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ABSTRACT

A new method is presented for calculating chemical potentials using integral equation
theories. The method uses a multi-step charging process which allows attractive and
repulsive contributions to the chemical potential to be determined separately. Integral
equation theories are used to provide needed correlation functions about the test particle. A
novel application of particle scaling is used to determine the repulsive contribution to the
chemical potential. A formal definition is given for the effective hard core diameter of a
softly repulsive solute. A simple Kirkwood charging process is used to determine the
attractive contribution. The method provides accurate chemical potentials in mixtures of
softly repulsive WCA particles when used with the HMSA/Rogers-Young integral
equation. Calculated excess Gibbs energies agreed with WCA repulsive simulations to an
average of -0.67% for 2:1 diameter ratio mixtures. The method provides approximate
results in Lennard-Jones mixtures when used with the HMSA integral equation. Results
for supercritical isotherms reproduce simulation data to an average of -3.0%. For
subcritical isotherms, vapor results are exact while liquid results are qualitatively correct.
The method used with the HMSA theory correctly predicts the effect of energy ratio on the
Henry's Law constant. The predicted effect of size ratio on the constant has an incorrect
slope at subcritical temperatures when the solvent density is near the value for a saturated

liquid. The incorrect slope reflects an inconsistency in the HMSA theory.



CHEMICAL POTENTIALS FROM INTEGRAL EQUATIONS

USING SCALED PARTICLE THEORY
CHAPTER1
INTRODUCTION

The basic problem of statistical mechanicsis to determine the properties of a fluid when
the forces between molecules are known. Only recently have methods been devised for and
applied to the calculation of chemical potentials. These approaches are based on molecular
simulation or on perturbation theories and have limitations. Rigorous, though
computationally intensive approaches are based on molecular simulation. Since molecular
simulations can deal with only a small number of particles and generate only a sample of the
population of particle configurations, the computed results have a degree of statistical
uncertainty which is difficult to quantify. These uncertainties can sometimes be reduced by
increasing the number of particles in the simulation or by increasing the run time. In other
cases the statistical uncertainties can only be reduced by trying alternative methods designed
to deliberately sample different regions of configuration space. The periodic boundary
conditions used in molecular simulations to eliminate wall effects introduce unrealistic
periodicities which makes the simulation of states near the critical point difficult.

Perturbation theories require the similarity of the structure of the fluid to that of a reference
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fluid; this similarly breaks down near the critical point or when there are very strong
interparticle forces that are not present in the reference fluid. Discussed below are some of
the well studied methods based on molecular simulation or on perturbation theories. Within
their regions of applicability methods of these types can be used to test the accuracy of
alternative techniques for estimating chemical potentials.

A method which is frequently used with molecular simulations 1is the test particle
method of Widom®. The technique requires little modification of existing simulations. In

this method the residual chemical potential of species i is given by:

*
ui—“i

T :—ln<cxp(—B<Dif)>NW M

where 1" is the chemical potential of an ideal gas at the temperature, density and composition

of interest and B = 1/kT. @/ is the potential energy between a "ghost" test particle and the

molecules in the fluid and the angle brackets denote the average value in the canonical
(constant N, V, T) ensemble. A ghosttest particle is a static measuring device introduced into
the simulation which has the potential energy of a molecule of species 1 but which does not
alter the trajectories of the surrounding particles. The Widom method has a disadvantage in
that it is difficult to determine the statistical accuracy of the computed result. There is also
an "inverse Widom" relationship which gives the residual chemical potential in terms of the

average of the potential energies @7 of the real particles in the simulation®:

%
H.—H

B o in(exp (30D )y @

By "real particles" in this context it is meant that those particles are part of the simulation of

the mixture. They have trajectories which can influence and are influenced by those of the
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other particles in the simulation. The inverse Widom relationship is seldom applied directly
since large values of @' are inadequately sampled by molecular simulations at high densities.
The Widom method has been applied to the calculation of residual chemical potentials
in pure Lennard-Jones fluids® and in Lennard-Jones mixtures at infinite dilution®,

Heinbuch and Fischer®® have found that the method yielded results with a uncertainty of

about 0.1 kT for pure fluids with reduced densities po® less than 0.7. The uncertainty was

about 0.2 kT for po® between 0.8 and 0.85. These uncertainties were estimated by comparing

the results to those obtained from a trusted perturbation theory (these theories are described
below). Lotfi and Fischer® found that a large cut-off size, a large number of particles, and
a very large number of time steps were required in order to obtain a reproducable result for
large solutes in mixtures at infinite dilution. Shing, Gubbins, and Lucas® found that the
Kirkwood method (described below) is preferable to the Widom method at moderate to high
densities and for extemely non-ideal mixtures.

The method of Powles®? is more complex than the Widom method but has the

advantage of providing a measure of the statistical uncertainty in the computed chemical
potential at the state of interest. In this method the weighting functions f and g ® which are

implicit in the Widom and inverse Widom equations are explicitly determined:

(exp( - B‘Dif)) = jf(d)if) exp( — ﬁq’f) dcbi 3
(cXP(beir)) = J g((D:) cxp(ﬁd):) d(p; @)

f(u) is the probability that a ghost test particle experiences a potential energy between u and
u +du. g(u)is the probability that a real particle experiences a potential energy between u

and u+ du. Shing and Gubbins® noted a relationship (used by Powles, Evans, and Quirke®)



4

between the temperature, the functions f and g, and the residual chemical potential:

*
L) = 1 ) = Bu - Bl -y ©)
A plotof estimated L.(u) values versus u should have a slope of B = 1/kT and an intercept equal

to the negative of the residual chemical potential divided by kT. Such plots are indeed very
linear with the correct slope except at very large and very small values of u. The method has
the disadvantage that redundant information must be accumulated which are sufficient to
determine (imprecisely) the chemical potential from both the Widom and inverse Widom
relationships. In addition, the values of f and g must be estimated for enough points in order
to estimate the intercept to within a small confidence interval. The confidence interval on the
intercept then provides a measure of the statistical uncertainty in the reported chemical
potential.

Panagiotopoulos, Suter, and Reid™ applied Powles' method to the computation of
chemical potentials in pure and mixed Lennard-Jones fluids. They reported uncertainies in
the computed chemical potentials which increased with density, becoming approximately
0.3kT at po*=0.8. The results for mixtures were found to be accurate to within 0.1 kT over
the conditions examined. They applied the method to the determination of phase coexistence
curves and found that the curves for mixtures of acetone and carbon dioxide could be

qualitatively modelled using Lennard-Jones potentials.

The Kirkwood charging method is based on a technique which changes the identity of

some of the particles in the simulation. For instance, a pure fluid may be converted into a

mixture. The changing identity of the particles is measured by a parameter A, referred to as

a coupling parameter. Thus, the potential energy U of the system is a function of the



configuration of the system and the value of the coupling parameter:

(6)
U =0@rN)

When the NVT ensemble is used the Helmholtz free energy change which occurs during this

A

A - AQLy) = <%§j—>mdk

A

process is given by: )
Similarly, when the isothermal, isobaric NPT ensemble is used the Gibbs free energy change

is:
)“1

GOhy) - Ghg) = (%%)mdl ®)
o

Shing® et. al. used equation (7) to compute the free energy change when one particle in a pure
fluid is converted into a solute particle. The result was the difference between the residual
chemical potential of the solute at infinite dilution and the residual chemical potential of the
original pure fluid. Shukla and Haile®® have used equation (8) in the computation of excess
Gibbs free energies of mixing atconstant temperature and pressure. The mixing property was
obtaining by computing the free energy differences between each of the pure fluids and the
mixture and mole fraction averaging the results. Kirkwood charging methods are
numerically intensive because the integrations in equation (7) and (8) require a number of
separate simulations to generate the integrand at points between A and A,. The multitude of
simulations and the numerical integration make itdifficult to determine the uncertainty in the

results®. The precision of the results is obtained by these methods is often judged from

comparisons with perturbation theories.
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In perturbation theory, the Helmholtz free energy of a model fluid is written as an
expansion about that of a reference fluid whose properties are known. The goal of
perturbation theory is to choose a reference fluid with a microscopic structure that closely
approximates that of the fluid of interest, allowing the expansion to be truncated after the first

order. The chemical potential of a species can then be determined from the Helmholtz free

energy by differentiating with respect to species mole number at constant temperature and
volume. The theory of Weeks, Chandler, and Andersen® (WCA) involved dividing the
intermolecular pair potential into a short-ranged, softly repulsive component u;j° and a long-
ranged attractive component u.!. The free energy A of the fluid was then written as an
expansion about that of a softly repulsive reference fluid®?,

. ‘e ©)
A-A"_ Bp 0 (eyp 2
W’T;}xixijo 8;(Du;(1) 4nr”dr

+...

where A% denotes the free energy of a fluid whose particles interact only with the repulsive
component of the potential u.®. The g.°are the pair correlation functions (discussed in detail
below) of the reference fluid at the temperature and density of interest. These functions
describe the structure of the reference fluid. The first order truncation of the series in equation
(9)is acématc under state conditions where the structure of the reference fluid approximates
that of the fluid of interest: g° = g.. This situation prevails at high (liquid-like) densities
because, as the molecules of a fluid pack closely together, their strong mutual repulsions
dominate the determination of fluid structure. Under such conditions the WCA attractive
potential only slightly perturbs the structure determined by the repulsive forces. The free

energy A° of the WCA repulsive fluid is in turn approximated by that of a hard sphere fluid
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with appropriately chosen effective hard sphere diameters. The free energy of the hard sphere
fluid is then given by the accurate equation of state due to Carnahan and Starling®>',
Accurate procedures for estimating A ° and the pair correlation functions in the reference fluid

were given by Verlet and Weis®? for pure fluids and by Lee and Levesque®? for mixtures.
Modifications of these theories have been proposed which slightly improve the accuracy and
thermodynamic consistency of the results®®. A disadvantage of perturbation theories is that
the truncation of the free energy expansion at the first orderis inaccurate near the critical point
of the fluid and when intermolecular attractions are strong. For such systems the structure
of the fluid of interest as measured by g, is not approximated well by g.°.

Recent advances in integral equation theories for molecular correlation functions and
in methods for solving the equations suggest that it is possible to use them to predict chemical
potentials. These theories provide a means of estimating the pair and direct correlation
functions in a fluid. These functions depend on the relative positions of two molecules
irrespective of the positions of the others and irrespective of molecular orientations (when the

| molecules are non-spherical). Thermodynamic properties can be estimated from these
functions using the relationships provided by statistical mechanics. Integral equation
theories combine the use of the Ornstein-Zemicke (OZ) integral equation which is an exact
defining relationship between the direct and total correlation functions and a "closure"

equation which is an approximate one. The OZ equation is written in terms of a convolution
integral ¢,

hy0 - Cijn = p IJvCil(ri’ rphyry, rp dry (10)

+ p2 VCiZ(ri’ rz)hzj(rzy r}) dr:



where the intermolecular separation distance is r= Il I, — I, ll and the equation has been written

for the case of a binary mixture. h, is called the total correlation function and is

defined by h, = g, — 1, where g, is the pair correlation (or radial distribution) function. The

pair correlation function is defined so that p, g,(r,I’) is the local density of species i at position

i

r, surrounding a molecule of species j at position I, “?. Because of the attractive field which
surrounds a molecule, this local density is greater than the average bulk density for separation
distances in the neighborhood of the potential mininum. Ordering in the fluid (such as the
ordered packing of hard spheres) also causes the local density of the nearest neighbors of a
molecule to be higher that the bulk value. Thus g, is greater than 1.0 for these separation
distances. For small separation distances the field becomes strongly repulsive, and the local
density is reduced. The pair correlation function is less than one for small separations,
becoming zeroin the limit of particle coincidence. Atvery large separation distances the field
approaches zero, the local density of species i approaches the bulk average p, and g,
approaches 1.0. Two special cases of interest are:

1. Ideal gases. In this case there are no forces between the particles and g, = 1 for
all separation distances.

2. Low pressure gases. In this case the probability of more than two molecules
being in the same neighborhood is very small. Then the probability of an
arbitrary pair of molecules being a given distance r apart equals the Boltzmann
factor, which is : exp[u (r)/kT] = g,, where u, is the intermolecular pair
potential.

C, is called the direct correlation function and equation (10) can be considered as its

definition. Alternatively, as described by Percus®®, the direct correlation function can be
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defined in terms of the rate of variation in the required pair potential with respect to
independent variations in the local density (a functional density derivative). From this
alternative definition of C, the OZ equation (10) can be derived. Thus, the direct correlation
functon appears as part of the solution to the problem of how the local density of the fluid
around a field source (such as another molecule) varies with the potential energy between the

source and the molecules of the fluid. At low densities the direct correlation function

approaches the Mayer factor, exp[-u,/kT] — 1. Thus it approaches -1 at small separation
distances where the potential is large and approaches -u, /kT at large separations where the
magnitude of the potential is small. The longrange behavior of the direct correlation function
changes little as the density is increased; the function at small separation distances becomes
much more negative.

Equation (10) is solved numerically together with a closure equation. The closure
equation iinplicitly contains all of the appfoximations in the theory being used. It is an
approximate relation between the direct correlation function and the total correlation
function. Such relationships have been created by choosing an objective (or "generating
functional”) which is some functional of the local density and potential energy due to a field
source, and taking the functional Taylor expansion of it in powers of the difference between
the local and bulk average densities®. In this way a relationship between the local density,
the direct correlation function, and the pair potential can be obtained. Truncating the
expansion after the first order yields the desired simplified closure.

Different generating functionals yield different closures, which may differ in their

suitabilities for pair potentials of varying sign and steepness. One such closure is the

hypernetted chain (HNC) equation®®,
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(1D
Cy=hyg=fy,

where y, is called the background correlation function and is defined as y, = g.exp(u,/kT) .
Each of the functions in equation (11) is dependent on the intermolecular separation distance.
HNC theory was commonly used at low densities and for systems containing both attractive

(or long range) and repulsive (or short range) forces. Another such closure is the Percus-

Yevick (PY) equation®™: (12)
Cij= 1+ hij—yi'

PY theory was commonly used for systems containing only short range repulsive forces such
as mixtures of hard spheres. Both the PY and HNC theories become more accurate as the
density is reduced; from each of them exact second and third virial coefficients can be

derived"®. They approach each other at low densities since in this case the background

correlation function approaches 1. The PY equation (12) yields a direct correlation function
which has a finite range if the pair potential has a finite range (since in that case, for large
enough separations g, =y,). The HNC direct correlation functon does not vanish at large
separation distances even if the pair potential does!?.

One numerical method used to simultaneously solve the OZ and closure equations is
that due to Labik et. al.??, This method is a combination of Newton and direct iterations that
involves decomposing h, — C, into coarse and fine parts. The coarse part is described as a
series of basis functions, the coefficients of which are found by Newton's method. The fine
part is found by fixed point iterations in Fourier transform space.

Thermodynamic properties can be obtained from the correlation functions by using the

relations of statistical mechanics. For example, the residual (sometimes referred to as



11

configurational) internal energy of the fluid is given by®":

U—U*_( P
NKT 2T
0

Both the PY and HNC theories yield reasonably accurate predictions of the internal energy.

>

(13)

2 2 2
x1u11g11+2x1x2u12g12+ XU228,,| 4mrdr

However, for some properties thermodynamically inconsistent results can occur because the
closure relation is approximate. In particular, properties obtained from the pair correlation
functions tend to differ from those obtained from the direct correlation functions. If a

comparison is made between the pressure computed from the virial equation®,
P

, ' ) (14)

P _ 1 2 ' 3
pkT ~ 1—(6ka) P1UNBY T 2P 1P 12810 F Pylig8gy| 4r dr
0

(where the prime superscript denotes aderivative with respect tor) and the pressure computed
by integrating the compressibility equation,
von (15)

P | 2
-1-(— - -.L_,A (Pfclﬁ 2p,p LC12+ p,Ca2) 4nrldr
0

kT op

T,V p

over density, the results will not agree in general since the relationship between the total and
direct correlation functions is only approximate®, For example, the compressibility
equation (15) yields a more accurate pressure than does the virial pressure equation (14) when
the PY theory is applied to hard spheres, though both are considerably in error @®(the correct
pressure béing nearly one third times the virial pressure plus two thirds times the
compressibility pressure). The virial pressure equation (14) is derived from the canonical
partition function. The compressibility equation (15) is derived from an analysis of particle

number fluctuations in the grand canonical ensemble. So, it is evident that different routes
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to calculating the thermodynamic properties from integral equation solutions tend to yield
different results.

Newer theories improve the prediction of the correlation functions by imposing
thermodynamic consistency on some property calculated from two different routes. The
closure equation is then parameterized to allow such an optimization. The Rogers-Young
(RY) mixed integral equation theory ® provides a description of the properties and structures
of repulsive fluids such as those composed of hard spheres or of softly repulsive particles.
The RY closure is said to be "mixed" since consistency between the results of equations (14)
and (15) for the pressure is obtained by using a combination of the PY and HNC closures,

(16)

Ciy=hyy= & sy~ s - 1]
where "s" is a switching function. The switching function varies between zero and one and
is chosen so that pressure consistency is obtained. When s = 1 the HNC equation (11) 1s
recovered. In the limit when s approaches zero the PY equation (12) is recovered. An
arbitrary form for the switching function is used which allows interpolation between the PY
closure at short interparticle distances and the HNC at large distances®,
s=1-e %" (17)

and the mixing parameter a is varied in order to vary the switching function. In practice, the
parameter . is chosen so that the derivative of the pressure with respect to density obtained
from equation (15) matches the results of a numerical differentiation with respect to density
of equation (14). The resulting & is state dependent. The numerical differentiation of the

virial pressure is done assuming the o parameter is only weakly state dependent, therefore

its derivative can be neglected - an assumption which is justified when the RY theory is
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applied to repulsive fluids. This procedure is referred to as a local consistency criterion, as
opposed to a global consistancy criterion which would compare a numerical integral over
density of equation (15) with the pressure from equation (14). The RY theory works when
applied to fluids consisting of repulsive particles because the PY and HNC components of
the theory yield compressibilities (from equation 15) that bracket the correct value. The
theory reproduces the pair correlation functions, pressures, and internal energies obtained for
these fluids from molecular simulations with surprising accuracy® - though the resulting
pressures are biased low for harshly repulsive fluids such as those composed of hard spheres.
RY theory is not applicable to fluids with both attractive and repulsive forces because, in
general, the PY and HNC components of the theory do not bracket the correct
compressibility,

The hybrid mean spherical approximation (HMSA) integral equation theory® is a
modification of the RY theory which can be used with realistic pair potential models and
which reduces to the RY theory when the potential is purely repulsive. Inthe HMSA theory
the intermolecular pair potential is divided into repulsive and attractive parts according to the
division of Weeks, Chandler, and Andersen (WCA) @;

ug=ud+ul (18)

ij § ij

The WCA repulsive potential is short ranged and is given by,

g, <M
w7 E TR (19)

min
O,1'.>.rij

where €, is the depth of the potential minimum and 1, ==is the intermolecular separation at the
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minimum. The WCA attractive potential is given by:

min
ule | TS TET (20)
ij= min
LT r= rij

The WCA potential division has been shown to be an effective basis for perturbation theories
because the pair correlation functions in dense fluids are very nearly equal to those in a fluid
whose particles interact with the steep WCA repulsive potential®). Under such conditions
the direct correlation function is assumed to be approximated by that of a WCA repulsive
fluid plus a correction which is exact for large separation distances. In the HMSA the direct
correlation functions are divided into attractive and repulsive parts, the repulsive partis given
by the RY theory and the attractive part is set equal to the negative of the WCA attractive
potential. The resulting closure equation is:

Cy= iy~ (5] nfsg e P85~ 1] - ] w
As in the RY closure, when s = 1 the HNC equation is recovered. The HNC limit yields
accurate pair correlation functions at low to moderate densities . In the limit as s approaches
zero the HMSA closure approaches the soft mean spherical approximation (SMSA) of
Madden and Rice® - an approximation which is accurate for liquids. The SMSA limit of the
theory represents fluids which have softly repulsive cores and long range attractive forces.
It assumes that the pair correlation functions are determined by the strength of the repulsive
forces and are independent of the attractive forces - thus, the SMSA theory applies only at
high densities. The switching function used in the HMSA theory is the same as that used in

RY theory and the o parameter is found in the same way as in RY theory - by applying the

local consistency criterion. The local consistency criterion is less satisfactory when the
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theory is applied to fluids with attractive and repulsive forces since  has a limit of positive

infinity (thus forcing the switching function to approach 1.0) as the density approaches zero.
In any case, HMSA pressures and internal energies exhibit excellent agreement with
molecular simulations for Lennard-Jones fluids®.

Integral equation theories have therefore progressed to the point where they can be be,
used to predict the volumetric properties and internal energies of model fluids with
spherically symmetric, pair-wise additive potentials. One might hope thatitwould be aneasy
matter to obtain chemical potentials, Gibbs free energies, and Helmholtz free energies from
these theories. Integral equation theories can be applied to systems for which simulations or
perturbation theories can not be used. Unlike perturbation theories, integral equation theories
can in principle be applied to systems where intermolecular attractions have a large effect on
the structure of the fluid (though the accuracy of the result depends on the closure equation
used). Unlike both perturbation theories and molecular simulation, integral equation theories
can be applied to states relatively close to the critical point of the fluid (though the location
of the critical point obtained from integral equations theories may be inaccurate). If chemical
potentials can be obtained from the integral equations theories then they can become useful
tools for studying phase equilibrium near the critical point, particularly when large
intermolecular attractions are present.

One approach to obtaining the free energies from integral equation solutions would be
to perform a thermodynamic integration over the relevant volumetric property. This
approach is examined in Chapter III - Results. It has a number of disadvantages. If, as in the
case of the RY results for the hard sphere system, the predicted pressure is slightly lower than

simulation results for a range of densities then thermodynamic integration will accumulate
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these errors and lead to poor results. In addition, the o parameter must be recomputed at some

number of intermediate density steps since it is state dependent. Recomputing o can impose

a large computational penalty. Finally, for systems which exhibit two phases, it can be very
difficult to numerically solve the integral equations for densities which lie within the phase
dome thereby making it imposible to obtain a complete integral over density. As noted by
Kjellander and Sarman®, chemical potentials determined from integral equation theories
depend on the method of calculation because of the approximate nature of the correlation
functions they provide. If the correlation functions were exact, every calculation method
would yield the same (exact) result. Since the correlation functions are inexact, there is the
possibility that results obtained some calculation scheme are close to the results obtained
from molecular simulation, even if the results from a thermodynamic integration differ
greatly from simulation.

In this work a calculation scheme based on a Kirkwood charging process®? is used for
obtaining chemical potentials, Gibbs free energies, and Helmholtz free energies fromintegral
equation theories. In the charging process we pick one molecule in the fluid and imagine it
is at the origin of our coordinate system®. This central molecule is referred to as a test
particle. We consider what happens when the magnitude of the pair potential between the
test particle and the surrounding molecules isreduced while all othermolecules in the system
interact normally. We shall refer to the surrounding molecules as the bath. Because the pair
potentials for interactions with the central molecule have been perturbed, the pair correlation
functions about it will also be perturbed. In effect, the test particle is a field source which
induces inhomogeneity in the fluid. Integral equation theories can be used to calculate the

perturbed pair correlation functions about the test particle. By reducing the test particle - bath
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molecule pair potentials in a series of steps the test particle can be removed from the system.
The Helmholtz free energy change for this process can be computed from the knowledge of
the pair correlation functions about the test particle. The derivative of the free energy with
respect to component density at constant temperature volume and densities of the other
species equals the chemical potential:

2A @2)

= A(T,V,ny,...,n:,...)
BY{;)T, V, ni 1 )
——A(T,V,nl,...,nj-l yees)

:pj

Since the number of particles in the fluid is very large, the chemical potential equals the
negative of the free energy change for removing the test particle (alternatively, it equals the
free energy change for inserting a new test particle) ®. The Kirkwood charging approach has
the advantage of only requiring solutions of the integral equation at the state of interest,
thereby avoiding accumulation of errors, multiple o calculations, and numerical problems in
crossing the phase dome.

There is a unique analytical solution to the charging process for the case of the HNC
integral equation theory @ For integral equation theories in general, the chemical potential
obtained from integral equations using Kirkwood charging is not unique. This inconsistency
arises from the approximate nature of integral equation theories. It has been proven by
Kjellander and Sarman @ that the calculated chemical potential obtained from the RY
closure depends on the way the pair potential (or equivalently, the local density of the fluid
about the test particle) is varied during the charging process and not just on its initial and final

values. For the HNC closure the calculated chemical potential is independent of the charging
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path. Kjellander and Sarman obtained exactresults for the RY theory with a charging process
which required that the total correlation function grow linearly from zero to its final value
as the test particle is inserted into the fluid. The computed chemical potentials in hard sphere
systems were accurate only at low densities. Slightly more accurate results were obtained by
them using a modified RY closure, but the high density results were still poor.

In the work presented here a numerical approach to the charging process was taken
where the test particle is inserted into the fluid in a series of steps. The multi-step procedure
used is based on well-known techniques and is designed to take advantage of accurateresults
provided by scaled particle theory®. Reiss, Frisch, Helfand and Lebowitz*?, proposed
dividing the residual chemical potential into attractive and repulsive contributions, the
repulsive contribution being estimated as the work of inserting the hypothetical hard
spherical core of 2 molecule into the fluid at a fixed position. The work of inserting a hard
sphere test particle into the fluid was determined from a charging prbccss provided by scaled
particle theory (SPT) ©239_ This particle scaling process has been shown to be able to provide
accurate chemical potentials in hard sphere fluids. Reiss et. al. ®® were able to estimate
Henry's Law constants for heliumin liquid argon and in liquid benzene by choosing hard core
sizes equalto the Lennard - Jones size parameters and neglecting the attractive contribution.
After using empirical data to estimate tﬁe attractive contribution they were also able to
estimate the heats of vaporization of inert gases, and of hydrogen, nitrogen and benzene. In
this work, we eliminate both the explicit and implicit assumption that molecules have hard
sphere cores. Instead, the repulsive contribution consists of the work of inserting an effective
hard sphere core into the fluid plus the work of softening the hard sphere into a softly repulsive

WCA sphere. This softly repulsive sphere therefore represents the repulsive
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core of a real molecule. We retain the idea that the repulsive contribution to the chemical
potential is given by SPT simply by choosing effective hard sphere sizes so that the work of
softening is zero. Thus, we also eliminate the arbitrary specification of core sizes made in
past applications of SPT to realistic fluids. Finally, we do away with any need for empirical
data or approximations in the estimation of the attractive contribution by using a formally
exact Kirkwood charging process to couple the WCA attractive forces between the bath and
the test particle. The calculation of the work of inserting the effective hard sphere, the work
of softening, and the attractive contribution all require knowledge of the correlation functions
about the evolving test particle. These correlation functions are estimated using integral
equation theories.

The word "work" was used freely in the above discussion of Kirkwood charging in
phrases such as "work of inserting a hard sphere" and "work of softening”. This is a
generalized notion of work (done on the system) which equals the Helmholtz free energy
change of the process. In this case the displacement of the system occurs along an abstract
coordinate which is not directly related to the physical movement of particles or system
boundaries (though a reconfiguration of particles in the system does occur as the work is
done). We imagine that the process of changing the pair potential between the test particle
(which is present at a fixed position) and the ﬁuid is éccomplishcd by the equivalent process

of turning on an external field source at that point. This process of turning-on is accomplished

by varying an external coordinate referred to as the coupling parameter, denoted by A. The
total energy of a member of the canonical ensembile is then a function of A. A generalized

force generated by this member opposing the change in A can be defined as the negative of



20

the gradient of its energy with respect to A. The macroscopic force is then the ensemble

average of these forces on the ensemble members. From statistical mechanics 49, the
ensemble average force <F> is related to the derivative of the canonical partition function Z,
(23)
d (In Z))
A |T,V,N
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(F)= kT(

which also shows the relationship between <F> and the Helmholtz free energy A. So, the

generalized work done on the system during the turning on process equals the negative of the

integral over A of the ensemble average force, which in turn equals the change in the

Helmboltz free energy of the system from initial to final values of the coupling parameter:

(24)

1
A(D) -AQ0) = -J (F) dA
0

1
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— <F> is the force exerted by the external agent; dA is the infinitessimal displacement over

which the force is exerted. It can be proven that the integral in equation (24) depends only
on the initial (A =0 ) and final (A = 1 ) states of the system - it does not depend on the way
in which the external field source is turned on. Thus, the integral has the mathematical
properties of "work" and it can be legitimately written as the difference in scalar potential

functions A(1) - A(0). How this free energy change is related to the residual chemical
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potential will be described in Chapter II - Theory. The Theory chapter will explain how the
free energy change can be determined from the pair correlation functions for fluid molecules
about a test particle (or equivalently, about the external field source). Equation (24) is path
independent when the true correlation functions are used in evaluating it. As noted in
reference (26), the path independence can be destroyed when approximate integral equation
theories are used to estimate the correlation functions.

The multi-step charging process will introduce three different coupling parameters
which take the system from its inital toits final states in a sequence of steps. Inorder to apply
the SPT formula effective hard core diameters are needed for each species in the fluid, as
described above. The effective hard sphere diameters are based on the idea” that the
Helmholtz energy of a fluid containing a soft WCA repulsive test particle can be
approximated by the Helmholtz energy of a fluid containing a hard sphere test particle. The
free energy difference between these two systems is defined as the work of softening. One
coupling parameter is inwoduced to convert the hard sphere into the WCA repulsive particle.
With hard sphere diameters chosen so that the work of softening is zero, the repulsive
contribution to the chemical potential equals the work of inserting the hard sphere test
particle. This work of insertion equals the free energy difference between a system
containing the hard sphere and a system containing an non-interacting test particle. The
insertion of the effective ( in the sense that it approximates a WCA repulsive particle) hard
sphere is done in two steps. First a hard sphere with a diameter of zero (a "hard point") is
inserted into the fluid. SPT provides a simple formula for this step which is a function of the
effective packing fraction of the fluid. Second, the size of the inserted hard sphere is increased

from a point up to the effective hard sphere diameter. Another coupling parameter increases
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the hard sphere size. SPT provides an expression for the work of this step which utilizes the
contact values of the pair correlation functions of the bath molecules with the test particle.
These contact values are determined from the integral equation theory. Finally, the WCA
attractive potential is charged and the test particle becomes identical to other molecules of
its species in the fluid. The final coupling parameter changes the attractive component of the
potential. The free energy change in this step also depends on the pair correlation functions
about the test particle. The Theory chapter which follows developes the mathematics of each
of the charging steps in detail and describes how the pair correlation functions about the test
particle are determined. The result is an effective method for computing the chemical
potential.

Chapter III - Results, describes the testing of the method. The testing procedure 1s
designed to examine:

1. Agreement with known (and path independent) results for the HNC closure.

2. Effectiveness of the SPT based procedure in purely repulsive systems when

used with the RY theory.
3. Effectiveness of the SPT based procedure in realistic systems when
used with the HMSA theory.

The method is compared to the analytical HNC result in case where s = 1. The HNC results
allow the estimates to be made of the errors (numerical or otherwise) of each step in the
charging process. In all cases these errors are negligible. The work of inserting the hard point
obtained from the SPT is slightly inconsistent with the known exact HNC result. This
inconsistency is shown to be smaller when the more accurate RY and HMSA integral

equations are used. All other steps are consistent with the HNC when s = 1. The method is

used with the RY integral equation theory to compute Gibbs and Helmholtz energies in pure
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fluids which interact according to the WCA repulsive potential. For these fluids the attractive
contribution to the chemical potential is zero. The computed Helmholtz energie‘s agree with
the accurate results of Verlet and Weis"® for these fluids but are slightly inconsistent with
thermodynamic integration. The results from the proposed method are more accurate than
those of thermodynamic integration. The proposed charging process and thcrmodynamic‘
integration should yiéld identical results. Inconsistent results occur because of errors in the
correlation functions supplied by the integral equation theory. Unlike the procedure used in
reference (26), the proposed method provides accurate results at high densities without
modifying the RY closure. The accurate results confirm that the particle scaling procedure
is appropriate for computing the repulsive contribution to the chemical potendal. In mixtures
of WCA repulsive particles the method accurately reproduces simulation results for the
excess Gibbs free energies of mixing. These results are a strong proof of the method and of
the RY theory since the free energies of mixing are the small differences between large
chemical potentials and so are sensitive to small errors in the chemical potentials. The method
is then used with the HMSA integral equation theory to compute Gibbs free energies in pure
fluids which interact according to the Lennard-Jones potential. The results are accurate at the
lowest (po® < about 0.4) and highest (po® > about 0.8) densities examined. Atintermediate
densities the chemical potentials are overpredicted and are also inconsistent with
thermodynamic integration. These errors disappear at supercritical temperatures. The
inaccurate results at intermediate densities are related to errors in the pair correlation
functions about the test particle predicted by the HMSA theory - errors which disappear at

low and high densities. The effect of varying the solvent-solute size (6,,) and energy (g,,)

parameters in mixtures at infinite dilution are examined. The trend
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in the residual solute chemical potential with increasing €, is always correct - satisfying a

consistency condition with the energy equation (13). The trend with increasing &,; is

sometimes incorrect - a violation of a consistency condition with the pressure equation (14).
This latter error also disappears at supercritical temperatures. The source of the errors with
increasing o, is traced to increased errors in the pair correlation functions about the test
particle predicted by the HMSA theory. The method is then applied to Lennard - Jones
mixtures of finite concentration which are intended to model the coexistence curve of carbon
dioxide and acetone at a temperature above the critical temperature of carbon dioxide.
Chemical potentials in the vapor phase are accurately predicted by the method with the
HMSA theory. In the liquid phase the chemical potentials of the supercritical species are
reasonable, those of the subcritical species are overestimated.

The method combined with the HMSA theory can always be used reliably at
supercritical temperatures. In Chapter III - Results, the method is applied to the computation
of chemical potentials in supercritical fluids. The method is used to determine how residual
solute chemical potentials at infinite dilution in supercritical solvents depend on the fluid
state and on the parameters of the intermolecular force relation. The predictions made in this
section await experimental confirmation. They do show that the calculations can be

performed for states near the critical point.



CHAPTER I

THEORY

1. Overall Approach

The chemical potential of a species in solution equals the derivative of the Helmholtz
free energy with respect to the number density of the species at constant temperature and
volume. In the Kirkwood charging process®” this derivative is (in the thermodynamic limit)

the change in the free energy which occurs upon the introduction of a test particle:

25)
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The ideal gas chemical potential can also be written as the free energy change in an ideal gas
upon the introduction of anideal gas particle. This free energy change also equals that which

occurs upon the mtroduction of an ideal gas particle into a real (not an ideal gas) system,

(26)
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where the notation n, — 1 + "*' denotes a system containing n, — 1 real molecules of species
j and one ideal gas particle. The ideal gas particle has a mass equal to the mass of a molecule
of species j (here we consider simple molecules without rotational or internal degrees of
freedom). Theresidual chemical potential therefore equals the Helmholtz free energy change

which occurs when an ideal gas particle is replaced by a real particle,

%
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which is the difference of equations (25) and (26).

In this report, the residual chemical potential given by equation (27) is broken up into
a number of positive and negative contributions which arise due to repulsive and attractive
interactions between the fluid and the test particle. As a first step the ideal gas particle is
replaced by areference particle. The reference test particle interacts with the surrounding (or
"bath") molecules with specified pair potential energies. The free energy change for this first
stepis assumed to be known a priori. Forexample, the reference particle may be ahard sphere
and the free energy change for the first step might then be estimated by scaled particle
theory®®. The residual chemical potential can then be computed by adding the free energy
change which occurs when the reference particle is replaced by a real particle. A schematic
of this multi-step process is given in Figure 1. Itis hoped that by making a proper choice of
the reference system the free energy changes for the remaining steps will be easier to
compute. The free energy change which occurs when the reference particle is réplaced by
a real particle will be determined from methods which use the results of integral equation

theories.

First, it is necessary to choose the reference system. It is known that the work of



27

inserting a hard sphere of diameter zero (or a "hard point") into a bath of hard spheres at a fixed
position is given exactly in the scaled particle theory ®V. This work of insertion equals the free
energy difference between a system containing a hard point and a system containing an ideal
gas particle. It will be shown in Chapter III - Resuits, Application to Pure Lennard-Jones
Fluids using Hypernetted Chain Theory, that the work of insertion into a bath of Lennard-
Jones molecules is also given to high accuracy by SPT. Since the work of inserting a hard
point into the fluid at a fixed position is known accurately, we choose a reference system
consisting of a bath of real particles and a hard point test particle. The residual chemical

potential is then equal to the sum of two free energy differences. The firstis the free energy

difference between the actual and reference systems. The second is the free energy difference
between the reference system and the system containing the ideal gas test particle. A
schematic of this process is given in Figure 2. The pair potential energy for interactions of
the bath molecules of species 1 with the hard point is,

+oo,r£Ric=Ri (28)

ulR) = 0.15R,,

where R, is the radius of the bath molecule of species 1. If the bath molecules have hard cores
then R, is well defined. If the bath molecules have ;oftly repulsive cores then an effective
value of R, must be defined which may depend on the temperature and density of the fluid.
2R, then represents an effective minimum distance of closest approach betweex} two bath
molecules of species i. Therefore 2R, = d, is defined as the effective diameter of species i.
Also givenin Figure 2 are schematics of the pair potentials for interactions with ideal gas and

hard point test particles. A procedure for estimating the effective diameters will be described
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The free energy change which occurs when the ideal gas test particle isreplaced by the
hard point is given by SPT. Imagine a point test particle which can penetrate the core of a
bath molecule of species i to within a center-to-center distance R + R, , where R, is the radius

of the core of the bath molecule and R < 0. At larger separations the test particle does not

interact with the bath molecule. Such a particle is excluded from spherical volumes of radius
R + R, centered within bath molecules of speciesi. In the hard sphere system these volumes
can not overlap, so any volume of radius R + R, can contain at most one bath molecule of
species i. The probability that this volume is occupied by a molecule of species i 1s just
(4/3)rp,(R+R, ). The probability P (R) of finding a hole to contain a hard sphere test particle
of radius R <0 is:

PR) = 1-P,(R)

4rp 5 4mp 1
= 1—-3-1[R+R1} —-—3—2(R+R2) 29)

The work W(0), needed to create such a hole for the case where R =0 is therefore giv en by©®*:

BW(0) = — InP¢(0) (30)
=-ln (1 - §3)

where B = 1/kT and &, is the packing fraction. &, for non-hard sphere fluids is an effective
value based on the use of effective diameters. Since the developement of equation (30)
depends on the assumption of non-overlap of molecular cores the equation will be
approximate for soft-core molecules. Equation (30) will be accurate for non-hard sphere
fluids if the molecular cores are in sufficiently hard. The accuracy of equation (30) for

Lennard-Jones molecules will be demonstrated in Chapter III - Results with the aid of the

HNC theory.
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The free energy difference between the actual and reference systems can be determined
by integrating over a path where the test particle changes continously from a reference
particle to an actual particle. Assume that the actual system contains n, molecules of species
1 and n, molecules of species 2 that interact with spherically symmetric, pair-wise addirive._
potentials. One of these molecules is the test particle. The difference between the free
energies of the reference and actual systems 1s denoted by A(A'=1)~ A(A'=0). A'=0indicates

the system where the test particle interacts with the bath according to the reference pair

potentials given by equation (28). A' =1 indicates the system where the test particle interacts

with the bath according to the real pair potexitials. The parameter A’ is a coupling parameter.

If Qis the configurational integral then, from the relation between the Helmholtz free energy

and the canonical partition function:

aA)  __[T)3Q 6D
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The configurational integral is defined by:
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therefore the derivative of the configurational integral with respect to the coupling parameter
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where U(L) is the total potential energy of the system. r¥is a condensed notation denoting

the position vectors of all N = n, + n, particles in the system. Thus, the integral is 3 N -fold.
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Each of the position vectors can range over the volume of the system. The potential energy

is a function of the coupling parameter - that is, it depends on the pair potential energies for

interactions between the test particle and the bath molecules. Integrating between the

reference and actual systems gives the required free energy difference,

(34
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0
A path between the reference and actual systems is specified by stating how the total
potential energy of the system varies with the coupling parameter. If U(N - 1) is the sum of
pair potentials which do not include the test particle then the total potential energy of the
system is,

(35

UO\.') =UN-1) + asumof pair-wise
interactions with the test particle

where the sum of interactions with the test particle (which is sometimes called the excess
potential) is a function of the coupling parameter. The pair potential between a molecule of
speciesiin the bath and amolecule of species jin the bathis assumed to be given by a Lennard-

Jones type or similar (in the sense of having a shortrange repulsion and long range attraction)

o)™ (o)

where ris the separation distance of the pair, o, is the distance at which the potential is zero,

pair potential,

uy= 4ey;

and €, is the depth of the potential minimum. The u, and thus U(N - 1) are independent of
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the coupling parameter. The inside integral in equation (34) for the free energy change then
becomes,

(37)
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where the equation has been written for the specific case where the test particle becomes a
molecule of species 2 when A' = 1. The equation for the case where the test particle becomes
amolecule of species 1 can be obtained from equation (37) by swapping species indices. The
test particle "c" interacts with a molecule of species iin the bath with the reference potential
when the coupling parameter is zero and with the Lennard-Jones type potehtial when the

coupling parameter is one: (38)

' uﬁ(r;Ri) ,A =0
U ) = '
u)](r) ’ )\. = 1

where in the example the test particle is assumed to become a molecule of species j when A
=1. The parameter R, in the reference potential is the effective distance of closest approach
of the hard point to the bath molecule of species i which was illustrated in Figure 2.

The integral for the free energy difference equation (34), can be expressed in terms of
the pair correlation functions for interactions of the bath with the test particle. These pair

correlation functions are defined using basic statistical physics. The 3N-variate joint

probability density function P™ for finding the molecules in a confi guration ¥, independent
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of their momenta is:

pM(r) = (—é—) lel-8Y] (39)
The potential energy, configurational integral, and probability density are all functions of the
coupling parameter since one of the molecules in the system is the test particle. The marginal
probability density for finding a specific molecule of species i at position F, and the test

particle "c" at position I is therefore:

(40)
pr,r)= (%2-—) _ﬂc(‘BUa drN-2
where the integration has been carried out over every molecular position except those of the

test particle and of the molecule of species i. The two-body generic distribution functions for

finding an arbitrary bath molecule of species i at position I, and the test particle at position
r_are therefore:
(2 (nl)j[ (—[SU] ny—=1 Jpn,-1
r,rJ)=\|5xl|lke dr™~" dr™
P1ir T =g 1)
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for the specific case where the test particle is considered to be a molecule of species 2 when

A'=1. The equations for the case where the test particle becomes a molecule of species 1 can

be obtained from equations (41) and (42) by swapping the species index. The two-body
generic distributions functions are obtained from equation (40) by multiplying it by the

number of permutations of species i which are possible. The two-body generic distribution

functions p®_(rr ) are the marginal probability densities for finding an arbitrary molecule

of species i at position I, and the test particle at position r,. The 1-body generic distribution

functions (or "singlet densities™) p®, (r)) are the marginal probability densities for finding an
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arbitrary molecule of species i at position I, independent of the positions of all of the other
molecules. The correlation between the position of a molecule of species i and the position

of the test particle can be measured by forming the pair correlation function which is defined

by:
p(ii)(ri, ro

——— (43)
0 (1)(r )p (1)(r D

giry 1) =
The pair correlation functions measure how the presence of the test particle disturbs the local,
microscopic structure of the fluid surrounding it. The positions of the molecules of species
i and the position of the test particle are independent when the pair correlation function is 1
forallr, and r. This is true when u, is identically zero and the test particle is an ideal gas
particle. Since the fluid is homogeneous, the singlet densities equal the ordinary bulk

densities. Therefore the pair correlation functions are,

v)
Pirs Fo) (44)
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Pi
where the density of test particles is simply 1/V. Substituting equations (41) and (42) (or their
equivalents for species 1) for the 2-body generic distributiohs yields a formal relationship
between the pair correlation functions and the total potential energy of the system,

(45)
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where the integration is carried out over every position except I, and r. Substituting these

into equation (37) yields®@;

(46)
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where I, =r_-T, is the center-to-center vector between the test particle and a molecule of

species 1. The last series of steps in equation (46) involves using the homogeneity property

of the fluid in order to translate the origin of the system to the center of the test particle and

to note that the result must be independent of the position r. Substituting the result from

equation (46) into equation (34) for the free energy difference between actual and reference

systems gives:
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47)

A() - AQ) = plj.glc(rlc;l )“'(2-,-[“1&71&7& )J dry,
oA

1

+ pZJ‘gZC(rh;?L )‘—Q—'{uh(rzc;x )] dr2c dh
oA

Equation (47) is written in a general fashion for an arbitrary path between the reference and
actual systems. It can also be applied to calculate the free energy difference berween any two
systems containing different types of test particles. Therefore it can be used to compute the
free energy difference between the reference and actual system in a series of steps. In each
step the test particle is replaced with a new type of particle, beginning the series with a hard
point and ending the series with a real particle. The multi-step process allows the attractive

and repulsive contributions to the chemical potential to be determined.

i- hargin
In this work the free energy difference between the actual and the reference systemis
determined in three steps, each step having its own coupling parameter. The three step

process allows a charging path to be specified for each step which will yield an accurate result.
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Suppose that the chemical potential of species j is to be calculated, where j is either 1 or 2.

In the first step of the process the hard point test particle is replaced by a hard sphere of
diameter d,, where d, is the effective diameter of species j. This hard sphere can approach
to within a center-to-center distance d,; of a molecule of species 1 and to within d, of a
molecule of species 2. This stepis called the particle scaling step. The Helmbholtz free energy
change for this step is calculated from an application of equation (47) which was given by the
developers of scaled particle theory®?. In the second step the hard sphere is replaced by a
softly repulsive particle. This step is called the softening step. The softly repulsive particle
repels the bath molecules with the repulsive component of the real potential. In this work the
real potential is divided into repulsive and attractive components according to the method of
Weeks, Chandler and Andersen (WCA)®@, The WCA repulsive potential is relatively steep.
Therefore the structure of the fluid around the softly repulsive particle is similar to the
structure of the fluid around the hard sphere. So the free energy change for the second step
is reletively small. Indeed, the effective diameters dlj and dz; will be chosen so that this free
energy change is zero. The free energy change for this step is also calculated from an
application of equation (47). However, a simplification can be made to the coupling
parameter integration since the free energy change comes from a small perturbation in the
structure. This simplification allows the integration over the coupling parameter to be done
analytically. The development of the simplified equation is based on the analysis due to
Lado®. In the third step the WCA softly repulsive test particle is replaced by areal particle.
The free energy change for this step is also calculated from an application of equation (47).
A schematic of the entire process for computing the free energy change which occurs when

an ideal gas test particle is replaced by a real particle is given in Figure 3.
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The three step charging process used is based on assumptions about the nature of the
fluids of interest. The fluid is assumed to consist of spherical bodies of definable extents and
locations. Otherwise, it makes little sense to try to define their diameters or to apply scaled
particle theory. In other words, the molecules must be sufficiently hard in order to take
advantage of the SPT formula for the work of inserting the hard point and in order to develope
a simple yet accurate expression for the work of softening the effective hard sphere into a
WCA repulsive test particle. The Kirkwood charging process used here provides the free
energy change which occurs when a new particle is inserted into the fluid at a fixed position.
That is, the partition function is assumed to be separable in translational and configurational
parts and the translational part does not change during particle insertion. In non-classical
situations where the particle being inserted has a very small mass the uncertainty principle
makes such a process meaningless. The perspective being applied here assumes that there
are two kinds of forces, an attractive force which acts at a distance and arepulsive force which
acts only at contact. The procedure for determining the effective diameters defines what is
meant by "contact” in the context of this work. Such a viewpoint is probably inappropriate
for describing many of the situations of interest in the physics of fluids. Fluids consisting of
oppositely charged point particles (with long-ranged repulsions), or particles with very soft
cores which are not adequately modelled by hard spheres, or delocalized particles (such as
solvated electrons or other non-classical systems) are not easily described with the three step
charging process given here. These restrictions are similar to those of perturbation theory.
Unlike perturbation theory, the method does not assume that intermolecular attractions cause
only small changes in the structure of the fluid. The structure of the fluid is determined by

integral equation theories for every value of the coupling parameter. The changes in the
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structure with coupling parameter thus determined can be quite large. The accuracy of the
method will depend on the ability of the chosen integral equation theory to accurately model
such structural changes. Unlike perturbation theory, the effective hard sphere diameters
determined by the method are influenced by the strength of the attractive force. Changing
the attractive forces between the bath molecules changes the local density about the test

particle, thereby changing the effective diameters.
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4 i lin Poin h
Review of Scaled Particle Theory
In the first step of the charging process for determining the chemical potential of
species j the test particle grows from a hard point into a hard sphere with a diameter equal to
the effective diameter of species j. This process is referred 1o as particle scaling inthe SPT®,
A schematic of this process is given in Figure 4. The coupling parameter is chosen to be the
radius of a cavity surrounding a hard sphere test particle which has a radius of R, where 0 <

R <d/2. In this case the total potential energy of the systemas a function of the hard sphere

radius is,
n, n-1 (48)
UR)=UN-D+ 3 uvl@ R+R)+ X uy(p;R+Ry)
speaies 1 species 2

where the test particle is assumed in equation (48) to become a molecule of species 2 in the
actual system. The potential energy in the case where the test particle becomes a molecule
of species 1 can be obtained from equation (48) by swapping species indices. The pair
potential for interactions of the bath molecules of species i with the test particle is the hard
sphere pair potential:

+oc,ricSr=(Ri+ R) . (49)

H
u. (r..7)=
‘c( e ) 0 y ric> T

where r = R, + R is the radius of a cavity surrounding the test particle which excludes the
centers of the molecules of speciesi. The superscript H has been used here to denote the fact
that the test particle is a hard sphere. The free energy difference between the system

containing a hard sphere of radius R and the reference systemis given by a version of equation
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47),
(50)
R,;+R
BW(R) - BW(0) = Bp | gl 1c(r1c7r)]4ﬂr1cdrlcdr
0
Rl
R;+R
+o0 3
+Bp, gllryim) g;ugc(rzc;r) 4nr3 drpdr
0
R,

where the coupling parameter r is the cavity radius. In equation (50) the free energy
difference W(R) — W(0) has been reduced by a factor of § = 1/kT. The inside integrals over
intermolecular separation can be re-written with the aid of,

(5D

BEiNricD) g;uﬁ(ric;r)] == gH(r,-c;r)[eB“ﬁ“fc;’)] %[e' Buifeci)
== yg:(rxc’r) a_[e Buidtic d

yielding,

+ o0 4+ w0 (52)
Bg H(rlc’r{ 1c’ I‘) 4TU2 dl' = "J ys:(ric;r) gflc-Buﬁ(rm;r*hnizcdric

0 0

where the background correlation function has been defined as y * = g * exp(But ). As

described in reference (33), the integration over separtion distance in equation (52) can be

performed analytically by noting that the following partial derivatives are the same Dirac

delta function with impulsc atr =T, (53)

[l-cxp( Bu; )] ~——cxp( Bu

_d
_aric
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where 1 — exp(-Pu,¥) is a unit step function when plotted versus r and exp(—Pu¥) is a unit

step function when plotted versus r,. The delta function is positive and obeys the

normalization condition:

- - (54)
Fexpi-pulblre | |52 exp-pulblas,
0 0

=1

That is, it is a probability density function. Therefore, the integral in equation (52) is an

expected value calculation. Since the delta function is non-zero only at r =r_the expected

value of the integrand is:

oo (55)
_J y i"i(ric; r) sa;[c“ &’ﬂ(ﬁc?%ﬁcdric =y g(r; I') 4TU'?
0

=gl p dme?
Substituting the result for the inside integral from equation (55) into equation (50) for the free

energy change gives:

*R

BW(R) - BW(0) = P, g{‘c(R+R1;R+ R1)47c(R+R1)2dR (56)
J0

FR

+p,] LR+ RyR+R)4nR +R)UR
J0

In the above equation the integration over the radius of the cavity r has been replaced by an
integration over the radius of the test particle R. g #(R +R ;R + R)) is the contact value of the
pair correlation function for a bath molecule of species i with a hard sphere test particle of

radius R and R + R, is the cavity radius. An example plot of a pair correlation function
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g} ;R+R) about a hard sphere test particle is given in Figure 5. The contact value is the
height of the peak at r,=R + R,. The test particle and bath molecules of species i can not
getcloserto each other than this distance because of their infinite mutual repulsion. The work
of inserting a hard sphere of any radius can be determined by numerically integrating the
equation (56) once the contact values have been determined over the range of integration. In
the determination of the chemical potential of species j the upper limit of integration is R =

R,, where 2R, = d, is the effective diameter of species j.

