h e r e f o r e ,  t h a t  t h e  l o t t e r y  i s  n o t  
f a i r  i .s a s u r e  s i g n  t h a t  I w i l l  l o s e .  O t h e r s  migh t  n o t  s h a r e  t h i s  
judgment .  

The a s s u r a n c e  my b e l i e f s  g i v e  m e  f o r  t h e  i d e a  t h a t  I will l o s e  
i s  .01; t h e  p romise  of  t h e  i d e a  t h a t  I w i l l  l o s e  i s  1 .0 ,  a s  t h e r e  
a r e  no s u r e  s i g n s  ( o t h e r  t h a n  N O N S E N S E )  t h a t  I w i l l  w in .  

I n e x t  c o n s i d e r  rough a n t e c e d e n t s :  I judge  t h a t  my h a v i n g  b u t  
one t i c k e t  i s ,  r o u g h l y  s p e a k i n g ,  a s u r e  s i g n  t h a t  I w i l l  l o s e .  I 
p o s i t  no o t h e r  rough a n t e c e d e n t s  t h a t  a r e  n o t  s u r e  s i g n s .  I n  
p a r t i c u l a r ,  I do n o t  j u d g e  t h a t  my h a v i n g  b u t  one t i c k e t  i s ,  r o u g h l y  
s p e a k i n g ,  a s u r e  s i g n  t h a t  I am b e t t e r  o f f  n o t  h a v i n g  bought  a t i c k e t .  

The rough-as su rance  my b e l i e f s  g i v e  m e  f o r  t h e  i d e a  t h a t  I 
w i l l  l o s e  i s  1.0. The rough-promise i s  1.0 a s  well .  

I have  a r u l e :  t h a t  i f  I come t o  b e l i e v e  t o  e x t e n t  g r e a t e r  
t h a n  .95  t h a t  I w i l l  l o s e ,  t h e n  I w i l l  p u t  t h e  l o t t e r y  o u t  o f  mind. 
( T h a t  i s  n o t  t o  s a y  I would be u n r e s p o n s i v e  i f  I were d e c l a r e d  t h e  
w i n n e r ) .  Us ing  t h e  f e a s i b l e  e x t e n t s  of  b e l i e f  a s s o c i a t e d  w i t h  a l m o s t -  
s u r e - s i g n i f i c a n c e ,  I a p p l y  t h e  s u r e - t h i n g  p r i n c i p l e ,  and  p u t  t h e  
l o t t e r y  o u t  o f  mind. I do n o t  b e l i e v e  t o  e x t e n t  1 t h a t  I w i l l  l o s e ,  
b u t  I a c t  a s  i f  I d i d .  

7 .  CLOSING REMARKS 

The example p r e s e n t e d  i n  t h e  p r e v i o u s  s e c t i o n  a p p e a r e d  i n  [13] ,  
t o  i l l u s t r a t e  " r h e t o r i c a l  s y l l o g i s m " .  The r e s u l t s  on t h e  l o t t e r y  
pa radox ,  and  t h e  t h e o r y  of  a l m o s t - s u r e - s i g n i f i c a n c e  a r e  r e p o r t e d  
f o r  t h e  f i r s t  t i m e  h e r e .  [13] w i l l  be  r e v i s e d  t o  f o l l o w  t h i s  a c c o u n t  
more c l o s e l y .  I t  s h o u l d  be c l e a r  t h a t  t h e  frame problem i s  a n a t u r a l  
s o u r c e  o f  examples  o f  a s i m i l a r  s t y l e .  A c t o r s  c a n  a c t  a s  i f  changes  
o f  s t a t e  oE r e c o r d  a r e  t h e  changes  o f  s t a t e  i n  f a c t ,  w i t h o u t  b e l i e v i n g  
t o  e x t e n t  1 t h a t  t h e y  a r e .  
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Abstract 

A bottom-up approach to evaluate non-Horn rules in indefinite databases is presented. 
Tabular structures, called C-tables, are used to represent disjunctive facts. Algebraic 
operations on C-tables are used to evaluate non-Horn rules. The bottom-up approach 
computes the fixpoint semantics of disjunctive deductive databases. 

1 INTRODUCTION 

In recent years, the field of deductive databases has been the focus of intense research and 
there has been a dramatic advance in the understanding of the theoretical and practical issues 
involved. A substantial amount of effort has gone into definite deductive databases, a subclass 
of deductive databases in which only Horn clauses are allowed. The semantics of such databases 
are fully understood and there has been a great deal. of research dealing with implementation 
issues, particularly in query optimization in the presence of recursive rules. This research has 
culminated in various experimental systems like NAIL! [MUG86], LDL [NT88], and Postgres 
[SRSS], the utility of which have been successfully demonstrated. Therefore, it is not unrea- 
sonable to  assume that within the next decade, commercial systems with deductive capabilities 
will become available. 

In the presence of a large number of facts and relatively few rules, as is the case with defi- 
nite deductive databases, the bottom-up evaluation of rules (with optimization techniques like 
magic sets) performs much more efficiently than top-down evaluation. Moreover, the bottom- 
up evaluation using the relational algebra can take advantage of the efficient database access 
techniques involving joins that are a part of modern day relational database management sys- 
tems. For these and other reasons the successful experimental systems like LDL and NAIL! 
have opted for the bottom-up evaluation model. 

Indefinite deductive databases, which allow non-Horn clauses, are a subject of study by 
many researchers. Many of the semantic issues for indefinite deductive databases have recently 
been solved. The declarative, fixpoint and procedural semantics for disjunctive logic programs 
have been presented in [MR90]. Since deductive databases and logic programs share the same 
form of representation (clausal form), most of the semantics for disjunctive logic programs can 
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be carried over to indefinite deductive databases. In particular, if we disallow function symbols 
and restrict ourselves to pure non-Horn clauses (atoms on both sides of the +- symbol), the 
semantics of indefinite deductive databases is very well understood. The declarative semantics 
corresponds to the set of minimal models of the database and the fixpoint semantics is obtained 
using the l'; operator. The equivalence of declarative and fixpoint semantics is shown in [MRyO]. 
These semantics will be the basis of our bottom-up approach to evaluate noo-Horn rules. 

In this paper, we present a bottom-up algebraic approach to evaluate non-Horn clauses. We 
use a modified version C-tables of [IJSl] to represent the extensional database of disjunctive 
facts. The algebraic operations defined on C-tables are then used to evaluate the non-Horn 
clauses of the intensional database. 

2 BACKGROUND 

As far as this paper is concerned, we shall restrict indefinite deductive databases to consist of 
non-Horn clauses of the form 

A i , .  . . , A ,  t B1,. . . , R,, 

where Ais and B,s are atomic formulas that do not contain function symbols. 

2.1 Semantics of Indefinite Deductive Databases 

The dedarative semantics of indefinite deductive databases is based on Herbrand models. Such 
databases do not possess a unique smallest Herbrand model, but instead have a collection of 
minimal Herbrand models [Min82]. The following theorem illustrates the declarative semantics: 

Theorem 2.1 ([MinSZJ) For a n  indefinite deductive database P and for every positive clause 
E ,  P + E if and only if E is t rue  in every m i n i m a l  model of P .  

The fixpoint semantics is based on the immediate consequence operator TL defined in 
[MR90]. For this, we need the notion of the extended Herbrand Base ,  E H B p  for database 
P ,  which is defined to be the set of all finite disjunctions of different atoms of the Herbrand 
Base H B p .  7'; is defined as follows: 

TL(S) = {C E E H B p  1 C' +- B1,. . . , B, is a ground instance of a program 
clause in B and is1 V C1,. . . , B, V C, are in S and 
C" I= C'V C1 V 
C is the smallest factor of C"}. 

V C,, where Vi, 1 5 i 5 n, C, can be null, and 

Define the powers of 7'; as follows: 

T i f O = = O  
T j  1 (i + 1) = TL(T,! T ( i ) )  
TL T w = Zub{T,! f (i)li < w }  

Example 2.1 Consider the following database taken from [GM89]: 
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We shall return to this example at  a later point in the paper. 
The following theorem illustrates the fixpoint semantics of indefinite deductive databases: 

Theorem 2.2 ([MR90]) For a n  indefinite deductive database P and aposit ive clause E ,  P + E 
if  and only if TL 7 w E if and only if E is true in every min ima l  model of P .  

Essentially, TL f w is equivalent to the set of all disjunctions that are true in each minimal 
model. The bottom-up algebraic method presented in this paper will essentially capture all the 
disjuncts in T: 7 w .  

2.2 C-tables and Disjunctive Facts 

The C-table structure of [IJ81] is capable of representing more general kinds of incomplete 
information, but we shall use them to represent disjunctive facts. We shall now define C-tables. 

