
51

r ' I

__ -. -.

. --

~. I____

~. ' \ : , , v , L..

ORNLfI’M-11951

Engineering Physics and Mathematics Division

GRESS VERSION 20 USER’S MANUAT-,

J. E. Horwedel
Computing and Telecommunications Division

Martin Marietta Energy Systems, Inc.
P. 0. Box 2008

Oak Ridge, TN 37831-6370

c

Date Published - November 1991

Prepared by the
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
managed by

MARTIN MARTETTA ENERGY SYSTEMS, INC.
€or the

U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-840R21400

3 4456 0286900 0

TABLE OF CONTENTS

LISTOFFIGURES .. v
LIST OF TABLES .. vii
PREFACE .. ix

1 . soFzwAREABsmcT ... 1
1.1. Software Identification ... 1
1.2. Description of Function ..
1.3. Method of Solution ... 1

1.5. Computers .. 1
1.6. ExecutionTime .. 1
1.7. Programming Languages .. 2
1.8. Operating Systems .. 2
1.9. Machine Requirements ... 2
1.1O.Author ... 2
1.11. Configuration Control Facility
1.12, References .. 2

1

1.4. Restrictions ... 1

2

2.INTRODUCTION ... 3
2.1. Background Information .. 3
2.2. Definitions .. 4

23.1. Precompilation .. 6
2.3.2 Controlling the application
2.33. Optimization algorithms used with ADGEN

2.3. SystemOverview ... 4

8
9

3 . APPLICATION INFORMATION 10
3.1. Precompilation Step .. 10

3.1.1. Source code as input 10
3.1.2. Precompiler directives 10
3.1.3. Execution of the precompiler
3.1.4. Data sets created during precompilation
3.1.5. Output information from precompilation 12

3.2. Controlling the Appiication
3.22. Preparing the enhanced code to create an adjoint matrix
3.23. GENSUBoption 15

3.3. Compiling and Linking the Enhanced Code
3.4. Controlling the Execution of the Enhanced Code
3.5. Output Information .. 17
3.6. Data Sets Created During an Adjoint Application

3.6.1. Parameter dictionary 17
3.6.2. Response dictionary 18
3.6.3. Adjoint matrix 18

11
11

13
3.2.1. C " o p t i o n 13

15

16
16

17

...
111

3.7. Solving the Adjoint Matrix 18
3.7.1. BSOLVE program 18
3.7.2. BREDUCE program 19
3.7.3. BSOLXX, FBSOLXX run-time library routines 19

19
35

50

3.8. Detailed Description of Precompiler Directives .

3.9.1. GRESS ADGEN library routines 36
GRESS CHAIN library routines .

3.9.3. GRESS GENSUB library routines 63

3.9. GRESS Run-Time Library Routines .

3.9.2.

4 . PROGRAMMERINFORMATION 72
72
72

4.1. SYMG . Precompiler ...
4.2. GRESS Run-Time Library
4.3. Implementation Problems 72

APPENDIXA-LIMITATIONS .. 81
A 1 . Function Limitations ... 81
A 2 . Language Restrictions .. 82

APPENDIX B . CHAIN SAMPLE PROBLEM 85

APPENDIX C . ADGEN SAMPLE PROBLEM 89

APPENDIX D . THE GENSUB OPTION 93

APPENDIX E . IMPLEMENTATION NOTES 101
E.1. VAXNMS ... 101
E.2. IBWAIX ... 102
E.3. VAx/LTLTRM .. 102
E.4. SUN .. 103
E.5. HEWLETT-PACKARD 104

iv

LIST OF FIGURES

2.1 Processing steps for a GRESS application
2.2 Creating and solving a symboiic adjoint matrix
2.3 Matrix of partial derivatives with parameters Q and W. and result R

5

8

9

LIST OF TABLES

3.1 Directives to the SYMG precompiler 11
3.2 Default logical units used by SYMG 11
3.3 GRESS run-time library routines for the CHAIN option 13
3.4 GRESS run-time library routines for an ADGEN application 15
3.5 GRESS run-time library routines for the GENSUB option 16
3.6 Logical units used when an adjoint matrix is output to disk 17
4.1 SYMG subroutines and functions 74
4.2 SGLIB subroutines and functions 77
4.3 CLIB routines and their function 79
4.4 GENLIB routines and their function 79

81
A2 ANSI X3.9-1978 COMPLEX functions not supported by GRESS 82

A 1 ANSI X3.9-1978 FORT” 77 functions not supported by GRESS
due to possible discontinuity ..

in future releases of GRESS 82

.............
A3 ANSI X3.9-1978 FORTRAN 77 functions that may be supported

vii

The author would like to thank B. k Worley of the Engineering Physics and
Mathematics Division for his continued guidance in this work The author would also like to
acknowledge B. M. Horwedel and R. Q. Wright of the Computing and Telecommunications
Division for their helpful technical discussions and their careful review of the manuscript.
Thanks are also due to Steven M. Robbins for his help in developing the GENSUB option.

ix

PREFACE

Manual ObiectiveS

The primary objective of this manual is to provide a description of GRESS and to explain
how to use GRESS to enhance FORTRAN 77 models for gradient calculation.

The use of the GRESS precompiler, SYMG, is presented. A complete description of
how to enhance a source code for either forward or reverse propagation of derivatives using the
chain rule is provided.

Programming information is also provided to aid in the installation and maintenance of
the software.

Intended Audience

This manual is intended for programmers who have a basic understanding of calculus and
FORTRAN 77.

1.1. Software Identification
GRESS Version 2.0.

1.2 Description of Function

conventional FORTRAN programs with analytic differentiation of arithmetic statements.
The GRESS FORTRAN precompiler (SYMG) and run-time library are used to enhance

13- Method of Solution
GRESS uses a precompiler to interpret FORTRAN statements and determine the

mathematical operations embodied in them. As each arithmetic assignment statement in a
program is interpreted, information necessary to allow the calculation of derivatives is generated.
The result of the precompilation step is a new FORTRAN program that can produce derivatives
for any REAL (i.e., single or double precision) variable calculated by the model. Consequently,
GRESS enhances FOR" programs or subprograms by adding the calculation of derivatives
along with the original output. Derivatives from a GRESS enhanced model can be used
internally (e.g., iteration acceleration) or externally (e.g., sensitivity studies). By calling GRESS
run-time routines, derivatives can be propagated through the code via the chain rule (referred
to as the CHAIN option) or accumulated to create an adjoint matrix (referred to as the ADGEN
option). A third option, GENSUB, makes it possible to process a subset of a program (Le., a
do loop, subroutine, function, a sequence of subroutines, or a whole program) for calculating
derivatives of dependent variables with respect to independent variables.

1.4. Restrictions
GRESS accepts a majority of ANSI X3.9-1978 standard FORTRAN 77. Limitations are

presented in appendix A Application programs with FORTRAN statements or characters not
recognized by GRESS will require modification prior to precompilation. An ADGEN
application requires the accumulation of derivatives; therefore, the size of problem to which it
may be applied is limited by the amount of virtual memory or disk space available.

15. Commters
VAX, IBM RISC/60 , SUN, Hewlett-Packard 9OUO.

1.6- Execution Time
Execution time for both precompiler and enhanced application program are problem

dependent. Execution time for application programs will increase significantly after
enhancement. On a VAX 8600 computer, the precompiler will process an application
FORTRAN program at a rate of approximately loo0 lines of code per 4 seconds of CPU time.

1

2

1.7. Proeramming h p e e s
FORTRAN 77; C.

1.8- ODe rat in^ Svstems
vAx/vMs, UNIX, AIX, ULTRIX

1.9. Machine Reuuirements -

GRESS can be implemented on VAx/vMS, VAX/ULTRlX, IBM RISC/6000, Hewlett-
Packard 9O00, and SUN computers. The computer resources required are application
dependent. The amount of memory needed can increase by more than a factor of two after
precompilation depending on the application. To store an adjoint matrix requires a direct access
storage device. Though the amount of storage or memory necessary is application dependent,
it can be excessive.

1-10. Author
J. E. Horwedel

1.11. Confirruratioo Control Facility
Radiation Shielding Information Center (RSIC)
P.O. Box 2008
Building 6025, MS-6362
Oak Ridge, TN 37831-6362

1.12 References

Homedel J. E. (1989) Matrix Reduction Algorithms for GRESS and ADGEN. ORNL/T?vl-11261,
Martin Marietta Energy Systems, Inc., Oak Ridge Natl. Lab.

Oblow E. M. (1983) An Automated Procedure for Sensitivity Analysis Using Computer Calculus.
0 R " M - 8 7 7 6 , Union Carbide Corp., Nucl. Div., Oak Ridge Natl. Lab. Available from the
National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road, Spring
Field, VA 22161.

2 INTRoDuc;rTJ[ON

This chapter includes background information and a brief overview of the system. A
complete description of how to use the system in applications, including sample problems, is
provided in Chapter 3. Code limitations and sample problems are provided in the appendices.

21. Backero und Infomation

Computer programs with varying levels of complexity are being used in modeling and
design activities at a rapidly increasing rate. Understanding the behavior of predictive models
with respect to input data is important for (1) verifying the validity of a model, (2) determining
parameters for which it is important to have accurate values, and (3) understanding the behavior
of the system being modeled. This importance is increasingly recognized by modelers, reviewers,
and decision makers.

Sensitivity analysis of computer model results is one approach in determining the effect
of input data on model predictions. Traditionally, most sensitivity analyses have relied on direct
parameter perturbations (i.e., slightly altering the value of one parameter and reexecuting the
model). However, sensitivity analysis is often limited to a subset of the model parameters
because of the immense amount of input data used by many computer models. The selection
of parameters to be included in a study is generally based on engineering analysis and judgment
or expert opinion. With the complexity of presentday computer models, reliance on subjective
methods for parameter selection can be a severe limitation.

For complex computer models used in engineering design and assessment, a cost-efficient
procedure for identifying the parameters that are important to a given model prediction is a
necessity. The GRESS code was developed to meet this need. GRESS employs a precompiler,
SYMG, to add derivative-taking capabilities to FORTRAN computer programs. Early
implementations of GRESS were used to calculate sensitivities of model results to user-selected
input parameters, but the present version of GRESS includes the ability to calculate and report
the sensitivities of model results to all input data. The GRESS technology makes it possible to
rapidly perform a comprehensive sensitivity analysis of FORTRAN models.

As originally developed, GRESS used forward propagation of derivatives via the calculus
chain rule referred to as the CHAIN option. Later the capability to automate the adjoint
sensitivity methods (ADGEN option) into existing computer codes was developed. The ADGEN
option in GRESS generates an adjoint matrix. With the ADGEN option derivatives are
accumulated and solved in virtual memory or written to disk. Utility routines are used to
calculate derivatives based on the adjoint approach. A third option, GENSUB, is now available
that allows processing of program units as small as a do loop or as large as an entire program.
GENSUB will use either forward or reverse chaining depending on which is most efficient for
the given problem. The remainder of this manual discusses in detail the use of SYMG for

3

CHAIN, ADGEN, and GENSUB applications. Though the emphasis is on these applications,
SYMG is designed to allow extension to other computer calculus applications.

22 Definitions

Within the scope of this manual the following terms are defined.

Adioint Matrix. The accumulated partial derivatives from all (or a subset of all) floating point
assignment statements executed in the enhanced FORTRAN program.

Deuendent Variable. Any program-calculated real number variable whose value is at least
partially determined by one or more independent variables.

Enhanced Model. The reference model enhanced for gradient calculation.

Forward Solution. The results that are obtained by running the code prior to precompilation.

IndeDendent Variable. Any real number variable, input or calculated, that is explicitly declared
to be a parameter.

Parameter. Same as an independent variable.

Precompilation.
FORTRAN program.

A line-by-line translation of a FORTRAN program into an enhanced

Reference Model. The user’s source code prior to enhancement with SYMG.

Response. Any dependent variable selected by the user for gradient calculation.

23. SvstemOvexview

In a FORTRAN program, calculated variables are mathematical €unctions of previously
defined variables and data. GRESS uses a precompiler to interpret FORTRAN statements and
determine the mathematical operations embodied in them. As each arithmetic assignment
statement in a program is interpreted, information necessary to allow the calculation of
derivatives is generated. The result of the precompilation step is a new FORTRAN program
that can produce derivatives for any REAL (Le., single or double precision) variable calculated
by the model. Consequently, GRESS enhances FORTRAN programs by adding the calculation
of derivatives along with the original output. GRESS accepts a majority of ANSI-X3.9
FORTRAN 77, including subroutines, common blocks, data statements, read statements, user

4

functions, intrinsic functions, statement functions, block data subprograms, single precision
variables, double precision variables, and equivalence statements. GRESS does not process
COMPLEX variable types. Specific limitations are discussed in Appendix k

The steps used to process a code with GRESS are illustrated in Fig. 2.1. A FOR?"
model is input to the GRESS precompiler to create an enhanced program. The enhanced model
is compiled in the usual manner and then linked with a library of GRESS utility routines. When
the enhanced model is executed, derivatives are calculated for each arithmetic assignment
statement immediately before the statement is executed

I w r i x I

I
Fig. 2.1. Processing steps for a GRESS application

Derivatives from a GRESS-enhanced model can be used internally (e.g., for iteration
acceleration) or externally (e.g., for sensitivity studies). GRESS can calculate and report
derivatives or parameter sensitivities. The parameter sensitivities calculated by GRESS are the
normalized first derivatives of output variables with respect to input parameters. The normalized
sensitivity is calculated by multiplying a derivative by its associated input parameter value and
dividing by the associated output value. The resulting sensitivity is therefore unitless. A
normaiized sensitivity of 0.1 means that, to the first order, a 1 percent change in that input
parameter would cause a 0.1 percent change in the output. A report of significant sensitivities
(Le., usually those greater than 0.1) is generated.

GRESS provides two methods of calculating and reporting sensitivities. The CHAIN
option calculates the sensitivities of a variable with respect to a user-selected subset of the input
data by repeated application of the chain rule. The CHAIN option reports sensitivities as the
model is executing and is the recommended option when the user is only concerned with a very
small number of input parameters. The ADGEN option incorporates the adjoint sensitivity
analysis methods long used by nuclear engineers to calculate the sensitivities of selected model
responses with respect to thousands of input parameters. This method, as implemented by

5

GRESS, is essentially the same as the reverse mode of automatic differentiation. When the
ADGEN option is chosen, partial derivatives for every equation in the model are accumulated.
The accumulated derivatives can be solved in virtual memory or output to a data set for later
processing. Matrix-solving routines are then used to calculate and report sensitivities for selected
results. The ADGEN option provides the user with the capability to calculate and report the
sensitivity of any calculated model result with respect to all data input to the model. An
important advantage of the adjoint method over the chain rule method is that the derivatives of
selected model results can be calculated with respect to thousands of input parameters at a cost
comparable to that of executing only a few model runs. To approximate the same information
by direct parameter perturbations would require separate model runs for each input parameter.

