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ABSTRACT

When radiation shields are penetrated by ducts, the gamma rays re-
sulting from the radiative capture of low-energy neutrons in the duct
walla can be principal contributors to the total dose along the duct. 1In
order to calculate the effect of these capture gamma rays, the distribu-
tion of low-energy neutrons in the ducts must be known. This report
presents calculations of low-energy neutron distributions in concrete-
walled ducts by a method in which an albedo model and a Monte Carlo tech-
nique were used. One series of calculations was performed for stralght
ducts so that comparisons could be made with the Simon-Clifford analytic
approximation. Another series was for three-legged rectangular ducts
similar to those used in a Tower Shielding Facility experiment. When an
albedo similar to that to be expected for a pure thermal-neubtron source
was used, the results agreed very closely with the TSF data. A digital

computer code was written to perform the calculations.
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CHAPTER I
INTRODUCTION

The general problem of protection against nuclear weapons is guite
complex,with the effects to be considered falling naturally into three
categories: (1) blast effects, including those due to blast waves and
thermal radiations, (2) the effects of delayed radiations (fallout), and
(3) the effects of initial.nuclear radiations, defined as those radia-
tions emitted within one minute after detonation. The blast effects are
similar to those encountered with conventional weapons except in degree;
therefore, design procedures which take into account nuclear weapon blast
protection are similar to those used for conventional weapon blast pro-
tection. The effects of fallout and initial radiations are, of course,
unique to nuclear weapons and are of concern in regions where no damage
from blast exists. For example, unprotected persons hundreds of miles
from the point of detonatlion may receive lethal doses from fallout
radiation. Because of this, fallout radiation has received a great deal
of attention in the past few years, the major effort consisting in a
serieg of moments-method calculations performed by Spencer at the National

1
Bureau of Standards. Spencer's results have been reformulated in such

. v. Spencer, Structure Shielding Against Fallout Radlation
from Nuclear Weapons, National Bureau of Standards Monograph 42

(1962).




. . - 2,3 . .
a way that routine calculational procedures for designing structures

to shield against fallouv radiation are now available.

The effects of initial nuclear radiations, on the other hand, have
only recently received attention. This is largely due to the fact that
initial radiations are important only for rather special cases. If, for
example, the possible combinations of weapon size, altitude and distance
of detonation, and characteristics of the protective siructures (or lack
of a structure) are considered, it will be found that for only a limited
number of combinations are the initial radiations a significant problem.
This is because as the weapon size increases, the blast damage area in-
creases more rapidly than the area covered by high initial radiation
levels.” Consequently, initial radiations are significant only for small
weapons or for high blast levels around large weapons. Since there
appears to be little incentive for a prospective enemy to use small
wegpons eilther against the general public (because large area coverage
would be required) or against hardened military installations (because
high blast levels would be neededL a primary area of concern, insofar

as initial radiation dose protection 1s concerned, is for large weapons

2Design and Review of Structures for Protection from Fallout

Gamma Radiation, Office of Civil Defense (Rev. Oct. 1, 1961).

SPallout Shelter Surveys: Guide for Architects and Engineers,
Department of Defense, Office of Civil Defense NP-10~2 (May, 1960).

45. Glasstone (ed-),The Effects of Nuclear Weapons, Department
of the Army Pamphlet No. 39-3 (April, 1962).




and heavily shielded structures, such as missile bases or military com-

mand posts.

An investigation of the effectiveness of such structures in
attenuvating initial weapons radiation was recently initisted at Osk Ridge
National Labcratory (ORNL). The program consists of measurements of
radiation intensities inside baslcally simple geometric shapes and cor-
relation with corresponding calculations, the overall purpose being to
develop experimentally verified calculational techniques which will
vield "handbook”-type design data for initial radiation protection.
Although, in general, simple structures of the type used are amensble
to rather straightforward radiation attenuation calculations, a major
difficulty arises as a result of various penetrations through the main
shield, such as alr passages, conduits, and entranceways. Such pene.-
trations, or ducts, allow "streaming” of radiation through the shield
and also increase the production of secondary radiations within the

shield. Both of these components are difficult to calculate.

The ORNL experiments have shown that fast-neutron dose rates
inside complex duct configurations fall off rapidly as the duct is
traversed (see Figs. 49 and 50 in Chapter IV). Calculations of the
fast-neutron dose rates along a single leg of & duct can be handled res-
sonably well by considering only two components: unscattered neutrons
and neutrons that have been reflected from the walls only once. This is

a8 result of the small fraction of dose rate which is incident on a surface



that is reflected. The calculation of the unscattered component is guite
straightforward if the angular distribution of the source at the duct

entrance is known, and, although the calculation of the singly scattered
component is more complex, i1t can be handled adequately in most cases of

interest through the use of the albedo, or reflection coefficient model.

Calculations of the attenuation of gamma radiation incident on a
duct configuration can be handled in a similar manner. In most cases,
the total albedo (the integral of the differential albedo over all exit
solid angles) is even smaller for gamma-~ray dose rates than it is for
fast-neutron dose rates. Typical values are 0.12 for fast-neutron dose
rates and 0.06 Tor gamma-ray dose rates, thereby rendering the second

and higher-order scatterings negligible in most cases.

A significant result of the ORNL experiments was that the dominant
radiation component in many complicgted duct geometries is the gamma~ray
dose rate resulting from the capture of low-energy neutrons in the walls
of the duct. An important problem in the calculation of this component
is the determination of the spatial distribution of the low-energy neu-
trons, which involves the processes of the slowing down of the higher-
energy neutrons and the transport of the low-energy neutrons themselves.

The determination of the distributions of the low-energy neutrons is the

problem with which this thesis is concerned.

The complexity of the usual geometries, in practice, precludes the

use of many of the common neutron transport calculational techniques.



One technique which can be and is used for this type of calculation

is the random=-sampling, or Monte Carlo, process. This process can be
used to obtaein complete descriptions of fast-neutron dose rates and
gamma~ray dose rates by following each particle to its death. In
practice, 1t is unecconomical to use the existing codes for a problem as
complex as the low-energy neutron problem because excessive machine time
is required to follow a neutron completely through the slowing-down and
capture processes. Hach collision with the wall can result in a large
number of nuclear interactions before rew~emission, if re-emission occurs
at all. It is certainly wasteful to follow a history which does not
result in re-emission and possibly terminates so deep in the wall that

little contribution is made to the gamma-ray dose rate.

An alternative procedure is the use of the albedo concept to
follow the transport of the low-energy neutrons down the duct. However,
unlike the albedos for Tast neutrons and gamme rays, which are defined
on the basis of dose~rate reflection, the albedo for low-energy neu-
trons, which is defined on the basis of number reflection, is high (on
the order of 0.7 or 0.8). Consequently, while the albedos for fast-
neutron and gamma~ray dose rates give reasonable results by considering
only one reflection, the albedo for low-energy neutrons requlres considers-
tion of orders of scatterings higher than the first. If the albedo were

low and the geometry simple, direct numerical integrations could be



performed over all possible locations of each scatter point.5 But when
many scatterings must be considered, and when the geometry becomes
extremely complicated, these integrals become so complex that the solu-
tions are usually more efficient if the random=-sampling technique is
used.® The technique ordinarily used in particle-transmission problems
is the random-walk technique, rather than the technique of random
sampling of the multiple integrals directly. It is this technique that
was selected for computing the thermal-neutron flux distributions reported

in this study.

°C. W. Terrell et al., Radiation Streaming in Shelter Entrance-
ways, Armour Research Foundation, ARF-1158A01-5 (July, 1961).

GH. Kahn, "Random Sampling (Monte Carlo) Techniques in Neutron

Attenvation Problems-I," Nucleonics, p. 28 (May, 1950).



CHAPTER IT

THE ALBEDO--RANDOM WAIK MODEL

The problem of interest is that of predicting the thermal-neutron
fluxes at various positions in a multilegged concrete-walled duct, which
are due to a neutron radiation field of arbitrary energy distribution
incident on the mouth of the duct. It is assumed that this problem can
be represented by the transport of particles down the duct according to
an albedo model. When used for calculations of fast-neutron or gamma-ray
doses, the differential albedo is defined as the fraction of the dose linci-
dent on a semi-infinite plane surface that is reflected into a particular
3011d angle element. In general, the albedo must be a funetion of the
incident direction and energy, the wall material, and the exit direction.
Practical considerations of caleculational complexity quite often lead to
simplifying assumptions, such as the use of an albedo which is an average
of the differential albedo over the incident particle energy spectrum or
the use of an albedo which has no dependence on the incident direction
(and therefore no dependence on the exit azimuthal angle). For the prob-
lem considered here, both assumptions given above wlll be made; specifi-
cally, it will be assumed that the albedo is constant and that it is
independent of the incident direction. In this case the albedo is defined
on the basis of the number of particles reflected rather than on the
fraction of dose reflected. The following sections describe the

mathematical model chosen to represent the physical case and the



justification of this choice.

Mathematical Model

The basic equation governing particle transmission problems is
the transport equation. In such problems random-sampling orocedures

1

essentially solve the integral form of the eguation, which may be

represented as

o(p) = f o(p') K(p',p) dp' + S(p) , (1)

where
p = a vector in phase space, having position and momentum
cocrdinates,
o(p) = flux of particles at p,

a kernel describing the probability of a particle

=~
N
Le]
oo
3
I

suffering a scattering ccllision at p' and moving
from p' to p without collision,
S(p) = flux at p due to uncollided particles from the

source.

*See, for instance, C. D. Zerby, A Monte Carlo Calculation of
Air-Scattered Neutrons, ORNL-2277 (1956), App. A, pp. 61-6L; or T
B. Davison, Neutron Trangport Theory (O0xford At the Clarendon Press,
1957) , pp. 22-26, for derivations of integral formulations of the
transport eguation.
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The above eguation in the complete form describing a particular
problem may be exceedingly complex. The source term, in general, will
involve an integration over p, and the kernel may be even more complex,

even in simple geometries.

If the source and kernel are known, the above equation may be
solved by iteration. It is informative to do this for a few iterations,

with the starting approximation ¢s(p) = S(p). Thus,

N

01(p) = [ 6ole") K(p',p) @" + 5(n) - (2)
It may be noted that ¢,(p) is the flux at p due to particles

reaching p after having one collision (the integral term) plus the flux

of uncollided particles. Iterating again,

o2(p)

i

fcol(p) K(p',p) dp' + 5(p) ()

i

/fs(p") K(p",p) K(p',p) dp" dp' + fS(p') K(p',p) ap' + s(p) .

This gives the flux at p due to particles having had two or less colli-
sions. This iterative solution of the transport equation 1s therefore

equivalent to the Neumann series solution:
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where Ij(p) represents the flux at p from the jth order of scattering.

The random-walk procedure is a statistical analogue of the actual
physical process and gives estimates to the Ij's in the following manner.
The characteristics of a source particle (i.e., position and momentum) are
chosen using randomly distributed variables and applicable distribution
functions. The particle starts from the source reglon with these charac-
teristics and continues to a collision point determined by the known
probabilities of interaction. New characteristics are then chosen again,
using the sporopriate distributions. At this point the particle may make
a contribution to I;(p) by colliding with a detector located at the
positional coordinates of p. By following a large number of particles,
adding their contributions to various detectors, and then dividing by
the number of particles, estimates o each Ij may be obtained. It
should be noted that the probability density functions (p.d.f.'s) from
which the samplings are taken correspond to the S(p) and K(p',p) of

Egs. 1 through 3.

The form of the transport equation which applies to the albedo
model may be described as follows., A duct of arbitrary shape has a posi-
tion on its surface represented as r, a position vector. The cosine of
the polar angle, defined as the angle at the point r bdetween the normal
to the surface and an arbitrary direction, wlll be designated u. Let
A(E;H) dp be the current of particles entering the duct wall at r and in
du about p. F(r) is the current of particles leaving r, and a(r) is
the probability of re-emission of a particle entering the surface at r.

Then
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F(z) - olx) [ Az au . )

Associating p' and ¢', the cosine of the polar angle and the azimuthal angle,
respectively, with a direction measured from a point E', there exists a
relation G such that u = G(r,r',n',¢'). The polar angles 6 and 6' at

the points r and r' are shown in the sketch below.

r

GO

Then r’
d
Alz,u) :fd_{’ dut aet F(z') a—% (u',r') 8lp - a(zzhe', o) ] + Ao(r,p) ,

where %% (u,z) is the probability per steradian of a particle at r being

emitted into dfi about u. AO(EQH) du is the current into the surface at
r and dp about p due to uncollided particles from the source. If Egs.
4 and 5 are solved by iteration, a sequence of Fj's is generated which
approaches F. Fgo 18 set to zero, since there can be no emergent flux at
r uncollided from the source. Fl(zj, the current of singly scattered

particles leaving r, is then

Fi(x) = Oﬂ(z)on(;L:,u) au .
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As before, repeated iterations give higher-ordered approximations to
F(r). Knowing F(r), the flux of particles can be obtained by integrat-
ing over the duct walls and adding the unscattered contribution from the
source.

The details of how the procedure outlined above is actually handled
in the computer code are as follows:

A source plane i1s defined from which all particles originate,
located at the mouth of a duct which may have either a rectangular cross
section or a cross sectlon defined by the zeros of a general quadratic

2 4 by2 +exy +dx + ey + T, with a/b > 0 and a % 0.

function, i.e., ax
The duct may have multiple right-angle bends when the rectangular cross
section is used. The source may be either located at a point or
uniformly distributed on the source plane. The angular distribution of
the particles leaving the source plane may be specified (in terms of a
probability density function) as a power series in the cosine of the
polar angle of emission (the angle between the particle direction and
the normal to the surface). The particle undergoing the random walk
has no characteristics associated with it at any time other than its
position, direction, and weight, which is unity upon emission from the
source plane. Upon a collision with a wall surface, the weight of the
particle is changed by a constant factor (corresponding to the albedo,

or probability of re-emission, associated with the actual wall and the

physical particle whose behavior is being simulated). A direction of emission
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is then selected which is assumed to be independent of the incident
direction. It is therefore not a function of the azimuthal angle and, as
before, is selected from a probability density function expressed as a
power series in the cosine of the polar angle of emission. Fluxes at
various positions along the duct are computed from this random walk by

cne of two procedures. One technique which can be used is that of sta-
tistical estimation. In this technique, at every scatter point, including
the source point, an estimate is made of the flux contribution to a series
of point detectors. This is calculated using the known probability of the
particle reaching each of these detector locations from the wall scatter
point. An alternate procedure is to add track lengths from the particle
track which occur in each of a series of finite volume detectors. The
flux in a particular detector is the sum of all the track lengths which
occurred in it divided by the volume of the detector. The detector which
has proved to be the most satisfactory for the problem under considera-
tion is a detector which is thin in the dimension parallel to the duct
center line and vhich occuples the entire cross section cf the duct. The
flux which is obtained from this detector is, of course, an average flux
over the volume of the detector, but since the flux does not vary rapidly
along a plane normal to the center line this average flux 1s a

fairly good measure of the flux along the duct center line. The
particles are followed until they completely traverse the duct, re-enter

the source plane, or exceed a predetermined number of wall scatterings.



14

Applicability to the Physical Case

The applicability of the mathematical model described above to a
physical case may be established in several ways. One possible procedure
would be to vary the value of the albedo and its angular distribution
until the calculation agreed with experimental results. This by itself
might provide some actual knowledge or understanding of the behavior
which could extend the number of problems that could be solved.

Combined with a certain amount of information from other sources, it

can be a useful technique.

A preferable procedure would be to study the physical behavior
of a single wall~-scattering process, possibly by experimental techniques
or by detailed Monte Carlo calculations of the conventional type, in
order to establish the validity of various assumptlions and to establish
the nature of the changes which must be made for different physical
configurations. The combination of this detailed examination of a single
wall-scattering process, which results in an albedo model, with a calculation
which uses the albedo model. in the corresct geometry would certainly seem
to be a more economical and versatile calculational technique than the
full-scale Monte Carlo calculation.

Detailed investigations of the type described above are under way
at ORNL, but the knowledge available at this point is derived sub-
stantially from experimental experience. Consider now the information

available which is applicable to the physical cases of interest. The



15

cases to be considered will be restricted to concrete-walled ducts having
an arbitrary cross section (man-sized rectangular cross sections are of
the most interest) and an arbitrary number of bends which are subjected
to the radiations present in air at distances on the order of a mile

from a fisslon-type nuclear weapon. Actually,only the wall material and
the neutron spectrun have substantial effect on the nature of the

albedo.

The distances of interest are far enough from the source that the
lower energy regions of the neutron differential energy spectrum are in
equilibrium; i.e., the shape of the neutron spectrum below, say 100 keV,
is not changing significantly with distance. This shape may be con-
sidered loosely as consisting of a l/E spectrum between thermal energy
and 100 keV plus a thermal group. As this spectrum traverses the duct,
drastic changes would not be expected to occur. The most noticeable
change will be that the number of thermal neutrons relative to the l/E
reglon will increase, since the ratio of scattering to absorption cross
section for neutrons of thermal and intermediate energies is larger for
conerete than for alr. The spectrum of fast neutrons might undergo
rather drastic changes, but this should not affect the lower energy
regions to a great extent until extremely long ducts are traversed, in
which case intensities would be so low that all dose rates would be

insignificant in most practical cases.

If the physical case could be adequately simulated by consideration
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of the transport from a pure thermal~neutron source, the specification

of the albedo would be rather straightforwsrd. The integral albedo, or
total probability of reflection, would be on the order of 0.7; the as~-
sumption of independence with respect to incident direction is probably
adequate, although the value of the albedo does change somewhat (see
Appendix F). The assumption of independence with respect to the exit
azimuthal angle is probably quite good, and the angular distribution
should be fTairly flat, probably a function which could be adeguately
represented as a sum of an isotropic component and a component proportional
to the cosine of the polar angle. This statement on the nature of the
angular distribution can be, at least partially, justified as follows:
The angular distribution would be nearly isotropic for the case where the
first collisions occur exactly on the wall surface. (The coatributlion to
the distribution from singly scattered particles is precisely isotropic
if isotropic scattering in the laboratory system is assumed.) IT the
scattering sources are distributed uniformly with distance into the wall,
the resulting outward current should resemble a cosine distribution
(Lambert's law). The distribution of scattering sour-zes {rom the thermal
source outside Che wall will lie somewhere between these tw) extremes;

therefore the conclusions as stated zbove are drawn.