5, Test Particle Correlation Functions
Pair correlation functions about the test particle can be determined from the integral
equation theory. The Omnstein-Zernicke (OZ) equations for a terniary mixture of species 1,

" n

species 2, plus a finite concentration of species "c" are,
r[hij(r) - Cij(n] =p 1jvhi1(ri’ rpC(r g rj) dr, (57)
+p Jvh i2(ry 1PC2f(ry 1 dry
+ pJvh ilFp TIC o(re, T dre
where indicesiand j canbe 1,2orc and r=lir;- r, iIl. The hij are the total correlation functons,
where h, =g, - 1. The C, equal rC, where the C, are the direct correlation functions. Since
there is only a single test particle, the density p_ of species ¢ is zero in the thermodynamic
limit. Therefore the correlation functions for bath molecules about the test particle must

satisfy the following test particle OZ equations,

rhycn —Ciclrl] = PJth(ri, rpCidry, r)dr, .
(38)

where the bath is assumed to be a binary mixture. The h,, where i and j are either 1 or 2, are
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the total correlation functions for the bath molecules with each other. These are obtained
independently of the determination of the test particle correlation functions using the OZ
equations (10) forthe bath and a closure such as (butnot limited to) equation (16) or equation
(21). The a parameter is obtained as described in Chapter I - Introduction. A simultaneous
solution of the OZ equations (58) and approximate closure equation (21) yields results which |
depend on the order of convolution® due to the MSA contribution to the closure equation.
The order shown in equation (38)is consistent with the HMSA closure used in this work. The
other order of convolution C * h, is un-physical since it results in a computed h(r =0) =~ 1

when s = 0. Taking the Fourier transform of the OZ equations yields,
ricz plgila/lc"" pzﬁizﬁh (59)

where the functions with the tildes have been Fourier transformed. The notation of reference
(20) has been used in writing equation (59). The funcdon I'_ is equal to r(h_- C).

Alternatively,

[ d

Cic = thi— Tic (60)

where t is the transform of r. Substituting equations (60) into equations (59) gives:

fad

Tie=p fialthie- T + p fiiz{thae- T 61)
Thus, I', depends on I, and vice-versa. In a binary mixture there are two OZ equations (61),

one for the correlation functions of each species about the test particle. They fnust be solved

simulaneously to obtain the I'_ . In matrix form:

(62)
Elc
T2

(1+p1H11) pzﬁlz

I(plﬁnﬁlc*" PZHIZHZC)
pIHn (1 + pzﬁzz)

t(p 1H12H1c+ pzﬁzzﬁzc)
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Solving for the transforms of I',_and I',_ gives:

(63)

~ ~ ~ A a2 ~ oA

~ t[plhlc(h11+ p,h11h22— p2h12) +pyhachiz
1™ N N >

[(1 * plh“)(l * p2h22) - p1p2h12]

~ oo~ ~2 v 64
~ t[p2hzc(h22+ p hih22-p lh12) +p 1h1ch12] (64)
=

[(1 + Plﬁll)(l + pzﬁzz} — p1p25%2

As a first step in solving equations (63) and (64), initial guesses are made foreach I',_. These

are substituted into closure equations (16) or (21) (used with subscript j = ¢) to obtain
estimates for the C_ . When computing correlation functions about the test particle the o
parameter is kept fixed at the value obtained during the solution for the correlation functions
in the bath. The functions rC_(r) are Fourier transformed and substituted into re-arranged
versions of equations (59) to obtain estimates of the transforms of the total correlation
functions:
thic=Cic+ plﬁi151c+ Pzﬁizah (65)

The transformed total correlation functions are then substituted into equations (63) and (64)

to obtain the transforms of the I'_. Inverting the transforms gives new guesses for the I',_and

the process can be repeated until convergence. Final values of the direct correlation functions

C,, about the test particle are obtained by substituting the converged I',_into the closure

equations (16) or (21). Final values of the background Vi, and pair g.. correlation functicns

are also obtained by substituting the T, into either equations (16) or (21). A complete



45

FORTRAN program for performing these calculations is listed in Appendix A. The program

uses the method of Labik et. al. ® to simultaneously solve the OZ and closure equations.

6. Softening the Hard Sphere into a Soft Repulsive Particle

The second step determines the free energy difference between the system containing

the softly repulsive test particle and the system containing the hard sphere test particle of

diameter d . A schematic of this step is given in Figure 6. The system labeled " 8 =0" contains

the hard sphere test particle and the system labeled "8 = 1" contains the softly repulsive

particle. The softly repulsive potential u,° between the test particle and a molecule of species
i can be written as the sum of a reference pair potential u¥, and a perturbation,

o H (66)
u (8= 1) =u, (r;0) + Au, (1;)
where the test particle becomes a molecule of species j in the actual system and r_is the
intermolecular separation distance. When the derivation has been completed we take the
limit as the reference potentials approach the hard sphere potentials u¥, (r;R, + R)) given by

equation (49). The derivation used here is a modification (for test particles) of that by Lado ©9,

In this work the softly repixlsivc potential used is the Weeks-Chandler-Anderson (WCA)

repulsive potential®,

(67)

mimn
0 .8 =1)m U35(Tic) + €55, Tic S T
uic(ric'5 =1)= min

0, re2r]
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where u, is the real potential and r;=» is the separation distance at the potential minimum

(2 times o, in the case where u, is Lennard-Jones). By introducing a coupling parameter

& which varies between zero and one a path for the variation of the test particle pair potential
can be defined by,
uf(®) = ull+ sau; ©®

where, to save space, the dependency on intermolecular separation has not been shown. The

total potential energy of the system is then,

n, ny—1 mn ny—1 (69)
U@ =UN-D+ 2 uj+ X up+8 2 Aupc+d X Aug
species 1 speqies 2 spedies 1 species 2

where, in this example the test particle becomes a molecule of species 2 in the actual system.
The potential energy for the case where the test particle becomes a molecule of species 1 can
be obtained by swapping indices. The free energy difference between a system with a softly
repulsive test particle and a system with the reference test particle is given by another version
of equation (47),

(70

ng.ggc(rZC; 8) Auy(ryg) dry,

Pljg?c(rlés) Auy{ri)dry g+

0

where the superscript "0" is used to indicate that the correlation functions are for the softly
repulsive test particle.

The coupling parameter integral in the equation (70) can not be easily estimated
numerically. An analytical approach to eliminating this integration is presented which is

based on the analysis of Lado®. In this theory bridge functions Be_ are defined by the

following equation,

dd
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(71)
£0(5) = el -Bu26)s 26+ BL0)

where the vector ,_has not been written in order save space. Se,_is the series function: §,_ =
he_-C-.. Following Lado we assume (and will later demonstrate for specific cases) that for
an appropriate choice of molecular parameters in the referencé - bath molecule pair potential
the dependence of the bridge functions on the coupling parameter can be neglected. The
integration over the coupling parameter can be done after applying the test particle OZ
equations (58) and utilizing this approximation. This allows the free energy change to be
calculated using only correlation functions about the WCA repulsive and hard sphere test
particles - the final and initial states of the softening step. The coupling parameter and its
limits are redefined in order to follow the notation of Lado more closely:
E=1-8;df=~-dd
£=08=1;E=1=5=0 (72)

Departure variables are defined in order to analyze the variations in the pair correlation

functions due to variations in the series functions and bridge functions:

AS{®) = ${UE) - Sie & =0)

0 0 0 (73)
AB; (&) =B (&) ~ Bic(g =0)
The pair correlation functions written in terms of the departure functions are,

74
g0 =g = 0yel Bean. +452¢)+ aB2E)
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where Au_ was defined in equation (68). The derivatives of the pair correlation functions with

respect changes in the coupling parameter are obtained by differentiating equation (74):

9g®) _
dg

Re-arranging equation ( 75) yields the integrand of the coupling parameter integration,

d 0 0
g?c@[ BAuic’féASic@ +ABic@]} (75)

g2(E)BAu;= %{g&(&) -2@[aS%®) + ABLE®) }
(76)
9g?
+[asd@® + AB?A&)]gT'@

where the first term on the left can be integrated immediately over the coupling parameter.

From the definition of the background correlation function y,_:

y2(&)
AS{AE) + AB{(E) = In| == ]
L& & ¥20) (77)
Therefore,
0 o] o 0 Y?c(ﬁ)] (78)
g2(®BAY; = —{ g0E) - gd(E) In| HE>
£)B 3 &) -8, ¥90)
oe®
+[asle) + AB?C(Q)]—g—(_;‘é-E'-')-

The dependence of the series function on the coupling parameter in the second term on the

left can also be integrated out. The term of interest is,

AS?C% g2 =(an%-ac?) fg g (79

where the departures of the total and pair correlation functions are defined as:
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(80)
A2® =hl® -1 2E=0)
=gl® -g2E=0)
=Agl®)
The total correlation function can be moved inside the derivative since,
d 8 0 (81)
hic) = = Ahlc hic
(A lC) ag glc ( ) a&
2
19 [ h
yielding a new form of the integrand:
0 (82)
0 _ 9 )0 ol Yid®l | (1A 0)
gic(g)BAuic- ‘a‘g g gicln ioc(o) (2)(Ah1c)

d
a0 act)e
9
The second term on the right still contains variations in the bridge and direct correlation
functions. The product of the departure of the direct correlation and the derivative of the pair
correlation function can be expressed as a derivative with the aid of the test particle OZ

equations. The spatial integral of this product can be replaced by an integral in transform

space with the aid of the Parseval theorem®,
(83)

J-vpiAC:c (a &2l dr,. J. AT OaAg —— dk

where all of the functions involved are real valued. The test particle OZ equations allow the

right hand side to be simplified. The OZ équations (58) in transform space are written in
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departure form,

0 0 0 0 (84)
Ahjc—ACc= p 1}111AC1c+ p2h12AC2c

~0 0 ~ ~0 ~ ~0
Az~ ACe= p h12AC e+ p,h22a T

and solved simulaneously for the direct correlation function departures in terms of total

correlation functions:

(85)

A< (AH?C)[(‘) kak) - 1] - (Aﬂgc)(p kﬁik)

i,k=1,2 (i=k)
{[(P lﬁu) - 1][(p2522} - 1] - plpz(ﬂlz)z}

The product of the departure function for the direct correlation function and the derivative

of the pair correlation function can be written as, (86)

[p Aéu (Ahl chzz 1] (Ahz p2h12 [ -(Ahlc]

S e i R

ag

(Aﬁ(z)c)[(p hyi)- 1] (Ah1c (p,12)

{[(p Rup) = 1(p,f22) - 1] -p Pz(hu) {2353 hZC}

0 ~0 ~0 ~0  ~0
= %—a—g[(p ]Acchhlc) + (PZACZC AhZC)I
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where the last equality results from combining the total correlation function terms inside the
derivative and applying the OZ based equations for the departure of the direct correlation

function again. Integrating over the coupling parameter and applying the Parseval theorem

again yields: . (87)
J- J-OlplAC?ﬂ%ggﬁ)— + pzacgcé-(%gﬁ dEdr = -1-6-%;)3 0 %plaﬁgmﬁ?gf, 0 zAﬁgcAﬁgc) dedk
" .(p ATTDART(D) + pzaégc(lmﬁ‘z’w) dk
=5 I ACS AR + pzAcgcmAhSc(D) dr
wy

Therefore, the difference between the free energy of the system with a softly repulsive test

particle and the system with a hard sphere test particle is,

BAE=0)-BAE=1) (88)
0 yd() 2
=1 |p Agxc<1>~g?c<1>1n-§—-- +(Yagd ) -Lactmagd m
\
0 294 ’ 2
+p, Agzc(l)-ggc(l)ln;—é——— +(%—)(Aggc(l)) ~%A03c(1)Aggc(1) dr
1
ago go
+ ABOC 1c+ BOC 2c ded
pl 1 aé pzA 2 aé él’
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where the reference potential is now identified with the hard sphere potential of equation (49)
with R =R, The dependence of the series function on the coupling parameter & has been
integrated out. Equation (88) is the test particle analog of equation (20) of reference 34. The
free energy change given by equation (88) might be referred to as the "work of softening” the
hard sphere into a WCA repulsive particle.

The dependence of the free energy difference on variations in the bridge functions can
be neglected with an appropriate choice of effective diameters for interactions of the bath
molecules with the hard sphere test particle ®. This assertion will be demonstrated in Chapter
III - Results for the case where the diameters are chosen as described here and the fluid
consistsof Lennard - Jones particles. The ability to neglect the bridge function integrals stems
from the fact that the WCA repulsive component of the Lennard - Jones potential isrelatively
hard and therefore easily modelled by an effective hard sphere potential. The goal ir: choosing
effective diameters is to make the free energy of the system containing the hard sphere test
particle equal to the free energy of the system containing the WCA repulsive test particle.
That is, for intermolecular scparations that are less than the effective diameter, the WCA
repulsive potential is less than the hard sphere potential. These separation distances make a
negative contribution to the free energy change. For intermolecular separations that are
greater than the effective diameter, the WCA repulsive potential is greater than the hard
sphere potential. These separation distances make a positive contribution to the free energy
change. The proper choice of an effective diameter balances these two effects. The integrand
of equation (88) is plotted versus separation distance in Figure 7 for an example pure fluid.
For the specified choice of effective hard sphere diameter the integrand of equation (88) is

non-zero over only a small range of intermolecular separation distances. The behavior of
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integrand is analogous to the "blip" function of WCA perturbation theory®?. The area under
the curve to the left of the effective diameter balances the area to the right. In mixtures, an
appropriate choice for a species 1 - test particle effective diameter will make first term on the
left of equation (88) equal to zero. Similarly, an appropriate choice for a species 2 - test
particle effective diameter will make second term on the left of equation (88) equal to zero.
This choice will allow us to approximate the repulsive contribution to the chemical potential
using by using scaled particle theory.

Two effective diameters are determined during each chemical potential calculation for
a species in a binary mixture. There is a "like" effective diameter which is the distance of
closest approach between the test particle and members of its own species. The "unlike"
effective diameter is the distance of closest approach between the test particle and members
of the other species. The like diameter was’ chosen so that 1ts contribution to the work of
softening equation (88) was 0.0001 kT orless. The 'stcp size for the integral equation solution
procedure was chosen so that the like diametér falls precisely on one of the mesh points. The
diameter must fall exactly on a mesh point if accurate contact values of the pair correlation
functions are to be obtaincd; The unlike diameter is obtained by making a table of work of
softening versus unlike diameter and interpolating to zero work of softening. Each unlike
diameter in the table is chosen to fall exactly on a mésh point; In a binary mixture there are
four effective diameters which are calculated: d,;, d,;, d,,, d,,. d,, is approximately equal to
d,,, though there is some numerical difference due to the different step sizes and correlation
functions used in the separate calculations and due to the interpolation technique used to find

these unlike diameters. d,, (and d,,) are slightly less than (d,, + d,))/2.
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7. Coupling of the Attractive Forces
The third step determines the free energy difference between a system containing a

Lennard-Jones test particle and a system containing a WCA test particle. The Lennard-Jones
potential is the sum of the WCA repulsive potential u ° plus an attractive term u,':
_ ey TSI (89)

¥ U, 12 r‘i'}i“
where, in this example, the test particle becomes a molccule of species j in the actual system.
Plots of the WCA attractive and repulsive potentials versus separation distance are given in
Figure 8. By introducing a coupling parameter A which varies between zero and one a path
for the variation of the test particle pair potential can be defined by:

u3o(A) = ul+ Au, G0)
When A =1, u_=u, and the actual system is recovered. This process is illustrated in Figure

8. The potential energy of the system is:

n, nz-—l ny nz"l
UM =UN-D+ 2 ufe+ ¥ u§+r 2 uj+d X uy O
species | species 2 species 1 specics 2

where again, in this example, the test particle becomes a molecule of species 2. The potential
energy for the case where the test particle becomes a molecule of species 1 can be obtained
from equation (91) by swapping indices. The free energy difference between a system with
a Lennard-Jones test particle and a system with a WCA repulsive test particle is given by

another version of equation (47),

(92)
1

AA=1D-AQ=0)= [pljglc(rlc)uic(rlc)drlc +

szgzc(ch) u;.c(r2c) dr2c di

0
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The WCA division of the pair potentié.l into attractive and repulsive contributions is efficient
since it nearly linearizes the variation in the free energy with respect to variations of the
coupling parameter A. This property makes the numerical evaluation the outside integral over
the coupling parameter efficient. No furthur analytical simplifications are required. The
integrand of equation (92) for an example solute at infinite dilution is plotted versus

separation distance in Figure 9. The plot is nearly linear.

Summ f Charging Steps

In summary, the residual chemical potential has been expressed as the sum of an
approximately determined work of inserting a hard point plus formally exact contributions
due to particle scaling, softening the hard sphere, and adding attractive potentials. Errors in
the computed chemical potential can result from three sources:

1. The SPT equation (30) for the work of inserting the hard point, which is inexact

when applied to fluids with soft cores.

2. Neglecting the integrals over the bridge functons in the work of softening

equation (88).

3. Errors in the correlation functions predicted by the integral equation (in this case

the HMSA) theory being used.

The chemical potential of species j can be computed from the sum of the a:bove free
energy changes. A clockwise pathis taken around Figure 3 beginning with the actual system.
First, the correlation functions in the actual system are obtained from the integral equation
theory by using OZ equations (10) and either closure equations (16) or (21). Next, the free

energy difference between the actual system and a system containing a WCA repulsive test
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particle is determined from equation (92). By trial and error, effective diameters for an
equivalent hard sphere are determined from equation (88); the diameters being chosen so that
the free energy change is small (10 kT or less). The free energy difference between the
reference system containing the hard point and a system containing a hard sphere of diameter
d, =2 R is determined from equation (56). Finally, the packing fraction based on the effective

diameters is computed and used to obtain the work of inserting the hard point from equation

(30). The total free energy change equals the configurational contribution to the chemical

potential of species j.



The procedure was first validated by applying it to the HNC integral equation theory.
The RY and HMSA integral equation theories reduce to HNC when s = 1 in either equation
(16) or equation (21). Comparing the method with known results for the chemical potential
in the HNC allows inconsistencies and numerical errors to be identified and reduced to a
negligible level. In this comparison there can be no error in the method due to the correlation
functions or due to neglecting the integrals over the bridge functions in equation (88). In
addition, there is no path dependence to chemical potentials obtained from Kirkwood
charging in the HNC theory®®. Therefore, the HNC test reveals the accuracy of the SPT

formula for the work of inserting the hard point, combined with the numerical accuracy of
the implementation. Morita derived an exact expression for the Gibbs free energy in a pure
fluid whose correlation functions are described by the HNC theory. The result involves only

spatial integrals of the correlation functions for the fluid®:

G-G ®3)

S-S _, { (%)m@f-cm} arer’ar ~ ()ih(r=0) ~ C(r=0)]
0

where the notation used follows reference (30). The subscripts have been omitted since the
correlation functions are those in a pure fluid. The Morita equation can be obtained from

57
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equation (88) by letting & = 0 represent a system containing a real test particle and letting &

= 1 represent a system containing an ideal gas test particle. In the HNC theory the bridge
functions are identically zero so equation (71) becomes,

g2® = ol -But@)+s2®) (94)
therefore the integrals over the bridge functions in equation (88) are identically zero for any

chosen effective diameters. Since equations (56) , (88) (with AB_=0), and (92) are all exact

in the HNC approximation, any inconsistency between the proposed method and Morita's
equation stems from the work of inserting the hard point as given by equation (30) plus any
numerical error. It was found that (G —G®)/NkT obtained from the method agrees with known
HNC results from equation (93) to within -0.014. The work determined from SPT equation
(30) for inserting the hard point test particle was inconsistent with the approximate HNC
theory. This inconsitency was found to account for most of the disagreement with the Morita
equation under most conditions.

HNC correlation functions for a pure Lennard-Jones fluid were calculated at three
conditions: T" =kT/e=1.5,p"=pc*=0.4and T"=1.2, p"=0.7 and 0.85. Effective diameters
for the fluid at each set of conditions were computed by setting the right hand side of equation
(88)to zero. The effective diameters for each state are listed in Table 1. The Gibbs free energy
of the fluid equals the work required to insert a hard sphere with the chosen effective diameter
into the fluid plus the work of coupling the test particle attractive forces; the former being
given by the sum of equations (30) and (56), the latter being given by equation (92). The work
of coupling the attractive forces will be referred to as the attractive contribution. Summing
the results from equations (30), (56) and (92) for each set of conditions gave estimates of the

Gibbs free energies of the fluid. The results are compared to those from Morita's equation
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(93) in Table 1. The magnitude of the inconsitency is acceptably small and increases with
density. Because of the accurate HNC results it is reasonable to assert that, aside from
neglecting the bridge function term in equation (88), the method will yield correct results
when applied to other integral equation theories. The exact attractive and repulsive
contributions to the HNC chemical potential are compared to those from the proposed method
in Table 1.

Listed in Table 2 are the values for the work of inserting the hard point from the SPT
equation (30). The exact HNC values for the work of insertion can be obtained from the
following specialization of equation (88):

Hp\? HP 1 ©3)
BWO e = Pl{( )(hlc) -Cie = Clchlc]
v

2
oo lBni —cir 1 ciru] Lo

where the superscript HP denotes the HNC correlation functions about the hard point. The
difference between the SPT formula and equation (95) accounts for most of the inconsitency
between the proposed method and the Morita equation. The difference between the formulas

is zero at low densities and increases in magnitude with density. In the worst case, at T" =

1.2 and p°=0.835, the difference between the HNC and SPT formulas for the work of insertion
is -0.0065 kT - a relatively small error.

Both the HNC and SPT formulas for the work of inserting the hard point were
approximate in this application. As was discussed in Chapter I - Theory, the SPT formula

is exact only when the cores of the molecules do not overlap - in other cases equation
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(30) must be taken to be an approximation. In the application to Lennard-Jones fluids the
cores of the molecules are soft and therefore do overlap. The HNC theory is an approximate
theory for the Lennard - Jones fluid, therefore equation (95) derived from it is also
approximate.

The purely numerical error in the implimentation of the method also increases with in
magnitude with density, being -0.0074 at T* = 1.2, p* = 0.85. Similar numerical errors can
be expected when the method is used with the RY or HMSA closures. The numerical errors
for each of the three states examined are also listed in Table 2. The numerical errors shown

were based on the the following choices of parameters in the numerical algorithm. The OZ

equations were solved at 2048 mesh points spaced at anominal distance apart of Ar=0.00625
times the smallest value of ;. Asnoted in Chapter II - Theory, the precise value of the step

size Ar used depended on the value of the effective hard sphere diameters. A small step size

was necessary for accurate contact values of the bath molecule - hard sphere pair correlation
functions used in equation (56). The procedure for calculating the contact values was valided
by setting the switching function s equal to zero and comparing the results for hard sphere
fluids to the analytical solution of the PY theory due to Leibowitz 7. Atthe upperintegration
limit of approximately 2048°Ar the pair correlation functions were found to have all decayed
to unity for all of the fluids examined in this work. Tail corrections were added to the
computed chemical potentials which were based on the homogeneity of the fluid outside of
the upper integration limit. The work of particle scaling equation (56) was calculated with

a simple trapazoidal rule integration using a step size of 2°Ar. An additional decimal place

of accuracy (units as in Table 2) in the calculated repulsive contribution can be gained at the
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highest densities by furthur reducing the step size to 1'Ar. If only one decimal place of
accuracy isrequired in the repulsive contribution a step size of 20°Ar can be used in ¢valuating
equation (56). The work of softening equation (88) was evaluated using the trapazoidal rule
with step size equal to 1°'Arand with one Romberg extrapolation step. The leftand right halves
of the integrand shown in Figure 7 were integrated separately and the results added to give
the total work of softening. The limits of the integrand from the left and right at the contact
point were determined from quadratic polynomials passed through the adjacent mesh points.
Equation (92) for the attractive contribution to the chemical potential was also integrated with
the trapazoidal rule using one Romberg extrapolation step. A large step size of AL =0.25 gave
results accurate to the fifth decimal place because of the linearity of the integrand (as shown

in Figure 9).

Furthur evidence for the inconsistency between HNC and the SPT equation (30) for the

work of insertion can be found by examining the contact values of the pair correlation

functions with the hard point. An exactrelationship® for the derivative with respect to hard

sphere radius of the work of inserting a hard sphere follows from equation (56):
9
BszW =p 4n(R+RpEI(R+R;;R+R))

96
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From equations (29) and (30) this derivative is known in the limit as R approaches zero from

oW 1 Py
R <0, B(W)Rﬂ)':“ ﬁﬁ)ho‘ |
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which implies for pure fluids that the contact value of the hard point pair correlation function

is®D;

gH(R;;R) = —L | ©8)
{1 - §3)
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The SPT equation (98) yields predictions for the contact values which disagree with the
results from the HNC theory. The HNC contact values are result of taking the limit as r
approaches zero fromr > 0 of the integral equation theory solution. Contact values from SPT
and from HNC are listed in Table 3. The average percent difference between the SPT and
HNC contact values is -3.65%. The largest magnitude difference occured at T"=1.2,p " =
0.85 - the error being -5.20%. The HNC contact values lie above the SPT results for every
choice of effective diameters. The difference declines as the chosen effective diameters are
made smaller. In order for both the SPT and HNC contact values to be correct, g *(R +R;
R +R) would have to be discontinuous at R = 0 - a hypothesis which is disproven in the
reference (31). The difference between the HNC and SPT contact values suggests that the
work of inserting the hard point in the HNC is not given by equation (30). For theories other
than the HNC it will not be possible to directly determine the accuracy of the SPT formula
forthe work of insertion. However, the formula can be judged to be consistent with the theory
if the contact values obtained from the theory agree with those obtained from SPT. The HNC
calculations illustrate that the SPT formula for the work of insertion can be expected to be

accurate even when the theory and the SPT are inconsistent.

Effective Har here Diameters in Non-HNC Application
In the application to the HNC theory discussed above, the bridge function integrals in
equation (88) were identically zero. Thus, the work of softening was given exactly by the
equation for every choice of cffcctiv-e diameters. In applying the method to other integral
equation theories the bridge function integrals can also be neglected when the effective hard

sphere diameters are chosen according to the zero work of softening criterion. This allows
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the work of softening to be determined using only correlation functions about the effective
hard sphere and about the WCA repulsive test particle.

The ability to neglect the double integral in equation (88) stems from two facts about
the integrand which combine to make it nearly zero for all intermolecular separation
distances. The behavior of the integrand was examined by comparing correlation functions
for bath molecules about a WCA repulsive test particle with the correlation functions about
a hard sphere test particle with effective diameters chosen to give a zero work of softening.
Computations were made with the HMS A theory for supercritical dense fluid and subcritical

liquid states in pure Lennard-Jones fluids and for a large Lennard-Jones solute dissolved in

a Lennard-Jones liquid. The first fact is that pair correlation functions g °(r;§) are
independent of the coupling parameter £ except for a small range of separation distances

berween 0.9 and 1.2 times d,, thus their derivative with respect to § is zero except over this

interval. These pair correlation functions are plotted versus separation distance in Figures
10, 11 and 12. Secondly, over this interval where the derivative of the pair correlation
functions is non-zero the bridge functions are nearly independent of &, thus AB_° is nearly
zero. These bridge functions are plotted versus separation distance in Figures 13, 14 and 15.
So for this choice of effective diameters the double integral involving the bridge functions
in equation (88) can be neglected. In neglecting the double integral we are neglecting the

effect of the potential perturbations Au,_ given by equation (68) on the bridge functions in

equation (71) for the pair correlation functions - we are not neglecting the bridge functions

themselves®®.

For a given choice of effective diameter, the magnitude of the bridge function integral
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in equation (88) is bounded above by a simpler integral:

| 99)
0 0
)
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Values of this upper bound for the conditions of Figures 10, 11 and 12 are listed in Table 4.
The correlation functions used in the calculations were supplied by the HMSA theory. Also
listed in the Table are the effective diameters used and resulting works of softening (less the
bridge function integrals). Equation (99) gives a conservative upper bound sincé the
departures in the pair correlation functions are negative for separations less than the effective
diameters and are positive for separations greater than the diameters. These upper bounds
are less than about 0.05 - this value is the maximum error in the residual chemical potential
which would occur due to neglecting the bridge function integrals. Errors of this magnitude
can be ignored.

The sum of equation (30) for the work of inserting the hard point, equation (56) for the
work of particle scaling, and equation (88) for the work of softening is the repulsive
contribution to the chemical potential. These three components of the repulsive contribution
are listed in Table 5 for an example pure Lennard-Jones fluid. The HMSA theory was again
used to give the correlation functions about the test particle. The three repulsive components
are listed for a number of choices of the hard sphere test particle diameter, ranging between
0.9625 <d/0<1.0375. Forthe conditions shown in the Table, the optimum d/c (which gives
a zero work of softening) is 1.00741. The double integral involving the bridge functions was
dropped in calculating the work of softening, as discussed above. The estimated total

repulsive contribution to the chemical has the desirable property of being nearly independent
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of the choice of hard sphere diameter. The total would have been exactly independent of the
choice if it were true that the bridge function integrals in equation (88) were exactly zero for
all possible diameters. In addition, the derivative of the repulsive contribution with respect
todiameteris nearly zero for the optimumd/o, since the repulsive contribution is nearly equal
to its maximum value. Therefore the total repulsive contribution is insensitive to the choice
of effective diameter. These results show that an alternative criteria for the effective
diameter, which conceivably might yield bridge function integrals which are even closer to
zero, would give very nearly the same result for the repulsive contribution as does the zero

work of softening criterion.
Application t Repulsive Flui ing Ro -You €0

Pure Fluids

The tests described above show that the SPT can be applied to fluids without hard
cores; there are only mild inconsistencies that arise when softly repulsive cores are replaced
by effective hard sphere cores. The tests with the HNC theory show that the SPT formula
for the work of inserting the hard point can be used in spite of the overlap of molecular cores.
The use of the SPT formula (30) reduces the amount of effort needed to compute the repulsive
contribution to the chemical potential. Another advantage of the SPT-based approach (which
replaces the real soft core of a molecule with a hard sphere core) was revealed during the
discussion of the bridge function integral - that the work of softening can be expressed only
in terms of the difference between the correlation functions about the hard sphere and those

about a softly repulsive WCA particle. Itremains to be shown how accurate the SPT-based
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charging path is when applied to inexact correlation functions obtained from the HMSA
theory. Results obtained for WCA repulsive fluids show that the method successfully
extends the SPT to softly repulsive fluids.

The method can be used with more exact theories than the HNC, provided that the
choice of effective diameters allows the second integral in equation (88) to be neglected. As
described above, calculations suggest that this integral can be neglected for a choice of
diameters which give a work of softening equal to zero. It is useful to check the method for
systems that have a purely repulsive pair potential since all of the simplifications are made
in development of the repulsive contributions given by equations (30) and (88) (after
neglecting the bridge function integrals). The RY integral equation has been shown tobe very
accurate for such systems®. If the method can accurately describe softly repulsive systems
when used with the accurate theory, then the simplifications will be supported. Systems
which interact with the WCA repulsive potential given by equation (19) are useful toexamine
since their repulsive interactions are those of the Lennard-Jones system and since the pair
correlation functions in these systems are close to those in Lennard-Jones systems at high
densities. In addition, the thermodynamic properties of these systems are known and are
accurately predicted by theory of Verlet and Weis®®. The first simplification has already
been justified by the HNC calculations described above: that the SPT equation (30) for the
work of inserting the hard point can be used. The second simplification, that second integral
in equation (88) can be neglected, can be tested for fluids which are structurally similar to

realistic model fluids at high densities.

RY correlation functions for pure WCA repulsive fluids were calculated at three
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condtions: T"=kT/e=1.5,p*=pc6*=04and T*=1.2, p*=0.7 and 0.85. The compressibility
factors predicted by the RY theory are slightly lower than those of the VW theory. The

amount of the difference increases with density. The RY and VW compressibility factors are
listed in Table 6. The slight error in the RY equation of state for the WCA repulsive fluid can
be expected to produce some error in the computed chemical potentials. Effective diameters
for the fluid at each set of conditions were computed by setting the right hand side of equation
(88) to zero, after neglecting the integrals over the bridge functions. The effective diameters
for each state are listed in Table 7. The effective diameters differed from those specified by
the Verlet-Weis theory by at most 0.027%. Summing the results from equations (30) and (56)
for each set of conditions gave estimates of the Gibbs free energies of the fluid. Equation (92)
is identically zero since there is no attractive component in the pair potential. Predicted
Helmbholtz free energies were obtained by adding one minus the RY compressibility factor
to the Gibbs energies. The predicted residual Helmholtz energies agree with the results of
the Verlet-Weis procedure to within an average of 1.2%, the error increasing with the density.
The error in the residual Helmholtz energy range between 0.004 and 0.0806 kT. Predicted
Gibbs energies are low by an amount approximately equal to the error in the RY
compressibility factor, suggesting that the accuracy of the method is being limited by the
accuracy of the RY equation of state. The inaccurate RY compressibility factor does not

reduce the accuracy of the predicted Helmholtz free energy. The relationship,

(100)

A-A"_G-G" (p |
NKT = NkT (ka )

shows how errors from this source on the right hand side approximately cancel those in the

residual Gibbs energy. The average error in the predicted residual Gibbs energies is -1.5%
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(the errorranging between ranging -0.0105 and -0.3002 kT) the errorincreasing in magnitude
with the density. The Gibbs and Helmholtz free energies from the proposed method as well
as those from the VW theory are also listed in Table 7. The differences between the method
and the VW theory are to be expected considering the errors in the RY equation of state, as
will be described below. The accurate results which have been obtained for WCA repulsive
fluids support the assertion that the approximations made to the repulsive contribution to the
chemical potential are accurate.

The contact values of the bath - hard point pair correlation functions obtained from the
RY solutions were consistent with the use of SPT equation (30) for the work of inserting the
hard point. The contact values obtained from the RY solutions for the pure WCA fluid agreed
with those obtained from equation (98) to within 0.006. The average percentage difference
between the SPT and RY contact values was 0.15%. Therefore g *(R + R; R + R)) exhibits
the required continuity at R =0. The agreement suggests that the SPT formula for the work
of insertion can be used reliably in this application. The RY and SPT contact values for each
of the three conditions are listed in Table 8.

As noted by Rogers and Young®, their integral equation tends to underpredict the
compressibility factor of harshly repulsive fluids by an amount which increases with
increasing density. The error in the RY properties are a result of minor errors in the RY pair
correlation functions which are amplified by the very steep WCA repulsive potential in virial

pressure equation (14). The proposed method gives more accurate results than does the

thermodynamic integration,

. p
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a process which accumulates the errors in the RY properties as does the alternative
thermodynamic path:

* (102)
G-G dp
= (2_1)_5.+(z..1)

0

Equation (101) yielded residual Gibbs energies that averaged -2.5% lower than VW results
for the three states examined. The error from equation (101) ranged between -0.0206 and
-0.5009 kT. The results from equation (102) averaged -2.3% lower than VW. For equation
(102) the error ranged between -0.0185 and -0.4673 kT. The thermodynamic integrations
underestimate the Gibbs and Helmholtz energies because the pressures are consistently
underestimated over the range of densities. The proposed method yields results that are
different (and better) than either thermodynamic integration because it relies only on
properties of the fluid at the state of interest. The predicted properties given by the proposed
method are listed in Table 9. Also listed in Table 9 are the results obtained from the Verlet-
Weis procedure and from each thermodynamic integration of RY solutions. The results from
the two thermodynamic integrations are nearly equal because of the imposition of pressure
consistency in the RY method. The small difference between them results from the use of
the local consistency criterion which neglects the density dependence of the switching

function. This criterion works well for the WCA repulsive fluid.

Mixtures
The method was also applied to mixtures of WCA particles. Haile ® has simulated the

excess Gibbs free energy of mixing WCA particles with equal € parameters and unequal ¢

parameters. The proposed method was used to reproduce these data for the cases 6,/0,, =
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1.125 and o, /c,, =2.0 at a reduced temperature of kT/e,, = 1.0 and a reduced pressure of

Po,2/e,, = 0.5. Since the particles differ only in size and have no attractive forces these

mixtures exhibit only small deviations from ideal solution behavior. Thus, the excess Gibbs
free energies of mixing determined by the method provide a stringent test of the accuracy of
the RY theory, the approximations made to the repulsive contribution, and the numerical
accuracy of the application. The properties of the pure fluids and of mixtures of 25%, 50%,
and 75% were calculated under isobaric conditions. The densities needed in the RY theory
to meet the specified pressure of Po, /e, = 0.5 were determined for each mixture. These
densities agree to within an average of 0.35% of the simulation results. The required densities
are listed in Table 10 as are those obtained from Haile's simulations. The RY densities are
higher than simulation because of the tendency of the theory to underestimate the pressure.

The chemical potentials were calculated for each species at the required densities and
compositions. The effective diameters and residual chemical potentials in each mixture are
listed in Table 11. The excess Gibbs free energies of mixing at constant temperature and

pressure were then determined from:

E * Pmé 1
| e ey WY
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where p is the mixture density at the specified temperature and pressure and the superscript

"Pure" denotes a property of the pure fluid of the indicated species. The terms involving the
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residual chemical potentials sum to equal the configurational part of the free energy change.
The remaining terms involving the fluid densities sum to equal the free energy change of
mixing ideal gases starting from pure fluids with the indicated densities and compressing to
the mixture density. Therefore the accuracy of total is a reflection of both the accuracy of the
proposed method and the accuracy of the RY equation of state. The results from the method
agree with simulation data for the 2:1 diameter ratio mixture to an average of -0.67%. For
the 1.25:1 diameter ratio mixture the method was in error by an average of -5.8%. This latter
percentage is the result of small errors in the third or fourth decimal place in the very small
result for AGE/NkT. The agreement of the method with simulation is remarkable when it is
considered that small errors in the RY computed density can have a large influence on the
accuracy of the ideal gas part. The results from the method and those from simulation are
listed in Table 12. Also included in the Table are configurational and ideal gas parts of the
excess free energy change. The excess free energies are plotted versus the mole fraction of
the small species in Figure 16 as are those obtained from simulation. These mixtures are
nearly ideal - the excess free energies of mixing are small and negative. The smooth curves

are the Redlich-Kister expansions which exactly go through the points obtained from the

method. The proposed method reproduces the known® asymmetry in composition of the

6,/0,, =2.0 curve, where the minimum in the curve is shifted toward an increased

concentration of the small species. The success of the method for mixtures of WCA repulsive
particles furthur validates the simplifications made to the repulsive contribution and validates

the implimention of the method for mixtures.
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Approximation

Pure Fluids

Applying the method to WCA repulsive fluids is straightforward in comparsion to
applying it to realistic fluid models such as the Lennard-Jones model. Inrepulsive fluids, the
residual chemical potentials always increase with increasing density along an isotherm. In
Lennard - Jones fluids the attractive and repulsive contributions are nearly equal and opposite
in sign under many conditions. This partial cancellation leads to residual chemical potentials
along an isotherm which have a negative minimum when plotted versus density and which
become positive at very high densities. In addition, the work of inserting a hard sphere into
arepulsive fluid is a strictly monotonic increasing function of the radius. For Lennard - Jones
fluids there are (metastable) conditions where the pressure is negative and the work of
inserting a hard sphere is not a monotonic function of the radius of the sphere. These
complications make the results for Lennard-Jones fluids a stringent test of both the method
and the HMSA theory. Given that the errors caused by using equation (30) for the work of
inserting the hard point and by neglecting the bridge functions integral in equation (88) are
small, the only significant source of errors are the HMS A correlation functions about the test
particle. The accuracy of the method when applied to Lennard-Jones fluids was diminished
by errors in the correlation functions about the test particle determined by the HMSA theory.
There were no such errors at very low and very high densities and at supcrcriticé.l

temperatures.

HMSA correlation functions for pure Lennard-Jones fluids were first calculated at the
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three example conditions: T* = 1.5, p* = 0.4 and T* = 1.2, p* = 0.7 and 0.85. Effective

diameters for the fluid at each set of conditions were computed by setting the right hand side
of equation (88) to zero (after neglecting the bridge function integrals). Summing the results
from equations (30), (56) ahd (92) for each set of condtions gave estimates of the Gibbs free
energies of the fluid. These results were compared to those obtained from molecular
simulation. Simulation results at T* = 1.5 were obtained from Shing, Gubbins and Lucas®,
results at T* = 1.2 were obtained from Heinbuch and Fischer®. At each state the proposed
method overpredicted the Gibbs energy. The smallest error was at the highestdensity, lowest
temperature condition; the percentage error in this case was 4.5%. The error was the largest
(12.8%) at T* = 1.2, p"=0.7. The predicted results and those obtained from simulations are
listed in Table 13. Also listed in Table 13 are the available perturbation theory results and
the results from the Nicolas' equation of state for the Lennard - Jones fluid®®. This small
sample of results suggests that the method is reliable at very high and very low densities. The
larger sample of results described below will confirm this observation. The small sample of
results also suggests that the derivatives of the predicted chemical potentials with respect to
density are incorrect since the error is smaﬂ at low and at high densities. Thermodynamic
consistency tests were used to determine the size of this latter error.

The contact values of the bath - hard point pair correlation functions obtained from the
HMSA solutions were consistent with the use of SPT equation (30) for the work of inserting
the point hard sphere. The contact values obtained from the HMSA solutions for the pure
Lennard-Jones fluid agreed with those obtained from equation (98) to an average of 0.13%.

The largest difference was 0.54% at T" = 1.2, p* = 0.85. Therefore g "(R+R,; R+R ) exhibits

the required continuity at R = 0. The HMSA and SPT contact values for each of the three
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example conditions are listed in Table 14. The agreement suggests that the SPT formula for

the work of insertion can be used reliably in this application.

In order to gauge the state dependence of the errors, the method was used to estimate
the residual Gibbs free energies in pure Lennard-Jones fluids along isotherms at reduced
temperatures of T'=kT/e = 1.556, 1.15, and 0.928. The T* = 1.556 isotherm is supercritical,
the others are subcritical; the critical temperature being approximately T* = 1.35. The results
were compared to the simulations of Panagiotopoulos, Suter, and Reid®. Fourteen sets of
conditions were examined covering a reduced density range of p* =po3=0.025 to ps*=0.8.
The two lower temperature isotherms did not include any points in the reduced density range
of 0.05 to 0.6 (which mostly lies within the two phase region). The HMSA theory accurately
represented the pressure and intemal energy of the fluid over the range of conditions
examined. Compressiblity factors were predicted to within an average absolute error of 2.7%
and configurational internal energies to within an average absolute error of 0.49%.
Therefore, errors in the HMS A equation of state are small and can be expected to contribute
little to errors in the results from the method. Also, the accurate predictions of pressure and
energy indic.atc the pair correlation functions up to and including the first peak, which
determines the larger part of the equation of state, are accurate (results for mixtures, discussed
below, will include a direct comparision of the pair correlation functions from HMSA with
simulation). The conditions examined and the compressiblity factors and internal energies
obtained from simulations and from the HMSA theory are listed in Table 15. Thé
compressibility factors obtained from the HMSA theory are plotted versus density for the
three isotherms in Figure 17 as are the simulation results. Additional simulation results from

Hansen and Verlet® are also displayed for the T* = 1.15 isotherm. These results indicate that
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the HMSA equation of state for the Lennard-Jones fluid is qualitatively correct.

The predicted residual chemical potentials were in error by an average of 0.08 kT for
the supercritical isotherm and 0.2 kT for both of the subcritical isotherms. In general, the
maximum errors occurred at reduced densities of about p* = 0.6 on each isotherm, the errors
declining at higher and lower densities. The chemical potentials obtained from the method
and from simulation are listed in Table 16. Figure 18 is a plot of residual chemical potential

divided by p'kT versus reduced density for the three isotherms. Also shown are the

simulation results and the exact low density limit obtained from second virial coefficients.
The intercept of each isotherm is 20-B(T*), where B(T*) is the second virial coefficient for
the isotherm. The method is exact at low densities, since under these conditions the HMSA
theory reduces to the exact (in the low density limit) HNC theory. The high density results
are also plotted versus density in Figure 19. Included in Figure 19 are the results at T"= 1.2.
There appears to be an inconsistency between the simulation results of Heinbuch and
Fischer® at T* = 1.2 and of Panagiotopoulos @ et. al. at T* = 1.15 since the chemical potentials
quoted for each of these isotherms a t p* = 0.7 is nearly the same. The proposed method agrees
more closely with the results of Heinbuch and Fischer. The method correctly reproduces the
increase in chemical potential with increasing temperature and yields accurate results at high
densities. The slope of the chemical potential versus density curves are incorrect. The
inaccurate results at intermediate densities suggests that there is a thermodynamic
inconsistency in the proposed method This problem disappears at low densitie.s and high
temperatures where the closure approaches the HNC theory or at high densities where the

fluid structure approaches that of a WCA repulsive fluid.
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The thermodynamic consistency of the method was examined by comparing the results
to those from thermodynamic integration. Residual Gibbs free energies were calculated
using thermodynamic integration at T* = 1.556 and p* between 0.05 and 0.8. The free energies
were calculated using both the integration over the compressibility, equation (101), and the
integration over the compressibility factor, equation (102). Equation (101) had an average
absolute percent error of 6.2% and yielded results greater than simulation for p* > 0.4.
Equation (102) had an average absolute percent error of 4.9% and yielded results less than
simulation. The proposed method had an average absolute percent error of 8.4% and yielded
results that were generally higher than simulation. The two thermodynamic integrations
yield different results because of the slight failure of the local consistency criterion (which
neglects the density dependence of the switching function). The results from the two
thermodynamic integrations are listed in Table 17 as are those from obtained from simulation
and from the proposed method. The results from the proposed method are larger than either
thermodynamic integration, being between them only at the lowest reduced density of 0.05
and highest reduced density of 0.8. The residual Gibbs free energies obtained from each
procedure divided by p°kT are plotted versus reduced density in Figure 20. It is apparent
that the slope of the chemical potential with respect to density obtained from the proposed
method is inconsistent not only with simulation but also with the bulk phase properties
obtained from the HMSA solution. Such inconsistencies probably develope in the repulsive
contribution, as will be discussed below.

For subcritical isotherms the thermodynamic integration could not be performed

because the integral equation solution procedure would not always converge for states within
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the phase envelope. An alternative consistency test is based on the Gibbs-Duhem equation:

By,

) Py,
9 |1V, Xp Xy

ap )T,v,x,.x, (104)

ap

T, v. X1 X2

(BP
*p

Py 2

The derivatives with respect to density can be evaluated with the aid of the local consistency
criterion described in the Chapter I - Introduction. Thatis, the derivatives are evaluated under,
the assumption that the derivative of the a parameter in equation (17) with respect to density
can be neglected. Under this assumption the derivatives of the chemical potential can be
evaluated numerically. The derivatives of the effective dié.mcters with respect to density can
also be neglected - however, when a finite step is taken in the density in the numerical
differentiation, the right hand side of equation (88) for the work of softening is non-zero and
this contribution must be added to the chemical potential. The thermodynamic consistency
of the method combined with the HMS A theory can be evaluated by comparing the left hand
side of equation (104) as evaluated from the compressibility equation (15) to the right hand
side as evaluated from chemical potentials obtained from the proposed method. Againitwas

found that the chemical potentials were not consistent with the bulk phase properties and

correlation functions. The Gibbs-Duhem test was performed at each of the three example
conditions: T*=1.5, p*=04and T*=1.2, p* = 0.7 and 0.85. The left and right hand sides
of equation (104) are listed in Table 18 for each of three states examined. At the lowest
density the rate of change in the chemical potential with density is overestimated by the
method, atthe higher densities itis underestimated. Thisresultis consistcr‘lt with the previous
observation that the error in the chemical potential is maximum at areduced density between

0.4 and 0.6 and declines as density is increased furthur.
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Infinitely Dilute Mixtures
A direct test of the consistency of the method with the energy equation (13) and the
virial pressure equation (14) can be made by examining the accuracy of calculated chemical

potentials in infinitely dilute solutions. Lotfi and Fischer ® have simulated chemical

potentials of infinitely dilute Lennard-Jones solutes in a Lennard-Jones solventat T* = 1.2,

p*=0.7. Residual chemical potentials at infinite dilution were obtained for a range of solvent-

solute size and energy parameters. In addition, exact expressions were given for the
derivatives of the chemical potential with respect to changes in these parameters. The
derivatives of the infinite dilution solute chemical potentials with respect to solute-solvent

size and energy ratios are given by®,

3 . (105)
o Pa”Pa =6(Z-1)
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where species A is the solute, B is the solvent, and the derivatives are taken at constant solvent
temperature and density and are evaluated at G,,/C,, = €,,/€,, = 1. Z and
(U —U")/NKT are the compressibility factor and the residual internal energy, respectively, of

the pure solvent. Equation (105) can be obtained from the Kirkwood charging equation (47)

by using G, as a coupling parameter and using the Fundamental Theorem to evaluate the

derivative of the integral withrespect to ¢,,. Equation (106) can be derived similarly. They

provide a measure of consistency of the method with the virial pressure and energy equations.
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The results from the proposed method were compared to simulation and to equations (105)
and (106) for the cases,

1. ©0,/0,=1andeg,fe, =0.75,0.875, 1.0, 1.125, 1.5, and 2.0.

2. g,/e, =1and (0, /0,,) =0.75, 1.0, 1.5, and 2.0.
of a Lennard - Jones solute present at infinite dilution in a Lennard - Jones solventat T* = 1.2,.
p*=0.7. The results discussed below show that the chemical potentials for the dilute species
had the correct trend as the € - ratio was varied. The trend in the chemical potential as the
O - ratio was varied was incorrect. This latererror disappeared at higher solvent temperatures
and lower densities.

