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Fiber -  retnforced ceramic-matrix carnposites have been f a b r i c a t e d  by 

t w o  d i s t i n c t l y  d i f fe ren t :  CVI processes .  The f i r s t ,  by which m o s t  CVP 

composites a r e  f a b r i c a t e d ,  i s  the isothermal p r ~ c e s s  i n  which r eac t an t  

gases d i f f u s e  i n t o  f rees txnding  preforms (F ig .  1) The second pro-  

c e s s ,  developed a t  Oak Ridge National T,ahoratolry ( O W L ) ,  simultaneously 

uses  a thcrsnal grad ien t  and n pressure grad ien t  i n  whlch the  r eac t an t  

gases  are forced i n t o  t:he cool  s i d e  of the f ib rous  preform. Densi.-Ci-- 

c a t i o n  in the isothermal  process i s  re la t i .ve ly  s l o w  i n  comparison with 

the  forced-f low process because of the use of  d i f f u s i v e  t r anspor t  o f  

gaseous r e a c t a n t s  and r eac t ion  by-products.  The reduced islfiltral;i.on 

t i m e s  o f f e red  by the forced-f low process wake the 0RN.L process  

e s p e c i a l l y  a t t r a c t i v e  f o r  densifying th ick-wal led ,  simple shapes.  

Unfortunately the  p rope r t i e s  o f  the Nicalon f i b e r s  rou t ine ly  used 

i n  both C V I  processes  degrade a t  e leva ted  temperatxres.  Composites 

f ab r i ca t ed  by the isothermal process are exposed t o  a lower processing 

temperature than a r e  composites f ab r i ca t ed  by forced CVE I Therefare ,  

t h i s  i nves t iga t ion  compares the mechanical p rope r t i e s  o f  composi-tes 

f a b r i c a t e d  by the  t w o  processes .  In add i t ion ,  the  mechanical p rope r t i e s  

o f  composites re inforced  with repor ted ly  m o r e  s t a b l e  Tyranno E i.i-rers were 

compared with those of Ni-calon-reinforced composites. 

BACKGROUND 

Ison OF CVI PROCESSES 

The economical densif i c a t i o n  of composites by the  isothermal- 

process  r equ i r e s  l a rge  furnaces .  To ensure uniform i n f i l t r a t i o n  

throughout the  furnace ,  the isothermal process  must be slowed by combi- 

na t ions  o f  low-temperature,  low-reactant  concentrat ions and low pres -  

su res  t a  avoid coa t ing  and sea l ing  the  outer  sur1ac.e o f  t he  preform and 

dep le t ing  the r eac t an t s  bcrglve they rgach the  inner volume. The Societe  

Europeerme de P r o p u l s j o n  (SEP) i n  St. Mei%ard en J a l l e s ,  France,  h a s  

success fu l ly  commercialized t h i s  process and has l iceused i t  t o  

E .  1. der Pont de N e i ~ ~ ~ u r s  and Company inn the  United Stzates. Although the  

process  i s  p ropr i e t a ry  and s p e c i f i c  processing condi t ions are unkriown, 
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Fig. 1. Schematic representation of the isothermal GVI process. 
Keactant gases, as they flow through the furnace at a reduced pressure, 
diffuse into fibrous preforms and effluents diffuse hack to the preform 
su r face  I 

Xi- EXHAUST 
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the processing temperature i s  assumed t o  be -1000°C. The composite 

shapes are exposed t o  t h i s  temperature f o r  r e l a t i v e l y  long per iods 

(weeks t o  months) during which the f i b e r s  are thought t o  l o s e  some 

f r a c t i o n  (30 t o  50%) of t h e i r  s t r e n g t h .  

I n  the  forced C V I  p r o c e ~ s ~ - ~  f i b r o u s  p r e f o r m  are r e t a i n e d  wi th in  a 

c y l i n d r i c a l  g raph i t e  holder  t h a t  con tac t s  a water-cooled, metal  gas 

d i s t r i b u t o r  t h a t  coo l s  t h e  bottom and s i d e  su r faces  of the s u b s t r a t e  

(F ig .  2 ) .  The t a p  o f  t h e  f ib rous  preform i s  exposed t o  the  h o t  zone o f  

t he  furnace (normally 1200"C), which c r e a t e s  a s t e e p  temperature 

g rad ien t  through the  thickness  o f  t he  preform. The r e a c t a n t  gases are 

forced under pressure i n t o  the cooled s i d e  of  the f i b r o u s  preform b u t ,  

beta-use of t he  low temperature,  do not i n i t i a l l y  r e a c t .  The gases flow 

from the  cooled po r t ion  of t h e  preform i n t o  the  h o t  p o r t i o n ,  where they 

react---depositiiig t h e  matr ix  on the f i b e r s .  Deposition of  matr ix  mate- 

r i a l  w i th in  the  h o t  region of  the preform inc reases  the d e n s i t y  and 

thermal conduct ivi ty  o f  t he  preform; t h e r e f o r e ,  t he  depos i t i on  zone 

moves p rogres s ive ly  f rom the  h o t t x s  regions toward the cool.er r eg ions .  