Returning to consideration of the actual neutron spectrum, experi-
ments at the Tower Shielding Facility (TSF) have shown that a spectrum
of this general nature incident onto a concrete surface will result ir

an almost constant density of neutrecns with energies below 0.4 eV as
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a function of the distance into the wall. Actually, this distribution
has a slight peak at a penetration distance of about 5 cm, but the net
result is an almost constant density for distances on the order of 20

or 30 cm. This spatial distribution results, of course, Irom the slowing
down of intermediate-energy neutrons combined with the transport of the
thermal neutrons. In any case, this spatial distribution may be assumed
to result in an angular distribution of the outgolng current quite
closely resembling the cosine distribution. As to the value of the
albedo, there seems to be no reason tc expect the albedo of intermediate-
energy neutrons to be drastically different from that of the pure thermal

neutrons.

In sumary, it is concluded that the spatial distribution of the
thermal~-neutron flux in a concrete-walled duct may be calculated by a
random=walk process which utilizes at every wall collision an ideallzed
albedo model. The albedo may be assumed to have the value on the order
of that found for thermal neutrons and to have an angular distribution

proportional to the cosine of the polar angle.



CHAPTER IIX

STRATGHT DUCTS

The albedo model described in the previous chapter was incorpo-
rated into a digital computer code which was used both on the Control
Data Corporation (CDC) 1604A computer at ORNL and on the Inter-
national Business Machines (IBM) 7090 computer at the Union Carbide
Central Data Processing Facility in Cak Ridge. A detailed description

of the code and its use is given in Appendices A, B, and C.

A large number of calculations performed with the computer code
were Tor straight ducts, both circular and rectangular in cross sectlon.
The results are presented below, along with comparisons of the calcula-

tions with an analytic approximation given by Simon and (1ifford.?t

A1l the straight-duct results are presented as particle flux (parti-
cles/cmg) along the center line of the duct normalized to an incoming
current of 1 particle/cm2 at the source plane. The flux was obtained
by totalling the particle track lengths in each of a series of detector
volumes occupying the entire cross section of the duct and having a
thickness of 0.5 ft, and then dividing by the volume of the detector.

In each case the source was assumed to be uniform over the mouth of the

duct and to have a distribution of angular current proportional to the

1A. Simon and C. E. Clifford, "The Attenvation of Neutrons in Air
Ducts in Shields," Nuclear Science and Engineering 1, 156 (1956).

18
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cosine of the angle measured from the line normal to the source plane.
(This corresponds to an isotropic flux outside the duct; i.e., the number
of neutrons per unit solid angle arriving at the duct mouth is constant

for all directions.)

Calculations for Cylindrical Ducts

The cylindrical duct calculations were for a duet length of 30 ft
and diameters varying from 0.5 to 6.0 ft. Albedos of 0.12 and 0.8 and

2

albedo distributions of 1sotropic, cosine, and cosine® were used.

The calculated fluxes for a straight C.5-ft-diam eylindrical duct
and an albedo of 0.8 are presented in Figs. 1 and 2 for isotropic and
cosine distributions, respectively. The error points shown in these
figures and for all subsequent data from the computer code calculations
represent +20, where o 1s the standard deviation, or square root of the

2

variance. It can be shown that there is a 95% probability that a new,

independent calculation would be within the error bars.

The results of the calculations for l-ft-diam ducts using albedos
of 0.12 and 0.8 and isotropic and cosine distributions are shown in Figs,

3 through 6. Here the data represent scattered fluxes only, as opposed

“See Appendix A for the definition of variance and methods for
obtaining the estimate of the variance.
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to total fluxes given in Figs. 1 and 2 and in most of the plots that fol-
low. Figures 5 and 6 demonstrate quite well the difference between an
isotropic distribution and a cosine distribution of the albedo. The two
curves are virtually identical for distances within 4 £t of the source,

but for greater distances the isotropic albedo gives a much larger flux.

Total fluxes for a 1.3%8198~ft-diam duct (cross-sectional area of
1.5 ftz) and an albedo of 0.8 are shown for isotropic and cosine distri-
butions in Figs. T and 8, respectively. Figures 9 and 10 are similar
except that the diemeter is 1.95441 ft, resulting in a cross-sectional
area of 3.0 ft2, The calculations for these four cases were performed
Tor later comparisons (pages Ml, 48—~57) with calculations Tor rect-

angular ducts having cross sections of 3 by 0.5 ft and 3 by 1 ft.

Total fluxes for a 6~ft-diam duct and an albedo of 0.8 are given

for isotropic, cosine, and cosine®

distributions in Figs. 11, 12, and 13,
respectively. In these cases, where the calculation extends to only five
diameters from the source, the angular distribution of the albedo has
little effect on the results. The difference between the isotropic

?

and cosine® distributions is less than a factor of 2 at any point.

Calculations for Rectangular Ducts

The calculations for straight rectangular ducts were performed
for duct cross sections of 3 by 0.5 ft, 3 by 1 ft, and 3 by 6 ft and a

duct length of 30 ft. Figures 14 through 20 show the results for the
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3 by 0.5 ft cross section, with Figs. 14 and 15 presenting the total
fluxes for an albedo of 0.12 and isotropic and cosine distributions,
Figs. 16 and 17 the fluxes for an albedo of 0.4 and isotropic and cosine
distributions, and Figs. 18, 19, and 20 the fluxes for an albedo of 0.8

2

and isotropic, cosine, and cosine® distributions.

Figures 21, 22, and 23 give the results for & 3 by 1 Tt cross
section, an albedo of 0.8, and distributions of isotropic, cosine, and
cosineg, respectively. Figures 24 through 26 correspond to Figs. 21

through 2% except that a % by 6 f1 cross section was used.

As presented here, the rectangular duct data have only limited

significance, but they are used in comparisons given in later sections.

Comparisons with an Analytic Approximation

One of the primary purposes in performing the straight-duct
calculations was to enable comparisons with calculations based on an
equation reported by Simon and Clifford.® The Simon-Clifford equation
which was used for the comparison was derived for very long straight
circular ducts with an azimuthally independent albedo expressed as a

sum of isotropic and cosine distribution components as follows:

o= Qa'(A + 2B cosd) , (1)

3gimon and Clifford, loc. cit.



NEUTRON FLUX PER SCUPCE NEUTRON CURRENT - NEUTRON/CM? PER NEUTRON/CM?

10

10°

10

Lo

UNCLASSIFIED
ORNL DWG 63-2298

L i

0 4.0

Fig. 21.

80 12 16 20 24 28 32
CENTERLINE DISTHNCCs FT

Total Neutron Flux Calculated for 3 by 1 £t Rectangular

Duct Using an Isotropic Albedo of 0.8 (4,000 Histories).



b3

UNCLASSIFIED
ORNL DWG 63-2299

10

(=]

o]

%3]

NEUTRON CURRENT - NEUTRON/CM® PER NEUTRON/CM?

=4
f .

NEUTRON FLUX PER SCURC

a 40 Bu0 12 16 20 24 28 32
CENTERLINE DISTANCEs FT

Fig. 22. Total Neutron Flux Calculated for 3 by 1 ft Rectangular
Duct Using a Cosine Albedo of 0.8 (4,000 Histories).



Ly

UNCLASSIFIED

ORNL DWG 63-2300

10

UTRON/CM?

jony

1

R SOURCE NEUTRON CURRENT - NEUTRON/CM® PER N
o

-2

£

a. 10
»*<
o
.
5
=
LD}
a
—
)
Wi
=
2 N & T .
. AV 4
_ )\\\1 /f\\
-3
10 - e
0 4,0 Ba 0 12 6 20 24 28

CENTERLINE DISTANCEs FT

32

Fig. 23. Total Neutron Flux Calculated for 3 by 1 ft Rectangular

Duct Using a Cosine® Albedo of 0.8 (4,000 Histories).



hs

UNCLASSIFIED
ORNL DWG 63-2301

10

Q

—
]

U
.

—
jo]

)
n

—
[om]

NEUTRON FLUX PER SOURCE NEUTRON CURRENT - NEUTRON/CM® PER NEUTRON/CM?

0 40 8.0 12 16 20 24 28 32
CENTERLINE OISTRNCEs FT

Fig. 24. Total Neutron Flux Calculated for 3 by 6 ft Rectangular
Duct Using an Isotropic Albedo of 0.8 (4,000 Histories).



L6

UNCLASSIFIED
ORNL DWG 63-2302

10 [

PER NEUTRON/CM?

-~ NEUTRON/CM?

.,.
}

REN

A SOURCE NEUTRON CUR

-2

10

o
[t

NEUTRON FLUX Pi

0 T8 8. 0 12 16 20 24 28 32
CENTERLINE DISTANCEs FT

Fig. 25. Total Neutron Flux Calculated for 5 by 6 ft Rectangular
Duct Using a Cosine Albedo of 0.8 (4,000 Histories).



NEUTRON FLUX PER SOURCE NEUTRON CURRENT - NEUTRON/CM? PER NEUTRON/CM?

UNCLASSIFIED
ORNL DWG 63-2303

10
5
2\\\
10° e
. 3
10"
s Tea, -
2 v\/\
.oN
107 ' \
5
107
0 4.0 8.0 12 16 20 24 28 32
CENTERLINE DISTANCEs FT
Fig. 26. Total Neutron Flux Calculated for 3 by 6 ft Rectangular

Duct Using a Cosine® Albedo of 0.8 (4,000 Histories).



48

where
o = differential albedo (per unit cosine),
a' = total albedo,
A = fraction of albedo represented by an isotropic distribution,

B = fraction of albedo represented by a cosine distribution

0 = polar angle of emission, measured from the normal to the

reflecting surface.

The albedo i1s an average over the incident neutron spectrum and therefore
does not include an energy dependence. The Simon-Clifford equation

using this albedo is:

ot LBy ot
®:¢O<1+Alma,+ﬂ lma,>, (2)

where

£ = distance along the center line of the duct,

¢ = neutron flux at £,

g = wncollided neutron flux at £,

® = radius at the duct,
and ', A, and B are as described above. The equation was actually
derived for a plane isotropic source at the duct mouth, but vhen given
in the form of Bq. 2, it applies as well to the cosine source used for

the calculations of this paper.



Scattered fluxes obtalned with Eq. 2 for a l-ft-diam cylindrical
duct and isotropic and cosine albedos of magnitude 0.12 are compared with
scattered fluxes from the Monte Carlo calculations in Fig. 27, in which
all the data are normalized to unit particle flux from the source plane.
For an isotropic albedo the two calculations (upper curve and triangular
points) agree, within the 20 limits of the Monte Carlo calculation, from
about 3 to 12 ft. Beyond 12 £+, the statistics of the Monte Carlo
calculation are very poor and probably not meaningful. For a cosine
albedo (lower curve and circular points), the agreement is within the
20 limits beyond about 5 ft. Since the albedo is small, the unscattered
flux accounts for most of the total flux (over 85% with the isotropic
albedo and more than 85% with the cosgine albedo), so that ¥q. 2 may be
expected to yield results that are correct to within about 5% beyond

2 ft (or two diameters from the source).

Figure 28 corresponds to Pig. 27 except that the albedo is 0.8.
With this large albedo, the scattered flux is as much as 80 or 85% of
the total, so that errors in calculating the scattered component are
significant. It can be seen that Eq. 2 does describe the actual behavior
well at large distances, but it does not lie within the 20 limits of the
Monte Carlo calculation except for distances beyond 10 ft. Even at
10 ft, the Monte Carlo calculations indicate that errors on the order
of 15% (isotropic albedo) to 50% (cosine albedo) might be expected in

the total flux calculation by Fq. 2.
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Figures 29 and 30 show results of total flux calculations with
an isotropic albedc of value 0.8 in four different geometries. Shown
in Fig. 29 are the Monte Carlo calculations for a % by 0.5-ft rect-
angular duct and for a 1.38198-ft-diam cylindrical duct. Alsoc shown
are the uncollided flux and the results of Eg. 2 for the cylindrical
duct. The uncollided flux is not shown for the rectangular duct, but
it is not too different from that for the cylindrical duct, especially
at large distances, since the two ducts are of equal cross=-sectional
area. (See Appendix E for proof of this.) The ratio of the unscat-
tered fluxes for the cylindrical duct to those for the rectangular duct
is approximately 16, 4.5, 2, and 1.2% for distances of 2, 4, 6, and 8
ft, respectively. The prediction of Eq. 2 agrees within 20 with the
rectangular duct results for distances greater than 8 ft and with the
cylindrical duct results for distances greater than 12 ft. Equation
2 gives an underestimate of the cylindrical duct results between about
2 and 10 diameters from the source in almost every case., As will be
seen, the rectangular duct results are consistently lower than the

cylindrical duct results and thereby are in vetter agreement with Eq. 2.

Figure 30 presents similar results for two larger ducts, a 3 by
1 ft rectangular duct and a 1.954h1~ft-diam cylindrical duct. Quali-
tatively the comments about Fig. 29 apply to these data as well. It
may be noted from both Fig. 29 and Fig., 30 that there 1s an indication
that the rectangular duct results are approaching a lower asymptotic

value for the isotropic albedo than Eq. 2 predicts.
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FPigures %1 and 32 are comparable to Figs. 29 and 30 except that
a cosine albedo distribution is used. Agreement with Eq. 2 is somewhat
better, but this is partially because the scattered flux is not as

large a fraction of the total flux as it is with the 1sotropic albedo.
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CHAPTER IV

DUCTS WITH BENDS

Calculations

Most of the calculated results presented in this section were
obtained for the three~legged 54-slab detector configuration described
in Appendix C. Duct heights of 1, 6, and 3 ft were used with the cross
section shown in Fig. %3 (detectors 1 througn 54 only). Two other
coniigurations, resembling a room containing a source on one wall and
having a two-legged duct extending from an adjacent wall, were also used
by adding detectors 55 through 6% as shown in Fig. 33%. The source is
distributed uniformly on the plane at x = O from z = O to H (the duct
height) and either from y = O to 3 ft in the case of the three-legged
duct or from y = O to 7.5 £t in the case of the configuration consist-

ing of a room and two legs.

All data are plotted as particle flux due to a unit particle
current source versus the distance along the center line of the duct.
Referring to Fig. 33, it may be noted that detectors 13, lh, and 15
and detectors 34, 35, and 36 are not located on the center line. The
data from the detectors are plotted in numerical order; so the points
at 6.25, 6.75, 7.25, 16.75, 17.25, and 17.75 Tt are not actually flux

along the duct center line. As before, the error bars above and

58
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below the plotted points represent 20 or 2 standard deviations.

Figures 3L through 36 present the results for the three-legged duct
geometry with a % by 1 ft cross section (quet height = 1 ft). Figure 34
is for cosine albedo of magnitude 0.24, while Figs. 35 and 36 are for

isotropic and cosine albedos, respectively, both of magnitude 0.8.

Figures 37 through 43 give the calculated fluxes for the same
three-legged duct geometry but for a duct height of 6 £t (3 by 6 ft
cross sechion). A cosine distribution of the albedo was used in each
case, Figs. 37, 38, 39, 40, and 41 using albedo values of 0.12, 0.2k,

0.7, 0.8, and 0.9, respectively.

Figures 42 and h}, both for a cosine albedo of 0.8, compare the
results of two different calculational techniques. The data shown in
Fig. 42 are from a calculation using the slab detectors defined in Fig. 33,
while the data given in Fig. 4% are from a calculation using the second
geometry described in Appendix C and statistical estimation of the flux.
Exactly the same histories are used in both calculations. This pair of
calculations demonstrates quite well that statistical estimation is not
always desirable.l In this case, the machine time reguired for the
statistical estimation calculation was longer by a factor of 12 (ap=
proximately 1 hr compared with 5 min). The calculation does reduce
the variance for a given number of histories and would be preferable

in most cases where the flux at only one or two points is required.

M. H. Kalos, "On the Estimation of Flux at a Point by Monte
Nuclear Science and Engineering 16, 111 (1963).

Carlo."
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It should also be noted that the statistical estimation technique results
in a much smoother curve. This is because the detector estimates are
not statistically independent; estimates are made to each detector from
every scatter point. An advantage of the statistical estimation calcula-
tion is that the answers are direct estimates of the flux as a function
of distance down the duct center line. As mentioned previously, the
particle flux obtained with the slab detectors is one which is an

average over the volume of the detector, and, because of the way the
geometry is set up, six of the detectors are not located on the duct
center line. Comparison of the two figures indicates that the center-
line flux 1s not much larger than the average flux; the 2¢ limits of

the two calculations overlap.

Figures Ul and 45 give the results of calculations using the same
three~legged geometry, but for an 8-ft-high duct. An albedo of 0.8 was
used in both cases, Fig. U4 being for an isotropic distribution and

Fig. 45 for a cosine distribution.

Figures 46 and 47 present‘data from calculations using the nine
additional detectors (55~63) shown in Fig. %3. By adding these detectors
a 7.5 by 7.5 £t room is formed with two legs of a duct leading from
the room. The calculations used a cosine albedo of 0.8 and duct heights
of 6 and 8 Tt for Figs. 46 and 47, respectively. The data for detectors
55 through 63 are plotted at the same center-line positions as detectors

16 through 24, respectively.
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Comparison with Experimental Data

In a recent experiment performed at the Tower Shielding Facility
measurements of radiation intensities were made in the bunker-tunnel
geometry shown in Fig. 48. The two bunkers are 12-ft concrete-walled
cubes, each having a variable concrete shield on one face. The Tower
Shielding Reactor II, which was used to simulate weapon radiations, was
positioned TOO ft away on a line perpendicular to the variable Tace of
the bunker shown at the left of Fig. 48. Measurements of fast-neutron
dose rates, gamma-ray dose rates, and thermal-neutron fluxes were made
in the two bunkers and in the interconnecting tunnel with various com-

binations of the concrete shields on the bunker faces.

The measurements which are applicable to the duct problem dis-
cussed here are those taken in the interconnecting tunnel. Figure 49
shows dats obtained along the center line of the tunnel with the bunker
shield facing the reactor open and the other bunker (top bunker) shielded
with 20 in. of concrete. It may be noted that the fast-neutron dose
rate falls off quite rapidly. The gamma-ray dose rate also falls off

rapidly until the neutron-capture gamma rays begin to dominate.