The chemical potentials obtained from the proposed method decreased withincreasing

£ - ratio at constant 0,,/G,, = 1 in agreement with simulation and the energy consistency

equation (106). The procedure described in Chapter II - Theory for computing effective
diameters provides no way to determine the solvent-solvent diameter, and therefore the
packing fraction, when computing the chemical potential of an infinitely dilute solute.
However, the packing fraction is the same as that obtained during a pure solvent chemical
potential calculation; it was this packing fraction which was used in determining the work of
inserting the hard point in all of the infinite dilution cases. The method was constrained so

that the packing fraction was the same as foreachcase. AtT"=1.2, p*=0.7 the HMSA internal
energy for the solvent was U+/kT = -3.9639, therefore the slope of the residual chemical

potential with € - ratio should be, from equation (106), -7.9278. The proposed method yielded

chemical potentials with a slope of -7.8108 - reasonably consistent with the internal energy

of the solvent. The slope obtained from the simulation data was -7.929. The solute residual

chemical potentials are plotted versus € - ratio in Figure 21. Also shown in the Figure are



80

the simulation results. The calculated chemical potentials decrease as required as the epsilon
ratio increases, being in error only by the amount of the error in the pure solvent chemical
potential. The results are listed in Table 19 as are those from simulation. Also listed in Table
19 are the effective diameters for the solvent-solute interaction and the repulsive and
attractive contributions to the chemical potentials. The repulsive part of the solute-solvent,
pair potential becomes steeper as the € - ratio is increased; thus the effective diameters and
repulsive contributions to the chemical potentials increase with epsilon ratio, though the
effect is relatively small. Some portion of this increase in the repulsive contribution is also
due to an increase in local solvent density about the solute. The increase in local solvent
density increases the contact values of the correlation functions in equation (56), leading to

a slight increase in the repulsive contribution. The change in the chemical potential is

dominated by the reduction (toward more negative values) in the attractive contribution as

€,; is increased. This reduction is in turn caused by an increased aggregation of solvent about

the solute. A measure of solvent aggregation is the Kirkwood fluctuation integral“® G, , the
magnitude of which is an average volume surrounding a solute molecule within which the

positions of solvent molecules are correlated with that of the solute,

(107)

GAB=J. ”[gAB(r) - l] 4mridr
0

where g,, is the pair correlation function for solvent about the solute. The above equation for

G, has not been made dimensionless, so the size of the result depends on the size of the
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solvent molecules. G,, >0 implies that, within this volume, there is a larger number of solvent
molecules than in an equal amount of bulk fluid. G,, <0 implies that, within this volume,
there is a smaller number of solvent molecules than in an equal amount of bulk fluid. Thus,

a positive G, indicates an excess of solvent about the solute, and a negative G, indicates a

deficiency. When ¢,/¢,, = 1, G,, = -57.6 cu. Angstroms and when €,,/¢,, =2, G, =+5.4

cu. Angstroms, based on a solvent size of 6,, = 3.8 Angstroms. Thus, when the € - ratio is

increased, an excess of solvent collects around the solute, decreasing the attractive
contribution to the chemical potential. As a partial compensation, the increase in local
solvent density about the test particle caused by increasing with € - ratio acts to increase
solvent-solute effective diameter and to increase the repulsive contribution to the chemical

potential.

The chemical potentials obtained from the proposed method increased with increasing
© - ratio at constant €,,/€,, = 1 in disagreement with simulation and virial pressure consistency
equation (105). At T = 1.2, p* = 0.7 the HMSA compressibility factor for the solvent was

Z = 0.77117, therefore the slope of the chemical potential with o-ratio should be, from
equation (105), -1.373. The proposed method yielded chemical potentials with a slope of

+1.356 - inconsistent with the bulk properties of the solvent. The slope obtained from the
simulation data was -0.934. The solute residual chemical potentials are plotted versus o -
ratio in Figure 22. Also shown in the Figure are the simulation results from reference (4).
The effective diameters, repulsive and attractive contributions, and the rcsidual-chemical
potentials obtained from the method are listed in Table 20. Also listed are the residual
chemical potentials obtained from simulation. The HMSA solvent-solute pair correlation

functions are nearly scaled versions of solvent-solvent function, therefore the repulsive and
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attractive contributions obtained from the method both grow in magnitude nearly in

proportion to (G,,/G,,)’. However, the repulsive contribution rises faster than the attractive
contribution can decrease, leading to an increase in the chemical potential with o-ratio.
Inaccurate HMSA correlation functions about the test particle cause the errors noted
in the predicted solute chemical potentials at the solvent conditions of kT/g,, = 1.2 and po,°
=0.7. The solvent-solute pair correlation functions in the bulk fluid obtained from the HMSA
and from new simulations are plotted versus reduced separation distance in Figure 23 for the
case where (G o Oss)® = 2. These new molecular dynamics results are for a mixture of 1 atom
of solute in 255 atoms of solvent. The two curves are nearly identical. When the attractive
component of the pair potential is decoupled however, the first peak of the HMSA correlation
function about the WCA repulsive particle is significantly larger (about 0.25) than the
simulation result. Plotted in Figure 24 are the pair correlation functions about the WCA
repulsive particle obtained from the HMSA and from simulation. The large first peak in the
HMSA result for correlation functions causes the predicted work of inserting a WCA
repulsive test particle to be larger than the true value. It also causes an reduction in the
predicted attractive contribution which, in this particular case, does not offset the increase in
the repulsive. When the solute size is reduced to tha; of the solvent so that (0,,/ ¢,,)*= 1 the
error in the first peak of predicted correlation functions about the WCA repulsive test particle
remains large (about 0.25). Pair correlation functions for this case are plotted in Figure 25.
When the temperature is increased to supercritical values and the density reduced, .thc HMSA
makes an accurate prediction of the structure about the WCA repulsive particle, as is shown

in Figure 26. The proposed method yields accurate chemical potentials under such
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conditions. At subcritical temperatures and high densities the HMSA theory (which
approaches SMSA in such cases) once again accurately predicts the pair correlation function
about the WCA repulsive particle, as shown in Figure 27. The simulation results for these
liquid-like conditions show the independence of the fluid structure on the attractive part of
the pair potential which is the basis of perturbation theories. The correlation functions
predicted by the HMSA theory also change little as a attractive force is decoupled - a behavior
which is a built into the SMSA part of the closure. In these cases the chemical potential is
also accurately predicted by the method.

The solvent is near saturated liquid conditions at a reduced temperature of T" = 1.2 and
areduced density of p*=0.7. Asnoted by Shing et. al. ® the local solvent structure is flexible
in some sense under such conditions. The meaning of this statement is revealed by the
molecular dynamics results discussed above for the pair correlation functions about repulsive
test particles. The simulation results show that when a repulsive particle is inserted into such
fluids it actually has to push aside fewer solvent molecules than the number predicted by
simple theories. Under these conditions the HMSA, HNC, PY, and simple hydrostatic
theories (using a local compressiblity equal to the bulk phase value) yield nearly the same
inaccurate correlation functions about the WCA repulsive test particle when the bulk phase
is described by the HMSA theory.

At higher temperatures and lower densities the method correctly predicts both a
decrease in residual chemical potential with increasing ¢ - ratio and a decrease with

increasing € - ratio. AtT = 1.4, p* = 0.35 the HMSA internal energy for the solvent was

UvkT = -1.7353, therefore the slope of the chemical potential with € - ratio should be, from
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equation (106), -3.471. The slope obtained from the proposed method was approximately

—3.487. At T = 1.4, p*=0.35 the HMSA compressibility factor for the solvent was Z =0.3457,

therefore the slope of the chemical potential with © - ratio should be, from equation (105),
-3.926. The slope obtained from the proposed method was approximately -3.659. Therefore,

under these conditions the method yields chemical potentials which are reasonably consistent

with the energy and pressure of the bulk fluid. Ato,,/0,, =1and €,,/€,, = 1 the method yielded
aresidual chemical potential divided by kT of -1.3808 - in agreement with the result of -1.362

from Nicolas' equation of state®® at equal Po%/e = 0.1694. The effective diameters, atttractive

and repulsive contributions for this condition and for,

1.0,,/0,, =1 and g, /e, = 1.125
2. (0,,/6,,) = 1.25 and g, /€, = 1.0

are listed in Table 21. The reduction in the chemical potential with increasing ¢ - ratio and
with increasing € - ratio was acompanied by an increase in solvent-solute aggregation. When
0,5/Cpp = €,5/€s = 1, G, =432.8 cu. Angstroms (based on G,, = 3.8 Angstroms). Increasing
the O - ratio to (0,,/0,,)° = 1.25 caused the fluctuation integral to increase to 495.2 cu.

Angstroms. Increasing the € - ratio to €,,/e,, = 1.125 caused the fluctuation integral to

increase t0 662.3 cu. Angstroms. Ineach case the increased aggregation of solvent about the
solute decreases the attractive contribution to the chemical potential. The increased local
solvent density also acts to slightly increase the repulsive contribution and the effective
solvent-solute diameter. For the case where 6,,/0,, = €,,/€,, = 1, the effective diameter

divided by 6,, was 1.00367. Increasing the ¢ - ratio to (G,,/G,,)* = 1.25 caused the diameter

divided by o, to increase to 1.00400.
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Finite Concentration Mixtures

The method was also applied to seven finite concentration mixtures. The results were
compared to the simulations of Panagiotopoloust”. The simulations were intended to be a
simple model of carbon dioxide - acetone mictures above the critical temperature of carbon
dioxide. The Lennard-Jones parameters given in the original reference were obtained from.
the critical properties of the real fluids and are listed in Table 22. The Lorenz-Berthelot
combining rules were used for the unlike parameters. The simulations gave the coexistence
curve at a temperature of 350 K. A subsequent study? confirmed the properties of the
coexisting phases given in reference (7) by directly simulating vapor-liquid equilibrium. In
particular, the latest study confirmed the simulated chemical potentials in the liquid phase,
since those in the equilibrium (and low density) vapor are easily calculated. The
compositions and densities of these mixtures are listed in Table 23. Also given in the Table
are the compressibility factors obtained from the simulations and from the HMSA theory.
The HMSA theory predicted the compressibility factors to within an average of 0.0238,
indicating that the HMS A equation of state is accurate for these mixtures. The pair correlation
functions for a equimolar liquid mixture obtained from the HMSA are plotted in Figures 28,
29 and 30. The symbols are results from a new molecular dynamics sixﬁulation. The
correlation functions from HMS A are in excellent agreement with simulation. Therefore, any
errors in the results from the proposed method are not due to errors in the pair correlation
functons for or properties of the bulk fluid obtained from the HMSA theory.

The effective diameters and residual chemical potentials obtained from the proposed

method are listed in Table 24. The chemical potentials are converted to the standard state of
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reference (7) and are compared with the simulation results in Table 25. The results for the
vapor phase were very accurate due to the low densities involved. The average absolute
percent error in the chemical potentials for both species was 0.514%. The method was also
in agreement with the chemical potentials obtained from the second virial coefficients. For
the liquid phase the method overpredicted the chemical potentials of each species, which is
consistent with previous observations for pure fluids. For the supercritical (carbon dioxide)
species the method overpredicted the chemical potential by an average of 10.15% (based on
Panagiotopolous' choice of standard state). For the subcritical (acetone) species the error
averaged 10.49%. At least half of the observed error must be attributed to the calculated
repulsive contribution. The calculated attractive contibution has a greatestlower bound equal
to the rate of change in the Helmholtz energy with respect to the attractive coupling parameter
for the fully coupled test particle. Thatis, the attractive contribution is bounded below by the
integrand of equation (92) evaluated at A = 1.0. Since the HMSA correlation functions for
the bulk fluid are accurate, this lower bound is known for each of the liquid mixtures. These
lower bounds are so close to the calculated attractive contribution that the attractive
contribution can not be the sole source of error in these cases. It must also be true that the
calculated repulsive contribution is too large. This observation is consistent with the results
obtained for the infinite dilution mixtures (where it was observed that the work of inserting

a WCA repulsive test particle was overpredicted for near saturated liquid states where the

fluid structure is flexible).
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s Applicati S itical Fluid
The results for pure Lennard - Jones fluids were accurate at supercritical conditions,
as were the variations of the residual chemical potentials at infinite dilution with respect to
variations in the molecular parameters. Therefore, the method can be legitimately used as a
tool to study how these chemical potentials depcnd on the fluid state and on the parameters
of the intermolecular force relation.
In near ideal and attractive“? supercritical fluid mixtures the attractive contribution to

the chemical potential grows roughly in proportion to the bulk density. The repulsive

contribution grows more rapidly. For a solute at infinite dilution with ¢,,/G,, = 1.0772 and

€,,/€,s = 1.125 in a solvent at reduced temperature kT/ ,, = 1.4 some predicted residual

chemical potentials are:

Reduced Density Repulsive Attractive
. s Contibu o Wo—u
Biow cp 63" 4.4949 m%m-é. 11 * -2.‘31&%186
NearCP 0.35 2.4265 -4.6297 -2.2032
Above CP 0.5 4.4949 -6.8811 -2.3862

When the solute is large and attractive, the attractive contribution to the chemical potential

is dominant. For an attractive solute at infinite dilution with ¢, /6,, = 1.2175and ¢, /e, =

2.6533 in a solvent at reduced temperature kT/ €,, = 1.4 some residual chemical potentials

are:
Reduced Density  Repulsive Attractive
anﬁ'bution g;gng%'b‘ution
Low density Q%UZS 211 -1. "—-%"4%%?
Near CP 0.35 3.6953 -18.9897 -15.2944

For large attractive solutes the solute residual chemical potential is roughly proportional to

the bulk density and therefore its derivative with respect to pressure along an isotherm is
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roughly proportional to the derivative of the density with respect to pressure. This behavior
was present in earlier models of supercritical mixtures“®,

For a given solvent density near the critical value the "attractive” and "repulsive”
mixtures described by Debenedetti and Petsche®“? have large negative and slightly positive
residual chemical potentials, respectively. These cases differ primarily in the size of the

attractive contribution to the chemical potential. Using the same solventasin "Near CP" case

(kT/e,, = 1.4 and po,? = 0.35) yields the following residual chemical potentials at infinite

dilution:

Repulsive Attractive
Case g £ Contribution  Contribution (4, = VKT
Attractive *ﬁ%"ﬁs 2’.[653‘33 3.6953 -18.9897 -15.2944
Nearideal 1.0772 1.125 2.4265 -4.6297 -2.2032
Pure 1.0 1.0 1.9314 -3.3122 -1.3808
Repulsive  0.8484  0.3769 1.0390 -0.7616 0.2774

Thus the repulsive case might be more descriptively, if more clumsily, termed "non-
attractive.”

It is interesting to consider furthur the attractive and repulsive cases discussed above.
The repulsive case consists of a small solute in a bath of large solvent molecules and the
second being a large solute in a bath of small solvent molecules. The conditions and Lennard-
Jones parameters are chosen so that the reduced temperature and density of the solventis the
same in both cases and so that the solvent-solute intermolecular pair potential is the same in
bothcases. Under these conditions the repulsive case has alarge positive chemical potential
and the attractive case has a large negative chemical potential, in spite of the equality of the
solvent-solute pair potential. The effective diameters, and attractive and repulsive

contributions to the chemical potentials for both cases are listed in Table 26. The difference
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in the residual chemical potentials for the two cases is the result of large deviations in the
solvent-solute pair correlation functions from the low density limit (whichis the same ineach

case). In the repulsive case this deviation results in a low in solvent-solute aggregation:

G,,* 0,,2=-9.675. Inthe attractive case there is a high solvent-solute aggregation:

G,,* 0,,° =+83.166. In the repulsive case the low aggregation yields a low local solvent

density and a high (toward less negative values) attractive contribution, resulting in a positive
chemical potential. The repulsive contribution is also low in the "repulsive” case, due to both
the reduction in solute size and to the reduction in local solvent density, but not low enough
to yield a net negative chemical potential. The exact opposite situation prevails in the
attractive case. The high aggregation of solvent about the solute greatly lowers the attractive
contribution and slightly increases the repulsive contribution leaving a very negative
chemical potential. It is this behavior which causes the high solubility of large solutes in
supercritical fluids.

The attractive contribution and its approximate proportionality to the bulk density are
thus seen to be important factors in describing supercritical chemical potentials and therefore,
solubilities in supercritical fluids. The above examples show that the proposed method can
be used to make useful estimates of chemical potentials at near critical conditions from fluid
structural data obtained from the HMSA theory.

It is tempting to try to analyze how enhanced solvent aggregation in the different
coordination shells surrounding a solute contribute to the very negative chemical potentials
determined from the Kirkwood charging process. Unfortunately, the resulting function of

intermolecular separation depends on the path of the coupling parameter integration. This
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lack of path independence makes it impossible to uniquely assign the observed reduction in
the solute chemical potential near the solvent critical point to either enhanced nearest
neighbor or to enhanced long-ranged solvent-solute interactions. The residual chemical
potential's independence of the path of the coupling parameter integration comes about only
after averaging the positions of the test particle and all of the bath molecules over the entire
volume of the fluid. Thus the entire volume of the fluid is important in determining the solute
chemical potential. Care must be taken when making micro-structural interpretations of bulk

phase thermodynamic propérties.



CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS
In this work a Kirkwood charging procedure was introduced for calculating chemical
potentials from integral equation theories which used the particle scaling from SPT to
calculate the repulsive contribution. The multi-step charging procedure was particularly
effective at high densities. A summary of the results obtained with the RY and HMSA
theories follows:

*  When used with the RY theory, the method reproduced the Gibbs free
energies of pure WCA repulsive fluids to within the error of the RY
compressibility factor. The residuﬂ Helmboltz free energies were reproduced to
within 0.081 kT.

* Tt also reproduced the excess Gibbs free energies of mixing WCA repulsive
particles at constant pressure to within 0.0009 kT at the moderate conditions
examined.

®*  When used with the HMSA theory, the method reproduced the residual Gibbs free
energies of pure Lennard - Jones fluids to within 0.2 kT except within the reduced

density range of about 0.6 < po® £ 0.75, (where errors reached as much as 0.4

kT). The large errors at these intermediate densities disappeared for reduced
temperatures k'T/e greater than about 1.5.

91
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* It reproduced the correct change in the chemical potential with changes in the
solvent-solute energy parameter in infinitely dilute mixtures - satisfying a
consistency condition with the energy equation.

e It did not predict the change in the chemical potential with changes in
the solvent-solute size parameter in infinitely dilute mixtures under some
conditions - violating a consistency condition with the pressure equation. This
error also disappeared for reduced temperatures kT/e greater than about 1.5.

¢ Residual chemical potentials in vapor phase mixtures of dissimilar Lennard - Jones
particles were predicted to within experimental error (which was 0.1 kT).

*  Residual chemical potentials of supercritical components in liquid phase
mixtures of Lennard - Jones particles were predicted only to within 0.2 - 0.3 kT.

*  Residual chemical potentials of subcritical components in liquid phase mixtures
of dissimilar Lennard - Jones particles were predicted poorly - to within 0.4 - 0.6
kT.

The errors in the results for Lennard - Jones systems are due to inaccurate predictions
of the correlation functions about the repulsive test particles by the HMSA theory for near
saturated liquid states. They were not caused by the approximations used in the method. The
errors caused by the approximations used were:

1. Error caused by using the SPT equation (30) for the work of inserting the hard

point. The error in the residual chemical potential from this source was less than
0.007 kT (as estimated from the HNC results, see Table 3).

2. Numerical errors due to the procedure for solving the integral equations and to the
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numerical integrations of the correlation functions. This error was also estimated
to be less than 0.007 kT (as estimated from the HNC results, see Table 3). Of
course, this figure is implimentation dependent.
3. Errors due to neglecting the integral over the bridge functions in equation (88) for
the work of softening. A conservative upper bound on this error when using the
HMSA theory was 0.056 kT (see Table 4).
Therefore, errors in the predicted chemical potential which were not due to errors in the
HMSA correlation functions were at most 0.07 kT. The overestimation of pure fluid chemical
potentials at intermediate densities was caused by overestimates by the HMSA of the first
peak of the pair correlation functions about the WCA repulsive test particle. The
overestimate of the first peak caused an overestimate of the work required to insert the
effective hard sphere. The HMSA correlation functions for such a case were compared to
simulation results in Figure 25. The increasing error in the residual chemical potential at
infinite dilution with increasing size parameter was also caused by an overestimate of the first
peak of pair correlation functions about the repulsive test particle. The predicted correlation
functions for such a case were compared to simulation results in Figure 24. The HMSA yields
accurate test particle correlation functions at low densities or supercritical temperatures
(Figure 26) and at high densities (Figure 27), therefore the method yields accurate chemical
potentials under these conditions. The ability to calculate chemical potentials of attractive
solutes in supercritical fluids makes the method a useful suppliment to existing techniques

based on molecular dynamics and perturbation theories which cannot be used under these

conditions.
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More accurate results for Lennard - Jones fluids will require an integral equation theory
that can predict the correlation functions about the WC'A repulsive test particle under a
broader range of conditions. Itis impossible to determine if a theory qualifies for this short
of trying it. One theory worth trying is the reference hypernetted chain theory®4¥ (RHNC).
The method is suitable for application to the RHNC theory since the implimentation of the
method is then greatly simplified. The theory is based on the following definition of the
bridge functions B:

Cij=hy— ln{yij)+Bi). (108)
Thus, the bridge functions represent the error in the HNC closure equation (11). If the bridge
functions were known exactly, an exact theory would result. However, bridge functions are
known (approximately) for only the hard sphere system. In the RHNC theory the bridge
functions of the system of interest are modeled by those of areference system of hard spheres,
Cij=byj= Iy, +BH((dy)

(109)
where d'is the diameter of the hard sphere which represents species i in the reference system
of hard spheres. The hard sphere system is taken at the same temperature, density and relative
composition as in the system of interest. The diameters are chosen in a way that minimizes
the Helmholtz free energy of the system of interest®® as determined from the RHNC
correlation functions, under the assumption that the bridge functions do not vary as all of the
particles are tranformed from hard spheres into real particles. In this case we divide the

residual chemical potential of species j into hard sphere and non-hard parts. The non-hard

part is given by equation (88) with £ = 0 representing a system containing a Lennard - Jones
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test particle of species jand £ = 1 representing a system containing a hard sphere with diameter

d'. The integral over the bridge functions is identically zero in the RHNC. The test particle
correlation functions in equation (88) are calculated using closure equation (109) withj=c

and with the bridge functions being independent of the coupling parameter & of the non-hard

forces. The hard sphere part is then given by the sum of equations (30) and (56). Equation
(30) is evaluated with a packing fraction &, détcrmincd from {d,'}. Equation (56) is evaluated
with an upper limit of integration R = d,72. The correlation functions g#_(R + R,;R+R)in
equation (56) are determined from closure equation (109) using the bridge function for a hard
sphere of diameter R + R, in a bath of hard spheres with diameters {d,}. So, the determination
of effective diameters and the evaluation of equation (92) is eliminated whch applying the
method to the RHNC theory. The major difficulty is the determination of the {d,'}. The fact
that the integral over the bridge functionsin equation (88) is identically zero (rather than being
neglected) should slightly improve the thermodynamic consistency of the method's results.
In addition, the RHNC produces correlation functions which yield consistent Helmholtz free
energies, virial pressures and internal energies. The consistency between the Helmholtz

energy and virial pressure may enhance the consistency between the chemical potentials and

the virial pressure.
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Table 1
Comparision of the Proposed Method Using the HNC Theory to
Known HNC Results For Pure Lennard-Jones Fluids

Effective .Repulsive Attractive Tog‘al
Diameter, Contribution Contribution (G - G7)/NKT
Case d/c T'his Work HNC This Work HNC This Work HN( ;(1)
1 1.00057 2.3855 2.3867 -3.5786  -3.5786 -1.1931  -1.1919
2 1.00537 7.8419 7.8476 -8.5562  -8.5562 -0.7144  -0.7086
3 1.00166 13.6559 13.6698 -10.7773  -10.7773 2.8786 2.8925

The conditions examined were:

Reduced Reduced
Temperature, Density,
Case KT/e po3
1 1.5 0.4
2 1.2 0.7
3 1.2 0.85

(1) HNC results for the residual Gibbs free energies were obtained from equation (93).

The HNC repulsive and attractive contributions were obtained from modified
versions of equation (88), with the bridge function integrals being identically zero in
this (HNC) case. The results from the SPT-based charging process used in this work
are in agreement with the known results from HNC theory.
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Table 2
Comparision Between Exact and SPT Values for the
Work of ing the Hard Poin C Approximation
Repulsive Work of Inserting Residual
Contribution the Hard Point Numerical
Case  ThisWork HNC Error SPT  HNCO® Error Error
1 23855 2.3867  -0.0012 0.2355 0.2367 -0.0012  0.0000
2 7.8419 © 7.8476  -0.0057 0.4659  0.4706 -0.0047 -0.0010
3 136559 13.6698 -0.0139 0.5929  0.5994 -0.0065 -0.0074

Pure Lennard-Jones fluids were examined under the following conditions:

Reduced Reduced
Temperature, Density,
Case KT/e g3
1 1.5 0.4
2 1.2 0.7
3 1.2 0.85

(1) HNC results for the work of inserting the hard point were obtained from
equation (95). The corresponding SPT values were obtained from equation (30).
The repulsive contributions shown were taken from Table 1. The SPT formula
equation (30) provides a good estimate of the work of inserting the hard point even
though it is based on the false assumption of the non-overlap of molecular cores.
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Table 3
Comparision Between Exact and SPT Pair Correlation

Functions at Contact With the Hard Point In the HNC Approximation

Contact Values of the Pair Correlation Function
With the Hard Point, gH(d/2;d/2)

Case SPT HNC Error
1 126550 1.28706 -0.02156
2 159352 1.66131 -0.06779
3 1.80923 1.90846 -0.09923

Pure Lennard-Jones fluids were examined at the following conditions:

Reduced Reduced
Temperature, Density,
Case kT/e po’
1 L5 0.4
2 1.2 0.7
3 1.2 0.85

The contact values of the pair correlation functions shown are those for bath molecules in
contact with a hard point. The effective diameters used are those shown in Table 1. The
SPT contact values from equation (98) do not agree with the HNC results, indicating an
inconsistency between the SPT equation (30) for the work of inserting the hard point and
the HNC equation (95). It is expected that, for a given integral equation theory, a small
difference between the SPT and integral equation contact values implies consistency
between the SPT equation (30) for the work of inserting the hard point and the integral
equation theory. As shown in Table 2, the effect of this inconsistency on the accuracy of
the work of insertion is very small.
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Table 4
Upper Bounds on the HMSA Bridge
Funct in Lennard - Jones Fluids
Trial Effective Soft Upper Bound
Diameter, Repulsive on Bridge
Case dAp/OpB Contribution Function Inteeral

A 1.00071 2.6439 x 106 7.7152x 10-5
B 1.26556 0.12844 0.0083191
C 1.27186 -0.17363 0.055611
D 1.00570 -4.4102 x 106 0.041039

The cases are for mixtures of an infinitely dilute species A in a solvent species B:

Reduced Reduced
Temperature, Density,
Case KI/enp popp> (5ap/cpR)3 Ea’EBE
A 1.5 0.4 1.0 1.0
B 1.2 0.7 2.0 1.0
C 1.2 0.7 2.0 1.0
D 12 0.85 1.0 1.0

Cases A and D are pure fluids. The trial diameters shown for cases B and C are not the
optmal value (which gives a work of softening equal to zero) for these conditions. The
sub-optimal values are shown in order to make the case that the bridge function integrals in
equaton (88) are small even when the diameters are not perfectly chosen. The soft
repulsive contributions shown were obtained from equation (88) with the bridge function

integrals n;glectcd and the upper bounds on the neglected integrals were obtained from
equation ( _
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Table 5
The Effect of the Choice of Effective Hard Sphere Diameter
on the Calculated Repulsive Contribution to the Chemical Potential

Trial Effective
Diameter,  Work of inserting Work of softening Total Repulsive
dic the hard sphere/KT the hard sphere to WCA/KT Contribution/KT
0.9625 5.9921 1.0151 7.0072
0.9750 6.2768 0.7555 7.0323
0.9875 6.5698 0.4784 7.0482
1.0000 6.8712 0.1835 7.0547
1.00741 7.0620 0.0000 7.0620
1.0125 7.1920 -0.1295 7.0625
1.0250 7.5122 -0.4608 7.0514
1.0375 7.8417 -0.8106 7.0311

The work of inserting the hard sphere is the sum of results from equations (30) and (56).
The work of softening was obtained from equation (88) with the bridge function integrals
neglected. Calculations were performed for a test particle in a pure Lennard - Jones solvent

bath at a reduced temperature of kT/e = 1.2 and a reduced density of po3 = 0.7. If the test

particle/bath molecule bridge functions were actually invarient during the softening process,
then the numbers in the last column would have been all the same. The fact that they are
nearly so for the whole range of reasonable choices of hard sphere size suggests that it is
reasonable to assume that the bridge functions are invarient during softening. Note that the
work of inserting the hard sphere includes the work of inserting the hard point, which is
also changing (over a range of 0.3957 to 0.5265) with changes in the choice of effective
diameter. The proper accounting of each of these variations leaves the balance in the final
column unchanged. The resulting repulsive contribution is insensitive to the choice of
effective hard sphere diameters. For these conditions the effective diameter for a WCA

repulsive reference fluid determined by Verlet - Weis perturbation theory is d/c = 1.00693.

The presence of attractive forces in this case acts to increase the effective diameter.
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Table 6
Comparision Between the Rogers - Young and Verlet - Weis
Equati fi WCA Repulsiv

Compressibility Factor, P/pkT

1 2.5064 2.5209 -0.0145
2 5.7548 59109 -0.1561
3 8.8577 9.2385 -0.3808
Pure WCA repulsive fluids were examined at the following conditions:
Reduced Reduced
Temperature, Density,
Case KT/e po’

1 1.5 0.4

2 1.2 0.7

3 1.2 0.85
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Table 7

Comparision of Free Energies From the Method Using the
Rogers - Young Theory to Known (Verlet - Weis) Results

For Pure WCA Repulsive Fluids

Effective Residual Gibbs Residual Helmholtz
Diameter, d/c Energy, (G - G*)/NkT Energy, (A - A*)/NkT

1 1.00068  1.00066 2.6461 2.6566
2 1.00706  1.00693 7.5556 7.6773
3 1.00516  1.00490 11.9459 12.2461

1.1396 1.1357
2.8009 2.7664

4.0882 4.0076
Pure WCA repulsive fluids were examined at the following conditions:

Reduced Reduced
Temperature, Density,
Case KT/e po3
1 1.5 04
2 1.2 0.7
3 1.2 0.85

Helmbholtz free energies are accurately predicted by the proposed method. The accuracy of
the predicted Gibbs energies is reduced by errors in the RY equation of state for the WCA
repulsive fluid. The errors in the Gibbs free energies roughly equal the errors in the
compressibility factors predicted by the RY theory (see Table 6). Errors in the
compressibility are related to errors in the Gibbs energy through equation (100). For the

WCA repulsive fluid the effective diameters obtained from the proposed method agree with
those obtained from VW perturbation theory.
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Table 8
Comparision Between Exact and SPT Pair Correlation
nction tact Wi Poi the
R - Young A imation

Contact Values of the Pair Correlation Function
With the Hard Point, gH(d/2;d/2)

Case , SPT RY Error
1 126561 1.265 12 0.00049
2 159830 1.59669 0.00161
3 1.82478 1.81923 0.00555

Pure WCA repulsive fluids were examined at the following conditions:

Reduced Reduced
Temperature, Density,
Case Vi3
1 1.5 0.4
2 1.2 0.7
3 1.2 0.85

The contact values of the pair correlation functions are for bath molecules in contact with a
hard point. The effective diameters used are those shown in Table 7. The consistency

between the SPT contact values from equation (98) the RY values suggest that the work of
inserting the hard point can be reliably obtained from SPT equation (30).



108

Table 9
Comparision of Free Energies From the Method to
Thermodynamic Integration of the Rogers - Young
Equation of State For Pure WCA Repulsive Fluids

Residual Gipbs Residual Helmpholtz
Energy, (G - G )/NKT Energy, (A - A")/NKT
Thermo, Integration Thermo, Integration
Case ThisWork (O Q) YW ThisWork (1 Q) Yw

1 2.6461 2.6381 2.6360 2.6566 1.1397 1.1316 1.1296 1.1357
2 7.5556 7.4844 7.4657 7.6773 2.8009 2.7296 2.7109 27664
3 11.9459 11.7788 11.7452 12.2461 4.0882 39211 3.8875 4.0076
(1) From integration of the virial pressure, using equation (102).
(2) From integration of the compressibility, using equation (101).

Pure WCA repulsive fluids were examined at the following conditions:

Reduced Reduced
Temperature, Density,
Case KT/ pa3
1 1.5 0.4
2 1.2 0.7
3 1.2 0.85

Results from the proposed method (which uses an SPT-based Kirkwood charging process)
are more accurate than either thermodynamic integration. The thermodynamic integrations

accumulate the errors in the pressure predicted by the RY theory. The errors in the RY
pressure were illustrated in Table 6.
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Table 10
Densities Required for Isobaric Formation of Some WCA Repulsive
Mixtures - A Comparison of Rogers - Young Densities to Simulation
Density Required, poy;> Configurational Internal
to Give Poy 3/eq; = 0.5 Energy, US/KT
Tf0y1.= 1230
0 0.19746 0.1964 0.00106 0.1644 0.1664
25 0.21136 0.2111 0.00026 0.1463 0.1469
50 0.22726 0.2274 -0.00014 0.1284 0.1280
75 0.24561 0.2447 0.00091 0.1106 0.1116
100 0.26698 0.2665 0.00048 0.0930 0.0930
922/011.22.0:
0 0.086048 0.0855 0.000548  0.5322 0.5402
25 0.10375 0.1035 0.00025 0.4202 0.4222
50 0.13053 0.1301 0.00043 0.3091 0.3116
75 0.17567 0.1743 0.00137 0.1996 0.2030
100 0.26698 0.2665 0.00048 0.0930 0.0930

For all mixtures, £1) = €13 = €2, 013 = 0.5(01; + 6) and kT/gyy = 1.0.

Simulation results were obtained from reference 8. The densities are used in the calculation
of the excess Gibbs free energy of mixing at constant pressure. At the pressure used here
the RY equation of state for the WCA repulsive fluid is accurate.
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Table 11
Residual Chemical Potentials in Mix of WCA Repulsive Particles

Effective Residual

Mole % Diameters, d;;/o1; Chemical Potentials
Small L1 21 12 22 (=i VKT (o =" VKT
C0/G11.= 1.24993:;

0 - . - 1.26999 - 2.68560
25  1.01645 1.14353 1.14340 1.27004 1.81231 2.61460
50 1.01648 1.14357 1.14343 1.27008 1.74789 2.53496
75  1.01650 1.14361 1.14347 127013 1.67526 2.44109
100  1.01653 - - - 1.59306 -
Olc11=2.0:

0 . ; . 202798 - 7.62915
25  1.01628 1.52419 1.52379 2.02825 2.36914 7.41658
50 101633 1.52435 152395 2.02858 2.21617 7.11854
75  1.01641 1.52458 1.52418 2.02907 1.98403 6.67466
100 101653 - - . 1.59306 -

The chemical potentials were calculated for the compositions, temperatures and densities
specified in Table 10. The 1-1 and 2-1 effective diameters were determined during the

calculation of p; and the 1-2 and 2-2 diameters were determined during the (separate)

calculation of pij. The 1-2 and 2-1 effective diameters differ because their calculation is
only accurate to the third decimal place.



Table 12
Free Energies of Mixing WCA Repulsive Particl
Excess Gibbs Free Energies of
Mixing AGE/NKT, at Constant Pressure

Mole % This Work with RY Theory
Small Configurational = IdealGas  Total
T22(C) 1.=.1.24993:

25 ' 0.00156 -0.00737  -0.00581

50 0.00209 -0.01026  -0.00817

75 0.00052 -0.00802  -0.00750
022011 =2.0

25 0.03459 -0.09601  -0.06142

50 0.05625 -0.14948  -0.09323

75 0.05461 -0.13552  -0.08091

111

-0.0064
-0.0085
-0.0072

-0.0623
-0.0937
-0.0810

The mixtures used were those specified in Table 10. The computed excess Gibbs energies
were calculated from the residual chemical potentials given in Table 11 and the densities

given in Table 10 using equation (103). The configurational parts shown consist of those
terms in equation (103) involving the residual chemical potentials.

Simulation results were obtained from reference 8.
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Table 13
Comparision of the Proposed Method Using the HMSA Theory to
Simulation Results For Pure Lennard-Jones Fluids

Effective *
Diameter, Repulsive Attractive (G -G )/NKT
Case dio Contribution  Contribution  Total EOS(V PI? Simulation
1 1.00071 2.3857 -3.5978 -1.2121 -1.3395 - -1.333)
2 1.00741 7.0620 -8.6782 -1.6166 -1.9865 -1.94 -1.854 @4
3 1.00570 11.4482 -10.9466 0.5016 0.3346 0.68 0.48 (5

The conditions examined were:

Reduced Reduced
Temperature, Density,
Case KT/e pad
1 1.5 0.4
2 1.2 0.7
3 1.2 0.85

Notes:

(1) Equation of state for pure Lennard-Jones fluids due to Nicolas, Gubbins, Streett,
and Tildesley, reference (38).

(2) Perturbation theory due to Fischer from reference (3).

(3) Result of Shing, Gubbins, and Lucas, reference (5).

(4) Average of -1.86 (Heinbuch and Fischer, reference 3) and -1.848 (Lotfi and
Fischer, reference 4).

(5) Result of Heinbuch and Fischer, reference (3).

For the Lennard - Jones fluid the effective diameters obtained from the proposed method
disagree with those obtained from VW perturbation theory (which were listed in column 3
of Table 7). Unlike perturbation theory, in this work the presence of attractive forces
influences the choice of effective hard sphere diameters.
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Table 14
Comparision Between Exact and SPT Pair Correlation
Functions at Contact With the Hard Point In the HMSA Approximation

Contact Values of the Pair Correlation Function
With the Hard Point, gH(d/2;d/2)

Case SPT HMSA Error
1 126564 1.27047 -0.00483
2 159931 1.59586 0.00345
3 1.82721 1.81737 0.00984

Pure Lennard-Jones fluids were examined at the following conditions:

Reduced Reduced
Temperature, Density,
Case KTle
1 1.5 04
2 1.2 0.7
3 1.2 0.85

The contact values of the pair correlation functions are for bath molecules in contact with a
hard point. The effective diameters used are those shown in Table 13. The consistency
between the SPT contact values from equation (98) the HMSA values suggest that the work
of inserting the hard point can be reliably obtained from equation (30).
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Table 15
Comparision Between the HMS A Equation of State for Pure
Lennard - Jones Fluids and Molecular Simulation

Reduced Reduced Compressibility Configurational Internal
Temp., Density, Factor, P/pkT Energy, US/KT

KT/e pc3 HMSA Sim.  Error HMSA Sim Error
0.928 0.025 0.8488  0.8487 (1 0.0001 -0.2691 -0.2619 (1) -0.0072
0.928 0.6 -0.8485 -0.819  -0.0295 -4.5650 -4.596 0.031
0.928 0.7 -0.3694 -0.385 0.0156  -5.3099 -5.322 0.0121
0.928 0.75 0.1477 0.0661 0.0816 -5.6806 -5.698 0.0174
0.928 0.8 0.8965 0.843 0.0535 -6.0334 -6.037 0.0036
1.15 0.05 0.7982 0.802 -0.0038 -0.3755 -0.375 -0.0005
1.15 0.6 0.0109 0.0 0.0109 -3.5778 -3.581 0.0032
1.15 0.7 0.6075 0.596 0.0115 -4.1626 -4.167 0.0044
1.15 0.8 1.8555 1.857 -0.0015 -4.7057 -4.701 -0.0047
1.556 0.05 0.8894 0.888 0.0014 -0.2378 -0.236 -0.0018
1.556 0.2 0.6321 0.646 -0.0139 -0.9102 -0.903 -0.0072
1.556 04 0.5034 0553 -0.049% -1.7112 -1.724 0.0128
1.556 0.6 09164 0955 -0.0386 -2.5255 -2.527 0.0015
1.556 0.8 27762 2.768 0.0082 -3.2742 -3.273 -0.0012

Notes:
(1) The simulation values for this state of 0.866 for the compressibility factor and
0.238 for the internal energy are apparently in error. The values shown are the

second virial coefficient results, where P/pkT = 1 + Bp, USKT = -pT (dB/dT),
and B is the second virial coefficient at a reduced temperature of 0.928.

Simulation results were obtained from reference 7.



Reduced
Temp.,

0.928
0.928
0.928
0.928
0.928

1.15
1.15
1.15
1.15

1.556
1.556
1.556
1.556
1.556

Notes

Reduced Effective

Deansity,

po3
0.025
0.6
0.7
0.75
0.8

0.05
0.6
0.7
0.8

0.05
0.2
0.4
0.6
0.8

Diameter

dic
1.01987
1.01768
1.01700
1.01657
1.01604

1.01210
1.00978
1.00904
1.00800

1.00060
1.00017
0.99926
0.99804
0.99611
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Table 16
Comparision of Chemical Potentials From the Proposed

Rep.
0.1104
5.1364
7.3830
8.7637

10.3776

0.2183
5.0715
7.1183
9.8605

0.2141
0.9412
2.3857
4.8698
9.1244

Method using the HMSA Theory with Molecular
imulation R

Total Sim, Error
-0.3026 (1 0.0003

- s _Fluid:
Residual Gibbs Free
Energy, (G - G*)/NKT
Altract,
-0.4127 -0.3023
-9.1003 -3.9639 -4.360
-11.1679 -3.7849 -3.964
-12.1880 -3.4243 -3.732
-13.1973 -2.8197 -2.923
-0.6234 -0.4051 -0.413
-7.4649 -2.3934 -2.689
-9.0506 -1.9323 -1.835
-10.6433 —O.7828 -0.327
-0.4385 -0.2244 -0.218
-1.7073  -0.7661 -0.775
-3.4775 -1.0918 -1.192
-5.5770 -0.7072 -0.871
-7.8528 1.2716 1.149

0.3961
0.1791
0.3077
0.1033

0.0079
0.2956
-0.0973
-0.4558

-0.0064
0.0089
0.1002
0.1638
0.1226

(1) The simulation value for this state of -0.266 for the residual Gibbs energy is

apparently in error. The value shown is the second virial coefficient result, where

(G ~G")/NKT =2 Bp, and B is the second virial coefficient at a reduced

temperature of 0.928.

Simulation results were obtained from reference 7.



Reduced
Temp.,
KT/e

1.556
1.556
1.556
1.556
1.556
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Table 17
Comparision of Chemical Potentials From the Proposed
Method using the HMSA Theory with Results From

Thermodynamic Integration for Pure Lennard - Jones Fluids

Reduced Residual Qibbs Free Energy, (G - G*)/NKT

De:;y e This Work Simulation
0.05 102243 L0.2245 -0.2244 0218
0.2 07864 0.7786 -0.7661 0.775
0.4 -1.2260 -1.1505 -1.0918 11,192
0.6 -0.9661 0.7810 07072 0.871
0.8 1.0751 13163 12716 1.149

(1) From integration of the virial pressure, using equation (102).
(2) From integration of the compressibility, using equation (101).

Simulation results were obtained from reference 7. The charging process used in this
work with the HMSA theory tends to be overestimate the residual Gibbs energy except at
low and high densities. At the supercritical temperature used in preparing this table the

error is small.
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Table 18
Compressibilities From the Proposed Method Using the HMSA Theory Compared to
R 1bili tion F nnard-Jones Flui
B(0P/op)rv
From Compressibility From the Chemical
Case : Equation Potential
1 0.6724 0.8145
2 7.3503 6.7802
3 20.5357 19.1750
The conditions examined were:
Reduced Reduced
Temperature, Density,
Case KT/e pod
1 1.5 0.4
2 12 0.7
3 1.2 0.85

The compressibility equation results were obtained from the HMSA theory using equation
(15). The results in the chemical potential column were obtained by numerically
differentiating chemical potentials obtained from the proposed method and applying the
isothermal, non-isobaric Gibbs-Duhem equation. The underestimated values obtained from
the chemical potentials indicate that the test particle sees a local environment (predicted by
the HMSA theory) that is reletively incompressibie; this results in an overestimate in the
repulsive contribution to the chemical potential.
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Table 19
Comparision of the Proposed Method Using the HMSA Theory to Simulation
Results For Chemical Potentials at Infinite Dilution and Different Energy Ratios

Solvent-Solute

Effective
Diameter, Repulsive Attractive (HpA - M A*)/kT
£ap/Eps  dap/Gap Contribution Contribution  Total Simulation  Error

0.75 0.99619 6.7854 -6.4927 0.2927  0.067 0.2257
0.875 1.00281 6.9479 -7.5829 -0.6350  -0.865 0.2300
1.0 1.00741 7.0620 -8.6786 -1.6166  -1.848 0.2314
1.125 1.01265 7.1940 -9.7803 -2.5863  -2.826 0.2397
1.25 1.01629 7.2865 -10.8884 -3.6019  -3.861 0.2591
1.5 1.02279 7.4534 -13.1244 -5.6710  -5.949 0.2780
2.0 1.03224 7.7004 -17.6814 -9.9810 -10.304 0.3230

In each case the Lennard - Jones solute properties at infinite dilution were calculated for a
Lennard - Jones solvent at a reduced temperature kT/egg = 1.2 and a reduced density of

pogp3 = 0.7, where the subscript B denotes the solvent. Equal size ratios were used: & AA
=0Ogp = Oap. Each calculation of the work of inserting the hard point was done at an

effective packing fraction of §3 = 0.37473. The estimated slope at €54 = €gg = €p Of the
residual chemical potential compared to the required slope from the energy equation is,

d[(ta ~ A" VKTV d[ €ap/epp ]

Simulation 2(U — U*KT
-7.811 -7.929 -7.928

where (U —- U*)/kT was obtained from the HMSA theory using equation (13). Thus, the
variation in solute chemical potential with variations in the solvent-solute energy parameter

agrees with simulation and meets the consistency condition with the internal energy given
by equation (106).

Simulation results were obtained from reference 4.
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Table 20
Compansmn of thc Proposcd Method Usmg thc HMSA Thcory to Slmulauon

Solvent-Solute
Effective
Diameter, Repulsive Attractive (A — 1A VKT
(OaB/OpR)? dap/oap Contribution Contribution  Total Simulation Error

0.75 1.00799 5.0028 -6.6699 -1.6671 -1.761 0.0939
1.0 1.00741 7.0620 -8.6786 -1.6166 -1.848 0.2314
1.5 1.00740 11.3315 -12.5677 -1.2362 -1.979 0.7428
2.0 1.00660 15.6709 -16.3577 ~0.6868 -2.144 1.4572

In each case the Lennard -Jones solute properties at infinite dilution were calculated for a
Lennard - Jones solvent at a reduced temperature kT/epp = 1.2 and a reduced density of

poBB3 =0.7, where the subscript B denotes the solvent. Equal energy ratios were used:
=€gp = £Ap- Each calculation of the work of inserting the hard point was done at an

effecnve packing fraction of E3 =0.37473. The estimated slope at G55 = Ogg =0ap Of

the residual chemical potential compared to the required slope from the pressure equation
is,

d[(u& A VKTV d[ Gop/opp ]

Simulation SZ-1)
1.356 -0.934 -1.373

where Z = P/pkT was obtained from the HMSA thcory using equation (14). Thus, the

variation in solute chemical potential with variations in the solvent-solute size parameter

disagrees with simulation and violates the consistency condition with the virial pressure
given by equation (105).

Simulation results were obtained from reference 4.
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Table 21
Effect of Size and Energy Ratios on the
Predicted Chemical Potential for Near Critical States

Solvent-Solute
Effective
Diameter, Repulsive Attractive
. . . . *

eapltp  (Oap/Opp)® dap/cap Contribution  Contribution — (a—pa YKT
1.0 1.0 1.00367 1.9314 -3.3122 -1.3808
1.125 1.0 1.00898 1.9612 -3.7778 -1.8166
1.0 1.25 1.00400 2.3938 -4.0571 -1.6633

In each case the Lennard - Jones solute properties at infinite dilution were calculated for a
Lennard - Jones solvent at a reduced temperature kT/egp = 1.4 and a reduced density of

pogg3 = 0.35, where the subscript B denotes the solvent. Each calculation of the work of
inserting the hard point was done at an effective packing fraction of €3 = 0.18528. The
estimated slopes of the residual chemical potentials at 4 o = Eop = €gg and Cpp = Oap =
Ogp compared to the required slopes from the energy and pressure equation are:

Alua =ua VKTV dl aplepp] 200-USKT  dlua—ua VKTV dlGap/opp ] 6Z 1)
-3.487 -3.4705 -3.659 -3.9257

where (U-U*)/KT and Z = P/pkT were obtained from the HMSA theory using equations
(13) and (14), respectively. Thus, the variation in solute chemical potential with variations
in the solvent-solute energy and size parameters meets the conditions for consistency with
the internal energy (equation 106) and with the virial pressure (equation 105). The
inconsitency noted in Table 20 disappears at supercritical temperatures.
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Table 22
The Lennard - Jones Parameters Used

.

ini ncentration Mix
Size
Ojj..Angstroms
3.800

4.375

4.950

Energy
£ij/k. Kelvin
225.000

291.247

377.000
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Table 23

The Volumetric Properties Predicted From the HMSA

Theory For Mixtures of Lennard - Jones Particles at Finite Concentration

Compared to Results From Molecular Simulation

Mole % Reduced
Large, Density,
b.4) D_Q223
Vapor Phase
0.19 0.09
0.12 0.13
0.1 0.24

Liquid Phase

0.625 0.86
0.5 0.88
0.375 0.92
0.25 0.91

HMSA

0.8504
0.8201
0.7010

0.1246
0.0829
0.1671
0.2148

Compressibility
Factor, P/pkT

Simulati

0.862
0.829
0.732

0.090
0.122
0.191
0.232

Error

-0.0116
-0.0089
-0.031

0.0346
-0.0391
-0.0239
-0.0172

All mixtures were at a reduced temperature of kT/e;, = 0.928, where the index 2 denotes
the large species. The Lennard - Jones parameters for each species are listed in Table 22.

Simulation results were obtained from reference 7.
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Table 24
Residual Chemical Potentials Predicted by the Proposed Method in Finite
ncentration Mix ing the HM n Eguad
Effective Residual Chemical Potentials
N * *
Diameters, djj/cy; (- 1y YKT (1 — o VKT
Case 11 21 12 22 Rep, Aftract, Tob Rep. Affract, Tot
Vapor Phase
1 1.00064 1.16338 1.16365 132845 0.1925 04287 -0.2362 0.2953 -0.8744 -0.5791
2 1.00060 1.16332 1.16361 1.32892 0.2702 -0.5785 -0.3083 04158 -1.1816 -0.7658
3 1.00046 1.16311 1.16347 132821 0.5063 -1.0336 -0.5273 0.7736 -2.1042 -1.3306
Liquid Phase
4 0.99823 1.16021 1.16061 132457 4.7627 -6.079 -1.3169 7.7473 -11.1946 -3.4473
5  0.99842 1.16043 1.16087 132485 4.2998 -5.6340 -1.3342 6.9438 -10.4386 -3.4948
6 0.99852 116054 1.16100 1.32499 4.0327 -53202 -1.2875 64922 99300 -3.4378
7 099880 1.16086 1.16138 132542 3.3752 -4.6444 -1.2692 5.3635 -8.7591 -3.3956

The temperatures, densities, and compositions for the cases listed above are given in Table
23. The Lennard - Jones parameters used are given in Table 22. The 1-1 and 2-1 effective

diameters were determined during the calculation of yi; and the 1-2 and 2-2 diameters were

determined during the (separate) calculation of jt,. The 1-2 and 2-1 effective diameters
differ slightly since these values are accurate to only three decimal places.
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Table 25

Chemical Potentials Predicted by the Method in Finite
Concentration Mixtures Compared to Simulation Results

Supercritical Species, L

Case Method Sim,
Vapor Phase

1 -2.649 -2.657@
2 -2.298 -2.303@
3 -1.911 -1.90 [5]
Liquid Phase

4 -2.272 -2.55 [5]
5 -2.000 -2.19 [5]
6 -1.708 -1.90 [5]
7 -1.532 -1.72 [5]

Chemical Potentials @

IE.vcm:

0.008
0.005
-0.011

0.278
0.190
0.192
0.188

Subgritical Species, L,
Method Sim,
-4.313 -43 (1]
-4.572 -4.5[1)
-4.696 4.7 [1]
-3.775 -4.3[1]
-4.005 -4.5[1]
-4.178 -4.7 1]
-4.525 -4.9 [1]

Eror

-0.013 .
-0.072
0.004

0.525
0.495
0.522
0.375

The temperatures, densities, and compositions for the cases listed above are given in
Table 23. The Lennard - Jones parameters used are given in Table 22. The figures in
square brackets indicate the estimated (by the original authors) error in the last digit of
the simulation results. Results for the vapor phase are in agreement with simulation.
Results for the saturated liquid are poor.

