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ABSTRACT 

This report de& with the asymptotic behavior of certain solutions of partial 
differential equations in one dependent and two independent variables (call them 
c,  z, and t ,  respectively). The partial differential equations are invariant to one- 
parameter families of one-parameter affine groups of the form 

I c = A*c , 
t' = P t  , 
z I = x z ,  

where X is the group parameter that labels the individual transformations and a! 

and p are parameters that label groups of the family. The parameters 01 and ,8 are 
connected by a linear relation, 

M a  + NP = L , 
where M ,  N ,  and L are numbers determined by the structure of the partial 
differential equation. 

It is shown that when L / M  and N / M  are <O, certain solutions become 
asymptotic to zLIMt-NIM for large z or small t .  Some practical applications of 
this result are discussed. 

V 





INTRODUCTION 
. In two earlier publications1i2 I studied the properties of certain partial 

differential equations with one dependent and two independent variables (call them 
c , z ,  and t ,  respectively). These partial differential equations are invariant to 
one-parameter families of one-parameter affine groups of the form 

where X is the group parameter that labels the individual transformations and a 
and are parameters that label groups of the family. The parameters a and /3 itre 
connected by a linear relation, 

where M ,  N ,  and L are numbers determined by the structure of the partial 
differential equation. Because of relation (2), only one of the two parameters Q! 

and ,f? may be chosen freely. 
Similarity solutions are solutions of the partial differential equation that are 

invariant to one group of the family, say, that for which Q = a0 and ,f? = Po.  Such 
solutions most generally have the form 

c = t a 0 / 8 0 y ( z / p / P o  1 ,  (3) 

where y is a function of the single variable x = z/t ' /Po. When substituted into 
the partial differential equation, Eq. (3) yields an ordinary differential equation 
for y called the principal ordinary differentid equation. The form of the principal 
ordinary differential equation depends 011 both the form of the partial differential 
equation and the values of a0 and PO. 

Much attention has been paid in refs. 1 and 2 to diffusion-like partial differential 
equations such as ct = (c~c,), (the so-called porous medium equation), ,cct = cZZ 

(which describes thermal expulsion of a compressible liquid from a long, slender, 

heated tube), and ct = (CZ/ ' )~  [which describes heat transport in turbulent 
superfluid helium (He-II)]. Among the interesting solutions of these equations are 
those that obey the boundary and initial conditions 

c(m, t )  = 0 ,  (4-4 
c(2 ,  0) = 0 . (4b) 

c ( 0 , t )  At" , (5) 

To define a solution completely, an additional boundary condition is necessary. If 
it takes the form 

where A and n are constants, then the solution is a similarity solution of the form 
(3). Equations (4a) and (4b) then collapse to the single condition y(w) = 0. 
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Many detailed calculations of similarity solutions of the three partial differential 
equations mentioned above for various cy0 and showed that quite often, when 
L / M  < 0, the function y approaches zero as 2 approaches co asymptotically to 
u x L I M ,  where u is a constant. When substituted into Eq. (3), this gives the 
asymptotic form u,zL/Mt-N/M for c ,  which would obey the conditions (4a) and (4b) 
if L / M  and N / M  were both < 0. Demonstrating that c has the asymptotic form 
U Z  LIMt-”/M in the special cases studied was quite laborious, and it is the purpose 
of this report to outline broad conditions undcr which this asymptotic form can be 
verified if not at a glance, then at least with a minimum of computational effort. 

FORM OF THE PARTIAL DIFFEREIVT1,LaL EQUATION 

The partial derivative ct transforms under transformation (1) according to c:, = 
Acy-pc,; similarly, all other partial derivatives transform by multiplication by some 
power of A. If a partial differential equation involving z ,  t ,  c, ct ,  c,, c Z r ,  . . . is to be 
invariant to all groups of the family (l), then it can only contain A-less combinations 
of z ,  t ,  c ,  c t ,  c,, c,,, etc. Here the term “A-less” is to be understood as the term 
“dimensionless” is understood in ordinary diiiiensional analysis. Thus the partial 
diffcrential equation must have the form 

2 
2 c77 

wlicre F can he any function. 
It is easy enough to see that Eq. (6) is invariant to Eq. (1): if we imagine Eq. (6) 

to be written in terms of the primed variables and substitute for them from Eq. (1)) 
we obtain Eq. (6) again in the unprimed variables. It is proved in Appendix A that 
only forms composcd of A-less terms have this property. 

