
3 445b 0 2 8 7 8 4 0  L 

Esmand G. Ng 
Barry w. Peyton 

...-.-._ ..................... .. .. . 





ORNL/TM-11960 

Engineering Physics and Mathematics Division 

Mathematical Sciences Section 

BLOCK SPARSE CHOLESKY ALGORITHMS O N  
ADVANCED UNIPROCESSOR COMPUTERS 

Esmond G. Ng 
Barry W. Peyton 

Mathematical Sciences Section 
Oak Ridge National Laboratory 

P.O. Box 2008, Bldg. 6012 
Oak Ridge, T N  37831-6367 

D A T E  PUBLISHED - DECEMBER 1 9 9 1  

Research was supported by the Applied Mathematical Sci- 
ences Research Program of the Office of Energy Research, 
U.S. Department of Energy. 

Prepared by the 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831 
managed by 

Martin Marietta Energy Systems, Inc. 
for the 

U.S. DEPARTMENT OF ENERGY 

~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ 1 ~  
under Contract No. DE-AC05-S40R21400 

3 4456 0287890 Z 





Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
2 Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

2.1 Column-based Cholesky factorization methods . . . . . . . . . . . . . .  2 
2.2 Supernodes and elimination trees . . . . . . . . . . . . . . . . . . . . . .  5 
2.3 Supernode-based Cholesky algorithms: previous work . . . . . . . . . .  5 

2.3.1 Left-looking sup-col Cholesky factorization . . . . . . . . . . . .  8 
2.3.2 Multifrontal Cholesky factorization . . . . . . . . . . . . . . . . .  9 

3 Left-looking sup-sup Cholesky factorization . . . . . . . . . . . . . . . . . . .  11 
4 Implementation details and options . . . . . . . . . . . . . . . . . . . . . . . .  12 

4.1 Reuse of data  in cache . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12 
4.2 Traversing row-structure sets . . . . . . . . . . . . . . . . . . . . . . . .  13 
4.3 Enhancements to the multifrontal method . . . . . . . . . . . . . . . . .  14 
4.4 Refinements for left-looking sup-col and sup-sup Cholesky . . . . . . .  15 

5 Performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
5.1 IBMRS/6000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
5.2 DEC5OOO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
5.3 Stardent P3000 (without vectorization) . . . . . . . . . . . . . . . . . .  22 
5.4 Stardent P3000 (with vectorization) . . . . . . . . . . . . . . . . . . . .  22 
5.5 CrayY-MP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 
5.6 Work storage requirements . . . . . . . . . . . . . . . . . . . . . . . . .  24 

6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24 
7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 





BLOCK SPARSE CHOLESKY ALGORITHMS O N  
ADVANCED UNIPROCESSOR COMPUTERS 

Esmond G. Ng 
Barry W. Peyton 

Abstract 

As with many other linear algebra algorithms, devising a portable iniplemen- 
tation of sparse Cholesky factorization that performs well on the broad range of 
computer architectures currently available is a formidable challenge. Even after 
limiting our attention to machines with only one processor, as we have done in this 
report, there are still several interesting issues to consider. For dense matrices, it 
is well known that block factorization algorithms are the best means of achieving 
this goal. We take this approach for sparse factorization as well. 

This paper has two primary goals. First, we examine two sparse Cholesky 
factorization algorithms, the multifrontal method and a blocked left-looking sparse 
Cholesky method, in a systematic and consistent fashion, both to illustrate the 
strengths of the blocking techniques in general and to obtain a fair evaluation 
of the two approaches. Second, we assess the impact of various implementation 
techniques on time and storage efficiency, paying particularly close attention to the 
work-storage requirement of the two methods and their variants. 
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1. Introduction 

Many scientific and engineering applications require the solution of large sparse sym- 
metric positive definite systems of linear equations. Direct methods use Cholesky fac- 
torization followed by forward and backward triangular solutions to  solve such systems. 
For any n x n symmetric positive definite matrix A,  its Cholesky factor L is the lower 
triangular matrix with positive diagonal such that A = LLT. When A is sparse, it 
will generally suffer some fill during the computation of L; that is, some of the zero 
elements in A will become nonzero elements in L.  In order to  reduce time and storage 
requirements, only the nonzero positions of L are stored and operated on during sparse 
Cholesky factorization. Techniques for accomplishing this task and for reducing fill 
have been studied extensively (see [12,19] for details). In this paper we restrict our at- 
tention to  the numerical factorization phase. We assume that the preprocessing steps, 
such as reordering to  reduce fill and symbolic factorization to  set up the compact data 
structure for L ,  have been performed. Details on the preprocessing can be found in 
[ 12 , 191. 

As with many other linear algebra algorithms, devising a portable implementation 
of sparse Cholesky factorization that performs well on the broad range of computer 
architectures currently available is a formidable challenge. Even after limiting our 
attention to machines with only one processor, as we have done herein, there are still 
several interesting issues to consider. Ln this paper we will investigate sparse Cholesky 
algorithms designed to run efficiently on vector supercomputers (e.g., the Cray Y-MP) 
and on powerful scientific workstations (e.g., the IBM RS/6000, the DEC 5000, and 
the Stardent P3000). To achieve high performance on such machines, the algorithms 
must be able to exploit vector processors and/or pipelined functional units. Moreover, 
with the dramatic increases in processor speed during the past few years, rapid memory 
access has become a very important factor in determining performance levels on several 
of these machines. To be efficient, algorithms must reuse da ta  in fast memory (e.g., 
cache) as much as possible. Consequently, a highly localized and regular memory-access 
pattern is ideal for many of today’s fastest machines. 

It is well known that block factorization algorithms are the best means of achiev- 
ing this goal. Perhaps the best-known example of a software package based on this 
approach is LAPACK, a software package for performing dense linear algebra compu- 
tations on advanced computer architectures including shared-memory multiprocessor 
systems [a]. Each block algorithm in LAPACK is built around some computationally 
intensive variant of a matrix-matrix (BLAS3) or matrix-vector (BLAS2) multiplication 
kernel subroutine, which can be optimized for each computing platform on which the 
package is run. 

The sparse block Cholesky algorithms discussed in this paper take essentially the 
same approach; we do not, however, include multiprocessors nor do we tune the kernels 
for efficiency on specific machines. We investigate two algorithms: 

1. The multifrontal method [15,24], which is based on the right-looking formulation 
of the Cholesky factorization algorithm. 

2. A left-looking block algorithm that has, until recently (this report and [29]), 
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received little attention in the literature. 

Both methods will use the same kernel subroutines to  do aLl the numerical work required 
during the factorization. The differences are limited t o  such issues as: 

0 indirect addressing and other integer operations related to  the striicturul aspects 
of sparse factorization, 

0 the ability to  reuse data in  cache, 

0 the amount of data movement, 

e the memory-access pattern, and 

e the work-storage requirement. 

In general, variations in the efficiency of the block algorithms and their variants are not 
very large. IIowever, our tests indicate significant differences in the amount of work 
storage and expensive data movement required. 

This paper has two primary goals. First, we will look at  the two block Cholesky 
factorization algorithms in a systematic and consistent fashion, both to  illustrate the 
strengths of the blocking techniques in sparse matrix computations in general and to  
obtain a fair evaluation of the two basic approaches. Second, we will assess the value of 
various implementation techniques on time and storage efficiency, paying particularly 
close attention t o  the work-storage requirement of the two methods and their variants. 

Rothberg and Gupta [29] have studied these algorithms independently. They con- 
sider the caching issue in more detail and implement a more complicated and effective 
loop-unrolling scheme than we do. However, they do not compare the work-storage 
requirements of the various algorithms as we do. We have introduced enhancements t o  
the multifrontal algorithm that greatly reduce the amount of stack storage and data 
movement overhead required by that algorithm. Also, we consider the performance of 
these algorithms on a vector supercomputer and a high-performance workstation with 
vector hardware. 

The paper is organized as follows. Section 2 contains notation and other back- 
ground material needed to  present the algorithms, including a discussion of previous 
work on block sparse Cholesky algorithms. Section 3 describes the left-looking block 
Cholesky algorithm and some of its key features. Presented in Section 4 are imple- 
mentation details and enhancements for both the left-looking block algorithm and the 
multifrontal algorithm. Section 5 contains the results of our performance tests on sev- 
eral of the machines mentioned earlier in this section. Finally, concluding remarks and 
speculations on future work appear in Section 6. 