Notes:

(1) The chemical potentials presented in this Table are,

(residual chemical potential of i)]

-

kT

+ ln(xipcgz) AT
€22

where the residual chemical potentials divided by kT are given in Table 24 and
the reduced densities and compositions are given in Table 23. These units are

used in the Table since the quoted error bounds on the simulation results include
unknown errors in density and composition and they can not be converted with

certainty to a residual basis.

(2) The value shown is the result obtained from second virial coefficients. The
simulation result was -2.55 [5].
(3) The value shown is the result obtained from second virial coefficients. The
simulation result was -2.19 [5].

Simulation results were obtained from reference 7.
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Table 26

The Predicted Chemical Potential of a Large,

ive, Dilut ina N iti vent
Solvent-Solute
Effective
Diameter, Repulsive Attractive
popg?  danldap Contribution Contribution ~ (Ma=lia“YKT
0.35 1.03809 3.6953 -18.9897 -15.2944

The Lennard - Jones solute properties at infinite dilution were calculated for a Lennard -

Jones solvent at a reduced temperature kT/egp = 1.4, where the subscript B denotes the
solvent. The work of inserting the hard point was done at an effective packing fraction of
€3 = 0.18528 (as in Table 21).
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Figure 1
Kirkwood Charging Scheme
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Figure 2
Definition of the Reference Svstem
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Figure 3
Multi-step Charging Scheme
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Figure 4

Inserting the Hard Sphere
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Figure 5
Pair Correlation Functions About

an Inserted Hard Sphere

Test particle-LY bath molecule
Pair Correlation
Function, g5,

/—— Contact
value

3.0 1
]
A\
25 ¢ \
\
\
20 - \
.‘\
1.5 )
\.\
\Q
1.6 4| N T —
Effectve \___.-—-—//
diameter for
0571 solvent-solute
/ interactions
0.0 + + v ' N R
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

Interparticle separation distance, r /Ogg

An example of the pair correlation functions for a pure Lennard - Jones (denoted by B)
fluid about an inserted hard sphere. The diameter of the hard sphere equals some
specified minimum distance of closest approach between the inserted particle and the
Lennard - Jones particles; for small separations the pair correlation function is zero.
The contact value of the pair correlation function is used in the calculation of the work
required to insert the hard sphere into the fluid. The larger the contact value is the
more molecules will be in contact with the hard sphere and the larger the work of
insertion will be. The correlation function shown was determined with the HMSA
integral equation theory.
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Figure 6
Softening the Hard Sphere
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Figure 7

Integrand of the Work of Softening Formula

Contribution to the work of softening

1S 7 kT
10+ Sum of areas
on left and
ight is
s 4 TgAtis zero \‘
° T— \‘

0. 0.90 1.00 1.05 1.10 115
85 9 5 . ‘
54 Interparticle separation,
1/C
-10 + \
-]5 -L T

Effective
Hard sphere
Diameter

The integral of the above function gives the work required to change a hard sphere
test particle into a softly repulsive WCA test particle. The function is the integrand
of equation (88), neglecting the integrals over the bridge functions. The effective
hard sphere diameter has been chosen so that the work of softening is zero. The
shape of the function is similar to that of the "blip” function used in perturbation
theories. However, for fluids which are not purely repulsive the effective diameter
differs slightly from that of perturbation theory, since the function includes the
effects of attractions between the bath molecules. The diameters determined by the
method depend on the attractive forces in a way which is different from
perturbation theories.
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Figure 8

Charging the Attractive Potential
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Figure 9
Rate of change of Helmholtz Energy
With Change in the Attractive Coupling

Attractive coupling parameter, A

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 10
-165 + + + ———t + t + 4
No attractive forces between the bath
molecules and the test particle
-1704
-1754
Attractive forces fully
-804 coupled to the test particle
-185 ¢+
1 (aA )
19.0 kT a}\" TLV.N

Integrand of equation 92 for the case of a Lennard-Jones solute present at
infinite dilution in a Lennard-Jones solvent. The solvent conditions were
kT/egg=1.2 andpogg = 0.7, where the subscript B denotes the Lennard-Jones
parameters for the solvent. The solvent-solute parameters were, G,p = Opp
and €,5=2€,, The linearity of the function simplifies the numerical
integration needed to determine the attractive contribution to the chemical

potential. The integral over the coupling parameter gives the attractive

contribution, which is in this case -17.6814.
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Figure 10

HMSA Pair Correlation Functions About
the Effective Hard Sphere Compared
to Those About the WCA Repulsive Test Particle

Pure Lennard-Jones bath at supercritical conditions

Test particle - LI
bath molecule pair

correlation
function
1.6 Correlation function about
the effective hard sphere. E=1)
1.4 4+ p
H2 /\
1.0 + /
\ \_ -———al
08 'I Correlation function about
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06T WCA particle.
0.4 4+
0.2 +
-/
0.0 + > ' + 4
0.6 0.8 1.0 1.2 4 1.6 1.8 2.0 2.2

Interparticle separation distance, 1/ ¢

The pair correlation functions of a pure Lennard - Jones fluid about a WCA
repulsive particle with the same size and energy parameters are compared to
those about the effective hard sphere. In the case shown the fluid is at a reduced
temperature of kT/ € = 1.5 and a reduced density of po3 = 0.4. For an effective
hard sphere size determined as described in Figure 7, the structure about the

hard sphere accurately represents that about the WCA repulsive particle. They
differ only within are narrow range of separation distances about the contact
point. Intuition requires that an appropriate hard sphere model of a softly
repulsive test particle will exhibit a hard sphere - bath molecule pair

correlation function which mimicks the soft sphere - bath molecule function.
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Figure 11
HMSA Pair Correlation Functions About

the Effective Hard Sphere Compared
to Those About the WCA Repulsive

Test Particle

For a large test particle immersed in a pure Lennard - Jones
bath at conditions near saturated liquid

Test particle - L bath
molecular pair
correlation function
307 \

\ Correlation function about
25 ¢ \\ the effective hard sphere. (£ = 1)

\

1o

Correlation function about
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WCA particle. (E=0)
7
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1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

Interparticle sepafation distance, 1/ Gz

The pair correlation function about a large WCA repulsive solute in a pure

Lennard - Jones bath is compared to that of its effective hard sphere. The fluid is

at a reduced temperature of kT/€gp = 1.2 and a reduced density of PGz = 0.7,
where the subscript B denotes the Lennard - Jones parameters of the solvent bath.
The bath and solute have equal energy parameters and the size parameters are given
by (%as/%r)? = 2. In this case the choice of effective solvent - solute diameter
also allows the structure about the large WCA repulsive particle to be approximated
by the structure about the effective hard sphere, except for separation distances

in the neighborhood of the contact point.
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Figure 12

HMSA Pair Correlation Functions About

the Effective Hard Sphere Compared
to Those About the WCA Repulsive
Test Particle ‘

Pure Lennard - Jones bath at compressed liquid conditions

Test particle - LJ bath
molecule pair

correlation
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The pair correlation functions of a pure Lennard - Jones fluid about a WCA
repulsive particle with the same size and energy parameters are compared to

those about the effective hard sphere. In the case shown the fluid is at a reduced
temperature of KT/ € = 1.2 and a reduced density of p63 = 0.85. For an effectivc
hard sphere size determined as described in Figure 7, the structure about the hard
sphere accurately represents that about the WCA repulsive particle. They differ
only within are narrow range of separation distances about the contact point.
Figures 10, 11 and 12 show that method of specifying the effective diameters
yields structures about the hard spheres which always approximate those about
the WCA repulsive particles.



138

Figure 13
HMSA Bridge Functions About

the Effective Hard Sphere Compared
to Those About the WCA Repulsive

Test Particle
Pure Lennard-Jones bath at supercritical conditions

Interparticle separation distance, 1/0
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Test particle - LJ hard sphere
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Bridge functions about the WCA repulsive and hard sphere test particles for the
conditions of Figure 10. The bridge functions for the two cases are nearly
identical, implying that the integral over their difference in equation (88) can be
neglected. This allows the work of softening to be determined using only
correlation functions from the initial and final states of the softening process.
Without such a simplifiction in the work of softening there would be little
incentive to using a charging path which proceeds through the hard sphere
particle and which applies the scaled particle theory.
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Figure 14
HMSA Bridge Functions About
the Effective Hard Sphere Compared

to Those About the WCA Repulsive f

Test Particle
For a large test particle immersed in a pure Lennard - Jones
bath at conditions near saturated liquid
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Bridge functions about the WCA repulsive and hard sphere test particles for the
conditions of Figure 11. Once again, the bridge functions for the two cases are
nearly identical, implying that the integral over their difference in equation (88)
can be neglected. Therefore, the conclusions of Figure 13 also apply here. The
large asymmetry of the components in the mixture does not reduce the accuracy
of the assumption that the bridge functions are invarient during the softening
process.
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Figure 15
HMSA Bridge Functions About

the Effective Hard Sphere Compared
to Those About the WCA Repulsive

Test Particle
Pure Lennard - Jones bath at compressed liquid conditions

Interparticle separation distance, 1/ ¢
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Bridge functions about the WCA repulsive and hard sphere test particles for the
conditions of Figure 12. Once again, the bridge functions for the two cases are
nearly identical, implying that the integral over their difference in equation (88)
can be neglected. Therefore, the conclusions of Figure 13 also apply here. In
this case, the assumption of the invarience of the bridge functions remains
accurate even though their magnitude is large. Figures 13, 14 and 15 together
show that the bridge function integrals can be neglected under all conditions.
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Figure 16
Predicted Excess Gibbs Free Energies
of Mixing in Softly Repulsive (WCA) Fluids

Mole fraction small species, X
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(from equation 103)

Lines - theory
Symbols - Simulation of Haile

(reference 8)

Excess Gibbs free energies of mixing WCA repulsive fluids at constant pressure
Poj 76 =0.5and temperature kT#;; =1.0. The fluids being mixed have equal
energy parameters and unequal size parameters. The proposed method accurately
predicts the free energies of mixing of these nearly ideal mixtures; qualitative
features such as the asymmetry of the bottom curve are predicted correctly.
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Figure 17

Compressibility Factors in Pure
Lennard-Jones Fluids
Comparision of HMSA results to molecular simulation

Compressibility factor,

sor P
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A comparison of compressibility factors for pure Lennard-Jones fluids
obtained with the HMSA theory with simulation results from references
(7) and (39). Results for three isotherms are plotted versus reduced
density. The highest temperature isotherm is supercritical, the others are
subcritical. The HMSA theory accurately describe the P-V-T properties
of Lennard-Jones fluids. Thus, it should be possible to obtain accurate
chemical potentials using it.
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Figure 18
Predicted Residual Gibbs Free Energies

in Pure Lennard-Jones Fluids Compared
With Simulation

Reduced Density, PO 3
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Proposed Method with HMSA
------------------------ Interpolation of HMSA

The residual chemical potentials divided by the reduced density are plotted versus
reduced density for three different isotherms, as are those obtained from simulation.
Simulation results are from reference (7). The intercept of each isotherm is twice
the reduced second virial coefficient. The highest temperature isotherm, which is
supercritical, is well described by the method. For the two subcritical isotherms the
method yields accurate results at the lowest and highest densities.
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Figure 19

Predicted Residual Gibbs Free Energies
in Pure Lennard-Jones Fluids Compared

With Simulation

high density range

Reduced Density, PG> —
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The residual chemical potentials divided by reduced density are plotted versus
reduced density for the high density range, as are those obtained from simulation.
Simulation results are from references (7) and (3). This figure shows the high
density range of Figure 18 and includes an additional isotherm at a reduced
temperature of 1.2. The proposed method yields very accurate results at the
highest densities. The temperature dependence of the method's results is also very
good. The slope of the method's results with respect to density is less than that

of the simulation data for the density range shown.
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Figure 20

Predicted Residual Gibbs Free Energies

ompared € namic Integration
For Pure Lennard - Jones Fluids

Reduced Density, PO 3 —
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From the proposed

method N,
From virial pressure
(equation 102)

From compressibility
pressure (equation 101)

G-G*
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a Simulation at reduced
temperature kT/ €= 1.556

The residual chemical potentials divided by reduced density are plotted versus
reduced density at a reduced temperature of 1.556, as are those obtained from
simulation. Simulation results are from reference (7). Also plotted are resuits
from two different thermodynamic integrations of HMSA properties (which yield
different results due to failure of the local consistency criterion). There is a slight
thermodynamic inconsistency between the method and the P-V-T properties of the
bulk fluid. The inconsistency disappears at the highest and lowest densities.
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Figure 21

Predicted Residual Chemical Potentials
of a Dilute Lennard - Jones Solute
in a Lennard - Jones Solvent
versus Energy Ratio

solvent-solute
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The residual chemical potential of an infinitely dilute solute is plotted versus the

ratio of Lennard-Jones well depths. The solvent is at a reduced temperature of
1.2 and a reduced density of 0.7. The solvent and solute have equal Lennard -
Jones size parameters. The method exhibits the correct trend in the chemical
potential as the energy ratio is varied, the chemical potential declining nearly

linearly as the solvent-solute attraction is increased. The correct slope indicates

consistency with the energy equation, meeting the test of equation (106).



147
Figure 22

Predicted Residual Chemical Potentials
of a Dilute I ennard - Jones Solute
in a Lennard - Jones Solvent
versus Size Ratio

solvent-solute
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The residual chemical potential of an infinitely dilute solute is plotted versus the
ratio of Lennard-Jones size parameters. The solvent is at a reduced temperature
of 1.2 and a reduced density of 0.7. The solvent and solute have equal Lennard -
Jones energy parameters. The method exhibits the wrong trend in the chemical
potential as the size ratio is varied, the predicted chemical potential increasing
rather than decreasing as the solvent-solute size is increased. The incorrect slope
indicates inconsistency with the virial pressure equation; the method fails to meet
the test of equation’(105) under these conditions.
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Figure 23
HMSA Pair Correlation Functions About

a Large, Dilute [_ennard - Jones Solute
in a Lennard - Jones Solvent

Compared to Molecular Simulation

For a solvent near saturated liquid conditions
LJ Solute - LI Solvent

Pair Correlation

Function, g ,
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Interparticle separation distance, r /Ogpp

The pair correlation function for the case of a solute present at infinite dilution

in a Lennard-Jones solvent. The solvent conditions were kT€gg = 1.2 and
cha = 0.7, where the subscript B denotes the Lennard-Jones parameters

3
for the solvent. The solvent-solute parameters were, (C‘AB / 035) =2 and

€,p= €55 The HMSA theory accurately predicts the structure of the solvent
about the infinitely dilute solute, except for a small descrepancy in the

neighborhood of the first peak.

3.5
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Figure 24
HMSA Pair Correlation Functions About
a Large WCA Repulsive Test Particle
in a Lennard - Jones Bath

mpared lec imulation

) For a bath near saturated liquid conditions
Test particle - LJ bath

molecule pair
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Interparticle separation distance, r /Ogp

The pair correlation function for the case of a WCA repulsive test particle in a
Lennard - Jones bath. The bath is identical to the solvent used in Figure 23 and
the test particle has molecular parameters identical to those of the solute in Figure
23. Thus, the WCA repulsive test particle represents a solute molecule with the
attractive force de-coupled. Also shown is the HMSA correlation function about
the effective hard sphere. The HMSA correlation function about the WCA
repulsive particle is considerably steeper than simulation; it can be expected that
the correlation function about the hard sphere is also too steep at contact. This
latter error causes the repulsive contribution to the chemical potential to be
overestimated. That is, the overprediction of the first peak height made by the
HMSA theory results in an overestimate of the work required to insert a WCA
repulsive test particle.
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Figure 25
HMSA Pair Correlation Functions About

a Small WCA Repulsive Test Particle
in a Lennard - Jones Bath
Compared to Molecular Simulation
For a bath near saturated liquid conditions

Test particle - LJ bath
molecule pair
correlation function
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Interparticle separation distance, r /Ogp

The pair correlation function for the case of a WCA repulsive test particle in a
Lennard - Jones bath. The bath is identical to the solvent used in Figure 23. The
test particle has molecular parameters identical to those of the solvent. Thus, the
WCA repulsive test particle represents a solvent molecule with the attractive
force de-coupled. As in Figure 24, the first peak of the HMSA correlation
function about the WCA repulsive particle is considerably higher than simulation,

resulting in an overprediction of the repulsive contribution to the chemical
potential.
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Figure 26

HMSA Pair Correlation Functions About
a Small WCA Repulsive Test Particle

in a Lennard - Jones Bath
Compared to Molecular Simulation

For a bath near the critical point

Test particle - LJ bath
molecule pair
correlation function
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Interparticle separation distance, r /Gpp

The pair correlation function about a WCA repulsive particle immersed in a pure
solvent is plotted versus separation distance divided by the solvent size parameter.
In this case the solute size and energy parameters are identical to those of the .
solvent. The solvent is at a reduced temperature of 1.5 and a reduced density of
0.4. Under these conditions the HMSA theory accurately represents the
correlation functions abour the test particle for every value of the attractive

coupling parameter. The proposed method for calculating chemical potentials
works well in this case.
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Figure 27

HMSA Pair Correlation Functions About

a Small WCA Repulsive Test Particle
in a Lennard - Jones Bath

Compared to Molecular Simulation

For a compressed liquid bath

Test particle - LJ bath
molecule pair
correlation function
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Interparticle separation distance, r /OB

The pair correlation function about a WCA repulsive particle immersed in a pure
solvent is plotted versus separation distance divided by the solvent size parameter.
In this case the solute size and energy parameters are identical to those of the
solvent. The solvent is at a reduced temperature of 1.2 and a reduced density of
0.85. Under these conditions the HMSA theory accurately predicts the correlation
function about the WCA repulsive test particle. The HMSA pair correlations
change little with the attractive coupling parameter - this lack of change is a
consequence of the fact that the closure approaches the SMSA limit in this case
(o =0.208 ). The method accurately predicts the chemical potential for this fluid
since the correlation functions are accurately predicted for every value of the
coupling parameter.
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Figure 28

HMSA Pair Correlation Functions
in a Lennard - Jones Mixture

Compared to Molecular Simulation

A model of carbon dioxide and acetone

Pair Correlation

T Function, g11
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The '1 - 1' pair correlation function in a mixture consisting of the following
Lennard - Jones species:

0;=38A  ©6,,=43754A Oyp=4.95A

€11/k=225K €13/k=291.247K €33/k=377K
The conditions were:
kT/g,,=15549 p oP) =0.30812 x1=05

The HMSA theory accurately reproduces the pair correlation function obtained
from molecular simulation. The accurate structural results obtained from the
HMSA theory imply a low error in the attractive contribution to the chemical
potentials determined from the proposed method. Therefore the large positive
error in the predicted chemical potentials must be due, at least in part, to errors

in the repulsive contribution.

35



154

Figure 29

HMSA Pair Correlation Functions
in a Lennard - Jones Mixture

Compared to Molecular Simulation

A model of carbon dioxide and acetone (cont.)

Pair Correlation
Function, g 12
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The '1 - 2' pair correlation function for the same conditions as in Figure 28.
Again, the agreement of the HMSA theory with simulation data is good.
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Figure 30
HMSA Pair Correlation Functions

in a Lennard - Jones Mixture

Compared to Molecular Simulation

A model of carbon dioxide and acetone (cont.)

Pair Correlation
Function, g 2
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The 2 - 2' pair correlation function for the same conditions as in Figure 28.
Again, the agreement of the HMSA theory with simulation data is good.
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APPENDIX A

FORTRAN PROGRAM
CHEMICAL POTENTIAL PREDICTIONS IN LENNARD-JONES

FLUIDS USING HMSA THEORY
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IN A FLUID

DATE 6/16/87
REVISED 9/20/87 -TO USE DISTRIBUTION FUNCTIONS OBTRINED
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KA K A AR KA K A A A K KA A AR AR A A IHK KA AR AN AR A K AR KK KA KKK A KA KK
PROGRAN SPT
PURPOSE-~ CALCULATES THE CHENICAL POTENTIAL OF R SOLUTE

USING A TEST PARTICLE METHOD.

FROM INTEGRAL EQUATION THEORIES.

10/21/88 -T0

ALLOW NULTIPLE TEST PARTICLE CALCS

FOR EACH CALCULATION OF THE BATH NMOLECULE
DISTRIBUTION FUNCTIONS.

HAIN PROGRANM BY DAUID PFUND
(SOURCE CODE, DOCUMENTATION, EXAMPLE INPUT AND OUTPUT ARE
AUAILABLE UPON REQUEST)

THIS ROUTINE CRLLS: SUBROUTINE FILES-TO SET 1/0 DEVICE

NUNBERS.

SUBROUTINE PARNMS-DETERMINES THE
INTERACTION POTENTIAL THE USER DESIRES
AND READS THE PARAMETERS.

SUBROUTINE STATE-READS THE DESIRED
CONDITIONS OF TEMPERATURE AND DENSITY.
SUBROUTINE REDUC~CALCULATES REDUCED
POTENTIAL PARANETERS FROM THE RBSOLUTE
ONES.

SUBROUT{NE FINDA-CALCULATES THE RADIAL
DISTRIBUTION FUNCTIONS FOR THE MIXTURE
USING THE HNMSA CLOSURE.

SUBROUTINE PRINTR-PRINTS THE RESULTS
FOR THE BULK PHASE PROPERTIES AND
DISTRIBUTION FUNCTIONS,

SUBROUTINE GOOF-PRINTS ERROR HMESSAGES
UHEN "FINDA* FAILS TO COHPUTE THE BULK
PHASE PROPERTIES.

SUBROUTINE TPARNS-READS THE DESIRED
(TRIAL) CAVITY DIAMETERS.

ALSO READS COMPONENT MOLECULAR HEIGHT,
SUBROUTINE NUDRUR-CALCULATES THE
CHENICAL POTEMTIAL OF THE SOLUTE.
SUBROUTINE PRNTHU-PRINTS THE RESULTS
OF THE CHEMICAL POTENTIAL CALCULATIONS.
SUBROUTINE HUGOOF-PRINTS ERROR MESSAGES
WHEN “HUDRUR™ FAILS TO CONPUTE THE TEST
PARTICLE PROPERTIES.

3 3 3 30 3K 30 2 3K 0 2 3K K K 2 3K 3 0 3K 0 2 3303 30 0 33K 0 3K K 3K 3 3K K 3 N 3 K 3K 3K 3 K KK K K K

INPLICIT REAL*8(A~H,0-2)
G(2048,3),PAIR(2048,3),DIRECT{2048,3)
TOTAL (2048,3),BATH(2048,3)

RERL*8
REAL*8
REAL*8
REAL*8
REAL*8
RERL*8
REAL*8
REAL*8
REAL*8
RERL*8
REAL*8
REAL*8

AFFINS(2,2)
ASIGNA(3),KEPSI(
SOFTD(3)
SIGMA(3),EPSI(3)
RSOFTD(3)

RO(3)

TENP, X1

3

YU,YUIDL,ENERGY,ALPHA, CONPC

1

PRESSU, CERROR, YUHS
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REAL*8 INT1,I1NT2

REAL*8 E1,E2

INTEGER ERROR,COUNT

INTEGER DOIT

LOGICAL OKPAR,OKCON, OKTP

LOGICAL LOTS

CONMON/DEVICE/NIN,NOUT1,NOUT2, INOPT
INITIALIZE 1/0 DEVICE NUHNBERS.

CALL FILES
CALL DETAIL(LOTS)

GET DESIRED POTENTIAL AND PRRAMETERS.
CALL PARNS(OKPAR,KEPS!,SOFTD)
GET DESIRED STATE CONDITIONS.

JP=2
IF(OKPAR) THEN

200 CONTINUE

E11=KEPSI(1)
CALL STRTE(OKCON,E11,R0,TENP,X1,D0IT)
1F(OKCON) THEN

FIND THE BULK PHASE PROPERTIES AND THE DISTRIBUTION FUNCTIONS FOR
THE BATH MOLECULES.

cALL REDUC(KEPSI|,SOFTD,EPSI,RSOFTD)
TRED=TEMP/KEPSI (1)
ERROR=0
CALL FINDA(NBIG,NI,DR,JP,RSOFTD,EPSI,RO, TRED,G,
$ PAIR,DIRECT, TOTAL ,BATH, ALPHA,
$ PRESSU, ENERGY, TCORR, CONMPC, CERROR, COUNT,
$ ERROR, AFFINS)
IF(ERROR.EQ.0) THEN

PRINT BULK PHASE PROPERTIES AND DISTRIBUTION FUNCTIONS,
CALL PRINTR(LOTS,DR,PAIR,DIRECT,TOTAL,BATH,
$ KEPS1,SOFTD, TEHP,R0, X1,G,COUNT,
$ ALPHR,PRESSV,ENERGY, CERROR, CONMPC,AFF INS)
ELSE
CALL GOOF (ERROR,KEPS!,SOFTD, TENP,RO, K1)
JP=2
END IF
IF((ERROR.EQ.0).AND.(DOIT.EQ.1)) THEN
DOIT = 1
HANT TO DO A CHENICAL POTENTIAL CALCULATION,
READ IN ASSUNED EFFECTIVE DIANETERS FOR THE CAVITIES (DINENSIONLESS).
ALSO READS IN A SWITCH WHICH !NDICATES UHICH SPECIES THE TEST
PARTICLE IS,

CALL TPARNMS(OKTP, {POT, 1, DRHEN, DL IKE, DUNLKE)
IF(OKTP) THEN

300 COHTINUE

c

CALCULATE CHEMICAL POTENTIAL.
. CALL MUBRUR(NBIG,NM,DR,DRNEM, IPOT,KEPSI,SOFTD,
b) EPSI,RSOFTD, TENP, TRED, RO, X1, JP,ALPHA,
$ PRESSU, CONMPC, DL IKE, DUNLKE, MM, G,
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3 ASIGNA,YU,YUIDL, YUHS, INT1, INT2,E1,E2,
$ DHUBRO, ERROR)
IF(ERROR.EQ.0) THEN
C PRINT CHEMICAL POTENT{AL AND ANALYS!S OF ATTRACTIVE, REPLUSIVE,
C AND IDEAL TERMNS.
CALL PRNTHU(CIPOT,DRNEW, DL IKE, DUNLKE,
$ INT1,INT2,E1,E2, YU, YUIDL, YUHS, nU,
$ DHUDRO)
ELSE
CALL HUGOOF(ERROR,DLIKE, DUNLKE)
END IF
CALL TPARNS(OKTP,IPOT,MN,DRNEN, DLIKE, DUNLKE)
IF(OKTP) GOTO 300
END IF
END IF
ELSE
CALL PARNS(OKPAR,KEPSI,SOFTD)
JP=2
c JP=1
END IF
IF(OKPAR) GO TO 200
IPOT NEGATIVE IRPLIES USER WANTS TO QUIT.
END IF
END
X KK K 3 3K AR K 3R K K AR IR MR O A AN oK A A K2 K K K oK KoK
SUBROUTINE SHOOTH
PURPOSE-SILLY SUBROUTINE TO MAKE UP AN INTIAL GUESS FOR THE
TEST PARTICLE GRMHA FUNCTIONS FROM THOSE OBTAINED
FRON THE BATH. AN INTERPOLATION ROUTINE.

©

DATE 11/01/88
CODED BY DRU{D PFUND

THIS ROUTINE CALLS:-
K K 3R KU W 3 0 K R 2K 2 90 S0 S e e e 3 30 i 3 e ok 3k 28 31 0 36 22 3 N 303 20 e i 306 3K N K 3 3K 290K 9K 3K 3K 2K M K 3 3K 3K 3k K K 3K W
SUBROUTINE SHOOTH{N,DROLD,DR,GOLD,5)
INPLICIT REAL*8(A-H,0~2)
REAL*8 GOLD(N,3),6(N,3)
REAL*S DROLD,DR
REAL*6 REALK,REALI!,RAD
REAL*8 RO,R1
INTEGER 1,K
COMMON/DEUICE/NIN,NOUTT, NOUT2, 1HOPT
SUBROUTINE SHOOTH INTERPOLATES BETHEEN THE GRMMA FUNCTIOMS FOR THE
BATH *GOLD*" (MHICH ARE SPACED AT *DROLD*) TO OBTRIN INTIAL GUESSES
FOR "G* (WHICH ARE SPACED AT “DR“).
D0 100 K=1,H
REALK =K
RAD=REALK*DR
1=RAD/DROLD
IF(1.EQ.0) THEN
REAL1=1,000+1]
R1=REAL | *DROLD
G(K, 1)=({GOLD(1+2,1)-GOLD(1+1,1))/DROLD)*{RAD-R1)
G(K,1)=6(K, 1)+6OLD(1+1,1)
6(K,2)=((GOLD(1+2,2)-GOLD{1+1,2))/DROLD ) *(RAD-R1)
6{K,2)=6(K,2)+GOLD({+1,2)
6(K,3)=((6OLD(1+2,3)~GOLD(1+1,3))/DROLD)*{RAD-R1)

OO0

Lar 2 o I o]
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G(K,3)=G(K,3)+GOLD(I+1,3)

END IF

IFC(1.GT.0).AND. (1,LE.(N-1))) THEN
REALI=]
RO=REAL I *DROLD
G{K,1)=((GOLD(1+1,1)-GOLD(I,1))/DROLD)*(RAD~RO)
G(K,1)=G6(K,1)+GoLD(1,1)
6(K,2)=((GOLD(1+1,2)-GOLD({,2))/DROLD)*(RAD-RO)
G(K,2)=6(K,2)+G0LD(},2)
6(K,3)=((6oLD(1+1,3)-GOLD(1,3))/DROLD)*(RAD-RO)
G(K,3)=6(K,3)+60LD(1,3)

END IF

IFC1.GT.(N-1)) THEN
G(K,1)=0.0D0
6(K,2)=0.000
G(K,3)=0.0D0

END IF

100 CONTINUE

C DO 200 1=2000,2048
c WRITE(NOUT2,*)GoLD(I,1),6(1,1)
C 200 CONTINUE
c SToP
RETURN
END
£ AR OR AR K A M AR ISR MK K IR K I I 5K KK M K3 363 5K K K KK oK KKK
C SUBROUTINE RHODNU
c PURPOSE-COMPUTES THE DENSITY DERIURTIVE OF THE CHENICAL
c POTENTIAL OF THE SPECIES OF INTEREST TINMES THE DENSITY
c OF THAT SPECIES,
c
c DATE 10/31/88
o CODED BY DRAUID PFUND
c
c THIS ROUTINE CALLS: FUNCTION DERIV- NUMERICALLY DIFFERENTIATES
c THE CHEMICAL POTENTIAL W.R.T. DENSITY.
€ KRR AR AR A H K AR K K K KKK 3K 3 KK 5K 33K 3K K 3 K KK 3K KKK oK

SUBROUTINE RHODHU(1POT,DELTA,X1,CONPC,RO,ASIGMNA, SOFTD, GAAC3,
$GAAC2, GARC, GABC3, GABC2,GABC, SOFT3,S0FT2,S0FTO,
$YU, YUHS, YUSTR, DIUDRO)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 RO(3),RH0O(3)

REAL*8 SOFTD(3),ASIGNA(3)

COMMON/DEVICE/NIN, NOUT1,HOUT2, INOPT

HRITE(NOUT2,*)DELTR,R0(1),R0(2),R0(3)

HRITE(NOUT2,*)SOFT3,S0FT2,S0FT1,S0FTO

NRITE(NOUT2,*)GAAC3,GARAC2, GARC1, GAAC

HRITE(NOUT2,*)GABC3, GABC2, GABC1, GABC

HRITE(NOUT2,*)YU, YUHS

SOFT=DERIV2(SOFT3,S0FT2,S0FT0,DELTA,RO)
C 'AR' => LIKE-LIKE
C 'AB' => UNLIKE .

ROH=RO(1)+R0(2)
IF(IPOT.EQ.0) THEN
C SPECIES 2 IS SOLUTE
C 'AR' => 2-2
C 'AB' => 1-2
XJ=1,0D0-X1
END IF

OO0O0O00
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IF(IPOT.EQ.1) THEH

SPECIES 1 IS SOLUTE
‘AR => 1-1
"AB' => 1-2

KJ=X1
END F
SAUE=XJ*(1,0D0+YU-YUSTR)+(KJ*ROH*ROH*SOFT)
DHUDRO=SAVE
HRITE(NOUT2,*)DNUDRO
RETURN
END
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SUBROUTINE PARMNS

PURPOSE-READS IN INTERACT!ION POTENTIAL PARAMETERS. INPUT
OF PARAMETERS THAT ARE LESS THAN OR EQUAL TO ZERD

Z2ERO HEANS USER WANTS TO QUIT (OKPAR=.FALSE. IN

THIS CASE).

DATE 6/9/87

REVISED 10/21/88 ~RENOVED THE INPUT OF UARIARBLES NEEDED
FOR CHEMICAL POTENTIAL CALCULATION FRON
THIS SUBROUTINE.

CODED BY DAUID PFUND

THIS ROUTINE CALLS:-

o 3 3 0 380 3 3026 3 50 0300 3 3 20 3 3 3 e 20 K0 K R 3K K e 990 2K 0 300 200 30 3 2 0 9K B 2 3 K0 00 0 0K 3K 2 3K 0 3 K 0K KoK

SUBROUTINE PARMNS (OKPAR,KEPSI(,50FTD)
INPLICIT REAL*8(A-H,0-2)

REAL*8 SOFTD(3),KEPSI(3)

REAL*8 MU

INTEGER IPOT

LOGICAL OKPAR

COMMON/DEUICE/NIN, NOUT1,NOUT2, INOPT
OKPAR=. TRUE,

C NOT TINE TO QUiT. GET NEN POTENTIAL PARANETERS.

175

200
300

320

o

CONTINUE
IF(HIN.EQ.5) THEN
HRITE(NOUT1,200)
FORNAT(/1X, "ENTER LJ SHMALL DIAMETER, LJ LARGE DIAMETER, AND')
HRITE(NOUT1,300)
FORMAT(1X, "' LJ CROSS DIRNETER IN ANGSTROMS, WHERE SMALL<LARGE.')
URITE(NOUT1,320)
FORMAT(1X, 'ENTER 2ERO FOR CROSS DIAHETER TO USE DEFAULT.')
END IF
READ(NIN, *)SOFTD(1),S0FTD(2),SOFTD(3)
IF((SOFTD(1).6T.SOFTD(2)).AND.(NIN.EQ.5)) GO TO 175
IF((SOFTD(1).6T.SOFTD(2)) .AND. (NIN.NE.5)) THEN
OKPAR=.FALSE.
END 1IF
IF(((SOFTD(1).LT.0.0).0R. ((SOFTD(2).LT.0.0).0R.(
$SOFTD(3).LT.0.0)))-AND.(NIN.EQ.5)) GO T0O 175
IF(((SOFTD(1).LE.0.0).0R. ({SOFTD(2).LE.0.0).0R.(
$SOFTD(3),L7.0.0)))) THEN
$SOFTD(3).LT.0.0))) .AND.(NIN.NE.S)) THEN
OKPAR=.FALSE.
END IF
IF(CKPAR) THEN
IF(SOFTD(3).EQ.0.0) THEN
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C USE DEFAULT NMIXING RULE (ARITHMATIC MEAN) FOR THE LJ CROSS DIARETER.
SOFTD(3)=0.5D0*(SOFTD(1)+SOFTD(2))
END IF
ELSE
URITE(NOUT2, 402)
402  FORMAT(/1X,'INVALID CHOICE OF MOLECULAR DIAMETERS WAS HADE.')
HRITE(NOUT2, 404)
404  FORMAT(1X, 'EACH DIAMETER NMUST BE GREATER THAN OR EQUAL TO ')
WRITE(NOUTZ2,406)
406  FORMAT(1X, *2ERO AND THE SECOND DIAMETER ENTERED HUST BE ')
URITE(NOUTZ2,408)
408  FORMAT(1X,'LARGER THAN THE FIRST. DIANMETERS ARE IN ANGSTROMS')
URITE(NOUT2,410)
410 FORMAT(1X,'THIS RUN 1S TERMINATED')
END IF
{F(OKPAR) THEN
500 CONTINUE
IF(NIN.EQ.5) THEN
HRITE(NOUT1,600)
600  FORMAT(/1X, 'ENTER ENERGY FOR SHALL, ENERGY FOR LARGE AND')
HRITE(NOUT1,700)
700  FORMAT(1X,' CROSS ENERGY iN KELUVIN.')
HRITE(NOUT1, 800)
800  FORMAT(1X, 'ENTER ZERO FOR CROSS ENERGY TO USE DEFAULT.')
END IF
READ(NIN, *)KEPSI (1) ,KEPS1(2),KEPSI(3)

c IF(((KEPS1(1).LT.0,0).0R.(KEPS1(2).LT.0.0).0R.(
c $ KEPSI(3).LT.0.0)).AND.(NIN.EQ.5)) GO T0 S00
IF(((KEPSI(1).,LE.0.0).0R.(KEPSI(2).,LE.0.0).0R.(
3 KEPS1(3).LT.0.0))) THEN
c $ KEPS1(3).,LT7.0.0)).AND. (NIN.NE.S)) THEN

OKPAR=.FALSE.
END IF
IF(OKPAR) THEN
C USE DEFRULT HIXING RULE (GEOMETRIC HMEAN) FOR THE CROSS ENERGY.
IF(KEPS1(3).EQ.0.0) THEN
KEPS1(3)=DSQRT(KEPSI{1)*KEPSI(2))
END IF
ELSE
HRITE(NOUT2,802)
802 FORMAT(/1X, ' INUALID CHOICE OF MININUM PAIR POTENTIALS WARS ')
WRITE(NOUT2,804)
804  FORMAT(1X, 'NADE. EACH ENTRY HUST BE GREATER THAN OR EQUAL ')
WRITE(NOUT2,806)
806  FORMAT(1X,'TO ZERO. THE EMTRIES ARE TO BE IN KELVIN, SO ')
WRITE(NOUT2,808)
808 FORNMAT(1X,'THEY NUST BE REDUCED BY BOLTZNANN CONSTANT. ')
URITE(NOUT2,810)
810 FORMAT(1X, 'THIS RUN 1S TERNINARTED')
ENDIF
END IF
C (I DON'T KNOW HOW TO TRAP ERRORS INUOLUING TOO LITTLE INPUT ON A
C LINE. OH HELL.)
RETURN
END
© KR MR KRR o MoK K KR K SR 2K 3 R MK 0K 3K 98 30K 3K K o 3K 3K K K558 2K K oo K oK K
c SUBROUTINE STATE
C PURPOSE-READS IN TENMPERATURE, DENSITY, AND COMPOSITION
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ALSO READS A PARANETER WHICH INDICATES WHETHER OR NOT A
CHENICAL POTENTIAL CALCULATION IS DESIRED.

c

c

c

c DATE 6/9/87

c CODED BY DAVID PFUND
c
¢
c

THIS ROUTINE CALLS:-
K2R K SR AR 2 AR KK O A K K K KK K S R KKK 92K 3 AR oK o KK KK
SUBROUTINE STATE(OKCON,E11,RO,TENP,K1,D0I1T)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 RO(3) -
REAL*8 E11
REAL*8 TEMP, X1
IHTEGER DOIT
LOGICAL OKCON
COMHOM/DEVICE/NIN,NOUTT,NOUT2, INOPT
DKCON=.TRUE.
D0IT=0
IF(NIH.EQ.S) THEN
URITE(NOUT1,100)
100 FORMAT(/1X, 'ENTER THE TEMPERATURE (KELUVIN), REDUCED')
WRITE(HOUT1,200)
200  FORNMAT(1X, 'DENSITY (RHO*SIGMA11**3), AND NMOLE FRACTION')
WRITE(NOUT1,300)
300 FORHMAT(1X, 'OF THE ‘SHALL COMPONENT. ENTER ZEROS OR ‘)
URITE(NOUT1,400)
400  FORNMAT(1X, 'NEGATIVE NUNBERS TO CHANGE THE POTENTIAL OR ')
WRITE(NOUT1,500)
S00  FORMAT(1X,'TO QUIT, ')
HRITE(NOUT1,600)
600 FORMAT(1X, 'ON THE SANME LINE ENTER 1 IF YOU LANT THE ')
HRITE(NOUT1,700)
700  FORMAT(1X, 'CHEMICAL POTENTIAL. ENTER ANOTHER NUNMBER IF')
HRITE(NOUT1,800)
800 FORHAT(1X,'YOU DON''T HANT IT."')
END IF
READ(NIN,*)TENP,RO(1),X1,DOIT
C 1"UE GIVEN UP ON ERROR TRAPPING- IF YOU CAN'T GET THIS HUCH
C RIGHT, T00 BRD.
IF((TENP,LE.0.0).OR. ((RO(1).LE.0.0).0R.({X1.LE.0.D).0OR. (
$X1.GE.1.0)))) THEN
OKCON=,FALSE.
ELSE
RO(2)=RO(1)*(1.0D0-X1)
RO(1)=RO(1)*X1
RO(3)=R0(1)
END IF
RETURN
END
€ RRRAMAR KRR RN AR A A A AN A A AR A A AR KK A A K
SUBROUTINE TPARNS
PURPOSE-READS IN (TRIAL) EFFECTIVE HARD CORE DIAMETERS.
ALSO READS IN A PARANETER WHICH

INDICATES UHICH SPECIES 1S THE TEST PARTICLE AND THE HOLECULAR
HEIGHT OF THAT SPECIES,

DATE 10/21/88
CODED BY DRUID PFUND

OO0
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THIS ROUTINE CALLS:-

HOR AR AR AR AR R A HCN K AORHH R AA A AR HORH KA AR AR AR KK AAAK AR KK
SUBROUTINE TPARNS(OKTP, IPOT, MW, DRNEN, DLIKE, DUNLKE)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 NN
REAL*8 DLIKE,DUNLKE
INTEGER IPOT
LOGICAL OKTP
COMMON/DEVICE/NIN, NOUTY ,NOUT2, INOPT
OKTP=.TRUE.
IF(NIN.EQ.5) THEHN
HRITE(NOUT1,100)

100 FORMAT(/1X, 'ENTER 0 IF YOU WANT THE CHEMICAL POTENTIAL')

HRITE(NOUT1,200)

200  FORMAT(1X,'OF SPECIES 2, ENTER 1 IF YOU UANT THE CHEMICAL')

WRITE(NOUT1,300)

300 FORMAT(1X,'POTENTIAL OF SPECIES 1., ON THE SAME LINE')

HRITE(NOUT1,310)

310 FORNMAT(1X, 'ENTER THE MOLECULAR WEIGHT OF THRT SPECIES, ')

URITE(NOUT1,315)

315 FORNMAT(1X, *'THE DESIRED STEP SIZE FOR TEST PARTICLE CALCS., ')

HRITE(NOUT1,320)

320  FORNMAT(1X,'THE LIKE-LIKE AND THE LIKE-UNLIKE CORE SIZES,"')

HRITE(NOUT1,330)

330  FORNMAT(1X,'AND THE THERMO CONSISTANCY PARAMETER FOR THE')

HRITE(NOUT1,340)

340  FORMAT(1X,'TEST PARTICLE DISTRIBUTION FUNCTIONS.')

HRITE(NOUT1,390)

390 FORMAT(1X, 'ENTER ZEROS OR HEGATIVE NUMBERS TO CHANGE THE')

HWRITE(NOUT1,400)

400  FORMAT(1X,'THE STATE OR TO QUIT.")

OO0 O0COO0O0

END IF
DRNEW=STEP SI12E FOR THE CHEHICAL POTENTIAL CALCULATION. DRNEN SHOULD
BE OF THE ORDER OF 0.00625 TO GET GOOD CONTACT UALUES OF THE RDF'S
NITH THE HARD SPHERE TEST PARTICLE.
DUNLKE=UNLIKE EFFECTIUE HARD SPHERE DIAMETER. MNUST BE DIVISIBLE
BY DRNEMH.
DLIKE=LIKE EFFECTIVE HARD SPHERE DIAHETER. MUST BE EVENLY DIVISIBLE
BY DRNEM.
DRNEN, DLIKE AND DUNLKE ARE DINMENSIONLESS, HAVING BEEN REDUCED
BY THE 1-1 LENNARD-JONES SIZE PARAMETER ASIGHA(1).
1POT=0 => YOU WANT THE CHEMICAL POTENTIAL OF SPECIES 2 (THE TEST
PARTICLE BECOHES A NOLECULE OF SPECIES 2 WHEN FULLY CHARGED). IN
THIS CRSE DLIKE=SPECIES 2 - SPECIES 2 EFFECTIVE DIANETER AND DUNLKE=
THE SPECIES 2 - SPECIES 1 EFFECTIVE DIANMETER.
IPOT=1 => YOU WANT THE CHEMICAL POTENTIAL OF SPECIES 1 (THE TEST
PARTICLE BECONES A MOLECULE OF SPECIES 1 WHEN FULLY CHARGED). 1IN
THIS CASE DLIKE=SPECIES 1 - SPECIES 1 EFFECTIVE DIANMETER AND DUNLKE=
THE SPECIES 1 - SPECIES 2 EFFECTIVE DIANMETER.,

READ(NIN,*) 1POT, 1, DRNEU, DL IKE , DUNLKE

IF((IPOT.NE.O).AND. (IPOT.NE.1)) THEN

OKTP=.FALSE.
END IF
IF((NMW.LE.0.0).0R. ((DLIKE.LE.0.0).0OR. ((DUNLKE.LE.0.0)
$))) THEN
OKTP=,FALSE.
END IF
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IF(DRNEW.LE.0.0) THEN
OKTP=.FALSE.

ERD IF

RETURN

END

SRR A AR AR A K HOK A K K AR A HHR A A KA K A KA AK KA AR KA K KKK

SUBROUTINE REDUC
PURPOSE~CALCULATES REDUCED POTENTIAL PARAMETERS.

CODED BY DAUID PFUND

THIS ROUTINE CALLS:-
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SUBROUTINE REDUC(KEPSI,SOFTD,EPSI,RSOFTD)
INPLICIT REAL*8(R-H,0-2)
REAL*8 KEPSI(3)
REAL*8 SOFTD(3)
REAL*8 EPSI(3)
REAL*8 RSOFTD(3)
COMMON/DEVICE/NIN, NOUT1, NOUT2, INOPT
RSOFTD(1)=1,0D0
RSOFTD(2)=SOFTD(2) /SOFTD(1)
RSOFTD(3)=SOFTD(3)/SOFTD(1)
EPS!(1)=1,0D0
EPS1(2)=KEPS(2)/KEPSI(1)
EPS1(3)=KEPS1(3)/KEPSI (1)
RETURN
END
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SUBROUTINE FINDA
PURPOSE-COMPUTES THE VALUE OF THE HMSR MIXING PARAMETER
“ALPHA“ NEED TO NMATCH DERIURTIVES OF THE UIRIAL
AND COMPRESSIBILITY PRESSURES WITH RESPECT T0
THE TOTAL DENSITY OF THE MIXTURE. NEW GUESSES
OF ALPHA ARE MADE BY SOLUING A QURDRATIC FIT
OF COMPRESSIBILITIES US. ALPHA FOR THE UALUE THAT
GIVES ZERD ERROR.
THE ALPHA THAT IS FOUND OBEYS ZERAH AND HANSEN'S
"LOCAL CRITERION®.
SUBROUTINE FINDA ALSO RETURNS THE DISTRIBUTION
FUNCTIONS AND THE UIRIAL PRESSURE DIVIDED BY KT
AND MULTIPLIED BY THE (SMALL LJ SIZE PARM**3),
AND THE CONFIGURATIONAL INTERNAL ENERGY DIVIDED
BY KT.
(C.F. ZERAH AND HANSEN, J. CHEM. PHYS,,
UOL. B84, NO 4, P. 2336, FEBRUARY 1986)

c
c
»
c
c DATE 9/20/87
¢
¢
¢
¢

DATE 8/14/87

REVISED 10/23/87 TO USE A NODIFIED LINEAR INTERPOLATION
HETHOD TO FIND THE ALPHA.
ALSO CHANGED THE CONUVERGENCE TEST TO A
THO-HAY TEST.