Can this partial differential equation have solutions of the form 

c = w a t b  ? ( 7 )  

Direct siihstitution into Eq. (6) shows t,hat Eq. (7) can only be a solution when 
a = L / M ,  b = - -N /M,  and u satisfies the equation 

“(‘-I), M M  . . . I =  0 .  (8) 

If Eq. (8) has real solutions for u ,  then the partial differential equation has real 
solutions of the form Eq. (7); if not, it has none. If L / N  < 0 and N / h f  < 0, 
then Eq. (7) is capable of representing the asymptotic limit of solutions obeying 
the boundxy a i d  initial conditions (4a) and (4b). But under what conditions m u s t  
Eq. (7) represent this limit? 

For the superfluid diffusion equation and the thermal expulsion equation, it can 
be sliown that for solutions c l ( z , t )  and c 2 ( z , t )  that obey the boundary and initial 
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conditions (4a) and (4b), if ~ ( 0 ,  t )  > ~ ( 0 ,  t ) ,  then c ~ ( z ,  t )  2 ~ ( z ,  t )  for all z. Such 
solutions are thus ordered according to their values at z = 0. 

One consequence of such ordering is that for any similarity solutions, the 
function y obeys the inequalities 

- 

0 5 y(x) 5 usL/" (9) 
as long as y(0) is finite. Here u is the smallest real solution of Eq. (8). Liet us now 
consider the functions y(x) belonging to the values (ug and ,Bo of a and p. These 
functions are a one-parameter family ordered according to their intercepts y(0) on 
the y-axis. In refs. 1 and 2, it is shown that the principal ordinary differential 
equation for the functions y ( x )  is invariant to the affine group* 

o < p < o o .  (10) I y' = p w y  

x' = px 

So each of the curves y(z) is the image of any other because y'(0) = P ~ / ~ Y ( O )  can 
be given any value by the appropriate choice of p while y'(00) = p L / M y ( a ? )  remains 
zero. Thus, the entire fa.mily of these similarity solutions y(x) is transformed into 
it self. 

Because of Eq. (lo), 

(11) 
Y'(X') - P L / M Y ( x )  - Y(X) 

U,'IJ/M u ( p x ) L / M  U&IM ' - -- 

so that the limits as 5 and x' approach infinity of the left- and right-hand sides are 
the same. Suppose this limit < 1. The infinitude of curves y(z), being bounded 
from above, has an upper limit ~ ~ ( 2 ) .  This limit, too, is a solution of the principal 
ordinary differential equation. Furthermore, because the entire family is invariant 
to Eq. (lo), its upper limit ym(x) must also be invariant to Ey. (10). Curves 
invariant to Eq. (10) must have the form y = V J ' / ~ ,  where v is a constant. Since 
this invariant curve also satisfies the principal ordinary differential equation, it must 
correspond to a solution c = v z L / M t - N / M  of the partial differential equation. But 
then v must be a root of Eq. (8). Since TI < u, and u is the smallest root crf Eq. (8), 
we have a contradiction. Therefore, the limit of both sides of Eq. (11) as x and x' 
approach infinity must be 1. This means that all the similarity solutions have the 
asymptotic form u z L / M t - N I M .  

Because of the ordering of the solutions of the partial differential equations, this 
conclusion holds as well for any solution c ( z ,  t )  that obeys the boundary and initial 
conditions (4a) and (4b) and whose value at the origin c(0 ,  t )  is bounded above and 
below by powers of t .  

THE SUPERFLUID DIFFUSION EQUATON 

We now investigate the ordering of the solutions of the superfluid diffusion 
equation, 

C t  = ( c y 3 ) z  . (12) 
*A different proof from that given in refs. 1 and 2 can be found in Appendix B 
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To do so, we consider the infinitesimal difference 6c between two neighboring 
solutions. It obeys the linear partial differential equation obtained by taking the 
first variation of Eq. (12), namely, 

which can bc rearranged as 

after setting Sc = u. The difference u obeys the boundary and initial conditions 

u(O,t) > 0 , (144 

u(cw,t) 0 , (14b) 

u ( z s 0 )  = 0 . ( 1 4 4  

The conditions (14b) and (14c) follow from the fact that both neighboring solutions 
obey the boundary and initial conditions (4a) and (4b). ‘To prove the ordering of 
the two solutions, we must prove that u ( z , t )  2 0 for all z and t .  