Figure 50 shows corresponding data for an open top bunker and
20 in. concrete on the face of the other bunker. The proportionality
of the gamma-ray and thermal-neutron data in this figure again
demonstrates the importance of neutron captures in the walls to the

gamma-~ray dose rates.
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The thermal-neutron flux data from Figs. 49 and 50 were corrected
for the contributions to the measurements from radiations penetrating
the 20~in. concrete shield on the opposite bunker. The corrected data
were then compared with calculated results as shown in Fig. 51. The
circles on the figure are the results of two of the Monte Carlo calcula-
tions (Figs. 4% and 47) arbitrarily normalized. Both of the calcula-
tions used an albedo of 0.8 with a cosine distribution. One calculation,
plotted from 1.8 to 19.2 ft along the center line, used a geometry
mocking up the bunker and two legs of the tunnel. The other calculag-
tion, plotted from 6.8 to 32.6 ft along the center line, used a geometry
representing the three legs of the tunnel (see page 58 and Fig. 33

for descriptions of these geometries).
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CHAPTER V

SUMMARY, CONCLUSIONS, RECOMMENDATIONS

Summary

Experimental data obtained at the Tower Shielding Facility in
multilegged duct geometries indicate that the gamma rays resulting from
the capture of low-energy neutrons in the duct walls can be an important
contributor to the total dose. In order to calculate these capture

gemma, rays, the distribution of the low-energy neutrons must be kunown.

This study presents calculations of low-energy neutron distribu-
tions using a simple albedo, or reflection coefficient, model. Since
the albedo for the low-energy neutrons is large, many reflections must
be taken into account. The technique chosen to do these calculations
is a Monte Carlo procedure, the random=-walk technigue, which basically
consists of random sampling from a statistical analogue of the actual

physical process.

A digital computer code was written to perform the calculations.
One series of calculations was performed using straight duct geometries,
to permit comparison with the Simon~-Clifford analytic approximation.
Another series of calculations was performed for three-legged Tect-
angular ducts, most of which used a geometry similar to that used in

the TSF experiment. Calculations are presented using an albedo similar

82
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to that which would be expected for a pure thermal-neutron scurce. The

calculated results agree fairly well with the experimental data.
Conclusions

The machine program, as written, appears to be operating correctly
and to be providing useful information more efficiently than other tech~
nigues which can be applied to this problem. This study has not
proceeded to the point where completely definitive statements can be
made as to the proper albedo to use for an arbitrary problem. It
appears that the slowing down and transport of low-energy neutrons,
including those at thermal and intermediate energies, in concrete-
walled ducts are closely described by an albedo similar to the thermal-
neutron albedo. The values of the albedo which gave the best compari-
sons to. the availablé experimental data were on the order of 0.75 or
0.8 andkused a cosine distribution. Since the best estimates of the
themmal-neutron albedo are on the order of 0.6 (see Appendix F), it
appears that the effective albedo is strongly influenced by the slowing

down of the intermediate-energy neutrons.

The comparisons of the streight duct calculations with the formula
derived by Simon and Clifford (Eq. 2, page 48) help establish the
validity of the Monte Carlo calculations. Moré importantly, they indi-
cate the areas where the Simon-Clifford analytic approximation is not
gpplicable. A good rule of thumb seems to be that for straight ducts

the analytic spproximation is adequate for distances greater than 10
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source diameters from the source. This is illustrated in Fig. 52, which
shows a good agreement between the analytic approximation and a Monte
Carlo calculation. In this case, for a 3 by 1 £t duct, agreement is good
beyond about six source diameters, assuming that the rectangular duct can

be represented by a cylindrical duct of equal cross~sectional area.

Figure 52 also includes results from a calculation with a 3 by 1
t duct having a right-angle bend 6 ft from the source. The reduction
of the flux by the bend is demonstrated quite well. The behavior of
the flux in multilegged ducts does not seem amenable to simple analytic
representation, as can be seen by reference to the figure. The flux in
this and some of the other calculations with multilegged ducts seems
to behave approximately as an exponential, bub it can be seen that this
would not be the case with a duct having longer legs. Even in this
case, the agreement with an exponential behavior is not too close and,

further, there doces not seem to be a simple way to represent the shape

of the duct in the exponential.

Recommendations

The technique described in this thesls has offered sufficient
promise to justify further investigation. This divides logically irnto
two areas: (1) improvement of the computer program and (2) detailed
studies, both experimental and theoretical, of the nature of the albedo

for various types of particles.
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Many rather obvious improvements are possible in the computer
code, primarily because of the inexperience of the guthor in this
field. Many features were included in the code either to satisfy the
curiosity of the author or to gain experience in the use of a certaln
technique. Some which were included during the development of the code
have already been removed and are not shown in the description of the

code.

An example of a remaining unneeded feature is the inclusion of
a single batch variance and a multiple batch variance. These varilances
were originally included in the hope that, if one history contributed
excessively to a detector score, the batch variance would be signifi-
cantly larger than the single batch variance. This may be the case, but
the information gained is not worth the wasted machine time. Since the
batch variance calculation is much faster and usually gquite close to
the more precise single batch variance, and, furthermore, since it is
not really clear what the meaning of the variance is when applied to
the skew distributlions encountered in radiation pernetration problems,
the single batch variance calculation should be siiminated. This would

enable elimination of the subroutine VARUNS as well.

Another area in which the code could be improved would be the
inclusion of several options covering certain features now in the code
and others which might be desirable. Tt was easler for the author to

change the code each time than to include options, but this would not
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be the case for someone less familiar with the details of the code. Tor
instance, a desirable option would be to allow obtaining the results of

the calculation on punched cards. This would allow easy reinsertion of

the information into the machine for replotiing of the results or for

arbiltrary manipulations of the data.

A further improvement would be the provision of more versatility
in the albedo description. At present it is not clear what form this
would take, so changes would have to wait on more detailed albado
information. An additional bit of information which could bve useful
would be the neutron loss in the duct walls as a function of distaunce
down the duct. This could be done by Torming an array, the subscript
corresponding bo the detector mumber, which would store the portion of
the szcore subtracted at each scatter point (the difference between the
incoming and outgoing particle weights). This quantity could then be

vsed as a source for a gamma=-ray dose calculatlon.

The detailed nature of the albedo should be studied for several
cases. The albedos of the 1lntermediate-energy neutroas are of primary
concern to this study. There is some information on albedos at thermal
and at high energies, but virtually none in between. In general, the
neutron albedo can be divided into two primary components: (l) a
neutron in ~- neutron out albedo, and (2) a neutron in ~= secondary
gamma ray out albedo. This detalled information could, in principle,

be used in a modified version of the machine program to calculate



88

completely =211 doses resulting from neutrons entering a duct. Thils
would leave only the gamma-ray problem, which is the simpler and which
could also be handled by the code, possibly by using an analytic

representation of the genma-ray albedo.™

A. B. Chilton snd C. M. Huddleston, "A Semi-Fmpirical Formula
for Gamma Rays on Concrete." Transactions of the American Nuclear

Society 5, No. 9, p. 220 (1962).
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APPENDIX A
THE ALBEDO MONTE CARLO MACHINE PROGRAM

The albedo Monte Carlo machine program will be described in two
versions. One version was written for use on the IBM-T090 computer. Its
execution is quite fast (on the order of 15 min for 4,000 particles under-
going up to 50 or 60 collisions) and is relatively simple, but it uses a
geometry subroutine (see Appendix C) which is written in machine lan-
guage (FAP). The other major version of the program was written for the
CDC-1604 machine and uses a functionally similar geometry subroutine
(see Appendix C) written largely in the FORTRAN language.

Figure 55 is a functional block diagram which applies to either
of the programs. The instructions are divided into subroutines in such
a8 way that major logical steps are contained in separate subroutines,
shown as boxes in the block diagram. The main program calls the input
and output subroutines, and the HISTOR and VARUNS subroutines. HISTOR
is called for each particle to be followed and retalins control until the
death of the particle. This routine calls a series of subroutines which
handle certain portions of the calculations reguired for the determina-
tion of the particle history and the related calculations of particle
flux. VARUNS calculates an estimate of the variances of each score in

two different ways: first, by grouping the particles in an arbitrary
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number of batches for the caleculation, and second, by treating all the

histories as a single batch.

FORTRAN listings of the main programs for the two machines are
given on the following two pages. They differ primarily in the COMMON
and DIMENSION listings® and in the PROGRAM and END cards. Functionally,
the program is simple. The DO 100 loop calls the HISTOR and VARUNS
subroutines, as outlined previously. The DO 120 loop calls VARUNS for
the last time (statement 120) to dnclude, in the single batch variance,
any histories left over if NHIST was not an integral multiple of NBATCH.
Thils loop also makes the final calculation of the varisnce calculated in
batches. This is done in statement 115, rewritten in more conventicnal

form as follows:

I 1 2
— ®)% -1 ( X
¥ nln - 1) , i no\ i ’
i=1 i=1
where
n = number of batches,
X; = mean of scores in the ith batch,
2
O = variance of the overall mean score, X.

lHereinafter COMMON and DIMENSION listings are omitted from the
subroutine listings, but, in operation, they must be inserted immediately
following the subroutine name.
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AL

80
90

100

115
120

96

BEDO MONTE CARLO VIC CAIN

COMMON RA;ADDR,XLsYL4+ZL,DLyML,BLyXS,YS+Z25,DCX,DCY,DCZ,51G,BLZ,
INHIST yNSCAT s W, He W8y SCSORSCENDyWSCOR s SCOR,CNSC, SCNSC4PSC,NZOME,
2NBLOCK L SNO, SCNSS, SCNSOy SCNSKy SCRSQy LASNO,AVER Iy VAR, DEDWBWNSKILT,
3TOH,NBATCH,NUMDET, SUMMSQ, SUMMNS, ALTVAR,NROUL yPSQ+DELW,RELAX, TWALL,
LXDET o YDET 4 ZDET , INDXyNHC, LETPAR,TITL4NCY,ITOPY,AS4DELTAX,NOINT,
S5XZERQ o XPOS s XW ! s XW2 9 XW3 9 XWL o YW1 ; YW2 ) YW3, YWU;2ZW ] ,ZW2,CONS4NCS,PONCS
DIMENSTION ADDR{1200) X ¢50),¥YL(50),ZL(53),0L(50),ML({50),8L(50),
JCNSC(uD), SCNSC(u0) o SCNSS(L40),SCNSO(LD), SCNSK(L4D),SCOR(ICDY,
2NZONE{50) 4NBLOCK(50),SCRSQ(I00),LASNO(ID0),AVERJ(I100)»VAR(1TG),
3TOH{100),SUMMSQ(I00 ), SUMMNS (100} ,ALTVAR(100),PSQUIDA) , XDET (100D,
LYDET(IOD),ZDET(I00), XPOSUINO), TITL(25),A5(5),PONCS(10)

CALL INPUT

KEVIN#D

DO 100 LEFTY#)NHIST

IHISTHLEFTY

CALL HISTOR

IF{NBATCH={ IHIST/NBATCH)~-IHIST)100,80,100

DOP0 KIM#],NUMDET

CALL VARUNSINBATCH,KIM)

KEVIN#KEVIN+]

CONTINUE

KARL#IHIST-KEVIN=NBATCH

DO 120 LORI#!,NUMDET

PATHKEVIN

REPAT-1.0

IF{R)Y120,120,115

ALTVAR{LORT)#(SUMMSQULORT) ~SUMMNSILORT) /PAT=SUMMNSILORI) )}/ {PAT=R)

CALL VARUNS{KARL,LORI)

CaLl OUTPUT

CAatL PICTUR

CALL EXIT

END
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100

115
120

o1

PROGRAM ALBEDO MONTE CARLO

COMMON RA,ADDR{120D)+A5(6),ALTVAR(IUO),AVERJ(100),B8L(90),CNSCLLD),
2DCX4DCYDCZ4yDEDWE, DELTAX,DL{?0) s Hy INDX, ITOPY, IWALL,LASNO(103),
BLSNO,ML{Q0) yNBATCHyNCY  NHC yNHIST,NOINTyNSCATyNSKILT,NUMDET,PSC,
LPSQU100) 4SCENDySCNSCIUD) , SCNSK{LT), SCNSO(u0),SCNSS(4D),SCOR{I0T),
SSCRSQ{100) »SCSOR, SUMMNS (100) , SUMMSQ(100),TITL(20),TOH(100),
SVAR{100) yWoWByWSCOR,XDET(100)y XL{90) 4 XPOS{ID0) 3 XSeXW1 9 XW2 4 XW3yXWL,
TXZERC,YDET(100) 3 YLIQ0) s YSy YWy YW2,YW3, YWL,, ZDET(ICD) yZLL90) 47S+IWi,
8IW2,CONSyDELW,RELAX,NCS,PONCS{10}

CALL INPUT

KEVIN#0O

DO 100 LEFTY#1,NHIST

IHISTHLEFTY

CALL HISTOR

IF{NBATCH={ IHIST/NBATCH)~IHIST)100,80,100

D090 KIMAL ,NUMDET

CALL VARUNS(NBATCH,KIM)

KEVINH#KEVIN+]

CONTINUE

KARL#IHIST-KEVIN=NBATCH

DO 120 LORI#{1,NUMDET

PATHKEVIN

R#PAT-1.0

IF{R)I120,1204115

ALTVAR{LORI )} #{SUMMSQ{LORI)-SUMMNS(LORI) /PAT»SUMMNS(LORT ) )/ (PAT#R)
CALL VARUNS (KARL,LORI)

CALL OUTPUT

CALL PICTURE

CALL EXITY

END ALBEDO MONTE CARLO
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It should be noted that all variances calculated in this code are
variances of the mean, not variances of a single additional measurement.
In other words, the standard deviation, or square root of this variance,
gives the deviation within which there is a 68% probsbility of a new mean
value falling, if the same number of histories is used agaln for the new

mean. Formal definitions of these guantities are given in Appendix G.

The subroutine INPUT for the IBM=7090 is given on the following
page., It is used primarily for bringing the parameters of the calcula-
tion into storage, and, for purposes of identification, it is alsc used
for printing some of these parameters. The statements "SUMCEF = 0."®
through statement 64 reformulate the parameters P¢NCS(I). The albedo

distrivution (in 6, the polar angle of emission) is represented in the

input as:
a=0a/ (B + B cosd + + B cos™o)
o8By , Cos ces . B

where
O = differential albedo (per unit cosine),

0o = total albedo (PSC),

™
i

coefficient in series [P@NCS(I)],

highest power of cos6 (NCS).

B
1

®Pefinitions of symbols used in the machine programs are given in
Appendix B.
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SUBROQUTINE INPUT

FORMAT({017,F13.5,4F10.5)
FORMAT(315,E20.54E1545,2E10.5)
FORMAT(6E12.5)
FORMAT(2]15,2E10.4,215,3E10.4)
FORMAT(14F5,2)
READINPUTTAPEIO,2,LSNOyNUMDET,NCS
READINPUTTAPEID, 1 9RA,WyH,PSC,RELAX,CONS
READINPUTTAPEIQ, 2y NHIST,NBATCH{NSKILT,DEDWS

READINPUTTAPEID j 59 XW1 g XW2y XW3p XWU YWy YW2 3 YW, YWY, Z W1y ZW2 ,DELW

READINPUTTAPEID, 3, (XDET(I),YOET{I),ZDET(I),1#1 ,NUMDET)
NCP#NCS+1

READINPUTTAPEIO, 3, (PONCS{I),14#1,NCP)

CALL HOLLER(NHC,LETPAR,TITL,10)
READINPUTTAPEIO 44 NCY, ITOPY,XZERO,DELTAX,NOINT
READINPUTTAPEIU,5,{XPOS({ 1), 1#1,NUMDET)

CALL JOMIN{LSNO,XL,YL,ZL,DL,ML,BL,ADDR)
WRITEQUTPUTTAPES? 4L, {J,J¥2,NCS)

FORMAT(IH2,2u4X,8110)
WRITEQUTPUTTAPED, L3, (PONCS(I),I#]1,NCP}

FORMAT (8H ALBEDOH#FT7.4,B8(1H+,FT.4,2HU ))
WRITEQUTPUTTAPE? 94 NHIST,RAyWsHyPSCyNBATCH NSKILT,DEDWS
FORMAT(8H NHISTH#IS5,7H, RA#013,5H, W#FB.2,5H, HH#F8.2,T7TH,

1F8.5,10Hy NBATCH#13,10H, NSKILT#I3,9H, DEDWBHKEL].})

SUMCOF#0.

DO62T#1,NCP
SUMCOF#SUMCOF4PONCSII)/FLOATF(I)
IF{SUMCOF)65,65,63
PONCS{1)4PONCS(1)/SUMCOF
DO6UlI#Z24NCP
PONCS({I)#PONCS(I)/FLOATF(I)/SUMCOF+PONCS{I~1)
IF(PSC-0.8)31,32,85
IF(PSC-0.7)34y34,32

DO 18 1#1,9

CNSC{I)#1

DO 19 I#10,14
CNSCH{IJ#CNSC(I-1)+2.

DO 21 I#15,419
CNSC(I)ARCNSCHI-1)+4,

D0221#20,40

CNSCUID#CNSC(I-1)+5,

GO TO 96

2 DO J1 T#1,9

12
3y

96

CNSCII)#I

DO121#10,40
CNSC(I)ACNSC(I-1)+2. |
GO T0 96

DO351#1,40

CNSC(I)#!

RETURN

END

PSC#
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The subroutine assumes that the series 1s not normslized properly
and calculates the following normalizing factor (called SUMCQF in the

subroutine) :

il

1
‘ n
JF {Fl + 32 cos® + ... + P . cos Q}- d(cos8)

~_ 1 [
S = 53 l] o d(cos6)

co0s6=0 c0s6=0
n+1
N A
= T .
i=1

The series is then normalized by dividing by S and multiplying and

dividing the ith term by 1. Thus,

Qo Ba P
n+i1 . n
o=z {él + 5 [2 cos@] + ... + =T [(n + 1) cos 6] }’ .
The ith term now contains a factor i coslmle which 1s a properly normalized

probability density function (p.d.f.). That is,

1
i-1
u/\ i cos” "6 d(cosB) = 1 .

cosf=0

Sampling from the original series may now be done by sampling from a
i cos'"tg distribution a fraction Bi/iS of the time. This is done by
replacing the original coefficient of the series by the guantities 755

where
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71*-5_)
Bi
71 = T3 + 7i-1’ i=2,3...0n.