2/18/88 TO USE A QUADRATIC INTERPOLATION HETHOD.
CODED BY DRVID PFUND

THIS ROUTINE CALLS: SUBROUTINE GUESSA~PROVIDES TWO INITIAL
GUESSES OF THE HIMSA PARANMETER,
FUNCTIOH NAYER-CALCULATES A UECTOR OF

OO0 00000
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MAYER FACTORS FOR THE DESIRED
INTERACTION POTENTIAL WHICH 1S USED IN
THE DISTRIBUTION FUNC. CALCS. ALSO
CALCULATES A VECTOR OF PAIR POTENTIAL
DERIVATIVES WHICH ARE USED IN UIRIAL
PRESSURE CALCS.
SUBROUT INE DO3D-COMPUTES THE OBJECTIUVE
FUNCTION OF THE INTERPOLATION METHOD FOR
A GIVEN UALUE OF THE ALPHA.
FUNCTION CONFIG- CALCULATES THE
CONF IGURATIONAL INTERNAL ENERGY DIUIDED
BY KT,
SUBROUTINE POLY-FINDS THE COEFFICIENTS
OF THE QUADRATIC FIT.
SUBROUTINE NEWALF-SOLUES THE QURDRATIC
FOR THE NEW ALPHA.
300 0K 04 00 0 3 e 3 % 3 3 30 2k K e 3K 0 K e 3 8 k3 K KK K e 5 3 K e e R 3k KK S o ok 3K K 3K K K K 3K 4 K K 0K
SUBROUTINE FINDR(NBIG,NH,DR, JP,SIGHA,EPS1,RO, TRED,G,
$ PRIR,DIRECT, TOTAL,BATH, ALPHA,
$ PRESSU, ENERGY , TCORR, COMPC , SAUEFN, COUNT,
$ ERROR, AFF INS)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 6(2048,3)
REAL*8 PRIR(2048,3),DIRECT(2048,3),TOTAL(2048,3),BATH(2048,3)
REAL*8 F(2048,3)
REAL*8 UPRIME(2048,3)
REAL*8 BU1J(2048,3)
REAL*8 SIGNA(3),R0(3),EPSI(3)
REAL*8 CORE(3)
REAL*8 ALPHO,ALPH1,ALPHA
REAL*8 €CO,CC1,CC2
REAL*8 CUO,CUT,CU2
REAL*8 PRESSU, ENERGY
REAL*8 TRED,DR
REAL*8 TCORR
REAL*8 AFFINS(2,2)
INTEGER 1POT,.IE, JP, NI, N
INTEGER COUNT, HAX
INTEGER ERROR
LOGICAL BADIAT,BADALF
LOGICAL DONE
LOGICAL LOTS
COMMON/TYP/JT, N
COMMON/DEUICE/NIN,NOUT1T,NOUT2, INOPT
DATA FTOL,ATOL/0.001D0,0.0000100/
DATA FTOL,ATOL/1.000001D0,1.0100/
DATA NAX/20/
DONE=. FALSE.
BADALF=. FALSE.
CORE(1)=0.0D0
CORE(2)=0.0D0
CORE(3)=0,000

STEP SIZE AND NUNBER OF GRID POINTS.
NB1G=2048

NH=11
DR=0.00625D0
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COUNT=0
NOTE: FOR SUBCRITICAL MIXTURES NULTIPLE ALPHA ROOTS EXIST AT
INTERNEDIATE DENSITIES. THE PROGRAM DOES ALLUAYS FUNHCTION
WELL UNDER THESE CONDITIONS. SOME OF THESE ROOTS MAY NOT BE
PHYSICALLY SIGNIFICANT. NAY ALSC HAPPEN FOR PURES, BUT | HAUEN'T
DISCOVERED THI1S YET. BAD ANSHERS MAY ALSO OCCUR WHERE THE PRESSURE
VERSUS ALPHR CURVE GOES THROUGH Z2ERGC, WITH ALPHA ANSWERS POSSIBLE
ON ERCH SIDE OF THE ZERO.
N=NB 16
ConPC=0.0D0
GET TUO INITIAL GUESSES OF THE HMSA PARANMETER “ALPHA"™ WHICH BRACKET
THE OPTINIUNM UALUE.
CALL GUESSA(TRED,RO,SIGHA,EPST,ALPHO,ALPH1)
DEFINE THE MAYER FUNCTION F(R). RAD{AL DISTANCES ARE IN
REDUCED UNITS. UPRINE 1S A UECTOR OF DERIVRATIUVES OF
PAIR POTENTIALS/KT U.R.T. REDUCED SEPARATION DISTANCE R/ASIGHA(1).
BUIJ 1S A VECTOR OF PAIR POTENTIALS/KT,
CALL MAYER(DR,SIGHA,EPSI,CORE, TRED,F,BULJ,UPRINE, IPOT,N)
DO 10 1=30,80
WRITE(NOUT2,*)F(1,1),F(1,3),F(1,2)
10 CONTINUE
*DO3D* CALCULATES THE DISTRIBUTION FUNCTIONS
AT FOUR DENSITIES. FROM THESE IT ESTINATES
THE DERIVATIVE OF THE UIRIAL PRESSURE UITH RESPECT TO DENSITY
DIVIDED BY KT.
IT ALSO CALCULATES THE DERIVUATIVE OF THE
COMPRESSIBILITY PRESSURE W.R.T. DENSITY DIVIDED BY KT
THE DIFFERENCE BETUEEN THE THO DERIUATIVES 1S THE OBJECTIVE
FUNCTION OF THE ALPHA ITERATION. THE INTERPOLATION METHOD TRIES TO
FORCE THIS DIFFERENCE TO 2ERO.
CALL DO3D(ALPHO, IPOT,SIGHA,EPS], CORE,RO, TRED, G,BUIJ, UPRIIE,F,
$PAIR,DIRECT, TOTAL,BATH, I1E, BADNAT, DR, JP, NN, PRESSY, CUO, CEO)
IF((1E.GT.0).AND. (.NOT.BADNAT)) THEN

CALL DO3D(ALPH1,1POT,SIGNA,EPSI,CORE,RO, TRED,G,BUIJ,UPRINE,F,
$PAIR,DIRECT,TOTAL,BATH, |E,BADIMAT, DR, JP, NN, PRESSY,CV1,LC1)
CU2=0,000
CC2=0.0D0
SRVEFN=CC1~CU1
ConPC=CC!
ALPHA=ALPHI
100 CONTINUE
IF((1E.GT.0).AND. (. NOT.BADHAT)) THEN
HRITE(NOUTZ, *)ALPHI
IF(COUNT.NE.O) THEN
FIT COHPRESSIBILITIES TO A QUARDRATIC
CALL POLY{COUNT,ALPHO,ALPH1,ALPHA, CUO,CUT,CU2,
$cco,cC1,cC2,B0,B1,82)
ALPHO=ALPH1
ALPH1=RLPHA
CUO=CU1
CUi=CU2
CCo=CC
CC1=CC2
SOLUE QUADRATIC FOR ALPHA 5.T. CU=CC:
CALL NEWALF(COUNT,BO,B1,B2,ALPHA)
ELSE
IF COUNT=0 (FIRST TIME THROUGH LOOP) TAKE THE MIDPOINT OF THE
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THE INTERUAL.
ALPHA=0.5D0* (ALPHO+ALPH1)
END IF

HRITE(NOUTZ2, *)ALPHA
IF((DABS(SAVEFN) ,LE.FTOL).OR, (DABS(ALPHA-ALPH1) .LE.ATOL)) THEN
ALL DONE, THING WORKED.
DONE=.TRUE.
CALCULATE INTERNAL ENERGY/KT:
ENERGY=CONFIG(DR, IPOT,RO,BUIJ,PAIR,
3$ TRED,EPSI1,SI1GHA, TCORR)
TCORR=TAIL CORRECTION TO THE INTERNAL ENERGY OUER KT.
CALCULATE FLUCTUATION INTEGRALS,
CALL KIRKWD(DR, TOTAL,AFF INS)
ELSE
NOT DONE, NOT FRILED.
COUNT=COUNT+1
CALL DO3D(ALPHA, IPOT,SIGNA,EPSI,CORE,RD, TRED,G,BUIJ, UPRITNE,F,
$PAIR,DIRECT, TOTAL,BATH, IE,BADNAT, DR, JP, NI, PRESSU, CUZ,CC2)
HRITE(NOUTZ2, 110)COUNT
110 FORNAT(/1X, 'AFTER ', 13,"' TRIALS:")
WRITE(NOUT2, 120)ALPHO, ALPH1, ALPHA
120 FORMAT(1¥,'A0=',D13.6,' A1=',D13.6,' A=",D13.6)
URITE(NOUTZ2,130)F0,F1
130  FORMAT(1X,'F0=',D13.6,' Fi=',D13.6)
SRUEFN=CC2-CU2
ConPC=CC2
END IF
ELSE
DISTRIBUTION FUNCTION CALCS FRILED.
DONE=.TRUE.
END IF
IF((.NOT,DONE) .AND. (COUNT.LE.HAX)) GO TG 100
END IF
ALPHA CARRIES A FACTOR OF ASIGNA(1) (1.E. THE SMALL LJ DIANMETER) AND
S0 1S DINENSIONLESS.
IF(COUNT.GT.NAX) THEN
ALPHR DIDN'T CONVERGE, BAD NEUS.
BADALF=, TRUE.
END IF
ERROR=0
IF(BADNAT) THEN
ERROR=1
END IF
IF(IE.LT.0) THEN
ERROR=2
END IF
IF(BADALF) THEN
ERROR=3
END IF
RETURN
END
KA A A A 3R KK KK MK K 3 5K 0K KK HOIK K o 3K KKK Ko K KK
SUBROUTINE DETAIL
PURPOSE-DETERMINES IF THE USER WANTS LONG OR SHORT OUTPUT.

DATE 6/9/87
CODED BY DAUID PFUND
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THIS ROUTINE CALLS:~-
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SUBROUTINE DETAIL(LOTS)
INPLICIT REAL*8(A-H,0-2)
LOGICAL LOTS
CONNMON/DEVICE/NIN,NOUT1 ,NOUTZ, INOPT
INTEGER ICODE
LOTS=.FALSE.
CONTINUE
IF{NIN,EQ.5) THEN
WRITE(NOUT?, 100)
FORMAT(/1X, 'D0 YOU UANT DETARILED OUTPUT (1/0)7')
END IF
READ(NIN,*}1CODE
IF({NIN.EQ.5) .AND. ((ICODE.HE.O0).AND. (1CODE.NE.1))) GO TO 50
IF((NIK.NE.5).AND.((ICODE.NE.0).AND. (ICODE.NE. 1))} THEN

C USER FOULED UP FILE INPUT. CHOOSE RESTRICTED OUTPUT AND

C KEEP GOING,
1CODE=0
URITE(NOUT2, 150)
150  FORMAT(/1X, 'AN INUALID CHOICE FOR PRINT OPTION UAS MADE.')
URITE(NOUT2,16D)
160  FORMAT(1X, 'UALID CHOICES ARE: ')
HRITE(NOUT2,170)
170 FORNAT(1IX,"® 1- DETRILED OUTPUT')
HRITE(NOUT2,180)
180  FORMAT(1X,'  0- SHORT OUTPUT (RDF ONLY)')
WRITE(NOUTZ2,190)
190  FORMAT(1X,'] HAUE CHOSEN OPTIGH O FOR YOU.')
EHND {F
IF(ICODE.EQ.1) THEN
LOTS=.TRUE.
EHD IF
RETURN
END
R L L L L L T e e T P e e
c SUBROUTINE FILES
c PURPQOSE-SETS DEVICE NUNBERS FOR INPUT AND OUTPUT,
c DEVICE NUNBERS ARE CONTAINED IN COMMON BLOCK
c /DEVICE/. READS ARE FROM DEVICE °'NIN'. URITES ARE
c TO DEVICES 'HOUT1' AND 'NouT2',
c NOUT1 IS FOR DIALOG, HOUT2 1S FOR ANSUERS,
c
¢ DATE 1/23/86
c CODED BY DAVID PFUND
c
c THIS ROUTINE CALLS:-
€ HRAOK RN A AR AR A OK IR AR K AR S SR 3K KR 32 3 oK A 3 3 30 3K 3 K oK A K
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SUBROUTINE FILES
CONMON/DEVICE/NIN, NOUT T, NOUT2, INOPT

READ CODE FRON SCRATCH UNIT FT25F001
FT25F001 HAS SET UP [H CLIST RHD PASSED TO THE PROGRAN
CODE CAN HAUE THE FOLLOUING UALUES:

-1 OR 1 CONVERSATIONAL INPUT;TERMINAL OUTPUT
-2 OR 2 FiLE INPUT; TERMINAL OUTPUT
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-3 OR 3 FILE INPUT; FILE OUTPUT
-4 OR 4 CONUVERSATIONAL INPUT; FILE OUTPUT
END OF FILE INDICATES A BATCH RUN.

c
C
C
o
C POSITIVE INTEGER INDICATES A CRT IS BEING USED
C NEGATIVE INTEGER INDICATES A TELETYPE TYPE OF DEVICE IS BEING USED,
c
REWIND 25
READ(25,*,END=500) INOPT
c INOPT=3
INABS=1ABS (I NOPT)
G0 To (100,200,300,400), INABS
HRITE(6,5)
S FORMAT(//*' INVALID INPUT/OUTPUT CODE. JOB TERMINATED.')
STOP

CONVERSATIONAL INPUT; TERMINAL OUTPUT

oQo0O0

100 CONTINUE
HiN=5
NOUT1=6
HOUT2=6
GO T0 600

FILE 1HPUT; TERHMINAL OUTPUT

OO0

200 CONTINUE
NIN=4
NOUT1=6
NOUT2=6
GO TO 600

FILE INPUT; FILE OUTPUT

OO0

300 CONTINUE
HIN=4
NOUT1=6
NOUT2=7
60 TO 600

CONUVERSATIONAL INPUT; FILE OUTPUT

OO0

400 CONTINUE
NIN=S
NOUT1=6
NOUT2=7
GO TO 600

o0

END OF FILE - BATCH EXECUTION

500 CONTINUE
NiN=4
NOUT1=6
NOUT2=6
NOUT1=17
NOUT2=17

OO0

600 CONTINUE
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RETURN
END
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SUBROUTINE GOOF

PURPOSE-PRINTS A NASTY NESSAGE WHEN HNSA CALCULRTIONS FOR
THE BULK PHRASE FAIL.

DATE 7/23/87
REVISED 10/24/88

CODED BY DAVID PFUND

THIS ROUTINE CALLS:-

3k e e o 03K 2 3 2K 3 3 e 3 K K K33 0 30 3 K 3K K K 3 3 2K 2 2K K3k 0 K 9 3 3K 5 3K 3K K 3K 3K 3K K 3 3K sk e 3K K ok 3 o 3 Sk Sk 3 ok

SUBROUTINE GOOF (ERROR,KEPS!,SOFTD, TEMP,RO, K1)

INPLICIT REAL*8(A-H,0-2)

REAL*8 SOFTD(3),KEPSI(3)

REAL*B TENP, X1

REAL*8 RO(3)

INTEGER ERROR

COMNON/DEVICE/NIN,NOUT1,HOUT2, INOPT

HRITE(NOUT2,3)

FORNAT(/1X, 'HNSA CALCULATIONS FAILED FOR THE FOLLOWING
SCONDITIONS')

NRITE(NOUT2,S)

FORMAT(/1X, ' INPUT PARANMETERS FOR THE LENNARD-JONES POTENTIAL:')
HRITE(NOUT2,10)S0FTD(1),KEPSI(1)

FORNAT(3X, 'SIGNATT: ',D11.4,' ANGSTROHS, EPSILONIT: ',
$D11.4," KELVIN')

HRITE{NOUT2,20)SOFTD(3),KEPSI(3)

FORMAT(3X, 'SIGMA12: *,D11.4,' ANSTRONS, EPSILONI2: °,
$D011.4," KELVIN')

HRITE(NOUT2,30)SO0FTD(2) ,KEPS1(2)

FORMAT(3X, 'SIGNA22: ',D11.4,' ANGSTROMS, EPSILON22: *,
$011.4," KELUIN')

HRITE(NOUT2,70)TENP

FORMAT(/34, " TENPERRTURE= ' ,D11.4," KELUIN')
HRITE(NOUT2,80)R0O(1) /X1
FORNAT(3X, * DENSITY= ',D11.4,' (DENRSITY*

$SIGNAT1**3) ")
NRITE(NOUT2,90)X!1
FORNAT(3X, 'NOLE FRACTION SPECIES 1= *,D11.4)
IF(ERROR.EQ.1) THEN
HURITE(NOUT2,100)
FORMAT(3X, 'MIXTURE RDF CALC. FAILED. BAD HATRIX.')
END IF
IF(ERROR.EQ.2) THEN
HRITE(HOUT2,200)
FORMAT(3X, 'MIXKTURE RDF CALC. FAILED. RDF HOT COHUERGED.')
END IF
IF(ERROR.EQ.3) THEN
URITE(NOUT2,300)
FORMAT(3X, 'MIXTURE RDF CALC. FAILED. ALPHA NOT CONVERGED.')
END IF :
RETURH
END

C **#****#****l*****************#**********l*******l*****i*******t****
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SUBROUTINE NMUGOOF

PURPOSE-PRINTS A NASTY MESSRGE TEST PARTICLE CALCULATIONS
FAIL.

DATE 10/24/88
CODED BY DAVID PFUND

THIS ROUTINE CALLS:-

2036 300 3 340 R 2000 3K 0 30 R 3 N 3K 3 R KK 3 3K 200 40K 3K e 3 K 3K 04 3 3K K O 3 0K K ORI S O K K KK

SUBROUTINE MUGOOF (ERROR, DL {KE, DUNLKE)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 DLIKE, DUNLKE

INTEGER ERROR

COMMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

WRITE(NOUT2,3)

FORNMAT(/1X, 'CHENICAL POTENTIAL CALC. FAILED FOR THE FOLLOWING
$ASSUNED PARAMETERS: ')

HRITE(NGUT2, 10)DL I KE, DUNLKE

FORMAT(3X, 'DRA/SIGNATT: ',D13.6,' DAB/SIGHA11: ',D13.6)
IF(ERROR.EQ.4) THEN

HRITE(NOUT2,400)

FORMAT(3X, 'TEST PARTICLE RDF CALC., FAILED. RDF NOT CONUERGED.')
END IF

IF(ERROR.EQ.5) THEN

C NOTE, THIS ERROR SHOULD NO LONGER OCCUR SINCE THE NEWTON ITERATIONS
C HAVE BEEN REMOQUED FROM SUBROUTINE DILUTE.

500

600

c
C
c
c
c
c
c
¢
¢
c
c
c
c

URITE(NOUT2,500)
FORNAT(3X, 'TEST PARTICLE RDF CALC. FAILED. BAD MATRIX.')
END IF
IF(ERROR.EQ.6) THEN
URITE(NOUT2,600)
FORNAT(3X, 'DERIVATIVE CALC. FAILED. MIXKTURE RDF NOT CONUERGED.')
END IF
RETURN
END
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SUBROUTINE PRINTR

PURPOSE-PRINTS RESULTS OF THE CALCULATIONS FOR THE BULK PHASE.

DATE 6/9/86

REUISED 1/15/88 TO PRINT (COHMPRESS. EQN. - VIRIAL EQN.)
COMPRESSIBILITIES DIVIDED BY KT AND ALPHA
ITERATION COUNT.

10/24/88 RENOVED THE CHENICAL POTENTIAL CALCULATION

RESULTS,

CODED BY DAVID PFUND

THIS ROUTINE CALLS:-

C 20000 280 20000 20 26000 000 K 300 20 0 20 00 30 200300 20 30 0020 3020 0 3 0 3 98 3 28 5K 3 3 2 6 30 200 0 3 2 3 2 240 30 30 24 3K 30 00k 3K KK

SUBROUTINE PRINTR(LOTS,DR,PAIR,DIRECT,TOTAL,BATH,
$ KEPSI,SOFTD, TENP,RO, X1,G,ACOUNT,
$ ALPHA, PRESSU,ENERGY, CERROR, COMPC, AFF INS)
INPLICIT REAL*8(A-H,0-2)

REAL*8 6(2048,3)

REAL*8 PAIR(2048,3),DIRECT(2048,3),TOTAL(2048,3),BATH(2048,3)
REAL*8 RFFINS(2,2)
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REAL*8 KEPSI(3)
REAL*8 SOFTD(3)
REAL*8 RO(3)
REAL*8 TENP, X1
REAL*8 DR
REAL*8 PRESSV,ENERGY
REAL*8 CERROR
REAL*8 COMPC
INTEGER N
INTEGER L, M
INTEGER RCOUNT
LOGICAL LOTS
COMMON/TYP/JT, N
COMNON/DEVICE/NIN,NOUT1,NOUT2, INOPT
DATA CONU/D.602204500/
HRITE(NOUT2,5)
5 FORHAT(/1X,'INPUT PARAMETERS FOR LENNARD-JONES POTENTIAL:')
WRITE(NOUT2,10)SOFTD{1),KEPSI(1)
10 FORMAT(3X,'SIGNAT1: *,D11.4,' ANGSTRONS, EPSILONIT: °,
$D11.4,* KELUIN")
HRITE(NOUTZ,20)SOFTD(3),KEPSI(3)
20 FORMAT(3X,'SiGMAt2: ',D11.4,' ANGSTROMS, EPSILON12: °,
$D11.4,' KELVIN®)
HRITE(NOUT2,30)SOFTD(2),KEPSI(2)
30  FORMAT(3X,'SicHAz2: ',D11.4," ANGSTRONS, EPSILON22: *,
$D11.,4,' KELUIN')
WRITE{NOUT2, 65)ACOUNT
65 FORNAT(/1X,'AFTER *,13,' ITERATIONS ON THE HHSA PARAMETER: ')
WRITE(NOUT2, 70)TENP
70  FORNAT(/1X, 'SOLUTION FOR TEMPERATURE= ',D11.4,' KELUIN")
WRITE(NOUT2,80)R0(1) /X1
B0  FORMAT(1X,' ‘
$' (DENSITY*SIGHA11%%x3)")
URITE(NOUT2,82)K1
82 FORMAT(1X,' MOLE FRACTION SPECIES 1= ',D11.,4)
WRITE(NOUT2, 83)ALPHA
83  FORMAT(/1X, 'HHSR PARANETER: ',D11.4)
’ URITE(NOUT2,84)CONPC
€ conpPc=(1/KT)*(THE PARTIAL DERIUATIVE OF THE PRESSURE W.R.T. THE
C DENSITY AT CONST TEMPERATURE AND COMPOSITION).
84  FORMAT(IX, 'COMPRESSIBILITY/KT: ',D13.6)
UR!ITE(NOUT2, 85)CERROR :
85 FORMAT(1X, '{CONMPRESS-VIRIAL)COMPRESSIBILITY/KT: ',D13.6)
C UE'RE PRINTING OUT THE COMPRESSIBILITY FACTOR Z=P/(RHO*KT) HERE:
WRITE(HOUT2,86)PRESSU/(RO(1)+R0(2))
86  FORMAT(1X, 'VIRIAL PRESSURE/{RHO*KT): ',D13.6)
C ENERGY=CONFIGURATIONAL (OR RESIDUAL) INTERNAL ENERGY *(1/KT).
URITE(NOUT2, 88 )ENERGY
88  FORNAT(/1X, 'CONFIGURATIONAL ENERGY/KT: ',D13.6)
C CONVERT AFFINITIES FROM CU.RNGSTROM/(SOFTD(1)**3) TO CU.ANGSTRONS
C BEFORE PRINTING. THE AFFINITIES ARE ACTUALLY THE KIRKHOOD FLUCTUATION
C INTEGRALS. THE MAGNITUDE IN CU. ANGSTROMS DEPENDS ON THE SIZES (IN
C ANGSTROMS) OF THE MOLECULES IN THE FLUID.
CUBE=SOFTD(1)*SOFTD{1)*SOFTD(1)
AFFINS(1,1)=AFFINS(1, 1)*CUBE
AFFINS(1,2)=RFFINS(1,2)*CUBE
AFFIN5(2,1)=AFFINS(1,2)
AFFINS(2,2)=AFFINS(2, 2)*CUBE

DENSITY= *,D11,4,
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HRITE(NOUT2,92)
92 FORHAT(/1X, 'KIRKHOOD-BUFF FLUCTUATION INTEGRALS:')
HRITE(NOUT2,93)AFFINS(1,1)
93 FORMAT(3X,'G11= ',D13.6,' CU. ANGSTRONS')
HRITE(NOUT2,94)AFFINS(1,2)
94 FORMAT(3X,'G12= *,D13.6,"' CU. ANGSTRONS')
HRITE(NOUT2,95)RFFINS(2,2)
95 FORMAT(3X,'622= ',D13.6,' CU. ANGSTRONS')
IF(LOTS) THEN
€ USER HANTS THE LONG FORMAT PRINT OQUT.
C PRINT OUT ALL CORRELATION FUNCTIONS (CURRENT FORMAT 1S UERY
C SLOPPY).
D0 150 J=1,3
L=J
h=J
IF(J.EQ.3) THEN
L=1
N=2
END IF
NRITE(NOUT2,99)L,0
99 FORMAT(/1X,‘FOR L= ',13,"' N= ",13)
URITE(NOUT2,105)
105 FORNMAT(/1%,2X%, ‘R/SIGNATT",8X, 'G(L,M)", 8%, 'C(L,Mm",
$8X, 'v(L,Mm*)
DO 120 I=60,404
REAL =]
RADIUS=DR*REAL |

c BRIDGE=DLOG(BATH(1,J))=((PAIR(1,J)~-1.0D0)-DIRECT(1,J))
c URITE(NOUT2, 110)RADIUS,PAIR(1,J),DIRECT(I,J),BRIDGE
URITE(NOUT2,110)RADIUS,PAIR(E,J),BIRECT(1,J),BATH(I,J)
c SHT=SWITC2(RADIUS, ALPHA)
c HRITE(NOUT2, 110)RADIUS,G(1,J),DIRECT(1,J),SHT,BATH(I,J)
110 FORMAT(1X,D13.6,4X,D13.6,4X,D013.6,4%,D13.6)
c110 FORMAT(1X,D12.5,2X,D12.5,2%,D12.5,2%,012.5,2%,D12.5)
120 CONTINUE
DO 140 1=408,600,4
REAL =1
RAD I US=DR*REALI
c BRIDGE=DLOG(BATH(1,J))-((PAIR(],J)~1.0D00)-DIRECT(I,J))
c NRITE(NOUTZ2, 130)RADIUS,PRIR(I,J),DIRECT(I,J),BRIDGE
HRITE(NOUTZ2, 130)RADIUS,PRIR(1,J),DIRECT(I,J),BATH(I,J)
c SHT=SHITC2(RADIUS, ALPHA)
c HRITE(NOUTZ2, 130)RADIUS,G{I,J),DIRECT(1,J),SHT,BATH(I,J)
130 FORMAT(1X,D13.6,4X,D13.6,4X,D13.6,4%,D13.6)
c130 FORMAT(1¥,D12.5,2X,D12.5,2X,D12.5,2%,D12.5,2X,D012.5)
140 CONT INUE
150 CONTINUE
ELSE
HRITE(NOUT2,200)
200 FORNAT(/1X,2X, 'R/SIGNAT1", 11X, 611,14, 'G12*, 14X, '6G22")
DO 300 1=60,300,1
REAL I=]
RAD1US=DR*REAL I
WRITE(NOUT2,250)RADBIUS,PAIR(I,1),PAIR(I,3),PAIR(I,2)
- 250 FORMAT(1X,D13.6,4%,D013.6,4%,D13.6,4%,013.6)
300 CONTINUE

DO 400 1=304,416,4
REALI=1
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RAD 1US=DR*REAL 1
WRITE(NOUT2,35C)RADIUS,PARIR(L,1),PAIR(L,3),PAIR(1,2)
3590 FORMAT(1X,D13.6,4X,D013.6,4%,013.6,4X,D13.6)
400 CONTINUE
DO 500 1=424,2048,8
REAL =1
RAD IUS=DR*REAL |
WR1TE(NOUT2,450)RADIUS,PAIR(!, 1) ,PAIR(!,3),PAIR(I,2)
450 FORMAT(1X,D13.6,4%,D13.6,4%,D13.6,4X,D13.6)
500 CONTINUE
END IF
RETURN
END
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SUBROUTINE PRNTMU
PURPOSE-PRINTS RESULTS OF THE CHEMICAL POTENTIAL CALCULATIONS,
DATE 10/24/88

CODED 8Y DAVID PFUND

THIS ROUTINE CALLS:-
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SUBROUTINE PRNTHU(I1POT,DR,DLIKE, DUNLKE,
$ INT1, INT2,E1,E2, YU, YUIDL, YUHS, W, DHUDRO)
INPLICIT REAL*8(A-H,0-2)
REAL*8 YU,YUIDL, YUHS
REAL*8 INT1,INT2
REAL*8 E1,E2
REAL*8 U
REAL*8 DL IKE,DUNLKE
REAL*8 DNMUDRO
INTEGER {POT
COMMON/DEVICE/NIN, NOUT1,NOUT2, INOPT
URITE(NOUT2,S)
5  FORMAT(/1X,'INPUT PRRAMETERS CHEM. POTENTIAL CALCULATION:"')
R I TE(NOUT2, 10)DLIKE, DUNLKE
10 FORMAT(3X, 'DRA/SIGMATY: *,D13.6," DAB/SIGMA1I: ',D13.6)
IF(IPOT.EQ.0) THEN
HRITE(NOUT2,50)YU
50 FORMAT(/1X, 'CHEMICAL POTENTIAL OF SPECIES 2/KT: ',D13.6)
END IF
IF(IPOT.EQ.1) THEN
URITE(NOUT2, 100) YU
100 FORMAT(/1X, 'CHENICAL POTENTIAL OF SPECIES 1/KT: *,D13.6)
END IF
C CORE= THE MORK OF INSERTING THE EFFECTIVE HARD SPHERE TEST PRRTICLE
¢ DIUIDED BY KT.
CORE=YUHS-YU1DL
URITE(NOUT2,200) CORE
200 FORMAT(1X," (CORE CONTRIBUTION/KT WAS: *,D13.6,°)")
C BE= A CRUDE UPPER BOUND ON THE ABSOLUTE VALUE OF THE NEGLECTED BRIDGE
C FUNCTION INTEGRALS IN THE WORK OF SOFTENING FORMULA *(1/KT).
BE=E1+E2
WRITE(HOUT2,300) INT1, INT2,BE
C INT1=THE CONTRIBUTION TO THE WORK OF SOFTENING/KT DUE TO INTERACT!IONS
C OF THE TEST PARTICLE MITH SPECIES 1 IN THE BATH.
C INT2=THE CONTRIBUTION TO THE WORK OF SOFTENING/KT DUE TO INTERACTIONS
C OF THE TEST PARTICLE WITH SPECIES 2 iN THE BATH.

¢
c
c
c
c
c
c
c
C
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300 FORMAT(1X,'(SOFT REPULSIVE CONTRIBUTION/KT WAS: ',D13.6,"' + ',
$013.6,"' +/~- ',D13.6,')")
YUATTR=YU~YUHS-INT1-1HT2
HRITE(NOUT2,400)YUATTR

400  FORMAT(1X,' (ATTRACTIVE CONTRIBUTION/KT WAS: °*,D13.6,')")
WRITE(NOUT2,500)YUIDL

S00  FORMAT(1X,' (IDEAL GAS CONTRIBUTION/KT WAS: ',D13.6,')")
WRITE(NOUT2,600)1U

600 FORMAT(1X,' (BRSED ON A MOL.HT. OF: ',B13.6,')")

c WRITE(NOUT2,700)
C700  FORMAT(1X, *SPECIES DENSITY*(DERIVATIVUE OF THE COMPONENT ')
c NRITE(NOUT2,800)DMUDRO
€800  FORHMAT(1X,'CHEM. POTENTIRL W.R.T. DENSITY): ',D13.6)
RETURN
END
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FUNCTION CONFIG
PURPOSE-DETERNINES THE CONFIGURATIONAL INTERHAL ENERGY
DIVIDED BY KT. '

C

c

c

C

c

c DATE 8/24/87

c REVISED 8/28/87 - ADDED TAIL CORRECTION.
¢ CODED BY DRUID PFUND
c

c

C

c

C

C

c

THIS ROUTINE CALLS: SUBROUTINE SINP-INTEGRATES THE REQUIRED
PRODUCTS OF ENERGIES,DENSITIES AND RDF'S.
SUBROUTINE TAIL- COMPUTES THE TAIL
CORRECTION TO THE COMNFIGURATIONAL
INTERNAL ENERGY DIVIDED BY KT.
2 24 3 3 3 2 3 2K M K 8 3K 2 K 3 2 300 300K K 2 6 R 3K 2 K 3 K 3K 2 3 o A B K O 30 3 O 0 38 K K 3 0 20 3 e K 8 SI0OKOKOK K K K K KOk
REAL FUNCTION CONFIG(DR, IPOT,RO,BU1J,PAIR, TRED,EPSI,
$SI1GHA, TC)
INPLICIT REAL*8(A-H,0-2)
REAL*8 DR
REAL*8 RO(3)
REAL*8 EPSI1(3),SIGHA(3)
REAL*8 BU1J(2048,3)
REAL*8 PAIR(2048,3)
REAL*8 FUNCT(2048,3)
RERL*8 ENERGY
REAL*8 TRED
REAL*8 TC
REAL*8 RHO
INTEGER IPOT
INTEGER ERROR
INTEGER JT,N
INTEGER IFUNC
LOGICAL PNOM
COMNON/TYP/JT,N
COMHON/DEVICE/NIN,NOUT1,NOUT2, INOPT
PNOW=.FALSE.
C NEED TOTAL DENSITVY:
RHO=RO(1)+R0(2)
C PREPAIR INTEGRAND:
D0 100 I=1,N
FUNCT(H, 1)=BUIJ(1, 1)*PRIR(I,1)
FUNCT(1,2)=BUIJ(I,2)*PAIR(I,2)
FUNCT(1,3)=BUIJ(I,3)*PRIR(I,3)
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100 CONTINUE
INTEGRATE. ..
PNOW=.FALSE.
CALL SiNP(DR,RO,FUNCT,ENERGY, PHOU)
ENERGV=0.5DO*EHERGY/RHO
COMPUTE TRIL CORRECTION.
"IFUNC" IS A SELECTOR. |FUNC=0 MEANS DO TAIL CORRECTION TO THE
INTERNAL ENERGY.
1FUNC=0
CALL TAIL{IFUNC,DR, IPOT,TRED,EPSI,SIGHA,RD, TC,ERROR)
ENERGY=ENERGY+TC
CONF | G=ENERGY
RESULT {S ENERGY DIVIDED BY
KT; 1T 15 DINENSIONLESS.
RETURN
END
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SUBROUTINE DO3D

PURPOSE-CALCULATES THE DISTRIBUTION FUNCTIONS AT FOUR
DENSITIES FOR A GIVEN UALUE OF THE PARANETER
“ALPHA". THE (VIRIAL PRESSURE*(ASIGHA(1)**3))/KT
IS CALCULATED
AT EACH OF THESE DENSITIES AND THE RESULTS ARE
USED THE ESTIMATE THE CONPRESSIBILITY. THE
COMPRESSIBILITY 1S ALSO CALCULATED FROH THE
COMPRESSIBILITY EQUATION,
SUBROUTINE DO3D ALSO RETURNS THE DISTRIBUTION
FUNCTIONS AND THE VIRIAL PRESSURE DIVIDED BY KT.
(C.F. ZERAH AND HANSEN, J. CHER. PHYS.,
VoL. 84, NO 4, P. 2336, FEBRUARY 1986)

c

c

c

c

c

c

c

c

c

c

c

¢

c

C

c

c DATE 8/14/87

¢ REVISED 2/18/88- TO MAKE FOUR CALCULATIONS OF THE UVIRIAL
o PRESSURE INSTERD OF JUST THREE AND TO
C PASS COMPU AND COHPC BACK TO SUBROUTINE
c FINDR.
c CODED BY DAUID PFUND

c

c

c

o

c

c

c

c

c

¢

c

c

(

c

c

c

THIS ROUTINE CALLS: SUBROUTINE MINS- EVALUATES HININUR
PAIR POTENTIALS DIVIDED 8Y KT ANHD THE
SEPARATION DISTANCES AT THE NINIMA
DIVIDED 8Y THE SHMALL CORE DIANETER.
SUBROUTINE LABIK-CALCULATES THE
DISTRIBUTION FUNCTIONS.
SUBROUTINE VIRIAL-CALCULATES THE UVIRIAL
PRESSURE DIVIDED BY KT.
FUNCTION DERIU-NUNERICALLY ESTINATES THE
THE DENSITY DERIVATIVE OF THE VIRIAL
PRESSURE DIVIDED BY KT,
FUNCTION CONMPRS-CALCULATES THE DENSITY
DERIVATIVE OF THE COMPRESSIBILTY PRESSURE
DIVIDED BY KT.
303055 305K O KK K 3 KK O 6 K o 3 KK SR Ao 3R 2K 3 K3 K K 3 KK R 3O 363K K 36 365K KK Ok ok
SUBROUTINE DO3D(ALPHA, IPOT,SIGHA,EPSI, CORE,RO, TRED,G,BUlJ,UPRIIIE,
$ F,PAIR,DIRECT,TOTAL,BATH, |E, BADNAT,DR, JP, NN,
$ PRESSU, CONPU, CONPC)
IMPLICIT REAL*B(A-H,0-2)
REAL*8 G(2048,3)
REAL*8 PAIR(2048,3),DIRECT(2048,3),TOTAL(2048,3),BATH(2048,3)
REAL*8 SIGNA(3),R0(3),EPSI(3)
REAL*E F(2048,3)
REAL*8 UPRINE(2048,3)
REAL*8 BUIJ(2048,3)
REAL*8 ALPHA
REAL*8 PUG,PU1,PU2,PRESSU
REAL*8 TRED,DR
REAL*8 DELTA
REAL*8 RHO(3)
REAL*8 CORE(3)
REAL*8 S1J(3),U1J4(3)
REAL*8 ALFNEU
INTEGER IPOT,IE,JP
INTEGER JT,HN,Nn
LOGICAL BARDNAT
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COMNON/HNMSA/ALFHEN, UIJ,51J
CONMON/TYP/JT N
COMMON/DEVICE/NIN, NOUT1, NOUT2, INOPT
DATA DELTAR/-0.0005D0/
c DATA DELTA/-0.0002500/
C ALPHA 15 THE HNSA PARAMETER. 1T 1S PASSED THROUGH COMMON/HMSA/
C TO SUBROUTINE CFG, WHERE 1S 1S USED IN THE HMSAR THEORY'S
C CLOSURE EQUATION. COMHMON/HNMSRA/ IS ALSO USED TO PASS ALPHA TO
C SUBROUTINE CORFU, WHERE THE CORRELATION FUNCTIONS ARE CALCULATED.
C UlJ ARE (POTENTIAL MINIMA)/KT.
C SI1J=(SEPARATION OF | AND J AT THE POT. MINIMUM)/ASIGHA(1)
CALL MINS(1POT,SIGHA,EPSI, TRED,V1d,S1J)
ALFHEN=ALPHA
C DELTA=STEP SI1ZE FOR THE HUNERICAL ESTIMATE OF THE DENSITY DERIVUATIVE.
RHO(1)=(1.0D0+(4.0DO*DELTR) )*R0O(1)
RHO(Z)=(1.0D0+(4.0DD*DELTA))*R0O(2)
RHO(3)=(1.0D0+(4,0DO*DELTA) )*RO(3)
C CONPUTE DISTRIBUTION FUNCTIONS:
CALL LABIK(IPOT,BUIJ,F,SIGNMA,EPSI,RHO, TRED,G,PAIR,
$ DIRECT, TOTAL,BATH, |E, BADMAT, DR, JP, HM)
IF{(1E.GT.0).AND. (. NOT.BADMAT)) THEN
C COHPUTE THE (VIRIAL PRESSURE*(AS|IGHA(1)**3))KT:
CALL UIRIAL(IPOT,DR,RHO, TRED, SIGNA,EPSI,CORE,BUIJ, UPRINE,PRIR,
$PUD)
RHO(1)=(1,000+(2.0DO*DELTA) )*RO(1)
RHO(2)=(1,0D0+{2.0DO*DELTR) )*R0O{2)
RHO(3)=(1.000+(2.0D0O*DELTA) )*RO(3)
C JP=2 => USE HARD SPHERE INITIAL GUESS HHEN CALCULATING
C DISTRIBUTION FUNCTIONS,
€ JP=1 => USE LAST RESULT AS INITIAL GUESS
C (THE PROGRAAM BEGINS WITH JP=2 THEN SWITCHES TO JP=1 IF THE
C FIRST CALL TO LABIK RETURNS SUCESSFULLY).
JP=1
CALL LABIK(IPOT,BUIJ,F,SIGNA,EPS!,RHO, TRED,G,PAIR,
$ DIRECT,TOTAL,BATH, |E, BADNAT, DR, JP, HM)
IF((IE.GT.0).AND.(.NOT.BADHAT)) THEN
CALL UVIRIAL(IPOT,DR,RHO, TRED,SIGMA,EPSI,CORE,BUIJ,UPRINE,PRIR,
$PUL)
RHO{1)={1,0D0+DELTA)Y*RO(1)
RHO(2)=(1,000+DELTA)*RO(2)
RHO{3)=(1,0D0+DELTA)*RO(3)
C DO THO MORE TIMES. GOTTR GET THAT NUMERICAL DERIUATIVE ACCURATE:
CALL LABIK(IPOT,BUIJ,F,SIGHA,EPS!,RHO, TRED,G,PAIR,
$ BIRECT, TOTAL,BATH, |E,BADNAT, DR, JP, K1)
IF({1E.GT.0).AND. (.NOT.BADNAT)) THEN
CALL VIRIAL(1POT,DR,RHO, TRED,SIGHA,EPSI,CORE,BUIJ,UPRINE,PRIR,
$PU2)
CALL LABIK(IPOT,BUIJ,F,SIGNA,EPSI,RO, TRED,G,PAIR,
$ DIRECT, TOTAL,BATH, |E, BADNAT, DR, JP, NM)
IF((1E.GT.0).AND. (. NOT ,BADMAT)) THEN
CALL VIRIAL(IPOT,DR,RD,TRED,SIGHA,EPS],CORE,BUIJ,UPRINE,PAIR,
$PRESSV)
C NUMERICALLY ESTINATE THE DERIUATIVE OF THE (VIRIAL
¢ PRESSURE)/KT
C M.R.T. DENSITY,
CONMPU=DERIVU(PUO,PU1,PU2,PRESSY, DELTA,RO)
C CALCULATE THE (COMPRESSIBILTY PRESSURE)/KT
C FROM THE COMPRESSIBILITY EQUATION.
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COMPC=COMPRS( IPOT,DR,R0, TRED, S1GHA,EPS1, DIRECT)
HRITE(NOUTZ2, 100)PUO,PU1,PU2, PRESSU
100 FORNMAT(/1X, 'PU0="',D13.6," PUi=",D13.6,' PU2=',D13.6,' PU=',D13,6)
HRITE(HOUT2,200)COMPY, COMPC
200 FORMAT(1X, 'COMPU=',D13.6,' COMPC=',D13.6)
END IF
END IF
END IF
END IF
RETURN
END
00 2K 3k 55 2 20 3 4 e 8 e 2 3 3K K e e S 3 3 K K e 3 0 00 3 e K K K K 2 8 3 3 3K K e 3K 98 e 0 K 3 3K e R 3 3K 8 2k 362 6 oK K 3K K 3 kK K
SUBROUT INE GUESSA
PURPOSE-PROUIDES THO INITIAL GUESSES OF THE HNMSA PARANMETER
“ALPHA" (C.F. ZERAH AND HANSEN, J. CHEM. PHYS.,
UOL. 84, NO 4, P, 2336, FEBRUARY 1986)

DATE 8/14/87
REVISED 10/23/87- TO ATTENPT TO PROVIDE INITIAL GUESSES
WHICH HILL BE MORE LIKELY TO BRACKET
THE SOLUTION WITHOUT LEADING TO
EXCESSIVE ITERATIONS IN SUBROUTINE
: FINDA.
2/18/88- ADDED AN ENPIRICAL CORRELATION FOR R
PREDICTED ALPHA UALUE AS A FUNCTION OF
DENSITY AND COMPOSITION. ADDED LOGIC
T0 GIVE UPPER AND LOWER BOUNDS BASED ON
THE PREDICTED UALUE.
CODED BY DAUID PFUND

THIS ROUTINE CALLS:-
KSR K K o 33K 3K K Ko 32K K Ko K K 3 K 3K K KSR KK 3 3K Ko o K oK K K
SUBROUTINE GUESSA(TEMP,RO,SOFTD,KEPS!,ALPHO,ALPHT)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 SOFTD(3),KEPSI(3)
REAL*8 RO(3)
REAL*8 TENP
COMMON/DEVICE/NIN, NOUT1,HOUTZ, INOPT
FOR ROUGH ESTINATES FOR INTIAL GUESSES C.F. TARBLE 11 IN ZERARH AND
HRNSEN.
RHO=RO(1)+R0O(2)
S11=SOFTD(1)**3.0D0
$22=SOFTD(2)**3.000
CONMPUTE AUERAGE SIGHA**3:
$=((R0O(1)*S11)+(R0(2)*S22))/RH0
RHO=SONE APPROPRIATE REDUCED DENSITY.
RHO=RHO*(S/S11)
CONPUTE AVERAGE SI1GHA:
S=5%%(,333333333D0
DINENSIONLESS ALPHAR FROM CORRELATION OF PURE LENNARD-JOMNES AND
STELL-UEIS RESULTS (VERY GOOD FOR PURES):
ANMEAN=(0.5736066D0/RH0)-0.648766D0
PREDICTED ALPHR UALUE NMUST BE REDUCED BY SOFTD(1)
ANEAN=ANEAN*(SOFTD(1)/S)
ESTINATE UPPER RND LOMER BOUNDS ON ALPHRA:
ALPH1=1,333333D0*ANEAN
ALPHO=0. 66666 7DO*ANERN
YOU HAY FIND THAT ALPHO 1S TOO SHMALL WHEN WORKING NEAR THE CRITICAL



o0 [ Mo

COOOOO0OO0O0000O000

OO0 0O000

o

181

POINT. IF SO, TURN ON THE NEXT LINE OF CODE.
ALPHO=ANEAN
IF(ANEAN.LT, (0.6D0*SOFTD(1)/S)) THEN
ALPHO=0.13500
END IF
IF(ALPH1.LT.0.2D0) THEN
ALPH1=0,200
END IF
ALPHO AND ALPH1 ARE ASSUMED TO CARARY A FACTOR OF SOFTD(1), AND
SO ARE DIMENSIOMLESS.
RETURN
END
S AR 3 A IR S A S K A K S 3 KKK K Ko K Ao oo K KK o KoK Ok
SUBROUTINE HAYER
PURPOSE~CALCULATES A VECTOR OF MAYER FACTORS FOR THE DESIRED
INTERNOLECULAR POTENTIAL.

REVISED 6/4/87

THIS ROUTINE CALLS: FUNCTION PS11J- TO CALCULATE THE PAIR
POTENTIAL DIVIDED BY KT FOR A GIUEN
SEPARATION DISTANCE.
25 3k 5524 35 3t 3K 3¢ 3 3¢ 000K 3 2k 200 3 38 38 3k 3 20 e 3 020 3K i 30X K0 K 2000 3K A 3K 3K 2 3 3K K26 3k 2K 3 ok 3K K 5K K K 3% K 3K 3Kk 3 K K KKK
SUBROUTINE MAYER(DR,S1GNA,EPS|,CORE, TRED,F,BUIJ,UPRINE, IPOT,N)
{MPLICIT REAL*8(A-H,0-2)
REAL*8 F(2048,3),SIGHA(3),EPSI(3)
REAL*8 CORE(3)
REAL*8 BU1J(2048,3)
REAL*8 UPRIME(2048,3)
REAL*8 BU,BUP
INTEGER 1P
CONMON/DEVICE/NIN, NOUT!, HOUT2, INOPT
HRITE(NOUT1,10) 1POT,N, DR, TRED
FORNAT(/1X,*IN MAYER',13,* *,13,* *,D11.4,"' ',D11.4)
URITECHOUTT,*)SIGHA(1),SIGNA(2),SIGHA(3)
URITE(NOUT1,*)EPSI(1),EPSI(2),EPSI(3)
F => A UECTOR OF MAYER FACTORS.
F(1,1) = MAYER FACTOR FOR SPECIES 1 - SPECIES 1 INTERACTIONS IN THE
BATH.
F(1,2) = MAYER FACTOR FOR SPECIES 2 - SPECIES 2 INTERACTIONS IN THE
BATH.
F(1,3) = HAYER FACTOR FOR SPECIES 1 - SPECIES 2 INTERACTIONS IN THE
BATH.
SIHILARLY FOR BUIJ AND UPRIME.
BUIJ => A UECTOR OF PAIR POTENTIALS/KT
UPRINE => A UECTOR OF DERIVRTIVES OF PAIR POTENTIALS/KT - USED IN THE
CALCULATION OF THE VIRIAL PRESSURE.
H.R.T. REDUCED SEPARATION DISTANCE R/ASIGHA(1).
“CORE" 1S UNUSED FOR THE LENNARD-JONES POTENTIAL.
1P=0
Rfi=1.0D0
DO 20 K=1,3
DRR=DR*S 1 GHA(1)/S1GRA(K)
T=TRED*EPS! (1) /EPS|(K)
DO 30 I=1,N
REAL =
RR=REAL I *DRR
BU=PS11J(IP,RR,RN,T,BUP)
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BUIJ(!,K)=BU
UPRINE(1,K)=BUP*(SIGNA(1)/SIGNA(K))

C LENNARD-JONES PART

IF((BU.GT.61,0D0).0R. ((REALI*DR).LT.CORE(K))) THEN

F(1,K)=-1.0D0
ELSE
F(1,K)=(DEXP(~BU))-1.0D0
END IF
WRITE(NOUT2,18)1,K
18 FORMAT(1X, ' I= ',13," K= ',I3)

HRITE(NOUT2,*)BUIJ(1,K),UPRINE(I,K),F(1,K)
0 CONT I NUE
20 CONT INUE
c STOP

RETURN
END
63 3 3 3K 3K 5K 2 2 24K 36 2 3 K 0 2 K 3 3 3R 3K 30 3 3 8 0 3K K K 3R e 3 6 55 Kk 3 3k i 3 25 3 K 5 0 3K K K K OF 3 K K K0 K K 3 OK K K KK
SUBROUT INE NEWALF
PURPOSE-F INDS THE ROOT OF A QUADRATIC IF COUNT>=1
(IN SUBROUTINE FIHNDR).

LWOOO

CODED BY DAVID PFUND

THIS ROUTINE CALLS: -
406 40 3 30 3 3 3 K 302 2k 0 e 3 2 3 A e ok 20 e 2K K 2 2 3 83 2 3 0 3K 3K 2 3K e 3 3 R 9% 2 R 3K K R 8K KK K K 3K kK kK K X0k
SUBROUTINE NEMALF (COUNT,BO,B1,B82,ALPHA)
INPLICIT REAL*B(A-H,0-2)
REAL*8 BO,B1,B2
REAL*8 ALPHA
REAL*8 DISCRH
INTEGER COUNT.
COMMON/DEV I CE/NIN,NOUT1,NOUT2, INOPT
C BO,B1,B2 ARE THE COEFFICIENTS OF A QUADRATIC FOR THE COMPRESSIBILITY
C ERROR (COMPU - COMPC) RS A FUNCTION OF ALPHA DERTERMINED BY
SUBROUT I NE
C POLY.
C DON'T CALL THIS SUBROUTINE WHEN COUNT=0 IN FINDA.
DISCRH=(B1*B1)~-(4.0D0*(B0*B2))
IF(DISCRM.LT.0.0D0) THEN
ALPHA=-BO/B1
ELSE
ALPHA=( (~B1)+(DSQRT(DISCRM)))/(2.000*B2)
C (THE OTHER ROOT OF THE QUADRATIC CAUSES DIUVERGENCE)
END IF
RETURN
END
300 e 3 200 3 2 30 e 6 e o oK e 0 3 3000 3K 3K K N e 3 3 3 0 o R ok 3K 3 3 2K 8 5 3 3 3 oK 3 3 8 3K 5 3 3K K 3 3K 3¢ 5K 3K 4 oK 9K K 3k K K
SUBROUT INE POLY
PURPOSE-FITS THE DIFFERENCE OF THE COMPRESSIBILITIES FROM THE
VIRIAL AND COMPRESSIBILITY EQUATIONS TO A QUADRATIC
IN ALPHA.

c
c
c
c
c
c DATE 2/19/88
c
c
¢
c

DATE 2/19/88
CODED BY DAVID PFUND

THIS ROUTINE CALLS: -

3k 35K 3 36 3o 3 300 3 o R K S S M S K 3K o K K K 3K K 3K 3K 3 o 3K o 2K 5K o 3K R K o oK K K A oK K KK
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SUBROUTINE POLY(COUNT,R0,A1,A2,CU0,CU1,CU2,CC0,CC1,CC2,80,B1,B2)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 CUO,CU1,CU2,CC0,CCT,CC2
REAL*8 BO,B1,B2
REAL*8 CO,C1,C2
REAL*8 TERMO, TERM1,TERM2
INTEGER COUNT
COMMON/DEVICE/NIN,NOUT1,H0UT2, INOPT
DIFFERENCES IN UIRIAL AND COMPRESSIBILITY COMPRESSIBILITIES AT EACH
STEP:
CO=CU0-CCO
C1=Cu1-LC1
C2=CU2-CC2
DON'T CALL THIS SUBROUTINE WHEN COUNT=0 IN SUBROUTINE FINDA.
THIS 1S THE LANGRANGIAN FORM OF THE POLYNOMIAL, REARRANGED SLIGHTLY.
TERMO=C0/{ (RO-A1)*{A0~A2))
TERM1=C1/((A1-R0)*(A1~A2))
TERM2=C2/{ (A2-A0)*(A2-A1))
BO=(A1*A2*TERNO) +(A0*A2*TERM1 )+ (A0*AT*TERM2)
B1=((R1+A2)*TERNO )+ ({RO+A2)*TERM1 )+ ((A0+A1)*TERN2)
B1=-81
B2=(TERMO+TERN1+TERN2)
B'S ARE THE COEFFICIENTS OF THE QUADRATIC REQUIRED BY SUBROUTINE
NEWALF .
RETURN
END
A3k M 3 2K 3 9 3K 20K 000K 3 20K 0 e 3 20 20 38 300 38 O a0 2 R 20 2 6 24 3 2K 3 D 3 2 2 K 0 98 3K 3K 208K 3K 3 3K 3 30 3K K K I 2 30 3 32 A 3K 3K 33K K K K KK K
FUNCTION DERIU
PURPOSE-NUNERICALLY ESTINATES THE COMPRESSIBILITY FROM
PRESSURES OBYAINED FRON THE VIRIAL EQUATIOH.