2.  Background material 

2.1. Column-based Cholesky factorization methods 

Cholesky factorization of a symmetric positive definite matrix A can be described as 
a triple nested loop around the single statement 
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bordering left-looking right -looking 

used for modification a 
modified 

Figure 1: Three forms of Cholesky factorization. 

By varying the order in which the loop indices i, j ,  and k are nested, we obtain three 
different formulations of Cholesky factorization, each with a different memory access 
pattern. 

1. Bordering Cholesky: Taking i in the outer loop, successive rows of L are computed 
one by one, with the inner loops solving a triangular system for each new row in 
terms of the previously computed rows (see Figure 1). 

2.  Left-looking Cholesky: Taking j in the outer loop, successive columns of L are 
computed one by one, with the inner loops computing a matrix-vector product 
that gives the effect of previously computed columns on the column currently 
being computed. 

3. Right-looking Chokesky: Taking k in the outer loop, successive columns of L are 
computed one by one, with the inner loops applying the current column as a 
rank-1 update to  the remaining partially-reduced submatrix. 

The various versions of Cholesky factorization can be used to take better advantage 
of particular architectural features of a given machine (cache, virtual memory, vec- 
torization, etc.) [ll]. For more details concerning these three vcrsions of Cholesky 
factorization, consult George and Liu [19, pp. 18-21]. 

The bordering method requires a row-oriented data structure for storing the nonze- 
ros of L .  Liu [25] has devised a compact row-oriented data structure for this purpose, 
but currently the technique has not been successfdly adapted to run efficiently on 
modern workstations and vector supercomputers. Consequently, our report will fo- 
cus on block versions of the left-looking and right-looking algorithms (also known as 
column-Cholesky and submatrix-Cholesky, respectively). Both the left-looking and 
right-looking algorithms naturally require a column-oriented data structure, which is 
easy to  construct [3l]. Thus, we restrict our attention to column-oriented implementa- 
tions of the left-looking and right-looking algorithms. 



- 4 -  

We need the following definitions to  write down the algorithms. Let M be an TZ 

by n matrix and denote the j - t h  column of M by M , j .  The sparsity structure of 
column j in the lower triangular part of M (excluding the diagonal entry) is denoted 
by Struc t (M, j ) .  That is, 

Struc t (M, j )  := {s > j : Ms,j # O } .  

Column-oriented Cholesky factorization algorithms can be expressed in terms of the 
following two subtasks: 

1. cmod(j, k) : modification of column j by a multiple of column k, k < j ,  

2. cd iu ( j )  : division of column j by a scalar. 

Of course, sparsity in columns j and k is exploited when A and L are sparse. Using 
these basic operations, Figures 2 and 3 give high-level descriptions of the basic left- 
looking and right-looking sparse Cholesky algorithms, respectively. (We will refer t o  
these two algorithms as left-looking and right-looking col-col.) 

for j = 1 to n do 

cmod(j,  k) 
for k such that L j , k  # 0 do 

c d i v ( j )  

Figure 2: Left-looking sparse Cholesky factorization algorithm (left-looking col-col). 

for k = 1 to TZ do 
cdiv(  k) 
for j such that Lj,k # 0 do 

cmod( j ,  I ; )  

Figure 3: RJght-looking sparse Cholesky factorization algorithm (right-looking 
col-col). 

Left-looking sparse Cholesky is the simpler of the two algorithms t o  implement, and 
it appears in several well known commercially available sparse matrix packages [8,16]. 
For implementation details, the reader should consult George and Liu [19]. Straight- 
forward implementations of the right-looking approach are generally quite inefficient 
because matching the updating column k’s sparsity pattern with that of each col- 
umn j in the updated submatrix requires expensive searching through the row indices 
in Struct (L , ,k)  and Struct(L*,j), j E Struct(L,,k). Consequently, we will not pursue 



such an implementation in this paper. However, Rothberg and Gupta [29] lmve recently 
reported that a block version of this approach is reasonably competitive, because for 
practical problems the blocking greatly reduces the amount of index matching needed. 
Note also that a straightforward implementation of the right-looking approach forms 
the basis for a distributed-memory parallel factorization algorithm known as the fan-out 
method [6,18,33]. In this paper, we will study a left-looking block algorithm and also 
the mvltifrontal algorithm [15,24], which can be viewed as an efficient implementation 
of right-looking sparse Cliolesky factorization as we shall see in Section 2.3. 

2.2. Supernodes and elimination trees 

Efficient implementations of both the multifrontal algorithm and left-looking block 
algorithms require that columns of the Cholesky factor I, sharing the same sparsity 
structure be grouped together into so-called supernales. More formally, the set of 
contiguous columns' j ,  j + 1, . . ., j + t constitutes a supernode if Struct(L,,k) = 
Struct(L,,k+l) U { k  + l} for j 5 k 5 j + t - 1. A set of supernodes for an example 
matrix is shown in Figure 4. Note that the columns of a supernode ( j ,  j + 1, . . . , j  + t }  
have a dense diagonal block and have identicaE column structure below row j + t. Note 
also that columns in the same supernode can be treated as a unit for both computation 
and storage. (See, for example, [26] for further details.) 

The multifrontal method makes explicit use of the elimination tree associated with 
L.  For each column L*,j having off-diagonal nonzero elements, we define the parent of 
j to  be the row index of the first of€-diagonal nonzero in that column. For example, 
the parent of node 9 is node 19 for the matrix in Figure 4. It is easy to  see that the 
parents of the columns define a tree structure, which is called the elimination tree of 
L. Associated with any supernode partition is a supernodal elimination tree, which is 
obtained from the elimination tree essentially by collapsing the nodes (columns) in each 
supernode into a single node (block column). This can be done because the nodes in 
each supernode form a chain in the elimination tree. Figure 5 displays the elimination 
tree for the matrix in Figure 4. The supernodal elimination tree for the partition in 
Figure 4 is also shown in Figure 5, superimposed on the underlying elimination tree. 

2.3. Supernode-based ChoIesky algorithms: previous work 

Figures 2 and 3 contain high-level descriptions of sparse Cholesky algorithms whose 
innermost loop updates a single column j with a multiple of a single column k. The 
next two subsections briefly describe two well known sparse-Cholesky algorithms that 
exploit the shared sparsity structure within supernodes to  improve performance. The 
first is the left-looking sup-col algorithm, whose atomic operation is updating the 
target column j with every column in a supernode (a BLAS2 operation). The other is 
the more widely known multifrontal method. 

'It is convenient to denote a column L.,> belonging to a supernode by its column index j. It should 
be clear by context when j is being used in this manner. 
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Figure 4: Supernodes for 7 x 7 nine-point grid problem ordered by nested dissection. 
( x  and 0 refer to nonzeros in A and fill in L ,  respectively. Numbers over diagonal 
entries label siipernodes.) 
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31 [ 46 

I 2 4 5 8 9 11 12 16 17  19 20 23 24 26 2'7 

Figure 5 :  Elimination tree (and supernode elimination tree) for the matrix shown in 
Figure 4. Ovals enclose supernodes that contain more than one node. Nodes not 
enclosed by an oval are singleton supernodes. Italicized numbers label supernodes. 
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2.3.1. Left-looking sup-col Cholesky factor izat ion 

The basic idea behind the left-looking sup-col Cholesky algorithm is very simple. Let 
h' = { p , p +  1,. . . , p + q }  be a supernode' in L and consider the computation of L,,J for 
some j > p + q. It follows from the definition of supernodes that column A,,J will be 
modified by no columns of A' or every column of K. Previous studies [7,26,27,28] have 
demonstrated that this observation has important ramifications for the performance 
of left-looking sparse Cholesky factorization. Loosely speaking, when used t o  update 
the target column the columns in a supernode li can now be treated as a single 
unit (or block column) in the computation. Since the columns in a supernode share the 
same sparsity structure below the dense diagonal block, modification of a particular 
column j > p + q by these columns can be accumulated in a work vector using dense 
vector operations, and then applied to  the target column using a single sparse vector 
operation that employs indirect addressing. Moreover, the use of loop unrolling in the 
accumulation, a s  described in [lo], reduces memory traffic. 