To avoid difficulties created by semi-infinite domains, let us begin by replacing 
Eq. (14b) by 

and restricting ourselves to the rectangle R of length L along the z-axis and length 
T along the t-axis. We propose to prove that u 0 in R by proving that the 
smallcst value of u must lie on one of the sides SI: ( z  = 0: 0 5 t 5 T ) ,  5’2: 

( t  = 0, 0 5 x 5 L ) ,  or &: ( z  = L,O 5 t 5 T ) .  On SI, 5’2, and S3, the smallest 
value of 1~ is zero. 

U(L, t )  = 0 ( 1 4 4  

If Eq. (13b) were replaced by the strict differential inequality 

we could easily prove that the smallest value of u could not be attained either in 
the intcrior of R or at an interior point of side S4: ( t  = T ,  0 5 z 5 1;). Suppose, 
for example, that thc sniallest valuc of u were attained at a point P in the interior 
of R. The point P would then be a relative minimum at which u, (P)  = u t ( P )  = 0 
and u z z ( P )  2 0. But these stipulations contradict Eq. (15). Suppose, instead, that 
the smallest value of ?L were attained at an interior point 18 of S4. Then the point 
P would be a relative minimum along S4 so that at P ,  u z ( P )  = 0 and uz,(P)  2 0. 

Since ~ 2 , ’ ~  is always positive no matter what the sign of c , ,  Eq. (15) then implies 
that ut > 0; this means that yet smaller valiies of u lie inside R directly under point 
P ,  again a contradiction. Since the smallest value of u cannot be attained either in 
I? or on Si ,  it must lie 011 SI, S2 ,  or 5’;. 

We can convert Eq. (13b) into the strict inequality (15) by adding a small, 
positive source term 6 to the right-hand side of Eq. (13b). If we assume that Sc is 
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a continuous function of e, then lim,,oSc 2 0 in R. It is worth noting that this 
limiting process dilutes the strict inequality 6c > 0 in R, which is what we have 
actually proved when E > 0, to  the weaker inequality 6c 2 0 in R, but the latter is 
sufficient for our purposes. 

Finally, we let L approach infinity and so return from the boundary condition 
(14d) to the boundary condition (14b). 

THE THERMAL EXPULSION EQUATION 

The thennal expulsion equation 

has as its first variation the following equation for u = Sc: 

which we again consider in the rectangle R with the boundary and initial conditions 
(14a), (14c), and (14d). As before, we can convert Eq. (17) to a strict inequality by 
adcling an infinitesimal positive source term E to its right-hand side. We cannot be 
sure of the sign of ct, and the standard trick for dealing with such uncertainty is to 
set 

u = v e  , (18) 

(ct + XC)V + cut = vzz  + , (19) 

At 

in which case Eq. (17) becomes 

where w, too, obeys the boundary and initial conditions (14a), (14c), and (14d). If 
c 2 S > 0 in R, we can choosc X large enough so that ct + Ac > 0 in R. Then if 
the minimum of w were attained at a point P in R, P would be a relative minimum 
at which w(P) 5 0, q ( P )  = 0, and wz,(P) 2 0. But these stipulations contradict 

Eq. (19). If the minimum of v were attained at an interior point P of S4, then 
v,,(P) 2 0, w(P) 5 0, so that from Eq. (19) we find that v,(P)  > 0. Thus, yet 
smaller values of v lie inside R, again a contradiction. Since the smallest value of v 
must then lie on SI, S2, or S3, v > 0 in E. In the limit as approaches zero, this 
strict inequality weakens to u 2 0 in R. In view of Eq. (181, this is equivalent to 
u 2 0 in R, which was to be proved. 

All of this depends on showing that c 2 S in the interior of R and on 5’4. This 
will be so if c(0, t )  2 6. As before, wc add a small, positive source term E to Eq. (16) 
and also replace the right-hand sides of Eqs. (14a), (14c), and (14d) written for c 
with a small, positive quantity 6. Later, we shall let E and S approach 0. 

The smallest value of c cannot occur in the interior of R. If it did, say at a point 
P,  then P would be a relative minimum and ct( .P)  = 0 and c,,(P) 2 0. These two 
requirements contradict Eq. (16) augmented by the source term E .  