DATE 8/17/87
REVISED 2/18/88 ~ CHRNGED FRON AR SECDND ORDER TO A FOURTH

ORDER FORMNULA,
CODED BY DAUID PFUND

THIS ROUTINE CALLS: - :

3030030 S 200 0 K0 02 K R 3 3 o 23K o o 3K o e S e e o o 30 1 o e ke K ke ke N 9K ok ok KK
REAL FUNCTION DER1U(PUD,PU1,PU2,PRESSU,DELTA,RO)
INPLICIT REAL*8(R-H,0-2)

REAL*8 DELTA

REAL*8 PUO,PU1,PY2,PRESSY

REAL*8 RO(3)

REAL*8 RHO

COMMON/DEVICE/NIN, NOUT1,NOUT2, INOPT

THIS FUNCTION CURRENTLY USES A FOUR POINT FORMARD DIFFERENCE

FORMULA WHICH HAS FOURTH ORDER ACCURACY.

PUO 1S FOUR STEPS FORWARD.

PUT 1S THO STEPS FORWARD.

PU2 IS ONE STEP FORMARD.

PRESSU 1S ON THE NODE OF INTEREST.

(RCTUALLY, WHETHER THE STEPS ARE FORLARD OR BACKUARD DEPENDS

ON THE SIGN OF THE UARIABLE *DELTA" IN SUBROUTINE D03D)
RHO=RO(1)+R0(2)
DERIU=(PUD-(12.0D0*PU1)+(32.0D0*PY2)-(21,0DO*PRESSU) )/

$(12.ODO*DELTA*RHO)
RETURN
END
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5 5055 3K 5K S 336 3K 5K KB S 0 0 0 R 3 2K KKK o K K 3K 3 K 3 3 5K K R 3 K KK 2 K KK K Kk

SUBROUTINE LABIK

PURPOSE-SOLUES THE 0Z EQUATION FOR NMIXTURES WITH THE HMSA
THEORY USING THE HETHOD OF LABIK,NALIJEUSKY, AND
AND VUONKA (MOLECULAR PHYSICS, UOL. 56, NO. 3,
PP.709-71S (1985) )

REVISED: 6/4/87 - ADDED COMMENTS, IMPROVED 1/0, ETC.
2/18/88~ TIGHTEND TOLERANCES ON NENTON AND
DIRECT 1TERATIONS TO BE DONE BY SUBROUTINE
GALER (DONE 7O IMPROVE THE REPRODUCRBILITY
OF THE UVIRIAL PRESSURE AT LOW PRESSURES).

THIS PROGRAN CALLS:
SUBROUTINE GALER-TO SOLVUE THE 02
EQUATION.
SUBROUTINE CORFU-CALCULATES THE PAIR,
DIRECT, AND TOTAL CORRELATION FUNCTIONS
FRON THE 02 SOLUTION.

350K K 35 3 S KK KK I KR 3 3K K A 3K 20K K 5K 0K A K 3 K 2K 5K K 33 5 5 oK o o oK K K KK

$

SUBROUTINE LABIK(IPOT,BUIJ,F,SIGHA,EPSI,RO, TRED,G,PRIR,
DIRECT,TOTAL,BATH, |E, BADNAT,DR, JP, Ni)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 G6(2048,3)

REAL*8 PAIR(2048,3),DIRECT(2048,3),TOTAL(2048,3),BATH(2048,3)

REAL*8 F(2048,3)

REAL*8 BU1J(2048,3)

REAL*8 SIGMA(3),R0(3),EPSI(3)

LOGICAL BADNAT

CONMMON/TYP/JT, N

CONMNON/CONU/CONUD I , CONUNR

CONNON/LUDOL /P

CONNON/DEVICE/NIN, NOUT1,N0UT2, IROPT

NOTE:UP-DIMENSIONED THE ARRAYS FRON 256 TO 2048 (CONMPARED TO

LABIK

'S ORIGINAL PROGRAN.

THE INCREASED ARRAY SIZE ALLOWS A NAX KK OF 11,

10

JT 1S

KRITE(NOUT1,10)

FORNAT(1K, ' IN LABIK")
HURITE(NOUT1,*)IPOT, TRED
HRITE(NOUT1,*)EPSI(1),EPSI(2),EPS1(3)
P1=3.1415926535897932D0

BADNAT=, FALSE.

SET CONUERGENCE CRITERION FOR DIRECT ITERATION,
CONUD!I=0.000001

SET CONVERGENCE CRITERION FOR NEMTON-RAPHSON TRIALS.
CONUNR=0.0001

VESTIDUAL (SPELLING?). LEAVE IT ALONE.
JT=1

SOLVE THE 0Z EQUATIONS FOR THE MIXTURE.

THE "G* OBTAINED FROM THE LAST VALUE OF TEMP AND RO IS AUTOMATICALLY
USED AS AN INITIAL GUESS FOR THE NEU CRSE, AS LONG AS THE LJ PARMS

DON'T

CHANGE AND SUBROUTINE GALER DOESN'T FAIL.

CALL GALER(G,BUIJ,F,HN,DR,RO,JP, 1E,SIGHA, BADNAT)
IFC(IE.GT.0) .AND. (.NOT.BADMAT)) THEN
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IF NOT ERRORS OCCURRED, CALCULATE THE PAIR,DIRECT,BATH, AND TOTAL
CORRELATION FUNCTIONS.
CALL CORFU(DR,BUIJ,F,G,PAIR,DIRECT, TOTAL,BATH)
END IF
RETURN
END
KoK AR SRR H A M KA A KA K A A K A A A AR A K KKK A KK XK A KKK KAk
SUBROUTINE MINS
PURPOSE~CALCULATES THE HMININUM VALUES OF ALL THREE PAIR
POTENTIALS DIUVIDED BY KT. ALSO RETURNS THE
SEPARATION DISTANCES AT THE MININA DIVIDED
BY THE 1-1 LENNRRD-JONES SIZE PARANETER.

REVISED 8/21/87

THIS ROUTINE CALLS: FUNCTION PSI1J- TO CALCULATE THE PAIR
POTENTIAL DIVIDED BY KT AT THE POTENTIAL
MININUH,
4200 200 2 20 3 40 0 20 20 3K 003K 20 0 SN 3K e 0 0 N O 0 N R S R SRR K 9K 3K K TR o 3K T 3 3 0 3 SRR ok O o e e sk
SUBROUTINE MINS(IPOT,RSOFTD,EPS!, TRED,U1J,S1J)
INPLICIT REAL*8(A-H,0-2)
REAL*8 RSOFTD(3),EPSI(3)
REAL*8 TRED
REAL*8 U1J(3)
REAL*8 S1J(3)
REAL*8 BUP
INTEGER {POT
CONMON/DEVICE/NIN, NOUT1,NOUT2, INOPT
SIJ(1) = THE REDUCED SEPARATION DISTANCE OF THE 1-1 POTENTIAL AT
THE MINIHUN,
UIJ(1) = UALUE OF THE 1-1 POTENTIAL AT THE MININHUN.
$1J(1)=(2,0D0%*(1.,0D0/6.0D0))
RM=1,0D0
IP=0
U1J(1)=PSEIJ(IP,S1J(1), RN, TRED, BUP)
UIJ(3)=U1J(1)*EPS| (3)/EPSI(1)
U1J(2)=01J(1)*EPST (2)/EPSI (1)
S1J(3)=S$1J(1)*RSOFTD(3)
$1J(2)=51J(1)*RSOFTD(2)
RETURN
END
3 32 3o 3 202 R S o 2 S o ok K o 305K 3 8 3098 oKl 3 3K 2 2 3 3K 3 K 38 8 3 30 3 20 3K 3 3K 3K 3K 3K 2K K K 3 ok 3K K 0K K
FUNCTION PS11J
PURPOSE~CALCULATES THE PRIR POTENTIAL DIVIDED BY KT,
CURRENT UERSION DOES LENNARD-JONES.

DATE 1/8/87
CODED BY DAVID PFUND

THIS ROUTINE CALLS:-
R A R MR S 3K A SR K R 6K A S K 3K KoK 3 KK KKK
REAL FUNCTION PSI1J(1POT,RSTAR,SSTAR, TENP,BUP)
INPLICIT REAL*8(A-H,0-2)
REAL*8 RSTAR, TEMP,BUP
REAL*B SSTAR
INTEGER 1POT
COMMON/DEVICE/NIN, NOUT1,NOUT2, INOPT
DATA EOVERK/1.0D0/



186

TEMP=SYSTEN TEHPERATURE. |F EOVERK=1.0, THE TEMP IS ASSUNED TO
BE THE TEMPERATURE REDUCED BY EPSILON(I,J).
BUP=THE DERIVUATIVE OF (PAIR POTENTIAL/KT) U.R.T. REDUCED SEPARATION
DISTANCE R/ASIGHA(J).
IPOT=0 => USE LENNARD-JONES POTENTIAL.
R=(ASIGMA |J/SEPARATION DISTANCE)
SSTAR= (LENNARD-JONES SIGHA 1)/ASIGHA(1) ~WHICH 1S ONE FOR THE
LENNRRD
C JONES POTENTIAL.
R=1,0D0/RSTAR
C LENNARD-JONES POTENTIAL
R=R*SSTAR
PSi=(4.0DO*EOVERK)*((R¥*12,0D0)-(R**6.000))
BUP=(24.0DO*EQUERK*R)*((R**6,0D0)-(2.0D0*(R**12.000)))
BUP=BUP/TENP
PSEIJ=PSI/TENP
RETURN
END
SRR IR K IR KA AR K 60K KA K A K AR ORI KA K KR ORI KRR AR KKK KKK KK
SUBROUTINE VIRIAL
PURPOSE-DETERMINES THE VIRIAL PRESSURE TIMNES
(ASIGHA(1)**3)/KT.

ODOOOOOOO0

c

c

c

c

c

c DRTE 8/17/87
c CODED BY DAVID PFUND
c

c

c

c

C

c

c

THIS ROUTINE CALLS: SUBROUTINE SINP-INTEGRATES THE REQUIRED
PRODUCTS OF POTENTIAL GRADIENTS AND
RADIAL DISTRIBUTION FUNCTIONS.
SUBROUTINE TAIL-CALCULATES THE TAIL
CORRECTION TO THE VIRIAL PRESSURE.
ORI A AR I A AR A A A A KA A K HR AR AR AR AR K AR HOK K HOK AR HOOK KK
SUBROUTINE VIRIAL(IPOT,DR,RO, TRED,SIGHA,EPSI,CORE,BUIJ,UPRINE,
$PRIR,PRESSV)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 DR
REAL*8 RO(3)
REAL*8 SIGNA(3)
REAL*8 CORE(3)
REAL*8 EPSI(3)
REAL*8 BU1J(2048,3)
REAL*8 UPRINE(2048,3)
REAL*8 PAIR(2048,3)
REAL*8 FUNCT(2048,3)
REAL*8 TRED
REAL*8 PRESSY
REAL*8 PHARRD
REAL*8 REALI
REAL*8 RADIUS
REAL*8 TC
INTEGER IPOT
INTEGER JT,H
INTEGER ERROR
INTEGER 1FUNC
LOGICAL PNOH
CONMoN/TYP/JT,N
COMNMON/DEVICE/NIN,NOUT1,NOUT2, INOPT
¢ PREPARE THE ARGUHENTS FOR SUBROUTINE SiNP,
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HRITE(NOUTZ, 10) IPOT, DR, TRED

10 FORMAT(/1X, ' IN VIRIAL, IPOT=',13,' DR=',D11.4,* TRED=',D11.4)
HRITE(NOUTZ,*)RO(1),R0(2),R0(3)
WRITE(NOUT2,*)SIGNA(1),S1GHA(2), SIGNA(3)
HRITE(NOUT2,*)U1J(1),U1J(2),U1J(3)

PAIR => PAIR CORRELATION FUNCTIONS.

UPRINE => THE DERIUATIVE OF THE PAIR POTENTIAL W.R.T. REDUCED

SEPARATION DISTANCE DIVIDED BY KT. ALL DISTANCES ARE REDUCED BY

THE 1-1 LJ SI2E PARAMETER (*ASIGHA(1)*).

RO(1) = NUMBER DENSITY OF SPECIES 1* ASIGHA(1)**3,

RO(2) = NUMBER DENSITY OF SPECIES 1* ASIGHA(1)%*3,

RO(3) = RO(1).

DO 100 I=1,N

REAL|=|
RAD IUS=REAL | ¥DR
FUNCT(1,1)=UPRINE(!, 1)*PRIR(I, 1 )*RADIUS
FUNCT(1,2)=UPRINE(1,2)*PAIR(],2)*RADIUS
FUNCT(1,3)=UPRIME(},3)*PRIR(I,3)*RADIUS
WRITE(NOUT2,20)RADIUS

20 FORMAT(/1X,D13.6)
URITE(NOUT2,*)UPRINE(1, 1), UPRINE(!,2),UPRINE(I,3)
HR1TE(NOUT2,*)PRIR(1,1),PRIR(I,2),PAIR(I,3)

100 CONT INUE
PNOU= . FALSE.

INTEGRATE. . .

CALL SINP(DR,RO,FUNCT,PRESSU,PNON)
PRESSU=-PRESSU/6 . 000
PRESSU=PRESSU+R0(1)+R0(2)
RITE(NOUT2,110)PRESSY

110 FORMAT(1X, ' INTEGRAL+DENSITY= *,D13.6)

CALCULATE THE TAIL CORRECTION TO THE UIRIAL PRESSURE,
PHRARD=COREPR (DR, §1GHA, CORE, RO, BU1J, PAIR)
PRESSU=PRESSU+PHRRD
IFUNC=1
CALL TRIL(IFUNC,DR, IPOT, TRED,EPS!,S1GHA, RO, TC, ERROR)
URITE(NOUT2, 130)TC

130 FORMAT(1X, ' TAIL CORRECT{ON= *,D13.6)

PRESSU=PRESSU+TC
HURITE(NOUT2, 200)PRESSY

200 FORMAT(1X, 'TOTOL PRESS',D13.6)

RESULT 1S PRESSURE TINES THE 1-1 LJ SIZE PARANETER CUBED DIUIDED BY

KT; 1T IS DINENSIONLESS.

RETURN
END
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FUNCTION CONPRS
PURPOSE-DETERMINES THE COMPRESSIBILITY OUER KT FROM THE
COMPRESSIBILITY EQUATION,

DATE 8/17/87

REVISED 9/3/87- TO INCLUDE THE TA{L CORRECTION TO THE
CONPRESSIBILITY,

CODED BY DAUID PFUND

THIS ROUTINE CALLS: SUBROUTINE SINP-INTEGRATES THE REQUIRED
DIRECT CORRELATION FUNCTIONS.
SUBROUTINE TAIL-ESTINATES THE TAIL
CORRECTION TO THE COMPRESSIBILITY.
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REAL FUNCTION COMPRS(IPOT,DR,RO, TRED,SIGHA,EPSI,DIRECT)
IMPLICIT RERL*8(A-H,0-2)
REAL*8 DR
REAL*8 TRED
REAL*8 RO(3)
REAL*8 SIGMA(3),EPSI(3)
REAL*8 DIRECT(2048,3)
REAL*8 PRESSC
INTEGER [POT, IFUNC
INTEGER ERROR
LOGICAL PNOM
COMMON/DEUICE/NIN, NOUT1,NOUT2, INOPT
PNOM=.FALSE.
DIRECT => DIRECT CORELATION FUNCTIONS.
RO(1) = NUMBER DENSITY OF SPECIES 1* ASIGHMA(1)*x3,
RO(2) = NUMBER DENSITY OF SPECIES 1* ASIGHA(1)**3,
RO(3) = RO(1).
INTEGRATE. ..
CALL SIMP(DR,RO,DIRECT,PRESSC,PNOW)
PRESSC=-PRESSC/(RO(1)+R0(2))
CALCULATE THE TAIL CORRECTION TO THE COMPRESSIBILITY.
IFUNC=0
CALL TAIL(IFUNC,DR, IPOT, TRED,EPSI,SIGNA, RO, TC, ERROR)
PRESSC=PRESSC+(2.0D0*TC)
PRESSC=PRESSC+1.0D0
COMPRS=PRESSC
RESULT 1S COMPRESSIBILITY DIVIDED BY
KT; IT IS DIMENSIONLESS.
RETURN
END
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SUBROUTINE CORFU
PURPOSE-CALCULATES THE PAIR,DIRECT,AND TOTAL
CORRELATION FUNCTIONS.
CURRENT VERSION ONLY DOES HMSA.

(C.F. ZERAH AND HANSEN, J.CHEM.PHYS. UOL.84, NO.4, P.2336,
FEBRUARY, 1986, FOR DETAILS ON THE HNMSA CLOSURE)

DATE 1/8/87

REVISED FOR NMIXTURES 6/9/87
FOR HNHSA 8/20/87

CODED BY DAVID PFUND

THIS ROUTINE CALLS: FUNCTION SHITCH-COMPUTES THE HHSA
SHITCHING FUNCTION,
HOHORKRN KRR AR RO KR KRR R IR AR ORI A O KA KA HOK oK KKK K
SUBROUTINE CORFU(DR,BUIJ,F,G,PAIR,DIRECT, TOTAL,BATH)
IMPLICIT REAL*8(A~-H,0-2)
REAL*8 BU1J(2048,3)
REAL*8 6(2048,3)
REAL*8 F(2048,3)
REAL*8 PAIR(2048,3),DIRECT(2048,3),TOTAL(2048,3),BATH(2048,3)
REAL*8 DR,REALI
REAL*8 U1J(3),S1J(3)
REAL*8 BOLTZ
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COMMON/HMSA/ALFNEM, U1J,S1J
COMMON/TYP/JT, N
CONMON/DEVICE/NIN, NOUT1, HOUT2, INOPT
G=R*(H(R)-C(R)); DETERMINED BY SUBROUTINE GALER.
F=HMAYER FUNCTION=EXP(-U(R)/KT)-1,
URITE(HOUT1, *)N
D0 200 i=1,N
REAL =1
RAD 1US=REAL I *DR
DO 100,J=1,3
IF JT=1 THEN HHSA.
HMSA. ,
SUT = HMSA SWITCHING FUNCTION. IT'S THE SAME FOR ALL THREE
INTERACTIONS. ALFNEH = THE PARANETER IN THE SHITCHING FUNCTION
HHICH IS MANIPULATED BY SUBROUTINE FINDR TO ACHIEUE PRESSURE
CONSISTENCY.
SUT=SU1TCH(RAD IUS, ALFNEN)
{F(RAD1US.GE. (1.000000100%51J(J))) THEN
EXPO=SUT*((G(|,J)/RADIUS)-BUIJ(1,J))
BOLTZ=BUIJ(I,J)
ELSE
EXPO=SUT*((G(1,J)/RADIUS)-U1J(J))
BOLTZ=U1J(J)
END IF
c URITE(NOUT2,*)RAD, G(1,J),BU1J(1,J),SUT
IF(EXPO,LT.~61.0D0) THEN
EXPO=-61.0D0
END IF
IF(EXPO.GT.61.0D0) THEN
EXPO=61.0D0
END IF
IF(BOLTZ.LT.-61,0D0) THEN
BOLTZ2=-61.0D0
END IF
BOL T2=DEXP (BOLTZ)
BATH(1,J)=0.0D0
(F(DABS(SUT).GT.0.0000000001D0) THEN
BATH(1,J)=((DEXP(EXP0))~1.0D0)/SUT
END IF
BATH(1,J)=BATH{1,J)+1.0D0
BATH(1,J)=BATH(1,J)*BOLTZ
PAIR(1,J)=BATH(1,J)*(1.0D0+F(1,J))
TOTAL(1,J)=PAIR(I,J)=1.000
DIRECT(I,J)=TOTAL(1,J)~(G(1,J)/RADIUS)
100 CONT{NUE
200  CONTINUE
RETURN
END
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¢ SUBROUTINE SINP .
c PURPOSE-INTEGRATES A FUNCTION TIMES DENSITIES
¢ OVER THE UOLUME OF THE SYSTEM. PROCEDURE SIMP USES
c THE SINPSON'S RULE.
c
c
c
c
c

OO0

OO0 0

DATE 6/16/87
CODED BY DARUID PFUND

THIS ROUTINE CALLS: -
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SUBROUTINE SINP(DR,RO,FUNCT, INTGRL , PNOW)
IMPLICIT REAL*8(R~H,0-2)

REAL*8 DR

REAL*8 RO(3)

REAL*8 FUNCT(2048,3)

REAL*8 PLAST

REAL*8 INTGRL

REAL*8 SPUD

INTEGER JT,N

LOGICAL PNOM

COMMoON/TYP/JT N

COMMON/LUDOL /P
CONMON/DEVICE/NIN,NOUT1,NOUT2, INOPT
INTGRL=0.0D0

NOTE: FOR THIS PARTICULAR APPLICATION THE INTEGRAND AT THE LEFT
END POINT IS ZEROC AND 1S NOT EXPLICITLY INCLUDED IN THE SUMMATIONS
BELGMU.
THIS SUBROUTINE 1S NOT A GEMERAL SIfIPSON'S RULE SUBROUTINE.
MAK=N-1
DO 100 I=1,NRA¥,2
REALI=1

RADIUS=REAL I *DR
NOTE: RADIUS 1S THE INTERMOLECULAR SEPARATION DISTANCE DIVIDED BY
ASIGHA(1). SILLY UARIABLE SPUD IS USED FOR DIRGNOSTICS.
SPUD=((RO(1)*RO(1)*FUNCT{1,1))+(R0O(2)*RO(2)*FUNCT(1,2))
$+(2.0D0*RO( 1)*RO(2)*FUNCT(1,3)))*RADIUS*RADIUS
INTGRL=INTGRL+(4.0D0*SPUD)
DIAGNOSTIC PRINTINGS:
IF(PNOW.AND. (I .LE.255))THEN
HRITE(NOUT2, *)4.0D0*P 1*SPUD
END IF

00 CONTINUE

NAX=NAX~1

D0 200 1=2,NAX,2
REALI=I
RAD1US=REAL 1*DR
SPUD=((RO(1)*RO(1)*FUNCT(1,1))+(RO(2)*RO(2)*FUNCT(1{,2))

$+(2.0D0*RO{ 1)*RO(2)*FUNCT(1,3)))*RADIUS*RADIUS
INTGRL=INTGRL+(2.0D0*SPUD)

DIAGHOSTIC PRINTINGS:
IF(PHOW,AND. (1 ,LE.256) ) THEN
URITE(NOUT2,*)RADIUS, 4.0D0*P I *SPUD

END IF

200  CONTINUE

MAX=N

REAL I =NAX

RAD1US=REAL | *DR

PLAST=((RO(1)*RO(1)*FUNCT(NAX, 1))+(RO(2)*RO(2)*FUNCT(NAX,2))
$+(2,0D0*R0O(1)*RO(2)*FUNCT (NAX, 3)) )*RAD IUS*RAD I US
INTGRL=INTGRL+PLAST

INTGRL=INTGRL*{4.0D0*P1)

INTGRL=INTGRL*DR/3.0D0

RETURN

END
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SUBROUTINE CFG
PURPOSE~CALCULATES EITHER C(R) IN TERHS OF G(R) OR THE
DERIVATIVE OF C(R) UNDER G(R). THIS PROCEDURE AND
SUBROUTIHE CORFU
1S CHANGED FOR ANOTHER THEORY. THE PROGRAN IS
CURRENTLY SET UP TO USE ONLY THE HNMSA CLOSURE.
(C.F. LABIK, MALIJEVSKY AND VONKA, MOL. PHYS, VOL.36, NO.3,
P.709, (1985), FOR DETAILS OF THE NUMERICAL PROCEDURE)

(C.F. ZERAH AND HANSEN, J.CHEN.PHYS. UOL.84, NO.4, P.2336,
FEBRUARY, 1986, FOR DETRILS ON THE HMSA CLOSURE)

REVISED 6/4/87
8/18/87-CHANGED TO HMSA CLOSURE

THIS ROUTINE CALLS: FUNCTION SUITCH-COMPUTES THE HHSA
SHITCHING FUNCTION FOR A GIUEN SEPARATION
DISTANCE AND ALPHA PARANETER.
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SUBROUTINE CF6(G,BU1J,F,C,DR,K,RO)
[MPLICIT REAL¥8(A-H,0-2)
REAL*8 G(2048,3),F(2048,3),C(2048,3),R0(3)
REAL*8 BU1J(2048,3)
REAL*8 REAL1,RAD
REAL*8 SUT,BOLTZ
REAL*8 EXPO
REAL*8 ALFNEL
REAL*8 U1J(3),51J(3)
CONMON/HNSA/ALFNEN, UIJ, S1J
CONMON/TYP/JT, N
COMMON/DEVICE/HIN, NOUT1, NOUT2, INOPT

c
c
¢
¢
c
c
¢
c
¢
c
c
c
c
c
¢
c
¢
¢
c
¢

INPUT PARANETERS-
G: G(R)=RA*(H(R)~C(R))
F: MAYER FUNCTION
N: NUMBER OF GRID POINTS
DR: STEP SIZE IN R, AS A FRACTION OF 1-1 LJ SIZE PARMN.
K:
K.EQ.0 ... R*DIRECT CORRELATION FUNC. IS CALCULATED.
K.NE.O ... 1ST DERIVATIVE OF C(R) 1S CALCULATED.
ALFHEMU: THE HNSA MIXING PARANMETER. PASSED THROUGH COMMON/HMSA/
FROH SUBROUTINE DO3D. LA2Y. IT 1S ASSUMED TO CARRY A
OF ASIGMAC1) (1.E. THE SHALL DIANMETER) WHICH MAKES IT
DINMENSIONLESS.,
UidJ: THE HMINIHUN UALUE OF THE 1J-TH PAIR POTENTIAL DIVIDED
BY KT.
S1J: THE SEPARATION DISTANCE (DIVIDED BY THE 1-1 SIZ2E PARM)
AT THE POTENTIAL HiNinun.
QUTPUT PARAMETERS-
C:
K.EQ.0 ... R*DIRECT CORRELATION FUNC.
K.NE.Q ... 1ST DERIVATIVE OF C(R) U.R.T. G.
URITE(NOUT1,10)
FORNMAT(1X, "{H CFG")
URITE(NOUT1,*)R0O(1),R0(2),R0(3)
URITE(NOUT1,*)S1J(1),51J(2),51J(3)
HRITE(NOUT,*)UTJ(1),U14(2),U1J(3)

VOO0 0D0OCDODOO0O0OO0O0
—_
=]
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IF (K.GT.0) GO TO 120
HRITE(NOUT2,102)
102 FORMAT(/1X, ' IN CFG..DOING C CALC')
Do 115 J=1,3
DO 110 I=1,N
COMPUTE R*(DIRECT CORRELATION FUNCTION):
REALI=1
RAD=REAL | *DR
SUT=SWUITCH(RAD, ALFNEW)
c WRITE(NOUT2,*)RAB,G(1,J),BUTJ(1,d),SUT
IF(RAD.GE. (1.0000001D0*S1J(J))) THEN
EXPO=SUT*((6(1,J)/RAD)-BUIJ(I,J))
HRITE(NOUT2,666)RAD
666 “ FORMAT(1X, ' IN BLOCK 1°,D13.6)
HRITE(NOUT2,*)1,d,BUtJ(l,d)
ELSE
EXPO=SHT*((G(!,J)/RAD)-VIJ(J))
HRITE(NOUT2,777)RAD
77 FORMAT(1X, "IN BLOCK 2°,D13.6)
HRITE(NOUT2,*)1,J,U1J(J)
END IF
IF(EXPO.GT.61,0D0) THEHN
EXPO=61.0D0
END 1F
IF(EXPO.LT.~61.0D0) THEN
EXPO=-61.,000
END tF
c HRITE(HOUT2,*)EXPO
c(1,4)=0.000
IF(DABS(SHT).GT.0.000000000100) THEN
€(I1,J)=((DEXP(EXP0O))-1.0D0)/SUT
END IF
IF(RAD.GE.(1.0000001D0*S1J(J))) THEN
BOLTZ=1.0D0
ELSE
BOLTZ2=-(BUIJ(I,J)=V1J(J))
IF(BOLT2.LT.-61.0D0) THEN
BOLT2=-61,0D0
END IF
BOLT2=DEXP(BOLTZ)
END IF
C(1,d)=C(1,J)+1.000
c(l,J)=C(1,J)*BOLT2
C(1,d)=C(1,J)-1.0D0
C(1,J)=RAD*C(Y,J)
C(‘,J)'C(‘,J)—G(I;J)
C HRITE(NOUT2,*)C(1,J)
110 CONTINUE
115 CONTINUE
c STOP
RETURN
120 CONTINUE
c HRITE(NOUT2,122)
C 122 FORMAT(/1X, ' IN CFG..DOING DERIV CALC')
DO 140 J=1,3
DO 130 1=1,H
C CONPUTE DERIVATIVE OF R*(DIRECT CORRELATION FUNCTION):
C C.F. LABIK'S EQUATION (10).

[ M el

o

OO0

OO0
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REAL =]
RAD=REAL | *DR
SWT=SUITCH(RAD, ALFNEW)
€ WRITE(NOUT2,*)RAD,G(1,J),BUIJ(I,d),SUT
IF(RAD.GE. (1.0000001D0*S1J(J))) THEN
EXPO=SUT*{(G(1,J)/RAD)-BUIJ(1,J))
ELSE
EXPO=SHT*{(G(1,J)/RAD)~V1J(J))
END IF
IF(ERPO.LT.~61.0D0) THEN
EXPO=-61.0D0
END IF
IF(EXPO.GT.61.0D0) THEM
EXP0O=61.0D0
END IF
c HR1TE(HOUT2,*)EXPO
IF(RAD.GE. (1,0000001D0*S1J(J))) THEN
BOLTZ=1.000
ELSE
BOLTZ=-(BUIJ(1,J)-U1J(J))
IF(BOLTZ.LT.-61.0D0) THEN
BOLTZ=-61.0D0
END IF
BOLTZ=DEXP(BOLT2)
END IF
C(1,J)=DERP(EXPO)
Cl,d)=C(1,J)*BoOL T2
c(1,=Cc(1,J4)-1,000
c URITE(NOUTZ,*)C(1,J)
130 CONTINUE
140 CONTINUE,
RETURN
END
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SUBROUTINE FFS3D
PURPOSE-FAST FOURIER TRANSFORN IN ONE DINENSION.
SIHULTANEOUSLY TRANSFORNS ALL THREE COLUMNS OF THE IRPUT
ARRAY AT ONCE.
(SEE LABIK,NAL{JEUSKY, AND UONKR,
NOLECULAR PHYSICS, UOL, 56, NO. 3,
PP.709-715 (1985) )

¢
¢
¢
c
¢
o
c
c
c REUVISED 6/4/87

c RENRITTEN COMPLETELY 2/18/88 - NOMU ONLY PREPARES ARGUMENTS
c FOR OF21INT.
¢
c
c
c
¢
¢
c
C

TH1S ROUTINE CALLS: INSL ROUTINE DF2INT- CALCULATES THE
SINE TRANSFORMS AND THE I1HUERSIONS.
THIS 1S A ROUTINE USED FOR MULTIPLE
TRANSFORNS WHICH REQUIRES THE ARRAY
HUFFTR BE INTIALIZED ( BY ROUTINE
"DFSINI" ~CALLED IN SUBROUTINE GALER ).
R AR R AOK K AR A A AR A AR A KA 5 A 3K K UMK KK AR K

SUBROUTINE FFS3D(KAM,X,Y,N,NN, DR, UFFTR)

INPLICIT REAL*8(A-H,0-2)

REAL*8 X(2048,3),Y(2048,3)

REAL*8 UFFTR(5133)

REAL*8 ¥X(2047)
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REAL*8 YY(2048)

REAL*8 DR

REAL*8 COEFF

INTEGER KAM

COMMON/LUDOL/P!
COMHON/DEVICE/NIN,NOUT1,NOUT2, INOPT

c

C V¥YY NHUST HAVE DIMENSION N
C XK NUST HAUE DIMENSION WN-1
C N=NM*NnN,

C DIRECT TRANS. KAN>0

C INUERS TRANS. KAH<O

C MHErvnil X(N,1) MUST BE ZERO !litllMd
c URITE(NOUT1,S)
S FORMAT(1X,* IN FFS3D ')
IF(KAM.LT.0) THEN
C INUERTING...
RERLN=N
COEFF=1.,0D0/(4.0D0*P | *DR*REALN)
c OT=P!/(REALN*DR)
ELSE

C TRANSFORMING. ..
COEFF=2.0D0*P | *DR
RH=DR*N
DT=DR
END IF
NI INT=N-1
pDC 100 (=1,3
Do 50 J=1,KNiN1
KX (D)=X(J, 1)
S0 CONTINUE
THE SUNMATION IN THE TRANSFORNM RUNS FRON 1 TO N-1. THE ARGUNENTS
OF THE SINE FUNCTIONS ARE (PI*i*J/N). THE SERIES RETURNED BY
DF21KT HAS AN EXTRA FACTOR OF 2.0 ATTACHED TO IT. THUS, IN ORDER
TO REPRODUCE THE EQUATION GIVEN IN LABIK'S PAPER AN ADDITIONAL
FACTOR OF COEFF=2.0DO*Pi*DR HUST BE INCLUDED WHEN TRANSFORMING.
CALL DF2INT(NMIN1,XX,YY,HFFTR)
¢ CALL OFFS3D(KAM,X,Y,N,NNH,DT)
DO 75 J=1,NHINI
$(J, 1)=COEFF*YY(J)
75 CONTINUE
Y(N,1)=0.000
100 CONTINUE
RETURN
END
KA R I R AR SR KK KRR K 3 KK K 25K KK K 5K 3K 5K 3 K o K K KK
SUBROUTINE GRUSEL
PURPOSE~SOLUES LINEAR EQUATIONS HITH GAUSS' METHOD.

oo

OOOO0O

REVISED 6/4/87

THIS ROUTINE CALLS:~
e 200 350 35 4 2 o0t 3 30 0 e 2 3k e 3 9 3 K 3 3 2 2 200 5K 308 0K K 3K 8 08 3K O 3§ 3¢ 3 K 3K 3K K e 5 oK K 3 K K 0 3K e K K K 3 K 3K 3K 3k K K K K K
SUBROUTINE GRUSEL(N,R,RES,BADMAT)
IMPLICIT REAL*B(R~H,0-2)
REAL*8 R(N+1,N+1),RES(N)
REAL*8 S,vY
LOG!CAL BARDMAT

OOOO0OOO0O0
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435

438
445
450

455

460

999
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COMNON/DEVICE/NIN, NOUT1,NOUT2, INOPT
HRITE(NOUT1,10)
FORMAT(1X,' IN GAUSEL')
BADMAT=.FALSE.
DO 450 I=1,N-1
$=0.D0 .
DO 430 K=1,N
YY=DABS(R(K, 1))
IF (YY¥.LE.S) 60 TO 425
1S=K
S=yy
CONT INUE
CONTINUE
IF (5.EQ.0.D0) GO TO 999
DO 435 K=1I,N+1
s=R(1,K)
RC1,K)=R(1S,K)
R(1S,K)=S
CONTINUE
DO 445 K=1+1,H
S=R(K, 1N/R(L, 1)
DO 438 J=1,N+1
R(K,J)=R(K,J)-S*R(1,J)
CONT I HUE
CONT{NUE
CONTINUE
IF (R(N,N).EQ.0.D0) GO TO 999
RES(M)=R{N,N+1)/R(N,N)
DO 460 K=1,N-1
KK=N-K
$=0,D0
DO 455 J=KK+1,N
S=S+R{KK, J)*RES(J)
CONT{NUE
RES (KK)=(R(KK,N+1)-$)/R(KK,KK)
CONTINUE
RETURN
CONT INUE

C ZERO PIVOT DETECTED...QUCH,

¢
¢
¢
c
c
c
c
c
c

cio

BADNAT=. TRUE.
END
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SUBROUTINE GFC

PURPOSE- CALCULATES THE TRANSFORM OF GANMMA FROM THE TRAMSFORH
OF THE DIRECT CORRELATION FUNCTIOH,

REVISED 6/4/87

THIS ROUTINE CALLS:-
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SUBROUTINE GFC(C,G,ROT,T)

IMPLICIT REAL*B(A~H,0-2)

REAL*8 C(3),G(3)

CONNON/DEVICE/NIN, NOUT1,NOUT2, INOPT
HRITE(NOUTY, 10)

FORMAT(1X,' IN GFC ')

Cl1=C(1)

£22=C(2)
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c
c
c
c
c
c
c
c
c
c
c
c
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€12=C(3)

€12C21=C12*C12*ROT

C11C22=C11*C22

CT=C12C21-C11C22
DET=(T-C11)*(T-C22)-C12C21

ARE THE 02 EQUATIONS [N TRANSFORH SPACE.
G(1)=(T*(C11*C11+C12C21)+C11*CT)/DET
6(2)=(T*(C22%C22+C12C21)+C22*CT) /DET
G(3)=(T*(C11+C22)+CT)*C12/DET

RETURN

END
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SUBROUTINE HSANAL

PURPOSE~ PROVIDES INITIAL GUESSES OF THE DIRECT CORRELATION
FUNCTION TO SUBROUTINE GALER. IT USES THE ANALYTICAL
SOLUTION FOR HARD SPHERE SYSTENS GIVEN BY LEBOHITZ

REVISED 6/4/87
10/23/87-1NCREASED THE RANGE OF THE DO LOOP FRON
256 TO 2048 TO INSURE THAT ALL VARLUES OF
“C" ARE INITIALIZED ON NHON-1BM MACHINES.

THIS ROUTIKE CALLS:-

3 3 2 9 0 3 28 3K 3 03K 2 3 26 3000 3 20 0 3 00 8 3K 5K 3 3 2 3 34 2 3 0 K 308 3 3 0 3K K 2K 6 3K K 3K 32 K 2 3 K K KK K K KOk K

SUBROUTINE HSANAL(C,RO,SIGMA,DR)
INPLICIT REAL*8(R-H,0-2)

REAL*8 C(2048,3),R0(3),SIGHA(3)
CONMON/LUDOL/PI
COMNON/DEVICE/NIN,HOUT1 ,NOUTZ2, INOPT
HRITE(NOUT!,10)

FORMAT(1X,* 1N HSANAL ')
RHO1=RO(1)

RHO2=R0(2)

D1=SIGNA(1)

D2=S16MA(2)

RHO=RHO1+RHO2
Y1=P1/6.*RHO1*D1**3
¥Y2=P1/6.*RHO2¥D2**3

bD=D1-D2

Y=y 1+y2

Pi=1./7(1-Y)

P2=P1*pP1

P3=1+Y/2.
G11=P2*(P3+1.5%Y2/D2*DD)
G22=P2*(P3-1.5*Y1/D1*DD)
612=(D2*G11+D1*622)/(D1+D2)
P3=P2*P1

Ti=1+¥1+(1+Y2)*D1/D2
T2=T1*(1+3*Y1¥P1)+V1
T3=(1-01/02)**2

T4=(1.+Y)*Y+1
A1=P3*(T4+(Y+2)**2%P1*Y1*(1+RHO2/RHO1)-3%T3*y2*T2)
T1=1+42+(1+Y1)*D2/D1
T2=T1*(1+3%Y2%P1)+Y2
T3=(D2/D1~1)**2

D13=D1**3

D23=D2**3

D12=(D1+D2)/2.
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A2=P3%(T4+(Y+2) %X kP 12Y2x ({+RHO1 /RHO2) - 3% T3*Y 1 %*T2)
Bl==6,%{Y1/D1*G11%G1 1+Y2/(D23)*G12*G12*D12*D12)
B2=~6.*(Y2/D2%622%G22+Y1/(D13)*G12*G12*D12*D12)
B=<6.*(Y1/D1/D1*G11+Y2/D2/D2*G22)Y*612%D12
CC=0.5*(A1*Y1/D13+A2*Y2/D23)
DLANM=(D2-D1)/2,
DO 100 1=1,2048
c(l,1)=0.
c(1,2)=0,
C(|,3)=0.
R={*DR
R3=R**3
IF (R.LT.D1) THEN
C(l,1)=-A1-B1*R-CC*R3
END IF
IF (R.EQ.D1) THEN
C(1,1)=(-A1-B1*R~CC*RI)*0.5
END IF
IF (R.LT.D2) THEN
€(!,2)=~A2-B2*R-CC*R3
END IF
IF (R.EQ.D2) THEM
C(1,2)=(-A2-B2*R~-CC*R3)*0.5
END IF
¥=R-DLAN
IF (R.LT.DLAM) THEN
C(Iia)'—ﬂ1
ELSE
IF (R.LT.D12.AND.R.GE.DLAN) THEN
C(1,3)==A1-(B*X*X+{4*DLAN+X ) *K*¥*3%CL) /R
ELSE
IF (R.EQ.D12) THEN
C(1,3)= (A1~ (B*X*K+{4*XDLAN+X ) *K**3%CL) /R)*0,5
END IF
ERD IF
END IF
100 CONTINUE
RETURN
END ,
**t***************************t*******t***#*t***t***#***************
SUBROUTINE JACOB
PURPOSE-?

DATE 6/4/87

THIS ROUTINE CALLS:~

KA AR E R AR AR TR AR KA R AR AR KA KA KR H K K Ao
SUBROUTINE JRCOB(C,G,F,T,R0OT)
IHPLICIT REAL*8(A-H,0-2)
REAL*8 C(3),6(3),F(3,3)
COMNMON/DEVICE/NIN, HOUT1,NOUT2, I HOPT

C WRITE(NOUT1,10)

Cio FORNMAT(1X,"' IN JRCOB ')

C1=C(1)

€2=C(2)

C12=C(3)

G1=G(1)

62=6(2)

C
c
c
c
c
c
¢
¢
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c
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c
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G12=6(3)
C12C21=ROT*C12*C12
DET=(T-C1)*(T-C2)~C12C21
F(1,1)=(T-C2)*(G1+C1+C1)+C12C21
F(1,2)=6G1*(T-C1)-C1*C1
F(1,3)=2*ROT*C12*(T+61+C1)
F(2,2)=(T-C1)*(G2+C2+C2)+C12C21
F(2,1)=62%(T-C2)-C2*C2
F(2,3)=2*ROT*C12*(T+G2+C2)
F(3,1)=(G12+C12)*(T-C2)
F(3,2)=(612+C12)*(T-C1)
F(3,3)=ROT*C12*(G12+G12+3*C12)~C1*C2+T*(C1+C2)
DO 110 I=1,3
DO 100 J=1,3
F(L,Jd)=F(1,J)/DET
CONTINUE
CONTINUE
RETURN
END

403 2 30 3 00 3 3 2 34K 3 e 300K K 3 K 3K 3 K K R K K 0K KKK 000 HOK R 0 K S 3 00 R 3K K KR I OK R K 3K KO8 0K

FUNCTION SHITCH

PURPOSE-CONMPUTES THE FUNCTION HHICH GIUES A SHOOTH TRANRSITION
BETHEEN HNC AND SNMSA THEORIES 1IN THE RNSA CLOSURE.
THIS FUNCTION USED BY SUBROUTINE CFG IN THE
CONPUTATION OF THE CORRELATION FUNCTIONS FOR THE
BATH MOLECULES.

(C.F. ZERARH AND HANSEN, J.CHEH.PHYS. UOL.84, NO.4, P.2336,

FEBRUARY, 1986)

DATE 8/18/87

THIS ROUTINE CALLS:-

402000 3 200200 2002003 003 0030 3R 3 00 83 30N R 3 e 2 K K 3 3 e R 3 K 2 3 e Ok Ok K KK K R K 3 K oK

REAL FUNCTION SHITCH(RAD!US,ALPHA)
INPLICIT REAL*8(A-~H,0-2)

REAL*8 RADIUS,ALPHA

REAL*8 EXPO,SAVE
CONNON/DEVICE/NIN,NOUT1,HOUT2, INOPT

RADIUS=SEPARATION DISTANCE/(1-1 LJ S1ZE PARN).
ALPHA=HNSA PARANETER*(1-1 LJ SI2E PARM)

S0, BOTH INPUTS ARE DIMENSIONLESS.

BOTH HAD BETTER BE ALUAYS POSITIVE.

EXPO=ALPHR*RADIUS
$0=0.0D0
IF(EXP0.GT.61.0D0) THEN
SAVE=1.000
ELSE
IF(EXPC,LT.0.00000001D0) THEN
SAVE=0.00000001D0
SAVE=SO
ELSE
SAVE=1,0D0-(DEXP(~-EXP0))
SAVE=1,0D0-((1.0D0-S0)*DEXP(-EXP0))
END IF
END IF
SHITCH=SAUVE
SUITCH=0.000001D0
SHITCH=1.0D0
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RETURN
END
£ AR AR KA A AR A KA AR AR H A I K IR A A A A KA AR A K A KA KR AR
c FUNCTION SUITCH2
c PURPOSE-CONPUTES THE FUNCTION WHICH GIUES A SHOOTH TRANSITION
c BETHEEN HNC AND SNMSA THEORIES IN THE HNSA CLOSURE.
¢ THIS FUNCTION USED BY SUBROUTINE CFG2 IN THE
c COMPUTATION OF THE CORRELATION FUNCTIONS FOR THE
c TEST PARTICLE.
c (C.F. 2ERAH AND HANSEN, J.CHEM.PHYS. UOL.84, NO.4, P.2336,
¢ FEBRUARY, 1986)
c
c
c
c
c

DATE 8/18/87

THIS ROUTINE CALLS:~-
KK K0 AR K N 3K SN K S 3K SRS K o MK 36 3 ok o o oSSR o s o KKk
REAL FUNCTION SWITC2(RADIUS,ALPHA)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 RADIUS,ALPHA
REAL*8 EXPO,SAVE
CONMON/DEVICE/NIN,NOUT1,NOUT2, TNOPT
RADIUS=SEPARATION DISTANCE/(1-1 LJ SIZE PARN),
ALPHA=HNSA PARANETER*(1-1 LJ SI2E PARN)
S0, BOTH INPUTS ARE DINENSIONLESS.
BOTH HAD BETTER BE ALWAYS POSITIVE.
EXPO=ALPHA*RAD 1US
50=0,000
IF(EXPO.GT.61.0D0) THEN
SAVE=1.0D0
ELSE
{F(EXPO.LT.0.00000001D0) THEN
SRUE=0.0000000100
c SAUE=SQ
ELSE
SAVE=1,000-(DEXP(~EXPO))
c SAVE=1,000-((1.000~S0)*DEXP(-EXPC))
END IF
END IF
SHITC2=SAVE
SUITC2=0.00000100
SHITC2=1.0D0
RETURN
END
T D L T T PP e
SUBROUTINE TARIL
PURPOSE-SETS UP PARANMETERS NEEDED BY SUBROUTINE INTEGR.
COMPUTES THE TAIL CORRECTION TO THE CONFIGURATIONAL
INTERNAL ENERGY DIVIDED BY KT IF )FUNC=0, COMPUTES
TRIL CORRECTION TO THE UIRIAL PRESSURE IF IFUNC=1,

OO0

o

OO

DATE: 7/14/87.

THIS PROGRAN CALLS: SUBROUTINE INTEGR-INTEGRATES THE PRODUCT
OF THE POTENTIAL OUER VOLUMNE
FRON A LOUER LINIT (UHERE THE R.D.F IS
APPROX INATELY 1.0) UP TO A UERY LARGE
UPPER LIHIT,

095 30 0 2 2 3 20 3 03 20 20 0K 3 K0 30 3K 0 R 3K AR 200550 3 30K ok e 2 3 3K K 3K 3K 3 3k 50 30 0 9k 3K 3K K 9K 0 9K I K KKK oK K K oK

OO0 OOOOOOO00O0000O0
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SUBROUTIHE TRIL(IFUNC,DR, |POT,TRED,EPSI,SIGHNA,

$RO, INTGRL , ERROR)

IMPLICIT REAL*8(A-H,0-2)
REAL*8 SIGNMA(3),R0(3),EPSI(3)
REAL*8 INTGRL,LOWER, UPPER, TRED
REAL*8 PRNS(30)

REAL*8 RBIG

INTEGER IFUNC

INTEGER ERROR

INTEGER 1POT

COMNON/TYP/JT, N
COMNON/DEVICE/NIN,NOUT1,HOUT2, INOPT
PRNS(1)=TRED

PRNMS(2)=EPSI(1)
PRMS(3)=EPS1(2)
PRNMS(4)=EPSI(3)
PRUS(S)=SIGHA(1)
PRNS(6)=SIGNA(2)
PRUS(7)=S1GNA(3)

RESERUE 8,9,10 FOR STELL-HEIS OR KIHARA.

UPPER

ok ok K

ek K

PRIS(8)=S0FTD(1)

PRNS(9)=S0FTD(2)

PRHS(10)=SOFTD(3)

PRNS(11)=R0(1)

PRUS(12)=R0(2)

PRIS(13)=R0(3)

RB16G=N

LIMIT IS S1.2*RSIGNA(1) HHEN N=2048 AND DR=0.00625.

UPPER=4.0D0*RB1G*DR

LOWER=RB | G*DR

CALL INTEGR(IFUNC, |POT,PRNS,LONER, UPPER, INTGRL ,ERROR)

RETURN

END

o KO K S 2K R K K S KKK 4 K K R MK K K KK 3K K 3K K KO K
SUBROUTINE TEST
PURPOSE-TESTS DIFFERENCES OF 6(T) IN NEWTON ITERATION.