Coinposiixs f a b r i c a t e d  by the  f a rced  C V I  process are thus exposed t o  

h ighe r  temperatures (1200°C compared to lO00"C) than i n  the  conventional 

CV.E process  b u t  f o r  much shorter  times ( -24  h vs weeks o r  months). 

Again, the s t ~ e i i g t h  o f  the f i b e r s  i s  degraded during processing;  

however, t he  s t r e n g t h  l o s s  may be no g r e a t e r  than tha t  experienced by 

the conventional C V I  process .  

COMPARISON OF FIBER REINFORCEMENTS 

The b a s e l i n e  f i b e r  used by SEY f o r  isothermal C V I  processing has 

been cerami-c-grade Nicalon, a pol-ymer-derived S i - C - 0  fLl,er.9-10 The 

f i b e r  c o n s i s t s  p r i m a r i l y  o f  Si.C, which makes i t  a t t r a c t i v e  f o r  elevated 

temperature reinforcement.  During the devel-opment of t he  forced C V I  

process ,  plain-weave ceramic-grade Nicalon c l o t h  w a s  used almost exclu- 

s i v e l y  f o r  t he  f a b r i c a t i o n  of  composites. The s t r e n g t h  o f  t he  f i b e r  

reinforcement i n  ceiramic matrix composites can be d i r e c t l y  c o r r e l a t e d  

with t:he o v e r a l l  mechanical p r o p e r t i e s  of t he  composite. Because of 

g r a i n  growth and the  formation of l a rge  pores ,   he s t r e n g t h  o f  the 

Nical.on i s  degraded when it i s  heated above 1000°C.11-12 The implicat ion 
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i s  t h a t  exposure t o  e l eva ted  temperatures during processing o r  i n  

s e r v i c e  may have a de t r imen ta l  e f f e c t  on t h e  s t r e n g t h s  of  i n f i l t r a t e d  

composites, 

A s  a r e s u l t  of  t he  r epor t ed  h ighe r  s t a b i l i t y  of  Tyranno over 

Nicalon, Tyranno r e i n f o r c i n g  f i b e r s  are of g r e a t  i n t e r e s t  (Table 

Nippon Carbon Company r epor t ed  the  s t r e n g t h s  of Nicalon t o  Ire 2900 MPa; 

however, lower s t r e n g t h s  (2315 MPa) w e r e  measured on fiber tows received 

a t  ORNI,. Fur ther  s t r e n g t h  r educ t ion  w a s  observed a f t e r  t he  Nicalon 

f i b e r s  were carbon coated (2175 MTa) and woven i.xitio f a b r i c  (1730 MPa). 

Reduct:i.cm i n  s t r e n g t h  due t o  weaving is  a n t i c i p a t e d  because the tows a r e  

damaged by handl ing.  Tow t e s t i n g  o f  Tyranno fi .3ers performed a t  tihe 

Nat ional  I n s t i t u t e  o f  Standards and Technology determined the  as - 
received s t r e n g t h  t o  be 3500 MPa.I4 

annealed for 3 h i n  n i t rogen  a t  900°C, t he  t e n s i l e  strength decreased t o  

2000 MPa. No f u r t h e r  s t r e n g t h  reduct ion w a s  observed a f t e r  the Tyranno 

f i b e r s  were heated for 3 h i n  n i t rogen  a t  1400°C. I n  a d d i t i o n  t o  the ir  

high-  temperature s t:a'oili.ty, an advantage of  Tyrranno f i b e r s  i s  iiheir 

sma l l e r  diameter (8  pm) compared with t h a t  of Nicalon (15 p m ) ,  whi.ch 

r e s u l t s  i n  improved handbi ng ,  i q e ~ i v i t ~ g ,  and b ra id ing  behavior .  