A domain  is a set of values, usually finite. A relation scheme is a list of attribute names, 
( A l , .  . . , A , l ) .  We associate a domain with each attribute. Let D1,. . . , D,, be the domains 
associated with the attributes A I , .  . . , A ,  respectively. Let Y be a set of distinguished variables 
and C be a set of distinguished constants. Let us define D c o n . ~  t o  be a special domain of logical 
conditions formed from the elements of Y ,  C. We shall associate the domain DCOAID with a 
special attribute C O N D .  A C-table T over the scheme ( R ,  COiVD), where R = ( A I , .  . . ,A , ) ,  
consists of tuples ( t ,  c) where t E D1 x . - x D, and c E DCONU. The tuple ( t ,  c )  belonging to 
the C-table T can be interpreted as the logical formula 
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NAME RGkOUP 
John A 
Tom A 
Tom B 
Gary A 
Gary B 
Gary 0 

.___. 

c + T ( t )  

i.e. if the condition c were true then the tuple t belongs to the relation 1'. The C-table can be 
used to represent ground disjunctive facts. For example, the ground disjunctive fact ~ ( t l )  V ~ ( t 2 )  

can be represented by the two tuples ( t l ,  z = u) and ( t 2 ,  z # u) in the C-table T for predicate 
T .  The justification for this is the fact that 

((z = a )  --+ T(t1))  A ((. # a )  --$ T(t2) )  

+ l )  V . . . V % ( t r l )  

logically implies l '(tl) V T(t2). In general, a ground disjunctive fact 

will be represented by ( n  - 1) tuples of the form ( t , , ~  : a , )  in the C-table T, for predicate 
T , ,  1 5 i 5 n - 1 and a tuple of the form ( tn , z  # a1 A A z # dT2-1)  in the C-table T, for 
predicate T,. Conversely, if there are n tuples of the form ( t , , ~ , )  in C-table T,, 1 5 i 5 n, such 
that cl V - - . V c, is a tautology, then we say that the ground disjunctive fact r l ( t l )  V - - V ~ ~ ( t ~ )  
is represented in the C-tables, where TI is the C-table for the predicate T , .  

Example 2.2 Let us consider the following disjunctive facts: 

bg(John,  A )  
bg(Tom,  A )  V b g ( T o m ,  B )  
bg(Gary,  A )  V bg(Gary,  B )  V bg(Gary,  0 )  

These disjunctive facts can be represented in the following C-table: 

C-b%D 
true - 
z = u  
$ # a  

( Y  # 4 * (Y P b)  

y 3 a 

y - b  

0 

A C-table is said to be normalized if 

1. it does not contain two tuples (t1,cl)  and (t2,c2) with tl = t 2  and 

2. it does not contain a tuple of the form ( t , c ) ,  where c is a contradiction. 

To normalize a C-table, we simple delete all tuples of the form ( t , c ) ,  where c is a contradiction. 
and combine the tuples ( t ,  c l ) ,  . . . , ( t ,  c k )  into one tuple ( t ,  c1 V .  - 'Vck)  (It can be easily observed 
that the logical formula ( C I  -+ T ( t ) )  A - - A ( c k  + T ( t ) )  is logically equivalent to (c1 V . V Ck -+ 
T( t ) ) ) .  We shall assume that all C-tables are normalized. Often, we shall replace tuple ( t , c )  
by ( t ,  c') where c and c' are equivalent. If T were a C-table then we denote its normalized form 
by T'. 

We now define the relevant extended relational algebraic operations for C-tables. 
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al  
a2 
a2 

a3 

Selection Let T be a C-table defined on the scheme ( I? ,COND) and let F be a selection 
formula involving the attributes of R. Then, 

bl true 
bl x = a 

b2 y = a 
b 2  2 # a 

where F(t1)  is F with all occurrences of attribute A replaced by t[.4]. An exa.mple of the 
selection operation is shown below: 

Projection Let T be a C-table defined on the scheme ( R , C O N D )  and let Y be a list of 
attributes of R. Then, 

An example of the projection operation is shown below: 

Join Let T and W be two C-tables defined on the schemes ( R , C U N D )  and (S ,COND)  
respectively. Then, 

An example of the join operation is shown below: 
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A B C C O N D  

al  bl c1  true 
al bl c2 z = a 

a2 b2 c4 x c - a A w = a  
a3 b2 c4 x f a A w = a '  
a4 b3 c5 I y = a A w # a  

. 

a1 bl c3 z # a 

_I_ 

- ........ _ 

Union Let T1 and T2 be two C-tables defined on the scheme ( R , C O N D ) .  Then, 

An example of the union operation is given below: 

Tl 
TTc o N D .... 

3 BOTTOM-UP APPROACH 

In this section, we present a bottom-up algorithm to evaluate non-Horn clauses in an indefinite 
deductive database. The projection operation is further generalized to be able to produce 
disjunctive facts that can be derived from the multiple atoms in the head of non-Horn clauses. 
Such a generalization is called project-or. We then define IDB equations which are based on the 
algebraic operations on C-tables. An algorithm to  solve the IDB equations is presented. The 
solution to the IDB equations of an indefinite deductive database correspond to their fixpoint 
semantics. 

3.1 Project-Or operator 

Consider the following non-Horn clause: 

P(X, Y>, q k ,  2) +--- T ( X , Z ) ,  4 2 ,  Y) 

The extended relationa.1 algebraic operations defined earlier can be used to compute the C-table 
that corresponds to the body of the clause. The following algebraic expression corresponds to 
the C-table, BODY for the body of the clause: 

B O D Y ( X ,  Y ,  2)  == ~.Y,Y,z(R(X,  z) w S ( z ,  Y ) ) ,  
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where R and S are the M-tables for the predicates T and s respectively. If this were a Horn 
clause with only one atom in the head, we could use an appropriate projection operation to 
compute the C-table for the head predicate. However, since we have two atoms in the head 
of the clause, we need to further extend the projection operation. Such an operation, which 
we shall term project-or, must take in as input a C-table (one that corresponds to the body of 
the clause) and projection attribute lists, one for each atom in the head and return as output  
C-tables, one for each distinct head predicate. We shall use the symbol U: for project-or. In 
the example clause, the project-or operation is 

P, Q = U[{(.~,~-)}.i(s,z)i(BODI.’(X’, Y, z)). 
This operation will return two C-tables P and Q. Let us now discuss what the contents of P 
and Q should be. Suppose that the C-table for the body of the clause is 

BODY 
IXTY I z I 1  COND 

The project-or should produce the following C-tables: 

P 
I x I Y It C U N D  I I x I 2 II C O N D  
1 I I 1  i I I I 1  J 

a2 x = a A u = a  a2 x = a A u # a  

a2 b3 x # a A v = a  

where y, u, and v are newly generated variables used to  express the disjunctions which can be 
derived by using the non-Horn clause and the tuples of B O D Y .  

We shall now present a formal operational definition of the project-or operation. 

Project-or Let T be an input C-table defined on the scheme (R, C O N D )  and let U,,  . . . ,Y, 
be a list of sets of projection attribute lists made up of attributes of R. Some of the Y,s  
may be empty sets. Let X I , .  . . , X ,  be the non-empty sets among x,. . ., Y, such that 
Xi = Yk,, 1 5 i 5 m. Let the order of the Y,s be maintained among X t s ,  i.e. k 5 j iff 
IC; 5 Icj, 1 5 i , j  5 m. If m = 1 and if X ,  is a singleton, then the project-or operation 
simply reduces to the projection operation. So, we shall assume for the remaining of this 
definition that m > 1. The sets Y i , .  . . , Y, correspond to  the output C-tables T I , .  . . ,T, 
respectively. The T,s are computed as follows: 

Case 1: 

Case 2: 

1. 

2. 

Y ,  = 0 In this case Ti = 0. 
E; # 8 Let Xi = { X i l , .  . . ,X ip i} ,  1 5 i 5 nz. For each tuple ( t ,  c) in T ,  

introduce tuples (IIxiL ( t ) ,  c A z = a, l ) ,  . . . , ( n [ . ~ ~ ~ ~ ( t ) , c  A z z aipi)  in C-table Tki, 
l < i < m ,  

introduce tuples ( r I . ~ , ~ ~ ( t ) , c  A z = a,,,l), . . . , ( r I .~ ,+ , -~~( t ) ,  c A z = in 
C-table Tkm, and 
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3.2 

3. introduce the tuple ( n . ~ , , , ~ ~ ( t ) ,  c A x # a l l  A .  - - A x # a,,3(pm-l)) in C-table Tk,, 

where x is a unique variable symbol of Y and a, , s  are different constants from C. Finally, 
the resulting C-tables are normalized. An example of the project-or operation is shown 
below: 

P, Q ~ { ( 1 , 2 ) , ( 1 , 3 ) } . { ( 2 , 3 ) } ( ~ )  

T 

P 

a2 b2 . . ...... x = = a A u = a  .. 

a2 b3 x # a A v = a  
. 

___I.- 

IDB Equations and their Solution 

Let D B  = E D B U I D B  be an indefinite deductive database where the E D B  part is represented 
as C-tables and the ID13 part consists of non-Horn rules. I’ve can partition the set of I D B  
predicates based on the equivalence relation “predicate p is related to predicate q if and only if 
p and q both appear in the head of the same non-Horn rule”. We can use this partition to define 
a partition of the set of non-Horn rules in IDDB based on the equivalence relation “non-Horn 
rule T I  is related to non-Horn rule 7-2 if and only if there exists head predicate p l  in T~ and head 
predicate p2 in r2 such that p l  and p2 appear in the same equivalence class of predicates”. 