In Figure 6, we present the left-looking sup-col Cholesky factorization algorithm. 

t +- 0 
for J = 1 to N do 

Scatter J ' s  relative indices into i n d m a p .  
for j E J (in order) do 

for fir such that Lj,fi # 0 do 
t + cmod( j ,  K) 
Assemble t into L , j  using i n d m a p  

while simultaneously setting t to  zero. 
cmod( j ,  J) 
c d i v ( j )  

Figure 6: Left-looking sup-col Cholesky factorization algorithm. 

The reader will find a more detailed implementation of the algorithm presented in [26]. 
In order t o  keep the notation simple, li is to  be interpreted in one of two different senses, 
depending on the context in which it appears. In one context (e .g . ,  line 4 of Figure S), 
K is interpreted as the set of columns in the supernode, i.e., li = { p , p +  1,. . . , p +  q } .  

In the second line of the algorithm, the supernodes are treated as an ordered set of loop 
indices 1 ,  2 ,  . . ., I<, . . ., N ,  where K < J if and only if p < p', where p and p' are the 
first columns of li and J, respectively. This dual-purpose notation is also illustrated 
in Figure 4, where the supernode labels are written over the diagonal entries, yet we 
can still write 30 = {40,41,42}, for example. We denote both the last supernode and 
the number of supernodes by hi. 

2Throughoiit the remainder of the report the numbers designating a supernode will be italicized 
and the letters denoting a supernode will be capitalized. 
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Suppose K = {p,p + 1,. . . , p  + q}.  Whenever j > p + q and l j ,p+p # 0, the task 
crnod(j, K) consists of the operations cmod(j, k), where k = p , p  + 1,. . . , p  + q. When 
j E K ,  cmod(j, IC) consists of the operations cmod(j, k), for k = p, p + 1,. . . , j  - 1. We 
let L ~ , K  denote the 1 by IICI submatrix in L induced by row j and the columns in K .  

The indirect addressing scheme used by the algorithm is as follows. The indices 
in each list Struct(L,,j) are sorted in ascending order during the preprocessing stage 
(Le., symbolic factorization). For each row index i E Struct( L*,J) ,  the corresponding 
relative index is the position !! of i relative to  the bottom of the list. For example, !! = 0 
for the last index in the list, t? = 1 for the next-to-the-last one, and so forth. For each 
supernode J = {p,p + 1,. . . , p  t q } ,  define 

StrzLct(L*,J) = {p} u StruCt(L*,p). 

The relative position of each row index i E Strvct(L, , j)  is stored in an n-vector 
indmap as follows: indmap[i] t f?. First the update cmod(j,lC) is accumulated in a 
work vector t whose length is the number of nonzero entries in the update. That is, 
the update is computed and stored as a derzse vector t .  Then the algorithm assembles 
(scatter-adds) t into factor storage, using indmap[i] to  map each active row index i E 
S t r u c t ( L , , ~ )  to  the appropriate location in L,j to  which the corresponding component 
o f t  is added. The notion of relative indices apparently was first proposed by Schreiber 

[301 

2.3.2. Multifrontal Cholesky factorization 

The multifrontal method, introduced by Duff and Reid in [15], is well documented in the 
literature. With much of its work performed within dense frontal matrices, this method 
has proven to  be extremely effective on vector supercomputers [1,3,7,9]. Moreover, 
the multifrontal method is naturally expressed and implemented as a block method, 
and several of the advantages it derives from block matrix operations have already 
been explored in the Literature: e.g., its ability to  reuse data  in fast memory [1,27] 
and its ability to perform well on machines with virtual memory and paging [22]. 
Implementation of the multifrontal method is more complicated and involves more 
subtleties than does any of the left-looking Cholesky variants. For the purposes of this 
report, it is adequate to  restrict our presentation to  an informal outline of the method. 
For a detailed survey of the multifrontal method and the techniques required for an 
efficient implementation, the reader should consult Liu [24]. The following paragraphs 
discuss the informal statement of the algorithm, found in Figure 7. 

The outer loop of the supernodal multifrontal algorithm processes the supernodes 
1 ,  2 ,  . . ., N ,  where the supernodes have been renumbered by a postorder traversal of 
the supernodal elimination tree. After moving the required columns of A,,J into the 
leading columns of J's dense frontal naatrix F J ,  the algorithm pops from the update 
matrix stack an update matrix U K  for each child li' of J in the supernodal elimination 
tree, and assembles these accumulated update columns into F J .  (The postordering 
enables the use of a simple and eficicnt stack for the update matrices.) The update 
matrix U K  is a dense matrix containing all updates destined for ancestors of K from 
columns in the subtree of the supernodal elimination tree rooted at K .  The assembly 
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Zero out the update matrix stack. 
for J = 1 to N (in postorder) do 

Move A,,J into F J .  
for IC E chiZdren(J) on top of the stack do 

Pop U,y from stack. 
While zeroing out U K ,  assemble U,y into F J .  

compute the columns of L,,J ( c d i v ( J ) ) ,  
and compute all update coliimns from L,, J 

(Le., c m o d ( k , J ) ,  where k E Struc t (L , ,~)  - J ) .  
While zeroing out the vacated locations occupied by F J ,  

move the new factor columns from FJ t o  L, ,J .  
While zeroing out any vacated locations occupied by F J ,  

move U J  to  the top of the stack. 

Within F J ,  

Figure 7: Supernodal multifrontal Cholesky factorization algorithm. 

operation adds each entry of U,y to  the corresponding entry of F J .  These are sparse 
operations requiring indirect indexing because an update matrix generally modifies a 
proper subset of the entries in the target frontal matrix. These are the only sparse 
operations required by the multifrontal method. 

Now with all the necessary data accumulated in F J ,  the next step in the main 
loop applies dense left-looking Cholesky factorization t o  the first IJI columns in FJ 
(which we will call a c d i v ( J )  operation) t o  compute the block column L, ,J ,  and then 
accumulates in the trailing columns of FJ all column updates crnod(k , j ) ,  where j E J 
and k E S ~ T U C ~ ( L , , J )  - J .  At this point, the leading IJI columns of F J  contain the 
columns of L, ,J ,  and the other columns have accumulated every update column for 
ancestors of J contributed by J and its descendants in the supernodal eliniiIiation tree. 
The algorithm then moves the newly-computed columns to the appropriate location in 
the data  structure for L, moves the update matrix U J  down onto the top of the stack, 
and proceeds with the next step of the major loop. 

Three issues will occupy our attention when we take up the multifrontal algorithm 
again in Section 4. First, since all updates from the columns in L,,J are computed 
immediately after the new factor columns are computed, the multifrontal method pro- 
vides the opportunity for optimal reuse of columns loaded in cache. Second, the costs 
of data  movement overhead are potentially significant. We are referring here to  the 
movement of matrix columns between each frontal matrix and L’s data structure, and 
the movement of each update matrix from the location in work storage where it was 
computed t o  its storage-saving location a t  the top of the stack. This issue is of par- 
ticular concern on machines with cache, where moving large amounts of data  in this 
manner will cause expensive cache misses not incurred by the left-looking algorithms. 
Third, we will be concerned with the amount of storage required for the stack of update 
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matrices, an issue that has received considerable attention in past studies [3,27,24], 

3. Left-looking sup-sup Cholesky factorization 

The idea behind the left-looking sup-sup Cholesky factorization algorithm is sim- 
ple: The cmod( j ,K)  operation is blocked one level higher, creating a supernode-to- 
supernode block-column updating operation cmod(J, I<) around which the new algo- 
rithm is constructed. The crnod(J, K )  operation performs cmod(j, I<)  for every column 
j E J updated by the columns of K (a BLAS3 operation). The idea of constructing 
a sparse-Cholesky algorithm around this operation is not new. Ashcraft and the sec- 
ond author wrote a left-looking sup-sup sparse Cholesky factorization code, which was 
mentioned in [7], but was not presented there. The indexing scheme they used, how- 
ever, was unnecessarily complex. Though efficient, it had the side-effect of destroying 
the row indices of the nonzeros in L so that they had to be recomputed later for use 
during the triangular solution phase or any future factorizations of matrices with the 
same structure. For these reasons, Ashcraft and the second author ultimately con- 
cluded that their implementation was unacceptable. Ashcraft recently sketched out a 
high-level version of the algorithm in a report on a different topic [4]. He has also cre- 
ated a single-parameter hybrid sparse Cholesky algorithm that performs a left-looking 
sup-sup factorization when the parameter takes on one extreme value, and performs 
a supernodal multifrontal factorization when it takes on the opposite extreme value 
[5]. The left-looking sup-sup approach was proposed again by the authors 1261 as a 
promising candidate for parallelization on shared-memory multiprocessors. Parts of 
this work are steps toward completing the goals stated in the conclusion of that re- 
port. Recently and independently, Rothberg and Gupta have examined the caching 
behavior of three block Cholesky factorization algorithms, including the multifrontal 
and left-looking sup-sup methods [as]. 