Af t e r  t he  'Tyranno f i b e r s  were 

CONTROL OF FIBER-MATRIX BQNDING 

The mechanical p r o p e r t i e s  of  Nicalon-reinforced S i c  composites a r e  

c o n t r o l l e d  by t h e  s t r e n g t h  o f  t h e  bond between the  f i b e r s  and the 

ma t r ix .  Deposit ion o f  the S i c  matr ix  d i r e c t l y  onto the Nicalon f i b e r s  

results i n  a s t r o n g  i n t e r f a c i a l  bond t h a t  produces b r i t t l e  behavior .  An 

i-ntermediate coa t ing  app l i ed  t o  the  f i b e r s  before  i n f i l t r a t i o n  i s  needed 

t o  weaken the  f i b e r - m a t r i x  bond and produce crack d e f l e c t i o n  and f i b e r  

pullout: t h a t  c o n t r i b u t e  t o  the "toughening" of  the composite. Deposi- 

t i o n  of  a carbon o r  boron n i t r i d e  l a y e r  has becm shown t o  produce 

appropr i a t e  f i b e r - m a t r i x  bonding t o  enhance f i b e r  p u l l o u t  and s l i p  wit111 

a r e s u l t a n t  i nc rease  i n  the toughness and the u l t i m a t e  s t r e n g t h  o f  t he  

composite materia]. . 14-'* 
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Table 1. Properties of Nicalon and Tyranno fiber reinforcements 

Tensile Tensile 
Fiber Treatment/condition strength modulus 

(ma) (GPa) 

Nicalona Manufacturer's data 

b A s  received 
Carbon coated 
From fabricb 

b 

1200°C in argon' 
1 2 0 0 " ~  in airC 

1 h, 1200"C, 10% t ICI/HZb 
25 h, 1200"C, 10% HCl/N,b 

Tyrannod A s  receivede 
3 h, 9oooc, N,e 
3 h ,  l4OO0C, NZe 

2900 k 3 9 5  195 5 15 

2315 k 160 
2175 ? 191 
1730 5 126 

1234 108 
660 110 

861 k 70 
71 2 15 

3500 200 
2000 
2000 

"Nippon Carbon, Tokyo. 

'Testing of fiber tows performed at: Oak Ridge National Laboratory. 
Source: R .  A .  Lowden, Characterization and Control of the F i b e r -  
Matrix Interface in Fiber-Reinforced Ceramic Composites, 
ORNL/TM-11039, Oak Ridge National Laboratory, Oak Ridge, Tenn., 
March 1989.  

Source: T. Mah et a l . ,  "Thermal Stability of S 1 C  (Nicalon) , ' I  c 

J .  Mater. Sci. 19, 1191-201 (1984). 

%BE Industries ~ Tokyo. 

eTesting of  fiber tows at The National Institute of Standards and 
Technology. Source: B .  A .  Bender, J. S .  Wallace, and D. J. Schrode, 
"Effects of Thermochemical Treatments on the Strength and 
Microstructure o f  S i c  Fibers," J .  Mater. Sci., accepted for 
publication. 

The usefulness of the pyrolytic carbon is, however, limited by its 

low resistance to oxidation. Boron nitride has greater resistance to 

oxidation and can be used to slightly higher ternperatures,lg as dernon- 

strated in Fig .  3. Also, boron doping of pyrolytic graphite improves 

its oxidation resistance (Fig. 3 ) .  
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EXPERIMENTAL PROCEDURES 

Fibrous preforms w e r e  assembled f o r  the forced C V I  process  lay 

s t ack ing  mul t ip l e  layers  of Nicalon plain-weave fabr Lc rotated in a 

0" -t 30" sequence wi th in  the  c a v i t y  o f  a g raph i t e  holder. The 3.ayibr;;i 

were compressed by hand tio produce a preform w i t h  a r a o s n i n a l  loading of 

4Q vsl % f i b e r  and were h e l d  i n  place by a pe r fo ra t ed  graphite lid 

pinned t o  tha hraltler. The c lo th  s i z i n g  was removed through mult:ipIc:: 

washings with acetone.  Two sizes of f ib rous  preforms wer'cp ccns t rue ted ,  

s m a l l  disks ( 4 5  m s  i n  d iameter ,  1 2 . 5  mm thick) an Larger disks 

diameter ,  'E6 Inin t h i c k ) .  

A f t e r  assembly, preforms were precoated with t h i n  Layers of cajrb~u9. 

The coa t ings  were depos i ted  from an argon/propylene mixture a t  1100°C 

and 3 . 3  kPa f o r  2 h .  The th ickness  of  t he  Carbon i n t e r l a y e r ,  

0 . 2  t o  0 . 3  p m ,  was v e r i f i e d  by p o l a r i z e d - l i g h t  o p t i c a l  microscopy of 

metal lographic  c ros s  s e c t i o n s .  Boron n i t r i d e  coa t ings  were app l i ed  

i n s t e a d  of carbon t o  a f e w  45-mm-diam preforms. For these preforms, 

Nicalon f a b r i c  was coated with boron n i t r h d e  (BN) by the Chemical Yapox 

Deposition Department of Cornhurex, PFerrelatte,  France. Boron n i t r i d e  

l a y e r s  0 . 2  t o  0 . 3  pm thick were depos i ted  on plain-weave c l o t h  froin a 

mixture o f  boron t r i c h l o r i d e ,  ammonia, and hydrogen under p ropr i e  tzary 

process ing  condi t ions .  