Let Tz = illl,. . . , Tz,} be the partition of the set of non-Horn rules of the I D B .  We shall 
obtain an I D B  equation for each element of this partition. Let I l ,  = { T I , .  . . , ~ k )  define the 
predicates p, ,  , . . . ,p i l  (the head predicates in the rules of XI,) and let T E I& be the following 
non-Horn rule: 

The algebraic expression for the body of T can be obtained in a straightforward way using the 
algorithm presented in Chapter 3 of [UUSS]. Let EVALRULE(r ,  & I , .  . . , Q,I)  be the algebraic 
expression for the body of T ,  where Q; is the 6-table for the predicate 4;. Then, the algebraic 
expression for the rule T is 

where Zi = 0 if pi does not appear in the head of the rule and 2, = { X j , ,  . . . , X,,} if p ,  appears 
in the head of T as pj ,  , . . . , p j , .  The I D B  equation for II, is 
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We shall now present an algorithm to solve a set of IDB equations. Let p l ,  . . . ,p,, be the 
IDB predicates of an indefinite deductive database and P I , .  , . , P, be the corresponding C- 
tables. Also let R1,. . . , R, be the EDB C-tables of the database. Suppose that the partition of 
the non-Horn rules in IDB is {Ill,. . . ,I&}, We shall denote the predicates defined in partition 
I1, by p, ,  , . . . ,pi,, , 1 5 i 5 le. The algorithm to compute a solution to the IDB equations of an 
indefinite deductive database is given in Figure 1. 

Example 3.2 Let us reconsider the disjunctive database of Example 2.1. The extensional 
database can be represented in the following C-table: 

R3 

x = a  
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a6 

a3 

a4 

for i t 1 to m do P, = 0 
repeat 

for i t 1 to m do Q; = Pi 
for i f- 1 to  k do 
Pil,***7Pini +- ~ ~ ~ ~ ( ~ i , Q ~ ,  . . . , Q ~ , R I , . . . , R ~ )  

until Q,  = Pi, for all i, 1 5 i 5 m 

output Q I ,  . , Q,,, 

true 
(z = u) v (u = u) v ( v  -- u) 
(. # a )  v (Y = a) 
x = u A z = u 

Figure 1: Algorithm to solve IDB equations 

The IDB equations for the non-Horn rules are: 

R4 = I I { ( , Y J - ) } ( R ~ ( X , Y ) )  U u{(A~,131(R3(X, 2 )  w R4(Z,Y) )  
R1, R2 = U { ( X ) ~ , O ( R ~ ( Y ,  X ) )  u ~{( .Y)) ,{ ( I . )} (R~(X,  Y ) )  

Computing the solution to these equations, we obtain the following normalized C-tables: 

R4 

R2 

Let us confirm if this solution indeed corresponds to T j  t w of Example 2.1. Consider the tuples 
( u l , z  = a A I = u) E R1, (ug,z = a A z # u )  E R2, and ( (u3,a4) ,z  # a )  E R4. Since (z = 
a A z = u) V (z = a A z # a )  V (z # a)  is a tautology, we conclude that q(q) V ~ 2 ( ~ 3 )  V r4(u3 ,  u4) 
is represented in the C-tables. A tedious verification will indicate that for every set of tuples in 
the C-tables such that the disjunction of their conditions is a tautology, we can find a disjunct in 
TL t w that  is represented by this set of tuples. Conversely, consider the disjunct r 1 ( u 3 ) V r 2 ( u 4 )  
in T j  w.  The tuples that correspond to this disjunct are (a3, (x = u ) V ( u  := u ) V ( v  = u)) E R1 
and (u4 ,x  # u A u # u> E R2. The disjunction of the conditions ((x = u) V (u = u) V (v  = 
u)) V (z # a A u # u) is a tautology and hence the disjunct q ( u 3 )  V rZ(u4) is represented in 
the C-tables. Once again, a tedious verification will indicate that every disjunct in TI! w is 
represented in the C-tables. 0 

4 CURRENT STATE O F  KNOWLEDGE 

As has been noted earlier, most of the research on implementation issues of deductive databases 
has concentrated on definite deductive databases. A comprehensive discussion of these results 
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can be found in [U1188]. As far as indefinite deductive databases and their implementatioris are 
concerned, one can find relatively few scattered work. We shall mention some of the bottom-up 
methods for indefinite deductive databases. 

Henschen and Park [€IF881 provide results with respect t o  yes/no answers to  queries posed 
over indefinite deductive databases. They handle negation by using the Generalized Closed 
World Assumption (GCWA). They present several fundamental results on compiling the GCWA 
in indefinite deductive databases. They also present three representation schemes which sepa- 
rate the rules from the facts. Using these schemes, they isolate the deduction part in answering 
queries from the retrieval part. Several effective ways for compiling the GCWA inference on the 
rules and evaluating it through the facts are presented for non-recursive databases. Recursive 
rules are not adequately treated. 

Grant and Minker [GM86] have developed algorithms to answer arbitrary queries in indef- 
inite databases. They provide algorithms to check if a candidate answer is indeed an answer 
to the query. Using this algorithm, they present an algorithm to  find all minimal answers to 
queries. Although this paper does not deal with rules, queries can be answered by straightfor- 
ward extensions to the algorithms. 

Imielinski's C-tables [IJSl] are capable of representing disjunctive facts. The extended 
relational algebra can be used to answer queries in indefinite databases without rules. 

Liu and Sunderraman [LS91] present a generalization to the relational model to represent 
disjunctive facts in tabular structures called M-tables. Queries can be answered using the gen- 
eralized relational algebra. In [LSgO], they apply the generalized model to indefinite deductive 
databases. 
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ABSTRACT 
We present the inheritance system in a knowledge representation formalism called 
Conceptual Network. Exceptions can be represented in this formalism by means of 
conditions attached to conceptual relations. The explicit representation of exceptions 
allows us to implement monotonic inference for the inheritance problem. We look at 
the way in which our inheritance system works on some of the classical examples. 
This system offers a new approach to the inheritance problem, with a new 
representation method and a simple monotonic inference algorithm. 

1. INTRODUCTION 
An inheritance system is a representation system founded on the hierarchical structuring of 
knowledge 10. This structuring is known in Artificial Intelligence as the inheritance 
hierarchy. Methods of representing inheritance hierarchies include Fahlman’s NETL 
system 47 5 ,  Etherington and Reiter’s system-the default logic approach 2l 3 ,  Padgham’s 
lattice-based model 6, and Shasm’s evidential formalization 7+ 8.  These systems all have 
their limitations. For instance, in NETL the inferences are performed in parallel. As 
Etherington and Reiter note, “there is the unfeasibility of completely general massively 
parallel architectures for dealing with inheritance with exceptions” 3. They formulate the 
problem of inheritance in terms of default logic, and provide a non-monotonic inference 
method. 

In this paper, we present the inheritance system in a knowledge representation system 
called Conceptual Network (in short: CN). The representation of inheritance hierarchies in 
CN allows US to implement a monotonic inference method for dealing with the problem of 
inheritance. This offers a new approach to the inheritance problem. We first briefly 
introduce CN. Next, the representation of inheritance hierarchies in CN is presented. We 
give a monotonic inference algorithm for inheritance with exceptions, and apply it to some 
classical examples. All of the ideas presented in this paper are now being implemented. 

’ This work was supported by the Natural Sciences and Engineering Research Council of Canada, and by 
Cognos Inc. 

* * On leave from the University of Ottawa 
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2. CONCEPTUAL NETWORK 
The Conceptual Network formalism l2* 13, l4 was developed with TANKA, a system for 
semi-automatic knowledge acquisition by text analysis 9, and it is used there to represent 
knowledge. TANKA will process technical text, and incrementally build a conceptual 
network which models the domain; text understanding will be turned into knowledge 
acquisition. 

There are four basic elements in CN: concepts, relations, structures and conditions. 
Knowledge is represented by a combination of these four elements. A concept represents a 
number of instances in the world. We use Z(c) to denote the set of instances of concept c. 
Concept cl is called a subclass of concept c2 (and c2 a superclass of c l )  if and only if I (c l )  
is a subset of Z(c2). Concepts are broadly classified into three groups: objects, activities, 
and properties, Relations capture the relationships that hold between concepts. CN only 
supports binary relations. Two hierarchical relations, specialization is - a and generalization 
kind, are used to build the inheritance hierarchies. 

Conditions represent contextual restrictions on the concepts involved in a relation. Let R be 
a relation between concepts el and c2. A condition attached to R(cl, c2) can be regarded as 
the description of a subclass cl’ of CZ and a subclass c2’ of c2: only cl’ and c2’ can be in 
the relation R. The condition is a logical expression built of simple conditions. We will not 
give the precise definition of simple conditions in this paper, because we have only special 
forms of simple conditions in the hierarchies. The following are two examples of simple 
conditions: 

describes the set of instances of elephant, ( i  I i E I(e1ephQnt) \Z(royal-e1ephant))and 
elephant i s  royal-elephant 

describes the set of instances of elephant, ( i  1 i E I(e1ephant) n I(roya1-elephant)}. We say 
that a simple condition Cond is satisfied by an instance i if and only if i is in the set of 
instances described by Cond; Cond is unsatisfied by i if and only if i is not in the set of 
instances described by Cond. 