The smallest value of c cannot occur at an interior point of 5’4 either. But now, 
owing to the factor c (of uncertain sign on 5’4) on the left-hand side of Ey. (16), we 
cannot prove this with the argument of the previous section. But let us consider 
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the rectangle R': (0 5 z 5 L ,  0 5 .t 5 T ' ) ,  where 7" >> T ,  and let c (0 , t )  take the 
fixed value c(0,Y') for T 5 t 5 Y". If T' is large enough, then on §: 

which is the steady solution that c ( z ,  t )  approaches when c(0,  t )  is constant. The 
smallest, value of c cannot occur in R', as just shown. and surely does not occur 
along the interior of Si, wherc c is given by Eq. (20). Hence, it must occur on §;, 
Sk, or Si7 which means that c > S in R' and thus in R. In the limit as E approaches 
zero, we find c > S in R. 

By the argument previously given, w 2 0 in R, for any value of S > 0. In the 
limit as S approaclies zero, w 2 0 in R. Thus u 2 0 in R, which proves the ordering 
of the solutions. Finally, as before, we let L approach infinity. 

THE POROUS MEDIUM EQUATION 

Both of the two partial differential equations just discussed have L / M  and 
N / M  < 0 a s  required for the solution (7) to fulfill the boundary and initial 
conditions (4a) and (4b). For the porous medium equation 

L / M  = 2/m and N / M  = l / m ,  so that these two ratios can only be negative if 
m < 0. In marry applications, 172 > 0, so that solutions obeying the boundary and 
initial conditions (4a) and (4b) cannot have asymptotic limits of the form (7). At 
least some of the similarity solutions of Eq. (21) for m > 0 are known to vanish at 
and beyond certain finite, time-dependent values of z (Refs. 3-5).  

DISCUSSION 

Thc limiting processes used in demonstrating the ordering of the solutions of 
the superfluid diffusion equation and the thermal expulsion equation are based on 
unproven assumptions of continuity. For certain linear partial differential equations 
related to the ordinary Ineat diffusion equation, rigorous proofs exist that do not 
depend on siicli assumptions.6 These proofs are quite lengthy and involved; what is 
more, they are not always easy to generalize for i isc with nonlinear partial dii€(mmtial 
equations. Therefore, I prefer the heuristic approach given here, even though it does 
not conform to a high standard of rigor. 

The importance of the results proved here rests on thc fact that the asymptotic 
form c - u z  L / M t - N I A P  is simple and independent of the boundary valnc c(0, t). 
This form can therefore hc used without paying an exorbitant cost in computation; 
furthermore, it can be relied on even whcn the boundary value c (0 , t )  is uncertain. 
An excellent example of such an application is the protection of superconducting 
rnagnets wound with cable-in-conduit  conductor^.^ A local normal zone iii such a 
coriductor induces flow in the helium, the velocity of which can be modeled by 
thc thermal expulsion equation.8 Since such conductors are typically very long 
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compared with their hydraulic diameters ( L I D  N lo5), the induced velocity in 
the helium at the end of a hydraulic path can be estimated using the asymptotic 
form given above. Two data of great practical utility that can be obtained in 
this way are the velocity of expulsion from the ends of the tube and the time at 
which thermal hydraulic quenchbackg is complete. The expulsion velocity is large 
enough in many practical situations to be used as a nonelectrical means of quench 
detection.” The phenomenon of thermal hydraulic quenchback strongly &ects the 
maximum quench pressure in the conductor as well as the hot-spot temperature. 
Both thermal expulsion and thermal hydraulic quenchback have been studied by 
means of detailed calculations based on simple models that give plausible values 
of c (0 , t )  (refs. 10 and 11). From the conclusions reached here, we can see that 
those results of the detailed calculations that are founded on the asymptotic form 
u z L / M t - N / M  are model independent and could have been obtained after only a few 
lines of calculation. 

A similar conclusion applies to the expcrimental temperature distributions 
in superfluid We-I1 measured by van Sciver12 and by van Sciver and Lottin.13 
Although thesc two sets of measurements differ markedly in their boundary and 
initial conditions (van Sciver introduced a constant heat flux into a half-space; 
vas1 Sciver and Lottin delivered an instantaneous heat pulse to an infinite medium), 
in both cases the temperature at short times and large distances is described 
by the asymptotic form ~ z ~ I ~ ~ - ~ I ~ ,  as detailed calculations  show.'"^^^ With 
the theorems of this paper, a partial hut convincing comparison of theory and 
experiment can be carried out with a minimum of computation. 
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APPENDIX A 

MOST GENERAL FORM OF THE PARTIAL 
DIFFERENTIAL EQUATION 

. 