BN-coated c l o t h  a s  prev ious ly  descr ibed.  

Fibrous preforms were assembled from the 

Prefamis were i n f i l t r a t e d  w i t h  SiG produced by the decompssicisn o f  

methyl t r ichZoros i l . an~ (MTS) i n  hydrogen at e leva ted  teemperat:irre and 

atmospheric pressure  ~ A series of disk-shaped comgosi.te speci.nnens was 

f a b r i c a t e d  €or our  i r i ves t iga t ion  of the effect 08: top su r face  ternpera- 

t u r e  on the mechanical p r o p e r t i e s  sf the? m a t e r i a l ,  Composite s p  

with h o t -  face txmperatures ranging from 1900 t o  1400°C: we1-i: 

i n v e s t i g a t e d ,  and the processing condZtions are  deta.i lcd i n  T.&le 2 

Note t h a t  the processing t imes  decreased from about 35 1-1 for ii t o p  

ten1perature of l108"C to 0nl.y 9 11 for a t:op temperat:u.ire of ' l . 4 0 O " C .  
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Table 2 .  Composite specimens fabrtcated for 
investigation o f  the. e f f e c t  of hat-face 
temperature on mnechanicar properties 

Run 
Fiber  

content  
( % >  

351 
249 
346 
247 
248 
3 5 3  
3 54 

41.7 
39.8 
41.8 
40.9 
41.0 
41.2 
41.7 

Processing 
temperature 

. . . . . . . . . .- 
( " C >  

1100 
1175 
1200 
1225 
1275 
I380 
lUJ8 

..._... 

Processing 
time 

(h3 

3 6 . 0  
2 7 . 5  
1 9 . 0  
17.1 
18 .0  
20.5 

9 . 0  

-_.__I_ 

Nott?s : A l l  composites were f a b r i c a t e d  from 
plain-weave, c e ~ a m i c - g r a d e  Nicalon f a b r i c  that had 
been coated with a carbon i n t e r f a c e .  All samples 
were 45 m d i n m  and 1 2  mm t h i c k .  

The processing t i r~ ies  a r e  n o t  always l i n e a r  ( e , ~ . ,  run 353 was longer 

than a n t i c i p a t e d )  because graphi tx  sea l s  w i  thi.n t h e  furnace s o m e t h e s  

l e a k  and allow r e a c t a n t  gases t o  bypass the composite specj-mer:. 

A s e c ~ n d  series o€ conrgosite specimens was f a b r i c a t e d  f o r  our 

i n v e s t i g a t i o n  of t he  e f fec t  o f  e leva ted  temperatures on the iiwc:hanical 

properties of the  composite m a t e r i a l .  The processing conditions from 

these  composites are descr ibed i n  'l'a'ole 3 .  The configureti .on of ttie 

equipment when t h e s e  specimens were f a b r i c a t e d  r e s u l t e d  i n  a bottom 

tern-perature about 100°C lower than t h a t  of  Che smaller furnace, which 

failed t o  ful.ly i n f i l t r a t e  the bottom l a y e r s  of t:he composite. The h o t -  

face temperatures f o r  these specimens was increased t o  1270°C t o  i n -  

c r ease  t h e  bottom temperature.  Af t e r  f a b r i c a t i o n  of these composites, a 

r e c i r c u l a t o r  was developed t h a t  y i e l d s  better c o n t r o l  of  t:he bottom 

temperature of  the part. 

A t h i r d  s e r i e s  of composites w a s  f a b r i c a t e d  from Tyranno Eabrie t o  

determine the room-temperature mechanical proper t : ies .  The processing 

condi t ions f o r  t hese  runs are descri.bed i n  Table 4 .  



Fiber 
Interface 

Processing 
time (h) 

FLEXURE TESTING 

Flexure bars were cenL w i t h  a diamond s a w  -From the samples para l le l  

to the 0" orientation of  the COP layex of: clotla.  T ~ t ~ ~ s i l e  and compres- 

s i o n  surfaces were ground parallel co the long a x i s  of t:he specimen. 

The average dimensions sf the test bars from t h ~  composite samples WPKC 

2 . 5  x 3 . 3  x 40 m f o r  the s m a l l  composite smpBes  and 3 x A x 5 5  m n  for 

the l a rger  composite samples. 

to determine densities. 