Structures are used to represent complex concepts, composed of other concepts. The 
available structures are individual, sequence, collection, tupk, union, and intermdon. 

In the textual notation for CN, every concept is associated with a cluster of concepts 
directly linked to it by binary relations. We call such a cluster afrarne of this concept. A 
frame is notated as a group of slots, each describing one link. The format of a frame of 
concept c0 is: 

elephant isnot royal-elephant 

type-of-cO c0. 
slots. 
end c0. 

where type-of-co is OBJECT, ACTIVITY or PROPERTY. There must be at least one slot in a 
frame. Each slot denotes a relation between co and another concept. If the relation is a 
hierarchical relation (is-a, kind), the slot is called a hierarchical slot. The format of a 
hierarchical slot is: 

[condition] relation-name: (structure-of-ci) ci 
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where relation-name must be is-a or kind. Such slots describe a hierarchical 
relationship between concept c 0, whose type is type-Qf -C 0, and concept 
(structure-of-ci) ci of the same type. If structure-of-ci is not individual, 
(structure-of-ci) ci represents a complex concept. The default is individual: 
(individual) ci is the same as ci. The default for condition is true. We introduce 
conditions into hierarchical slots to deal with exceptions-this will be shown later. 

3. REPRESENTING INHERITANCE HIERARCHIES IN CN 

To deal with inheritance with exceptions, Etherington and Reiter have identified 5 link 
types 3, used to represent the inheritance hierarchies. In CN these links are represented as 
follows: 

1) Strict IS-A 
type-of-cl cl. 
is-a: c2. 

end cl 
...... 

c l  is c2, that is, any instance of CZ is always an instance of c2. 

2) Strict IS-NOT-A 
type-of-cl cl. 
[false] is-a: c2. 

end cl. 
...... 

cl  is not c2, that is, no instance of c1 is an instance of c2. No instance can satisfy the false 
condition. For a given instance i, if a condition does not hold for i, it is called an 
unsatisfied condition. Unsatisfied conditions are used to block inheritance from the 
superclass-this will be discussed in detail in the next section. 

3 )  Default IS-A 
type-of-cl cl. 
[this-frame i snot  ce] is-a: c2. 

end cl. 
...... 

Normally C Z  is c2, but there may be exceptions. In other words, any instance in Z(cZ) \ 
Z(ce) is an instance of c2. We should note that only the instances in l ( c l )  n I(ce), rather 
than all the instances Z(ce), are not the instances of c2. When ce is a subclass of c l ,  the 
condition implies that any ce is not c2. 

4) Default ISN’T-A 
type-of-cl cl. 
[this-frame is cel is-a: c2. 

end cl. 
...... 
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Normally c l  is not c2, but there may be exceptions. In other words, instances of c l ,  
excluding instances of ce, are not instances of c2. Thus, the instances in Z(cl) n Z(ce) are 
c2. When ce is a subclass of c l ,  this condition implies that ce is c2. 

5) Exception 

The exception link in Etherington and Reiter’s method is already represented in the 
conditions of our representation of default IS-A and ISN’T-A. Actually, exception links in 
their method are always attached to other links, and they describe exceptions to the 
knowledge represented by those links. That is why we do not have to represent them 
separately. 

Without the loss of generality, we consider only single exceptions. If there were more, we 
would use complex conditions. A condition of the form 

[this-frame isnot ce l  AND this-frame isnot ce2 AND . . . I  

with only the AND operator is for default IS-A (cel ,  ce2, ... are exceptions). A condition 
of the form 

[this-frame is cel OR this-frame is ce2 OR . . .  I 
with only the OR operator is for default ISN’T-A. 

We illustrate our representation with the following example l: 

F1: Elephants are grey things. 

F2: Royal elephants are elephants. 

F3: Royal elephants are not grey things. 

Our representation of these facts is: 
OBJECT elephant. 
[this-frame isnot royal-elephant] is-a: grey-thing 
end elephant. 

OBJECT royal-elephant. 
is-a: elephant. 
end royal-elephant. 

In Etherington and Reiter’s approach, assertions F1 - F3 would be represented as the 
following default rule D 1, and first-order assertions A 1, A2: 

elephant (x) : NOT royal-elephant (x) 
D1: 

grey-thing (x) 

A1 : (x) royal-elephant (x) --> NOT grey-thing (x) 
A2 : (x) royal-elephant (x) --> elephant (x) 

Notice that we must encode F3 in the assertion A1 in spite of the fact that this information 
is already implicit in the information encoded in A2 and D1. If royal-elephant is a subclass 
of elephanr and elephants other than royal elephants are grey, then it follows that royal 
elephants are not grey. The C N  representation overcomes this drawback-no explicit 
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relation is required to encode F3, which is captured in the condition of the relation 
is a(elephant, grey thing) and the hierarchical relation is-a(royal-elephant, elephant). The 
condition in the fiizt frame shows that elephant is grey-thing unless it is royal-elephant, 
and the hierarchical relation in the second frame means that each royal elephant is elephant. 
The fact that royal-elephant is not grey-thing is captured by both this condition and this 
hierarchical relation (see the CN representation of ‘default IS-A’). 

4. MONOTONIC INFERENCE 
For a given instance i, a concept c is called a positive concept of i if and only if it has i as its 
instance. c is called a negative concept of‘ i if and only if it does not have i as its instance. 
We are concerned with the following inheritance problem: 

Given are two sets of concepts, P = { c p l ,  cp2, ..., cpk},  and N = { c n l ,  cn2, ..., cn,). 
Concepts in P are positive concepts of an instance i .  Concepts in N are negative concepts 
of i. We have two inference rules. 

Rulel 
cl is a positive concept of i & is-a(cl, c2) & 

i satisfies the condition of is - a(cl,  c2) 
+ c2 is a positive concept of i 

Rule2 
cl is a positive concept of i & is a(cl, c2) & 

i does not satisfy the condition of is - a(cl, c2) 

+ c2 is a negative concept of i 

Let H be the set of all given hierarchical relations. We need to derive the theorems of the 
theory ( H u P u N ,  {Rulel, Rule2) ), where the first element represents axioms and the 
second one represents inference rules. All these derived theorems together are called the 
extension of i .  From the inference rules, we can see that a subclass c l  can be extended to 
its superclass c2 only if cl is a positive concept of the given instance. No extension can be 
made from the negative concepts, which are only considered in the termination of 
extensions. 

Etherington and Reiter’s method allows extensions to be constructed by a series of 
successive approximations. The previous approximations may be overridden by the current 
one. When two successive approximations are the same, the procedure is said to converge 
and the extension is the current approximation. This reasoning procedure is non- 
monotonic, in the sense that new information can invalidate previously derived facts. In 
this section, we present a monotonic inference method for finding extensions. 

The main idea that underlies the monotonic inference method is to derive new facts only if 
the truth values of the conditions of these facts have been determined. If the truth value of a 
condition cannot be determined when we check it, this condition is undetermined and will 
be suspended until new derived facts make it determined. This means that we always 
reason with certainty, so that new facts will not invalidate the previously derived facts. In 
this sense, we say that our inference method is monotonic. 
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We first define a few simple auxiliary operations. S denotes a set, C1, C2 are concepts.’ 
remove(S): remove from S and return a random element e 
add(& e): add an element e to S 
empty(9: return true if S is empty, otherwise false 
member(e, S): return true if e is an element of S, otherwise false 
condition(C1, C2): returns the condition of is-a(C1, C2) 

The inference algorithm is described in pseudocode. The set of concepts not yet considered 
for extension is maintained in the variable CSet (this stands for “concept-set”). Initially, it 
contains the positive concepts. Two concept sets, PE and NE, initialized with the original 
sets of positive and negative concepts, are gradually extended by the algorithm. There is a 
main procedure, and two subroutines, Subroutine check-cond (Cond, i, Result) tests 
whether condition Cond is satisfied by instance i. If yes, the extension can proceed from 
the related concept by adding to the CSet. If not, no extension cai be made from the related 
concept. If the condition Cond is undetermined, it will be suspended. The subroutine 
applies negation-by-failure: if it cannot be derived that i is an instance of a concept c, it is 
assumed that i is not an instance of c. 

We only consider simple conditions in this algorithm. Complex conditions are composed of 
simple conditions by means of the operators AND, OR. The fact that a complex condition 

to the simple conditions of CCond. If CCond is composed of simple conditions by the 
operator AND, then apply check-cond(-, --, I to a simple condition of CCorid each 
time; repeat this process until a simple condition of CCond is unsatisfied or no more simple 
conditions remain to be checked. If CCond is composed of simple conditions by the 
operator OR, then apply check-cond (-, -, ) to a simple condition of CCond each 
time; repeat until a simple condition of CCond satisfied or no more simple conditions 
remain. Whenever a new fact is derived, the suspended conditions will be examined to see 
if any condition can be determined now. This is done by subroutine re-eval-cond (Sign, 
Concept) , where Sign marks a concept as positive or negative. When the CSet is empty, 
that is, no more extensions can be made, the main procedure is terminated. NE and P E  

together form the extension of i. 