In order to sample from the power series 1t is now only necessary to
pick a random number R (0 < R < 1), determine a j such that R < 75
and then select from a distribution J cosJ_lG. That this 1s the case

may be seen in the following example. Suppose that the desired distribu-~
tion is
a = ool + b4 cose + 6 cos®g) .
The integral of this series, from cosf = O to 1, 1is
S 1

\/ﬁa d(cosb) = Ogll cosd + 2 cos®e + 2 cos®6
0

=50 .

0

The factor multiplylng Qg is the variable S (SUMCOF),

n+l B
i 6
5 = 2 I"‘:( +—3'>:5.
i=1

The cumulative probabilities 7., stored in PPNSC(I), are:

rof 4=

=l

4



PANCS(1) = %~: 0.2,
PPNCS(2) = 5 i c 0.2 = 0.6,
PANCS(3) = 7 i s+ 0.6 = 1.0.

Note that the new value of the highest coefficlent is always 1. When
selection from this series is desired, the random number R 1s selected.

Then,

if R <0.2 pick from an isotropic distribution;

if 0.2 <R < 0.6 pick from a cosine distribution;

if 0.6 <R < 1.0 pick from a cosine® distribution.

(The actual selection process is performed later, in the subroutines

ATBEDO and COSJ.)

The INPUT routine also sets up a table of 40 values of CNSC,
depending on the value of tne albedo, PSC. These values are used as
the 1limits of boxes used to form histograms of the numbers of particles
which undergo specified numbers of scatterings. Several of these histo-
grams are formed and printed on the output for all particles (SCNSC),
for those particles terminated by re-entering the source plane (SCNSS),
for those particles leaving the end of the duct (SCNSO), and for those

particles killed (SCNSK).

The minor modifications required in the CDC-1604 version are

listed below:
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CALL H@LLER(NHC,LETPAR,TITL,10) becomes CALL H@LLER(NHC,TITL,10)
CALL J@MIN(LSN@,XL,YL,ZL,DL,ML,BL,ADDR) is replaced by
NADD = 1
CALL J@MIN(NADD).
(HPLLER is a subroutine in the package controlling the curve plotting.S®)
A series of statements is inserted which set to zero the following storage
cells:

SCS¢R,SCEND, WSCER,

LASN@(I),AVERJ(I),VAR(I),SCRSQ(I),T¥H(I) for I = 1 to NUMDET,

SCNSC(T),SCNS@(I),SCNSS(TI),SCNSK(I) for I = 1 to Lo,

(Thiz is not required on the IBM-T090 since its monitor zeros the entire
core between separate runs.)

Pages 104 through 106 contain a sample listing of input cards
which are read by subroutine INPUT. These cards specify a problem using
a three-legged 3 x 8 ft rectangular duct and a cosine albedo of magnitude
0.75. It is a suitable input only for the Sh-detector geometry de-
scribed in Appendix C; the use of statistical estimation would require
a modified geometry input.

Pages 107 and 108 are listings of the subroutines HISTOR for the

IBM-7090 and the CDC-1604, respectively., The simpler IBM-7090 version

3D. K. Trubey and M. B. Fmmett, An IBM-T090 Subroutine Package
for Making Logarithmic and Semilogrithmic Graphs Using the CALCOMP
Plotter, ORNL-TM-430 (Dec. 12, 1062).
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*»DATA
50 S |
153245743735 3.0 8.0 0.75 0.131233
4000 200 100 1.00000E-05
D.0 4.5 7.5 15.0 0.0 3.0 12.0 15.0 0.0 8.0.0001
0.5 1.5 3.0 1.0 1.5 3.0
1.5 1.5 3.0 2.0 1.5 3.0
2.5 1.5 3.0 3.0 1.5 3.0
3.5 1.5 3.0 4.0 1.5 3.0
4.5 1.5 3.0 5.0 1.5 3.0
5.5 1.5 3.0 6.0 I.5 3.0
6.0 2.0 3.0 6.0 2.5 3.0
6.0 3.0 3.0 6.0 3.5 3.0
6.0 4.0 3.0 6.0 4.5 3.0
6.0 5.0 3.0 6.0 5.5 3.0
6.0 6.0 3.0 6.0 6.5 3.0
6.0 7.0 3.0 6.0 7.5 3.0
6.0 8.0 3.0 6.0 8.5 3.0
6.0 9.0 3.0 6.0 9.5 3.0
6.0 10.0 3.0 6.0 10.5 3.0
6.0 1.0 3.0 6.0 1145 3.0
6.0 12.0 3.0 6.0 12.5 3.0
6.0 13.0 3.0 6.0 13.5 3.0
6.5 13.5 3.0 7.0 13.5 3.0
7.5 13.5 3.0 8.0 13.5 3.0
8.5 13.5 3.0 9.0 13.5 3.0
9.5 13.5 3.0 10..0 13.5 3.0
10.5 13.5 3.0 11.0 13.5 3.0
11.5 13.5 3.0 12.0 13.5 3.0
12,5 13.5 3.0 13.0 13.5 3.0
13.5 13.5 3.0 14.0 13.5 3.0
14.5 13.5 3.0
8.0 1.0
5u
COSINE{D.75} 4000 HISTORIES (3X8 FT 3-LEGGED DUCT)
4 1 0.0 4.0 7

0.25 0475 1425 1475 2425 2475 3425 3.75 4.25 4,75 5,25 5.75 6.25 6.75
7.25 7.75 8425 8.75 9.25 9.7510.2510.75110.2511.7512.2512.7513.2513.75
I1h.2518.7515.2515.7516.2516.7517.2517.7518.2518.7519.2519.7520.2520.75
21.2521.7522.2522.7523.2523.7524.2524.7525.2525.7526.2526.7527,2527.75
X 7ONE BOUNDARIES 0,45

Y ZONE BOUNDARIES -3,0,3.12,15,60

7 ZONE BOUNDARIES -3,0,8,15

IONE is141 X BLOCK Dy45 Y BLOCK -3,0 Z BLOCK ~3,0 BLOCK I,1,] MEDIA 99
Z0ONE 1,241 X BLOCK O,u45 Y BLOCK 0,3 Z BLOCK -3,0 BLOCK 1,1, MEDIA 99
ZONE 143,11 X BLOCK Oy45 Y BLOCK 3,12 Z BLOCK -3,0 BLOCK 1,1,1 MEDIA 99
ZONE 1,4,1 X BLOCK Dy45 Y BLOCK 12,15 Z BLOCK -3,0 BLOCK 141, MEDIA 99
ZONE 1,5,1 X BLOCK B,45 Y BLOCK 15,60 Z BLOCK -3,0 BLOCK 1,1,] MEDIA 99
ZONE 1,1,2 X BLOCK 0,45 Y BLOCK —-3,00 Z BLOCK 0,8 BLOCK §,1,1 MEDIA 99

IONE 142,2 FIRST HALL

X BLOCK BOUNDARIES Oy0e59 191051292651 343e50454051545.59696.54747.5,45
Y BLOCK BOUNDARIES 0,3 I BLOCK BOUNDARIES 0,8
BLOCK 1,1,1 MEDIA ]

BLOCK 2,8,1 HMEDIA 2

BLOCK 3,1,1 MEDIA 3

BLOCK 4,1,1 MEDIA 4

BLOCK 5,1,! MEDIA S

BLOCK 6,1,1 MEDIA 6

BLOCK 741,) MEDIA 7

BLOCK By1,] MEDIA B8

BLOCK 9,1,1 MEDIA @



BLOCK 104+3,1 MEDIA 1D

BLOCK 141,41 MEDIA 11}

BLOCK 12,1,1 MEDIA 12

BLOCK 13,1,1 MEDIA 13

BLOCK 14,1,1 MEDIA 14

BLOCK 1544,] MEDIA 15

BLOCK 16,31, MEDIA 99

ZONE 1,3,2 SECOND HALL
X BLOCK BOUNDARIES O,4.547.5+45

Y BLOCK BOUNDARIES 3,3.5,4:4459595.596¢64597974598,8.5+9,9.5,10,10.5911,
115,12 7 BLOCK BOUNDARIES 00,8

BLOCK 1,0, MEDIA 99

BLOCK 2,1,1 MEDIA 16

BLOCK 3,4,1 MEDIA 99

BLOCK 1,2,1 MEDIA 99

BLOCK 2,2,1 MEDIA 17

BLOCK 3,24) MEDIA 99
BLOCK 143,12 MEDIA 99
BLOCK 243,11 MEDIA 18
BLOCK 3,3, MEDIA 99
BLOCK 1,4,1 MEDIA 99
BLOCK 2,4,1 MEDIA 19
BLOCK 3,4,1 MEDIA 99
BLOCK 14541 MEDIA 99
BLOCK 245,1 MEDIA 20
BLOCK 345,1 MEDIA 99
BLOCK 1,6,1 MEDIA 99
BLOCK 246,41 MEDIA 21
BLOCK 3,6,1 MEDIA 99
BLOCK 1,7,1 MEDIA 99
BLOCK 247,1 MEDIA 22
BLOCK 3,7,1 MEDIA 99
BLOCK 1,8,1 MEDIA 99
BLOCK 2,8,1 MEDIA 23
BLOCK 3,8, MEDIA 99
BLOCK 1,9,) MEDIA 99
BLOCK 2,9,1 MEDIA 24
BLOCK 3,941 MEDIA 99
BLOCK 1,10,0 MEDIA 99
BLOCK 2,10,1 MEDIA 25
BLOCK 3,30,1 MEDIA 99
BLOCK 1,311,% MEDIA 99
BLOCK 2,11,41 MEDIA 26
BLOCK 34,1143 MEDIA 99
BLOCK 141240 MEDIA 99
BLOCK 2,12,1 MEDIA 27
BLOCK 3,12,) MEDIA 99
BLOCK 1413,3 MEDIA 99

BLOCK 2,13,1 MEDIA 28
BLOCK 3,313,1 MEDIA 99
BLOCK 1,iu4,1 MEDIA 99
BLOCK 2,%1u4,% MEDIA 29
BLOCK 3,14,1 MEDIA 99
BLOCK 1,15,1 MEDIA 99
BLOCK 2,15,]1 MEDIA 30
BLOCK 3,15,) MEDIA 99
BLOCK 1,16, MEDIA 99
BLOCK 241651 MEDIA 3}
BLOCK 3,146,101 MEDIA 99
BLOCK 1,17,1 MEDIA 99
BLOCK 2,17,1 MEDIA 32



BLOCK 3,417,

|

BLOCK 1,18,1

BLOCK 2,18,

)|

BLOCK 3,18,]

ZONE ) 44,2

X BLOCK BOUNDARIES
12912.5,13,13.5,14

BLOCK 41,
BLOCK 2,1,1
BLOCK 3,1,1
BLOCK L,y],]
BLOCK 541,
BLOCK 6,1,
BLOCK 7Ty1,1
BLOCK 8,1,
BLOCK 41,1

BLOCK 10,1,

BLOCK 11,1,
BLOCK 12,1,

1
1

BLOCK 13,1,
BLOCK lu,1,]
BLOCK 5,1,

BLOCK 16,41,
BLOCK 17,1,

1
}

BLOCK 18,41,1

BLOCK 19,1,

1

BLOCK 20,141

BLOCK 21,1,
BLOCK 22,1,
BLOCK 23,1,

ZONE 145,42
ZONE 141,43
ZONE 1,2,3
ZONE 1,43,3
IONE 1,443
ZONE 1,5,3

END

1
!
]
X

XX X X X

MEDIA 99
MEDIA 29
MEDIA 33
MEDIA 929

MEDIA 99
MEDIA 34
MEDIA 35
MEDIA 36
MEDTA 37
MEDIA 38
MEDIA 39
MEDIA u0
MEDIA 4]
MEDIA 42
MEDIA 43
MEDIA uu
MEDIA 45
MEDTIA 46
MEDIA 47
MEDIA 48
MEDIA 49
MEDIA 50
MEDIA 51
MEDIA 52
MEDIA 53
MEDIA 54
MEDIA 99
BLOCK 0,45
BLOCK 0,45
BLOCK 0,45
BLOCK Q445
BLOCK 0,45
BLOCK DO,u5

< < < < <<

BLOCK
BLOCK
BLOCK
BLOCK
BLOCK
BLOCK

106

THIRD HALL

Or4051515e651696e59 7372598982539, 2.5910410.5511 41165,
r14.5,15,45

Y BLOCK BOUNDARIES 12,15 Z BLOCK 1,8

15,60 Z BLOCK 0,8 BLOCK 14,1,1 MEDIA 99
~3,0 Z BLOCK 8,15 BLOCK 1,3, MEDIA 99
0,3 Z BLOCK 8,15 BLOCK 1,14) MEDIA 99

3,12 Z BLOCK 8,15 BLOCK 1,141 MEDIA 99
12,15 Z BLOCK 8,15 BLDCK 141,11 MEDIA 99
15,60 2 BLOCK 8,15 BLOCK 1,1, MEDIA 99
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SUBROUTINE HISTOR
NSCAT#0

W8#13.0/CONS

XS#0.0

YSHW=RAN(RA)
ISHH=RAN(RA)

CALL COSJ(DCX,DCY,DCZ,y 1)
IWALL#3

LSNO#0

SIG#1.0

BLZ#0.0
CALLGEOM{XS,YS5,2S,DCXyDCYyDCZySIGyBLZ)
CALLSCORE

CALLDIRGE

IWALLH#IWALL
IFIIWALL-6)60,60,70
NSCATHENSCAT +]

WBE#WB=PSC

CALLALBEDO
IF{W8-DEDW8)80,80,10
IF(RAN{RA)-PS5C)8B2,82,83
WBHWB/PSC

60 70 10

IWALL#9

CALLSTATS

RETURN

END
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SUBRQUTINE HISTOR
COMMON /GEOM/MARK ¢ X29Y24224X19Y1,4,214NMEDyNR,Q,;DTR,BLZON
NSCAT#0O

WB#1.0/CONS

R#64.0

XS#0.0

YSHRAN(RA) =W
ISARAN(RA) *H

CALL COSINEJ(DCX,DCY,DCZ,41)
INALLH#3

XEH#DCX®#R+XS
YE#DCY*R+YS
ZE#DCZ*R+25S
XLOT)#XS

YLOT)HYS

ZLU1) RIS

X2#XS

Y2#YS

22#1S

MARKH#]

CALL LOOKZI{XS,YS,ZS)
ML{))#NMED

Q#R

DO 35 NJ#1,90
LSNO#NJ+]

X1#X2

YIi#Y2

ZI1#22

X2#XE

Y2HYE

12#1E

CALL GEOM
XLELSNO)#X2
YLILSNO)#Y2
ZL{LSNO)#Z2
MLOLSNO) #NMED
IF(MARK) 45,20, 30
DLINJY#Q

GOTOuS

DL{NJ)IH#DTR

Q#Q—-DTR
IF{NMED-99)35,45,35
CONTINUE

CALL SCORE
RDEL#6.5E-3
XS#XS-DCX#RDEL
YS#YS-DCY*RDEL
IS#ZS—DCZ*RDEL
CALLDIRGE
IWALLHATIWALL
IF(IWALL~-6)60,60,70
NSCATHNSCAT+]
WB#WE#PSC
CALLALBEDO
IF(W8~DEDW8)80,80,10
IF(RAN(RA}~-0.5182,82,83
WBAWB=2,

GO 10 10

IWALL#G

CALLSTATS

RETURN

END
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will be described first. NSCAT, the number of scatterings experienced
by a particle, and W8, its weight, are first initialized. Notice that
the welght is not simply set to unity but includes a normalizing factor,
which is chosen such that the units of the final answer are flux per wnit
source current, A source particle position is then selected; in this
particular version of HISTOR, it is a uniform scurce over the rectangle
between y = O and W, and z = O and H, and at x = 0. COSJ (named COSINEJ
in the CDC-160L4 program) is called to select direction cosines. The last
parameter in the calling sequence is the power of cosine of the polar
angle from which the selection is to be made. This polar angle is mea-
sured from the normal to the surface. The statement "IWALL = 3" is
inserted as a marker; it is used only with the statistical estimation
version of the code. For statistical estimation, the statement "CALL
DETEST" is inserted after the "IWALL = 3" and just before "CALL ALBED@"
later in the listing. (This is also the case for the CDC-1604 program.)
The next three statements inltialize parameters for the subroutine GEOM,
which is then called. The subroutine GEOM locates all intersection
points with system surfaces and stores them in the arrays XL, YL, and
ZL. It also determines the distance between each pair of points (stored
in array DL), as well as the medium number of the paths (stored in array
ML), ana packs a storage word specifying the zone and block numbers of

each point (stored in array BL).* The medium numbers are used to

*Subroutine GEOM, its function,and use are descrived more fully
in Appendix C.
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identify detectors and volumes including the duct walls. Medium numbers
from 1 to 89 are reserved for detectors; medium No. 99 is used for duct
walls; if regions of void are used, they are designated medium No. 90.

No other medium numbers are allowed. The array BL is used only by GEOM

itself.

Subroutine SCORE is called to add in flux contributions to the
appropriate detectors. It also locates the coordinates of the wall
intersection points and stores them in XS, ¥S, and ZS for GECM's use on
the next flight. Subroutine DIRGE is then called. DIRGE determines
which wall has been hit, then sets the variable IWALL appropriately, for
later use by other subroutines. (DIRGE allows a maximum of six walls
plus the floor and roof.) The cryptic statement "IWALL = TWALL" is
necessary because of a peculiarity of the FORTRAN compiler. ©Suffice it
to say that the program will not work correctly without it. The next
instruction transfers to statement 60 if IWALL < 6 (a normal wall hit)
and calls STATS if IWALL > 6. With a normal wall hit, NSCAT is increased
by one, the weight is multiplied by the albedo, and the subroutine AL3EDO,
which selects new direction cosines, is called. If IWALL is 7, 8, or 9,
the history is terminated by calling subroufine STATS. I IWALL is 7,
the particle has re-entered the source plane; if IWALL is 8, the particle
has left the end of the duct; and if IWALL is 9, the particle must be
killed either because its weight has fallen too low, or because the sub-
routine DIRGE has encountered difficulty locating the wall intersection

point. The weight is checked in statement 42. If it is too low
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( < DEDW8) a game of Russian Roulette is played (statement 80). This
is done by selecting a random number which is compared to PSC, the
albedo value. If the random number is smaller, the particle has its
weight inereased by the factor 1/PSC and continues. Otherwise, the
particle is killed. Subroutine STATS then categorizes the particles by
the number of scatterings they had and the manner in which their

histories were terminated.