A 1 1  specirra62n.s were [wasured arid weighed 
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Room-temperature f l e x u r a l  s t r e n g t h s  w e r e  determined from ].inear 

e l a s t i c -beam assumptions and t h e  maximum load  by a f o u r - p o i n t  bending 

method, with a support  span of  2 5 . 4  rnmp a loading span of 6 . 4  mm, and a 

crosshead speed of 0.0085 m/s- 

e l eva ted -  temperature f l e x u r e  tes t i -ng  . The specimens were €i.rst coated 

with a 35-pm l a y e r  o f  S i c  t o  prevent ox ida t ion  o f  t h e  carbon o r  boron 

n i t r i d e  i n t e r l a y e r s  exposed during c u t t i n g  and gr inding.  T h e  e l eva ted -  

ternpera1:ure f l e x u r e  s t r e n g t h s  were determined from l. inear el astic-beam 

assumptions and t h e  maxima load by fou r -po in t  bending, with a support  

span of  4 0  mm, a loading span of 20 mm, and a loading r a t e  of  1 . 0  kg/s 

(crosshead speed of 0.0075 t o  0.011 m./s) T h e  tests were performed 

with alumina f i x t u r e s  a t  25, 500, 750, 1000, and 1200°C.  All specimens 

were loaded perpendicular  t o  the  l a y e r s  of  c l o t h .  

The I.nrger bend b a r s  w e r e  used f o r  

The apparent  f r a c t u r e  toughness of  composites r e in fo rced  with 

carbon- coated Nicalon and ‘Tyranno f i b e r s  were measured by the  s i - n g l e -  

edge, notched-beam (SENB) technique. Notxhes were c u t  w i t h  a 0 . 2 5  -min 

b l ade  ac ross  the  width and a t  t h e  c e n t e r  of f l e x u r e  specimens 

( 3  x 4 x 55 mm) t o  a. depth 30% o f  t h e  3-nun t h i ckness .  The f l e x u r e  b a r s  

were loaded i n  fou r -po in t  bending (support  span of  25.14 rnm and a loading 

span of  6 . 4  m m ) ;  f r a c t u r e  toughness values  were c a l c u l a t e d  froin the 

maximum loads and the  s t r e s s  - intensity-factor c o e f f i c i e n t s  from Brown 

and Srawley f o r  l i n e a r  e l a s t i c  behavi-or. 

RESULTS AND DISCUSSION 

Room- temperature f l e x u r e  s t r e n g t h s  have been measured on composites 

f a b r i c a t e d  by t h e  forced C V I  process  f o r  several yea r s .20  

d i f f i c u l t i e s  i n  i n t e r p r e t i n g  f l e x u r e - t e s t  r e s u l t s  f o r  continuous f i b e r -  

r e in fo rced  composites are recognized, and the  r e s u l t s  a r e  r epor t ed  only 

f o r  compari-son of composites f a b r i c a t e d  under d i f f e r e n t  processing 

cond i t ions .  Composites f a b r i c a t e d  before  1989 r.rii:h a t o p  o r  maximum 

temperature of 1200°C b y  the forced C V I  process had an average f l exure  

s t rength of  320 MPa. Flexure streurgth va lues  were gene ra l ly  c o n s i s t e n t  

w i t h i n  each composite sarnyle ( l . e . ,  nil apparent effecr o f  1.oeacim o f  

the  specimen e x i s t e d  wi.th r e spec t  to the h o t  f a c e  o f  the  coin-posite) . 2 0  

The 
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These values are nearly identical to those reported by Lcmicq et a"12.i 

for Nicalon-reinforced Sic matrix composites infiltrated at SEP by t:he 

isothermal C V I  process. 

Minor improvements to the forced CVI process were made to incrt:,35~ 

average flexure strengths of the typical composite to about 380 MPa. 

Mechanical properties of several typical samples are described in 

Table 5. A slight decrease in density is observed from the top (OT h o t  

face) of the composite toward the bottom (or cold face), The reduced 

density of the flexure bars from the middle and bottom layers o f  the 

composite appears to decrease the flexure strength. When large numbers 

of samples were examined in a previous studyS2' strength w a s  related eo 

density but significant scatter in the data indicated t ha t  other Z a c t n r - i  

also affectl strength. 

Table 5. Characterization of Wicalon-reinforced cornposttes 

Fiber Flexure 
Sample content Sample Campos i te dens i ty ti tre a-lg tB.l 

( %  theorotical) ( K P a )  locat ion (Val %) 

2 1  41 Top 
Middle 
Bottom 

23 41 TOP 
Middle 
BQ t t om 

3Gl+ 37 TOP 
Middle 
Bot t o m  

87.2  2 0.3 
85.5 f: 0 . 7  
8 4 . 4  k 0 .7  

88.2  -c 1.0 

8 5 . 4  1.0 
8 7 . 8  k 0 . 4  

91.8 L 0 . 6  
88.1 -t 0 . 8  
91 .0  2 1.0 

396 c 38 
354 .e 4L 
3638 3 26 

As other researchers have reported,22-26 the tensile s t r e n g t h  of  

ceramics is difficult to precisely measure. All the d i f f i c u l t i e s  

associated with precision tensile testing (e.g., alignment of tlop and 

bottom grip centerlines, alignment of sample centerline to g r i p  center- 

line, precision sample machining) are magnified by the brittle n a t u r a  nT 

ceramics. The short length of the samples fabricated at CaRNL, r e su l t ed  
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i n  a s h o r t  gage l eng th  (13 m m ) ,  which magnified the stresses t h a t  any 

misalignment: would p l ace  on the samples. 