The following paragraphs discuss the left-looking sup-sup Cholesky factorization 
algorithm in Figure 8 and its more basic implementation issues. One new item of 
notation is introduced; we let LJ,K denote the IJI by ( I<[  submatrix in L induced by 
the members of J and the members of A’. 

The bulk of the work is performed within the cmod(J,  IC) and cdiv(J)  operations. 
The underlying matrix-matrix multiplication subroutine that performs most of the 
work in the implementation is used by the block multifrontal code as well, enabling a 
fair comparison of the two approaches. As in the left-looking sup-col approach, the 
update columns are accumulated in work storage. Naturally, far more work storage 
is required to accumulate the cmod(J, 1;) updates than is required to accumulate the 
cmod(j, K) updates, which consists of a single dense column no larger than the column 
of L with the most nonzero entries. This storage overhead will receive further attention 
in Sections 4 and 5 .  

Another distinction between the left-looking sup-col and sup-sup algorithms is 
that  the sup-sup algorithm must compute the number of columns of J to  be updated 
by the columns of X, which it does by searching for all row indices i E . JnStruc t ( .L , ,~~)  
in IC’s sorted index list. 

The algorithm handles indirect addressing in much the same way that  the sup-col 
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T 4- 0 
for J = 1 t o  N d o  

Scatter J ' s  relative indices into indmap. 
for 11' such that LJ,K # 0 do 

Compute the number of columns of J to  be updated by the columns of li. 
T +- cmod( J ,  A') 
Gather 11''s indices relative t o  J ' s  structure from indmap into relind. 
Using relind, assemble T into L+,J ,  

while simultaneously restoring T to  zero. 
cdiv( J) 

Figure 8: Left-looking sup-sup Cholesky factorization algorithm. 

algorithm in Figure 6 does, with one key difference which generally improves its efi- 
ciency. (See Section 2.3.1 for other details about the indexing scheme.) The sup-sup 
algorithm gathers the indices of A' relative to J from indmap into a temporary vector 
relind: each active row index i E S t r u c t ( L , , ~ ) ,  is replaced by indmap[i] in the integer 
vector relind. This single gather operation provides the indexing information for as- 
sembling the entire block update into factor storage (i.e., the storage that will contain 
I,*, J ) .  The sup-col a.lgorithm essentially has to  repeat this gather operation each time 
it assembles a cmod(j,  K) update ( j  E J )  into factor storage. 

4. Implementation details and options 

Section 5 reports performance statistics for implementations of the multifrontal and the 
left-looking sup-sup Cholesky factorization algorithms on several powerful uniproces- 
sor computing systems. Our Fortran codes have not been tuned for performance on any 
specific machine except for our choice of the level of loop-unrolling. To run efficiently 
on some of these machines, however, our implementations cannot afford to  ignore other 
architectural considerations altogether. Unless they make effective use of data  (Le., 
columns of the matrix) once they have been loaded into cache, their performance will 
be severely penalized by an excessive number of cache misses. Thus our implementa- 
tions must be designed with this goal in mind. Our codes require the cache size on 
each machine t o  reuse cached data  efFectively (see Section 4.1). The cache size and 
the level of loop-unrolling are the only machine-dependent paranieters in our codes. 
Other implementation options and enhancements, which are entirely independent of 
the computer architecture, are also discussed in this section. 

4.1. Reuse of data in cache 

Consider the computation of a cmod( J ,  1;) update during the left-looking sup-sup 
Cholesky factorization. Suppose the operation updates Q columns of J with the columns 
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of K .  The number of columns updated may be as few as 1 or as many as IJI. We can 
compute cmod(J, IC) as a sequence of sup-col updates cmod(j,  Ii) for the q columns 
j E J .  If the columns of K ,  which happen to be stored contiguously in main memory, 
fit into cache memory, then the first cmod(j,I i)  loads the columns of K into cache, 
while the following q - 1 cmod’s will have extremely fast access to  this data  because it 
is already in cache. 

Quite often, however, the columns of a supernode do not fit into the 32K or 64Ii 
caches used on current workstations. This can dramatically increase the number of 
cache misses associated with the final q - 1 cmod’s, as the columns of I< overwrite one 
another as they are repeatedly read into cache. To avoid this problem, the algorithm 
partitions large supernodes into “panels” of contiguous columns that fit into the cache, 
as Rothberg and Gupta have done in their studies [27,28,29]. If A’ has been partitioned 
into two panels, then the cmod(J, h‘) update is performed by applying the cnzod’s 
from the first panel to the q target columns of J ,  then applying the cmod’s from the 
second panel to  the q target columns of J .  We use essentially the same strategy to  
increase the reuse of data in cache by our multifrontal codes. This simple strategy has 
proven effective for the problems, machines, and factorization methods used in our tests. 
Extremely large problems, however, may require more complicated techniques that 
involve both horizontal and vertical partitioning, and perhaps even sweeping changes in 
the data  structure used to store L .  The reader should consult Rothberg and Gupta [29] 
for a thorough discussion of these and many other issues associated with improving 
reuse of data  in cache by both the miiltifrontal and the left-looking sup-sup sparse 
Cholesky algorithms. 

4.2. Traversing row-structure sets 

The left-looking col-col algorithm needs access to the row-structure sets R, = {k : 
L j , k  # 0} (see Figure 2). These row-structure sets must be computed from or traversed 
within the strictly column-oriented data  structure used by the algorithm. By far the 
most commonly used method is to  maintain the row-structure sets as linked lists within 
a single integer n-vector. Every column belongs to  one and only one row-structure list 
at any given time during the course of the factorization. After a column update is 
completed, the column is placed in the list belonging to the next column it will modify. 
Details of this approach can be found in George and Liu [19, pp. 152-1551 and in Ng and 
Peyton [26]. The same technique applies to  the row-structure sets for the left-looking 
sup-col and sup-sup algorithms. 

There is another way t o  determine the row-structure sets in the left-looking col-col 
algorithm, which relies on the fact that each row-structure set R, is a pruned subtree 
of the elimination tree [20,3O]. Consequently, if the elimination tree is made available 
t o  the factorization algorithm, each member of Rj can be visited by performing a 
depth-first traversal of the appropriate pruned subtree. Implementation details can be 
found in Schreiber [ S O ] .  Again, the same technique applies to  the row-structure sets 
for the left-looking sup-col and sup-sup algorithms. This approach is particularly 
attractive in a parallel implementation of the left-looking factorization algorithms for 
shared-memory multiprocessor systems since it eliminates the need for critical sections 
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when manipulating the row-structure sets. We are currently pursuing this idea. 
For the sup-col algorithm, our tests indicate that the total factorization time using 

the tree-traversal technique is slightly larger than that using the linked-list approach. 
However, for the sup-sup algorithm, the difference in total factorization time using 
the two approaches is negligible because the total time required to  traverse the row- 
structure sets is extremely small in this algorithm for both techniques. Because overall 
factorization times differ by so little when the two approaches are compared, we have 
not included timing results for the more complicated of the two (the tree-traversal 
method) in Section 5 .  The important point to  note is that  either approach can be 
used in the sup-sup algorithm, and moreover, we believe that the tree-walking tech- 
nique may ultimately be preferable in a parallel implementation for shared-memory 
multiprocessors [26]. 

4.3. Enhancements to the multifrontal method 

The size of the stack of update matrices in the multifrontal method is a major issue 
associated with this method. A large stack obviously requires greater storage; perhaps 
not so obvious is that  a large stack usually creates a great deal of overhead data  move- 
ment that  can erode efficiency. We have implemented two variants of the multifrontal 
algorithm. The first is a straightforward implementation of the algorithm in Figure 7. 
One standard enhancement has been incorporated into our basic multifrontal code. Us- 
ing a technique introduced by Liu [21], we have reordered the children of each parent 
in the supernodal elimination tree to  minimize the storage requirement for the stack. 
This section describes the techniques incorporated into our enhanced version of the 
multifrontal met hod. 