The first time a new model is processed, it is best to compare a few GRESS results with
sensitivities estimated by perturbation methods to ensure that GRESS was applied correctly.
Any differences between the GRESS-calculated analytic sensitivities and those calculated by
parameter perturbation should be resolved.

23.1. PrecomDilation During the precompilation step GRESS makes a single pass
through a FORTRAN program. A symbol table entry is created for each FOR" symbol
(Le., variable name) as it is defined in a subprogram (i.e., function, subroutine, or main program).
When a new subprogram is encountered the symbol table is re-started. As READ statements
are encountered, logic is generated to initialize any impacted REAL variables. Statements
defining REAL variables are parsed (1) to determine mathematical operations and (2) to create
a statement table. The statement table contains the name and type of the FORTRAN
variable(s) used in the assignment statement as well as a character string representation of the
variable. The character string representation of a variable is the variable's name plus any
dimensional information that may be included with each occurrence of the variable. For
example, in the statement X(1) = Y(I)*X(J), X and Y are variable names, and 'X(I)', 'Y(I)', and
'X(J)' are character strings representing the usage of the variables. Using the statement table
and the defined mathematical operations, GRESS generates FORTRAN statements that
compute the partial derivatives of the term on the left with respect to the REAL variables
on the right. The original statement is output, followed by a subroutine call for processing the
partial derivatives. The following FORTRAN program is used to demonstrate precompilation.

C Test program input to GRESS
DOUBLE PRECISION X(4),Y(4),A,B
READ(%*) (X(I)J=1,4)
DO 10 I=1,4
Y(I)=X(I)*A I- X(I)*B

10 CONTINUE
END

6

Though the program generated by the precompiler appears more complicated, the
partial derivatives that GRESS stores in the DX array are easy to find and verify.

9OOO1

90002

REAL DX(50)
COMMON /zzzZQl/ DX
DOUBLE PRECISION X(4),Y(4),A,B
READ(S,*) (X(I),I=l,4)
DO 9OOO1 I=1,4

C 0 ” u E
DO 90002 I=1,4
DX(l)=A+B

DX(3)=X(I)
Y(I)=X(I)*A i- X(I)*B

CALL mxx(x(I),’x,x, 1,1,1,1)

DX(2) =X(I)

CALL LOCNXX(1,4,Y(I),X(I),A,B)
CONTINUE

END

The call to subroutine INNDXX immediately following the READ statement serves to
initialize the array X The partial derivatives are initially stored in the DX array. Subroutine
LOCNXX is a GRESS routine that will move the partial derivatives into a buffer for later
processing. The call to subroutine LOCNXX is generated after the original FORTRAN
statement so that it does not degrade optimization by the FORTRAN compiler. By default
comments beginning with a ’G‘ or ’c’ in column one are dropped by GRESS. As an option the
user can direct GRESS to pass all comments through to the generated code.

As each arithmetic assignment Statement is parsed, a statement table is generated. For
purposes of derivative calculation, the mathematical operations to sohe the equation are broken
into unary and binary operations on term in the statement table. A symbolic representation of
the adjoint matrix for the FORTRAN equation is set up and solved for the result on the left of
the statement, Y(I), with respect to the variables on the right, X(I), A, and B. Figure 2.2 shows
a sequence of binary operations that would compute the FORTRAN statement from the
example; the figure also shows the resulting symbolic adjoint matrix.

Internally GRESS creates a symbolk adjoint matrix and then symbolically solves the
adjoint matrix for each assignment statement as it is processed. Because the adjoint method is
used to calculate the derivatives, only symbolic addition and multiplication operations arc
required, which greatly simplifies the coding of the GRESS precompiler. Once the symbolic
adjoint matrix is created, the derivatives of the term on the left with respect to the variables on
the right are resolved. F i l l y , the FORTRAN necessary to calculate those derivatives during
execution is generated. The user selects and controls the application by inserting FORTRAN
subroutine calls to the SYMG run-time library.

7

To compute:
Y(I) X(I)*A * X(I)*B

X(1)
A
B
T1
T2
Y(I)-

Generate temporary terms:
T1 X(I1.A
T2 - X(l1.B
Y(I) T I + T2

c

1 0 0 A B 0
0 1 0 X(l1 0 0
0 0 1 0 X(I) 0
0 0 0 1 0 1.0
0 0 0 0 1 1.0
0 0 0 0 0 1

1 0 0 A B A+B
0 1 0 X(U 0 X(I1
0 0 1 0 X(I1 X(I)
0 0 0 i o 1.0
0 0 0 0 1 1 . 0
0 0 0 0 0 1

Fig. 2.2. Creating and solving a symbolic adjoint matrix

232 Controlline the application. - The user inserts application dependent subroutine
calls to control the execution. For the CHAIN option the user must identify parameters and
results of interest. This option is most efficient for cases involving a small number of parameters.
The CHAIN application allows derivatives for an unlimited number of calculated results to be
reported without greatly increasing the resource requirements.

For an adjoint application, parameters and results of interest must also be identified. Adjoint
methods are most efficient for cases involving a large number of parameters with only a few
results of interest. Automatic and manual declaration of parameters are included as options to
the user. Results of interest must be specified by the user by insertion of subroutine calls to
GRESS library routines.

Once the calls to subroutines to control the application are inserted, the enhanced code is
ready for compilation with the FORTRAN compiler and link-editing. The result is an executable
version of the enhanced FORTRAN model. Since CHAIN uses forward propagation of
derivatives via the calculus chain rule, first derivatives and sensitivities are calculated along with
the normally calculated model results. The method and format for reporting derivatives and
sensitivities is under the control of the user and is discussed in detail in Chapter 3. An ADGEN
application, however, accumulates a matrix of partial derivatives. The partial derivatives are
either accumulated in virtual memory or output to a direct access storage device. Run-time
library routines are available for solving the adjoint matrix in memory. The BSOLVE program
solves the adjoint equation and calculates first derivatives from accumulated partial derivatives

8

that have been written to disk.

233. Chtimjzation alporithms used with ADGEN. Two optimization techniques were
developed to improve the implementation of the ADGEN option by reducing the number of
elements in the adjoint matrk (1) forward reduction; and, (2) back reduction Forward
reduction eliminates those terms that are not dependent on the input data and is implemented
by default. Back reduction further reduces the data stored by keeping only those terms that
impact the user-selected results and is implemented by using the BREDUCE program or the
REDUMC run-time library routine.

When performing a sensitivity analysis of existing FORTRAN 77 programs the user is
often interested in only a subset of the actual FORTRAN equations that are solved. Figure 2.3
illustrates forward- and back-
reduction algorithms applied to
a sample program. Because the
variable D is not declared as a
parameter and is not dependent
on any parameters, the
forward-reduction algorithm

treats D as a constant. Any
partial derivatives with respect
to D are set to 0.0. The result
R is not dependent on variable
S; therefore, back reduction
drops the column associated
with S from the matrk Only
the circled terms are needed to
completely calculate the

I O 0 0

1 68 @
1 0

1

-
3
0

fwmr dropped by brrrvd roducllon
Row or column 6rrgplK1 by hack reduction
Term6 that murt be Wt

Tig. 23. Matrix of partial derivatives with parameters Q an(
derivatives of the result, R,
with respect to the declared
parameters, Q and W.

Wrand result R

9

3. APPLICATION INFORMATTON

This chapter provides the basic information needed to use the SYMG precompiler. The
processing steps are discussed in detail. The method for controlling the application is presented.
Each command and utility routine is described with examples. Sample problems are provided
in the appendices that exercise most of the major program options.

3.1. Precompilation Step

precompilation step.
The first step in processing a code for either the CHAIN or adjoint application is the

3.1.1. Source d e as input The FORTRAN program to be enhanced is the input data
to the precompiler. During precompilation, the code is translated and enhanced for gradient
calculation. The source code must be written in FORTRAN 77 with some language restrictions.
Directives to the precompiler may be inserted into the source code prior to enhancement.
Subroutine calls to control the application can be inserted before or after precompilation.

It is absolutely necessary that there are no
FORTRAN syntax errors in the source code. Syntax errors that would cause a FORTRAN
compilation to fail could cause SYMG to go into an infinite loop. If the user modifies the
source code prior to enhancement, the code should be re-compiled with a FORTRAN compiler
to ensure that no syntax errors were introduced.

Specific FORTRAN 77 language limitations are discussed in Appendix A In general, those
functions that would cause mathematical discontinuities are not supported. Complex functions
are not supported. In this case, not supported means that derivatives will not be calculated with
respect to those functions. However, in most situations, the enhanced code will still calculate
the forward solution correctly.

Due to language restrictions and limitations, it may be necessary to replace lines of code with
logically equivalent, but SYMG-compatible, lines of code. It is not always possible to know in
advance which lines of code will need modification. Therefore, the precompilation is generally
an iterative process. The user should review the code for obvious incompatibilities. After
precompilation, it may be necessary to make further modifications to the source code based on
error messages or other information obtained from the precompilation step. The precompilation
step would then be repeated,

SYMG is not a FORTRAN compiler.

3.12 Precompiler directives. Prior to enhancement, the user may insert directives into
the code to control the precompiler. With the exception of the *CHAIN directive, which is
required for the CHAIN application, all other directives are optional. Table 3.1 shows the
available directives and their function. An expanded discussion of each directive with examples
is provided at the end of this chapter, The use of the directives in applications is shown in the
appendices.

10

Table 3.1. Directives to the SYMG precompiler

3.13. EjDecution of the onecom~iler. - Once the code is prepared for precompilation, it
is necessary to make the appropriate logical unit assignments and execute SYMG. Shown in
Table 3.2 are the default logical unit numbers and their purpose.

Table 3.2. Default logical units used by SYMG

SYMG created code

3.1.4. Data sets created during - urecomphtkm. The only data set created during
precompilation is the enhanced source program. The default logical unit for the enhanced code
is 7. The enhanced source program is a FORTRAN 77 program.

11

3.15. Output information from mecornailation. The printed output from the
precompiler is written by default to logical unit 6. If the run is successful, the information
provided includes the number of subroutines or functions translated, and the number of input
lines. Following is an example of the output to unit 6 from a successful precompilation.

SymG Version 2.0

Enhancing code for derivativehensitivity calculations.

SYMG HAS DETERMINED THERE ARE 2 USER FUNCTIONS.
USER FUNCTIONS:

DUNKUP
EXPHl

----- NUMBER OF PROGRAM MODULES TRANSLATED =
1482

16
----- NUMBER OF INPUT LINES TRANSLATED =

Note that the names are provided for functions that SYMG has decided are user functions.
This list must be reviewed carefully. SYMG does not check the list of user functions to ensure
that those €unctions are actually in the code. Names listed that are not user defined functions
indicate possible problems. Unsupported functions would be listed as user functions. Also,
arrays erroneously not recognized by SYMG could appear on the list of user functions.

If the
precompilation is unsuccessful, SYMG will usually generate error messages to help the user find
the problem. Also, if a given line of FORTRAN is causing a problem, SYMG will include that
line in the printed output as shown.

The following example shows the output from an unsuccessful precompilation.

SymG Version 2.0

**** ERRORNUMBER 17 ****
Enhancing code for deriva t ive/sensi t ivity calculations

***** DO WITHOUT LABEL NOT SUPPORTED *****
CURRENT INPUT STATEMENT LINE NUMBER ... 3

do i=1,4

... COMPILATION STOPPED ON FATAL ERROR ...

The input line causing the difficulty is a do loop without a statment label. SYMG does not
support do loops without statement labels. The user should add a statement label.

12

3 2 Controlline the Application

To control the application, the user inserts subroutine calk to GRESS run-time library
routines. The calls to control the application may be inserted before or after precompilation.
With no inserted calls the enhanced code provides the same results as the reference model.
Inserted subroutine calls are used to declare the purpose of the run, define independent
variables, identi8 results of interest, and retrieve selected gradients. The order and location of
the inserted calls is extremely important. A description of each run-time library routine and any
restrictions on its use is included at the end of this chapter.

321. C" 0~ti0n Table 3.3 includes the name and function of each run-time library
routine that is available for the C" application. If derivatives are to be calculated with the
CHAIN option, the AUTOXX routine must be called. CALL AUTOXX must appear as the
first executable line in the code.

Table 3.3. GRESS run-time library routines for the CHAIN option

In the following example, AUTOXX is used to specify that derivatives are to be forward
propagated using the chain rule. The second argument in the call to AUTOXX sets the upper
limit on the number of parameters to be declared in this run to ten.

13

DIMENSION X(4),F(4,4,4),RS(8)
INTEGER IooOOl(5)
REAL R00001(5)
DOUBLE PRECISION D00001(5)
call autoxx(-l,lO)

To prepare an enhanced code for forward propagation of derivatives, it is necessary to
initialize the gradient work space. This is accomplished with the AUTOXX utility routine.
CALL AUTOXX specifies the total number of parameters, N, to be declared in a run and must
be executed prior to defining any parameters. Calls to either DEFIXX or DEFAXX can be
inserted after the location in the code that initializes the parameter value (e.g., READ(5,100)
X, Y=9.9, etc.). The define routines would be used to declare N parameters, where N is the
value of the second argument in the call to AUTOXX. Derivatives are then retrieved with the
GET routines (i.e-, GETNXX or GETGXX) or reported with the PRNTXX routine. The
following example shows a partial listing of an enhanced code using DE= to declare two
parameters and BRNTXX to retrieve and report sensitivities.

INTEGER IoooO1(5)
REAL R00001(5)
DOUBLE PRECISION D00001(5)
call autoxx(-1,2)

READ(5,lOO) X
call dehxx(X,’ X ’)
Y=9.9
call def“nrx(Y,’ Y ’)

3-22

D=X*Y

STOP
END

call pm-@)

Preparine - the enhanced code to create an adioint matrix. For adjoint matrix
generation the user must declare the purpose of the run, declare parameters, declare potential
responses, and either clear the matrix buffers or solve the matrix in memory. The name and
function of utility routines used in an adjoint application are defined in Table 3.4. SETRXX is

14

used to speciEy that the purpose of the run is to generate an adjoint matrix. The user must
insert at least one CALL POTRXX (or POTDXX for a double precision variable) to identify
a response of interest POTRXX will create an entry in the response dictionary for the
requested dependent variable. The response dictionary is kept in memory until either the adjoint
matrix is solved, or it is output to disk if the accumulated derivatives are output for later
processing. CLEARXX clears the matrix buffers. BSOLXX solves the matrix in virtual memory.
In most situations, either CALL BSOLXX or CALL CLEARXX will be the last executed
statement before ending the job.