r e s i d t e d  i n  a minimum leng th  (16  m) a v a i l a b l e  f o r  bondi.ng o f  t h e  

samples t o  the  g r i p s .  Bec.aime tsliese t e s t s  are SO time-consuming, few 

samples have been t x s t e d .  

The shorr. sample l eng th  a l s o  

Successful  t e n s i l e  r e s u l t s  were obtained by using p r e c i s i o n  

t e n s i l e -  t e s t i n g  apparatus  developed under tkre U .  S . Department of  Energy 

Advanced Materials Development PKograIli by K .  @. Liu e t  a1.24 L i u ’ s  

testiLng of t h i s  equipment ind ica t ed  t h a t  bending stresses a t  a speci.roen 

l eng th  of  140 mm w e r e  <0.5% of the  app l i ed  t e n s i l e  stress. To accoiil~~~o- 

d a t e  t:he s h o r t e r  samples, precision-machined mei::al  adap te r s  were used i n  

conjunct ian with a sample-grip system. 

from s t r a i n  gages niounted on the  front: and back su r faces  o f  ?:.he tensi.J.n 

sarrip1.e ind ica t ed  t h a t  the sample w a s  properly a l igned  wi.Ch t h e  t e s t i n g  

machine. h t y p i c a l  s t r a in -gage -de r ived  s t r e s s - s t r a i n  curve f o r  the 

f ibe r - r e i -n fo rced  composites [ 85% of t h e o r e t i c a l  d e n s i t y  ( T .  1:). ) ] i s  shown 

i n  Fi-g. 4 .  Note t h a t  a t  the maximum l o a d ,  titre stress is -230 MFa and 

the s t r a i n  i s  -0 .758.  Both values  a r e  comparable t o  values  r epor t ed  by 

LamPcq e t  al.’l for s imilar  material f a b r i c a t e d  by the isotiwrmal C V I  

process .  

Sirnil-ar s t r e s s - s t r a i n  ci-irves 

Apparent f r a c t u r e  toughness measured f o r  composites f a b r i c a t e d  from 

Nicalon c l o t h  by the  forced C V I  process  i s  2 3 . 5  -I- 2 . 9  NPam”’, which i s  

n e a r l y  i d e n t i c a l  t o  the  room-temperature value reported by 1h.1 Pont o r  

SEPZo (25 MPaem”2) f o r  isothermally produced composites. Because of  the 

s imilar  mechanical p r o p e r t i e s  f o r  composites f a b r i c a t e d  by d i f f e r e n t  C V I  

techniques,  processing of  composites a t  1200°C by t h e  f o rced  CVT method 

must cause no g r e a t e r  degradation o f  f i b e r  s t r e n g t h  than processing at 

1000°C by the  isot:herinal method. S l i g h t l y  higher  f l e x u r e  s t r e n g t h s  (380 

vs 320 MPaj r epor t ed  by the forced CVP prccess  may be the  result :  of  

different:  c l o t h  weaves. The cl-0th used by SEQ and Du Pont i s  a p l a i n  

weave with 500 filarnent:s/tow and about 10 tows/cm, whereas the  c l o t h  

used a t  QRNL i s  also p l a i n  weave but. contains  1000 fi lamcnt:s/ tow and 

only about 6 tows/cm, The more open weave o f  t h e  c l o t h  used a t  QWNL 

seems t o  provi.de b e t t e r  movement o f  r e a c t a n t s  chrough the p r e f o r m  ~ which 

i s  b e n e f i c i a l  t o  t he  forced CVX process.. 
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Unusually l o w  f l e x u r e  s t r e n g t h s  have been observed for composites 

processed a t  temperatures higher  than 1200°C by the  forced C V I  t ech-  

nique.  To i n v e s t i g a t e  the  e f f e c t  of  processing temperature on the  

s t r e n g t h  of Nicalon/SiC composilres prepared by forced C V I ,  disk-shaped 

samples were f a b r i c a t e d  a t  top ( h o t )  sur face  temperatures ranging from 

1000 t o  1400°C. A p l o t  of the average f l e x u r e  s t r e n g t h s  of specimens 

c u t  from the  uppeirmost p o r t i o n  (fr.hc volume t h a t  experienced the h ighes t  

p rocess ing  teinperatures f o r  the 1-ongest t h e )  c l e a r l y  i l . l .us t ra tes  the 

s t r e n g t h  l o s s  above 1200°C ( F i g .  5 ) .  Similar  a t tempts  t o  c o r r e l a t e  

s t r e n g t h s  with processing time o r  dens i ty ,  both o f  which spanned a 

narrow range, i nd ica t ed  no s t rong  r e l a t i o n s h i p ,  Nicalon f i b e r s  are  

c l e a r l y  damaged by processing temperatures >1200°C even though t he  

temperature i s  matntained f o r  only 1 6  t o  2b 11. 