We are aware of multifrontal implementations [32] that  compute the new factor 
columns L,,J in factor storage rather than in F J ,  and then compute only the update 
matrix U J  within the frontal matrix F J .  This simple change reduces the size of the 
frontal matrix and eliminates the need to  move matrix columns back and forth between 
factor storage and the frontal matrix. We have implemented this technique, and also 
further pursued the idea of reducing stack storage and limiting data  movement by 
incorporating updates into factor storage as early as possible. More specifically, we 
have incorporated the following two techniques into our enhanced code. 

First, let P be the parent of J in the supernodal elimination tree. We say that J 
is dense relative to P if 

Struct(L*,p) c: StruCt(L*,J). 

If J is dense relative t o  P ,  then the update cmod(P, J ) ,  which would normally fill 
the leading columns of U J ,  can be applied directly t o  L q ,  the columns of P in 
factor storage. This shrinks the size of the update matrix U J ,  and thus reduces data  
movement when U J  is ultimately moved t o  its final position at the top of the stack. 
Since this condition usually holds for the root supernode and one or more of its children, 
both of which usually have very large frontal matrices, this simple enhancement can 
save a lot of storage. 

The second technique pushes this idea a bit further. Consider the update matrix 
UJ, and again consider J’s parent P. For the multifrontal method, the relative indices 
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of each child with respect to its parent have been computed in advance. The relative 
indices used to  assemble U J  into F p  can also be used to  assemble the columns of 
U J  destined for L w , p  directly into factor storage. But there is no reason to limit this 
technique to  the parent just because only the indices relative to P are available. If J 
happens to update its grandparent supernode PI, then J 's  indices relative to P' can be 
obtained by gathering the appropriate indices of P (relative to  P') into an integer work 
vector rebind, and then using them to assemble the appropriate columns of U J  into 
factor storage (i.e., I;*,pt) .  If J happens to  update its great-grandparent PI', then the 
process can be repeated with the old indices in relind (relative to PI) used to  gather 
some of the indices of P' (relative to P") into relind, giving us the indices of J relative 
t o  P". The enhanced algorithm continues this process until it encounters the root of 
the supernodal elimination tree or an ancestor of J that  is not updated by the columns 
of J .  Each assembly into factor storage reduces the amount of storage required for 
the reduced version of U J  and the amount of time required to  move it to  the top of 
the stack. The only overhead computation required, the sequence of integer gather 
operations, is negligible compared to the savings in data  movement, and this technique 
is surprisingly effective a t  reducing the stack storage requirement, as we shall see in 
Section 5 .  

Lastly, one commonly used stack-reduction technique is the extension in place of the 
update matrix for the child on top of the stack into the parent's new frontal matrix, 
which is initially set to  zero. Liu [213 points out that  this technique is used in the 
Harwell MA27 code, and Ashcraft [3] reports that  overlapping the new frontal matrix 
with the topmost update matrix in this fashion saves a surprising 15-27% in stack 
storage for his test problems. We have incorporated it into our enhanced multifrontal 
code. 

4.4. Refinements for left-looking sup-col and sup-sup Cholesky 

Three refinements have been incorporated into our implementations of the left-looking 
sup-col and sup-sup Cholesky factorization algorithms, several of which concern the 
incorporation of update columns that are dense relative t o  the target column directly 
into factor storage. First, whenever K has only one column, the sup-col (sup-sup) 
code accumulates the column modification crnod(j, I i j  (crnod( J ,  I<>> directly into fac- 
tor storage, avoiding use of the real work vector t ( T )  altogether. This is extremely 
simple to  implement, avoids some useless data  movement, and is valuable for problems 
with many singleton supernodes. Second, all column modifications where the source 
and target columns come from the same supernode are performed as dense updates 
incorporated directly into factor storage using no indirect indexing. That is, they are 
performed as a dense update would be performed. Third, whenever the length of update 
columns from li' matches the length of a target column(s) from J, it is also handled as 
a dense update. No indirect indexing is used, and the update is accumulated directly 
into factor storage. 

Two minor refinements are incorporated into the left-looking sup-sup Cliolesky 
algorithm only. Unlike the sup-col algorithm, the block algorithm explicitly computes 
and records reIative indices as they are needed. By taking the difference between the 
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first and the last of these indices and checking the difference against the length of 
the target, the algorithm is now capable of checking for all remaining dense updates, 
thereby avoiding some data  movement and indirect addressing normally associated 
with these operations. Finally, note that the size of the block of work storage T 
needed by the algorithm is the size of the largest block update crnod(J, K )  generated 
by the algorithm that is not dense relative to  its target factor columns. In practice the 
children of the root supernode are usually dense relative to  their parent, and moreover 
the largest block update is often found among the block updates they generate for the 
root. Consequently, the practice of accumulating dense block updates directly into 
factor storage often reduces the amount of work storage needed for the algorithm. 

5 .  Performance results 

In this section we compare the performance of various sparse Cholesky factorization 
algorithms discussed in this paper, which include 

0 left-looking col-col Cholesky, 

0 left-looking sup-col Cholesky, 

0 left-looking sup-sup Cholesky, 

0 a basic multifrontal method, and 

0 an enhanced multifrontal method. 

All algorithms were coded in Fortran and all floating-point operations were performed in 
double precision, except on the Cray Y-MP. The code for left-looking col-col  Cholesky 
was taken from SPARSPAK [SI. All codes were compiled with optimization turned on 
and were run on a vector supercomputer and a number of high-performance scientific 
workstations. It should be noted that identical code was run on each machine, except 
for the level of loop-unrolling used in the block update routines. 

The machines used in the experiments include 

0 an IBM RS/6000 model 530, 

0 a DEC 5000, 

0 a Stardent P3000, and 

0 one processor of a Cray Y-MP. 

Each of the workstations has 64 kilobytes of cache memory. The cache on the IBM 
RS/6000 is 4-way set-associative, while those on the DEC 5000 and Stardent P3000 
are direct-mapped. The cache line size on the IBM RS/SOOO is 128 hytes, compared to 
4 bytes on the DEC 5000 and Stardent P3000. The IHM RS/SOOO and DEC 5000 have 
16 megabytes of main memory, while the Stardent P3000 has 32 megabytes. Since we 
restricted our tests to  problems that fit into the main memory, there was no paging, 
and hence differences in memory size had no effect on performance. Both the DEC 5000 
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and Stardent P3000 use the same central processing unit (MIPS 3000), but they have 
different floating-point coprocessors. The Stardent P3000 moreover has special vector 
floating-point hardware that can be enabled or disabled during code compilation. The 
DEC 5000 and Stardent P3000 (with vectorization disabled) are similar in so many 
respects that  we expect similar performance on these machines. 

The vector supercomputer we used, the Cray Y-MP, has no memory hierarchy and 
has enough main memory for the largest of our test problems. It is also worth noting 
that this machine, as a rule, performs floating-point arithmetic far more efficiently 
than integer arithmetic, in contrast to the workstations where integer and floating- 
point performance is better balanced. 

As we pointed out in previous sections, loop unrolling was employed in our imple- 
mentation of the cmod(j,  K )  and cmod(J,  K )  block update operations. The optimal 
level of loop unrolling varies from machine to  machine. In our experiments, we tried 
level-p loop unrolling, for p = 1, 2, 4 and 8. To limit the amount of data  presented in 
our tables, we report data for only the level of loop unrolling that performed best on 
the specific machine under consideration. The best level was p = 4 for the DEC 5000 
and Cray Y-MP, and p = 8 for the IBM RS/6000 and Stardent 1’3000. 