Table 3.4. GRESS mn-time library routines for an ADGEN application

REAL or DOUBLE PRECISION variables input via a FORTRAN read statement are by
default automatically added to the parameter dictionary. If the automatic declaration is
acceptable, there are no other necessary calls to insert. However, if either the automatic
declaration is not acceptable or additional variables that were not "read are desired as
parameters, variables can be added to the parameter dictionary by inserting subroutine calls to
the appropriate GRESS run-time library routines. The automatic declaration feature can be
toggled with the DECLARXX utility. Refer to Table 3.4 for library routines that can be used
to include parameters in the parameter dictionary.

323. GENSUB ootion. Table 3.5 includes the name and function of each run-time
library routine that is available for the GENSUB option. If derivatives are to be calculated with
the GENSUB option, independent variables must be declared at the beginning of the section
of code being processed. They must have been assigned values before the section of code is
executed. Run-time routine GENRESXX is used to identify responses. The user must supply
a two-dimensional, single-precision result array for storing the derivatives. The result array
should be dimensioned N by M, where N is the number of dependent variables, and M is the

15

number of independent variables declared in the sub-section of the program. At the end of the
sub-section (e.g., function or subroutine) being processed with the GENSUB option, the user
should insert a call to subroutine CHAINGG with the result array as an argument. CHAINGG
will apply the chain rule in either forward or reverse mode to solve for the derivatives of the
dependent variables with respect to the independent variables. The derivatives will be returned
to the calling program in the result array.

Table 3.5. GRESS run-time library routines for the GENSUB option

Several examples using GENSUB are provided in the appendices.

33- ComDiline and Linkinp the Enhanced Code

The FORTRAN 77 compiler and link editor used with the code prior to enhancement are
also used to compile and link the enhanced code. The only difference is in the link step. The
object module for the enhanced code must be linked with the appropriate GRESS run-time
library. Examples of the link step are shown in the appendices. The commands for compiling
and linking are dependent on the operating system and will vary.

3.4. Contmllina the Ernecution of the Enhanced Code

The enhanced code is executed essentially the same as it was before enhancement. Calls
to the GRESS run-time library control the type of application and specify additional data sets,
if any, to be created. Table 3.6 shows the default logical units used by GRESS at run-time to
output a generated adjoint matrix for processing with BSOLW. The logical units used are
application dependent. Conflicts between logical units used by GRESS and those required by

the application program must be resolved by the user.
For an ADGEN application, the created adjoint matrix may be extremely large (i.e., in the

hundreds of megabyte range). The size is dependent on the size of the user program and the
amount of CPU time required to execute the enhanced model.

16

Table 3.6. Logical units used when an adjoint matrix is output to disk

35. output Information

The printed output from execution of the enhanced code is very application dependent. The
majority of the printed output is usually the same output that would be generated by the
reference model. Any additional output is dependent on utility routines that are called by the
user in controlling the application. For example, with GRESS applications, some users insert
subroutine calls to CHAIN utility routines to retrieve derivatives into arrays, and then add write
statements to report the results. The output is under complete control of the user. Users
should refer to the run-time library reference at the end of this chapter for descriptions of any
printed output from a specific run-time library routine. Error messages are reported by default
to logical unit 6.

3.6. Data Sets Created Durinp an Adioiot Adcation

Data sets discussed in this section are those created and used during an ADGEN application.
CHAIN applications propagate derivatives in memory and do not create any data sets unless
under the explicit control of the user.

3.6.1, Parameter dictionary. "be parameter dictionary is used to store the symbol name,
row number, and parameter value for any parameter during an execution of the enhanced code
for an adjoint application. The data set is formatted to allow easy editing with any standard
editor. Parameters are automatically defined as any single or double precision real number that
is input via a FORTRAN read statement. Parameters may also be manually defined by the user
using run-time library routines(i.e., RL;IBxK, RLINXX, RRAYXX, DLIBXX, DLINXX, or
DFUUYXX). The automatic declaration of parameters is the default; however, automatic

17

declaration can be switched on or off with the DECLARXX utility. The parameter dictionary
should be output to disk only if the adjoint matrix is output by calling CLEARXX

3.62. Reamme - dictionary. The response dictionary is used to store the symbol name,
row number, and value for any dependent variable declared to be a response during an execution
of the enhanced code for an adjoint application. The data set is formatted to allow easy editing
with any standard editor. Responses are manually defined by the user using run-time library
routines POTRXX or POTDXX. The response dictionary should be output to disk only if the

adjoint matrix is output by calling CLEARXX

3.63. Adioint matrix The derivative matrix is stored in three buffers: NPAIRS,
COLUMN, and DERIV. If the buffers become full, they are written to disk. NPAIRS contains
the number of non-zero derivatives in a column. COLUMN contains the row numbers for each
partial derivative stored in DERN. There is a one-to-one correspondence between COLUMN
and DERIV. This structure was selected because it allows reading the matrix from top to
bottom for forward chaining or bottom to top for back solving. Sufficient memory must be
available for these three buffers if the user wishes to solve the matrix during the execution of
the enhanced code. The adjoint matrix should only be written to disk if the user is intending to
solve the adjoint matrix in another job step (e.g., using the BSOLVE utility).

3.7. Sohrine the Adioint Matrix

Sample problems using the ADGEN option are provided in the appendices. Provided
in this section is a brief overview of the various choices available to the user. When the
ADGEN option is applied to a new code, the recommended procedure is to first identify a small
sample problem that executes all the major mathematical paths through the model. Then,
calculate sensitivities for two or three model results with respect to all data that are input via
FORTRAN read operations. GRESS will generate a report of significant sensitivities (i.e.,
usually those greater than 0.1). The adjoint matrix is solved by back substitution. The
BSOLVE utility is used if the adjoint matrix is output to disk. BSOLVE can be run on the
adjoint matrix with or without prior execution of the BREDUCE program. If the matrix is
solved in memoxy during execution of the enhanced code, then either BSOLXX or FBSOLXX
run-time Library routines may be used.

3.7.1. BSOLVE ~ro- BSOLVE calculates the derivatives of the dependent variables
in the response dictionary with respect to each term in the parameter dictionary by back
substitution. BSOLVE will request a cutoff value for determining which sensitivities and
derivatives to report. Derivatives and sensitivities will be reported for those parameters with
sensitivities greater than or equal to the cutoff value.

18

3-72 BREDUCEprom BREDUCE implements the back reduction algorithm and
can be used to reduce the size of the adjoint matrix on disk BREDUCE can only be run one
time because it changes the internal structure of the adjoint matrix. BREDUCE is most useful
in applications that have more than one response. In a UNIX environment, BREDUCE will
create data sets DERIVl.DAT, COLUMNl.DAT, and NPAIRSLDAT. These should be
renamed to DERIV.DAT, COLUMN.DAT, and NPAIRS.DAT, respectively, prior to running
BSOLVE.

3.73. BSOLXX F'BSOLXX run-time hiraw routineS. BSOLXX and FBSOLXX are
run-time implementations of the BSOLVE utility. If sufficient memory is available the adjoint
matrix can be solved during the execution of the enhanced code. The only output will be the
report of sensitivities. BSOLXX or FBSOLXX can only be called once during the execution of
the enhanced code.

3.8. Detailed Description of Precompiler Directivg

Commands to the precompiler are used to control the creation of the enhanced code.
The following pages provide a description of each command. The format is one command per
page. Each page includes at least one example on how to use the routine.

All commands to the precompiler must begin with the asterisk @.e., *) in column 1. An
asterisk was chosen because it is a legal comment to FORTRAN 77 compilers and does not
impede syntax checking using the FORTRAN compiler.

19

PRECOMPILER DIRECTIVE

Name: *cx?Am

Purpose: To generate enhanced code for CHAIN option.

How to use it: Must begin in column one.

Example: Enhance program for CHAIN option.

*C"
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

20

PRECOMPILER DIRECl'lVE

Name: *COMMENTS ON/OFF

Purpose: To muse SYMG to pass comments from code being translated to the
enhanced code.

Notes: Only comments indicated with a lowercase or uppercase C in column one are
passed. Blank lines and comments indicated by an asterisk in column one are
not passed. Use COMMENTS ON if you want to selectively pass comments.
The default is COMMENTS OFF.

Example: Pass comments through to enhanced code.

*COMMENTS ON
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

21

PRECOMPILER DIRECT2VE

Name: *DEBUG

Purpose:

Notes:

To cause SYMG to generate debug information.

The DEBUG directive will cause a list of subroutin s to be
printed with the output from SYMG. The DEBUG directive will cause the
precompiler to continue after some errors; therefore, with DEBUG it is
possible that the enhanced code is not usable.

Example: Get a list of modules processed.

and functio

*DEBUG
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

22

PRECOWILER DIRECTIVE

Name: *DERIV

Purpose: To override the default name GRESS assigns to the derivative.

How to use it: Must begin in column one.

Example: To change the name of the derivative variable from the default (DX) to ’DER’.

* D E W DER
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

Comment: By default, GRESS will use the variable name DX to store the derivatives
from an assignment statement. Occasionally, the name DX conflicts with a
variable in the user’s program. The *DERIV directive makes it simple to

change the string that is used by GRESS to store the derivative. The only
restriction is that the name assigned to the derivative must be a legal
FORTRAN symbol not exceeding six characters in length (Le., a sequence of
one to six letters or digits, the first of which must be a letter).

PRECOMPILER DIRECTIVE

Name: *ECHO ON/OFF

Purpose: To cause SYMG to echo the line of code being translated as a comment in the
enhanced code. This can be very helpful in debugging.

How to use it: ECHO can be used to echo the entire code as comments in the enhanced
code, or to selectively echo part of the enhanced code. The default is ECHO
OFF. This may be useful if SYMG is not working correctly and the user wants
to check a line to see if it was enhanced correctly.

Example: Echo one assignment statement in the enhanced code as a comment.

DIMENSION X(100)
COMMON/ ALPHA/ Y , Z

*ECHO ON

*ECHO OFF
X(I)=Z*Y + 5.0

24

PRECOMPILER DIREC'I'IVE

Name: *GENSUB

Purpose: To generate enhanced code for GENSUB option.

Notes: The GENSUB option allows processing o€ program units as small as a do loop
or as large as an entire program (for derivative calculation oniy). GENSUB
will use either forward or reverse chaining depending on which is most
efficient for the given problem. The GENSUB option is ideal for enhancing
a single subroutine or function for derivative calculation.

How to use it: Must begin in column one.

Example: Enhance function FOOBAR for GENSUB derivative calculation.

*gensub
REAL F"CI'I0N FOOBAR(X,R)
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

25

PRECOMPILER DIRECTIVE

Name: *ITABLE

Purpose: To override the default number of rows in the offset table.

How to use it: Must begin in column one.

Example: Increase the number of rows in the offset table to 20

*ITABLE 20
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

Comment: During execution of the enhanced program for a CHAIN or ADGEN
application a variable is tracked based on its address in virtual memory. For
each address used as a REAL variable, a location is assigned in an offset table
for storing the row number or gradient work space location that GRESS
assigns to that variable. The address is hashed into a segment and offset by
dividing by 32768 (Le*, 2''). The segment is the integer quotient. The offset
is the remainder. The segment becomes an index to a pointer vector, where
a location of a row in the o&et table is stored. A SEGMENT-OFFSET pair
calculated in this way provides a unique key for any word address in virtual
memory. The first time a segment occurs, it is assigned a location in the offset
table and a pointer to that location is stored in the pointer vector. ITABLE
specifies the number of rows in the ofbet table. For large codes the default
value may be too small. A call to the GRESS run-time library routine
DIAGXX will tell how many rows are being used in the offset table at the
point where the call is made.

26

PRECOMPILER DIRECTIVE

Name: *LOCROWS

Purpose: To set the maximum number of local rows to be held in memory when the
*OPTImE directive is specified.

How to use it: Must begin in column one.

Note: SEE *OPTIMIZE

Example: Set the maximum number of local rows to 9OOO

*LOCROWS 9Ooo
DIMENSION X(100)
COMMON/ ALPW Y,Z

27

PRECOMPILER DIRECTIVE

Name: *LOCTOT

Purpose: To set the maximum number of 100 word segments that are available to the
BSOLXX routine for solving the adjoint matrix in memory.

How to use it: Must begin in column one.

Note: See the BSOLXX run-time library routine. If BSOLXX fails because there
are too few segments, an error message will suggest that LOCTOT be
increased. The ideal size for LOCTOT is application dependent; however, for
most applications the number of rows in the adjoint matrix divided by 500 per
response should be sufficient.

Example: Increase LOCTOT to 200

*LOCTOT 200
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

28

PRECOMPILER DIRECTIVE

Name: *MAXTAR

Purpose: To set the maximum number of parameters to be held in memory for an
ADGEN application.

How to use it: Must begin in column one.

Note: If the adjoint matrix is to be written to disk, the actual number of parameters
can exceed UAXPAR. However, if the adjoint matrix is to be solved in
memory (see BSOLXX or FBSOLXX), then the actual number of parameters
must be less than MAXPAR.

Example: Increase MAXPAR to 2oooO

*MAXPAR 20 OOO

DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

29

PRECOMPILER DIRECIWE

Name: *MAXRES

Purpose: To set the maximum number of responses to be held in memory for an
ADGEN application.

How to use it: Must begin in column one.

Note: If the adjoint matrix is to be written to disk, the actual number of responses
can exceed MAXRES. However, if the adjoint matrix is to be solved in
memory (see BSOLXX or FBSOLXX), then the actual number of responses
must be less than MAXRES.

Example: Increase MAXRES to 10

*MAXRES 10
DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

30

PRECOMPILER DIRECTIVE

Name: *MAXROWS

Purpose: To change the default value for the maximum number of adjoint matrix rows
to be held in memory for an ADGEN application.

How to use it: Must begin in column one.

Note: If the adjoint matrix is to be written to disk, the actual number of rows can
exceed MAXROW. However, if the adjoint matrix is to be solved in memory
(see BSOLXX or FBSOLXX), then the actual number of rows must be less
than MAXROWS. If the adjoint matrix is to be Written to disk, MAXROWS
should be divisible by 256- If the adjoint matrix is to be written to disk, it
probably is not necessary to change the default value for MAXROWS.
MAXROWS is also used to estimate the amount of storage for the adjoint
matrix; therefore, it may be necessary for MAXROWS to be greater than the
number of rows in the adjoint matrix for some applications.