The mechanisms of  Nicalon- f i b e r  degradation have been the s u b j e c t  

of  extensive s tudy.  11,12n27-29 

o r  i n e r t  atmospheres r e s u l t s  i n  significant:  reduct ions of  f i be r  

s t r e n g t h .  The strength 1 . 0 s ~  has been a t t r i b u t e d  t o  factzors such as  

g r a i n  growth, mechanical damage due t o  Si0 and CO evo lu t ion  from the  

carbothermal reduct ion of SiO, present  i n  the  f i b e r ,  and o t h e r  

compositional changes. Clear ly ,  from the observat ion o f  decreasing 

f l e x u r e  s t r e n g t h  wi.th increas ing  processing teiuyerature, such an e f f e c t  

i s  confirmed i n  the composites. This e f f e c t  i s  p a r t i c u l h r l y  t r u e  i n  

view of  the  measurements o f  increas ing  s t r e n g t h  of chemically vapor 

deposi ted s ic  with inc reas ing  depos i t i on  temperature.  30-33 

Heating f i b e r s  above 800°C i n  vaeuiun, a i r ,  

During t h i s  i n v e s t i g a t i o n ,  a l i m i t e d  number of  Sic- inatr ix  

composites were f a b r i c a t e d  with Tyranno f i b e r s  precoated with -0 .2  pm of 

p y r o l y t i c  carbon (Table 6 )  . Although cornposi t e s  f a b r i c a t e d  wi th  Tyranno 

f i b e r s  were not  as dense as t:hose f a b r i c a t e d  with Nicalon f i b e r s ,  the 

mechanical p r o p e r t i e s  were approximately equal.  

has been optimized f o r  the r e l a t i x e l y  open weave descr ibed previous'ly 

(1000 fi laments/tow, 5 tows/cm). Tyranns f i b e r s  have a diameter of  8 tc:, 

10 pin and a r e  avail-able i n  only 1008-filament: tows. The smaller  

diameter f l e x i b l e  f i b e r s  form a t i g h t  bundle w i t h  l i t t l e  p o r o s i t y ,  which 

makes them di f f icu1 . t  t o  i n f i l - t r a t e .  T h e  forced CVTT process needs t o  be 

0pti.inized f o r  the  t : ight ly  WOVC?TI Nicalsn and the  [no re nested Tyranna 

Forced C:VI processing 
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Table 6 .  Charac te r iza t ion  of composites rednforced w l c h  'P'yranno f i b e r s  

Apparent 
Sample Composite density strength f r a c  tiire 

Fiber  F1 exur e 
Sample content  

l o c a t i o n  ( %  t :heoret ical)  toughness 
(MPa*ml'2) (vol S) (MJ?a) 

242 4 3  TOP 7 9 . 4  ? 1 . 8  3 9 5 . 4  Ifr 18.4 2 0 . 9  3- 2 . 0  
Middle 7 5 . 6  _t 0 . 2  3 9 5 . 0  _t 7 . 5  2 0 . 6  * 1 . 9  
Bot tom 7 2 . 5  -t 0 . 5  3 5 1 . 9  k 11.0  

243 42 TOP 81..0 -b 0 . 7  3 6 8 . 9  -t 7 . 7  1 9 . 6  -t 1 . 0  
Middle 7 5 . 3  k 0.1 3 6 4 . 2  .t- 2 . 4  18 .4  rfr 1 . 8  
B o t t o m  64.4 1 0 . 8  2 1 6 . 1  f 3 6 . 5  

258" 4 0  TOP 8 5 . 5  -s- 6 . 7  3 8 8 . 3  * 19.7. 

_I- ___ ___I__ __I__. .. ....... .. . . ... ... 