Almost all the test problems were taken from the Harwell-Boeing Test Collec- 
tion [13], which is widely used in testing and evaluating sparse matrix algorithms. 
The problems we selected and some of their characteristics are provided in Tables 1 
and 2, respectively. To ensure that no paging occurred, only the small t o  medium size 
problems were run on the workstations. All problems were run on the Cray Y-MP. 

problem 
BCSSTK13 
BCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTK17 
BCSSTKl8 
BCSSTK23 
BCSSTK24 
BCSSTK25 
BCSSTK29 
BCSSTKSO 

BCSSTK3 1 
BCSSTK32 

BCSSTK33 

NASA1824 
NASA2910 
NASA4704 

brief description 
Stiffness matrix - fluid flow generalized eigenvalues 
Stiffness matrix - roof of Omni Coliseum, Atlanta 
Stiffness matrix - module of an offshore platform 
Stiffness matrix - Corp. of Engineers dam 
Stiffness matrix - elevated pressure vessel 

Stiffness matrix - R.E.Ginna nuclear power station 
Stiffness matrix - portion of a 3D globally triangular hldg 
Stiffness matrix - winter sports arena. 

Stiffness matrix - 76 story skyscraper 

Stiffness matrix - buckling model of the 767 rear bulkhead 
Stiffness matrix - off-shore generator platform (MSC NASTRAN) 

Stiffness matrix - automobile component (MSC NASTRAN) 

Stiffness matrix - automobile chassis (MSC NASTRAN) 

Stiffness matrix - pin boss (auto steering component), solid elements 
Structure from NASA Langley, 1824 degrees of freedom 
Structure from NASA Langley, 2910 degrees of freedom 
Structure from NASA Langley, 4704 degrees of freedom 

Table 1: List of test problems. 
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problem 
BCSSTKl3 
RCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTK17 
BCSSTK18 
BCSSTK23 
BCSSTK24 
RCSSTK25 
BCSSTK29 
BCSSTK30 
BCSSTK3l 
BCSSTK32 
BCSSTK33 
NASA1824 
NASA2910 
N MA4704 

f l  

2,003 
1,806 
3,948 
4,884 

10,974 
11,948 
3,134 
3,562 

15,439 
13,992 
28,924 
35,588 
44,609 
8,738 
1,824 
2,910 
4,704 

I 4  I ILI I P(L) 
83,883 I 271,671 I 28,621 
63,454 

117,816 
290,378 
428,650 
149,090 
45,178 

159,910 
252,241 
619,488 

2,043,492 
1,181,416 
2,014,701 

591,904 
39,208 

174,296 
104,756 

112,267 
651,222 
741,178 

1,005,859 
662,725 
420,311 
278,922 

1,416,568 
1,694,796 
3,843,435 
5,308,247 
5,246,353 
2,546,802 

73,699 
204,403 
281,472 

17,508 
61,614 
50,365 
94,225 

116,807 
49,018 
22,331 

205,513 
174,770 
229,670 
330,896 
374,507 
124,532 
12,587 
25,170 
35,339 

N 
599 
503 

1,295 
69 1 

2,595 
7,438 
1,522 

414 
7,288 
3,231 
3,689 
8,304 
6,927 
1,201 

527 
599 

1,245 

flops 
58,550,598 
9,793,431 

165,035,094 
149,100,948 
144,269,03 1 
140,907,823 
119,155,247 
32,429,194 

283,732,315 
393,045,158 
928,323,809 

2,550,954,465 
1,108,686,016 
1,203,491,786 

5,160,949 
21,068,943 
35.003.786 

Table 2: Characteristics of test problems. 

Legend: 

n: number of equations, 

IAl: number of nonzeros in A ,  

ILI: number of nonzeros in L ,  including the diagonal, 

p ( L ) :  number of row subscripts required to represent the supernodal structure of L, 
N :  number of fundamental supernodes in L ,  

flops: number of floating-point operations required to compute L .  
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basic mf 
( 0 )  (64) 

3.58 3.39 
.71 .69 

9.49 8.78 
8.59 8.15 
9.39 9.08 
7.21 6.67 
1.92 1.88 
.40 .40 

1.36 1.36 
2.17 2.10 

The tables presented in the following subsections contain the times required to 
run the factorization algorithms on several different machines. All execution times are 
in seconds. For machines that have cache memory, the notation method(s) is used, 
where method is either sup-sup or mf  (multifrontal). When s = 0, supernodes are 
not subdivided into panels; when s > 0, large supernodes are subdivided into panels 
that  fit into the s-kilobyte cache available on that machine. For example, on all the 
workstations s = 64 when the supernodes are subdivided. It is worth noting that 
all the test problems have many supernodes small enough to fit into cache, and both 
the multifrontal and left-looking sup-sup algorithms fully “reuse” the columns of such 
supernodes once they are loaded into cache, regardless of whether or not the larger 
supernodes have been subdivided to  fit into cache. 

enhanced m f  
(0) (64) 

3.32 3.10 
.65 .65 

8.98 8.32 
8.01 7.52 
8.99 8.47 
6.78 6.26 
1.78 1.74 

.36 .36 
1.26 1.25 
2.03 1.96 

5.1. IBM RS/SOOO 

7.33 
1.32 

20.40 
18.61 
17.86 
14.71 
4.28 

.74 
2.81 
4.56 

problem 
BCSSTK13 
BCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTK18 
BCSSTK23 
BCSSTK24 
NASA 1824 
NASA29 10 
NASA4704 

3.59 
.69 

9.68 
8.94 
9.30 
7.13 
2.03 

.41 
1.46 
2.29 

col-col sup-col I/ sup-sup 

Table 3: Factorization times in seconds on IBM RS/SOOO. 

Table 3 contains the execution times (in seconds) required by the various factorization 
methods on an IBM RS/6000 model 530. We make the following observations from 
these results. 

First, we see that sup-col consistently reduces factorization times by roughly a fac- 
tor of 2 over col-col.  Part  of this large improvement is due to  reductions in memory 
traffic and indirect addressing, which are in turn due respectively to the loop unrolling 
and the dense matrix-vector multiplication used to  implement the crnod(j, I<)  opera- 
tion. However, the improvement of sup-col over col-col observed on this machine 
is considerably larger than that observed on the other workstations, which obtain the 
same reductions in memory traffic and indirect indexing. We believe that the large 
cache line size (128 bytes) on the IBM RS/6000 is largely responsible for this phe- 
nomenon. The memory-access pattern of the col-col algorithm is far more disordered 
and contains far fewer stride one vector reads and writes than that of the sup-col 
algorithm. As a result, the sup-col algorithm is far more likely to use most or all of 
the floating-point numbers in a line as it is loaded into cache. Consequently, it often 
uses several (up to 16 = 128/8) double precision numbers at the cost of a single cache 
miss. 
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We see that sup-sup(0) usually improves performance over sup-col by 10-15%. 
This improvement is partly due to  further reductions in the cost of indirect indexing 
and the integer overhead associated with the row-structure lists. It is likely however 
that most of the improvement is due to  reuse of data in the cache when the supcrnodes 
are small enough. 

By partitioning supernodes whose columns overflow the cache into panels of con- 
tiguous columns that fit into cache and moreover organizing the matrix-matrix multi- 
plication operations to  operate on these panels, data in cache is reused more effectively, 
and thus the amount of data moved to  and from main memory is reduced. This leads to  
another 6-10% improvement in factorization times for sup-sup(64) when it is used on 
the medium- and large-sized problems in the test set. Smaller increases are obtained for 
the small problems because most or all of their supernodes already fit into cache. This 
improverncnt is quite modest compared to  that observed on the other workstations. 
We further explore this issue in the next subsection. 

As expected, subdividing supernodes into panels that fit into cache improves the 
performance of both the basic and enhanced multifrontal methods in much the same 
manner that it improves the performance of the sup-sup algorithm. Enhanced mf per- 
forms significantly better than basic m f  , probably because the former method typically 
required much less data movement. Our implementation of enhanced m f  is slightly 
less efficient than sup-sup because the former still requires more data  movement than 
the latter, despite our efforts to  minimize such movement. Where applicable, these 
observations hold true on the other machines as well. 