Example: Increase MAXROWS to 262,144

*MAXROWS 262144
DIMENSION X(100)
COMMON/ A L P W Y,Z

31

PRECOMPILER DIRECTIVE

Name:

Purpose:

How to use it:

Note:

Limitations:

Example:

*OPTIMIZE

To cause floating point assignment statements that have only one variable on
the right to be forward chained during an ADGEN application.

Must begin in column one.

When considering multiple responses, forward chaining statements that have
only one variable on the right reduces both the number of terms and the
number of calculations required to solve the adjoint matrix In the following
FORTRAN sequence, the statement defining B has only one variable on the
right, A.

B = A**2 + 3.0*A

Z = 2.0 * B

The partial derivative of B witaa respect to A is placet in a local buffer of size
LOCROWS (see *LOCROWS directive). When B appears on the right of the
statement the partial derivative of 2 with respect to A is immediately
calculated and stored in the adjoint matrix The partial derivative of B with
respect to A is never put in the adjoint matrix Rather than two rows being
added to the adjoint matrix, only one row is added. The effectiveness of this
algorithm greatly depends on the code being enhanced for derivative
calculations and the number of responses selected.

Can only be used with BSOLXX and FBSOLXX. Cannot be used if matrix
is to be written to disk.

*OPTIMIZE
*LOCROWS 9ooo

DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

32

PRECOMPILER DIRECTIVE

Name: *SYMG ON/OFF

Purpose:
enhanced.

To selectively specify lines or sections of code to be enhanced, or not

How to use it: Can be used anywhere within a complete program module or to turn off the
enhancement of entire subprograms. Enhancement cannot be turned off
within a subroutine and then turned back on within another subroutine. The
enhancement must be turned on to process the declaration section of a
subprogram if it is turned on anywhere within that subprogram.

Example: Prevent one line from being enhanced

DIMENSION X(100)
COMMON/ ALPHA/ Y,Z

*SYMG OFF
X(I)=Z*Y + 5.0

*SYMG ON

33

PRECOMPILER DIRECI'XVE

Name: * WSPSIZE

Purpose: To override the default work space size.

How to use it: Must begin in column one.

Example: Set the work space size equal to 2 million words:

*WSPSIZE 2 OOO OOO
DIMENSION X(100)

COMMON/ ALPHA/ Y,Z

Comment: Both CHAIN and ADGEN options use a common block area that can vary in
size dependent on the application. The default work space size is usually set
at 8 million 4 byte words; however, the actual size is installation dependent.
The WSPSIZE command is useful if for any reason you desire a larger or
smaller work space.

34

3.9. GRESS Run-Tie l j % q Routines

Run-time library routines are used to control the application OF the enhanced code. The
following pages provide a description of each run-time library Function. The format is one run-
time library function per page. Each page includes at least one example on how to use the
routine.

35

3.9.1. GRESS W E N liiraxv routines.

36

ADGEN Library Routine

Name: BSOLXX (LUNl,LUN2,mFF)

Function: To solve the adjoint matrix in virtual memory.

Comment: Solsing the adjoint matrix in memory is limited by the amount of memory
available. If sufficent memory is available, BSOLXX should more efficient
than writing the adjoint matrix to disk.

Arguments:
(1) LUNl - read CUTOFF from lunl. A zero value means use argument

three as the CUTOFF value.
(2) LUN2 - write sensitivity report to lun2.
(3) CUTOFF - magnitude of the smallest sensitivity to report. A value of zero

will result in all sensitivities being reported.

Argument Type:
(1) INTEGER
(2) INTEGER
(3)

Note: W S P S ~ must be greater than (1OO*Loc1y1T+MAM3Es) i- 100.

How to use it: A call to BSOLXX may be used in place of a call to CLEAR= at the end
of program execution. A sensitivity report will be written to LUN2.

Example:

(1) To report sensitivities that are greater than 1.OE-4 to logical unit 95

CALL BSOLXX(O,95,1.OE-4)
STOP
END

37

ADGEN Library Routine

Name: CLEARXX

Function: To clear the forward matrix buffers.

Arguments: NONE

How to use it: Generally, CALL CLEARXX should be inserted in the main program
immediately before the STOP statement. CLEARXX must be the last
executed call before ending the run. If the program exits at some point other
than in the main program, it will be necessary to insert CALL CLEARXX at
that point.

Example:

(1) Normal exit from a main program with a STOP statement

PROGRAM MAlN

CALL CLEARXX
STOP
END

(2) Possible exit from other location

IF(uNHAPPY) CALL CLEARXX
IF(U"APPY) STOP RETURN
END

38

ADGEN Library Routine

Name: DECLARXX (CHAFt)

Function: To turn the declaration of parameters on or off.

Arguments: 'ON' or 'OFF"

Argument Type: CHARACTER

How to use it: DECLARXX is used to limit the number of parameters added to the
parameter dictionary. The default is 'ON, meaning that any parameters read
in will automatically be added to the parameter dictionary. To limit the
number of parameters, use DECLARXX to turn off the automatic declaration
at the start of the program. To have specific parameters added to the
parameter dictionary, use DECLARXX to turn on the declaration of
parameters immediately before the read statement in the unenhanced model.

Example:

(1) Using DECLARXX to cause only C to be declared a parameter.

CALL SETRXX('ADJ0I")
CALL DECLARXX('0FF)

CALL DECLARXX('0N')

CALL DECLARXX('0FF)
READ(100,1001)C

39

ADGEN Library Routine

Name: DIAGXX (LEVEL)

Function: To print diagnostic information.

Arguments:
(1) LEVEL

Argument type:
(1) LEVEL - INTEGER

LEVEL Action

0
1
2
3

Check for failure conditions. Stop if error detected.
Print diagnostic information. Stop if error detected.
Print additional diagnostic information. Stop if error detected.
Check ADGEN control parameters. Stop if error detected.

How to use it: Insert CALL DIAGXX at any point in the program where you wish to print
diagnostic information. LEVEL specifies the type of information as well as the
action taken if an error is found. The user should review the diagnostic
information provided by DIAGXX for obvious inconsistencies. For example,
if DIAGXX shows that the work space was set at 1,0o0,OOO and 1,400,000
words were used, the appropriate action would be to increase the work space
and re-run the problem.

Example:

(1) Using DIAGXX to check status prior to calling BSOLXX Code will
stop if an error is detected.

CALL DIAGXX(2)
CALL BSOLXX(-1,45,0.01)

40

ADGEN Library Routine

Name: DLIBXX (VARIABLE, NAME)

Function: To add a double precision variable to the parameter dictionary.

Arguments:
(1) VARIABLE to be included
(2) name or description of VARIABLE

Argument type:
(1) VARIABLE - DOUBLE PRECISION
(2) NAME - CHARAGL1ER*N (N < 12)

How to use it: Insert CALL DLIBXX after the point in the code where a value is assigned
to VARIABLE.

Example:

(1) To declare X to be a parameter in an ADGEN application.

DOUBLE PRECISION X

X = 2.0D+01* Y + 2
CALL DLIBXX(X,’ X ’)

41

ADGEN Library Routine

Name: DLINXX (VARLABLE, NAME, COUNTER)

Function: To add a double precision variable to the parameter dictionary with a user-
defined counter.

Arguments:
(1) VARIABLE to be included
(2) name or description of VARIABLE
(3) user defined counter

Argument type:
(1) VARIABLE - DOUBLE PRECISION
(2) NAME - CJURACTER*N (N C 12)
(3) COUNTER- INTEGER

How to use it: Insert CALL DLINXX after the point in the code where a value is assigned
to VARIABLE.

Example:

(1) To declare X to be a parameter in an ADGEN application with the
integer ICOUNT as a user-defined counter to help identify the result in
the sensitivity report.

DOUBLE PRECISION X

IcouNT=IcouNT+ 1
X = 2.OD+01 * Y + 2
CALL DLINXX(X,' X ',ICOUNT)

42

ADGEN Library Routine

Name: D R A M (ARRAY, N1, N2, N3, N4, NaIMS, NAME)

Function: To add the elements in a double precision array to the parameter dictionary.

Arguments:
(1) ARRAY with up to four dimensions
(2-5) Nl-N4 dimensions 1 to 4 of ARRAY
(6) NDIMS - actual number of dimensions
(7) name or description of ARRAY

Argument type:
(1) ARRAY - DOUBLE PRECISON
(2-5) N1-N7 - INTEGER
(6) NDIMS - INTEGER
(7) NAME - CHARACIER*N (N < 12)

How to use it: Insert CALL D R A W after the point in the code where values have been
assigned to ALL elements to be included in the parameter dictionary.
However, the call must be made prior to any element of ARRAY being used
to assign a value to any other variable in the FORTRAN program. The values
for N1-N4 must be set to at least 1, even if that dimension does not exist. For
example, if an array has only two dimensions, arguments N3 and N4 must be
assigned the value of 1.

Example:

(1) To declare the elements in array X to be a parameters in an ADGEN
application.

DOUBLE PRECISION X(103)

CALL DRAYXX(X, 10,5, 1, 1,2, X,)

43

ADGEN Library Routine

Name:

Function:

Comment:

Arguments:

FBSOLXX (LUNl,LUN2,CUTOFF)

To solve the ADGEN matrix in virtual memory.

This routine does not use memory as efficiently as BSOLXX, therefore, it
should only be used for small models. However, if the model is small enough,
FBSOLXX should execute faster than BSOLXX.

(1)

(2) LUN2 - write sensitivity report to lun2.
(3) CUTOFF - magnitude of the smallest sensitivity to report. A value of zero

LUNl - read CUTOFF from lunl. A zero value means use argument
three as the CUTOFF value.

will result in all sensitivities being reported.

Argument Type:
(1) INTEGER
(2) INTEGER
(3) REAL

Note: WSPSIZE must be greater than (MAXROWS*MAXRES) + 10.

How to use it: A call to FBSOLXX may be used in place of a call to CLEARXX at the end
of program execution. A sensitivity report will be written to LUN2.

Example:

(1) To report sensitivities that are greater than 1,OE-4 to logical unit 95

CALL FBSOLXX(O,95,1.0E-4)
STOP
END

44

ADGEN Library Routine

Name: POTRXX (VARIABLE, NAME)
POTDXX (VARIABLE, NAME)

Function: To add a variable to the response dictionary during an ADGEN application.

Arguments:
(1) (VARIABLE) program variable to be declared
(2) (NAME) or description of VARIABLE

Argument Type:
(1) X - REAL or DOUBLE PRECISION
(2) ‘CHAR’ - (X.ARACTER*n (n e 24)

How to use it: Insert CALL POTRXX immediately following the line defining the variable.
CLEARXX must be called at the end of the run. Use POTDXX if X is
DOUBLE PRECISION. POTDXX is used exactly the same way as
POTRXX

Comment: If the adjoint matrix is output to disk, the response dictionary is written to
logical unit 43. If the adjoint matrix is solved in memory, the response
dictionary is kept in memory and used to write the report of sensitivities. An
error occurs if part of the response dictionary is written to disk and the adjoint
matrix is not. If the user discovers that the response dictionary was written to

disk when it should not have been, the user should increase the maximum
number of responses using the *MAXVAR directive.

Exampie:

(1) Declare D(5) to be a response of interest.

D(J) = B(J)**2
IF(J.EQ.5) CALL POTRXX(D(J),’ D of 5 ’)

45

ADGEN Library Routine

Name: RLTBXX (VARIABLE, NAME)

Function: To add a single precision variable .to the parameter dictionary.

Arguments:
(1) VARIABLE to be included
(2) name or description of VARIABLE

Argument type:
(1) VARIABLE - REAL
(2) NAME - CHARACTER*N (N < 12)

How to use it: Insert CALL RLIBXX after the point in the code where a value is assigned
to VARIABLE.

Example:

(1) To declare X to be a parameter in an ADGEN application.

REALX

X = 2.OD+01* Y + Z
CALL RLIBXX(X,’ X ’)

46

ADGEN Library Routine

Name: RLINXX (VARIABLE, NAME, COUNTER)

Function: To add a single precision variable to the parameter dictionary with a user
defined counter.

Arguments:
(1) VARIABLE to be included
(2) name or description of VARIABLE
(3) user defined counter

Argument type:
(1) VARIABLE - REAL
(2) NAME - C m m R * N (N < 12)
(3) COUNTER- INTEGER

How to use it: Insert CALL RLINXX after the point in the code where a value is assigned
to vARL4BLE.

Example:

(1) To declare X to be a parameter in an ADGEN application with the
integer ZCOUNT as a user defined counter to help identify the result in
the sensitivity report.

REAL X

Icow=IcouNT+ 1
X = 2.OD+Ol* Y + 2
CALL RLINXx(X’ x ’,ICOUNT)

47

ADGEN Library Routine

Name: RRAYXX (ARRAY, N1, N2, N3, N4, NDIMS, NAME)

Function: To add the elements in a single precision array to the parameter dictionary.

Arguments:
(1) ARRAY with up to four dimensions
(2-5) Nl-N4 dimensions 1 to 4 of ARRAY
(6) NDIMS - actual number of dimensions
(7) name or description of ARRAY

Argument type:
(1) ARRAY - REAL
(2-5) N1-NY - INTEGER
(6) NDIMS - INTEGER
(7) NAME - CHARACTER*N (N < 12)

How to use it: Insert CALL RRAYXX after the point in the code where values have been
assigned to ALL elements to be included in the parameter dictionary.
However, the call must be made prior to any element of ARRAY being used
to assign a value to any other variable in the FORTRAN program. The values
for N2-N4 must be set to at least 1, even if that dimension does not exist. For
example, if an array has only two dimensions, arguments N3 and N4 must be
assigned the value of 1.

Example:

(1) To declare the elements in array X to be a parameters in an ADGEN
application.

REAL X(1033)

CALL RRAYXX(x, 10,5, 5, 1,3, 'X)

48

ADGEN Library Routine

Name: SETRXX (CHAR)

Function: To spec@ that the purpose of the run is to generate an adjoint matrix.

Argument : 'ADJOINT'

Argument Type: CHARACTER*7

How to use it: CALL SETRXX must be the first executed line in the code. If CALL
SETRXX is NOT made, no derivatives will be stored in the adjoint matrix
buffer.

Example:

(1) Enhanced code ready for an ADGEN application.

DATA X /4.0/
CALL SETRXX('ADJ0INT')

(1) Unenhanced code preparing for adjoint matrix generation.

DATA X /4.0/
CALL SETRXX('ADJ0INT')

49

3.92 GRESS C" h i m routines.

50

CHAIN Library Routine

Name: AUTOXX (LUN, NUMP)

Function: To set the maximum number of parameters to be declared.

Arguments:
(1) LUN = -1 is required
(2) NUMP - maximum number of parameters to be declared

Argument Types: INTEGER

How to use it: CALL AUTOXX must be made before calling any other library routines.