The subroutine HISTOR for the CDC~1604 is identical in function
to the IBM-T7090 HISTOR, differing only in the use of subroutine GEOM,
The statement 10 and the next three statements on page 107 are replaced
by 35 statements between statements 10 and 35 on page 108, The added
complications are caused because: (1) the CDC-1604 GEOM will accept
only the end point of the required path, not direction cosines, (2) it
follows the track only to the first intersection point with a new mediunm,
and (3) it does not fill in the needed arrays XL, YL, ZL, DL, and ML.
The added FORTRAN statements perform these functions. An additional
complication is evidenced in the four statements immediately following
statement 45, These are required because the CDC-1604 GEOM calculates an
intersection point which differs from the true value by 107% times the
original path length (which in this code is always set to 64). The
statements mentioned above bring the wall intersection points back along
the original path by an amount suificient to ensure that they lie inside
the duct. If this 1s not done the program occasionally starts paths

outside the dudt.
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Page 113 contains a listing of the subroutine COSJ (named COSINEJ
in the CDC~1604 program). This routine selects the direction cosines of
a direction distributed uniformly in the azimuthal angle and with the
polar angle distributed as cosJO, where 9 1s the polar angle. The
techniques used to do this are explained in Appendix D, along with the
results of tests performed with this routine, using the pseudarandom

numbers used in the actual machine program.

Page 114 is a listing of subroutine DETEST for the IBM-7090. This
routine calculates a statistical estimation of the flux at a series of
predetermined detector locations. As written, the routine uses a cosine
distribution of the polar angle as the albedo distribution for the

estimates. The formula used for the estimation is

o(r) = (XB) cosf e.,(-1/7\ ’
£2

r = the detector location,

¢(r) = particle flux at r,

1l

Wwo

welght of the particle after scattering,

6 = polar angle of the direction from the scatter point to 1,
£ = distance from the scatter point to r,

d = portion of path £ which consists of duct wall,

A = relaxation length appropriate for wall penetration.
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SUBROQUTINE COSJ(DC1,DC2,DC3,4)
CSTH#O.

JP#J+1

DO301#1,J4P

R#RAN{RA}
IF(R-CSTH) 304, 30,20

CSTH#R

CONTINUE
SITHH#SQRTF(1.0-CSTH#CSTH)
FRAN#RAN(RA)

SRAN#RAN(RA}
FR2AFRAN®FRAN
SR2#SRAN=SRAN
1F{1.0-(FR2+5R2)})70,80,80
CSPHI#{FR2~SR2)/(FR2+5R2)
SIPHI#2 .0#FRAN*#SRAN/(FR2+5R2)
IF{RAN(RA)~-0.5)90,90,100
SIPHI#~SIPHI

DCI1#CSTH

DC2#SITH*SIPHI
DC3#SITH#CSPHI

RETURN

END
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SUBROUT INE DETEST
C NOT SET UP FOR POWER SERIES ALBEDO

DOYDOJ#)Y s NUMDETY
LSNO#0
SIG#0.0
BLZ#0.0
WT#0.0
TD#0.0
CALL GEOM({XS;YSyZS»XDET(J),YDET(J)ZDET{J)+SIG,8LZ)
LSMI#LSNO-I
DO 20 L#1,LSMi
IF{ML(L)-99120,10,20

10 WTHWT+DL (L)

20 TO#TD+0LITL)
GO TO (30,30,40,40,50,50), IWALL

30 D2#IDET(J)
DI#ZS
G0T060

4D D2#XDET(J)
DI#XS
GOTO60

50 D2#YDET(J)
DI#YS

60 DCP#(D2-D1)/TD
GO 10 (80,70,80,70,80,70), IWALL

70 DCP#~DCP

80 IF{DCP)100,100,85

85 IF{WT/RELAX-50.0)90,100,100

90 PSQUJI#PSQEU)+WB*DCP/TO/TO/EXPFIWT/RELAX)

100 CONTINUE
RETURN
END
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The factor 1/ is not included by DETEST but should be included in the
normalizing factor CONS included in the initial particle weight. This
routine 1s guite slow in operation partially because it performs an
estimate for every detector location, even though the path to the
detector may travel through a large thickness of the duct wall. This
occurs because subroutine GEOM is called for every path. It would have
saved computer time to have written a special geometry routine for this

application rather than to have used the extremely general GECM.

Page 116 lists the corresponding DETEST subroutine for the CDC-160k4k.
It is functionally identical with that for the IBM-7090, differing only
because of the different GEOM used. The added complications are because
the CDC-1604 GEOM follows the track only to the first intersection point
with a new medium and it does not fill in the needed arrays XL, YL, ZL,

DL, and ML (see Appendix C).

The listing of subroutine SCORE for the IBM-T7090 program is on
page 117. In the analogue version of the code, this subroutine checks
each medium number in the array ML. If it is between 1 and 89, the
volume is a detector and the corresponding track length in that detector,
stored in array DL, is multiplied times the weight of the particle and
added to the score of that detector. The track is followed until a
medium number 99 is encountered, signifying that the particle entered

the duct wall.

The corresponding subroutine SCORE for the CDC-1604 is listed
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SUBROUTINE OETEST
COMMON /GEOM/MARK¢X24Y24Z29X1,3Y14Z14,NMEDyNR,Q;DTR,BLZON
XLE1)HXS
YLOLIHYS
ZLOY)I#ZS
CALL LOOKZ(XS,YS,2S)
MLAUT ) #NM
DOI1QUJ#) y NUMDET
X2#XS
Y2H#YS
L2KIS
XE#XDET ()
YE#YDET(J])
IEHIDET(J)
TDHSQRTFIIXE-XS)##2+{YE-YS)ne24+(2E~-7S)#n2)
MARK#]
NMED#NM
NR#NRE
BLZON#BL.Z
Q#TD
JWH#D
WT4#0.0
DO 75 JL#1,90
LSNO#JL +1
X1#X2
YI#Y2
Zi#Z2
X2H#XE
Y2HYE
12#1E
CALL GEOM
XL{LSNO)#X2
YL{LSNO)#Y2
ZLILSNO)YHZI2
ML{LSNO) #NMED
IF{MARK)100,10,5
5 DTR#Q
10 1F{JW)20,20,15
15 WTHWT+DTR
IF(WT/RELAX-10.0)20,100,100C
20 TIF(MARK)IDD, 25,45
25 Q#Q-TDR
IFINMED-99)55, 35,55
35 JW#)
GO TO 75
55 JWHD
75 CONTINUE
45 GO0 TO (3D,30,40,u480,50,50), IWALL
30 D2#ZDET(J)
DIKZS
GOTO60
LD D2#XDET(J)
D1#XS
GOTO060
50 D2#YDET ()
DI#YS
60 DCP#(D2-DI)/TD
GO 10 (80,70,80,70,80,70), IWALL
70 DCP#-DCP
80 IF{DCP)100,100,90
90 PSQUJUI#PSQ(J)+WBwDCP/TD/TD/EXPF(WT/RELAX)
100 CONTINUE
RETURN
END
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SUBROUTINE SCORE
DO10K#2,50

KFRK
IF{MLIK))20,20,12
IF(MLIK)~99)10,20,10
CONTINUE
WRITEOUTPUTTAPE?,15
FORMAT{36H ERROR IN SCORE - NO MEDIUM 0 OR 99)
LEND#KF~1

DO 40 I#1,LEND
IFIMLLTINIU0, 40,104
IF(ML(I)-90) 16, 40,40
IN#ML(T)
PSQUINI#PSQUIN)+W8=DLI{ 1)
TOH{IN)#TOH{IN)+1.0
CONTINUE

XS#XLIKF)

YSH#HYL(KF)

LSHIL(KF)

RETURN

END

SUBROUTINE SCORE
LEND#LSNO~]

DO 40 T#},LEND
IF{ML{TI))Iu0,u40,14
IF(ML{1)-90)16,40,40
INAMLIT)
PSQUINI#PSQUIN)+WB#DL (1)
TOH{IN)#TOHUIN}+1.0
CONTINUE

XS#XL(LSNO)
YSH#YL{LSNO)
IS#ZL(LSNO)

RETURN

END
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near the bottom of page 117. It differs only because subroutine HISTOR
has already determined how many of the array entries are valid detector
hits (i.e., the point in the array where the particle entered the duct
wall).

The next subroutine, DIRGE, is listed on page 119. This routine
assigns the parameter IWALL indicating which wall the particle entered.
TWALL is used by subroutines ALBEDO and HISTOR to properly handle the
collision, depending on which wall was hit. If either no wall was hit
or the hit was too close to the intersection of two walls for the routine
to be able to decide on one, IWALL is set to 9 and the particle is killed.

When used with straight cylindrical ducts, statement 222 in DIRGE
is replaced with:

222 TF (ABSF(YS*YS+ZS*ZS-WXW) -DELW)223,223,224

223 IWALL=6

IW=IW+1

22k IF (IW-1)230,225,230.

These statements set IWALL to 6 if the collision point is a normal wall
hit. 1In this case, W is used for the duct radius and the only meaningful
rectangular duct parameters are XWl, the position of the source plane,
and XWh, the position of the end of the duct. All the others are set

to values which will not be achieved by XS, Y3, and 7S.



119

SUBROUTINE DIRGE
TW#0
IFIABSF(ZS~ZWI1}-DELWILD, 40,50
4O IWALL#1
IWRIW+]
50 IF({ABSF{21S-2W2)~DELW)60,60,70
60 IWALLH2
IWHTW+Y
70 IF(ABSF(XS—XW2)-DELW)IB{O,80,90
80 IWALL#3
IW#IW+]
90 IF(ABSFIXS—-XW3)~-DELW)100,100,110
100 IWALL#4
IWkIW+}
110 IF{ABSF{YS~YWI])-DELW)120,120,130
120 IWALL#S
IWHTW+]
130 IF{ABSF(YS~-YW2)~DELW) 140,140,150
140 IWALL#6
IW#TWHY
150 IF{ABSF(YS~YW3)-DELW)I60,160,170
160 IWALL#S
IW#IW+]
170 JF({ABSF(YS~-YWU)-DELW) 180,180,190
180 IWALL¥6
TW#IW+]
190 IF(ABSF{XS~XW!)-DELW)200,200,210
200 IWALL#T
IW#IW+]
210 IF(ABSF{XS—XWu)—-DELW)220,220,222
220 IWALL#S8
IWH#iIW+)
222 IF(IW-1)230,225,230
225 RETURN
230 WRITEQUTPUTTAPED, 240
240 FORMAT{54H ERROR IN DIRGE ~ DID NOT LOCATE SCATTER POINT ON WALL)
IWALL#O
W8#0.0
RETURN
END
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Page 121 contains the listing of subroutine ALBEDO used witn
rectangular ducts. This routine first makes a selection from the power
series in cosf representing the albedo distribution, as explained on
pages 98 through 102. Then subroutine COSJ (COSINEJ on the CDC-1604) is
called to select the direction cosines. These direction cosines (DC1,
DC2, and DC3) are then assigned to the actual rectangular coordinate

system, depending on which wall the collision occurred.

Also listed on page 121 is an alternate subroutine ALBEDO used
for straight cylindrical ducts. The selection from COSJ (or COSINEJ) is
identical, but the transformation of the direction cosines to the rec-
tangular coordinate system used by the remainder of the program is
different. ‘The direction cosine DC1 supplied by COSJ must be referenced
with respect to the normal to the scattering surface and therefore must
be directed towards the centerline of the duct. DC2 is taken to be
parallel to the duct center line (the x axis). DC3 is tangent to the

cylindrical surface and perpendicular to the duct cznter line.

Subroutine STATS, listed on page 122, is the same in both machine

programs. The routine is called at the end of each particle history.

o

Tts primary function is to categorize the number of scatterings in the
arrays SCNSC, SCNSS, SCNSO, and SCNBK, as outlined previously. It also
accumulates the guantities SCOR and SCRSQ for each detector, to be used
in the calculation of the single batch variance. BSCOR is simply the

sum of all scores; SCRSQ is the swmation, over the historiles, of the

sguared scores.
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SUBROUTINE ALBEDO
ALBEDO FOR RECTANGULAR DUCT

RQ#RAN{RA)

DO 20 J#14NCS

JCOF#J-]

IF{RQ-PONCS{J)) 30, 30,20

CONTINUE

JCOF#NCS

CALL COSINEJ{(DC1,0C2,DC3,JCOF)

GO TO (140,150,170,180,200,210,115,115),IWALL

5 WRITEQUTPUTTAPED, 116, IWALL
6 FORMAT(26H ERROR IN ALBEDO - IWALL#I2)

140
150
160
170
180
190
200

210
220

C

20

30

W8#0.0
RETURN
DCZ#DCI
GO TO 160
DCZ#-DCJ
DCX#DC2
DCY#DC3
RETURN
DCX#DC]
GO 70 190
DCX#-DC]
DCY#DC2
DCZ#DC3
RETURN
DCY#DCI
G0 TO 220
DCY#-DCI
DCZ#DC2
DCX#DC3
RETURN
END

SUBROUTINE ALBEDO
ALBEDO FOR LONG CYLINDRICAL DUCT
RQA#RAN{RA)

DO 20 J#31,NCS

JCOF#J-1

IF{RQ-PONCS (4130, 30,20
CONTINUE

JCOF#NCS

CALL COSINEJ(DCI,DC2,DC3,JCOF)
DCX#DC2

DCY#(~DC1#YS+DC3#21S)/W
DCZ#(—-DCI#2S~DC3%YS)/W

RETURN

END
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SUBROUTINE STATS
INDX#IWALL~6

D0 10 I#1,NUMDET
SCOR({I)I#SCOR[I)+PSQLI)
SCRSQ{I)#SCRSQ(I)+PSQ( 1) =PSQ(I)
PSQ(I)#0.0

FNE¥NSCAT

DO 20 J#1.,40

JF#J
IF{FN-CNSC{J))30,30,20
CONTINUE
SCNSC({JF)#SCNSCULIF)+1.0
GO TO (u40,50,60),INDX
SCNSS{JF)I#SCNSS(JF)+1.0
SCSOR#SCSOR+1 .0

RETURN
SCNSO(JF)#SCNSO(JF)+1.0
SCEND#SCEND+1.0
WSCOR#WSCOR+WE

RETURN
SCNSK{JFI#SCNSK{JF)+1.0
RETURN

END
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Subroutine VARUNS, page 124, is also identical in both machine
programs. As one of its functions, it accumulates the gquantities SUMMNS
and SUMMEQ for use in calculating the batch variance for each detector.
SUMMNS is simply the sum of the means of all the batches, wvhile SUMMSQ is
the sum of the squared means of all the batches. The routine's primary
purpose 1s to combine the means and varlances of two independent batches
into a mean and variance appropriate to the combined batch., The state-
ments of the subroutine are rewritten below, using more conventional
nomenclature on the right-hand sides of the equations. The two batches
of events have means X; and Xz and variances of their means Gzi and
G;é’ and consist of ny and ng events. The resultant of the calculation
will be a new mean X and a new variance 0; for the n; + np events. All
guantities are computed for a particular detector numbered NDET. The

statements are:

Q= x1
F=ny
FL =n3 -1
G:l‘l2
Gl=np -1
n.
AVE = - }f X, = X
Neo i 2
=1
SUMMNS = }: i}
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SUBROUTINE VARUNS(NHITS,NDET)
IF{NHITS-1})10,10,20

RETURN

Q#AVERJ(INDET)

FH#LASNO(NDET)

Fi#F-1.0

GH#NHITS

Gl#G-1.0

AVE#SCOR{NDET)/G
SUMMNS{NDET)#SUMMNS{NDET )+AVE
SUMMSQ(NDET ) #SUMMSQ{NDET ) +AVE®AVE
UP#SCOR(NDET ) =AVE
SUMSQ#ISCRSQINDET)I~UP)/(G)=G)
AVERJ(NDETIH(AVERJINDET ) =F+AVE=G) /(F+G)
P#VAR(NDET)
RE(AVE-AVERJ(NDET) } 222
TH(Q-AVERJ(NDET) a2

SHF+G

SI1#5-1.0
VARINDET)#(G=Gl »SUMSQ4F=F 1P +GuR4+F&T)/(S2S1)
SCOR(NDETI#D .0

SCRSQINDET) #0.0
LASNO(NDET)#LASNO(INDET ) +NHITS
RETURN

END



SUMMSQ,

SUMSQ

AVERJ

S1

VAR

SCOR
BCRSQ

TASNO

1

il

it
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Z‘%f
J
nl
() %)
i=1

n o 2

g -}-C_l + No -}Zg

np + np =X
2
o
(% - %)°
(% - %)
ny + np
ny + np - 1
(m + ﬂz)(il +np - 1) nalre - 1) Uéé + ooy - 1) Uéi
+ no(Xs - ‘}2)2 + ni(x - 2)2} = 0325

ny; + 1np
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Page 127 is a listing of the subroutine OUTPUT for both machine
programs. A sample of the output produced by this routine 1s given on
pages 128 and 129. Both the single batch variance (VAR) and the batch
variance (ALTVAR) are listed along with a percentage standard deviation
(PV) computed as the square root of VAR divided by the flux, AVERJ, and
expressed as a percentage.

Page 130 contains listings of the subroutines PICTUR (18M-7090)
and PICTURE (CDC-1604),which plot the calculated fluxes versus distance
along the duct center line, using the CALCOMP plotter at ORNL's Computing
Center.>
Page 131 contains listings of the function RAN, the pseudorandom
number generator, in its IBM-7090 and CDC-1604 versions. The IBM-7090
version, at the top of the page, is written in the assembly language
FAP. The starting octal random number is multiplied by 515(5452772hh6158).
The 35 least significant bits of the product are stored for use the
next time. This quantity is then converted to a floating point number
between O and 1 which can be used by the FORTRAN routines. The CDC -160k
version, written in the assembly language CODAP-1, is quite similar in
principle. Since the CDC-1604 has 48 bit storage cells rather than 306,
slightly different numbers are used. The constant multiplier is 519
(labelled FIV19 and equal to 42545#&50110&758). Tests performed on these

routines are described in Appendix D.