The Inference Algorithm 

Given: an instance i, a set P = { cpr, cp2, ..., cpk } of positive concepts of i, and a set N 
= { cnl, cn2, ..., cn, ) of negative concepts of i. 
Sought: PE and NE-positive and negative extensions. 

CCond is satisfied by an instance i can be determined by applying check-cond (-, -, - 1 

PE := P; -- initialize PE 
NE := N; -- initialize NE 
susp := { I ;  -- initia.l.ize Susp (will store suspended conditions) 
CSet := P; -- initialize CSet (will store concepts 

repeat  -- for every element in CSet: 
-- from which further extensions may be made) 

C := remove (CSet) ; 

P a r e n t L  := the list of all parents  of C in the is-a hierarchy; 
-- get one concept and try to make extension from it 
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for Cnp i n  ParentL do -- for every parent of C: 
Cond := condition(C, Cnp) ; 
i f  not member{Cnp, P E )  & not member{Cnp, NE) then 
check-cond (Cond, i , Result) ; 
i f  Result = satisfied then 
add(PE, Cnp) ; -- Cnp is a positive concept o f  i 
add(CSet, Cnp) ; -- further extension may be made from Cnp 
re-eval-cond (pos, Cnp) ; -- try to "unsuspend" 

add(NE, Cnp) ; -- Cnp is a negative concept of i 
re-eval-cond (neg, Cnp) ; -- try to "unsuspend" 

elsif  Result = unsatisfied then 

elsif Result = undetermined & Cond = [this-frame OP Ce] then 
-- (OP is the relation operator in the condition) 
-- suspend the undetermined condition 

add(Susp, undet-cond(Cnp, Ce, Cond) ) ; 

e n d i f ;  
e n d i f ;  

endfor;  
u n t i l  empty (CSet) ; 

procedure check-cond(Cond, i, Result) ; 
-- is condition Cond satisfied for instance i? 
-- Result: satisfied, unsatisfied, undetermined 

i f  Cond = [true] then Result := satisfied; 
elsif Cond = [false] then Result := unsatisfied; 
elsif  Cond = [this-frame i s n o t  Cel then 

i f  member(Ce, NE) then Result := satisfied; 
els i f  member (Ce, PE) then Result := unsatisfied; 
else 

i f  no subclass of Ce is in the CSet then 
Result := satisfied; -- we cannot determine whether i is an 

-- instance of C e :  negation by failure 
else Result := undetermined; 
e n d i f ;  

end i  f ; 

i f  member (Ce, NE) then Result := unsatisfied; 
elsif member (Ce, PE) then Result := satisfied; 
else 

elsif  Cond = [this-frame iS Cel then 

i f  no subclass of Ce is in the CSet then 

else Result := undetermined; 
e n d i f ;  

Result := unsatisfied; 

e n d i f ;  
e n d i f ;  
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procedure re-eval-cond (Sign, Cnp) ; 
-- re-evaluate suspended conditions 

remove a l l  undet-cond(Cnp, Cel, Condl) , . . ' I  

undet-cond(Cnp, Cej, Condj) from Susp;  

-- it was known before this subroutine has been called whether i is 
-- an instance of Cnp; therefore all suspended conditions of the form 
-- undet-cond(Cnp, -, -) will no longer need to be re-evaluated 
Re-eval-set : = 

Susp := Susp \ Re-eval-set; 
case Sign i n  
pos : -- Cnp is a positive concept of i 

all suspended conditions of the form undet-cond(-, Cnp, -); 

for RC i n  Re-eval-set do 
i f  RC = undet--cond(Cg, Cnp, [this-frame i s n o t  Cnpl) & 

not member (Cg, NE) then 
add(NE, Cg) ; -- Cg is a negative concept of i 
re-eval-cond (n, Cg) ; -- try to "unsuspend" more 

elsif RC = undet-cond(Cg, Cnp, [this-frame i S  Cnpl 1 & 

not member (Cg, PE) then 
add(PE, Cg) ; -- Cg is a positive concept of i 
add(CSet, Cg) ; 
re-eval-cond (p, Cg) ; -- try to "unsuspend" more 

endi  f ; 
endf or; 

f o r  RC i n  Re-eval-set do 
neg : -- Cnp is a negative concept of i 

if RC = undet-cond(Cg, Cnp, [this-frame i snot  Cnpl) & 

not member (Cg, P E )  then 
add(PE, Cg); -- Cg is a positive concept of i 
add (CSet, Cg) ; 
re-eval-cond(p, Cg) ; -- try to "unsuspend" more 

els i f  RC = undet-cond(Cg, Cnp, [this-frame iS Cnpl) & 

not member (Cg, NE) then 
add(NE, Cg); -- Cg is a negative concept of i 
re-eval-cond (n, Cg) ; -- try to "unsuspend" more 

endif ; 
endf or; 

endca se ; 

In this algorithm, we can see that only positive concepts can occur in the concept-set 
(Cset). For any concept Cnp, we proceed to check if it is a positive (or negative) concept 
only if it is not a member of P E  (or N E ) .  This ensures that no concepts can occur in the 
concept-set more than once, so the cost of this inference algorithm in the worst case is 
O(N*S), where N is the number of concepts in the hierarchies, and S is the upper bound 
on the number of suspended conditions. In the practical applications, we believe that there 
would not be many suspended conditions during inference, so O(N*S) would be close to 
linear. 
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5. EXAMPLES 
We now look at some classical problematic examples of inheritance. We show how to 
represent the hierarchical knowledge of these examples in CN, and how our inference 
algorithm works on the represented knowledge. First, consider the “elephant” example of 
section 3 with the following additional facts: 

OBJECT african-elephant. 
is-a: elephant, 
end african-elephant. 

OBJECT male-royal-elephant. 
is-a: royal-elephant. 
end male-royal-elephant. 

OBJECT female-royal-elephant 
is-a: royal-elephant. 
end female-royal-elephant. 

Now consider the instance Clyde, which is an instance of male royal-elephant, and an 
instance of african e lephant ;  we have i = Clyde, P {a f r i can  e lephant ,  
male_royal elephant), and N = { } . After elephant has been added to PE (because elephant 
is a supercl&s of african elephant) and the condition of is a(elephant, grey thing) has 
been checked (because grey - thing is a superclass of elephant) we will reach the following 
state: 

PE = (elephant, african-elephant, male-royal-elephant} 
NE = { I  
CSet = {male-royal-elephant] 
Susp = {(grey-thing, royal-elephant, 

[this - frame isnot royal-elephant])) 
We have a suspended condition here. After royal-elephant has been added to PE (because it 
is a superclass of male royal elephant), this suspended condition will be re-evaluatzd and 
will become an unsatisfied condition, so that we can determine that grey - thing is a negative 
concept of Clyde. The final state in this example is: 

PE = {elephant, african-elephant, 

NE = {grey-thing) 
CSet = { I  
susp = { I  

Quaker is pacifist. 
Pacifist is antimilitary. 
Republican is not pacifist. 
Republican is football fan. 
Football fan is not antimilitary. 

male-royal-elephant, royal-elephant) 

The next example is quoted after (Padgham 1988) 6: 

There are ambiguities in these sentences. That is to say, common-sense reasoning may give 
a contradiction. For instance, given an instance Nixon, who is quaker and repuhlican, we 
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may conclude from these sentences that Nixon is pacifist and is not pacifist. As Shastri 
pointed out, there are at least two distinct ways of dealing with this kind of conflict: 
1) enumerate all the possible answers, 
2) obtain more information to resolve such conflicts. 

Etherington and Reiter’s default logic approach, Padgham’s lattice-based model approach, 
and Touretzky’s fornializations lo essentially adopt the first approach to the problem of 
conflict. Shastri’s evidential formalization tries to find the most likely solution by adding 
the measures of likelihood of facts to the knowledge base; the limitation is that such 
measures are not always available in the real world. We believe that the ambiguities result 
from incomplete knowledge. There must be exceptions from the hierarchical relations 
described in the above five scntences. The sentence “A is E3” may not mean “any instance 
of A is an instance of B”. The missing exceptions are the source of conflict. 

Assume that the real meaning of these sentences is as follows: 
Only a typical quaker is pacifist. 
Pacifist is antimilitary. 
Only a typical republican is not pacifist. 
Only a typical republican is a typical football fan. 
Only a typical football fan is not antimilitary. 

Suppose that every concept C has two subclasses, Cf and Ce, Cf  is called a typical C, Ce is 
called an exceptional C. An instance i of C belongs to C t  if and only if it is a typical 
instance of C; otherwise, it belongs to Ce. A typical feature of a concept is one which 
subjects believe applies to typical instances of the concept l. For a concept C, we need to 
ask the “operator” who interacts with the representation system to list the typical features of 
C. We say that i is a typical instance of C if and only if it has all typical features of C. For 
example, suppose that an elephant’s typical features are: four legs, one trunk, two big ears. 
An elephant that has four legs, one trunk, and two big ears is regarded as a typical 
elephant. An elephant that has only three legs or no trunk will not be regarded as typical. 