Example 1. Specifymg a maximum of five parameters in an enhanced code. (The call to
AUTOXX must be the first executable statement in the enhanced code.)

DATA X /4.0/
CALL AUTOXX(- 1 3)

Example 2. Specifying a maximum of twenty parameters in an unenhanced code

DATA X 14-01
CALL AUTOXX(-1,20)

51

CHAIN Library Routine

Name: BUSTXX

Function: To report the status of the gradient work space during a CHAIN application.

Arguments: NONE

How to use it: CALL BUSTXX can appear anywhere within the executable part of the
program. CALL BUSTXX can be called more than once. The output from
BUSTXX will be written to logical unit six by default. The default logical unit
can be changed with the F'ILEXX routine. The gradient work space is the
buffer used to propagate derivatives.

Example:
DIMENSION Y(lO),X(10)

CALL BUSTXX

52

CHAIN Library Routine

Name: DEFAXX (ARRAY, NELEM, NTYPE)

Function: To declare elements in an array as Parameters for a CHAIN application. No
gradients are computed until at least one parameter is defined. Each call adds
a new array to the list of parameters. Each element in the array counts as one
parameter.

Arguments:
(1) ARRAY - array to be declared a parameter
(2) NELEM - number of elements in array to be declared
(3) NTYPE - argument type (1 = single precision, 2 = double precision)

Argument Type:
(1) REAL or DOUBLE PRECISION
(2) INTEGER
(3) INTEGER

How to use it:

Example:

Insert CALL DEFAXX after the array has been initialized or defined.
Subroutines SETRXX and AUTOXX must be called prior to CALL
DEFAXX For multidimensional arrays, the number of elements specified
must take into consideration how FORTRAN treats dimensioned variables.
DEFAXX will define the array elements as parameters, sequentially, in order
of their location in memory.

(1) Declare the elements in array Y as parameters for a CHAIN application.

DIMENSION Y (lO),X(10)
READ(LUN,l00) Y
NUMP=lO
NTYPE= 1
CALL DEFAXX(Y(l),NUMP, NTYPE)

53

CHAIN Library Routine

Name: DEFDXX (VAR, NAME)

Function: To declare a double precision parameter for a CHAIN application. No
gradients are computed until at least one parameter is defined. Each call
adds a new parameter.

Arguments:
(1) VAR - double precision variable to be declared a parameter
(2) name or description of VAR

Argument type:
(1) VAR - DOUBLE PRECISION
(2) NAME - CHARA-R*N (N < 12)

How to use it: Insert CALL DEFDXX after the variable has been initialized or defined.
Subroutine AUTOXX must be called prior to CALL DEFDXX.

fiample:

(1) Declare Y to be a parameter for a CHAIN application.

DOUBLE PRECISION Y

READ(LUN,100) Y
CALL DEFDXX(Y,’ Y ’)

54

CHAIN Library Routine

Name: DEFIXX FAR, NAME)

Function: To declare a single precision parameter for a CHAIN application. No
gradients are computed until at least one parameter is defined. Each call
adds a new parameter.

(1) VAR - single precision variable to be declared a parameter
(2) name or description of VAR

Arguments:

Argument type:
(1) VAR - SINGLE PRECISION
(2) NAME - CHARACT’ER*N (N < 12)

How to use it: Insert CALL DEFIXX after the variable has been initialized or defined.
Subroutine AUTOXX must be calied prior to CALL DEFIXX.

Example:
(1) Declare Y to be a parameter for a C f N application.

READ(LuN,lOo) Y
CALL DEFIXX(Y,’ Y ’)

(2) Declare D(5) to be a parameter.

D(J) = B(J)**2
IF(J.EQ.5) CALL DEFIXX(D(J),’ D(5) ’)

CHAIN Library Routine

Name: DIAGXX (LEVEL)

Function: To print diagnostic information

Arguments:
(1) LEVEL

Argument type:
(1) LEVEL - INTEGER

LEVEL Action

0
1
2
3

Check for failure conditions. Stop if error detected.
Print diagnostic information. Stop if error detected.
Print additional diagnostic information. Stop if error detected.
Check ADGEN control parameters. Stop if error detected.

How to use it: Insert CALL DIAGXX at any point in the program where you wish to print
diagnostic information. LEVEL specifies the type of information as well as the
action taken if an error is found. The user should review the diagnostic
information provided by DIAGXX for obvious inconsistencies. For example,
if DIAGXX shows that the work space was set at 1,OOO,OOO and 1,400,000
words were used, the appropriate action would be to increase the work space
and re-run the problem.

Example:

(1) Using DIAGXX to check status prior to calling PRNTXX Code will
stop if an error is detected.

CALL DIAGXX(2)
CALL PRNTxx(y)

56

CHAIN Library Routine

Name: FILEXX (LUN)

Function: To alter the logical unit number for all printed output generated by run-time
library routines. The default logical unit number for printed output from the
run-time library routines is 6.

Arguments: LUN - Logical unit number for printed output

Argument Type: INTEGER

How to use it: If the user chooses to have all or part of the calculated gradients from a
CHAIN application written to a file other than unit 6, simply call FILEXX
with an integer argument specifying the desired unit number. The assignment
stays active until the end of the run, or until FILEXX is called again.

Example:

(1) To print all gradient results in a CHAIN application to logical unit 90.

LUN=90
CALX, FILEX?C(LUN)

57

CHAIN Library Routine

Name: GETGXX (X, 2)

Function:

Arguments:

To retrieve an individual derivative using symbol name,

(1) X - any program variable
(2) Z - an array

Argument Type:
(1) REAL or DOUBLE PRECISION
(2) REAL

How to use it:

Example:

GETGXX returns the derivatives of X with respect to the N declared
parameters. Z must be dimensioned by at least N to hold the derivative of X
with respect to each declared parameter.

(1) Retrieve the derivative of A with respect to all declared parameters.
Store the derivatives in array B.

DIMENSION B(8)
CALL AUTOXX(-1,s)

CALL GETGXX(A,B)

58

c" Library Routine

Function: To retrieve an individual derivative.

Arguments:
(1) X - any program variable
(2) N - parameter number
(3) 2 - storage location

Argument Type:
(1) REAL or DOUBLE PRECISION
(2) INTEGER

(3) =AL

How to use it: GET"X returns the derivative of X with respect to the declared
parameter. Parameters have an "ordinal" number corresponding to the
sequence in which they are declared. It is necessary to provide a REAL
variable as the third argument for storing the retrieved derivative.

Example:

(1) Retrieve the derivative of A with respect to the first, second, and fourth
declared parameters. Store the derivatives in the first three locations in
array ZZ.

CALL GETNXX(A,l,ZZ(l))
CALL GETNXX(A,2,ZZ(2))
CALL GETNXX(A,4,ZZ(3))

59

CHAIN Library Routine

Name: NINDXX (N)

Function: To return the current number of declared parameters.

Arguments: N - number of declared parameters

Argument Type: INTEGER

How to use it: At any point during program execution, the number of parameters presently
declared is returned as an integer argument.

Example:

(1) To check the number of declared parameters in a CHAIN application.

CALL " D X X (N)
IF(N.GT.3) THEN

CHAIN Library Routine

Function: To print the gradients and sensitivities of a double precision variable with
respect to the declared parameters.

Arguments: Any double precision program variable

Argument Type: DOUBLE PRECISION

How to use it: At any point during program execution, the gradient of a double precision
variable may be printed by a call to PRNTDXX

Example:

(1)
application.

To print gradients for a double-precision variable during a CHAIN

REALY, Z
DOUBLE PRECISION A, X

CALL DEFDLXV,’ Y ’)
CALL DEFDXX(A,’ A ’)

x = 2.0 * Y + z
CALL PRNTDXX(X)

61

CHAIN Libraly Routine

Name: PRNTXX (X)

Function: To print the gradients and sensitivities of a single precision variable with
respect to the declared parameters.

Arguments: Any program variable

Argument Type: REAL

How to use it: At any point during program execution, the gradient of a dependent variable
may be printed by a call to PRNTXX.

Example:
(1) To print gradients at two places in a CHAIN application.

READ(LUN,l00) Y
CALL DEFJXX(Y)

X = 2 . 0 * Y + Z
CALL PRNTXX(X)

Z = X*B
CALL PR"PXX(Z)

62

3.93. GRESS G E N m librarv routines.

63

GENSUB Library Routine

Name: ALLOCGG(MEM,ZMEM)

Function: To pre-allocate memory for a GENSUB application.

Arguments:
(1) MEM - amount of memory in bytes to be allocated
(2) ZMEM - amount of memory to be allocated and preset to zero.

Argument type:
(1) INTEGER
(2) INTEGER

Comment: SEE CHAINGG, CHAINFOR, or CHAINREV

How to use it: Insert CALL ALLOCGG prior to the section of code enhanced for the
GENSUB option. It is recommended that the first time a section of code is
run, that ALLOCGG not be used. However, if the same code is used again,
the values from MEM and ZMEM as returned from one of the chain routines
(CHAINGG, CHAINFOR, or CHAINREV) can be used. For large sections
of code, pre-allocating memory should may result in faster execution.

Example:

(1) Declare array Y to be parameters for a GENSUB application with
500,000 bytes of pre-allocated memory and an additional 4OOO words of
pre-allocated memory preset to zero.

*gensub
SUBROUTINE ALPHA(Y,R)
DOUBLE PRECISION Y(50)
CALL ALLOCGG(500000,4000)
NELEM = 50
CALL GENDPXX(Y,NELEM)

64

GENSUB Library Routine

Name: C"FOR(DE€UVATIVE;MEM,ZMEM)

Function: To calculate the derivatives for a GENSUB application by applying the chain
rule in forward mode (CHAIN mode).

Arguments:
(1) DERIVATIVE - array to contain derivatives
(2) MEh4 - amount of memory used in bytes
(3) ZMEM - amount of memory pre-set to zero used in words

Argument type:
(1) A two-dimensional REAL array
(2) INTEGER
(3) INTEGER

Insert CALL CHAINFOR at the end of the section of enhanced code through
which derivatives have been propagated. The derivatives of the responses
declared using GENRESXX with respect to parameters declared using
GENPXX, GENAPXX, or GENDPXX for the subsection of code enhanced
for GENSUB will be calculated and returned in the array DERIVATIVE.
DERIVATIVE must be a two-dimensional array with the first dimension being
the number of dependent variables (responses) and the second dimension
being the number of independent variables (parameters).

How to use it:

Example:

(1) Use CHAINFOR to calculate derivatives of 2 with respect to the
elements in array Y.

*gensub
SUBROlJ"2 ALSfIAOC,R,Z)
REAL Y(2), DERW(12)
CAL;L GENAPXX(Y,2)

CALL GENRESXX(2)
CALL (2"FOR(DERIV,MEM,IMEM)

65

GENSUB Library Routine

Name: C"GG(DERIVATIVE,MEM,ZMEM)

Function: To calculate the derivatives for a GENSUB application.

Arguments:
(1) DERIVATIVE - array to contain derivatives
(2) MEM - amount of memory used in bytes
(3) ZMEM - amount of memory pre-set to zero used in words

Argument type:
(1) A two-dimensional REAL array
(2) INTEGER
(3) XNTEGER

Comment: C W G G will apply the chain rule in either forward or reverse (adjoint)
mode depending on whether there are more responses or more parameters.

How to use it: Insert CALL CHAINGG at the end of the section of enhanced code through
which derivatives have been propagated. The derivatives of the responses
declared using GENRESXX with respect to parameters declared using
GENPXX, GENAPXX, or GENDPXX for the subsection of code enhanced
for GENSUB will be calculated and returned in the array DERIVATIVE.
DERIVATIVE must be a two-dimensional array with the first dimension being
the number of dependent variables (responses) and the second dimension
being the number oE independent variables (parameters).

Example: Use CHAINGG to calculate derivatives of Z with respect to the elements in

array Y.
*gensub

SUBROUTINE ALPHA(Y,R,Z)
REAL Y(2), DERIV(1,2)
CALL GENAPXX(Y,2)

CALL GENRESXX(Z)
CALL CHAINGG(DERIV,MEM,IMEM

66

GENSUB Library Routine

Name: C"REV(DERIVATIVE,MEM,ZmM)

Function: To calculate the derivatives for a GENSUB application by applying the chain
rule in reverse mode (adjoint mode).

Arguments:
(1) DEWATIVE - array to contain derivatives
(2) MEM - amount of memory used in bytes
(3) ZMEM - amount of memory pre-set to zero used in words

Argument type:
(1) A two-dimensional REAL array
(2) INTEGER
(3) INTEGER

How to use it: Insert CALL CHAINREV at the end of the section of enhanced code through
which derivatives have been propagated. The derivatives of the responses
declared using GEIQESXX with respect to parameters declared using
GENPXX, GENAPXX, or GENDPXX for the subsection of code enhanced
for GENSUB will be calculated and returned in the array DERIVATIVE
DERIVATIVE must be a two-dimensional array with the first dimension being
the number of dependent variables (responses) and the second dimension
being the number of independent variables (parameters).

Example:

(1) Use CHAINREV to calculate derivatives of Z with respect to the
elements in array Y.

*gensub
SUBROUTINE ALPHA(Y,R,Z)
REAL Y(2), DERIV(1,2)
CALL GENAPXX(Y,2)

CALL GENRIES?E(Z)
CALL C"REX(DERIV,MEM,IMEM)

67

GENSUB Library Routine

Name: GENAPXX(ARRAY,NELEM)

Function: To declare NELEM of a single precision ARRAY to be parameters for a
GENSUB application.

Arguments:
(1) ARRAY - array to be declared a parameter
(2) NELEM - number of elements in array to be declared

Argument type:
(1) ARRAY - REAL
(2) NELEM - INTEGER

How to use it: Insert CALL GENAPXX after the array has been initialized or defined.
Parameters for a GENSUB application must be independent of the section of
enhanced code through which derivatives are to be propagated. That means
that the call to GENAPXX must occur upon entering the subprogram or
section of code that has been enhanced. Also, parameters that appear on the
left of assignment statements will automatically be redefined as variables;
therefore, the assignment statement that defines the parameter must not be
part of the enhanced code.

Example:
(1) Declare array Y to be parameters for a GENSUB application.

*gensub
SUBROUTINE ALPHA(Y,R)
REAL Y(50)
NELEM = 50
CALL GENAF'XX(Y,NELEM)

68

GENSUB Library Routine

Name: GENDPXX(AFUUY,NEmM)

Function: To declare NE= of a double precision ARRAY to be parameters for a
GENSUB application.