REVISED 6/4/87

THIS ROUTINE CALLS:-
340 2 3% 30 3 e e 3 0 3 2 R 3 o 00 2 3 B 2K 3 00000 3 e 2 0 3 o 3K 2 K 3 080 5K S 3 o0 o 38 0 2 0 5K K 35K Ok 0K K H0OK K ok
SUBROUTINE TEST(DG,DIF,NA, IK,N,DR)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 DG(NA,3),DIF(NA,3)

CONMON/DEVICE/NIN, NOUT1,NOUT2, INOPT

INPUT PARAMETERS~

D

ouTPU

DG: UALUES OF DIFFERENC GT(T)
IF: THEIR HODIFICATION FROM I1TERATION STEP.
NA: NUNBER OF EQUATIONS IN NEHTON ITERATION.
T PARAHETERS-
NEN UALUES OF DIFFERENCE GT(T)
USUALLY DG(T)=DG(T) +DIF(T)
IK:
IK.EQ.0 ... HNEWUTON ITERATION MAY CONTINUE.
IK.NE.O ... FORCES SUBROUTINE GALER TO PERFORM DIRECT
ITERATION (PROBABLY DUE TO TOO HIGH VALUES
OF DG(T) ).
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WRITE(NOUT1,10)
FORMAT(1X,' IN TEST')
IK=0
D0 20 J=1,3
D0 10 K=1,NA
DG(K, J)=DG(K,J)+DIF(K,J)
CONTINUE
CONTINUE
IF (JT.EQ.1) RETURN
END

402K 6 e 3 00 3 0 3 3 3 5K 6 2 30K 0 e 38 2 2K 0 K 3K 3 2K 0K R A S 0K 0 20 0 K 3K K 3 K 3 K 3 3K 03 3K 0 K K K 3K K X o K KK

FUNCTION FUNCO

PURPOSE-CALCULRTES THE INTEGRAND FOR THE TAIL CORRECT!OM
TO THE INTERNAL ENERGY. ALSO USED TO CALCULATE
THE TAIL CORRECTION TO THE COMPRESS{BILITY FRON
THE COMPRESSIBILITY EQUATION.

DATE 6/29/87
CODED BY DAUID PFUND

THIS ROUTINE CALLS: SUBROUTINE PSI1J-CALCULATES THE PRIR
POTENTIALS DIVIDED BY KT FOR A GIVEN
SEPARATION DISTANCE.

200 0 32 30 2 A0 3000 3 30 0 30 33 3k 3 3 e Sk e 3 8 3 S o e 2 2 3 3 S e e S 0K 3R 0 3 5 02K 0 S R K 3 M Ok 3 o 0N 3K o KK K

REAL FUNCTION FUNCO(PRMNS,{POT,ARG,ERROR)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 ARG

REAL*8 T,RR,PI

REAL*8 BU1,BU2,BU12

REAL*8 BUP

REAL¥8 SAVE,RHD

REAL*8 PRNMS(30)

INTEGER 1POT

INTEGER IP

INTEGER ERROR

CONMHON/LUDOL /P
CONMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

C DO 1-1 INTERACTION

T=PRHS(1)

RR=ARG

Rh=1,000

1P=0
BUi«PSI1J(IP,RR,RN,T,BUP)

C DO 1-2 INTERACTION

T=PRAS(1)/PRNS(4)
RR=ARG*PRNS(5) /PRNS(T)
BU12=PS{1J{IP,RR,RN, T,BUP)

C DO 2-2 INTERACTION

T=PRUS(1)/PRNS(3)

RR=ARG*PRNS(5) /PRNS(6)

BU2=PSI1J{1P,RR,RN, T,BUP)
SAUE=(PRNS(11)*PRUS(11)*BU1)+{PRMS(12)*PRNS(12)*BU2)
SAVE=SAVE+ (2. 0DO*PANS (11 )*PRNS(12)*BU12)

RHO=PRMS (11)+PRNS(12)

SAUE=SAUE/RHO

FUNCO=2.0DO*P [ *ARG*ARG*SAVE

RETURN

END
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FUNCTION FUNC1
PURPOSE-CALCULATES THE INTEGRAND FOR THE TAIL CORRECTIOHN
TO THE VIRIAL PRESSURE.

DATE $/3/87
CODED BY DAVID PFUND

THIS ROUTINE CALLS: SUBROUTINE PS!I1J-CALCULATES THE PAIR
POTENTIALS DIVIDED BY KT FOR A GIVEN
SEPARATION DISTANCE.

24 35 2 2 3 3 36 24 3 6 30 8 3 2 9k e 0 2K K 3 K 2K 6 2 3K K e 3 K K K e 4 3 A K 3 6 K 0K K K RN A A I A 3R R e K K Ok Ok

REAL FUNCTION FUNC1(PRNS, |POT, ARG, ERROR)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 ARG

REAL*8 T,RR,PI

REAL*8 BU1,BU2,BU12

REAL*8 BUP11,BUP12,BUP22

REAL*8 SAUVE

REAL*8 PRNMS(30)

INTEGER IPOT

INTEGER IP

INTEGER ERROR

COHNON/LUDOL/PI
COMMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

C DO 1-1 INTERACTION

Rr=1.000

IP=0

T=PRNS(1)

RR=ARG
BU1=PS11J(IP,RR,RN,T,BUP11)

C DO 1-2 INTERACTION

T=PRNS(1)/PRHS(4)
RR=ARG*PRNS(S) /PRNS(7)
BU12=PS11J(IP,RR,RN,T,BUP12)
BUP12=BUP12*(PRNS(5)/PRNS(7))

C DO 2-2 INTERACTION

c
C
c
c
c
c
c
c
o
c
c

T=PRIS(1)/PRNS(3)

RR=ARG*PRNMS(5) /PRNS(6)

BU2=PS11J(IP,RR,RN, T,BUP22)

BUP22=BUP22*(PRNS(5) /PRNS(6))
SAVE=(PRIS(11)*PRHS(11)*BUP11)+(PRINS(12)*PRNS(12)*BUP22)
SAVE=SAVE+(2.0D0*PRNS(11)*PRAS(12)*BUP12)
FUNC1=-2.0D0*P | *ARG*ARG*ARG*SAVE /3,000

RETURN

END

0 6 3 3 3 3 2003 0 o 00 2 0 e 3 e e 3 e 3 e 2 3 e 0 3 3 04 3 0K K 3K KK K 003 3 3 3 K 3 3 3K o K K K 0K oK K KK

FUNCTION FUNC2
PURPOSE-CALCULATES THE INTEGRAND FOR THE TAIL CORRECTION TO
THE CHEHICAL POTENTIAL.

DATE 6/29/87
CODED BY DAVID PFUND

TH!S ROUTINE CALLS: SUBROUTINE PS11J-CALCULATES THE PERTURBING
POTENTIALS DIVIDED BY KT FOR A GIVEN
SEPARATION DISTANCE.

C ki ok R 3K K 303 5K K S 30K 308 0 0K 00 K 0 3 8 K 2 K R K ol oK o8 5K K K o ok oK K K K
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REAL FUNCTION FUNC2(PRNS, IPOT,ARG,ERROR)
INPLIC!IT REAL*8(A-H,0-2)
REAL*8 ARG
REAL*8 T,RR,SSTAR,PI
REAL*8 BU1,BU2
REAL*8 BUP
REAL*8 PRIS(30)
INTEGER IPDT
INTEGER ERROR
COMMON/LUDOL./PI
COMNON/DEVICE/NIN, NOUT1,NOUT2, INGPT
§STAR=1,0D0
{P=0
¢ DO 1-2 INTERACTION
T=PRAS(1)/PRNS(4)
RR=ARG*PRNS{(5) /PRNS(7)
BU1=PS11J(IP,RR,SSTRAR, T,BUP)
C DO LIKE-LIKE {NTERACTION
IF(IPOT.EQ.0) THEN
€ SPECIES 2 15 SOLUTE
T=PRNS(1)/PRNS(3)
RR=RARG*PRNS (5)/PANS(6)

ELSE
C SPECIES 1 1S SOLUTE
T=PRNS(1)
RR=ARG
c SSTAR=PRNS(8)/PRNS(S)
END IF

BU2=PS11J(IP,RR,SSTAR, T,BUP)
IF(IPOT.EQ.0) THEN
SAVE=4, 0DO*P | *ARG*ARG*{ (PRNS{11)*BU1)+(PRAS(12)*BU2))
ELSE
SAUE=4.0D0*P | *ARG*ARG* ( (PRNS{12)*BU1)+(PRNS(11)*BU2))
END IF
FUNC2=SRUE
RETURN
END

3 2 0 00 2 2 00 0 20 3 9K 30 0 3K 3 300 0 3 3 30 K 3 e 30 3 K 3 3K 313 3K K e 3 3 oK Nk 3 2k 3 ok 5K K 3 K 3K K K 2 3K 3 OK 0K XK Kk

SUBROUTIHE GRUSS
PURPOSE~PERFORNS THE GAUSS~LEGENDRE INTEGRATION FOR A

GI1UEN NUNBER OF PANELS. SUBROUTINE “GRUSS"™ CURRENTLY USES

i THIRD ORDER LEGENDRE POLYHOMIAL,

CODED BY DARUID PFUND

THIS ROUTINE CALLS: FUNCTION SUBINT-ESTINATES THE INTEGRAL

c

C

c

c

C

»

c DATE 2/17/86
c

c

c

¢

¥ THE UALUES FOR ALL PANELS.
c

FOR A SINGLE PANEL."GAUSS" THEN ADDS UP

35020 3 20 0 2 2 33 200 330 000 30 003K 3 30028 2 30K K 200 K 0 30 3 03 20 00K 00 K I N 00 20 K K 3 2 K i 3K 3 K 5K 3 6 8 5 K a0 K XK

SUBROUTINE GAUSS(IFUNC,SI2E,PRNS, IPOT,LOHER, UPPER, NUNPAN,
$LANBDRA,UE IGHT, INTGRL , ERROR)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 INTGRL,LOHER,UPPER

INTEGER ERROR, SIZE, HNUMPAN

tNTEGER 1POT, IFUNC

REAL*8 PRNS(30)

REAL*8 LAMBDA(SIZE) ,MEIGHT(SIZE)
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CONMNON/DEVICE/NIN,NOUT1,NOUT2, INOPT
ERROR=0
INTGRL=0,0D0
RNUM=NUMPAN
C CALCULATE THE WIDTH OF EACH INTEGRATION PANEL.
DELTAX=(UPPER-LOWER) /RNUN
C A=LONER LIMIT OF THE CURRENT PANEL. B=UPPER LINMIT OF THE CURRENT
C PANEL.
A=LOWER
B=A+DELTAX
C 1 IS THE PAHEL COUNTER.
=1
1000 CONTINUE
c HRITE(NOUT2,1100)A,8
1100 FORMAT(/1¥,'IN GAUSS. A=',D11.4,' B=",D11.4)
C ESTINATE THE AREAR UNDER THE CURUE OUER THE CURRENT PRANEL USING
C FUNCTION “SUBINT*, ADD THE RESULT TO THE URLUE OF THE INTEGRAL.
INTGRL={NTGRL+SUBINT(IFUNC,SI2E,PRHS, IPOT,A,B, LANBDA,
$UEIGHT,ERROR)
¢ HRITE(NOUT2, 1150) INTGRL, ERROR
C1156 FORMAT(/1X, ' INTGRL= *,D11.4,' ERROR= *,13)
C THE LOWER LINMIT OF THE NEXT PANEL=THE UPPER LINIT OF THE CURRENT
C ONE.
A=B
C GET THE UPPER LINIT OF THE NEXT PANEL.
B=B+DELTAX
1=1+1
C REPEAT ADDING OM AREAS UNTIL ALL PANELS HAVE BEEN ADDED ON.
IF((1.LE.NUNPAN) . AND. (ERROR.£Q.0))G0 TO 1000
c WRITE(NOUT2,1200) INTGRL
C1200 FORMAT(/1X, 'LEAVING GAUSS. INTGRL= *,D11.4)

RETURN
END
C 2K OR35S O K 3 6 KKK 3 2 3K K 3 KoK o K
C SUBROUTINE {NDURS
c PURPOSE-DETERMINES AN ORDER NUMBER OF UNEQUALLY SPACED
o HITHIN THE INTEGRATION PANEL FOR WHICH THE INTEGRAND HWILL
c BE EVALUATED.
c
C DATE 2/18/86
c CODED BY DAVID PFUND
c
c THIS ROUTINE CALLS: FUNCTION HAP-SOMEHOW NAPS THE DESIRED
c PANEL ONTO SOHE KIND OF STANDARD GAUSS-
c LEGENDRE INTERVAL.! FORGOT HOW IT WORKS.

£ 30008 2K 0 3 30K 90 00300 00 8 K A 3K K 3 3 8 30 3 S 2 0 028 2 80 3 03 5K o 300K SIS 0 3K 3 K K ok i 3K K K ok K K

SUBROUTINE INDURS(SIZE,ORDER,LONER, UPPER,LANBDA, XARRAY )
IMPLICIT REAL*8(A-H,0-2)
REAL*3 LOUER,NAP
INTEGER ORDER,SI2E
REAL*8 LAMBDA(SIZE)
REAL*8 XARRAY(ORDER)
COMMON/DEVICE/NIN,NOUT1,HNOUT2, INOPT
XARRAY (1)=NAP(LOUER, UPPER, LANBDA(1))
C REMENBER, ORDER HUST BE IN 2..10
IF((ORDER.EQ.3).0R. ((ORDER.EQ.5).0R. ((ORDER.EQ.7).0R. (ORDER.EQ.9)
$))) THEN
=2
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J=2
ELSE
XARRAY(2)=NAP(LOUER, UPPER, -LAHBDA(1))
1=3
J=2
END IF
IF(1.LE,ORDER) THEHN
1000 CONTINUE
XARRAY(1)=1MAP (UPPER, LONER, LANBDA(J))
KARRAY (| +1)=NAP (UPPER, LOUER, -LANMBDA(J))
J=Jd+1
I=]+2
1F(I.LE.ORDER) GO TO 1000
END IF
RETURH
END
AR A AR AAK K AR AR R AR A AK A A AR K A KA KA AR KK A KKK KK
SUBROUTINE INTEGR
PURPOSE~INTEGRATES ....

SUBROUTINE INTEGR USES THE GAUSS-LEGENDRE METHOD FOR HUHERICAL
INTEGRATION, CURRENTLY USES A THIRD ORDER LEGENDRE POLYNOMIAL.
“INTEGR" PROGRESSIVELY DOUBLES THE HNUNBER OF INTEGRRTION

ANELS :
USED UNTIL A CONUERGED RESULT 1S OBTRINED.

¢
C
c
¢
¢
c
c
P
c
c
c DATE 2/17/86

c REVISED 2/20/88 - COMMENTED-OUT AUTOMATIC CONVERGENCE TO

¢ SPEC'ED TOLERANCE AND SET THE HUNMBER OF

C PANELS TO BE USED TO 64; THESE ARE ENOUGH
c PRNELS FOR SIX FIGURE ACCURACY OF THE TAIL
c CORRECTION INTEGRALS.

c CODED BY DAUID PFUND

c

c

c

c

c

c

c

¢

THIS ROUTINE CALLS: SUBROUTINE RTSUTS-LOADS THE ROOTS AND
HEIGHTS OF THE LEGENDRE POLYNOMIAL (NTO
ARRAYS.,
SUBROUTINE GAUSS-PERFORMS THE GAUSS-
LEGEHNDRE INTEGRATION FOR A GIUVEN
NUNBER OF PANELS.

AN AR AOR AR HOA A A A A A A A IAK A A K A A A A A AHKH A KK A A KKK
SUBROUTINE INTEGR(IFUNC, IPOT,PRNS, LOUER, UPPER, INTGRL, ERROR)
INPLICIT REAL*8(A~H,0-2)

REAL*8 INTGRL,LOMER, INTN1, INTN2
REAL*B PRMS(30)

REAL*8 LAMBDA(2),UEIGHT(2)

INTEGER ERROR,S12E,SIGFIG

INTEGER 1POT, IFUNC
CONMMON/DEVICE/NIN, NOUT1,HOUT2, INOPT
DATA MAXPAN,SIZE,S1GF16/256,2,6/

HAXPAN=NAX INUN NUMBER OF PANELS ALLOWED FOR INTEGRATION.

LOUER=LOUER INTEGRATION LIMT.

UPPER=UPPER INTEGRATION LINIT.THESE ARE THE LINITS OF THE INTEGRATION

PATH PARAMETER AS DESCRIBED ABOVE.

SIGF1G=NUNBER OF SIGNIFICANT FIGURES IN THE CONVERGED RESULT.

SI2E=AH. ..

LANBDA WIiLL CONTAIN THE ROOTS OF THE LEGRENDRE POLYHOHIAL, WEIGHT
ILL

EOOOGOO0OO
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CONTAIN THE WEIGHTS.NOTE: IN ALL ROUTINES BUT THIS ONE LANBDA AND
WEIGHT ARE DIMENSIONED BY "SIZ2E". CURRENTLY SIZ2E=2. ALUAYS SET THE
CONSTANT DIHENSION 1IN THIS ROUTINE TO SIZE,
INTN1 WILL CONTAIN AN ESTINMATE OF THE INTEGRAL.
INTN2 HILL CONTARIN AN ESTINATE OF THE INTEGRAL OBTRINED BY USING
THICE THE NUMBER OF PRNELS USED TO GET INTH1.
INTGRL=0,0D0
ESTINATE THE RELATIVE TOLERANCE HEEDED TO GIVE THE REQUIRED NUMBER
OF SIGNIFICANT FIGURES.
TOL=(10.0D0)**(-SIGFIG)
NHUNPAN=64
PUT THE ROOTS AND WEIGHTS INTO ARRAYS LAHBDA AND WEIGHT,RESPECTIVELY.
CALL RTSHTS(SIZE,LANBDA,HEIGHT)
URITE(NOUT2, 100)LANBDA(1),LANBDA(2)
100 FORMAT(/1X, "IN INTEGR. LANBDA1=',D11.4,' LANBDA2=',D11.4)
WRITE(NOUT2,200)HEIGHT (1) ,HEIGHT(2)
200 FORMAT(/1X, ‘HEIGHT1=",D11.4,"' HEIGHT2=",D11.4)
OBTAIN AN ESTINATE OF THE INTEGRAL USING ONLY ONE PANEL. RESULT
1S INTNT,
CALL GRUSS(IFUNC,SIZE,PRIS, IPOT,LOHER, UPPER, NUIPAN, LANBDA,
$UEIGHT, INTN1 ,ERROR)
1000 CONTINUE
IF(ERROR.EQ.0) THEN
DOUBLE THE NUMBER OF INTEGRATION PANELS AND GET A HEW ESTINMATE=INTN2.
NUNMPARN=NUNPRN+NUNPAN
CALL GAUSS(IFUNC,SI\2E,PRNS, IPOT,LOMER, UPPER, NUNPAN, LANBDA,
$HEIGHT, INTN2, ERROR)
IF(ERROR.EQ.0) THEN
CALCULATE THE RELATIVE CHANGE IN THE INTEGRAL THAT RESULTED FRON
DOUBLING THE NUNMBER OF PANELS.
IF(DABS(INTN2) .GE.(10.0D0**(~-14.0D0))) THEN
EPSILN=DABS((INTN2-INTN1)/1NTN2)
ELSE
INTGRL=0.000
EPSILN=0.000
END IF
HRITE(NOUT2,1100) INTH1, INTN2,EPSILN
1100 FORNMAT(/1X, ' INTN1=",D11.4, " INTN2=",D11.4,'EPSILN=",D11.4)
INTHI={NTN2
END IF
END IF
IF THE RELATIVE CHANGE IF GREATER THAN THE DESIRED TOLERANCE,REPEAT,
IF((EPSILN.GT.TOL) .AND. ((ERROR.EQ. 0} ,AND. (NUNMPAN,LE.NAXPAN)))
$G0 T0 1000
HRITE(NOUT2, *)NUNPAN
IF (NUMPAN.GT.NAXPAN) THEN
HRUE USED THE HAXINUN NUNBER OF PANELS AND {NTEGRAL HAS NOT
CONUERGED. SET ERROR FLAG BEFORE QUITTING.
ERROR=4
END IF
IF(ERROR.EQ.0) THEHN
INTGRL=IHTN2
END iF
RETURN
END .
A AR A AR AR AR A A HOR IR A AR ORI AR R K AR A KKK O KR A KK KRR K
SUBROUTINE RTSHTS
PURPOSE-LOADS THE ROOTS AND UEIGHTS FOR THE LEGENDRE
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POLYNOMIAL IN TO ARRAYS LAMBDA AND UEIGHT, RESPECTIUVELY.

SUBROUTINE RTSHTS CURRENTLY CONTAINS ROOTS AND HEIGHTS FOR A
THIRD ORDER LEGENDRE POLYHNONIAL.

DATE 2/17/86
CODED BY DAVID PFUND

THIS ROUTINE CALLS: -

30340 38 20 30 300 3K 0 3 3 3 K 36 K 30 0 3 38 00 303k 38 09K 3 3K Sk 30 300 300k 33K 3 3k 3k e 30 3 3 3K 33K ok 206 3k 3 30 i 3 3k 3 ok e e ok oKk

SUBROUTINE RTSHTS(SIZE,LANBDA,HEIGHT)

IMPLICIT REAL*8(A-H,0-2)

INTEGER SIZE

REAL*8 LAMBOA(SIZE),HEIGHT(SIZE)

REAL*B LAM1,LAN2
CONNMON/DEVICE/NIN,NOUT1 ,NOUT2, INOPT

DATA LAMT,LAN2,HGHT1,HGHT2/0.0D0,0.77459666924148300,
$0.8885888886888889D0,0.555555555555556D0/
LANBDA(1)=LAM

LANBDA(2)=LAMN2

WEIGHT (1) =UGHTI

WE1GHT (2)=NGHT2

WRITE(NOUTZ, 100)LAMT,LAN2

FORMAT(/1X, "IN RTSHTS. LAMi=',D11.4,* LAN2=',6D11.4)
URITE(NDUT2,200)LANBDA(1),LANBDRAR(2)

FORMAT(/1X, 'LANBDA(1)=",D11.4," LANBDA{2)=',D11.4)
RETURN

END
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FUNCTION SUBINT
PURPOSE-ESTINRTES THE {NTEGRAL FOR A SINGLE PANEL. SUBINT
CURRENTLY USES A THIRD ORDER LEGENDRE POLYNOMIAL.

DRTE 2/17/86
REVISED 9/3/87- ADDED A SHITCH (" 1FUNC") AND DUPLICATED
CODE FOR USE WITH THREE DIFFERENT INTEGRANDS.

CODED BY DAUID PFUND

c
c
c
C
c
c
c
c
c
c
¢
C THIS ROUTINE CALLS: SUBROUTINE INDURS-DETERMINES AN ORDER
C NUNMBER OF UNEQUALLY SPACED POINTS WITHIN
C THE INTERUAL (LOWER,UPPER) FOR WHICH THE
C THE INTEGRAND M{LL BE EUALUATED.
c FUNCTION FUNCO~CALCULATES THE FUNCTION
¢ TO BE INTEGRATED."SUBINT" EUALUATES
C THE INTEGRAND AT THE POINTS GIVEN BY
c *INDURS* FOR INTERNAL ENERGY CALC.
c FUNCTION FUNC1-CALCULATES THE FUNCTION
c TO BE INTEGRATED.*SUBINT* EUALUARTES
C THE INTEGRAND AT THE POINTS GIUEN BY
C “INDURS" FOR VUIRIAL PRESSURE CALC.
c FUNCTION FUNC2-CALCULATES THE FUNCTION
c 70 BE INTEGRATED."SUBINT" EUALUATES
c THE INTEGRAND AT THE POINTS GIVEN BY
c *INDURS® FOR CHEN. POTENTIAL CALC.
C 4 340 3k 26 0 240 2 36 2 3 20 30 2 e 3 20 e 3 ek 3 3 K 0 0 30K 3 30 e 20 3 26K e 3N 3K 3 3000 3 32 28 3 3 30 e e 3K e K 4 N e o 3K 3K K e K kK
REAL FUNCTION SUBINT(IFUNC,SI2E,PRNS, IPOT,LOUER, UPPER,
$LAMBDA,UEIGHT,ERROR)
IMPLICIT REAL*8(A-H,0-2)
INTEGER ERROR,ERR1,ERR2,0RDER,SIZE
REAL*8 LOWER
REAL*8 PRNS(30)
REAL*8 LAMBDA(SIZE),HEIGHT(SIZE)
REAL*8 XARRAY(3)
INTEGER IPOT, IFUNC
COMMON/DEUICE/NIN, NOUT
DATA ORDER/3/
C ORDER=0ORDER OF LEGENDRE POLYNOMIAL USED. NOTE:XARRAY=ARRAY(1..ORDER)
ERROR=0
ERR1=0
ERR2=0
SUM=0.0D0 :
CALL INDURS(Si2E,ORDER,LOWER,UPPER, LANBOA, XARRAY)
c HRITE(NOUT2, 100)XARRAY (1), XKARRAY(2)
C 100 FORMAT(/1X,'IN SUBINT. XARRAY1=',D11.4,' XARRAY2=',D11.4)
c WRITE(NOUT2,200)XARRAY(3)
C 200 FORMAT(/1X, 'XARRAY3="',D11.4)
C ORDER HAD BETTER BE IN 2..10 OR THING WILL NOT UORK RIGHT.
IF(IFUNC.EQ.0) THEN
C ENERGY CALC (PRETTY SHABBY).
IF((ORDER.EQ.3).0R. ((ORDER.EQ.S).0R. ({ORDER.EQ.7).0R. (ORDER.EQ.9)
$))) THEN
SUN=SUN+(HEIGHT(1)*FUNCO(PRHS, IPOT,XARRAY(1),ERR1))
ELSE
SUN=SUN+(UEIGHT (1)*FUNCO(PRNS, IPOT, XARRAY (1),
$ERR1))+(HEIGHT(1)*FUNCO(PRNS, IPOT, XARRAY(2),ERR2))
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END IF
1=2
J=2
¢ HRITE(NOUT2,300)ERRT, ERR2
C 300 FORMAT(/1¥, 'IN SUBI{NT. ERR1= ',13,' ERR2= *',13)
IF((1.LE.S12ZE).AND. ((ERR1.EQ.D) .AND.(ERR2.EQ.D))) THEN
1000 CONTINUE

IF((ORDER.EQ.3).0R. ((ORDER.EQ.5).0R. ({ORDER.EQ.7).0R. (ORDER.EQ.9)
$))) THEN
SUN=SUN+(UEIGHT (1 )*FUHCO(PRNS, 1POT, XARRAY(J),
$ERR1))+(UNEIGHT (1 )*FUNCO(PRNS, IPOT, XARRAY (J+1),ERR2))
I=1+1
J=J+1
ELSE
J=J+i
SUN=SUM+(UEIGHT (1 )*FUNCO(PRHNS, IPOT, XARRAY(J),
$ERR1) )+(HEIGHT(1)*FUNCO(PRMS, IPOT, KARRAY (J+1) ,ERR2))
{={+1
END IF
1F((I.LE.SIZE) .AND. ((ERR1.EQ.0).AND.(ERR2.EQ.0)))G0 TO 1000
END IF
IF((ERR1.EQ.0).AND. (ERR2.EQ.0)) THEN
SUBINT=SUN*( (UPPER~LOUER)/2.0D0)
ELSE :
SUBINT=0.000000001D0
IF(ERR1.NE.O)THEN
ERROR=ERR1
ELSE
ERROR=ERR2
END IF
END IF
END IF
c
IFCIFUNC.EQ.1) THEN
C PRESSURE CALC.
IF((ORDER.EQ.3).0R. ({ORDER.EQ.5).0R. ({ORDER.EQ.7).0R. (ORDER.EQ.9)
$))) THEN .
SUNM=SUNM+(UEIGHT(1)*FUNC1 (PRNS, IPOT, XARRAY(1),ERR1))
ELSE
SUN=SUN+(UEIGHT{1)*FUNC1 (PRNS, IPOT, XARRAY (1),
$ERR1))+(HEIGHT(1)*FUNC1(PRNS, IPOT, XARRAY(2),ERR2))
END IF
{=2
J=2
C URITE(NOUT2,300)ERR1,ERR2
C 300 FORMAT(/1X,*IN SUBINT. ERR1= ',13,' ERR2= ',13)
1F((1.LE.S12E).AND. ({(ERR1.EQ.0).AND. (ERR2.EQ.0))) THEN
2000 CONTINUE
1F((ORDER.EQ.3).0R. ((ORDER.EQ.5).0R. ((ORDER.EQ.7).0R. (ORDER.E(.9)
$))) THEH
SUN=SUN+(UETGHT (1 )*FUNC1 (PRNS, IPOT, XARRAY (J),
$ERR1))+(UHEIGHT(1)*FUNC1(PRNS, IPOT,XARRAY(J+1),ERR2))
l=]+1
J=J+1
ELSE
JeJ+1
SUM=SUN+(UEIGHT (1 )*FUNC1(PRHS, IPOT,XARRAY(J),
$ERR1))+(UEIGHT(1)*FUNCI(PRHS, IPOT, XARRAY(J+1),ERR2))
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I=1+1
END IF
IF((I.LE.SIZE) .AND. ((ERR1.EQ.0).AND.(ERR2.EQ.0)))GO TO 2000
END IF
IF((ERR1.EQ.0).AND.(ERR2.EQ.0)) THEN
SUBINT=SUN*( (UPPER-LONER)/2.0D0)
ELSE
SUBINT=0.000000001D0
IF(ERR1,NE.O)THEN
ERROR=ERR1
ELSE
ERROR=ERR2
END IF
END IF
END IF

IF(IFUNC.EQ.2) THEHN
C CHEMICAL POTENTIAL CALC.
\F{{ORDER.EQ.3).0R.({ORDER.EQ.5).0R. { (ORDER.EQ.7).0R.(ORDER.EQ.9)
$>)) THEN
SUN=SUN+(HUEIGHT (1 )*FUNC2(PRNS, IPOT, XARRAY(1),ERR1))
ELSE
SUN=SUN+(UEIGHT(1)*FUNC2(PRNS, IPOT, XARRAY (1),
$ERR1) )+(HEIGHT(1)*FUNC2(PRNS, |POT,XARRAY(2) ,ERR2))
END IF
[=2
J=2
c URITE(NOUT2,300)ERRT,ERR2
€ 300 FORMAT(/1X,'IN SUBINT. ERR1= *,13,' ERR2= *,I3)
1IF((1.,LE.SIZE) .AND. ((ERR1.EQ.0).AND. (ERR2.EQ.0)) )THEN
3000 CONTINUE
IF((ORDER.EQ.3).0R. ((ORDER.EQ.5).0R. ((ORDER.EQ.7).0R. (ORDER.EQ.9)
$))) THEN
SUN=SUN+(HEIGHT (1 )*FUNC2(PRNS, 1POT, KARRAY(J),
$ERR1))+(HEIGHT (1 )*FUNC2(PRNS, IPOT, XARRAY(J+1) ,ERR2))
I=]+1
J=J+i
ELSE
J=J+1
SUN=SUM+(UEIGHT(1)*FUNC2(PRHS, IPOT, XARRAY (J),
$ERR1))+(HEIGHT (1 )*FUNC2(PRNS, IPOT,XARRAY(J+1),ERR2))
I=]+1
END IF
IF((I.LE.SIZE).AND. ((ERR1.EQ.0).AND.(ERR2.EQ.0)))G0O TO 3000
END IF
IF((ERR!.EQ.0).AND, (ERR2.EQ.0)) THEN
SUB INT=SUM*( (UPPER-LOMER)/2.0D0)
ELSE
SUBINT=0.000000001D0
IF(ERR1.NE. Q) THEN
ERROR=ERR1
ELSE
ERROR=ERR2
END IF
END IF
END IF

c HRITE(NOUT2,2000)SUMN, SUBINT
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C2000 FORMAT(/1X, ‘LEAVING SUBINT,SUM=',D11.4,* SUBINT=",D11.4)
RETURN
END
A A A A A A AN KA A K I A I I AR MK A MR A KA I A A A KKK
FUNCT{ON COREPR
PURPOSE-CALCULATES THE CONTRIBUTION TO THE VIRIAL PRESSURE
DUE TO HARD CORE REPULSIUVE FORCES,
(USED UITH STELL-NEIS POTENTIAL. NOT USED WITH
LENNARD-JONES POTENTIAL).

CODED BY DAUID PFUND

THIS ROUTINE CALLS: FUNCTION CONRDF~MUMERICALLY ESTINATES
THE CONTACT UALUES OF THE PAIR CORRELATION
FUNCTIONS.
203K O e 3 e 3 e K e e D K 2 e 35 i 3 ok 3 36 O 8 i 350 N 2 e 2 X 3 3 3 3 S 3 e 2 3 3 6 36 3 2 3 K K 3k 3k 2 3K K K 2K 5K 3 K K 3K KK X
BEAL FUNCTION COREPR(DR,SIGMA,CORE,R0,BUIJ,PAIR)
INPLICIT REAL*8(A-H,0-2)
REAL*8 DR
REAL*B SIGHA(3),R0O(3)
REAL*8 BUI.J(2048,3)
RERL*8 PAIR(2048,3)
REAL*8 CORE(3)
REAL*8 XCON
REAL*8 G11CON,G12CON,622C0N
REAL*8 SAVE,CUBE
INTEGER NCON
COMMON/LUDOL /P
COMMON/DEVICE/NIN, NOUT1,NOUT2, INOPT
C ESTIMATE CONTACT UALUES OF THE PAIR CORRELELATION FUNCTIONS.
€ DO 1-1 FIRST.
C GET THE LOCATION AT CONTACT (WHICH 1S REDUCED BY SOFTD(1)):
XKCON=CORE(1)/DR
C TRUNCATE:
NCON=XCON
KN=NCON
KN=XN+1,0D0
|F(DABS(XCON-XN) .LT.0.001D0) THEN
NCON=HCON+1
END IF
C EXTRAPOLATE FROM NESH POINTS TO THE RIGHT OF THE CONTACT DISTANCE
C TO ESTIHATE THE CORRELATION FUHCT{ION AT CONTACT.
G11CON=CONRDF (NCON, XCON, PAIR(HCON+1,1),PRIR(NCON+2,1),
$PAIR(NCON+3,1))
o NRITE(NOUT2,*)G11CON
{F{G11CON.LT.0.00001) THEN
G11CON=0,000

c
¢
¢
c
c
c
c
c DATE 9/1/87
c
c
¢
c
c
¢

END IF

¢

€ DO 1-2:
KCON=CORE(3) /DR
NCON=XCON

XN=¥N+1,000
IF(DABS(XCON-KN).LT.0.001D0) THEN
NCON=NCON+1
EHD IF
G12CON=CONRDF (NCON, XCON, PAIR(NCON+1,3) ,PAIR(NCON+2,3),
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$PRIR(NCON+3,3)) v
IF(G12CON.LT.0.00001) THEN

G12CON=0.0D0

END IF
¢ DO 2-2:
XCON=CORE(2)/DR
NCON=XCON
®¥N=NCCN
¥N=XN+1,0D0
IF(DABS(XCON-XN).LT.0.001D0) THEN

NCON=NCON+1

END IF

G22CON=CONRDF (NCON, XCON, PAIR(NCON+1,2) ,PAIR(NCON+2,2),
$PRIR(NCON+3,2))

IF(G22CON.LT.0.00001) THEN

G22CON=0.000

END IF

C ADD UP SEPARATE CONTRIBUTIONS TO THE PRESSURE FROM EACH PAIR
C INTERRCTION.

o0

OO0 0O00O0O0

SAVE=RO(1)*RO(1)*G11CON
CUBE=(SIGHA(3))**3,0D0
SAVE=SAVE+(2.0D0*RO(1)*RO(2)*CUBE*G12CON)
CUBE=(SIGNA(2))**3,000
SAVE=SAVE+(RO(2)*R0O(2)*CUBE*G22CON)
SAVE=(2.0D0*P|/3.0D0)*SAVE
HRITE(NOUT2,*)G11CON,G12CON, G22CON
COREPR=SAVE

RESULT 1S PRESSURE TIHES THE SHALL DIRNMETER CUBED DIVIDED BY

IT IS DINENSIONLESS.

RETURN
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SUBROUTINE GALER
PURPOSE-SOLUTION OF THE MIXTURE 02 EQUATION FOR SPHERICALLY
SYNNETRIC SYSTENS.

REVISED 6/4/87
10/23/87 -TO DANPEN OUT NEHTON AND FIXED POINT
ITERATIONS WHEN THE UPDATED RESULTS
ARE TOO LARGE.
2/18/88 -REUISED FOURIER TRANSFORM SUBROUTINES.
INCREASED THE MAX NEUTON AND DIRECT
ITERATIONS ALLOWED TO LET TIGHER SPECS
BE HET.
ORIGINAL UERSION FOR PURE SYSTEMS HRITTEN BY S.LABIK
AND A. NALIJEUSKY, INSTITUTE OF CHEMICAL TECHNOLOGY
PRAGUE, CZECHOSLOUVAKIA
(VERSION 1, FEBRUARY 1985)

THIS ROUTINE CALLS: SUBROUTINE FFS3D- FOURIER TRANSFORN
SUBROUTINE HSANAL~CALCULATES THE ANALYTIC
SOLUTION FOR THE HARD-SPHERE DISTRIBUTION
FUNCTIONS FOR USE AS AN INITIAL GUESS, IF
DESIRED BY THE USER.
SUBROUTINE GFC- CALCULATES THE TRANSFORMN
OF G FROM THE TRANSFORN OF € USING THE
02 EQUATIONS.
SUBROUTINE CFG- CALCULATES C FROM G USING
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THE CLOSURE EQUATION,

SUBROUTINE JACDD

SUBROUTINE GRUSEL

SUBROUTINE TEST

IMSL ROUTINE DSFIN1- PREPARE WORKARRAY FOR
THE IHSL SINE FFT PROCEDURE.

R KoK K K 36 0 o K 3K 5K R K 33 K 3 38003 5K 62K 900 32K 3 305K 2K K K S Sk K KoK K
SUBROUTINE GALER{(G,BU1J,F,NI,DR,R0,JP, E,SIGHA,BRONAT)
INPLICIT REAL*8{(A-H,0-2)

RERL*8 GN(2048,3),6T(2048,3),6HT(2048,3),DC(2048,3),CT(2048,3)
REAL*8 C{2048,3)

REAL*8 P(65,3),D6T(32,3),DIF(32,3)

RERL*8 CSN{2048)

REAL*8 L(97,97),G(2048,3),F(2048,3)

REAL*8 BU1J(2048,3)

REAL*8 HT(2048,3)

REAL*8 DIFF(96)

REAL*8 €S(32,3),FJ(3,3)

REAL*8 CCT(3),66HT(3),CTI(3),6NTi(3),DGTC(3),R0(3),SIGHA(3)
REAL*8 WFFTR(5133)

REAL*8 DR

REAL*8 SIG(3)

REAL*8 RAM,DT,TH,P1,P2

INTEGER KAH

LOGICAL BADHAT

COMMoON /CONU/CONUDI, CONUNR

connoN/LUDOL /P

CONMON/HTHING/HT
COHMMON/DEVICE/NIN, NHOUT 1, HOUT2, {NOPT

DATA OUCH,UAIT,HAIT2/1.25D0,0.2500,0.25D00/
DATA CUTI,CUTR/0.0100,0.01D00/

INPUT PARANETERS~

G: G(R)=R*(H(R)-C(R))
F: HAYER FUNCTION=EXP(~U(R)/T*) - 1
N NUHBER OF DEFINING NUNMBER. OF GRID POINTS (?)
N=2%%NH

H1TH CURRENT RRRAY DINMENSIONS, NAX Ni=1t.

RO: REDUCED DENSITY=N*{RSIGNA(1)**3)/V

DR: REDUCED STEP SIZE

JPs .

JP.EQ.0 ... LOW DENSITY LIMIT - G{R) = 0.
JP.EQ.1 ... INPUT G(R) IS USED.
JP.ER.2 ... HARD SPHERE G(R) 1S USED.

QUTPUT PARANETERS~
G: G(R)=R*(H(R)-C(R))

lE: NUMBER OF ITERATION STEPS
{E<O HEANS GALER FAILED, NO SOLN. FOUND.

HT: THE FOURIER TRANSFOR!NS OF THE TOTAL
CORRELATION FUNCTIONS, H, THESE ARE PARSSED
THROUGH COMMON/HTHING/ TO SUBROUTINE
DILUTE (THEY'RE USED THERE IN THE 02
EQUATIONS FOR A TEST PARTICLE).

{NOTE: THE STRUCTURE OF SUBROUTINE GALER 1S TERMINAL~- SORRY)
URITE(NOUT1, 1)
FORMAT(1X," IN GALER *)
ROT=RO(2)/R0O(1)
N=2**HH
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N2=2*N
RU=DR*N
DT=P!/RH
TH=P1/DR
P1=PI/N
Do 5 I=1,N
P2=|*P1
CSN(1)=DCOS{(P2)
CONTINUE
INITIAL WORKARRAY FOR 1MSL SINE FFT ROUTINE:
HN=N-1
CALL DFSINI(NN,UFFTR)
HFFTR HUST HAVE DIMENSION INT(2,5*NN+15),

o u

DEFINITION OF INITIAL UALUES OF G(R) AND GT(T)

OO0

IF (JP,EQ.0) THEN
Do 20 J=1,3
DO 10 I=1,H
G(1,J)=0.000
GT(1,J>=0.0D0
10 CONTINUE
20 CONTINUE
ELSE
IF (JP.EQ.1) THEN
00 25 J=1,3
DO 24 I=1,H
DC(1,J)=G{1,J)*R0(J)
24 CONTINUE
25 CORTINUE
KAn=1
DC(N,1)=0.0D0
DC(N,2)=0,0D0
BC(N,3)=0.0D0
CALL FFS3D(KAN,DC,GT,N,NN,DR,HFFTR)

ELSE
c USE HARD-SPHERE AS INITIAL GUESS
c PRINT*, 'INITIAL GUESS BY HARD-SPHERE POTENTIAL'

SI16G(1)=0.9D0*SIGNA(1)
S16(2)=0.9D0*SIGNA(2)
S16(3)=SiGNAR(3)
CALL HSANAL(C,R0,S1G,DR)
Do 27 J=1,3
D0 26 1=1,N
RR=|*DR
DC(1,J)=C(1,J)*RO(J)*RR
26 CONTINUE
27 CONTINUE
KAn=1
DC(M,1)=0,0D0
DC(N,2)=0.0D0
DC(N,3)=0.0D0
CALL FFS3D(KAN,DC,CT,N,HNN,DR, HFFTR)
DO 140 J=1,N
T=J*DT
DO 141 1B=1,3
CCT(IB)=CT(J, 1B)
141 CONTINUE
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CALL GFC(CCT,GGNT,ROT,T)
DO 142 IB=1,3
GT(J, 1B)=GGNT(1B)

142 CONTINUE
IF (J.6GT.64) GO0 T0 139
c PRINT*, (GT(J,1B),18=1,3)

DO 143 1B=1,3
IF (GT(J,18).LT.0.) G6T(J,iB)=0,

143 CONTINUE

139 CONTINUE

140 CONTINUE
KAh=-1

CALL FFS3D(KAH,GT,G,HN,NM,DR,HFFTR)
DO 127 J=1,3

DO 126 I=1,N
6(1,J)=6(1,J)/R0(J)
126 CONT I NUE
127 CONT 1 NUE
END IF
END IF
IF (JP.EQ.4) RETURN
|E=0
IR=0
CONOLD=10000.
c
c START OF DIRECT ITERATION
1000  CONTINUE
|E=1E+1
CONCUX=10000.
IF (IE.GT.160) GG TO 3000
c
c CALCULATION OF C(R) FROM G(R)
c
KONST=0
CALL CFG(G,BUIJ,F,C,DR,KONST,R0)
DO 85 J=1,3
DO 80 I=1,N
C(1,J)=C(1,J)*RO(J)
80 CONT I NUE
85 CONT I NUE
c
c CALCULATION OF CT(T), THE FOURIER TRANSFORM OF C(R)
c
KAt=1
C(N,1)=0.,0D0
C(N,2)=0.0D0
C(N,3)=0.0D0
CALL FFS3D(KAN,C,CT,N,NN,DR, UFFTR)
C
¢ CALCULATION OF MEW GT(T)
c
DO 40 J=1,N
T=J*DT
DO 41 IB=1,3
CCT(1B)=CT(J, 1B)
41 CONT [NUE

CALL GFC(CCT,GGNT,ROT,T)
DO 42 iB=1,3
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GNT(J, IB)=GGNT(IB)

C SAVE THE TRANSFORNMS OF THE TOTAL CORRELATION FUNCTIONS.
HT(J, 1B)=(GGNT(IB)+CCT(IB))/T
HT(J, 1B)=HT(J, IB)/RO(IB)

42 CONTINUE
40 CONTINUE
c
¢ NUMBER OF EQUATIONS (NA) 1IN NEHTON ITERATION.
c
NA=32
c
C CALCULATION OF DERIVATIVE OF C(R) UNDER G(R) AND 1TS TRANSFORI.
c

KONST=1
CALL CFG(G,BUIJ,F,DC,DR,KONST,RD)
DO S5 Nn=0,2*NA
Bo 56 1B=1,3
P1=0
L=N
P2=-1
DO 57 J=i,N
L=L+0
IF(L.LE.N) GO TO 50
L=L~N
pP2=-p2
S0 CONTINUE
P1=P1+P2%DC(J, |B)*CSN(L)
P(n+1,1B)=P1/N

57 CONTINUE
S6 CONT INUE
55 CONT INUE
DO 96 J=1,NA
Do 95 IB=1,3
DGT(J, 1B)=0

95 CONTINUE
96 CONTINUE
c
c START OF NEWTON ITERATION
c
2000 CONT IHUE

IR=1R+1

IF (IR.GT.160) GO TO 3000
DO 200 H=1,NA
T=H*DT
DO 110 IB=1,3
CT1(IB)=CT(N, I1B)
DO 109 J=1,NA
IP=J+1+1
Ii=1ABS (N-J)+1
€S(J, 1B)=P( 1N, IB)-P(IP, IB)
CTI(1B)=CTI(1B)+DGT(J, IB)*CS(J, I1B)
109 CONT INUE
110 CONTINUE
CALL GFC (CTI,GNTI,ROT,T)
CALL JACOB (CTI,GNTI,FJ,T,ROT)
DO 111 1B=1,3
DGTC(1B)=GT(M, 1B)+DGT(H, IB)-GNTI(IB)
H(32%(1B-1)+H,3*NA+1)=DGTC(IB)



217

11 CONTINUE
DO 130 1R=1,3
DO 125 iB=1,3
DO 120 J=1,NA
H(32%(1A=1)+11,32%(1B-1)+J)=FJ(IA, 1B)*CS(J, IB)

120 CONT INUE
125 CONTINUE
130 CONTINUE

200 CONTINUE

DO 201 I=1,3*HA
WO, D=H(T, 1)~
201 CONTINUE
NS [ 2E=3*NA
CALL GAUSEL(NSIZE,U,DIFF,BADNAT)
|F(BADMAT) 6O 70 3000
DO 202 1=1,NR*3
IP=(1-1)/HA+1
1Q=1~NA*(1P=1)
DIF(1Q,1P)=DIFF(I)
202 CONTINUE
P3=0.
P4=0,
DO 210 1B=1,3
DO 205 J=1,NA
P3=P3+(DIF(J, I1B)+GT(J, IB)+DGT(J, IB))**2
P4=P4+DIF(J, 1B)**2

205 CONTINUE
210 CONTINUE
P2=SQRT(P4/P3)

CALL TEST(DGT,DIF,NA,1K,N,DR)
IF (NOD(IR,S).NE .1) GO TO 399
DO 389 M=1,HA
DO 388 1B=1,3
CTI(IB)Y=GT(N,1B)+DGT(N, iB)

388 CONTINUE
c PRINT*, n,(CT1{(1B),B=1,3)
389 CONTINUE
399 CONTINUE
c
c TEST TO END NEWTON 1TERATION,
c
IF (P2.GT.CONUNR,AND. 1K,EQ.0.RND.P2,LT.CONCUX) THEN
CONCUR=P2
60 TO 2000
END IF

D0 310 M=1,NA
D0 390 J=1,3 :
C DAMPEN OUT MENTON CYCLES. “IF* STATEMENTS AND TUNING PARAMETERS ARE
C USED IN AN RTTENMPT TO ALLOW LARGE CHANGES IN THE “GT" UNDER SOME
C CONDITIONS AND TO CRUSH SUCH CHANGES UNDER OTHER CONDITIONS.
IF(DABS(GT(N,J)).GT.CUTR) THEN
IF(DABS(DGT(H,J)).GE.DRABS(OUCH*GT(M, J))) THEN
DGT(M,J)=HATT*DGT (M, J)*DABS (GT(M, J)/DGT (M, J))
END IF
END IF
GT(M,J)=6T (M, J)+DGT(M, J)
350 CONT IHUE
310 CONT I NUE
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D0 335 1=1,3
DO 330 J=NA+1,N
GT(J, 1)=GNT(J, I)

330 CONTINUE
335 CONT INUE
c
c CALCULATION OF NEW APPROX. FOR DIRECT ITERATION.
c
KAt=~1

cALL FFS3D(KAN,GT,GN,N,NM,DR, WFFTR)
C DO 119 1=30,40
¢ HURITE(NBUT2,*)GT(1,1),6T(!,2),6T(I,3)
c HRITE(NOUT2,*)GN(1,1),6H(1,2),G6N(I,3)
ci19 CONTINUE
P3=0
DO 195 J=1,3
DO 190 i=%,H
GN(1,J)=GN(I,J)/RO(J)
P1=G(1,J)-GNC1,J)
P3=P3+(P1/1)%*2
C DANPEN OQUT DIRECT ITERATIONS.
IF(DABS(G(1,J)).6GT.CUTI) THEN

¢ URITE(NOUT2,119)
c119 FORNAT(1X, 'DIRECT' 'S EXCEEDED CUTOFF')
c HRITE(NOUT2,*)1,J,6(I,J)

IF(DABS(P1).LT.DABS(OUCH*G(I,J))) THEN
G(1,J)=GN(1,J)
ELSE
G, d)=((1,000-UAIT2)*G(1,J))+(HRIT2*GN(1,J))
G(1,J)=(0.900*G{,J))+(0.1DO*GN(I,J))
END IF
ELSE
G(1,J)=0N(1,J)
END IF
190 CONTINUE
195 CONT INUE
P3=SQRT(P3)

TEST 70 END ITERATIONS.

OO0

IF (P3.LT.CONUDI) THEN
c HRITE(NOUT2,*)IE, IR
RETURN
ELSE
{F (P3.LT.CONOLD) THEN
1C0=0
CONOLD=P3
GO TO 1000
ELSE
IF (1C0.EQ.0) THEN
1CO={CO+1
G0 TO 1000
END IF
END IF
END IF
HURITE(NOUT2,*)IE, IR
RETURN
GO TO 1000

o0
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CONTINUE

C IF IT'S HERE,
C SUBROUTINE GALER HAS FAILED..,SORRY,

|E=~|E
WRITE(HOUT2,*)IE, IR
RETURN

END

(C 2% it ol e 3k s e 3 2 3 e o8 3K 3 30 30 03 3 S 3 3 oK o 0 e a0 K 8 0 0 R 3 3 8 3 30 K 0 3 K AR 3 ok 3 K O K 80K 3 K K K K 3Kk
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FUNCTION HAP

PURPOSE-NMAPS THE DESIRED PANEL INTERUAL ONTO SOME KIND OF
STANDARD GAUSS~LEGEMDRE IMTERUAL. 't NOT QUITE SURE

HOW THIS THING WORKS ANYMHORE.