SDetails of the subroutines which are called to do this plotting
are given by D, K. Trubey and M. B. fmmett, An IBM-7090 Subroutine
Package for Making Logarithmic and Semilogarithmic Graphs Using the
CALCOMP Plotter, ORNL-TM~430 (Dec. 12, 1962).
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SUBROUTINE QUTPUT
WRITEQUTPUTTAPED, 20,5CSOR

120 FORMAT(F20.1,28H PARTICLES RE-ENTERED SOQURCE)
WRITEQUTPUTTAPE?,130,SCEND

130 FORMAT(F20.1,25H PARTICLES TRAVERSED DUCT)
WRITEQUTPUTTAPE?, J40,WSCOR

Y40 FORMAT{20X23HEXIT WEIGHTED PARTICLESF2D.9)
WRITEQUTPUTTAPE®D, 50

150 FORMAT(93H NO SCATTERINGS TOTAL PARTICLES LOST TO SOU
IRCE SCORED KILLED)
WRITEQUTPUTTAPED, 160, (CNSC(I),SCNSC(I),SCNSS{I),SCNSO(I),SCNSKI{I),
1141,40)

160 FORMAT(F1lalsF2UhalF2U0.1,F18.1,F20.1)
WRITEOUTPUTTAPE?, IO
101 FORMAT{1HI)
WRITEOUTPUTTAPED, 190
190 FORMAT({]1]8H DETECTOR AVE SCORE VARIANCE
INO HITS SCORE PERCENT STANDARD DREVIATION BATCH VAR)
DO200ON#1,NUMDET
TOTSCORBAVERJIN) #FLOATF{LASNO(N) ) #CONS
PV#SQRTF(VARIN))/AVERJ(N)*{(D.0O
200 WRITEOQUTPUTTAPEQR,2204NyAVERJ(N),VAR(N)},TOH(N) TOTSCOR,PV,ALTVAR(N)
220 FORMATI(I10,2F20.9,F10.1¢3F20.9)
RETURN
END
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ALBECCH . + 1.LCCOY +
NRIST# «LZC, RAH 155265742735, Wi 3.00, 4 8.00, PSCH T./50CC, NBATLR#2LC, NSKILTHILG, CFOw8# L. iCOOE-CH
SRRCR IN CIRGE — 0IC NOY LCCATE SCATTER PCINT ON wALL
SRRCR IN DIRGE - DID NCT LUCATE SCATTER PCINT UN WALL
ERRCR IN LUIRGE = L[IC NCT LCCATE SCATYER PUINT ON WALL
CRRCR IN CIRGE = CIC WNOT LCCATE SCATYLR PUINT ON wWALL
CRRCR IN DIRGE — DIO ACYT LOCATE SCATTLR PCINT ON hALL
3242,L PARTICLES RE-ENTEREL SCOLACE
S28.0 PARTICLES TRAVERSED DLLT

EX{T WEIGFTET PARTICLES 118276597078
NO SCATTERINGS TCYAL PARTICLES LOST TC SCURCE SCCREC KILLEC
1.0 43,0 S43.C c. C.
2.0 wolC.C yeC.C C. C.
3.4 32¢.C 224.0 2.0 C.
4.0 233.0 23i.C 2.C C.
5.0 $182.C0 i77.0 5.0 C.
6.7 1us.T 1uf.C 5.C C.
7.0 1i3.C 93.C i7.C Sen
8.0 oc.0 26.C b, .
P40 g2.C 78.C 4.8 we
(RIS 166,50 129.¢ 25.C 2.C
13.0 117.0C €2.C 35.C Ca
15.0U 119.C gz2.C 2r.C G.
f7.0 1g0é.C ¢é.C 4.0 C.
19.5 10t 52.C 49.C C.
21.0 63.0 37.0C 26.C Ca
23.7 74.C LilC 2z.C C.
25.d 61.0 28.L0 23.C C.
27.5 59.C 12.C 26.C e
29.C 52.C 27.C 25.C Ce
3. 6C.C 22.C 28.C C.
33.40 42.0 2C.C 23.0 C.
35.0 39.0 19.0 c.C Ce
37.0 57.0 17.C <C.C Ce
39.0 21.0 tC.C 1.0 C.
b1.0 #3.C 17.C 11.C 55.C0
h3.4 9C.C y.C 7.C 77.C
45.0 53.C 1.C 4,C 48.0
1.0 28.0 2.C 2.C 24.C
49.C t1.C0 C. i.C 10.0
Sles 3.0 .L C. 2.C
53.0 5.0 J.C 1.0 3.0
55.7 2.C cC. C. 3.C
57.0 1.0 c. G. I.C
59.3 i.0 C. C. t.C
61.0 C. C. C. Lo
63,4 C. C. Ca C.
65.0 C. C. C. Ce
67,2 C. C. C. C.
09, C. L. C. Ca
[ C. C. C. C.

gect
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VAR LIANCE

CLCTTTudu9s
C.CCECHI 961
C.CECT18935¢
C.lUTOuUT 43
C.CCLS51390y
C.CCL593379
C.LCOS5uGICT
CL.CUCu93854
CoOClu3G22y
C.CCC3u7uls
C.CLT33395C
C.CLC3ILIC2
C.LLL31365%
CL.ELE3u053¢
C.CCL39C9c2
C.CLL277673
C.CiC22¢612
CLOCL16893y
CoLLCH15573
C.CLED765LC
C.CLECToELS
C.CCCCesT87
C.CECC¢RGY2
C.CCTCOuLTY
C.CLCCu2737
C.LCCC3T9ué
LLOLE299 1
LCCCC2u7r73
LCLCG 22112
SCECU20 30
SLUCC2830
G.CCLCE9252
C.OOCC2C6uE
C.LCCC2614 37
C.CILL28464
LCCCG21845

Mmoo

LCCCCC25138
LLLTCC2891Y
LCOCEC1639
LCCLLZ1I8L
LLrgrtiizes
LLLCLTI LY
LOLCCCITT3
LOCUCUY 3
LCCLCouTERT
CL.ELLC

C.CLCCCos2
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NC RITS
8785.C
B433.C
83L9.C
8CEY.C
7782.C
77348.C
T¢iC.C
736C.C
7167,
5695,
6963,
6E27.
6782,
6765,
se30.
6Cth.
5718,
5613,
5439,
SLCC,
5212,
uegs,
yEeC,
Lédh,
5501,
Ligt,
List,
3596,
3865,
37utl.
3619,
3522,
3422,
2875,
288C.
2786,
2745,
2684,
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2398.C
2212.C
208C.C
1567.0
1865.C
715 .0
15%7.C
14900
1397.C
1230.C
1113.C
1063.0
93u.C
egy.C
£72.C

SCCRE
4BGE.689941406
4101.2039794392
3725.573669u3y
327T.54174752
27T7C.5343%62793
2612.342366543
2367.1358uL615
23210915521 30
19L9.768L17558
1698.,9700921773
1560 .6575408¢643
P 23,350509082
1372.552563477
P340,595275¢877
1359.837966519
SDHELE6u509583

Bus.u51202393
698 B23475699
HE1.e09222412
529.3254E5229
Los,105527¢06
4C3,605018616
$685.5005891821
329.032165527
2FU 516860562
2571921581647
2ZZ.9t50u73001
202.338323593
198.480745231¢
t82.802276825

TeT. 20040308

V57.733726501

155.243857357

132.389196496

132,189 7TuussC

t19.906382506

120.209586(C8

120.625849 (24

thi.838036498

19.14023971¢

58.05391645,

H8.5769741 14

BT ,527878761

35.02303257C

52.2878C4127
2T.0526561 T4

23.437021799

21.uESERITLG

19.212964296

18.371716u499

17.342878819

ta.Cu1328380

12.163751483

1539727628

PERCENT STANCARC UEVIATICN

1.1109969¢2
1.20637C0 114
Pel3E2474527
Fa5523228%4
Veb364T77992
fe360554382
1963571146
2.095427424
2.17221CH27
2.194126798
2.3u185122¢%
2.472%9521217
2.601241887
2.753055751
2.9C79C3840
3.28€765718
3.92197&918
Z.71GE8TB28
3.65507uk55
Z.71 1818039
3.52E509152
L,COCt986C3
4,2975358%6
L,uE2E7HT32
h.995¢BIT27
4, 7902686LC
L, 9C7HEC316
4.9178€625C9
5.71C4368132
5.38£832%089%
5.510749221
5.58625¢75E6
5.8528%542
7.666254456
Bu132619547
T.79eL 62857
B8.OCCI5u054
T.67T58248E821
B.17987597C
B.T7796857159
B.480365276
S 5575 ER2 T
8.257939u1¢
B.7918631613
10.532115¢4%8
9.4855720¢6
B.873z28156(
W LTIA99u20
P 178197C28
PHa281473229
13.222C06487
12.508560657
PHao288870EL
t6.53243E858

BATCH VAR

C.L0Cs31085
C.LCCs26152
C.0CCT168C5
0.0Co92279
C.CLCh2626H
C.CCC3291 37
C.CLG297949
0.0CGO47G310
C.CLC35%155
C.CCT273205
C.CCT327632
0.CCO145882
C.CCCH3C355
C.CCC2u921y
C.CCO33957%5
C.CLO12558C
C.CC0185u45
C.CCoi9209%
C.GCO124328
C.CCOICL218
C.LCCE9C159
C.0Cooe372d
C.CRCH1B81 358
C.CLO073738
C.CECCuaT732
CL.LL0CE57265
C.CCCtsCeny
C.0COC27L26
C.0CCC3z76C
U LCUT27455
CL.CCoC251¢8
C.CoCgzut2d
C.CCGrzosty
C.CCGC21987
C.CCCOC3C9zs
C.CGOC268LY
C.CCCC20199
C.CCCo28238
C.CCOC31ice
G.CCO0iC282
C.COCCC6542
C.OCCOCus22
C.CC00C32uE
C.CLutc32se
C.CL0CC222y
C.CCOCCZ1ue
C.CCohoigs3
C.CCoCosz2L
C.CCCCTisue
C.CCOCo1527
C.CCOOC1699
C.CCOCCC8 0y
C.CCCoearec
C.CCCCLiges



130

SUBROUTINE PICTUR
CALL SEMLOGINCY,ITOPY,XZERO,DELTAX,NOINT,A5)
CALL LETTER(OWNHC,TITL(LETPAR),AS5)
CALL LETTER{1423,23HCENTERLINE DISTANCE, FT,A5)
CALL LETTER{2,68,68HNEUTRON FLUX PER SOURCE NEUTRON CURRENT - NEUT
IRON/CM PER NEUTRON/CM,AS5)
CALL EXPON(2,68,52,1H2,A5)
CALL EXPON(2,68,68,1H24A5)
DO 100 JL#),NUMDET
R#AVERI(JL)
SHE2.(0#SARTF(VAR(JL))
THR+S
CALL CURVE{JL,XPLOT,U,A5)
U#R-S
XPLOTE#XPOS{JL)
CALL POINT{XPLOT,Ry4,0.04yAS)
IF{U)YI0,10,5
5 CALL POINT({XPLOT,U,5,0.02,A5)
10 CALL POINYUIXPLOT,7,5,0.02,A%)
CALL ADVANC
RETURN
END

SUBROUTINE PICTURE
CALL SEMLOGINCY,ITOPY,XZERQO,DELTAX,NOINT,8.0,6,A5)
CALL LETTER{UO,NHC,TITL,AS5)
CALL LETTER{1,23,23HCENTERLINE DISTANCE, FT,AS)
CALL LETTER{2,68,68HNEUTRON FLUX PER SOURCE NEUTRON CURRENT ~ NEUT
JRON/CM PER NEUTRON/CHM,AD)
CALL EXPON(2,68,68,1H2,A5)
DO 10 JL#1,NUMDET
R#AVERJ(JL)
S#2.0%SQRTFIVAR(JL)Y)
T#R+S
U#R-S
CALL CURVE{JL,XPOS({JL)yR,AS5)
CALL POINT({JLyXPOS{JL),T,i3,0.04,90.0,1,45)
5 CALL POINT(JL,XPOSIJL)yU,13,0.004,90.0,1,45)
10 CALL POINT{JLyXPOS(JL)yRy4,0.04,20.0,14+4A5)
CALL ADVANCE{AS)
RETURN
END
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FIVIS
LOGI
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ENTRY
SXD
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IDENT
ENTRY
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STA
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ADDR

ALTTVAR
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BL
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DCX
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APPENDIX B

IDENTIFICATION OF IMPORTANT SYMBOLS USED

IN MACHINE PROGRAMS

A 5-cell array set aside for the plotting routines (6-cell
on CDC -1604).

Array set aside for GEOM input (JOMIN) storage.

Variance of the overall mean, calculated using batches of
particles.

Total accumulated score for each detector, divided by the
number of scurce particles (upon output, normaglized to give
particle flux per particle current leaving source plane).
Array used by GECM, containing a packed word describing the
zone and block location of a point.

Same as BL(1); set to zero when GEOM is called.

Array giving values of the number of scatterings used in
calculating histograms of particles versus thelr number of
scatterings.

Constant which normalizes scores to particle flux per source
particle current.

Direction cosine in the x-directilon.

Same as DCX for y.

Same as DCX for z.

Weight below which particles arc killed.
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DELTAX =~ ©Spacing of abscissa labels in plots.

DELW - Maximum spacing of intersection point from wall position to
be consldered an intersection.

DL - Array filled in by GEOM, DL(I) contains distance from X(I),
Y(I), Z(I) to next intersection point.

hii - Height of rectangular duct.

INDX - Index used by BTATS to categorize scatterings of particles
whichre-entered source (=1), left the end of duct (=2), or were
killed (=3).

IToPY -  Exponent of 10 which is maximum cordinate value to be plotted.

TWALL ~ Index calculated by DIRGE to indicate which wall a collision
occurred on.

SNO ~ Accumulated number of histories.
IETPAR - Parameter calculated by HOLLER in input and used by LETTER

in PICTUR to draw title of plot.

LSNO - Parameter in GEOM.
ML - Array filled by GEOM with medium numbers of intersection
points.

NADD - Used in CDC-1604 GEOM to designate first address to be used
for storage of GEOM input.

NBATCH -~ Number of histories accumulated for each batch score to be
used to calculate batch variance.

NCE

Largest exponent of cosine of polar angle to be used in

alvedo distribution function.



NCY

NHC

NHIST
NOINT
NSCAT
NSKILT
NUMDET

PONCS

PsSQ

RELAX

SCEND

BSCNS

SCNBK
SCNSO
SCNSS

SCOR

1

1
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Number of cycles on ordinate of plot.

Number of Hollerith characters read in by HOLIER (title of
plot).

Number of histories to be run.

Fal

Number of intervals on abscissa of plot.

Number of scatterings undergone by a particle.

Number of scatterings above which a particle is killed.
Number of detectors.

Coefficients of power series (in the cosine of the polar
angle) which represents the albedo distribution.

Integral value of albedo (probability of re-emission from
wall).

Array of accumulated scores 1n detectors during a history.
Octal random number.

Relaxation length for exponential corner penetration prob-
ability.

Number of particles traversing duct.

Array giving histogram of particles having undergone a
number of scatterings within limits specified by CNSC.
Similar to SCNSC for particles whnich were killed.

Similar to SCNSC for particles completely traversing duct.
Similar to SCNSC for particles re~entering source.

Array of accumulated detector scores (cleared by VARUNS every

NBATCH histories).



135

SCR3Q - Array of accumulated squares of detector hits (accumulated
each history and cleared every NBATCH histories).

SCSOR - Number of particles which re-entered source.

gIG -~ Signal given GEOM specifying whether direction cosines (=1)
or an end point (=0) was gziven.

SUMCOF -~ Integral of power series representing differential albedo,
used to renormalize the series properly.

SUMMNS - Sum of batch means.

SUMMBQ - Bum of squares of batch means.

TITL - Hollerith array for title of plot.

TOH - Array giving total number of hits for each detector.

AR - Variance of overall mean, for each detector.

W - Width of rectangular duct; also used as radius of cylindrical
duct.,

we ~ Weight of particle.

WSCOR - Sum of weights of particles completely traversing duct.

XDET - Array of x-coordinates of detectors.

XL - Array of x-coordinates of intersection points (from GECM).

XPOS - Array of center-line coordinates of detectors (used in plotting).
X5 - X~coordinate of scattering point.

XWl - X-coordinate of source plane.

Xwe « X-coordinate of second lez wall.

XW5% - X-coordinate of second leg wall (XW3 > XW2).

XWh - X¥-coordinate of end cf duct.
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XZERO -~ Smallest abscissa value used in plot.

YDET ~ Array of y~coordinates of detectors.

YL - Array of y-coordinates of intersection points (calculated by
GEOM) .

S - Y-coordinate of scattering point.

YW1 - Y-coordinates o duct walls.

YWz - Y~coordinates of duct walls.

YW - Y-coordinates of duct walls.

YWh - Y-coordinates of duct walls.

ZDET - Array of z-coordinates of detectors.

yar -~ Array of z-coordinates of intersectlion points (calculated by _
GEOM) .

75 - Z-~coordinate of scattering point.

ZW1l - Z=-coordinates of floor and roof of duct.

AES - Z~coordinates of floor and roof of duct.



APPENDIX C
DESCRIPTIONS OF THE GEOMETRY SUBROUTINES AND INPUTS

The general~purpose geometry routine, GEOMf' is available in two
principal versions. One version is written in the IBM assembly language
FAP and is intended fTor use on the IBM~-7090. It was written as a general
routine for treating complex geometries in Monte Carlo and other types of
calculations. The other version is written largely in the FORTRAN
language and was used in the CDC~1604 version of the Albedo Monte Carlo
machine program. It was written specifically for the O5R Monte Carlo
system, but is quite similar in use to the FAP version. Only the fea-

tures of the routines which were used in this study will be described.

The basic purpose of both routines is to take any straight-line
path through the configuration and determine the media through which it

passes and the length of the path segment in each medium.

The geometry specification is guite general, permitting very
complex geometries. The entire system of interest must be enclosed in
a parallelepiped whose faces are parallel to the coordinate planes. This
system may then be divided into one or more parallelepipeds, called
"zones," by planes which are parallel to the coordinate planes and extend

completely across the system. Similarly each zone may be divided,

lDescriptions of the use of GEOM and the routines themselves were
obtained from D. Irving, Neutron Physics Division, Oak Ridge National
ILaboratory.
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independently, into smaller parallelepiveds, called "blocks." Each
block or zone boundary may be a medium boundary, if desired. In addi-
tion, medium boundaries may be specified by surfaces defined by the
zeros of general quadratic functions. Two examples of geometries and

their inputs are given later in this appendix.