Arguments:
(1) ARRAY - array to be declared a parameter
(2) NELEM - number of elements in array to be declared

Argument type:
(1) ARRAY - DOUBLE PRECISION
(2) NELEM - INTEGER

How to use it: Insert CALL GENDPXX after the array has been initialized or defmed.
Parameters for a GENSUB application must be independent of the section of
enhanced code through which derivatives are to be propagated. That means
that the call to GENDPXX must occur upon entering the subprogram or
section of code that has been enhanced. Also, parameters that appear on the
left of assignment statements will automatically be redefined as variables;
therefore, the assignment statement that defines the parameter must not be
part of the enhanced code.

Example:

(1) Declare array Y to be parameters for a GENSUB application.

*gensub
SUBROUTINE ALPHA(Y,R)
DOUBLE PRECISION Y(50)
NELEM = 50
CALL GENDPXX(Y,NELEM)

69

GENSUB Library Routine

Name: GENPXX(VAR)

Function: To declare VAR to be a parameter for a GENSUB application.

Arguments:
(1) VAR - variable to be declared a parameter

Argument type:
(1) REAL or DOUBLE PRECISION

How to use it: Insert CALL GENPXX after the variable has been initialized or defined.
Parameters for a GENSUB application must be independent of the section of
enhanced code through which derivatives are to be propagated. That means
that the call to GENPXX (or GENAPXX) must occur upon entering the
subprogram or section of code that has been enhanced. Also, parameters that
appear on the left of assignment statements will automatically be redefined as
variables; therefore, the assignment statement that defines the parameter must
not be part of the enhanced code.

Example:

(1) Declare Y to be a parameter for a GENSUB application.

*gensub
SUBROUTINE ALPHA(Y,R)
CALL GENPXXW

70

GENSUB Library Routine

Name: GENRESXX(VAR)

Function: To deciare VAR to be a response for a GENSUB application.

Arguments:
(1) VAR - variable to be declared a response

Argument type:
(1) REAL or DOUBLE PRECISION

How to use it: Insert CALL GENRESXX immediately after the variable has been defined.
Responses for a GENSUB application must be dependent on the section of
enhanced code through which derivatives have been propagated. The
derivatives of R with respect to parameters that have been declared for the
subsection of code enhanced for GENSUB will be calculated by calling one of
the run-time library routines CHAINGG, CHALMFOR, or Cf;lAMREV.

Example:

(1) Declare R to be a response for a GENSUB application.

*gensub
SUBROUTINE ALPHA(Y,R)

71

4. PROGRAMMER INFORMATION

This chapter provides information directed towards the person responsible for installing
and maintaining the system. Changes may be required to allow implementation at a specified
site. A brief description of the subroutines and functions in the GRESS run-time library and the
SYMG precompiler is provided.

4.1. SYMG - Precompiler

SYMG is the precompiler for GRESS. The SYMG source code is written entirely in
FORTRAN 77. SYMG is compiled and linked using a FORTRAN 77 compiler and link- editor.
Shown in Table 4.1 is the name and function of each SYMG routine. The function descriptions
are brief and are intended only as an overview.

4.2. GRESS R u n - T i e Li’brary

The GRESS Run-Time Library has three parts, SGLIB, CLIB, and GENLIB. SGLIB
is written in FORTRAN 77. CLIB and GENLIB are written in C. SGLTB and CLIB combine
to form the run-time library required for ADGEN and CHAIN applications. GENLIB is the
run-time library required for GENSUB applications. SGLIB is compiled using a FORTRAN 77
compiler. GENLIB and CLIB are compiled with a C compiler. Tables 4.2,43, and 4.4 provide
the name and function of library routines in SGLIB, CLIB, and GENLIB.

43. Imdementation Problems

Because of the nature of derivative propagation through FORTRAN programs, GRESS
enhanced codes can require an excessive amount of computer resources. The size of the
enhanced code as determined by array sizes can be controlled with directives to the precompiler.
However, for some computer systems, the default array sizes generated by GRESS are too big.
The fust step should be to have the system manager increase the amount of memory available
to the maximum allowable for the system.

72

Table 4.1. SYMG subroutines and functions

73

Table 4.1. (continued)

74

On most systems the size of the enhanced code can be controlled by modifying parameter
statements in the include file, symg.dec. The include file, symg-dec, contains parameters that
have the biggest impact on the size of the enhanced code.

C DEFAULT ARRAY SIZES GENERATED in enhanced code

PARAMETER (IWORKSZ = 8 OOO OOO) ! IWSPSIZE
PARAMETER (IT-= 7) !ITABLE!

PARAMETER (LROWS=lOOO) !LOCRO WS!
PARAMETER (LTOT=lS00) !LOCTOT!

PARAMETER (MAxR= 2**19) ! m o w s !

PAIUMIZER (u A x R X s = S O) !MAxREs!
PARAUETER (MAxp=l ooo) !MAXPAR!
PARAMETER (LSToT=320 OOO) !LS'ITOT

LSTOT, MAXR, and LTOT are used for ADGEN applications when the adjoint matrix
is to be solved in memory. If the adjoint matrix is to he output to disk, LSTOT and LTOT can
be set equal to 2, and MAXR can be set equal to 512. To solve small adjoint matrices in
memory for one response, set MAMixs equal to 1, LTOT equal to 50, and MAXR equal to
a value greater than the estimated number of rows in the adjoint matrix. If the *CHAIN or
*gensub directive is specified, LSTOT, MAXR, and LTOT have no impact on the size to the
enhanced code.

IWORKSZ and ITAB can impact the size of the code for either CHAIN or ADGEN
options. For small problems, WORKS2 can be set as low as 10,OOO and ITAB as low as 2.
However, IWORKSZ and ITAB can also be controlled by precompiler directives * WSPSIZE and
*ITABLE, respectively.

75

Table 4.2. SGLIB subroutines and functions

76

Table 4.2. (continued)

77

Table 4.3. CLIB routines and their function

Table 4.4. GENLIB routines and their function

78

APPENDICES

APPENDIX A - LIMFI;QTIONS

The limitations discussed in this section are in addition to limitations discussed elsewhere
in the text. Every attempt was made to inciude the majority of FORTRAN 77 as specified in
the ANSI X3.9-1978 FORTRAN standard. Extensions to the standard may or may not work.
When the user is faced with a FOR'I" statement, or sequence of statements, that is not
acceptable to GRESS, it is up to the programmer to decide on the course of action. If the
sequence is important, then re-programming with logically equivalent, but GRESS-acceptable
FORTRAN may be required.

Function limitations fall into three ca t egork (1) Any ANSI X3.9-1978 FORTRAN 77
function that may lead to a discontinuity; (2) Complex functions; (3) Continuous ANSI X3.9-
1978 FORTRAN 77 €unctions that GRESS does not presently process. Fortunately, the lists are
short. Shown in Table kl., are those standard functions that are not supported by GRESS
because they could lead to a discontinuity.

Table k l . ANSI X3.9-1978 FORTRAN 77 functions not supported by GRESS
due to pssibIe discontinuity

Table A2 lists the ANSI X3.9-1978 complex functions. GRESS does not support
complex functions.

81

Table A2. ANSI X3.9-1978 COMPLEX functions not supported by GRESS

Shown in Table A3 are those standard functions that are not supported by GRESS at
the present time but may be supported by future releases of GRESS.

Table k 3 . ANSI X3.9-1978 FORTRAN 77 functions that may
be supported in future releases of GRESS

Name Definition

DPROD DOUBLE PRECISION product of 2 REAL arguments

A 2 Languaee Restrictions

The last REAL or DOUBLE PRECISION assignment executed in a REAL, or
DOUBLE PRECISION function must assign the value to that function. The user must check
that all REAL and DOUBLE precision functions in the code to be enhanced do not violate this
restriction.

The main program must be the first routine in the program to be enhanced. If the
program is broken into several files, each file may be enhanced separately. However, the main
program must be the Grst routine in the file in which it is contained. The last FORTRAN
statement in any file enhanced must be an END statement.

GRESS supports the use of include statements in the unenhanced program if they have
the folIowing syntax:

82

include 'filename'

The include statement cannot be the last h e in the file to be enhanced.
GRESS does not support the use of intermediate scratch files. Circumstances where

calculated variables are written to external data storage and then later read and used can cause
results to be incorrect. At the point where terms are read in, derivatives are initialized to zero.
If the dependency of a response to a parameter is propagated through a variable that is written
to scratch and later read in, the derivative will most likely be wrong. We are working on
methods to handle this problem; however, at present we are handling it on a case-by-case basis.
Usually we are re-writing the program, prior to processing with GRESS, to remove the use of
external storage.

GRESS does not support REAL or DOUBLE PRECISION arrays with more than four
dimensions that are initialized with read statements. Arrays with up to seven dimensions are
supported in all other situations. If an array with five or more dimensions is input via a read
statement either the logic will have to be re-written to remove the array from the read statement,
or the *SYMG OFF directive should be used to prevent processing of the statement.

83

APPENDIX B - C" SAMJ?LE PROBLEM

The CHAIN option calculates the sensitivities of a variable with respect to a user-
selected subset of the input data by repeated application of the chain rule. The CHAIN option
reports sensitivities as the model is executing and is the recommended option when the user is
only concerned with a very small number of input parameters. The flow chart shown in Fig. 2.1
illustrates the processing steps for a GRESS application. A FORTRAN 77 program is input to
the GRESS precompiler (SYMG). SYMG creates a new FORTRAN program that when
compiled and linked with the G W S run-time library is capable of calculating derivatives for
each floating point assignment statement along with the normally calculated result.

The user inserts application dependent subroutine calls to control the execution. For the
CHAIN option the user must identify parameters and results of interest. The derivatives of
selected results may be retrieved using the "get" routines (GETGXX, GETNXX), or derivatives
and sensitivities may be reported using the PRNTXX routine. A simple FORTRAN program
is presented as an example. The processing steps and output information necessary to perform
a complete CHAIN application are shown. There are three steps in performing a CHAIN
application: 1) precompile with SYMG; 2) compile and link with GRESS run-time library; and
3) execute the enhanced code. The following program, named TEST.FOR (or test-f on unix
systems) is used for demonstration.

C GRESS/ADGEN test program
RJ3q5,*)B,C,D
X = B + D
Y = D**2 + B**2
R = 7.0*X + D**2
s = Y**2
END

Assume that the FORTRAN variables B, C, and D are to be treated as independent variables
or parameters. We would like FORTRAN to report the sensitivity of variables R and S to the
chosen parameters. That is, we would like the first derivatives and sensitivities of variables R
and S with respect to B, C, and D to be calculated and reported.

To prepare the code for an C" application, the *CHAIN directive must be inserted
into the code prior to enhancement. A call to subroutine AUTOXX must be inserted as the first
executable statement (i.e.,after declarations such as common, dimension, equivalence, etc.) to set
the upper limit on the number of parameters that will be selected. Subroutine calls should be
inserted to identify parameters (DEFIXX) and to report sensitivities (PRNTXX). A description
of how to use these routines and others is included Chapter 3. To further control the
application the user may choose to insert additional directives to the precompiler.

85

fWSPSIZE1000000
*CHAIN
*DERNDXDY

C GRESS/ADGEN test program
CALL AUTOXX(-1,3)

READ(S,*)B,C,D
-D=-=@,’B’)
-DEFIxx(cc’)
WDEFMCX@,’D’)
X = B + D
Y = D**2 + B**2
R = 7.0*X + D**2

s = Y**2

END

CAuPR.NTXx(R)

-pRNTXx(s1

The *WSPSIZE directive controls the amount of memory allocated in words used for
propagating derivatives, The default value is probably sufficient for most applications; however,
*WSPSIZE is included in this example to aid the user in understanding how it is used.
WSPSIZE in this example is set at 1,OOO,OOO words. The * D E W directive changes the variable
used to store the derivative for an assignment statement from the default, DX, to the specified
user specified string, DXDY.

Once the code is prepared for precompilation the source code must be associated with
logical unit 50. On VAX/VMS systems this is done with an assign statement. On UNIX systems
the association can be made by copying the source code to fort50 or linking @e., In) the source
code to fort.50. SYMG writes the enhanced source code to logical unit 7.

The following commands will make logical unit assignments and execute SYMG to
enhance TEST.FOR on a VAX/VMS computer.

$ASSIGN TEST.FOR for050
$ASSIGN TEST-SG-FOR foro07
$RUN SYMG

The following commands can be used to execute symg on a UNIX system to enhance the sample
program named test-f.

>cp test.€ fort.50

’ symg
>mv fort.7 test-sg.f

86

The data set created during precompilation is the enhanced source program. The FORTRAN
77 compiler and link editor used with the code prior to enhancement are also used to compile
and link the enhanced code. The object module for the enhanced code must be linked with the
GRESS run-time hirary. The following commands can be used to compile and link
TEST - SG.FOR on a VAx/vMS computer with the GRESS run-time library (EXLIB.0LB).

$FOR TEST-SG
$LINK TEST-SG,EXLIB/LIB

The following command can be used to compile and link test-sg.f on a UNIX system with the
GRESS run-time library (sg1ib.o and c1ib.o).

>f77 -0 test - sg test-sg.f sg1ib.o c1ib.o

For this example three numbers (2.0,3.0, 5.0) were entered into a fde named fort.5 with
a 3E15.5 format. To execute the enhanced version of TEST.FOR (Le., TEST-SG) on a
V-S computer and report the derivatives and sensitivities of R and S with respect to A,
B, and C

$ASSIGN/USER-MODE fort5 fof l5
$RUN TEST-SG

To execute test-sg on a UNIX system simply enter test-sg at the UNIX prompt.

> test-sg

The output from the PRNTXX is a report of derivatives and sensitivities written to
logical unit 6. The sensitivity report for the test program includes the parameter name but not
the response name.

GRADIENTS FOR VARIABLE 9428

SENSITIvfTIES FOR VARIABLE 9428

GRADIENTS FOR VARIABLE 9432

SENSITIvlTIES FOR VARIABLE 9432

7.oaKH)(IE+OO 0.000000E+00 1.700000E+01

1.891892E-01 0.000000E +oO 1.148649E +OO

2.32oooOE +02 0.000000E +OO 5.8OOOOOE +02

5.517241E-01 0.000000E+OO 3.448276E+00

The GRADIENT is the first derivative. Gradients and sensitivities are reported when PRNTXX
is called. It is the responsibility of the user to keep track of the order in which PRNTXX is
called. Many users prefer to use the GETGXX or GETNXX routines to retrieve derivatives so

87

that they can generate their own report, tailored to meet their needs. PRNTXX is useful for
a quick look at the derivative and sensitivity values or for debugging.