As we have seen in the main text, the partial derivative ct transforms under 
the family of groups (1) by multiplication by A"-@: ci, = A"-pc,. In view of the 
linear constraint (2), we can eliminate ,B from the exponent in favor of a; thus 
cy - ,6' = ( M / N  + 1)a - L / N .  So ct transforms by multiplication by a power of 
A,  the power being a linear function of a. The same is true of all other partial 
derivatives of c. Thus, in finding the most general form of a partial differential 
equation involving z, t ,  c, and its derivatives, we are led to consider functions F of 
N arguments x; that transform according to the one-parameter family of groups 

xi 3 o < x < m .  ( A l l  
xi  I = ~ a i a + b i  

Here ai and bi are constants [ ( M / N  + 1) and - L / N  in the case of ct] .  
If the function F is invariant to  all the groups of the family (Al), then 

(4 F(z1, 5 2 ,  m e ,  X N )  F(x1,  I xi, e.., XN) I 

or 

F(x~, 2 2 ,  . . . , XN) I= F(X a l a S b 1  2 1  7 XaZa+bZx2 I ..., Aaivc.w+bN X N )  * (A31 

Equation (A3) is an identity true for all values of a and A. If we differentiate with 
respect to X and then set X = 1, we find 

Since Eq. (A4) is dso  an identity true for all values of cy, it is equivalent to the pair 
of first-order, lincar partial differential equations 

The characteristic equations of these two partial differential equations are 

d X N  

dX N 

-- CEXl dx2 

a1z1 a222 a N X N  

dxl d ~ 2  

-- ... - --= 
7 

-- -- - ...- -- - 
b i z1  b 2 ~ 2  ~ N X N  ' 

(A514 

The most general solution of Eq. (A5a) is an arbitrary function of the N - 1 
integrals of Eq. (A6a), and similarly the most general solution of Eq. (A%) is 
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an arbitrary function of the N -- 1 integrals of Eq. (A6b). The integrals of either 
set of characteristic equations are products of powers of the x i ,  that is, functions 
u(x1 ,  . . . , XN) of the form 

N 

u = n 24’ . 
i=l 

Since du = 0 in the direction given by Eq. (A6a), if we take the logarithm of 
Eq. (A7) and then differentiate in that direction we find 

so that the constants 

Similarly, the powers 

ci must obey the constraint 
N 

i=l 

c; in the integrals of Eq. (A6b) must obey the constraint 

N 

i=l 

If we look at Eqs. (A%) and (,48b) as expressing the orthogonality of an N -  
dimensional vector c to two other vectors Q and b, then we see at once that 
the admissible vectors spa,n a subspa,ce of dimension N ---. 2. Hence there are 
N - 2 independent mutual integrals of Eqs. (A6a) and (A6b). The most general 
simultaneous solution of Eqs. (A5a) and (Ash) is an arbitrary function of these 
N - 2 independent rnutual integrals. 

Now let us consider invariants of the entire family of groups of the form 

N 

Invariance mems that 
N N N 

i= 1 i=l i=l  

for any choice of x i ,  a,  and A. Taking logarithms, we find that 

N 

i= 1 

which leads as bcfore to the constraints (A8a) and (A8b) on the ci. Thus there are 
N - 2 independent invariants 2) of the entire family of groups, and their exponent 
vectors c span the same subspace as the exponent vectors of thc rnutual integrals of 
Eqs. (A6a) and (AGb). So the most general function F is then an arbitrary function 
of the N - 2 invariants 2). Because of the first equality in Eq. (AlO), these invariants 
are “A-less” combinations of the 2,. 
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APPENDIX B 

INVARIANCE OF THE PRINCIPAL ORDINARY 
DIFFERENTIAL EQUATION 

We start by writing the ''A-less'' equation (6) in the more convenient form 

In view of the definition z = z t - ' /P ,  we ca.n write the operator equations 

( z  held fixed) , 

( t  held fixed) . 

3 t- I== --2- 
at p 82 

a a 
aZ ax z- = x- 

Furthermore, we can write Eq. (3) in either of the following alternate forms: 

c = ta IPy(2)  = z"2-cyy(z) . (B3) 

If we substitute Eq. (B3) into Eq. (BI), we find with the help of Eq. (B2) that 
Eq. (Bl )  takes the form 

which one can immediately see is invariant to the group (10). 

. 
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