The FAP version of GEOM will accept a path specification either
by the coordinates of the starting and ending points of the path or by
the coordinates of the starting point and the direction cosines of the
path. Tt then follows the entire path (to the system boundary, if
direction cosines are given), filling in six arrays which are provided in
the main program. These arrays will contain the coordinates of each
point where the path changes media, the medium numbers along the path,
the distances between the intersection points, and an array of packed
words giving the block and zone locations of each point. TFor each path

GEOM is called with the FORTRAN statement
CALL GEOM(Xl,Yl,Zl,XQ,YE,ZQ,SIGNAL,BLZON).

X1, Y1, Zl1 are the starting-point coordinates. If SIGNAL = O, then X2,
Y2, and Z2 are the endpoint coordinates. If STGNAL 4 0, then X2, Y2,
and Z2 are the direction cosines of the path. BLZON, the packed word
containing the block and zone of X1, Y1, Z1, is set to zero initially if

it is not known.

The FORTRAN version of OSR-GEOM will only accept the starting and

ending points of a path, and it only follows the path until it reaches a
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boundary where a medium change occurs, It then returns with the co-

ordinates of the intersection point, its medium number, and the distance

travelled. The routine 1s called by the sequence:2

CALL GEOM(MARK,X2,Y2,%2,X1,Y1,71, NMED, NREG, R, RUSED, BLZON)

where MARK signals the type of collision upon return and

MARK = 1 for completed flight,
= 0 for normal medium boundary crossing,
= =1 for escape from system,
X2,Y2,722 = initially endpoint coordinates and upon return give
the intersection peoint,
X1,Y1,21 = starting point coordinates,
WMED = medium number of X1, Y1, 7Z1 initially and medium
number of X2, Y2, Z2 upon return,
NREG = region® number of X2, Y2, 72 (given only when

MARK = 1),
R = length of the path given GEOM,

RUSED = actual path length (not given if MARK = 1),

BLZON = packed word glving block and zone locations of X1,

H

Y1i, Z1 upon entry, and X2, Y2, Z2 upon exit.

2The GEOM used in the CDC-1604 program described in Appendix A
has a slightly different calling sequence being a latér FORTRAN version
using the labelled COMMON feature of CDC's FORTRAN-62 (see Ref. 9 in
Bibliography) .

3Region descriptions are a fTeature used in O5R which are not
used in the albedo Monte Carlo program.
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To obtain NMED, NREG, and BLZON inlitially, the subroutine LOOKZ

must be called, as follows:
CALL LOOKZ(X1,Yl,%1,NMED,NREG,BLZON,1) .

Special input routines are contalned in both GEOM packages which
read the necessary geometry input cards and, in the case of the FAP
version, perform several checks and then print out the input data. The

FAP version input i1s called by the following statement:

CALL JOMIN(LISTNO,XL, YL, %L, DL, ML, BL, ADDR) .

LISTNO is the dimension cf the arrays XL, YL, ZL, DL, ML, and BL, which
are used by GEOM to store the path descriptions. ADDR, as used in this
program, is the name of the FORTRAN variable which sets aside room in

the COMMON storage for geometry inputl storage.

The FORTRAN GECM input is called by the following statement:
CALL JOMIN(NADD),

where NADD is the difference between the first location in the COMMON
storage and the first locatlon which is available for geometry input

storage.

Two examples of GEOM inputs will be given. The first will be a
three~legged rectangular duct configuration containing 54 parallelepiped

detectors, written in the free-field format used by the FAP GEOM.
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The second configuration will be the same three-legged duct with no

detectors, using the FORTRAN input format.

Pigure Sk shows the zone configuration of a three~legged duct
with a 3 x 6 ft cross section. System boundaries are at x = 0 and b5 f't,

y = =% and 60 ft, and z = -3 and 15 ft. Zone boundaries are located at

{1

i

y=0, 3, 12, and 15 ft, and z = 0 and 6 ft. This divides the system
into 15 zones shown in the figure, all extending from x = O to 45 ft.
The duct system 1s contained in zones 7, 8, and 9, shown cross-hatched
in the figure. The surrounding 12 zones are included to ensure that
polnts on the duct walls are well inside the system. (In some cases,

if a starting point that is slightly outside the system is given to GECOM

2

errors will occur.)

Figure 55 is a cross section of the essential portions of zones
7, 8, and 93 it shows the block configuration in these zones and the
various medlum mumbers that are assigned. Zone 7 is divided by planes
from x = 0.5 to 7.5 £t in 0.5~ft steps. The first 15 blocks thus Tormed
are assigned medium Nos. 1 to 15 for use as detectors. Note that this
forms a set of 19 detectors, each 0.5 £t thick and covering the full
3 x 6 ft cross section of the duct. The 16th block is assigned medium
No. 99, labelling it as a duct wall. Zone & is divided into 54 blocks
by planes at x = 4.5 and 7.5 ft and, in steps of 0.5 Tt, from y = 3.5 to
11.5 ft. The 36 blocks thus formed which are located from x = O to L,5

ft and x > 7.5 ©t are all assigned medium number 99. The 18 blocks
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144

between x = 4.5 and 7.5 ft are assigned medium numbers between 16 and
33 for use as detectors. Zone 9 is divided into blocks by planes run-
ning from x = 4.5 to 15 ft in 0.5-ft steps. The first block (x = O to
L,5 £t) and the last block (x > 15 ft) are assigned medium No. 99. The
blocks between x = 4.5 and x = 15 ft are assigned medium numbers from
34 to 54. A listing of the input cards for this geometry, as they are
reproduced on the output listing, 1s given on the next three pages.

This geometry uses 1085;¢0 storage locations.

The second geometry to be described is similar except that no
detectors are used. The duct volume 1s assigned medium No. 90, indicating
void. The zone configuration is the same as that shown in Fig. 54.

Zone T has two blocks divided by the plane x = 7.5 ft with the volume

X < 7.5 having medium number 90 and x > 7.5 having medium number 99.
Similarly, zone 8 is divided into three blocks by planes at x = k.5 and
7.5 f£. These three blocks have medium numbers 99, 90, and 99, respec-
tively. Zone 9 is also divided into three blocks having medium

nunbers 99, 90, and 99 by planes at x = 4.5 and 15 ft. The listing of

this input is given on the last three pages of this appendix.



1hs

X ZONE BOUNDARIES (,u5

Y ZONE BOUNDARIES -3,0,3,12,15,60
I ZONE BOUNDARIES ~3,0,64,15

ZONE 14141
X BLOCK 0,45 Y BLOCK
BLOCK 141,10 MEDIA 9?99

IONE 1,2,

X BLOCK (O,u45 Y BLOCK
BLOCK 141,41 MEDIA 99
ZONE 143,

X BLOCK 0,45 Y BLOCK
BLOCK 141,41 MEDIA 99

ZONE 1,4,1

X BLOCK (Q,u45 Y BLOCK
BLOCK 1,1, MEDIA 99

LONE 145,1

X BLOCK D,u5 Y BLOCK
BLOCK 1,841 MEDIA 929

ZONE §,1,2

X BLOCK 0,45 Y BLOCK
BLOCK 141,1 MEDIA 99

ZONE 142,2

~3,0

0,3

3912

12,15

l BLOCK

Z BLOCK

Z BLOCK

I BLOCK

Z BLOCK

Z BLOCK

-3,0

"“3,0

-3,0

X BLOCK BOUNDARIES 0,2.25,3.75,5.25,7.5,45

Y BLOCK BOUNDARIES 00,3
Z BLOCK BOUNDARIES 0,6
BLOCK 148,

MEDIA 90,1

SURFACE !}

SECTOR +1

SECTOR -1

BLOCK 2,1,1

MEDIA 90,2

SURFACE 2

SECTOR +1

SECTOR -4

BLOCK 341,1

MEDIA 90,3

SURFACE 3

SECTOR +#i}

SECTOR -~}

BLOCK U4,1,1

MEDIA 90,4

SURFACE 4

SECTOR +1

SECTOR -1

BLOCK 5,1,1

MEDIA 99

IONE 133,2

X BLOCK BOUNDARIES 0
Y BLOCK BOUNDARIES 3
7 BLOCK BOUNDARIES O
BLOCK 41,41

MEDIA 99

BLOCK 2,11

MEDIA 90,5

SURFACE S

SECTOR +1}

SECTOR -1

BLOCK 3,18,1

MEDIA 99

BLOCK 142,41

-
3

- - -

179 1045,12



MEDIA 99
BLOCK 24241
MEDIA 90,6
SURFACE &
SECTOR +]}
SECTOR -}
BLOCK 3,241
MEDIA 99
BLOCK 1,3,14
MEDIA 99
BLOCK 2,3,!
MEDIA 90,7
SURFACE 7
SECTOR +}
SECTOR ~}
BLOCK 3,3,1
MEDIA 9@
BLOCK {44,
MEDIA 99
BLOCK 2,4,4)
MEDIA 90,8
SURFACE 8
SECTOR #)
SECTOR -1
BLOCK 344,]
MEDIA 99
BLOCK 1451
MEDIA 99
BLOCK 2,541
MEDIA 90,9
SURFACE 9
SECTOR +1
SECTOR -1}
BLOCK 3,5,1
MEDIA 99
BLOCK 146,
MEDIA 99
BLOCK 246,41
MEDIA 90,10
SURFACE 10
SECTOR +}
SECTOR —1
BLOCK 3,6,1
MEDIA 99
LONE 144,2
X BLOCK BOUNDARIES Dple596.7598.2519.75911.25,12.75,15,U45
Y BLOCK BOUNDARIES 12,15
Z BLOCK BOUNDARIES 0,6
BLOCK 141,1
MEDIA 99
BLOCK 2,1,1
MEDIA 90,11
SURFACE 1)
SECTOR +1
SECTOR ~1]
BLOCK 3,1,1
MEDIA 90,12

SURFACE 12
SECTOR +1
SECTOR —1

BLOCK 4,141
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MEDIA 90,13

SURFACE 13
SECTOR +])
SECTOR ~]

BLOCK 551,11
MEDIA 90,14

SURFACE 14
SECTOR +14
SECTOR =1

BLOCK 6451,1
MEDOTA 20,15

SURFACE 15
SECTOR +1
SECTOR ~1|

BLOCK Tyl

MEDIA 90,16

SURFACE 16

SECTOR +]

SECTOR ~1

BLOCK 841,1

MEDIA 99

IONE 1,45,2

X BLOCK Oyu45 Y BLOCK 15,60 2
BLOCK 141,1 MEDIA 29

ZONE }1,1,3

X BLOCK [O,u5 Y BLOCK -3,0 Z
BLOCK 141,41 MEDIA 99

ZONE 1,2,3

X BLOCK D,45 Y BLOCK 0.3 Z
BLOCK 14141} MEDIA 29
ZONE 143,43
X BLOCK 0O,u45 Y BLOCK 3,12 2
BLOCK 14141 MEDIA 99
ZONE 14,3
X BLOCK 0,45 Y BLOCK 12,15 2
BLOCK 141,14 MEDIA 929
IONE 1,5,3
X BLOCK 0,45 Y BLOCK 15,60 2
BLOCK 1,141 MEDIA 99
QUADRATIC FUNCTIONS 16,
(X—3.5)S5Q+{¥Y-1.5)5Q+(2-3)5Q~-.25,
{(X~3)SQ+{Y¥~-1.515Q+(2-315Q~.25,
(X~4.5)S5Q+{Y~-1.5)5Q+(2~-3)SQ~.25,
(X~6)SQ+{Y-1.5)SQ+{1~3)5Q~.25,
{X-6)SQ+{Y¥-3.75)SQ+{Z2~-315Q~-.25,
(X~6)1S5Q+{Y~-5.25)5Q+(Z-3)5Q-.25,
(X-6)SQ+{Y~6.75)SQ+(Z~-3)5Q-.25,
(X-6)SQ+{Y~-B.25)SQ+{71~-3)50~-.25,
(X=6)SQ+{Y~-9.75)5Q+(7~-315Q0-.25,
(X-6)S5Q+(Y-11.25)15Q+(Z~3)5Q~.25,
(X=6)SQ+{Y~13.5)S5Q+{Z1~-3)5Q~.25,
(X~T5)SQ+{Y-13.5)1SQ+(2~3)SQ~.25,
(X-2)S5Q+(Y~13.5)S5Q+(2~-3)5Q~.25,
(X=10.5)1SQ+{Y-13.5)18Q+{71~3)5Q~.25,
(X=12)SQ+{Y~13.5)5Q+({2~-3)5Q~.25,
(X=13.5)SQ+{Y-13.5)SQ+{Z-3)5Q~.25
END

8L 0CK

BLOCK

BLOCK

BLOCK

BLOCK

BLOCK

6415

6915

6,15

6415

6915
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APPENDIX D
INDIVIDUAL SUBROUTINE CHECKS

Two of the subroutines used in this program are unique to Monte
Carlo type of calculations because they involve the randomwsampling
technique and therefore necessitated the operational checks described
here. The two subroutines are the pseudorandom number generator RAN
and COSJ (or COSINEJ), which selects a set of direction cosines from

the desired distribution.

Versions of the FORTRAN functions RAN for the IBM-7090 and the
CDC-1604 are similar in operation and are described in Appendix A. A
starting random number is given the routine. When called, the function
multiplies it by a large number (5% on the IBM-7090, 5% on the CDC-
1604). The least significant portion of the answer is retained as an
octal integer to be used to generate the next number and is also con-
verted to a floating point number between O and 1 which can ve used by
the FORTRAN routines. The test program, which was used on each machine,
printed a list of the first 50 numbers and then ran through a series of
checks on 10,000 numbers. Each number was categorized in two histograms
of ten boxes each as to the value of its first and second diglits. 1In
other words, the number 0.2563.... was scored in SCORL(3) and SCOR2(6),
indicating that 1ts first dlgit was 2 and the second 5. Four other
quantities calculated were SUM1, SUM2, SUM3, and SUMh. SUM1 was simply

the mean of all 10,000 numbers, having an expected value of 0.5:
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where x is a random variable uniformly distributed between O and 1. SUM2

was the mean of the squared numbers, which has the expected value

1
E(suM2) = fx2 ax =
0

NI

The quantity SUM? was the mean of the product xy, where x is one of the
10,000 random numbers and y is another random number, with the expected

value

11 1
E(SUM5)=fxfydy:f’2-‘~:%;.
o 0 0

The last quantity was the mean of the product DiDp, where Dy and Ds are
the first and second digits of each of the random numbers, with the fol-

lowing expected value:

10 10
E(suMls) = —%—5 Z Dy (1) [ %5 Z D;_(i)} .
i=1 i=1

Since Dy and Do have equal probabilities of attaining any integral value

between O and 9,
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2

E(suMk) = [ %5 (0+1+2+ euu + 9)] = (4.5)% = 20,25 ,

The following tabulation gives the results of the test run on the IBM-

T090:

SCORL SCOR2

991 1019 SUML 0.4979875
1031 1001

960 1034 SUM2 = 0.3306696
1012 10%9

1003 1010 SUM3 = 0.2483%983
1043 1015

1025 975 SUML = 19.9859
976 Ll

975 973

98l 990

The tabulation below gives the corresponding results for the test on the

CDC-1604:
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SCOR1 SCOR2

1033 972 SUML = 0.5017188
992 965

965 96k SUM2 = 0.3360349
1005 1009

995 1001 SUM3 = 0.2510409
969 1003

979 1032 SUMh = 20.53%3
1029 1035

1018 1017

1015 1002

Tt was concluded from the above results that the sequences generated by
the two routines are sufficiently random for the purposes of a Monte

Carlo calculation.

The listing of the subroutine CO0SJ (or COSINEJ in the CIX-160L
program) is shown on the following page. This routine selects from a
polar angle distribution egual to cosJe by using the largest of J + 1
random numbers as the value of cosf. This technique 1s justified in
the following paragraphs, first by showing that selection may be per-
formed by taking the J + 1 root of a random number and then by demon-
strating the equivalent (and faster) procedure of selecting the largest

of J + 1 random numbers.

It is given that a particle has a probability proportional to
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80

90
100
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SUBROUTINE COSJ{DCI,DC2,DC3,4)
CSTH#O.

JP#JIH

DO301#1,4P

RERANI(RA)
IF{R~CSTH) 30, 30,20

CSTH#R

CONTINUE
SITHASQRTF (1 .0-CSTH&CSTH)
FRAN#RAN(RA)

SRAN#RAN(RA)
FR2E#FRAN=FRAN
SR2ZHESRAN=SRAN
IF{1.0-(FR2+5R2))70,80,80
CSPHI¥(FR2~SR2)/(FR245R2)
SIPHI#2.0«FRAN#SRAN/{FR24+5R2)
IF({RAN(RA)~-D0.5190,90,100
SIPHI#-SIPHI

DCI#CSTH

DC2H#SITH*SIPHI
DC3#SITH=CSPHI

RETURN

END
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COSne dQ of being emitted into the so0lid angle element dfl about 6. Since
aQ = 2% sind 49, the probability of the particle being emitted into aé

about 6 is proporticnal to
21 cosne 8inf d9 = -~ 2xn “n dp

where g = cosf. If this probability is normalized so that the probability

of 6 veing between O and n/2 is 1, it becomes

(n+ 1) uan .

If g(u) is the probability density function (p.d.f.) of u and x
is a uniformly distributed variable (O <x < 1), it is desired to find
a monotonically increasing function of x, p = f(x), which will satisfy

ou). Then, for a specific value R of the random variable x,

prob[x < R] = problp < £f(R)] ,

R £(R)
fdx = j glu) du,
0 0

n+1l
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The alternate technique consists of the following. It is first
necessary to find the p.d.f. of a random number Z, which is the larger
of two random numbers X and Y which have p.d.f.'s £(x) and g(y). The
two random numbers X and Y also have associated with them cumulative dis-

tribution functions (c.d.f.) F(x) and G(y) defined by:

F(x) = L/ﬁf(x') ax' ,
0

Gly) = L/yg(y‘) dy' .
0

The probability that X is in &x is f(x) Ox, and the probability that Y
is smaller than x is G(x); therefore the probability of getting X in the
region O&x and accepting 1t is f(x) &x G(X). Similarly, the probability
of getting Y in Ay and accepting it is gly) &y F(y). The probability
of one or the other of the two mutually exclusive events is the sum of

the separate probabilities; therefore
n(z) = £(z) ¢(z) + glz) Flz) .