This example shows how to do a simple program using the CHAIN option. Library
routines and precompiler directives can be used to adapt the enhanced code for a more advanced
application. The interested user should review the sections on GRESS library routines and
directives to the precompiler for helpful suggestions.

AppENDcrL C - ADGEN SAMPLE PROBLEM

ADGEN was developed as a GRESS option that provides the capability of automated
implementation of the adjoint sensitivity methods into existing FORTRAN 77 models. The flow
chart shown in Fig. 2.1 illustrates the processing steps for a GRESS application. A FORTRAN
77 program is input to the GRESS precompiler (SYMG). SYMG creates a new FORTRAN
program that when compiled and linked with the GRESS run-time library is capable of
calculating derivatives for each floating point assignment statement along with the normally
calculated result. For an ADGEN application, these derivatives are either stored in memory or
written to a computer disk in a structure that can easily be solved by back substitution. GRESS
run-time library routines (ie., BSULXX or FBSOLXX) or utility programs (BSOLVE and
BREDUCE) are then used to solve the matrix for user selected results of interest. A report of
sensitivities and derivatives for selected results with respect to all or part of the input data is
generated. Input data is identified either automatically as any data that is entered via a
FORTRAN read statement or manually by the user through the insertion of subroutine calls to
the GRESS run-time library.

A simple FORTRAN program is presented as an example. The processing steps, data
sets created, output information, and utility programs necessary to perform a complete
application are shown. There are four steps in performing an ADGEN application: 1)
precompile with SYMG; 2) compile and link with GRESS run-time library; 3) execute the
enhanced code; and 4) solve the matrix. The following program, named TEST.FOR (or test.f
on unix systems) is used for demonstration.

C GRESS/ADGEN test program
READ(5,*)B,C,D
X = B + D
Y = D**2 + B**2
R = 7.0*X + D**2
s = Y**2
END

Note specifically that FOR?” variables B, C, and D are input via a READ statement which
means they will automatically be treated as independent parameters. Let’s assume that we would
like F O R T ” variables R and S to be chosen as results of interest. That is, we would like the
first derivatives and sensitivities of variables R and S with respect to B, C, and D to be calculated
and reported.

To prepare the code for an ADGEN application, subroutine calls must be included to
identify the purpose of the run (SEXRXX), to select results of interest (POTRXX), and to
either solve the matrix (SSOLXX or FBSOLXX), or to clear the matrix buffers (CLEARXX).
A description of how to use these routines and others is included Chapter 3.

To further control the application the user may choose to insert dirwtives to the
precompiler. For a small code such as TEST.FOR, the directives are unnecessary; however,
some have been included in this example to aid the user in understanding how they are used.

89

+CDMMENlS ON
*DERIV DXDY

C GRESS/ADGEN test program
CAWI SEIRXX('ADJ0INT')

READ(S,*)B,C,D
X = B + D
Y = D**2 + B**2
R = 7.0*X + D**2
CALLPOTRxx(fl' R')
s = Y**2

CALL BSOLXx(-1,45,0.001)
END

CALL PoTRXx(S,' s 3

The first two lines are directives to the precompiler. The *COMMENTS ON directive causes
the precompiler to pass any comments beginning with a 'C' or 'cy in column one to the enhanced
code. The default is to not include comments in the enhanced code. The * D E W directive
changes the variable used to store the derivative for an assignment statement from the default,
DX, to the specified user specified string, DXDY.

Once the code is prepared for precompilation the source code must be associated with
logical unit 50. On VAXNMS systems this is done with an assign statement. On UNIX systems
the association can be made by copying the source code to fort.50 or linking (Le., In) the source
code to fort.50. SYMG writes the enhanced source code to logical unit 7.

The following commands will make logical unit assignments and execute SYMG to
enhance TEST-FOR on a VAX/VMS computer.

$ASSIGN TEST.FOR for050
$ASSIGN TEST-SG.FOR foro07
$RUN SYMG

The following commands can be used to execute symg on a UNPX system to enhance the sample
program named test.f.

>cp tesLf fort.50

'symg
>mv fort.7 test-sg.f

The data set created during precompilation is the enhanced source program. The FORTRAN
77 compiler and link editor used with the code prior to enhancement are also used to compile
and link the enhanced code. The object module for the enhanced code must be linked with the
GRESS run-time library. The following commands can be used to compile and link
TEST-SG.FOR on a VAX/VMS computer with the GRESS run-time library (SLIB-OLB).

$FOR TEST-SG
$LINK TEST-SG,SLIB/LlB

The following command can be used to compile and link test-sg.f on a UNIX system with the
GRESS run-time library (sg1ib.o and c1ib.o).

>f77 -0 test-sg test-sg.f sg1ib.o c1ib.o

For this example three numbers (2.0, 3.0,S.O) were entered into a file named fort.5 with
a 3E15.5 format. To execute the enhanced version of TEST.FOR (i-e., TEST-SG) on a
VAX/VMS computer and report the derivatives and sensitivities of R and S with respect to B,
C, and D

$ASSIGN/USER-MODE fort.5 foro05
$RUN TEST-SG

To execute test-sg on a UNIX system simply enter test-sg at the UNIX prompt.

As an alternative to solving the adjoint matrix with BSOIXX (or FBSOLXX) the user
can choose to output the adjoint matrix to disk and solve it with the BSOLVE program. To
output the adjoint matrix to disk, replace the call to BSOLXX in the sample program with a call
to CLEARXX. cL;EARxx has no arguments. When the enhanced program is executed, an
adjoint matrix will be created.

The two utility programs used to solve the adjoint matrix are BREDUCE and BSOLVE.
BREDUCE implements the back reduction algorithm discussed in Reference 1 to create a
"reduced" form of the adjoint matrix. The BREDUCE step can only be executed one time and
is only needed when working with large models. Since TEST.FOR is a small program we will
skip the BREDUCE step and proceed directly to BSOLVE. To sohe the matrix enter the
following.

$RUN BSOLVE

On UNIX systems simply enter bsolve.

> bsolve

The BSOLVE program will request a value €or the smallest sensitivity to report @e-, CUTOFF).
In practice sensitivities that are less than 0.01 are of little interest. Entering a value of 0.0 €or
CUTOFF will result in all sensitivities being reported.

91

The output from the BSOLVE program is a report of derivatives and sensitivities written
to logical unit 45. The sensitivity report for the test program includes both response and
parameter names.

Row number for response = 6 Number of parameters = 3

RESPONSE 1 R = 7.400000D-tOl

ROW NAME DERIVATIVE SENSlTlMTY
1 B 7.00000E+00 1.89189E-01
2 C 0.00000E+00 0.00000E+00
3 D 1.70000E+01 1.14865E+00

Row number €or response = 7 Number of parameters = 3

RESPONSE 2 S = 8.41oooOD+02

ROW NAME DERIVATIVE SENSITIVITY
1 B 2.32000E+02 5.51724E-01
2 C 0.00000E+00 0.00000E+00
3 D 5.80000E+02 3.44828E+Oo

This example shows how to do a simple program using the ADGEN option. Library
routines and precompiler directives can be used to tailor the enhanced code for a more
advanced application. The interested user should review the sections on GRESS library routines
and directives to the precompiler for helpful suggestions.

APPEND3XD -THE GENSUB OPTION

GENSUB is used to process a subset of a program tie., a do loop, subroutine, function,
a sequence of subroutines, or a whole program) for calculating derivatives of dependent variables
(responses) with respect to independent variables (parameters). GENSUB allows the processing
of program units as small as a do loop or as large as an entire program for derivative calculation.
GENSUB will use either forward or reverse chaining depending on which is most efficient for
the given problem.

If derivatives are to be calculated with the GENSUB option, independent variables must
be declared at the beginning of the section of code being processed with one of the parameter
declaration routines GENFXX, GENAPXX, or GENDPXX Parameters must have been
assigned values before the section of code through which derivatives are to be propagated is
executed. For example, if GENSUB is used to calculate the derivatives of the results from a
subroutine with respect to the REAL variables provided as arguments into the subroutine, those
arguments will have to be identified as parameters on entry to the subroutine.

Run-time routine GENRESXX is used to identify responses. Responses can be any
floating point variable calculated in the subroutine or section of code through which the
derivatives are propagated.

The user must supply a two-dimensional, single-precision array for storing the derivatives.
The array should be dimension N by M, where N is the number of dependent variables, and M
is the number of independent variables declared in the sub-section of the program. At the end
of the sub-section (e.g., function or subroutine) being processed with the GENSUB option, the
user should insert a call to subroutine CfIAINGG with the result array as an argument.
CHAINGG will apply the chain rule in either forward or reverse mode to solve for the
derivatives of the dependent variables with respect to the independent variables. The derivatives
will be returned to the calling program in the array provided by the user.

By default the GENSUB option uses dynamic allocation. CHAINGG returns the amount
of memory used processing the derivatives in the second and third arguments. The third
argument is the amount of memory required in four byte wards that was automatically set to
zero. The second argument is the amount of memory in bytes that was not automatically set to
zero.

The ALLOCGG routine can be used to pre-allocate memory for the section of code
being processed with GENSUB. Depending on the code being processed, the operating system,
and the computer resources available, pre-allocating memory may be more efficient. The first
time a section of code is pnxessed, the chain routines provide information about memory usage.
This information can be used in subsequent executions to spec* or estimate the amount of
memory to request using ALLOCGG. Since the amount of memory used to process a section
of code can vary, the user must be careful when using ALLOCGG. However, on some
operating systems even over estimating the amount of memory to allocate with ALLOCGG is
more efficient than not pre-allocating memory-

Upon return tiom C " G G tbe memory allocated for storing and propagating
derivatives is released.

93

GENSUB can be used to process all or part of a program; however, the first step in a
GENSUB application is to separate the section of code to be processed from the rest of the
program. The first example shows the calculation of derivatives for the output from subroutine
SUBl @e., B) with respect to the input @e-, X(l), X(2), X(3), and X(4)). To prepare the
subroutine SUBl for precompilation, use the *GENSUB directive. Subroutine calls to declare
parameters and responses can be inserted before or after enhancement. Also, call to CHAINGG
can be inserted before or after enhancement. In the example, derivatives of responses with
respect to parameters are output with a print statement. Note that the array RESULT was
dimensioned one-by three to hold the derivatives of one result with respect to three declared
parameters.

*gens&
SUBROUTINE SUBl(/M,BB,CC)
DIMENSION X(4),RESULT(1,3)
EQUIVALENCE(FX,RX)

C
C Declare AA, BB, and CC to be parameters
C

call g e w 4 w
call gev=@B)
call gewXN?w

C
cc=3.
FX=AA/BB +CC*DD
RANN = 1.0
A = R A N N * D (
B = ATAN(ABS(A/(A+3.1))) - SIN(SQRT(A/DD))
C = AL,OG(ABS(B)) + EXP(B/(B+2.5))
B = A*B/C + ALOGlO(ABS((C+A)/B)) + COS(ABS(C)/C**Z)
B = A**UABS(B)**1.02 * B

dl g e m @)
call &aingg(resdt&l~m)

print*,' memory allocated (h e m) =',imem
print*,' memory allocated pre-set to zero (izero) =',izero
print*,(result(l,ij),ij = 1,3)
RETURN
END

Subroutine SUBl is ready to be enhanced with the GRESS precompiler. The following
commands will make logical unit assignments and execute SYMG to enhance SUBLFOR on a
VAX/VMS computer.

$ASSIGN SUBLFOR for050
$ASSIGN SUB1-SG.FOR foro07
$RUN SYMG

The following commands can be used to execute symg on a UNM system to enhance the sample
program named sub1.f.

>cp sub1.f fort30

'SPg
>mv fort.7 subl-sg.f

The data set created during precompilation iS the enhanced subroutine, SUB1-SG-FOR (or
subl-sg.9. The following main program (UAIN.FOR or main.9 will be used to call subroutine
SUB1.

PROGRAM MAIN

AA = 1.0
BB = 2.0
DD = 4.0
CALL SUBl(A,A,BB,DD)
END

C

The FOR" 77 compiler and link editor used with the code prior to enhancement are also
used to compile and link the enhanced code. The object module for the enhanced code must
be linked with the GRESS GENSUB library. The following commands can be used to compile
and link SUf31SG.FOR on a VAX/VMS computer with the GRESS GENSUB library
(genlib-obj).

$FOR SUB1-SG
$FOR MAIN
$LINK MAIN,SUBl_SG,GENSUB

The following command can be used to compile and link test-sg-f on a UNIX system with the
GRESS GENSUB library (genlib.0).

>f77 -0 subl-sg main.f subl-sg.f gen1ib.o

The RUN command is used to execute the enhanced version of SUB1 on a VAXNNS system.

$RUN SUB1-SG

On unix systems, simply enter the program name at the system prompt.

95

With the GENSUB option the output is determined by the user. In this example the amount
of memory used during the execution of SUB1 and the derivatives of B with respect to the
declared parameters are output with print statements.

memory allocated (imem) = 288
memory allocated pre-set to zero (izero) = 64
12.13453484 -6.067267418 71.32409668

On subsequent executions of the program, the user may choose to use the values printed out for
imem and hero to pre-allocate the memory required for subroutine subl-sg. Memory can be
pre-allocated using the ALLOCGG library routine. The following example shows how
ALLOCGG could be used with subroutine SUBlSG. The call to ALLOCGG can be inserted
before or after enhancement.

*gens&
SUBROUTME SUBl(AA,BB,DD)
DIMENSION X(4),RESULT(1,3)
EQUIVALENCE(FX,RX)

C Pre-allocate memory

C
C Declare AA, BB, and CC to be parameters
C

call *o%&Q=7w

call gev=gc(AA)
call geV=@B)
call genpxx@l))

C
cc=3 .
FX=AA/BB +CC*DD
RANN = 1.0
A = R A N N * € X
B = ATAN(ABS(N(A+3.1))) - SIN(SQRT(A/DD))
C = ALOG(ABS(B)) + EXP(B/(B+2.5))
B = A*B/C + ALQGlO(ABS((C+A)/B)) + COS(A..BS(C)/C**2)
B = A**2/ABS(B)**1.82 * B

call chaingg(rPlrult,imem,km)
prints,' memory allocated (imem) =' ,hem

ge-m

%

print*,’ memory allocated pre-set to zero (hero) =’,izero
prht*,(resuIt(l,ij),ij = 1,3)
RETURN
END

When using ALLOCGG the user must be careful to ensure that enough memory is pre-
allocated. For small subroutines on most systems ALLOCGG is not necessary, For large
segments of code the user may see significant savings in execution time and memory utilization;
however, the impact of ALLOCGG is machine and problem dependent. I would recommend
using ALLOCGG whenever you know the amount of memory required. Don’t use ALLOCGG
the first time you run a new routine or problem.