One of the most widely used implementations of the multifrontal method is the 
MA27 routine in the Harwell library [14]. To verify that our implementations of this 
method are adequate for fair comparisons, we have compared their performance with 
that of the MA27 routine in Table 4. Since loop-unrolling and techniques for exploit- 

- 
problem 

BCSSTKl3 
BCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTK18 
BCSSTK23 
BCSSTK24 
NASA1824 
NASA2910 
NASA4704 

MA27 

5.88 
1.31 

15.38 
15.02 
14.95 
11.17 
3.74 
0.74 
2.88 
3.83 

level=l 

13.44 
12.22 
12.76 
10.15 

1.81 
2.96 

level=8 
3.10 

.65 
8.32 
7.52 
8.47 
6.26 
1.74 

.36 
1.25 
1.96 

Table 4: Comparing 3 midtifrontal methods: factorization times in seconds on IBM 
RS/SOOO (basic mf  dues not use loop unrolling and enhanced rnf uses level-8 loop un- 
rolling). 

ing cache memory have not been incorporated into MA427, the fairest comparison is 
between the first two columns of the table. The second column contains the times re- 
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col-col 

24.33 
3.50 

70.84 
61.10 
60.38 
50.86 
12.41 
1.87 
7.96 

14.01 

quired by basic rnf with no loop-unrolling and with no subdivision of the supernodes to 
improve cache usage. While this code outperforms MA27, the comparison is not really 
fair because of the additional cost of MA27’s extremely flexible method for inputting 
the matrix entries. In any case, it is clear that our code is quite competitive. The 
last column demonstrates the value of the enhancements incorporated into our best 
implementation of the multifrontal method. 

sup-col 

18.77 
2.53 

52.60 
47.13 
46.47 
38.80 
9.18 
1.36 
6.01 

10.60 

5.2. DEC 5000 

(0) 
15.02 

problem 
BCSSTKl3 
BCSSTK14 
BCSSTKl5 
BCSSTKl6 
BCSSTK18 
BCSSTK23 
BCSSTK24 
NASA1824 
N AS A29 10 
NASA4704 

-- 
(64) 

1.84 
44.36 
36.29 
39.44 
34.30 
6.39 
1.04 
4.05 
7.69 

. .  
10.51 
1.84 

28.49 
25.90 
27.30 
21.53 
5.67 
1.04 
3.89 
6.28 

basic  mf 11 enhanced mf 
( 0 )  

17.45 
2.40 

48.86 
40.85 
46.75 
38.75 
7.45 
1.32 
4.99 
8.89 

Table 5:  Factorization times in seconds on DEC 5000. 

(64) 
10.90 
1.97 

29.31 
26.27 
29.29 
22.49 
5.75 
1.07 
3.99 
6.41 

Table 5 contains factorization times for the various factorization methods on a DEC 
5000. In contrast to the IBM RS/6000, the reduction in factorization time of sup-col 
over col-col is only 30-38010. (All percentages used in comparisons are relative to the 
smaller of the two times.) Due to  the 4-byte cache line size on the DEC 5000, the 
contrasting memory access patterns of the col-col and sup-col algorithms do not 
incur, respectively, nearly as severe a penalty or nearly as great a performance boost 
as those noted earlier on the IBM workstation. 

However, the improvement of the sup-sup algorithm over the sup-col algorithm 
is much larger on this machine. Largely due to the 4-byte cache line and the larger 
penalty associated with each cache miss (2 misses per floating-point number), the 
sup-sup algorithm generally obtains very large performance improvements over the 
sup-col algorithm, whose capacity to  reuse data  in cache is quite limited for the larger 
test problems. The sup-sup (0) algorithm improves performance over the sup-col 
algorithm by 13-30% for the larger problems and 31-4876 for the smaller problems. 
The sup-sup (64) algorithm improves performance over the sup-sup (0) algorithm by 
40-59010 for the larger problems and 0-22% for the smaller problems. The cumulative 
improvement is 7 0 4 5 %  for the larger problems and 4-48% for the smaller problems. A 
more detailed look a t  tlie the effect of cache size and organization on the perfornisrice of 
both the sup-sup and inultifrontal algorithms can be found in Rothberg and Gupta [29]. 
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col-col 

BCSSTK 13 28.75 
problem 

5.3. Stardent P3000 (without vectorization) 

As mentioned earlier in this section, the Stardent P3000 and DEC 5000 have identical 
central processing units but different floating-point coprocessors. Thus, when vector- 
ization is not used on the Stardent P3000, we expect performance to  be quite similar on 
these two machines. The results in Tables 5 and 6 indicate that that  is indeed the case, 

sup-col sup-SUP I I  basic mf 1 1  enhanced mf 
( 0 )  

24.80 19.09 
2.15 

34.20 
31.09 
32.83 
25.85 
6.70 
1.21 
4.58 
7.46 

BCSSTK14 
BCSSTKl5 
BCSSTK16 
BCSSTK18 
BCSSTK23 
BCSSTK24 
NASA1824 
NASA2910 
NASA4704 

2.53 
60.08 
49.11 
55.50 
47.65 
8.40 
1.39 
5.44 

10.25 

3.82 
84.70 
72.25 
72.00 
60.66 
14.11 
2.03 
8.94 

16.34 

2.28 
57.42 
46.26 
52.18 
45.12 
7.74 
1.23 
4.86 
9.54 

3.17 
69.33 
62.84 
61.75 
51.08 
11.84 
1.69 
7.64 

13.87 

2.29 
35.00 
31.33 
34.58 
26.81 
6.73 
1.24 
4.64 
7.55 

2.15 
56.50 
45.67 
50.09 
44.01 
7.71 
1.21 
4.82 
9.45 

problem 
BCSSTK13 20.04 4.98 4.65 

- 
(64) 
14.43 
2.54 

37.64 
34.45 
37.96 
29.34 
7.39 
1.39 
5.21 
8.26 

Table 6: Factorization times in seconds on Stardent P3000 (without vectorization). 

with one exception. For reasons we don't understand, loop-unrolling is considerably 
less effective on this machine than it is on the DEC 5000. With the exception of the 
col-col to  sup-col comparison, the various methods compare with each other very 
much as they did on the DEC 5000. 

5.4. Stardent P3000 (with vectorization) 

I /  COl-COl 11 SUD-COl 11 SUD-SUD 11 basic mf 11 enhanced mf 

BCSSTK14 
BCSSTK15 
BCSSTK16 
BCSSTKl8 
BCSSTK23 
BCSSTK24 
NASA 1824 
NASA2910 
NASA4704 

3.78 
55.37 
51.09 
48.46 
39.75 
11.92 
2.10 
7.90 

12.76 

1.18 
13.07 
12.68 
13.59 
9.62 
3.11 
.74 

2.33 
3.58 

1.13 
12.18 
11.48 
12.80 
9.03 
2.93 

.73 
2.20 
3.36 

(64) 
4.76 
1.21 

12.45 
11.49 
13.22 
9.26 
2.93 

.7 1 
2.21 
3.37 

Table 7: Factorization times in seconds on Stardent P3000 (with vectorization). 

The Stardent P3000 has floating-point vector hardware, which can be enabled or dis- 
abled when the code is compiled. Table 7 contains factorization times for the various 
factorization methods with vectorization turned on. An important observation is that 
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subdividing the supernodes into panels that  fit into the 64K cache has virtually no 
effect on performance. To avoid the complication of resolving cache misses dining a 
vector operation, the vector hardware bypasses the cache altogether, and instead reads 
data  directly from main memory in a pipelined fashion. This explains why paneling the 
supernodes is entirely ineffective in the sup-sup and the two multifrontal algorithms. 
It is worth noting, however, that  reduced integer overhead and reduced indirect in- 
dexing in the sup-sup and multifrontal algorithms enable them to  run faster than the 
sup-col algorithm. For instance, the sup-sup algorithm runs 5-10% faster than the 
sup-col algorithm (excluding the two smallest problems from consideration). Evi- 
dently, our implementation of the dense matrix update kernels performs well on the 
Stardent P3000’s vector hardware. For example, sup-sup is about 3.8-4.5 times faster 
than col-col (again, excluding the two smallest problems from consideration). 