"The middle anti bottom of sample 258 used i n  o the r  t e s h  d i d  not: 
requi-re c u t t i n g  i n t o  f l exure  ba r s  ~ 

c l o t h .  (Optimized processing condi t ions  would reduce the  wide v a r i a t i o n  

i n  dens i ty  wi th in  the  samples descr ibed i n  Table 6 . )  

The mechanical p rope r t i e s  o f  composites r c i n f o r ~ e d  w i t h  Tyranno 

f i b e r s  were encouraging. D n s p i t e  the  somewh2.t l e s s  than optimum dens i ty  

o f  t he  f a b r i c a t e d  composites, s t r eng ths  >350 $Pa were obtained f o r  

samples from the  t o p ,  middle, and botztom o f  the composite ( T a b l e  5 ) .  A 

load-dtsplacement curve f o r  a Tyranno-reinforced composite e x h i b i t s  

"toughening" by fi.ber p u l l o u t .  Although the  f r a c t u r e  roughness values 

are s imi- lar ,  the  f r a c t u r e  appears  t.0 be more b r i t t l e  t:han t h a t  o f  

Nicalon composites ( F i g .  6 ) .  

The e f f e c t  of t e s t i n g  temperature on the  f l exure  s't:~:eiigth of carbon- 

coated Nicalon and Tyranno f i b e r s  in  a S i c  matr ix  was i nves t iga t ed .  The 

r e s u l t s  o f  the e leva ted  temperature tests a r e  summarized In F i g .  1 .  A 

gradual. increase  i n  the  s t r e n g t h  of the  Nicalon/SiC composites 

produced by forced CVI was observed up t o  a temperature of 1000°C. The 

same increase  w a s  observed f o r  composites faliri.cated with e i t h e r  a 

carbon o r  boron n i t x i d e  i n t e r f a c e .  The composites exhib i ted  good 

s t r eng ths  and gradual- f a i l u r e  i n  a l l  tests. A decrease i n  the  s t r eng th  
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of the composites was noted above 1200"C, most likely due to the degra- 

dation of fiber properties at this temperature. These results are 

nearly identical to those reported by Lamicq et al. for composites 

produced at SEP by the isothermal CVI process"" 

Tyranno-reinforced composites were higher than those of the Niealon/SiC 

composites at all test temperatures, and no significant decrease in 

flexure strength was observed above 1200°C. Additional tests at 

elevated temperatures and after long-term heat treatments are 'neing 

performed to further characterize the high-temperature properties arid 

the s t a b i l i t y  of the two fibers. 

The strength D E  the 

GQNCLUSIQNS 

Silicon carbide matrix composites fabricated by the forced C V I  

process have been characterized for room-temperature flexure strength, 

room-temperature tensile strength, room-temperature fracture toughness, 

and high-temperature flexure strength. Forced CVI composites fabricated 

at hot-face temperatures <_1200"C exhibit an average flexure strength of 

-380 MPa and an apparent fracture toughness of -23 MPa.ni1/2. 

temperature tensile strengths obtained on a limited number of samples 

gave values of -230 MPa. Because these values are nearly identical to 

those reported by SEP and Du Pont f o r  composites fabricated by the 

isothermal CVI process, apparently no additional fiber degradation 

results from the higher processing temperature (1200°C) used by the 

forced CVI process. Hot-face temperatures >120Q°C were shown to cause 

significantly greater fiber degradation. 

Room- 

Silicon carbide matrix eamposites reinforced with Tyranno f i l ~ ~ i r s  

were a l s o  fabricated hy the forced CVT process The room- temperature 

flexure strength of the material is at lease as high as NLcalon- 

containing composites of similar density with similar strain tal??rance. 

Improvement is noticeable i n  the strength of the Tyranric:, - re inforred 

composites over that of Micalon-reinforced carnposites tested at temptha- 

tures up to 1200°C. The dependence of  the strength of Nicalon- 

reinforced composites on processing temperature w i l l .  provide ax3 i-mpetus 

to further investigate Tyrarmo f i b e r s .  The higher temperature s t a b i l i t y  
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of the Tyranno fibers could provide greater flexibility for the forced 

CVI process. 

Plain-weave Nicalon cloth, used almost exclusively for the develop- 

ment of the forced C V I  process, has a relatively open weave that permits 

movement of reactants through the thickness of  the preform. The initial 

attempts to infiltrate more tightly woven Nicalon clot11 simllar to that; 

used by SEP and Bu Pont resulted i n  slightly lower densities. 

processing conditions do not permit sufficient time for a thorough 

infiltrarion of the fiber bundles that results in the lower densi-t:.i.c!s" 

The forced CVI processing conditions must be optimized for the weave to 

increase the final density o f  the composite, Tyranno fibers are smaller 

in diameter and come in bundles of more fil.atnents. Because these f i b e r s  

nest together more tightly than do the stiffer Nicalon fibers, less 

permeability exists within the Tyranno bundles. 

needed for the forced CVI processing conditions to extend the infiltra- 

tion time or other such modifications for more complete infiPtrat:i.on and 

uniformity improvement of t;he Tyranno- reinforced composites . 
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