GENSUB can also be used to process an entire program. In most cases CHAIN or
ADGEN would be more efficient; however, if a code is iterative and you can solve for
derivatives between iterations, GENSUB with its dynamic allocation may have some benefits.
The following program is set up for a GENSUB application.

‘gensub
*comments on
C GRESS/GENSUB SAMPLE PROBLEM 2

PROGRAM JMA
DIMENSION X(4),F(4,4,4),RS(1ooO)
PRINT*,’** GRESS SAMPLE PROBLEM B.l.l **’
PRINT*,’* *’
PRINT*,’* PLEASE ENTER
PRINT*,’* 1.3 3.0 4.0 4.5 *’
READ(S,*) (X(f),I=1,4)
PRINT ,’X(I),I= 1,4)’,X

*t

c
C Define X to be an array of parameters
C

genapnr@94)
LOOP1 = 4
LSUMO = 100
D = 0.0
DO 1 I = 1,LSUMO
CALL SUBl(I,A,B,X)
CALL SUB2(I,F,X,LOOP1)
Fs = 0.0
DO 2 J = 1,LOOPl
DO 2 K = 1,LOOP1
DO 2 L = 1,LOOPi
FS = FS + F(L,K,J)

2 CONTINUE

97

B F S = B + F S
RS(I) = BFS
D = D + B F S

C
C DECLARE POTENTIAL RESPONSES
C
1 CONTINUE

9 FOR.MAT(1H ,’D’,lPE16.8)
8 FORMAT(1H ,’A,B’/(lH ,13,1P74E16.8))
C Disdeclaredaresponse

C The CHAINREV mutine implements chain rule
C in reverse mode with derivatives returned in DX
C

C
C IMALLOCismemoryaUocated
C 1CAI;LOc is memory allocated and preset to mro

print*,’ malloc =’,imalloc,’ calloc =’,icalloc
write(6,*)(dx(j),j =1,4)
STOP
END
SUBROUTINE SUBl(I,A,B,X)
DIMENSION X(4)

R4” = 0.0
CALL GETRAN(RANN)
A=RANN*FX
B = ATAN(ABS(A/(A+3.1))) - SIN(SQRT(M(4)))
C = AL,OG(ABS(B)) + EXP(B/(B+2.5))
B = A*B/C + ALOGlO(ABS((C+A)/B)) + COS(AsS(C)/C**2)
B = A**UABS(B)**l.02 * B
RETURN
END
subroutine SUB2(I,F,X,LOOPl)
DIMENSION X(4) ,F(4,4,4)
DO 1 II = 1,LOOPl
DO 1 J = 1,LOOPl
DO 1 K = 1,LOOPl
RANN = 0.0
CALL GETRAN(RA”)
FXR = X(3)**2/COS(RQ”**2) - SQRT(RA-”*X(4)*X(2))

-(6,9) D

ge-m

d c ~ (~ a l l & d o c)

Fx = X(l)/X(2) + X(3)*X(4)

98

FXR = FXR*X(4) + MAx(x(l),x(2),x(3),x(4))
FXR = FlcR - MIN(X(l),X(2),X(3),X(4))
FXR = FXR * FLOAT(MINO(K,J,II))FLOAT(MAXO(~J,II))
FXR = FXR*X(l)*X(l)*RA"*RA"
F(K,J,II) = X(1) * * RA"/EXP(RA") +FXR * EXP(2.00 1 *RA")

RETURN
END

1 CONTINUE

The output from this sample problem includes the derivatives of D with respect to the elements
in array X, as well as the amount of memory required.

total malloc = 2548816 total calloc = 1237
1067380. -19951.63 401086.7 149175.0

Though not shown, it would be possible to solve for derivatives between iterations in the
previous example, thus reducing overall memory requirements. The X array and D are the only
variables that need be retained between iterations.

APPENDDI: E - IMPT,EMENTATION NOTES

My experiences in implementing GRESS on the various computers and operating systems
is provided in this section. Though computer scientists are working very hard at defining
standards for languages such as C and FORTRAN, the interfacing between those languages is
far from standardized. Most of the differences between the various implementations of GRESS
are related to the interfacing between C and FORTRAN. Provided is information on how to
compile and link the GRESS precompiler and run-time libraries.

El. VAx/VM S

GRESS was developed in the VAX/VMS environment. Most of the major program
options have been tested by appiication to programs used in the nuclear industry and elsewhere.
The following instructions will create SYMG.EXE.

$FOR SYMG
SLIN SYMG

The GRESS Run-Time Library can easily be~rea ted as an object library.

$FOR SGLIB
$CC CLIB
SLIBICREATE SLIB SGLIB,CLIB

An enhanced program named TEST-SG-FOR should be compiled and then linked with the
object library.

SFOR TEST-SG
$DEFINE LNK$LIBRARY SYS$LIBRARYVAXCRTL.OLB*
$LINK TEST-SG,SLIB/LIB

The executable image, TEST-SG.EXE, is now ready for execution.

the following.
The GRESS GENSUB option requires only GENLIBC To compile GENLE3.C enter

$CC GEMUB-C

If TEST-SG.FOR is precompiled with the *GENSUB directive, then the following commands
will compile and link TEST-SG.FOR and create an executable program, TEST - SG.EXE.

'Define lnk$library only needs to be done once during a session.

101

$FOR TEST-SG
$DEFINE LNK!$LIBRARY SYS$LIBRARYVAXCRTL.OLB
$LINK TEST-SG,GENLIB

The VAX/VMS G-FLOAT option does not work under all circumstances with GRESS.
ADGEN and CHAIN will work unless the value of a derivative falls outside the range E-38 to
E+38, approximately. The run-time libraries must be compiled with the G-float option. Since
GRESS propagates derivatives in single precision and G-FLOAT allows double precision
exponents in the range E-300 to E+300 it is possible for a derivative to be too big or too small
for GRESS. In most circumstances this does not occur.

E 2 IBWAIX

GRESS was implemented on an IBM/6000 RISC Work Station. Most major program
options have been tested. The following instructions were used to create a precompiler named
symg, and to compile the run-time libraries.

$xlf -0 symg symg.f
$xlf -c sg1ib.f
$cc -c c1ib.c
$cc -c gen1ib.c

For a CHAIN or ADGEN application, an enhanced program named test-sg-f would be compiled
and linked with sg1ib.o and c1ib.o to create an executable file named sg.

$xlf -0 sg test-sg-f sg1ib.o c1ib.o

For a GENSUB application, test-sg would be compiled and linked with gen1ib.o to create an
executable file named sg.

$xlf -0 sg test-sg.f gen1ib.o

GRESS was implemented on a VAX with ULTRIX operating system. ULTRIX is a
UNIX operating system. This version has undergone very limited testing. Most major program
options were tested on small sample problems. The following instructions were used to create
a precompiler named symg, and to compile the run-time libraries.

$f77 -0 symg symg.f
$f77 -c sglib-f
$cc -c c1ib.c
$cc -c genlibx

102

For a CHAIN or ADGEN application, an enhanced program named test-sg.f would be compiled
and linked with sg1ib.o and c1ib.o to create an executable file named sg.

$f77 -0 sg test-sg.f sglib-o clib.0

For a GENSUB application, test - sg would be compiled and linked with gen1ib.o to create an
executable file named sg.

$f77 -0 sg test-sg.f genlib.0

Due to system limitations the amount of memory required by the enhanced code was
severely restricted. Following the instructions in Chapter 4, parameters IWORKSZ, LSTOT,
LTOT, MAXR, and ITAB were substantially reduced. A significant reduction in those
parameters creates a version of GRESS that is suitable for small problems (as measured in
execution time and memory requirements). CHAIN option should work for larger problems;
however, ADGEN is severely limited.

E4. SUN

GRESS was implemented on a SUN SPARC Station l+. This version has undergone
very limited testing. Most major program options were tested on small sample problems. The
following instructions were used to create a precompiler named symg, and to compile the run-
time libraries.

$f77 -0 symg symg.f
$f77 -c sg1ib.f
sf77 -c f l h f
$cc -c c1ib.c
Scc -c genlibx

For a C" or ADGEN application, an enhanced program named test-sg.f would be compiled
and linked with sg1ib.o and c1ib.o to create an executable file named sg.

$f77 -0 sg test-sg.f sg1ib.o c1ib.o

For a GENSUB application, test-sg would be compiled and linked with gen1ib.o to create an
executable file named sg.

$f77 -0 sg test-sg.f flib.0 gen1ib.o

Due to system limitations the amount of memory required by the enhanced code was
severely restricted. Following the instructions in Chapter 4, parameters IWORKSZ, LSTOT,
LTOT, MAXR, and ITAB were substantially reduced. A significant reduction in those

103

parameters creates a version of GRESS that is suitable for small problems (as measured in
execution time and memory requirements). CHAIN option should work for larger problems;
however, ADGEN is severely limited.

GRESS was implemented on a Hp 9OOO Work Station. This version has undergone very
limited testing. Most major program options were tested on small sample problems. The
following instructions were used to create a precompiler named symg, and to compile the run-
time libraries.

$f77 -0 symg symg.f
$f77 -c sg1ib.f

$cc -e gen1ib.c
$E -C clib.c

For a CHAIN or ADGEN application, an enhanced program named test-sg.f would be compiled
and linked with sg1ib.o and c1ib.o to create an executable file named sg.

$f77 -0 sg test-sg.f sg1ib.o c1ib.o

For a GENSUB application, test-sg would be compiled and linked with gen1ib.o to create an
executable file named sg.

$f77 -o sg test-sg.f flib.0 gen1ib.o

On the HI?, SYMG writes the enhand code to logical Unit 70.

104

0 ~ - 1 1 9 5 1

1.
2.
3.
4.
5.
6.
7.
8.

9-13.
14.
15.
16.
17.
18.
19.
20.

B. R Appleton
S . k Bartell
J. M. Bownds
R. W. Brockett (Consultant)
J. J. Dongarra
J. J. Doming (Consultant)
M. B. Emmett
D. M. Hetrick
J. E. Horwedel
D. Ingersoll
H. I. Jager
J. E. k i s s (Consultant)
P. Kanciruk
R. McLean
T. Mitchell
N. Moray (Consultant)

INTERNAL DISTRIBUTION

21. M.D.Morris

27. E G. Pin
28. S . E RaiIsback
29. R. J. Raridon
30. C. C. Travis
31.R C. Ward
32. R. M. Westfall

33-37. B. k Worley
38-42. R. Q. Wright

44-45. Laboratory Records Dept.

22-26. E. M. Obiow

43. M. Yambert

46. Laboratory Records, ORNLRC
47. Document Reference Section
48. Central Research Library
49. ORNL Patent Office

EXTERNAL DISTRIBUTION

50. Office of the Assistant Manager for Energy Research and Development, DOE Field Office,
Oak Ridge, P.O. Box 2008, Oak Ridge, TN 37831

51. Rod Bain, Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706
52. Jean-Francois M. Barthelemy, Intesdisciplinary Research Office, Structural Dynamics Division,

M/S 246, NASA/Langley Research Center, Hampton, VA 23665-5225
53. Laura McDowell-Boyer, Grand Junction Office, P.O. Box 2567, Grand Junction, CO 81502
54. J. R. Cook, Interim Waste Technology Division, Savannah River Laboratory, P.0, Box 616,

Aiken, SC 29802
55. Dr. Richard F. Deckro, Portland State University, Engineering Management Program, P.O.

Box 751, Portland, OR 97207-0751
56. J. E, Dennis, Jr., Rice University, Department of Mathematical Sciences, P.O. Box 1892,

Houston,TX 77251
57. G. E Corliss, Marquette University, Department of Mathematics, Milwaukee, WI 53233
58. E. G. Dupnick, ECON, Inc., 3020 Hamakeer CT B 105, Fairfax, VA 22031
59. David M Gay, 35 Livingston Ave., New Providence, NJ 07974-2219
60. Jean Charles Gilbert, INRIA, Domaine de Voluceau, B P 105 78153, Le Chesnay, France
61. Andreas Griewank, Argonne National Laboratory, Division of Mathematics & Computer

Science, 9700 S. Cass Ave., Argonne, IL, 60439
62 Laura Hail, Interdisciplinary Research Offtce, Structural Dynamics Division, M/S 246,

NASALangley Research Center, Hampton, VA 23665-5225
63. W. V. Harper, Resource International, 281 Enterprise Dr., Westerville, Ohio 43081
64. David Juedes, Iowa State University, Department of Computer Science, 4317 Lincoln Swing

#34, ha, IA 50010
65. John M. Kallfelz, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

105

66. Koichi Kubota, Keio University, Department of Admin. Engineering, 3-14-1 Kohoku-ku
Hiyoshi, Yokohama 223, Japan

67. Charles L. Lawson, 1340 Marianna Rd., Pasadena, CA 91105
68. J. Dan Layne, P.O. Box 1036, Littleton, CO 80160
69. Weldon k Lodwick, Department of Mathematics, Computational Mathematics Group,

Campus Box 170, P.O. Box 173364, Denver, Colorado, 80217-3364
70. D. W. Muir, IAEA Nuclear Data Section, P.O. Box 200, A-1400 Vienna, Austria
71. Ionel M. Navon, Florida State University, Department of Mathematics, Love Bldg., Rm. 111,

Tallahassee, FL 32306-3027
72. T. k Parish, Nuclear Engineering Department, Zachry Building, Texas A&M University,

College Station, TX 77843
73. L. B. Rall, University of Wisconsin, Department of Mathematics, 480 Lincoln Drive, Madison,

WI 53706
74. Marcela I, Rosenblun, Rice University, Dept. of Mathematical Sciences, P.O. Box 1892,

Houston, TX 77251
75. G. R. Shubin, Numerical Analysis, Org. G-6412,M/S 7L-21, Boeing Computer Services, P.O.

Box 24346, Seattle, WA 98124-0346
76. Edgar Souli, Inst. de Res. Tech. & Indus. Dev., Division d’Etudes de Separation, Cen.

d”uc1eaires de Saclay, F-91191 Gif-Sur-Yvette Cedex, France
77. Leigh Tesfatsion, Iowa State University, Department of Economics and Mathematics, Heady

Hall, Am=, IA 50010-1070
78. W. C. ”hacker, NOMAOML, 4301 Rickenbacker Causeway, Miami, FL 33149
79. J. Thames, Digital Calculus Corn., 5406 Via Del Valle, Torrance, CA 90505
80. k L Tits, Electrical Engineering Department, University of Maryland, College Park, MD

20742
81. A. D. Yu, Interim Waste Technology Division, Savannah River Laboratory, P.O. Box 616,

Aiken, SC 2980
82-91. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831 (10)

106