The p.d.T. of the largest of n random numbers can be found by induction.
Let X be the largest of n -« 1 random numbers and assume that its p.d.f.
is (n - 1) Xn-2, vhere 0 < x < 1. Let Y equal another random number and
let 72 be larger than X or Y. Then, the p.d.f. of Z (the largest of n

random numbers) is:
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h(z) = £(z) G(z) + g(z) ¥(z)
= (n - 1) e
= 1 Zn“l .

The two techniques are therefore seen to be equivalent. The
FORTRAN statements down through statement 30 in subroutine COSJ pick
the largest of the J + 1 random numbers. After the cosine of the polar
angle is determined, the triangle is solved to determine the correspond-

ing sine.

The selection of the sine and cosine of the azimuthal angle, which
is assumed to be wniformly distributed, uses a rejection technique. A
point is selected uniformly from a square with sides of unit length by
selecting two random numbers which then represent the coordinates of a
point. This point is rejected if it lies outside an arc of unit length
drawn from one corner of the square, and another point is selected. This
results in a series of pcints that are uniformly distributed on one
guadrant off a circle of wnit radius. This determines an angle Q, dis-

tributed uniformly between O and =/2 with

Re
Sindl = ——————
JRZ + B2
1 2
and
R
cosQ = ,
o )
Ry + B3
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where the two random numbers R; and Re represent the coordinates of the
point. From this the sine and cosine of 20, an angle distributed uni-
formly from O to m, may be determined from the following trigonometric

identities:

sin 200 = 2 sinQ cosX

2 Ri Ro
=TT,

2
B+

cos 20 = cos?a - sin®Q

2
Rf‘Rz

== p
Rl + R2

From this the distribution of an angle between O and 2n is obtained by

attaching a random sign to sine 2C.

Having obtained the sines and cosines of the polar and azimuthal
angles (6 and ¢), the direction cosines in the rectangular co-

ordinate system are calculated by:

£ = cos8
Z

£ = 8infB sin®
X

£ = sind cosd.

y

The test routine for subroutine COSJ calls COSJ to generate a direction
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{(COSJ was modified slightly to produce the sines and cosines of 6 and ¢
for the use of the test routine rather than the direction cosines). The
test routine then calls the arcsin routine in order to determine the
azimuthal angle which is then sorted into one of ten equal angle boxes
running from O to 360 degrees. The cosine of the polar angle, 6, is
categorized into a set of ten boxes having limits

J+1 J+1 J+1

0, J/0.1, J02, ..., J/0.9, 1

when a cosJG distribution has been requested. These are the limits which
should produce a uniform distribution in the boxes. Tests were run with
10,000 tries for isotropic, cosine, and cosine® distributions (J = o, 1,
and 2, respectively). Results of the calculations are tabulated on the

following page.



cosf Number in ¢ Interval Number in
Interval cosf Interval (deg) ¢ Interval
0 to 0.1 1029 0 to 36 965
0.1 to 0.2 966 36 to T2 1041
Isotrovic 0.2 to 0.3 1022 72 to 108 1023
Distoit ﬁ. 0.% to 0.k 1006 108 to 1hk 986
Lstribution 0.4 to 0.5 992 144 o 180 102%
0.5 to 0.6 985 180 to 216 996
0.6 to 0.7 952 216 to 252 966
0.7 to 0.8 1023 252 to 288 981
0.8 to 0.9 1007 288 to 32k 1010
0.9 to 1.0 1018 324 to 360 1009
4 0 to 0.3162 1005 0 to %6 1001
0.3162 to 0.4h72 985 36 to 72 1025
0.4472 to 0.5477 10%9 72 to 108 985
Cosine 0.5477 to 0.6325 998 108 to 1hh 992
Distributior 0.6325 to 0.7071 1022 1l to 180 1017
LSLEIDULION N o 7071 to 0.7746 1009 180 to 216 1000
0.7746 to 0.83%67 978 216 to 252 1008
0.8%67 to 0.894k 97k 252 to 288 1008
0.894h4 to 0.9487 978 288 to 2L 1026
Q&?@7t010 1012 32k to 360 538
d 0 to 0.46hp 1018 0 to 36 929
0.4642 to 0.5848 998 %6 to T2 1049
0.5848 to 0.6694 1041 72 to 108 960
Cosine? 0.6694 to 0.73%68 959 108 to 1kh 1039
Do tribution ﬁ 0.7%68 to 0.7937 99% 1L to 180 1020
0.7937 to 0.843k 1067 180 to 216 955
0.8424 to 0.8879 959 216 to 252 10%%
0.8879 to 0.9283 1022 252 to 288 972
0.928% to 0.9655 996 288 to 32k 1019
\SL?655 to 1.0 gLy ol to 360 1024




APPENDIX R

CALCULATIONS OF UNCOLLIDED FLUX AND CURRENT

IN STRAIGHT DUCTS

The calculation of the uncollided particle flux in stralght ducts
was necessary for use with the analytical approximation derived by Simon
and Clifford.? Equations are given below for the uncollided particle flux
and current along the center lines of both rectangular and cylindrical
ducts from a cosine current source wniformly distributed over the duct

mouth.

The assumed geometry for the cylindrical duct is shown below. To

A y
—_ &
~ AX Y
; T,
| ;

* DertecTor
a

the left of the source plane, space is filled uniformly with sources of
magnitude such that(l/ﬂ) cosf particles arrive per unit solid angle per
cn® of source area (i.e., the flux 1s isotropic in the left half -space) .

The particle current, to the right, through the source plane then is
1
J = L/W C:SG do = %ﬂ cosf d(cosB) = 1 .
2n 0

1simon and Clifford, op. cit., Bq. 2, p. 48.
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Similarly, the particle flux at the source plane due to the source parti-

cles, is

1
o - k/\ cosé ( 1 .> aq = 28 d(cosB) = 2 .
R cosb T
0

21

The current of uncollided particles on the duct center line at

distance £ is

a
cosB dA cosf
J(e) = \}F - 2 ’
p=0

since dA cos@/rz is the solid angle subtended by the differential source
area, as seen from the detector. Because 2 = 0 + £% and therefore

rdr = pdp, dA may be expressed as dA = 2mpdp

2nrdr. Now, since

cosf = £/r, the integral becomes

v%2+a? 25 +a2 2\/£2+a?
1 £ £ 2nrdr 2 £1‘E: '-:Z"'—
7e) = 3 v T s 2 2
r# 2
r=1 £
- >: a? )
22 17+ &5 22 + &

This expression approaches 1 at the source plane, as it should, and ap=~

proaches a®/42 for £ >> a.

In a similar manner, the flux from the uncollided particles 1s
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N JEP+ra® £2+a%
)
0(2) = = f enbdr o f % - -2
e T ) * )

which also can be expressed as
o(2) = 2(1 - cos@s) s

-] )/ .
= COS -,  Note that these expressions

v%z + a?

-1
where OS = tan

IS fuy

properly approach the value 2 at the source plane. They also must ap-
proach a2/22 for £ >> a, as did the expression for particle current.

That they do can be shown as follows:

£ 5 2 a 1
At - e 2
v%z + a° a 1l/a S a *
£ 1+ <?—§ 1+ s\7) * 0 7

where O [ ] represents the higher order terms. DNeglecting these, the

particle flux is



0(8) =2 [1- = il

®}]

R
[AV]

|
[
I
[

=

i

The expressions for the uncollided flux and current from a rect-
angular source are taken from the work by J. H. Hubbell et g;.,g which
allows for the angular distribution of the source particles to be
expressed as a sum of Legendre polynomials. Since this case is
restricted to a cosine distributien, it is only necessary to use one
term to describe the source, and analytic expressions are available for
the results. TFor a rectangular source of width 2w and height 2h the
current at a point located a distance £ from the surface and on a line

normal to the center of the surface is

4 -1 ab
(L) = = tan < e
Je2 + 12 + 1

2 b -l a a -1 b
J(ﬁ):;{—-—-—-——tan + tan -———-————-} s
J2 o+ 1 JPE + 1 /a2 + 1 Je2 1

27, H. Hubbell, R. L. Bach, and J. C. Lamkin, "Radiation Field
from a Rectangular Source,” NBS Journal of Research, 64C, 2 (April-
June 1960).
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where a = w/f and b = h/f. The factor n arises from the source normali-

zation to a unit particle current at the source plane.

It is of interest to show that at large distances the rectangular
and circular sources of equal area produce the same uncollided flux. As
was shown previously, the uncollided flux from a circular source of

radius a approaches (a/l)2 as £ >> a.

The flux at a point located a distance £ from the rectangular

source surface and on a line normal to the center of the surface is

¢ = §~tan"l &b
v@@ + b7+ 1
_ % tan™t w h
- 2 2
Eg\//w? + h~‘+ £
22 22 4®
= % tan_l W h .
£./i2 + n? o+ 42
As £2 >> v® + h®, this becomes
¢ = E tan-l W
T Eg
LB o
= .
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For the two expressions to be equal, one of the followlng condi-

tions must exist:

8® = bwh/x ,
or

ne? = hwh .

Therefore, the source areas must be equal.



APPENDIX F
CALCULATIONS OF THE THERMAL-~-NEUTRON ATLBEDO

Several methods for calculating the albedo, or reflection coef-
ficient, of thermal neutrons are presented in this appendix in approxi-
mately historical order. The resulting values of the albedo for concrete

- . 5 . 1 .
compositions used in the TSF experiments™ are alsc gilven.

Probably the first definitive calculation of the thermal-neutron
albedo was performed by Fermi.2 A brief description of Fermi's deriva-
tion will be given. The albedo of a neutron incident on a slab of thick-
ness a at an angle @ may be written as an integral of the products of
the probability that the neutron suffers a first collision at a depth
between x and x + dx but does not get captured there, multiplied by the
probability p(x) that the neutron, having suffered this first collision,

leaves the slab across the face through which it entered. That is,

- - 5 0
-1 (x/N cos6) ax o)
L N A cosb B P ?

where
N = average number of free paths traversed by a neutron before

capture

V. R. Cain, A Study of the Radiation Shielding Characteristics of
Basic Concrete Structures at the Tower Shielding Facility, ORNL-34GL (1963).

ZE. Fermi, On the Motion of Neutrons in Hydrogenous Substances,
NP~-2385 (Oct. 22, 1951). (Translation from Ricerca Scienta  VII-II,
13, 1936).
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Zt/Za, the ratio of total to absorption cross section,

A = mean free path of a neutron,
oo E_
AJN
p(x) = AeHE 4 e 0%,

The albedo is then

a
-(x/\ cos8)
_N-1 p(x) .
B(a,0) = 5 \/ne ST ax .
0
For a = co, A= 0 and B = —AZE;— ; 80 that

VI o+ 1

JU + 1

” i ~(x/N /W)
plx) = e

2

and the albedo becomes

Blw,0) - —N =L
Vﬁi-fw/i cosf

For large N, for whichxfﬁ>>~/§ cosf, this can be approximated as

(w,d) =1 - (1 +./3 cosé)
VN

1
For the concrete used in the TSF experiments, ZS/Z8 = 34.6 so

that N = 35.6 andN/ﬁ = 5.97. The Fermi method for calculating the albedo
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then yields a value of g(00,8) = 4.97/(5.97 + 1.732 cos8), which varies
from 0.645 at @ = O to 0.832 at 6 = n /2. The average of these two

extremes is 0.7Th.

More exact calculations were carried out by Halpern, Lueneburg,
and Clark® for three different angular distributions of the incident
neutrons. Their formulas, together with the values obtained for

N = 35.6, are as follows:

for normal incidence: =1 =~ -242l~:: 0.52,
SN+ 1

for an isotropic distribution: B =1 - 221 0.62,

VN + 1

2.48
JN + 1

1t
—
]

= 0.59.

for a cosine distribution: B

Glasstone and Edlund* derived a formula for diffusion theory,

given below

o . L - 2KD
S 17 2kD

wnere

X = the reciprocal of the diffusion length,

30. Halpern, R. Lueneburg, and 0. Clark, "On Multiple Scattering
of Neutrons." Physical Review 53, 173 (1938).

%3. Glasstone and M. C. Edlund, The Elements of Nuclear Reactor
Theory (Princeton: D. Van Nostrand Co., Inc., 1952).
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D = the diffusion coefficient.

Inserting values of K and D for concretes la and 3a on pages 94 and 95

of the Reactor Handbook,® both concretes being similar to that used in

the TSF experiments, results in values for the albedo of 0,74 and 0.75,

respectively.

°FE. P. Blizard and L. S. Abbott, eds., Shielding, Vol. III, Part

B, Reactor Handbook, 2nd ed. (New York: Interscience Publishers, 1962).




APPENDIX G
DERIVATION OF STATISTICAL FORMULAE

The probability density function (p.d.f.) on which the statistical
theory of errors is ordinarily based is called the "normal distribution.”
It is an analytic approximation to the binomial distribution for a large
number of samples and 1s defined such that the probability dP(x) +that

X will lie between x and x + dx is

_ (x-m)2

1 20°
ar(x) = e ax ,

g./en

where m is the true value of the quantity whose measured values are X,
and o is the standard deviation, a measure of the breadth of the distri-
bution. There is a 51.7% provability that a single measurement of x will

lie outside m + ¢ and a 68.%% probability that it will fall inside m + O.

The mean value X of a series of n measurements iz an approximation

to the true value m and is given by

i=1

For a general distribution, the standard deviation (s.D.) of a large

number of observations is defined by
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=
oF = }Z (x - m)2 P(x) ;

K= =00

that 1s, the 5.D. is the square root of the average of the squared devia-

tions. For a large series of n measurements of x, the S.D. is defined

by

9
fit
=R

Z (x, -m) .

i=1

The square of the S.D., 0%, is usually called the "variance."

In a finite series of n observations m is not known. An estimate
of the S.D. can be obtained as follows. The "sample variance" s® is

defined as

n
62w L -9z
8% = = }: (xi X) .
i=1

It can be shown that the expected value of s° is

., n - 1
B(s%) = F—= o®

and therefore the estimate of o is
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It should bhe remembered that the square root of this variance 1s the 5.D.
of the distribution, or the S.D. of a single observation, since it
represents the limits within which 68% of the n observations should lie.
Therefore the probability of a single additional measurement lying within

X + 0 is 68%.

This is not, however, the quantity which is usually required. The
desired quantity is the S.D. of the mean value Givsuch that there 1s a
68% provability of a new mean value X' (obtained from an additional n

measurement) lying within X + O

The value of this variance of the mean can be calculated by using
the result from the statistical theory of errors that the variance of a

sum of independent random variables is the sum of their variances. That

. . = 2 = - I s s
ig, if X = X1 + Xz, then OX = Gx + UXE‘ In addition, it 1s also
1

necessary to use the result that

X 1 . \
var = = = var(x) ,
o} 1’12

where var(x) represents the variance of x and n is any constant. This

is easlly proven from the basic definition of variance, that is, that

the variance 1s the expected value of the squared deviations from the

true mean:



Then,

X — 1 (
Now, since x = a X1 +

var(X)

For a single series of

mean are obtained by

var ()

Xo + .00 +

w1
1
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i

=
—
% |

b

- L var{x)
2

Xn)
n'l
), =)
N 1
i=1
var(xl) - L
02

il B



A more useful form of the above expression for the variance for

use on a digital computer can be obtained by expanding the squared term:

n n

Z (x, -0 - {(xiﬁ - o, E b @ } .

i=1 i=1

Combining terms and substituting the definition of ¥ into the above ex~-

pression glves

‘\/‘
o~~~
"
}—h
1
el
hvl
M =
e
m_
N
i
N
<4
e
+
=
N
kall
N

-
s}
]
1!
jand
ot
1l
]

n
= }j (Xi)2 - 2n{X)" + n(i)g
i=1
n n 2
2 1
= §>J (xl) - n'{ o 211 xl<}
i=1 i1

i
Mg
]
v[\}
1
S
de
>
H
e

The variance of the mean becomes

n
2 1 2
f’z{-:m{z ey -
i=1

S
TN
Ol
=

H.
N,
L_Y__J
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In the computer code, the variance of the mean is calculated by
two methods, one by using the equation above, where n represents the
total number of measurements (called the single batch variance), and the
other by dividing the histories into batches. Suppose that the n mea-
surements are divided into k batches, each containing £ measurements
(n = k£). A mean may be calculated for the Jth batch by

£

X, = 1 x
571 ) M
i=1

These batch means may now be treated as independent measurements. As

before, the variance of a single batch mean may be calculated by
X

1 — 2
fomry ) &R

J=1

The variance of the overall mean is +then

k

2 1 ‘ (% _)2

% Kk - 1) X5 7%
J=1

where
k n
2.1 2 .1
Tk , j n %50
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A formula to combine the varlances, O and Oz 5 of two means X3
1 2
and Xp,obtained with n; and np measurements, into a grand mean ¥ and

variance GE will now be derived. The mean of the two batches is

n
1 nlxl + l’leZ
X = e X
Ny + ng nj + o
i=1

The variance of X is

ni+ns
2 1 ! 2
°% = (ny + np)(ny + np - 1) ZJ (Xi - %)
i=1
ny el
= L {> &.~QZ+ §f (x ~52 .
(ny + nz)(ny + ng - 1) / 1 J
121 5=1
Expanding one of the swums,
—2 — — —
(xi - x)7 = {kxi -x1) + (% - X)}
i=1 i=1
1y
= E; {kxi -x1)% + (X - X% + 2(x - %) (% - X)}
i=1
Eh ) g
. 2 5
(x, -%1) + (X1 - %)
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n
since }j (x4 = %) = O.
i1=1

The variance of X now becomes

je58 n;
2 _ 1 R - . — 2
R CEYY | Craar— Z (% - %)= + Z (%2 - %)% +
i=1 i=1
n 1.
—_— e ' — —_— 2
Py e - ®)® s fua-x)}
j=1 J=1

2 2 2 _ .2
ni(ny = 1) o= + np(ns = 1) o= + ni (% -~ % + no(Xs -~ X)
X1 X2

(nl + ng)(nl + o - l)
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