5.5. Cray Y-MP 

Unlike the workstations considered in previous subsections, the Cray Y-MP has no 
cache memory. Its floating-point hardware is extremely fast due to  vector pipelining. 
We have run the codes on a Cray Y-MP, and the results are provided in Table 8. As 

problem I( col-col ( 1  sup-col 11 sup-sup 11 basic mf 11 enhanced mf 
BCSSTK13 I] 0.84 11 0.42 11 0.36 11 0.38 1 1  0.38 
BCSSTKl4 
BCSSTK15 
BCSSTK16 
BCSSTK17 
BCSSTK18 
BCSSTK23 
BCSSTK24 
B C S S T K 2 5 
BCSSTK29 
BCSSTKSO 
BCSSTK31 
BCSSTK32 
BCSSTK33 
NASA1824 
NASA29 10 
N ASA4704 

0.22 
2.22 
2.18 
2.46 
2.05 
1.56 
0.62 
4.20 
5.45 

12.73 
28.96 
15.98 
13.68 
0.14 
0.43 
0.65 

0.15 
1.02 
1.02 
1.29 
1.23 
0.75 
0.32 
2.42 
2.79 
5.52 

12.16 
7.38 
5.61 
0.11 
0.27 
0.40 

0.11 
0.90 
0.89 
1.07 
1.14 
0.67 
0.26 
2.13 
2.38 
4.96 

11.48 
6.47 
5.29 
0.09 
0.21 
0.33 

0.12 
0.96 
0.92 
1.11 
1.15 
0.72 
0.27 
2.13 
2.47 
5.12 

11.58 
6.63 
5.47 
0.08 
0.21 
0.32 

0.12 
0.95 
0.89 
1.09 
1.22 
0.72 
0.26 
2.20 
2.48 
4.99 

11.43 
6.49 
5.30 
0.09 
0.21 
0.33 

i 

Table 8: Factorization times in seconds on CRAY Y-MP. 

observed in [7] and [26], sup-col generally outperforms col-col by roughly a factor 
of 2. The use of loop-unrolling, dense matrix-vector multiplication kernels, and the 
consequent large reductions in indirect addressing are responsible for these gains in 
performance. For medium to large problems, sup-sup outperforms sup-col by 6-2196. 
(The performance gains are larger for the smaller problems.) The improvement is due 
to reductions in the cost of the indirect indexing and other integer processing overhead. 
The differences in performance among sup-sup, basic mf, and enhanced mf are very 
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small. 

5.6. Work storage requirements 

The preceding subsections compare the time efficiency of the sparse Cholesky factor- 
ization algorithms under study on various high-performance uniprocessor computers. 
This subsection compares the stomge efficiency of the various Cholesky factorization 
algorithms. More specifically, we computed the amount of auxiliary floating-point stor- 
age locations required by each method for accumulating column updates. Note that 
this ignores the floating-point storage required for the nonzero entries of L ,  which is 
the same for each method. It also ignores the amount of integer work storage required, 
since it is the sum of a small number of quantities 5 n, where n is the order of A ,  and 
hence does not vary much from one method to  the next. 

The co l -co l  and sup-col algorithms have the lowest auxiliary work storage re- 
quirement because the columns are computed one at  a time. For co l -co l ,  a floating- 
point work array of length n is needed to  accumulate the updates. For the sup-col 
algorithm, the size of the floating-point work array is the maximum, over all columns 
L,,j, of the number of nonzero entries in L*,j. (Recall that an extra integer n-vector 
i ndmap  is required to  implement the indirect indexing scheme.) 

The sup-sup and mf  algorithms require more floating-point work storage. The two 
versions of the miiltifrontal method need auxiliary floating-point storage for stacking 
the update matrices. The sup-sup algorithm needs auxiliary floating-point storage to  
accumulate individual block updates cmod( J, K ) .  Thus, we are particularly interested 
in the storage requirements for sup-sup and m f .  

Table 9 reports the floating-point work-storage requirements for each method, nor- 
malized as a percentage of the number of nonzeros in L .  As expected, the sup-col 
and co l -co l  methods do indeed require the smallest amount of floating-point work 
storage. Without the enhancements to  reduce the stack usage, the basic multifrontal 
method requires by far the most work storage. For two problems the size of the stack 
is roughly 60% of the “size” of L.  The enhanced multifrontal algorithm required far 
less floating-point work storage than the basic multifrontal algorithm requires, but still 
considerably more than the sup-sup algorithm requires. 

6. Concluding remarks 

We have studied three different left-looking sparse Cholesky factorization algorithms: 
the co l -co l ,  sup-col and sup-sup algorithms. The use of supernode-to-column 
updates in the sup-col algorithm (instead of the column-to-column updates in the 
co l -co l  algorithm) reduces the amount of memory traffic and indirect addressing 
overhead. Our tests have shown the effectiveness of this well known technique on a 
wide range of high-performance uniprocessor computers. The use of supernode-to- 
supernode updates in the sup-sup algorithm further reduces the amount of memory 
traffic on machines with high-speed local memory, such as a cache. For our test prob- 
lems, the sup-sup algorithm obtains virtually the same performance improvements via 
reuse of cached data that the multifrontal method obtains. Similar test results have 
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problem 
BCSSTKl3 
BCSSTK14 
BCSSTK15 
RCSSTK16 
BCSSTK17 
BCSSTK18 
BCSSTK23 
BCSSTK24 
BCSSTK25 
BCSSTK29 
BCSSTKSO 
BCSSTK31 
BCSSTK32 
BCSSTK33 
NASA1824 
NASA2910 
NASA4704 

col-col 
.74 

1.61 
.61 
.66 

1.09 
1.80 
.75 

1.28 
1.09 
.83 
.75 
.67 

’ .85 
.34 

2.47 
1.42 
1.67 

sup- co 1 
.14 
.16 
.07 
.04 
.03 
.06 
.12 
.09 
.03 
.03 
.02 
.02 
.01 
.04 
.22 
.10 
.10 

sup- s up 
8.63 
4.08 
5.91 
2.63 
1.90 
5.06 

12.18 
4.80 
2.34 
3.05 
1.69 
3.27 
1.10 
5.15 
4.51 
3.96 
6.81 

basic 
mf 

58.70 
27.49 
30.44 
17.12 
12.43 
25.37 
60.07 
23.45 
11.81 
17.01 
11.22 
24.21 
8.50 

40.31 
39.66 
25.93 
29.16 

enhanced 
m f  

15.80 
6.79 
7.79 
3.90 
2.70 
7.46 

17.31 
5.46 
3.27 
7.16 
2.46 
5.49 
2.02 
9.06 
8.59 
5.99 
8.72 

Table 9: Floating-point work storage (% of ILI) 

appeared in Rothberg and Gupta 1291. On machines without a cache, the sup-sup al- 
gorithm obtains modest improvements over the sup-col algorithm by further reducing 
the integer overhead and indirect indexing costs. 

Although the performance of the various left-looking factorization algorithms is ma- 
chine dependent, it is interesting to  note that for three high-performance workstations 
(the IBM RS/G000, the DEC 5000, and the Stardent P3000 without vectorization), 
the sup-sup algorithm with subdivided supernodes is the most efficient algorithm, and 
often runs 2.5 times faster than the col-col algorithm. On the Stardent P3000 with 
vectorization, the sup-sup algorithm is roughly 4-4.5 times faster than the col-col  
algorithm. 

For the test problems and workstations considered in this report, the enhanced mul- 
tifrontal algorithm is slightly slower than the sup-sup algorithm (by roughly 5 1 0 % ) .  
The results also indicate that the enhancements we have made to  the multifrontal 
method greatly reduce the amount of auxiliary storage required for the stack and the 
amount of data  movement required to  stack the update matrices. The work-storage re- 
quirement in sup-sup, however, remains smaller than that in the enhanced multifrontal 
met hod. 

One of the goals in this study is to  identify the “best” sequential sparse Clivlesky 
factorization algorithm. This algorithm will be used to  evaluate the performance of var- 
ious parallel sparse Cholesky factorization methods. Based on our results, we conclude 
that the left-looking sup-sup algorithm is the most efficient algorithm, both in terms 
of its execution time and work-storage requirement. Parallel versions of left-looking 
col-col and sup-col algorithms have appeared in [17] and [26], respectively. Parallel 
implementation of the left-looking sup-sup algorithm is currently under investigation 
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and performance results will be reported elsewhere. 
It should be noted that the basic multifrontal method has at least two advantages 

over the left-looking methods. First, the multifrontal algorithm has long been recog- 
nized as the better candidate for out-of-core implementation: only the stack of update 
matrices and the current frontal matrix are needed in main memory. Second, its supe- 
rior data  locality is of great value when solving very large problems on machines with 
virtual memory and paging [23]. The impact of paging on performance is not consid- 
ered in this report because our main concern is the working-storage requirement and 
the use of blocking to  exploit the first level in the memory hierarchy (i.e., fast memory 
or cache). The paging issue, however, will be investigated elsewhere. 
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