Ce and Cr are complementary in the sense that any instance of C must belong either to Ce or 
Cf. That is to say, we assume that typicality and exceptionality are mutually exclusive. 
Complementary pairs of concepts are represented in C N  by means of hierarchical slots with 
a fa1 se condition (see the frames below). Our inference algorithm automatically concludes 
that an instance of Cf is not an instance of Ce, and the other way around. 

We denote the necessary typical and exceptional concepts in the “pacifist” example as 
exceptional republican, exceptional quaker, exceptional f ootballfan, typical republican, 
typical-quaker, and typical- football f a n .  Only some of the frames of this example are 
shown below; the unshown ones can be designed similarly. 

OBJECT quaker. 
[this-frame isnot exceptional-quaker] is-a: pacifist. 
end quaker. 

OBJECT republican. 
[this-frame is exceptional-republ-ican] is-a: pacifist. 
[this.-frame i s n o t  exceptional-republican] 

end republican. 
is-a: typical-football-fan. 
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OBJECT exceptional-quaker. 
is-a: quaker. 
[false] is-a: typical-quaker. 
end exceptional-quaker. 

OBJECT typical-quaker. 
is-a: quaker. 
[false] is-a: exceptional-quaker. 
end typicalguaker . 

Given the instance Nixon (quaker but not a typical quuker, and typical-republican), the 
initial values of PE, NE, CSet, and SUSP are 

PE = {exceptional-quaker,, typical-republican) 
NE = {typical-quaker) 
CSet = {exceptional-quaker, typical-republican) 
susp = I )  

Apply the inference algorithm. When the procedure has been terminated, the values of these 
parameters would be 

PE = (exceptional-quaker, quaker, 
typical-republican, republican, 
typical-football-fan, football-fan) 

NE = {typical-quaker, pacifist, exceptional-republican, 
exceptional-football-fan, antimilitary] 

CSet = ( 1  
susp = I )  

That means Nixon is a quaker, a republican, a football fan, but is neither a pacifist nor an 
antimilitary. 

In this and all the previous examples, and in general in CN, the representation is not 
unique. One may ask what is the method that leads to a particular representation. We can 
give a few general guidelines for designing a representation of hierarchies in CN: 

1) There is a frame for every concept which has at least one superclass. 
2) Every hierarchical relation is represented by one hierarchical slot. 
3) If exceptions exist in a hierarchical relation, attach a condition to it. 
4) Complementary pairs of concepts are represented by the hierarchical slots with a false 

condition. 

6 .  CONCLUSION 
The inheritance problem is dealt with in a new way in the inheritance system of Conceptual 
Network. Exceptions can be expressed in C N without introducing any additional 
mechanisms. They are explicitly represented in the conditions of the hierarchical relations; 
this makes monotonic inference possible. Representing the inheritance hierarchies may not 
be unique. So far, we can only provide a few general guidelines for designing a 
representation of a given problem. One of the directions of our future work is to develop a 
methodology of constructing a CN representation. 
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Our inheritance system does not include any special mechanism for resolving ambiguities, 
because we assume that the knowledge to be represented does not contain them; when they 
exist, the system will find one of the possible extensions. 
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ABSTRACT 

Many current methods of learning concepts from examples assume that 
concepts are precise entities, representable by a pure symbolic 
representation, and that concept examples are equally representative, 
Human concepts, however, are often flexible. They inherently lack 
precisely defined boundaries and have a central tendency, and their meaning 
is often context-dependent. Examples of these concepts are usually not all 
equivalent. This paper describes an approach to learning flexible concepts 
from examples. In this approach, a novel hybrid representation was 
introduced to represent flexible concepts. This hybrid representation is a 
combination of symbolic and numeric representations. An associated 
inductive learning algorithm was also presented. This approach was 
implemented in the Flexible Concept Learning System (FCLS) and tested 
on three different types of problems: the problems favorable for FCLS, the 
problems unfavorable for FCLS, and real world problems. The 
experimental results showed a strong support for the proposed flexible 
concept learning method. 

1 INTRODUCTION 

In real world applications, rare concepts are precisely defined. Instead, the meaning of 
concepts are often imprecise and context-dependent, these concepts are called flexible 
concepts [6]. Concept representations used in many learning systems, e.g. decision trees 
and logic- type representation, are not appropriate for describing flexible concepts. To 
represent flexible concepts, a representation must be capable of describing their imprecise 
and irregular boundary, context-dependency, central tendency and exceptions. 

In the past, several representations were proposed to descx-ibe flexible concepts. These 
include exemplars-based representation \ 10][1][2] and probabilistic representations [lo] 
Although good results have been achieved by the systems using these representations on 
some domains, each of these representations has its weakness 161. 

1 This research was done, while the aulhor was with the Artificial Intelligence Center of George Mason 
University. The activities of the Center arc supported in part by the Defence Advanced Research Projects 
Agency under grant No. N00014-87-K-0874, ahinislered by the Office of Naval Research, and in part by 
the Office of Naval Research under grant No. NOl4-88-K-0226 and NOOO14-88-K-0397. 
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This paper presents an approach that uses a hybrid representation to describe flexible 
concepts. The representation is based on a simple but powerful form of two-tiered concepr 
representation [5J and combines the logic a d  papametric representations in which both 
logical and parametric aspects are being adjusted in the process of learning. The meth 
has been implcmentd in the system FCLS (Flexible Concept teaming System), arid tested 
on a variety of problems. The problems included learning concepts with graded 
membership, such as congress voting, lymphatic cancer diagnosis, and n-out-m concepts, 
as well as concepts with sharp boundaries, such as multiplexer and DNF functions with 
few disjuncts. For comparison, other methods, such as C4.5 [7].were tested on the same 
problems. The results have shown a statistically meaningful advantage of the proposed 
method over the other methods.both in terms of the classification accuracy and the 
description simplicity. The work reported in this paper is related to Schlimmer's 
STAGGER [9], Utgoff s Perceptron Trees [ 111, Bergadano et. al's POSETDON [3], and 
Salzberg's NGE. [SI 

2 CONCEPT REPRESENTATION 

This section introduces the hybrid concept representation used in FCLS. In this 
representation, a concept is described as a disjunction of extended complexes, and a 
similarity measure. An extended complex consists of a base complex, a set of weights, and 
a threshold. The similarity measure determines the degree of fit between an event and an 
extended complex. 

2.1 BASE COMPLEX 

A base complex is a disjunct represented as a complex by the attribute based Logic 
System VL1 [4]. A complex in VL1 is a conjunction of selectors. A selector is of the form: 

[L # RI 
where the attribute L is called the referee and R is called the referent, which is a set of 
values from the domain of L. The symbol ## denotes one of the relational symbols =, <, >, 
5,2, 2. 

2.2 WEIGIITS 

Each selector of a complex is associated with a weight which reflects the degree of 
necessity of the selector. Its value ranges from 0 to 00. A selector weighted as 0 ~ )  is a 
necessary condition of the complex, and a selector weighted as 0 is irrelevant condition. 
Except 0 and 00, any other value of a weight reflects the relative importance of the selector 
in cornparison with other selectors in the same complex. 

2.3 THRESHOLD 

In addition to weights, each extended complex is associated with a threshold that is a 
real number between 0 and 1. The threshold of an extended complex defines the boundary 
of the complex. An event is covered by an extended complex, if its degree of fit to the 
complex is larger than or equal to the threshold of the complex. Degree of fit is computed 
by the similarity measure. An extended complex with 1 as its threshold is equivalent to its 
base complex. Decreasing a threshold relaxes the requirements of the extended complex 
that have to be met by its instances, and generalizes the extended complex. 
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2.4 SIMILARITY MEASURE 

The similarity measure (SM) measures the degree of fit between an event and an 
extended complex. The specific SM used in our current implementation maps an event 
from the set E and an extended complex from the set C to a real value between 0 and 1, 
which is the degree of fit of the event to the complex. 

SM: E x C --> [O..l] 
The SM of an event e and an extended complex cpx is defined by a normalized distance 

measure DIS as follows: 

where MAXDIS(cpx) is the maximum distance between events in the set E and the 
complex cpx. DIS(e, cpx) is defined as a .weighted sum of the distances between the event 
e and all selectors of the complex cpx: 

DIS(e, cpx) = X Wi * SELDIS(e, seli) 
where Wi is the weight of seli. SEI,DIS(e, seli) i s  the distance between the event e and the 
selector seli and depends on the type of the variable in the selector. It is either 1 (match) or 
0 (no match) for nominal variables. In case of linear variables, SELDIS(e, seli) inversely 
depends on the distance of the event from the selector, normalized by dividing the largest 
distance between a value in the domain of the corresponding attribute and the selector. 

One of the nice feature of the simila&y measure is if any necessary selector of cpx is 
not satisfied by an event e, SM(e, cpx) = 9. The weight of a necessary selector is 00, so if 
the selector is not satisfied, DIS(e, cpx) = 00. When DIS(e, cpx) = 00, it is set to equal to 
MAXDIS(cpx), thus SM(e, cpx) = 0. 

2.5 CONCEPT RECOGNITION 

In FCLS, an event belongs to an extended complex if the Normalized Degree of Fit 
(NDF) of the event to the extended complex is the largest among all extended complexes. 
The Normalized Degree of Fit (NDF) between an event e and an extended complexes cpx is 
defined as follows: 

c Certainty (cpx) 
th(cpx) = 1 

SM(e,cpx)  2 th(cpx) 
SM(e ,cpx)  <: tb(cpx) 

W P X )  

where Certainty(cpx) is the certainty of cpx which is defined as the inverse of the 
sparseness of cpx, th(cpx) is the threshold of cpx. 

EXAMPLES 

To illustrate the idea of the hybrid representation, let US consider a simple imaginary 
concept “R-bald”. The meaning of the concept R-ball is defined as three disjuncts: 

(SHAPE = round) & (BOUNCES = yes) or 
(SHAPE = round) & (SIZE = medium v large) or 
(BOUNCES = yes) & (SIZE = medium v large) 

By using the hybrid representation, these three disjuncts merge into one extended complex: 
[SHAPE = round : 13 & [BOUNCES = yes : 11 & [SIZE = medium v large : 11 
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2 
Threshold = 5 = 0.67 

The number following ’:’ is the weight of the selector. The base complex: 
[SHAPE = round] & [BOUNCES = yes] & [SIZE = medium v large] 

represents the central tendency of the concept R-ball, all of the three selectors are equally 
impoatant. ‘I’he meaning defined by the extended complex is that an object that satisfies any 
two Or more of the three selectors is a R-ball, otherwise it i s  not a R-ball. Furthemore, it 
tells that balls that satisfy all of the three selectors are typical R-balls, while those which 
only satisfy two of the three selectors are less typical. 

Now suppose the meaning of the concept K-ball changes a little, and all R-balls must 
be round. The new meaning of the concept R-ball is defined by two disjuncts: 

(SHAPE = round) & (BOUNCES = yes) or 
( S I N E  = round) & (SEE = medium v large) 

These two disjuncts are combined into one extended complex: 
[SHAPE =I round : -3 & [BOUNCES = yes : 13 & [SIZE = medium v large : 11 

1 
Threshold = 5 = 0.5 

In this extended complex, the selector [SHAPE = round] is necessary, and must be 
satisfied by all R-balls. The other two selectors are not necessary, and one of them must be 
satisfied by a R-ball, 

3 THE LEARNING ALGORITHM 

Table 1 defines the learning algorithm which works in an iterative fashion. In each 
iteration, the concept whose description has the largest error omission is generalized by 
generating a new acceptable extended complex to minimize the error omission of the 
concept. FCLS provides users with two parameters: M A X - E R R - R A T E  and M I N -  
COVERAGE.  These two parameters are used as thresholds. An extended corn 
acceptable if 

The error omission of a concept description is the percentage of the number of the positive 
examples that are not covered by the description. If the fraction of correctly classified 
examples are larger than MAX-ERR-RATE, the algorithm terminates and outputs the 
current descriptions, otherwise it repeats. 

I MAX-ERU-RATE. 
n 

(1) 2 MZN-COVERAGE, and (2 )  ~ 

POS P + n  

Let DES be empty 
Repeat 

Select the concept CNPT that hay the largest error omission. 
Generalize CNFT by generating an acceptable extended complex CPX 
Add CPX and EXE into DES 

Until error-rate(DES) < MAX-ERR-RATE 
Return DES 

Table 1. The Learning Algorithm in FCLS 
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3.1 THE COMPLEX GENERATION ALGORITHM 

The complex generation algorithm generates the extended complex for a given concept 
from a set of positive and negative examples. The process of generating the extended 
complex is divided into two phases. The first phase generates a set of base complexes that 
satisfy the consistency requirement specified by the parameter MAX-ERR-RATE. The base 
complexes generated in the fist phase are optimized in the second phase. Before describing 
the two algorithms in the two phases, we first introduce some terminology used in the 
algorithms. Let us suppose e is an example, and cpx is an extended complex. e is called 
strictly covered example, if SM(e, cpx) == 1, that is e satisfies all conditions of cpx. e is 
flexibly covered by cpx, if SM(e, cpx) 2 th(cpx). e is nearly covered by cpx, if th(cpx) > 
SM(e, cpx) 2 pth(cpx). Where th(cpx) is the threshold of cpx, pth(cpx) is the potential 
threshold of cpx which is less than th(cpx) and used to decide nearly covered examples. 

3.1.1 PHASE 1: THE BASE COMPLEXES GENERATION ALGORTTHM 

The algorithm generates a set of the most general base complexes that satisfy the 
consistency requirement. Table 2 specifies the algorithm. It starts with the most general 
base complex which strictly covers the whole instance space. In order to find base 
complexes that satisfy the consistency requirement, the strictly covered negative examples 
must be excluded. The technique used in the algorithm is similar to the star algorithm of 
AQ [4] that performs a beam search. During each cycle, the consistency of each base 
complex in STAR is tested. If the consistency is high enough, the base complex is added to 
the set of CONSISTENT-CPXES and removed from STAR. Otherwise, the base complex 
is specialized by removing a value from one of its selectors. This specialization is repeated 
for each of all selectors of the complex. The value removed from a selector is chosen to 
maximize the number of negative examples and minimize the number of positive examples 
excluded from the bast: complex. This yields several new base complexes, each of which 
covers fewer negative examples. The new star is the union of these newly specialized base 
complexes. A certain maximum number (MAXSTAR) of these base complexes are selected 
for further processing. This set of base complexes is selected based on their potential 
quality. When STAR is empty, the algorithm terminates with a set of base complexes 
whose inconsistency (error rate) is smaller than MAX-ERR-RATE. Figure l(a) shows the 
most general base complex that the algorithm starts with and Figure l(b) shows the set of 
consistent base complexes that the algorithm ends up with. 

Let STAR be the set containing the most general complex that covers all events. 
Let CONSISTENT-CPXES be empty. 
Repeat 

Let NEWSTAR be empty 
For each complex CPX in STAR 

For each attribute 
select a value LO remove from CPX so that a more specific complex NEWCPX is generated. 
if error-rate(NEiWCPX) 5 MAX-ERR-RATE , 

then add NEWCPX into CONSISTENT-CPXES 
else add NEWCPX into NEWSTAR 

Let STAR be MAXSTAR complexes with the largest potential quality in NEWSTAR. 
until STAR is empty 
Return CONSISTENT-CPXES 

Table 2: The Base Complex Generation Algorithm 
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xl xl 

(a) (b) 
Figure 1 : An illustration of the function of the phase 1 

3.1.2 PHASE 2: THE EXTENDED COMPLEX OPTIMIZATION 
ALGORITHM 

The extended complex optimization algorithm optimizes the complexes generated in 
phase 1 by decreasing the thresholds of the complexes so that more positive examples can 
be covered. In order to decrease the threshold of an extended complex without increasing 
inconsistency, the degree of fit of nearly covered negative examples must be reduced SO 
that the threshold can be decreased without covering more negative examples. The way to 
reduce the degree of fit of nearly covered negative examples is to specialize the base 
complex by removing some values of selectors that occur on many nearly covered ne 
examples and few nearly covered positive examples. The algorithm also performs a 
general-to-specific beam search. In this algorithm, the threshold is adjusted (often 
decreased) while the base complex is specialized. Thus, an extended complex is often 
generalized although its base complex is specialized. 

Table 3 specifies the extended complex optimization algorithm. The algorithm first 
transfers the base complexes generated in phase 11 by computing its new weights and ne 
threshold. Ttie weight learning algorithm will be introduced in section 3.2. The threshold is 
determined so that the ‘best’ quality of the complex i s  achieved. The STAR is initialized as 
M A X S T A R  of these complexes with the highest potential quality. Then the ‘best’ 
acceptable extended complex is selected from the set of optimized initial extended 
complexes as the initial ‘best’ complex BEST-CPX. This ‘best’ extended complex is 
subject to replacement by a better extended complex during the process of optimization. 
After the algorithm terminates, REST-CPX is output. The ‘best’ extended complex is the 
complex with the highest quality. If no acceptable extended complex can be generated, 
BEST-CPX is empty when the algorithm terminates. 

The algorithm repeats the beam search until the stop condition is satisfied. In each cycle 
of the loop, a set of new extcnded complexes is generated. The quality and potential quality 
of each newly generated extended complex are evaluated respectively. ‘The acceptable 
complex with the highest quality replaces the complex in BEST-CPX, if its quality is larger 
than or equal to the quality of the complex in BEST-CPX. The complexes with lo 
potential quality are removed from NEWSTAR. Issues about quality and the potential 
quality were discussed in [ 121. ‘141e MAXS?:4R new extended complexes with the highest 
potential quality are selected for further improvement. MAX-TRIES is an integer 
parameter which controls the execution of the loop. If BEST-CPX has not been improved 
in MAX-TRIES steps, the algorithm stops. 
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For each complex CPX in CONSISTENT-CPXES (generated in Bhae  1) 

Let STAR be MAXSTAR complexes with the highest potential quality in CONSISTENT-CBXES 
If there exist some acceptable complexes in CONSISTENT-CPXES 

Compute the weights and threshold for CPX 

then let BEST-CPX be the acceptable complex with the highest quality 
else let BEST-CPX be empty 

Let NO-IMPROVEMENT be 0 
Repeat 

Let NEWSTAR be empty 
For each complex CPX in STAR 

For each attribute 
select a value to remove from CPX to generdte a new complex NEWCPX 
compute the weights and threshold for NEWCPX 
if NEWCPX is acceplable and has equal or higher quality hhan BEST-CPX 

then replace BEST-CPX by NEWCPX 

else add 1 toN0-IMPROVEhENT 

Remove all complexes that cannot be improved from NEWSTAR 
Let STAR be MAXSTAR complexes with the largest potentid quality in NEWSTAR. 

MAX-TRIES or STAR is empty 

set NO-IMPROVEMENT 8 

add NEWCPX into NEWSTAR 

until NO-IMPROVEMENT 
Return BEST-CPX 

I.- 

Table 3: The Extended Complex optimization algorithm 

Fig. 2(a) shows the initial extended complexes that the algorithm starts with and Fig. 
2(b) shows the extended complex that the algorithm ends up with. In Fig. 2(b), the circle 
represents an extended complex, and the square inside the circle is its base complex. It can 
be seen that the base complex in Fig. 2(b) is more specific than the two base complexes in 
Fig. 2(a), but the extended complex is more general than both of the two base complexes. 

x2 x2 

(a) (b) 
Figure 2: An illustration of the function the phase 2 

3.2 WEIGHT LEARNING ALGORTTHM 

In the hybrid representation, each selector of an extended complex is associated with a 
weight which is the degree of necessity of the selector. A weight is a real value ranging 
from 0 to +-. The larger a weight of a selector, the more necessary the selector. The 
weights of an extended complex are computed during learning. In computing the weight of 
a selector, the algorithm counts the number of positive and negative examples that do not 
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match the selector. In the method, the weight of the selector SEL w(SEL) is computed as 
follows: 

(unmatched I NEG) 
w(SEL) =:(unmatched I POS) 

where p(unmatched I NEG) and p(un;n'atched I POS) are the fraction of positive and 
negative examples which do not match with SE,L. w(SEL) ranges from 0 to +-. When the 
selector SEI, is satisfied by all positive examples, p(unmatched I POS) = 0 so that w(SEL) 
= +m and the selector SEL is necessary. When the selector SEL is satisfied by all negative 
examples, p(unmatched I NEC) = 0 so that w(SEL) = 0 and the selector is totally 
unnecessary. This case occurs seldom, because such a selector is usually removed in the 
process of complex generation. The fewer negative examples satisfy the selector SEL, the 
larger p(unrnatched I NEG) and w(SEL). The more positive examples satisfy the selector 
SEL, the smaller p(unmatched I POS), therefore the larger w(SEL). 

IMENTS WITH FCLS 

To evaluate the approach described in this paper, a number of experiments were 
conducted on various domains with FCLS. This section first outlines the experimental 
methods and the domains, then reports the details of the experimental results. 

4.1 EXPERIMENTAL DESIGN 

To thoroughly test FCLS, six artificial domains, three favorable to FCLS and three 
unfavorable, were selected for the experiments. [ 121 also described experiments from two 
real world domains. Three learning methods, the base-cpx, the no-weight, and the c- 
weight, were involved in all experiments. The base-cpx method generates a disjunction of 
base complexes as a concept description that is equivalent to a DNF expression. The base- 
cpx method provides the performance baseline for other methods. The no-weight method 
generates extended complexes with threshold adjusting only, no weight learning is 
involved. The c-weight method generates an extended complex with both threshold 
adjusting and weight learning. In addition to these three methods, the decision tree learning 
system C4.5 [7] was run on the same domains with pruning. The pesfomance of FCLS 
was evaluated on classification accuracy and description complexity. Classification 
accuracy was measured as the percentage of correct classifications made by the concept 
description on a set of 1000 test events. Description complexity was measured by the 
number of extended complexes involved in a description. The complexity of decision trees 
is measured by the number of leaves in a wee. In all experiments, FCLS was run on 
randomly generated training sets of various sizes: 100, 200, 300, and 400 examples. For 
each training set size, FCLS was run on four different randomly generated training sets. 
The results reported in Figure 3 and 4 are the average of the four runs. The results 
accompanied with a 95% confidence interval calculated using a Student t-test were reported 
in 1121. 

4.2 EXPERIMENTS ON THE DOMAINS FAVORABLE TO FCLS 

The experiments described in this section were performed on three specially designed 
domains, called designed domain I to 111. These domains were specially designed to test 
the novel features of the hybrid representation and the associated learning algorithm in 
FCLS. Designed Domain I contains two classes, positive and negative, and 10 nominal 
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attributes each of which has four values: 0, 1,2, and 3. The nile for distinguishing positive 
class from negative class has the general form of “at least k of n conditions are satisfied.” 
Specifically, the rule is “if the values of any 5 or more of the first 7 attributes of m event 
are equal to 0 or 1, then the event belongs to positive class, otherwise it belongs negative 
class”. 

Designed Domain III consists two classes, positive and negative. Eight linear 
attributes are involved in this domain. The domains of the eight hea r  attributes are same 
and include four values 0, 1, 2 and 3. The positive class is described by six conditions, 
two of which are as twice important as the other four conditions. Specifically, the positive 
class is expressed by one extended complex: 

[xl=Ov1]:2& [X2=0V1:2&[X3=0V1]:18 [Xq=oV1]:1& [Xs=0V1]:1& [X6=0v1]: 1 
Threshold = 5/8 = 0.625 

Designed Domain 111 contains 15 nominal binary attributes, and two classes: positive 
and negative. The events of the positive class are described by two extended complexes, 
each of which consists of 6 selectors, two of which are as twice important as the other four. 
The positive class is described by the disjunction of the following two extended complexes: 
Complex 1: Complex 2: 

[ X I  = 012 & [x2 = 03:2 & [x3 = 0]:1 
[xq = 01:1 & [xg = 0]:1 & [x(j = 01: I 

Figure 3 shows the results of the experiments from the three favorable domains. In all 
three domains, improvements were achieved on both accuracy and complexity by the the 
no-weight and the c-weight methods over the base-cpx method and C4.5 at all training set 
sizes. A significant improvement was achieved in the Designed Domain I. The results from 
Designed Domain I show that the no-weight and c-weight methods have very similar 
performance. This is because all. conditions of the target concept description are equally 
important, and weights play no role. The c-weight method outperformed the no-weight 
method in Designed Domain II and Designed Domain In. These improvements are due to 
the weight learning. In these two domains, selectors in extended complexes are weighted 
differently. 

~ x 7  = 0 1 2  & [Xg = 0112 & [Xg = 01:1 
1x10 = 01:l & [ X I 1  = 01:l L?L [XI2 = 01:1 

Threshold = 5/8 = 0.625 ThEShOld - 5/8 = 0.625 

4.3 EXPERIMENTS ON THE DOMAINS UNFAVORABLE TO FCLS 

This section describes the experiments from three unfavorable domains: 11-  
multiplexor, 3-term 3DNF and 4-temi 3DW. The hybrid representation has no advantage 
over logic type representations in representing the concepts involved in these domains, 
Adversely, the hybrid representation increases difficulties to learn these concepts because 
of the less representational bias enforced by the representation. 

The results from the three unfavorable domains are reported in Figure 4. Except in 11- 
multiplexor at size 300 and 400, the accuracy of the c-weight method is worse than that of 
the base-cpx and no-weight methods, especially at small training sizes. This result is due to 
the week representational bias enforced by the hybrid representation. Tn spite of the 
problem, the accuracy of the methods with weight learning is still comparable with the 
accuracy of C4.5. Except in the domain of 1 1-multiplexor, the c-weight generated simpler 
descriptions. One important and interesting result is that the accuracy obtained through the 
no-weight method is similar to the accuracy of the base-cpx method in all three domains, in 
some experiments, the accuracy of the no-weight method is even slightly better than the 
base-cpx. In fact, in many experiments, the base-cpx method and the no-weight method 
generated the exactly same descriptions. ‘This interesting result shows that the no-weight 
method works very well in adjusting the representation for a given problem, but the weight 
learning methods does not. 
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Figure 3: Experimental Results from Favorable Domains 
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5 CONCLUSION AND FUTURE WORK 

This paper describe$ an novel approach to learning flexible concepts. In this approach, 
a hybrid representation that combines symbolic and numeric representations was propos 
to explicitly describe central tendencies of flexible concepts and extend the meaning of 
concepts by a threshold and a similarity measure. An associated algorithm was designed 
and implemented to automatically acquire both symbolic and numeric descriptions. The 
experimental results are very promising and encouraging. 

A number of problems need to be addressed in the future. First, FCLS should be 
augmented with a knowledge based semantic similarity measure. Second, an incremental 
version of the approach needs to be designed. Third, a better weight learning algorithm 
should be studied. Finally, the method of constructive induction will be incorporated into 
FCLS. 
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