DATE 2/18/86
CODED BY DARUID PFUND

THIS ROUTINE CALLS: -

2409 30000 360 20 2 240 e 0048 240 30 00 38 3 300 00 0 30 3 0 3 3 38R 309K 2 200 2 9 3 oK 3K 3K 2 3 K K 3K 3 2 K 3k 3K 8 0K 20 3 K K K 3K 3 K 3K 0 K K K0k

REAL FUNCTION HAP(LOWER,UPPER,ALPHA)

IHPLICIT REAL*B(A-H,0-2)

REAL*8 LOWER

CONNON/DEVICE/NIN, NQUTY ,HOUT2, INOPT

MAP={0.5D0)* ({ LONER+UPPER)+({UPPER-LOWER)*ALPHA))
RETURN

END

2 3 3 300 3 033 20 0 3K 3 3 0 30 3 2 3N K 3 3 3 0 S e 3 3 3 3 200 0 2k 3 K N3 0 33 3R 2 K 3K 20 54 K a0 3K K 0 3 K K K 3K KK KK K

FUNCTION CONRDF

PURPOSE-NUNERICALLY ESTINATES THE CONTRCT UALUES OF THE PAIR
CORRELATION FUNCTIONS FOR SYSTENS WITH AN INFINITE
REPULSION AT CONTACT. CURRENT UERSION EXTRAPOLATES
TO CONTACT WITH A QUADRATIC LAGRANGIAN POLYNOMIAL.
(USED WHEN THE TEST PARTICLE 1S A HARD SPHERE)

DATE 9/1/87
CODED BY DAUID PFUND

TH1S ROUTIHE CALLS: -

338 3 3 3 3 K 3 0 3 00 e 003K Sl e 0 3 o s e 3 e 00K 3K 203 3 3 3 2 0 2 35K 3698 8 3 2K 3 3000 3K 3K 3K 3 208 23K 3 3K KK K K K

REAL FUNCTION CONRDF(NCON,XCON,G1,G2,63)
IMPLICIT REAL*6(A-H,0-2)

REAL*8 XCON,G1,62,63

REAL*8 XN1,XN2,XN3

REAL*8 SAVE

INTEGER NCOH
COMMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

XCON=URALUE OF SEPARATION AT CONTACT 1IN REDUCED UNITS R/ASIGHMA(1),
NCON=TRUNC{XCON)

G1=UALUE OF THE CORRELATION FUNCTION AT THE MESH POINT IMMEDIATELY
TO THE RIGHT OF THE CONTACT DISTANCE=PAIR(NCON+t,J).
G2=PAIR(NCON+2,J), 1.E. TUO HESH POINTS FROM CONTACT.
G3=PRIR(NCON+3,J), 1.E. THREE MESH POINTS FROM CONTACT.

¥N1=NCON
IF(XN1,LT. (XCON~0,0001D0)) THEN

DO NOT EXTRAPOLATE T0O FAR TO THE LEFT OF THE BEST COMPUTED UALUE.

SAVE=G1
ELSE
XH1=¢N1+1.0D0
KN2=XN1+1.0D0
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XH3=XN1+2.0D0

SAUE=( (KCON-RN3)*G1)+((XCON-XN1)*G3)
SAUE=SAVE* ({XCON-XN2)*0.5D0)
SAVE=SAVE- ( (KCON-XN1)*(KCON-KN3)*G62)

END IF

CONRDF=SAVE

RETURN
END

DATE:

¢
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

5 8 6 o 3 30 3K K 3K 40K 30 3 5 K R K o o6 8 KK 5K 5K K R o K o o Kok o o K 3K oK K oK oK 3 ok 3 oK ok
SUBROUTINE INSIDBE
PURPOSE-SETS UP PARAMETERS NEEDED BY SUBROUTINE SIMNP.

6/29/87.

REVISED 9/20/87 -T0 USE THE TEST PARTICLE RDF FROM THE

HMSA INTEGRAL EQUATION THEORY.
6/4/88- TO USE WCA POTENTIAL DIVISION.

THIS PROGRAN CALLS: SUBROUTINE NEWGIJ-CALCULATES THE

ESTINATED PAIR CORRELATION FUNCTION
FOR THE TEST PARTICLE.

SUBROUTINE SIHP-INTEGRATES THE PRODUCT
OF THE PERTURBING POTENTIAL TINES THE
ESTINATED PAIR CORRELATION FUNCTION.
FUNCTION CONRDF-COHPUTES THE CONTACT
URLUES OF THE CARUITY RDF.

33 2K 2 300 28 30 3 3 0 AR e 2K 206 5K 3K 0208 ok 3R K 2 MK B 6 3 K 00 0 2 A 2 3 K KK K K 2 3 20K 3K 3K e 3 3 R R KK K K K K KK

SUBROUTINE INSIDE(RLPHR,NBIG,NM,DR, IPOT,RSOFTD,EPS!,RO, TRED,
$LANMBDA, TULJ,AHCO,PS1,GANNA,DIRECT, INTGRL, ERROR,SIGNA,
$GCAA, GCAB, RDFNEW, BATHNUW, DIRNEH, JP)

INPLICIT REAL*8(A-H,0-2)

REAL*8
REAL*3
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

RSOFTD(3) ,EPS1(3)
SIGHA(I)

DR, TRED, LANBDA
PSI(NBIG,3),6AMMA(NBIG,3)
TU1J(NB1G,3),RUCO(NBIG,3)
DIRECT(NBIG,3)
RDFNEN(2048,3)
BATHNW(2048,3)
DIRNEH(2048,3)
FUNCT(2048,3)

RO(3)

RLPHA

INTGRL

GCAR, GCRB

INTEGER ERROR

INTEGER 1POT

LOGICAL PNOH

CONMNON/LUDOL/PI

COMMON/DEVICE/NIN, NOUT1,NOUT2, INOPT

ESTINATE THE

ODOOOO0O0O0OO0

UALUE OF THE

"PSi"=> THE PERTURBING POTENTIAL DIVIDED BY KT,
“LANBDA"=> THE COUPLING PARAMETER.
RO(1)=(DENSITY)*(ITH NMOLE FRAC.)*((LJ DIA. OF COMPONENT 1)**3)

PAIR CORRELATION FUNCTION FROM THE HARD SPHERE

CORRELATION FUNCTION.
"PNOW" => PRINT DIAGNOSTIC NOM.
G6CAR=LIKE-LIKE CONTACT UALUE OF THE CAVITY RDF. GCAB= CONTACT

UNLIKE CRUITY RDF. THESE ARE COMPUTED ONLY WHEN
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C LANMBDA=0,

CALL NEWGIJ(NBIG,NM,DR, IPOT,RSOFTD,EPSI,RO, TRED,LANMBDA, TUIJ,
$AUCO,PSI,GAMMA,DIRECT,ROFNEN, BATHNW, DIRNEU, ERROR,
$S1GMA, WAY, TOTAL, JP)

G6CAR=0.0D0

GCAB=0,0D0

C IF LAMBDA=-1 THE TEST PARTICLE IS A HARD SPHERE. GET THE CONTACT
URLUES
C OF THE CAVITY RDF:
C SOMETIHE IN THE FUTURE, NEED TO HOUE THIS CONTACT RDF STUFF INTO
C IT'S OUN SUBROUTINE AND REMOVE THE DETERMINARTION OF CONTACT
C RDF'S FROM SUBROUTINE INSIDE.
1F(LANBDA.LE.-0.000001D0) THEN
IF(1POT.EQ.0) THEN
€ UANT GCAA=2-2 CONTACT VALUE. GET THE LOCATION AT CONTACT
c KCON=(S1GN1A{2)/DR)+1.,0D0
KCON={SIGNA(2)/DR)
NCON=XCON
XN=NCON
KN=KN+1,0D0
1F(DABS(XCON~XN) .LT.0.001D0) THEHN
NCON=NCON+1
END IF ‘
GCRAA=CONRDF (NCON, XCON, ROFNEW(NCON+1,2),
$ ROFNEH(NCON+2,2) ,RDFNEH(NCON+3,2))
ELSE -
€ UANT GCAR=1-1 CONTACT UALUE.
c KCON={SIGNAR(1)/DR)+1.0D0
KCON=(SI1GNA{1)/DR)
HCON=XCON
KN=NCON
KN=XN+1,0D0
1F(DABS(XCON~-KN).LT.0.001D0) THEN
NCON=NCON+1
END IF
GCAA=CONRDF (NCON, XCON, ROFNEU{HCON+1,1),
$ RDFNEU(NCON+2,1) ,RDFNEU(NCON+3,1))
END IF
C GCAB=1-2 CONTACT VALUE ALUAYS,
¢ XCON=(SI1GNA(3)/DR)+1.0D0
KCON=(S1GHA(3)/DR)
NCON=XCON
KN=HCON
X¥N=XN+1,000
{F{DABS(XCON-XN).LT.0.001D0) THEN
NCON=NCON+1
END IF
GCAB=CONRDF (NCON, XCON, RDFNEU(NCON+1, 3),
$ ROFNEW(NCON+2,3) ,RDFNEU(NCON+3,3))
URITE(NOUT2,*)GCAR, GCAB

END IF

INTGRL=0.0D0

1F (LANBDA . GE.=0.0000001D00) THEN

C COHPUTE THE INTEGRAND FOR SUBROUTINE SINP:
1F(IPOT.EQ.0) THEN
C HUANT CHEMICAL POTENTIAL OF SPECIES 2
DO 5 i=1,NBIG
REALI=1



222

RAD=REAL | *DR

FUNCT(1, 1)=RDFNEW(I,3)*PSI(1,3)/R0(1)
FUNCT(1,2)=RDFNEUN(I,2)*PS1(1,2)/R0(2)
FUNCT(1,3)=0.0D0
TERM=ROFNEH(I,3)*PS1(1,3)*R0O(1)
TERM=TERM+(RDFNEW(1,2)*PS1(1,2)*R0O(2))
TERM=TERM*4,000*P | *RAD*RAD

c IF((I.GE.140) ,AND.(I.LE.210)) THEN
c NRITE(NOUTZ2,*) | ,RDFNEU(I,3),PSI1(1,3)
c WRITE(NOUT2,*)RDFNEN(1,2),PS1(1,2)
c HRITE(NOUT2,*)FUNCT(!,1),FUNCT(1,2)
c END IF
5 CONT{NUE
ELSE
C WANT CHEMICAL POTENTIAL OF SPECIES 1
DO 7 I=1,NBIiG
REALI=I
RAD=REAL | *DR
FUNCT(1,2)=RDFNEN(1,3)*PSI(l,3)/R0O(2)
FUNCT(1,1)=RDFNEU(], 1)*PS1(1,1)/R0O(1)
FUNCT(1,3)=0.0D0
TERH=RDFNEH(1,3)*PSi(1,3)*R0(2)
TERM=TERM+(RDFNEU (L, 1)*PS1 (1, 1)*R0O(1))
TERM=TERN*4,0D0*P | *RAD*RAD
7 CONT I NUE
END IF

C INTEGRATE THE PRODUCT OF THE CORRELARTION FUNCTION AND THE
C PERTURBING POTENTIAL.
C "PNON" => PRINT DIAGNOSTIC NOM.
PHOU=.FALSE.
IF((LANBDA.GT.0.499D0) .AND. (LANBDA,LT.0.501D0)) THEN
PNOW=, TRUE,
END IF
CALL SiNMP(DR,RO,FUNCT, INTGRL,PNOU)
END IF
C IF((LANBDA.GT.0.499D0) .AND. (LANBDA.LT.0.501D0)) THEN
o HRITE(HOUTZ, 10)LANBDA, INTGRL
c 10 FORMAT(/1X, 'LANBDA= ',D13.6," INSIDE= *,D13.6)
c END IF
c
c
c

lyEeRe]

WRITE(NOUT2,32)
32 FORHAT(/1X, '"LEAVING INSIDE*)
D0 40 1=33,50
c WRITE(NOUT2,3S)PSI(1,1),PSI1(I1,2),PS1(1,3)
€35 FORMAT(1X, 'PS1:*,D13.6,1X,D13.6,1%,D13.6)
c HRITE(NOUT2,37)RDFNEN(1, 1) ,RBFNEN(},2),RDFNEN(1,3)
c37 FORNAT(1X, 'RDFNEU:*,D13.6,1%,013.6,1%,D13.6)
C40 CONTINUE
RETURN
END
AR HOR ORI AR IR AR AR AR MR AOK IO H A A AN AOK AR KO AR e 3 AR KA A KK A
SUBROUTINE NEWGIJ
PURPOSE-ESTINATES THE PAIR CORRELATION FUNCTIONS FOR THE
TEST PARTICLE FROM AN INTEGRAL EQUATION CALCULATION.

DATE: 9/20/87.

6/4/88- TO USE THE UCA DIVISION OF THE PAIR
POTENTIAL.

3/13/89- TO ELININATE THE ASSUMPTION THAT WHEN THE
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TEST PARTICLE 1S A HARD SPHERE THAT THE

INTERACTION DIANETER 1S THE SHALLEST.

THIS PROGRAN CALLS: SUBROUTINE MAYER2-CALCULATES THE MAVYER

ISTRIBUTION

FACTORS FOR INTERACTIONS WITH THE TEST
PARTICLE.

SUBROUT{HNE . DILUTE-SOLVES THE 02 EQUATIONS
FOR A TEST PARTICLE AT INFINITE DILUTION
IN A BATH OF THE ACTUAL NIXTURE.
SUBROUTINE CORFU2-COMPUTES THE

FUNCTIONS FOR THE TEST PARTICLE FRON THE
02 SOLUTION.

SUBROUTINE FLIP-SUAPS COMPOHENTS 1 AND

2 IN ALL ARRAYS. USED WHEN CALCULATING
THE CHENICAL POTENTIAL OF CONMPONENT 1
BEFORE CALLING SUBROUTINE DILUTE.

3 3 24k 2k 3K 3 3K 3 200 3K 3 2 3 0 A0 3 0 0K 36 03 0 2 R e 2 3K 3K K 2 0 3 3 200 0 0 32 0K e 2K 48 2 K 2K KOk Kk 3K oK Kk oK K K K

SUBROUTINE HNEWGIJ(NBI1G,HN,DR, IPOT,RSOFTD,EPS!,RO, TRED, LANBDA,
$TUIJ,ANCO,PST, GAMNA, DIRECT, ROFNEW , BATHNUW, DIRNEN, ERROR,
$SIGHR, JP)

C NOTE:

c

C USE GANNA FOR THE MIXTURE AS AN INITIAL GUESS FOR THE TEST PARTICLE.

IMPLICIT REAL*8(A-H,0-2)

REAL*8 RSOFTD(3),EPSI(3)

REAL*8 SIGHA(3)

REAL*8 U1J(3),514(3)

REAL*8 VUIJT(3),S1JT(3)

REAL*8 RO(3)

REAL*8 PS1{HBIG,3),GANMA(HBIG,3)
REAL*8 TUIJ(NB!G,3),RUCO(NBIG, 3)
REAL*8 AFFINS(2,2)

REAL*8 DIRECT(NBIG,3),RDFNEN(NBIG,3)
REAL*8 DIRNEW(2048,3), TOTHEH(2048,3) ,BATHNN(2048,3)
REAL*8 6(2048,3)

RERL*8 BU1J(2048,3)

REAL*B F(2048,3)

REAL*8 RC(2048,3)

REAL*8 TRED,LANBDA

REAL*E ALFNEMN

INTEGER NBIG

INTEGER ERROR

LOGICAL BADNAT

LOGICAL LOTS

COMNON/HNSA/ALFHEHN, U1J,S1J
CONMMON/HNSAT/ALPHAT , U1JT,S1JT
CONMNON/TYP/JT, N
CONNON/CONU/CONUD! , CONUNR
COMNON/LUDOL /P

CONNON/DEVICE/NIN, NOUT1,NOUT2, IHOPT
THE PAIR POTENTIAL HAS ALREADY BEEN DiVIDED BY KT.
BRDNAT= FALSE,

CONUD1=0.000001D0

CONUNR=0.0001D0

N=NBIG

JT=1

JP=1

D0 100 I=1,NBIG

C NRKE A CoPY,
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6(1,1)=GANNA(], 1)
G(1,2)=GAMNAC(L,2)
6(1,3)=6AMNA(1,3)
REALI=|
RAD1US=REAL | *DR
RC(1,1)=RADIUS*DIRECT(I, 1)
RC(1,2)=RADIUS*DIRECT(!,2)
RC(1,3)=RADIUS*DIRECT(I,3)
CONPUTE THE INTERRCTIGN PAIR POTENTIALS FOR THE TEST PARTICLE WITH
THE REST OF THE MIXTURE.
IF(LANBDA.LT.-0.000001D0) THEN
JP=2
IF(1POT.EQ.D) THEN
R CONPONENT OF SPECIES 2 1S BEING CHARGED
BUIJ(L, 1)=TUIJ(I,1)
BUIJ(I,2)=100.0D0
BUIJ(I,3)=100.000
ELSE
A CONMPONENT OF SPECIES 1 1S BEING CHARGED
BUIJ(1,2)=TU1J(1,2)
BUIJ(1,1)=100.0D0
BUIJ(1,3)=100.000
END IF
IF(RADIUS,.GE. (0,999999D0*SIGNA(1))) THEN
IF(IPOT.EQ.1) THEN
" BUIJ(I,1)=0.0D0
END IF
END IF
IF(RABIUS.GE. (0,9999939D0*SIGHA(3))) THEN
BUIJ(1,3)=0.000
END IF
IF(RADIUS,GE. {0.999999D0*SIGNA(2))) THEN
IF(IPOT.EQ.0) THEN
BUIJ(1,2)=0.0D0
END IF
END [F
ELSE
IF(IPOT.EQ.0) THEN
fi CONPONENT OF SPECIES 2 1S BEING CHARGED
BUIJ(I, 1)=TU1J(1,1)
BULJ(I,2)=RNCO(T,2)+(LANBDA*PSI(1,2))
ELSE
fi CONPONENT OF SPECIES 1 IS BEING CHARGED
BUIJ(I,2)=TUlJ(},2)
BUIJ(1, 1)=AUCOCI, 1)+(LANBDA*PSI(I, 1))
END IF
BUIJ(1,3)=ANCO(I,3)+(LANBDA*PSI(1,3))
END IF
100  CONTINUE
HHSR PARAMETER :
ALPHAT=ALFNEN
CONPUTE OTHER PARARNETERS FOR TEST PARTICLE INTERACTIONS HEEDED IN
THE HNSA CLOSURE EQUATION,
SI1ZE:
SHIT(1)=S1J(1)
SIJT(2)=S1J(2)
SIJT(3)=S1J(3)
ENERGY
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IF(IPOT.EQ.0) THEN
VIJT{1)=U1d(1)
VIJT(2)=LANBDA*V1J(2)
IF(LAMBDA.LE.-0,00001D0) THEN
ViJT(2)=0.0D0
SHJT(2)=51GNA(2)
END IF
ELSE
U1JT(2)=U14(2)
U1JT(1)=LANBDA*U1J(1)
[F(LAMBDA.LE.~0.00001D0) THEN
U1JT(1)=0.0D0
S1JT(1)=SIGNA{1)
END IF
END IF
UIJT(3)=LANBDA*V1J(3)
|F(LAHMBDA.LE.~0.00001D0) THEN
ULJT(3)=0.000
S1JT(3)=SIGHA(3)
END IF
URITECHOUT2,*)S1JT(1),S1JT(2),S1J4T(3)
HRITE(NOUT2, *)ULJT(1),U1J4T(2),U1JT(3)
CALCULATE MAYER FACTORS FOR THE TEST PARTICLE INTERACTIONS.
CALL MAYER2(DR,LANBDA,SIGHA,RSOFTD,EPS!, TRED,F,BUIY,
$1POT,NBIG)

OO0

OO0 000

SOLVE THE 02 EQUATIONS FOR AN INFINITELY DILUTE PARTICLE OF SPECIES
*2* (THE TEST PARTICLE) IN A NMIXTURE OF SPECIES 1 AND 2, UHERE THE
TEST PARTICLE INTERACTIONS WUITH SPECIES 1 AND 2 VIA THE MAYER FACTORS
DEFINED ABOUE.
IF(IPOT.EQ.1) THEN
OH VERY LAZY..
CALL FLIP(NBIG,G,BUIJ,F,PSi,AUCO,RO,RSOFTD, SI1GNA,RC)
END IF
CALL DILUTE(G,BUlJ,F,PSI,LANBDA, NN, DR, RO, JP, 1E,RSOFTD,
$ SIGMA,RC,BADNAT, AKCO)
IF(IPOT,EQ.1) THEN
CALL FLIP(NBIG,G,BUIJ,F,PS!,ANCO,RO,RSOFTD,SIGHA,RC)
END IF
IF(IE,LT.0) THEH
"G" FUNCTION HOT FOUND-TOO MRNY TRIALS TAKEN.
ERROR=4
END IF
|F(BADNAT) THEN
"G FUNCTION NOT FOUND-BAD MATRIX FOUND IN THE CALCULATION,
ERROR=5
END IF
IF(ERROR.EQ.0) THEN
SUBROUTINE DILUTE UORKED 0K, CAN HOW CALCULATE THE DISTRIBUTION
FUNCTIONS FOR THE TEST PARTICLE.
CALL CORFU2(NBIG,DR,RSOFTD,BUIJ,F,PSI,LANBDA,G,RDFNEN,
$DIRNEK, TOTNEN, BATHNU, 1POT, AUCO)
LOTS=.FALSE.
IF({DABS(LANBDA~1.0D0)).LT.0,25D0) THEN
LOTS= . TRUE,
END IF
X1=0,500
1COUNT=0.0D0
PRESSU=0,000
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EHD
RET
END
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ENERGY=0.0D0
CERROR=0.0D0
ConPC=0.000
YU=0.0D0
YUIDL=0,0D0
YUHS=0,0D0
Ni=0.,000
1D=0
IF(LANBDA.LT.0.0D00) THEN
IF(LAMBDA,LT.0.24D0) THEN
CALL PRINTR(LOTS,DR,RDFNEN,F, TOTNEW,BUIJ,
CALL PRINTR(LOTS,DR,RDFNEW,PSI,TOTNEN,BATHNY,
CALL PRINTR(LOTS,DR,RDFNEW,D!RNEN, TOTNEN, BATHNU,
EPSI,SIGNA, TRED, RO, X1,G, ICOUNT,
ALFNEN, PRESSU, ENERGY, CERROR, CONPC, AFF INS)
END IF
IF
URN
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SUBROUTINE PERT
PURPOSE-CALCULATES ARRAYS OF UCA ATTRACTIVE AND REPULSIVE
POTENTIALS FOR INTERACTIONS MHITH THE TEST PRRTICLE.

c

c

¢

c

c

¢ DATE 6/30/87
c REVISED 9/8/87- TO CALCULATE THE DERIVATIVE OF THE PAIR

¢ “POTENTIAL.

¢ 6/2/88- TO USE THE WCA DIVISION OF THE

c POTENTIAL.

C 10/22/88-CHANGED ARGUNENT L1ST OF REDUC TO FIT NEUW
c UERSI0ON.

c 11/03/88-RENOVED DERIVATIVE CALCULATION., UNNECESSARY.
c CODED BY DAVID PFUND

c

c

c

c

c

C

c

c

¢

c

c

THIS ROUTINE CALLS: SUBROUTINE REDUC- TO CONUVERT THE
LENNARD-JONES PARAMETERS TO REDUCED
UNITS.
SUBROUTINE MINS- TO CALCULATE THE
POTENTIAL MINIMUNS AND FIND THE
CORRESPONDING SEPARATION DISTANCES.
FUNCTION PSIiJ- TO CALCULATE THE
POTENTIAL FOR A GIVEN SEPRRATION
DISTANCE.
3 ok e e e 20 34 38 9k 3k 34 20 30 3k 2 3k e 3 3 3k e 3 o 0 ke 3 e ke e 2k e a3 5K Kk 3k 3 e 300 3K K e Sk R e ok K Ok 30 ok b ke sk sk kK o ol K Kok
SUBROUTINE PERT(NBIG, |POT,DR, TEMP,CORF1,CORF2,ASIGHNA, KEPSI,
$SOFTD, TUIJ, AUCO, PSI) ,
IMPLICIT REAL*B(A-H,0-2)
REAL*B ASIGMA(3),KEPSI(3)
REAL*8 EPSI(3)
REAL*8 S1J(3),U1J(3)
REAL*8 SOFTD(3)
REAL*8 RSOFTD(3)
REAL*8 PSI(NB1G,3)
REAL*8 TUIJ(NBIG,3)
REAL*8 ALCO(NBIG,3)
REAL*8 TENP
REAL*8 TRED
REAL*8 BUP
INTEGER 1POT
CONMON/DEYICE/NIN, NOUT1, NOUT2, INOPT
RM=1.0D0
1P=0
AS1GMA(1)=CORF1*SOFTD(1)
AS 1 GMA(2) =CORF2*SOF TD(2)
AS1GMA(3)=0.5D0%(AS | GNA(1)+AS IGHA(2))
CALL REDUC(KEPSI,SOFTD,EPS!,RSOFTD)
TRED=TENP/KEPS1(1)
CALL MINS(1POT,RSOFTD,EPSI, TRED,UIJ,S1J)
DO 20 K=1,3
DRR=DR*SOFTD(1)/SOFTD(K)
T=TENP/KEPS1(K)
DO 30 I=1,NBIG
REAL =1
RR=REAL | *ORR
RAD=REAL | *DR
C *PSI* 1S THE UCA ATTRACTIVE PART OF THE
C POTENTIAL DIVIDED BY KT. "AHCO™ 1S THE HCA REPULSIVE
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C PART/KT. "TUIJ" IS THE TOTAL PARIR POTENTIAL FOR
C INTERACTIONS UITH THE TEST PARTICLE/KT.
PSI(1,K)=U1J(K)
BU=PSI1J(IP,RR,RN, T,BUP)
TU1J(E,K)=BU
ANCO( I, K)=BU-U1J(K)
IF(RAD,GT.(0.9999999D0*S1J(K))) THEN
C OUTSIDE OF THE POTENTIAL HIN THE UCA ATTRACTIVE PART
C EQUALS THE TOTAL PAIR POTENTIAL AND THE REPULSIVE PART
C 1S ZERO.

PSi(1,K)=BU
AUCO(1,K)=0,0D0
END IF
30 CONTINUE
20 CONTINUE
¢ URITE(NOUT2,*)ASIGHA(1),ASIGHA(2),ASIGHA(3)
c WRITE(NOUT2,32)
€32 FORHNAT(/1¥, "LEAVING PERT')
c DO 40 [=35,50
c HRITE(NOUT2,35)PSI(t,1),PSI(1,2),PSI(1,3)
€35 FORMAT(1X, 'PSI:',D13.6,1K,013.6,1%,D13.6)
c URITE(NOUT2,37)AHCO(I,1),AHCO(,2),AHCOC(I,3)
C37 FORMAT(1K, 'AUCO: * ,D13.6,1%,D13.6,1%,013.6)
C40 CONTINUE
RETURN
END
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c FUNCTION YUIDL
c PURPOSE-CALCULATES THE IDEAL GAS CONTRIBUTION TO THE
c SOLUTE CHEMICAL POTENTIAL DIVIDED BY KT.
c
c DATE 6/16/87
c CODED BY DAVID PFUND
c
c THIS ROUTINE CALLS:-
C K5k oo o RS oK 5K 5K 3 6 MK RS 3 K K 30K 2 K53 3583 3K K 03 303K 30K K K00 3 K K 3K 3K 5K KK 3 K K

REAL FUNCTION YUIDL(IPOT, N, TENP,RO,SOFTD)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 RO(3)

REAL*8 SOFTD(3)

REAL*8 TEMP,RHO2

REAL*8 NH,MESS,DEBROG

COnMoN/LUDOL /P

CONMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

DATA MNMESS/4.375479950D1/
C NMESS=PLANCK'S CONST.*ANGSTRONS PER CHM./SQRT(BOLTZ. CONST/AUG.NUMBER)
C TEHPERATURE, KELUVIN, '
C DEBROGLE THERHAL HNAVELENGTH IN ANGSTROMNS.

DEBROG=2.0DO*P I*NU*TENP

DEBROG=NESS/(DSQRT(DEBROG) )
C SOLUTE DENSITY, NUMBER PER CUBIC ANGSTRON:

IF(IPOT.EQ.0) THEN

RHO2=R0(2)/(SOFTD(1)*SOFTD(1)*SOFTD(1))
ELSE
RHO2=R0(1)/(SOFTD(1)*SOFTD(1)*SOFTD(1))

END IF
C IDEAL GAS CONTRIBUTION TO THE SOLUTE CHEMICAL POTENTIAL, IN ERGS:

SAVE=DLOG(RHO2*DEBROG*DEBROG*DEBROG )
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HRITE(NOUT2,*)DEBROG, RHO2, SAUE
WRITE(NOUT2,*)SAUE
YUIDL=SAVE
RETURN
END
S5 KR AR AR R FC K MK 3o o oA A OK HE K KK oK K oK oK oK KK
FUNCTION X13
PURPOSE- CALCULATES A UEIRD FUNCTION OF DENSITY THAT RAPPEARS
IN SCALED PARTICLE THEORY. FUNCTION XI3 ALSO APPEARS
IN THE ANALYTICAL SOLUTION OF PY FOR HARD SPHERES
GIVEN BY LEBOMNITZ. XI13 1S ACTUALLY A SORT OF PRCKING
FRACTION FOR THE MIXTURE.
(C.F., LEBOWITZ, HELFAND, AND PRAESTGAARD, J.CHEM. PHYS.,
UOL. 43, NHO. 3, P. 774, AUGUST 1965)

DATE 6/17/87
CODED BY DAUID PFUND

THIS ROUTINE CALLS:-
2002 00 2 2k 28 2 00 20 3 2008 2 30 2K 3K 23K 302 2 3 M B 4 30 K 3 3 0K 3 3 3k 3 e 3Kk 3 30 3 3k 38 3K 3 ok oK 3 ok 3k i i 3k K 3 3K KK 3 3K K ek
REAL FUNCTION XI3(RO,RASIGHA)
INPLICIT REAL*8(A-H,0-~2)
REAL*8 ASIGHA(3)
REAL*8 RO(3)
REAL*8 SAUVE
COMMON/LUDOL/P |
COMMON/DEVICE/NIN, NOUT1,NOUT2, INOPT
L-H-P*S EQUATION 2.8 WITH L=3.
SAUE=RSIGNA(2) /RSIGNA(T)
K13=(RO(1)+(RO(2)*SAVE*SAVE*SAVE) )*P | /6.0D0
RETURN
END
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SUBROUT INE CORFU2
PURPOSE~CALCULATES THE PAIR,DIRECT,AND TOTAL
CORRELATION FUNCTIONS FOR THE TEST PARTICLE.
CURRENT UERSION ONLY DOES HMSA.

DATE 9/21/87
CODED BY DAUID PFUND

THIS ROUTINE CALLS: FUNCTION SWITC2-COMPUTES THE HMSA
SWITCHING FUNCTION.
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SUBROUTINE CORFU2(NBIG,DR,RSOFTD,BUIJ,F,PSI,ETA,G,
$PAIR,DIRECT, TOTAL,BATH, IPOT, ALCO)
IMPLICIT REAL*8(RA-H,0-2)
REAL*8 BUIJ(NBIG,3)
REAL*8 PS1(NBIG,3)
REAL*8 G(NBIG,3)
REAL*8 F(NBIG,3)
REAL*8 AUCO(NBIG,3)
REAL*8 PAIR(NBIG,3),DIRECT(NBIG,3), TOTAL(NBIG,3),BATH(NBIG,3)
REAL*8 RSOFTD(3)
REAL*8 ETA
REAL*8 DR,REAL
REAL*8 UIJT(3),S1JT(3)
REAL*8 UIJ(3),51J(3)
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REAL*8 BOLTZ
INTEGER 1POT
LOGICAL HIT
COMNMON/HNSA/ALFNEN,VIJ,S1J
CONNMON/HNMSAT/ALPHAT, U1JT, S1JT
COMMON/TYP/JT,N
COMMON/DEVICE/NIN,NOUT1,NOUT2, INOPT
C G=R*(H(R)-C(R))
C F=MAYER FUNCTION=EXP(-U(R)/KT)-1 FOR INTERACTIONS WITH
C THE TEST PARTICLE.
c WRITE(NOUT2,*)N
C SUBROUTINE CORFU2 1S A SLIGHTLY MODIFIED SUBROUTINE CORFU.
DO 200 I=1,N
REALI=1
RADIUS=REAL{*DR
DO 100,J=1,3
ALPHA=ALPHAT
HIT=.FALSE.
IF((IPOT.EQ.0).AND,(J.EQ.1)) THEN
ALPHA=ALFNEU
H1T=,TRUE,
END |IF
IF((IPOT.EQ.1).AND, (J.EQ.2)) THEN
ALPHA=ALFNEN
HIT=.TRUE.
END IF
BATH(1,J)=0.000
SHT=SHITC2(RADIUS, ALPHA)
EXPO=SUT*(G(1,J)/RADIUS)
IF((ETR.GE.0.0D0).0R.HIT) THEN
IF(RADIUS.GE. (1.0000001D0*S1JT(J))) THEN
BOLT2=BUIJ(I,J)
EXPO=EXPO~(SHT*BUIJ(],J))
ELSE
BOLT2=BUIJ(I,J)-RUCO(I,J)
EXPO=EXPO-(SHT*VIJT(J))
ERD IF
ELSE
BOLTZ=0.0D0
END IF
C URITE(NOUT2,*)RRD,G(1,J),BUIJ(I,J),SHT
IF(EXPO,LT.-61.0D0) THEN
EXPO=-61.0D0
END IF
IF(EXP0.GT.61.000) THEN
EXPO=61.000
END IF
IF(BOLTZ.LT.-61.0D0) THEN
BOLTZ=-61.000
END IF
BOLTZ2=DEXP(BOLTZ)
(F(DABS(SWUT).GT.0.000000000100) THEN
BATH(1,J)=((DEXP(EXP0))-1.0D0)/SHT
END IF
BATH(1,J)=BATH(I,J)+1.0D0
BATH(1,J)=BATH(1,J)*BOLT2
PRIR(I,J)=BATH(1,J)*(1.000+F(1,J))
TOTAL(1,J)=PAIR(I,J)-1.0D0
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DIRECT(1,J)=TOTAL(1,J)-(G(l,J)/RADIUS)

100 CONTIHNUE
c IF((1.GE,30).AND.(1.LE.50)) THEN
c URITE(NOUTZ,*)PAIR(I,1),PARIR(I,2),PAIR(Y,3)
c END IF
200 CONTINUE
RETURN
END
£ KRR ARAARRA AN K FAA AR KA A AR KA A A AA KA K AR A AR A AR H KK A KKK KK
c SUBROUTINE FLIP
c PURPOSE-~NHEN IPOT.EQ. 1 (USER HANTS CHEMICAL POTENTIAL OF
¢ CONPONENT 1) SUAPS ELEMENTS 1 AND 2 1N EUERY ARRAY
c USED BY SUBROUTINE DILUTE). A QUICK AND DIRTY SOLN.
c TO A UERY CONFUSING PROBLEf.
c
¢ DATE 2/29/88
¢ CODED BY DAVID PFUND
c
c THIS ROUTINE CALLS:~
€ HORAR AR ROR R R 3K 3K 3K KK KSR ORI KoK A 2K KK KKK K K

SUBROUTINE FLIP(NBIG,G,BUIJ,F,PSI,TOTAL,RO,RSOFTD,SIGHA,
$RC)
INPLICIT REAL*8(R-H,0-2)
REAL*8 BUIJ(NBIG,3)
REAL*8 PSI(MBIG,3)
REAL*8 G(NBIG,3)
REAL*8 F(NBIG,3)
REAL*8 RC(HBIG,3)
REAL*8 TOTAL(NBIG,3)
REAL*8 HT(2048,3)
REAL*8 RO(3)
REAL*8 RSOFTD(3)
REAL*8 SIGMA(3)
REAL*8 UIJT(3),51JT(3)
CONNMON/HNSAT/ALPHAT, V1 JT,S1JT
COMMON/HTHING/HT
COMMON/DEVICE/NIN, NOUT1,NOUT2, IHOPT
C IF {POT.EQ.1 NEED TO FLIP COMNON BLOCK/HHSAT/ (SINCE | LRS FOOLISH
C EMOUGH TO USE COMHON) BEFORE CALLING SUBROUTINE DILUTE (UHICH 1S
€ NOT SYHNETRICAL W.R.T. COMPONENTS 1 AND 2).
SAVE=U1JT(2)
VIJT(2)=U1JT(1)
U1JT{1)=SAVE
SAVE=S1JT(2)
SIJT(2)=S1JT(1)
S1JT{1)=SAVE
C FLIP THE LITTLE ARRAYS
RO(3)=R0O(2)
SAVE=RD(2)
RO{2)=RD(1)
RO(1)=SAVE
SAUE=RSOFTD(2)
RSOFTD(2)=RSOFTD(1)
RSOFTD(1)=SAVE
SAVE=SIGHA(2)
SIGMA(R)=516MA(1)
S1GRA(1)=SAVE
C FLIP THE BIG ONES.



232

DO 100 1=1,NB1G
SAVE=G(1,2)
6(1,2)=6(1,1)
G(1,1)=SAVE

SAVE=BU1J(!,2)
BUIJ(I,2)=BUlJ(I,1)
BUIJ(I,1)=SAVE

SAVE=F(1,2)
FCL,2)=F(C1,1)
F(1,1)=SAVE

SAVE=RC(1,2)
RC(1,2)=RC(I, 1)
RC(1,1)=SAVE

SAVE=TOTAL(L,2)
TOTAL(!,2)=TOTAL(I, 1)
TOTAL (1, 1)=SAUE

SAVE=PSI(1,2)
PSI1(1,2)=PS1(1,1)
PS1(1,1)=SRVE

SAVE=HT(1,2)
HT(1,2)=HT(1, 1)
HT(1,1)=SAVE
100 CONTINUE
RETURN
END
50 2 K K K KR R KKK KKK K KR M K K K 3K KK AR Kk
SUBROUTINE HAYER2
PURPOSE-CALCULATES A UECTOR OF MAYER FACTORS FOR INTERACTIONS
OF THE TEST PARTICLE HITH THE MIXTURE.

DATE 9/21/87

OO0 0

THIS ROUTINE CALLS: -
C RO AR ROKR K R HOR RO R OR R RO KR KRR R A KK
SUBROUTINE HAYER2(DR,LANBDR,SIGNA,RSOFTD,EPSI, TRED,F,BUIJ,
$1POT,N)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 F(M,3),RSOFTD(3),EPSI(3)
REAL*8 SiGMA(3)
REAL*8 BUIJ(N,3)
REAL*8 DR, TRED
REAL*8 LAMBDA
INTEGER !POT,N
CONMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

c . HRITE(NOUT2,10) IPOT,N, DR, TRED

10 FORNAT(/1X, ' IN NAYER*,13,*' *,13,"' ',D11.4,' ',D11.4)
¢ HRITE(NOUTZ,*)SIGNA(1),S1GNA(2),SIGNHA(3)

c HURITE(NOUT2,*)EPSI (1) ,EPSI(2),EPSI(3)

€ F => A VECTOR OF HAYER FACTORS FOR TEST PARTICLE
C INTERACTIONS.
Do 20 K=1,3
T=TRED*EPSI(1)/EPSI(K)
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DRR=DR*RSOFTD(1)/RSOFTD(K)
IPOT=0 : WANT CHENMICAL .POTENTIAL OF SPECIES 2.
THE TEST PARTICLE BECOHES R MOLECULE OF SPECIES 2
NHEN FULLY CHARGED.
1POT=1 : WANT CHEMICAL POTENTIAL OF SPECIES 1.
THE TEST PARTICLE BECOMES A HOLECULE OF SPECIES 1
WHEN FULLY CHARRGED.

DO 30 t=1,N

IF((IPOT.EQ.0).AND.(K.EQ.1)) THEN

Lo B o BN o N o K o 2 o]

C LJ NMAYER:
IF(BUIJ(I,K).GT.61,0D0) THEN
F(1,K)==1,000
ELSE
F(1,K)=(DEXP(~BUIJ(],K)))-1.0D0
END IF
ELSE
IF((IPOT.EQ.1).AND.(K.EQ.2)) THEN
C LJ MAVER: ‘
IF(BUIJ(I,K).GT.61.000) THEN
F(1,K)=-1.0D0
ELSE
F(1,K)=(DEXP(~BUIJ(1,K)))=1.0D0
END IF
ELSE
IF(LANBDA.LT.0.0D0) THEN
C CAUITY NAYER (TEST PARTICLE IS HARD SPHERE):
IF(BUIJ(I,K).GT.61.0D0) THEN
C INSIDE CAVITY:
F(1,K)=-1.0D0
ELSE
C OUTSIDE CAVITY:
F(1,K)=0.000
F1X-UP CONTACT UALUES. WUANT MAYER FACTORS FOR
INTERRCTIONS OF A HARD SPHERE TEST PARTICLE WITH THE
BATH MOLECULES TO BE -0.5 AT THE CONTACT DISTANCE.
REAL I =]
RR=REAL ! *DR
IF((DABS(RR-SIGNA(K))).LT.0.001D0) THEN
F{1,X)=-0.5D0
BUIJ(1,K)=0.6931471D0
END IF
END IF
ELSE
C TEST PARTICLE (NOT  CAUITY) MAYER: .
IF(BUIJ(I,K).GT.61.0D0) THEN
F(I,K)==1.0D0
ELSE
F(1,K)=(DERP(-BUIJ(I,K)))=1.000
END IF
END IF
END IF
END IF
URITE(NOUT2, 18)1,K
18 FORMAT(IX, "1= *,13," K= *,13)
URITE(NOUT2,*)BU1J{1,K),UPRINE(,K),F(1,K)
CONT I NUE
CONTIHUE
RETURN

OO0
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END

3 0 30 30 2800 00 30 3 3K 30 00k 3 3 K AR 3K 3 5 2K 3 3R K R 2 3 3 6K o 3 3 o 3 3 K 2 e 3 R 6 kB Bk oK e 3k oK oK K o K K K K XK

SUBROUTINE CFG2
PURPOSE-CALCULATES C(R) 1IN TERHS OF G6(R).
THIS PROCEDURE AND SUBROUTINE CORFU IS CHANGED
FOR ANGTHER THEORY. THE PROGRAM 1S CURRENTLY SET UP
TO USE ONLY THE HNSA CLOSURE.
(C.F. LABIK, MALIJEUSKY AND UONKA, HMOL. PHYS. UOL.56, NO.3,
P.709, (1985), FOR DETAILS OF THE HUMERICAL PROCEDURE)

(C.F. 2ERAH AND HANSEN, J.CHEN.PHYS. UOL.84, NO.4, P,2336,
FEBRUARY, 1986, FOR DETAILS ON THE HHSA CLOSURE)

REVISED 6/4/87
8/18/87-CHANGED TO HNMSA CLOSURE
9/22/87-CREATED FROM A COPY OF SUBROUTINE CFG.
COMMON/HNSA/ WAS REPLACED HITH
NITH COMMON/HNSAT/ (CONTAINS PARAMETERS
FOR THE TEST PARTICLE [NTERACTIONS).

THIS ROUTIHE CALLS: FUNCTION SUITC2-CONPUTES THE HMSA
SHITCHING FUNCTION FOR A GIVEN SEPARAT!ON
DISTANCE AND ALPHA PARARNETER.

400 00 300 3 45 3 S e 3k 308 5 S A 3 3 6 20 3 3 3K 3 2 2 3 3 3 8 e 3 e 3 2 K 3k 3K 2 3 0 ok 3K 3k 3 K ok o K ok KoK

INPUT

SUBROUTINE CFG2(G,BU1J,F,PSI,ETA,C,DR,K, RO, ANCO)
INPLICIT REAL*8(A-H,0-2)

REAL*8 G(2048,3),F(2048,3),C(2048,3),R0(3)
REAL*8 BUIJ(2048,3)

REAL*8 PS|(2048,3)

REAL*8 ALCO(2048,3)

REAL*8 REAL!,RAD

REAL*8 SUT,BOLTZ

REAL*8 EXPO

REAL*8 ETA

REAL*8 ALPHAT

REAL*8 U1JT(3),S1JT(3)

REAL*8 U1J(3),S51J(3)

COMHON/HNSA/RLENEY, U1J,S1J
COHHON/HMSAT/ALPHAT, V1JT, S1JT
COMMON/TYP/JT, N

COMHON/DEVICE/NIN, NOUT1,NOUT2, INOPT

PARANETERS-

G: G(R)=R*(H(R)-C(R)) FOR INTERACTIONS WITH
THE TEST PARTICLE.

F: TEST PARTICLE HAYER FUNCTIONS,

N: NUNBER OF GRID POINTS

DR:  STEP SiZE IN R

K: NO LONGER USED.

ALPHAT:  THE HHSA NMIXING PARANETER. PASSED THROUGH COMHON/HMSAT/
VIJT:  THE HININURN VRLUE OF THE 1J-TH PAIR POTENTIAL DIVIDED

BY KT.

SIJT:  THE SEPARATION DISTANCE (DIVIDED BY THE 1-1 LJ SIZE

PARANETER) AT THE POTENTIAL HININUM,

OUTPUT PARANETERS-

C: R*DIRECT CORRELATION FUNC.
HRITE(NOUT2,10)
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FORMAT(1X, ‘IH CFG2')
WRITE(NOUTZ2,*)R0(1),R0(2),R0(3)
URITE{HOUT2,*)SI1JT(1),S1JT(2),S1JT(3)
HRITE(NOUTZ, *)UIJT(1),VIJT(2),V1JT(3)
WRITE(NOUT2, *)ALPHAT, ALFNEU
STOP
HURITE(NOUT2,102)
102 FORNAT(/1%, "IN CFG2..DOING C CALC')
D0 115 J=1,3
DO 110 I1=1,N
COMPUTE TOTAL CORRELATION FUNCTION:
REALI=1
RAD=REAL | *DR
c(1,J)=0.0D0
ALPHA=ALPHAT
1F(J.EQ.1) THEN
ALPHA=ALFNEW
END IF
SUT=SH1TC2(RAD,ALPHA)
EXPO=SHT*(G(1,J)/RRD)
IF((ETA.GE.0.0D0).0R. {J.EQ.1)) THEN
1F(RAD.GE. (1.0000001D0*S{JT(J))) THEN
EXPO=EXPO-(SUT*BUIJ(L,J))
IF((1.GE.150).AND. (. LE.290)) THEN
WRITE(NOUT2,666)1,J,RAD
666 FORMAT(1X, "IN BLOCK 1°',14,1%,14,1%,D13.6)
HRITE(HOUT2,*)BULI(L, J),F(L, B
END IF
ELSE
EXPOSEXPO-(SUT*UIJT(J))
1F{{1.GE.150).AND.{).LE.290)) THEN
URITE(NOUT2,7?77)1,J,RAD
777 FORNAT(1X, ' IN BLOCK 2°,14,1¥%,14,1X,D13.6)
WRITE(NOUT2,*)BUIJ(1,d),F(1,d)
END IF
END IF
END IF
IF(EXPO.GT.61.0D0) THEN
EXPD=61.0D0
END IF
IF(EXPO.LT,~61.0D0) THEN
EXPO=-61,0D0
END IF
c HRITE(NOUT2,*)EXPO
{F(DABS(SUT).6T.0.0000000001D0) THEN
C{1,J)=((DEXP(EXPD))~1.0D0)/SUT
END IF
IF(RAD.GE. (1.0000001D0%*S1JT(J))) THEN
: BOLTZ=1,0D0
ELSE
BOLTZ=~ANCO(1,J)
IF(BOLT2.LT.~61.8D00) THEN
BOLT2=-61,000
END IF
BOLTZ=DEXP (BOLTZ)
END IF
IF({(ETA.LT.0.0D0).AND. (J.NE.1)) THEN
BOLTZ=F(1,J)+1.000

—
o
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END IF

C(l,Jd)=C(1,J)+1.000

c(r,d)=(C(1,J)*BOLT2)
c(l,d=Cc(1,J)~1.0D0
C(1,J)=RAD*C(1,J)
cCi,d=Cc(1,N=-6(1,9

110 CONTINUE
115 CONTINUE
c STOP
RETURN

END
C KRR AR AR A IR MR A KA K K 36 KK 36 KK K o o o K oK KK
c SUBROUTINE INTGRD
C PURPOSE~SETS UP PARAMETERS NEEDED BY SUBROUTINE TRAP,
c
c DATE: 4/28/88.
c
c THIS ROUTINE CALLS: SUBROUTINE TRAP-ESTINATES THE DIFFERENCE
c BETUEEN THE HORK OF INSERTING R HCA
o REPLUSIVE PARTICLE AND THE WORK OF
c INSERTING A HARD SPHERE.
R L e e e e e PR T s 2

SUBROUTINE INTGRD(NBIG, IPOT,DR,RO,PARIR,PAIR2,BATH,BATHZ,
3 DIRECT,DIR2, INT1, INT2,E1,E2,SIGMA)
IMPLICIT REAL*B(A-H,0-2)
REAL*8 PAIR(NBIG,3)
REAL*8 PAIR2(NBIG,3)
REAL*8 BATH(HNBIG,3)
REAL*8 BATH2(NBIG,3)
REAL*8 DIRECT(NBIG,3)
REAL*8 DIR2(NBIG,3)
REAL*8 FUNCT(2048)
REAL*8 FUN2(2048)
REAL*8 RO(3)
REAL*8 SIGNA(3)
REAL*8 DR
REAL*8 INT!, INT2
REAL*8 E1,E2
REAL*8 DELG,DELC
INTEGER HBIG, IPOT
COMHON/LUDOL /P
COHMON/DEVICE/NIN,NOUT1,HOUTZ2, INOPT
ROC1)=(DENSITY)*(ITH NOLE FRAC.)*((LJ SIZE OF COMPONENT 1)**3)
RO(3)=R0(1)
CONPUTE THE INTEGRAND FOR SUBROUTINE SIHNP:
{F(IPOT.EQ.0) THEN
C HANT CHERICAL POTENTIAL OF SPECIES 2. TEST PARTICLE BECONES
C SPECIES 2.
00 S I=1,NBIG
REALI=1
RAD=REAL 1 *DR
SUFFIX "2" INDICATES CORRELATION FUNCTIONS ABOUT THE HCA REPULSIVE
TEST PARTICLE.
NO SUFFIX INDICATES CORRELATION FUNCTIONS ABOUT THE EFFECTIVE HARD
SPHERE.

OO0

OO0

DELG=PRIR2(I,3)-PAIR(I,3)
DELC=DIR2(1,3)-DIRECT(I,3)
FUNCT{1)=0.5DO*DELG*(DELG-DELC)
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FUNCT(1)=FUNCT(1)+DELG
FUN2( | )=DLOG(BATH2(1,3)/BATH(1,3))
FUNCT (1)=FUNCT(1)-(PAIR2(1,3)*FUN2(1))
FUN2(1)=FUN2(I|)~DELG+DELC
FUN2(1)=DABS(FUN2(1))
FUN2(1)=FUN2(1)*DABS(DELG)
FUNCT(1)=4,0D0*P I *RAD*RAD*RO(1)*FUNCT(1)
FUN2(!)=4,000*P | *RAD*RAD*RO( 1) *FUN2{1)
WRITE(NOUT2,*)RAD, FUNCT(1)
S CONTINUE
INTEGRATE THE PRODUCT OF THE CORRELATION FUNCTION AND THE
PERTURBING POTENTIAL. GET THE CONTRIBUTION OF SPECIES 1 IN
THE BATH TO THE WORK OF SOFTENING ("INT1)*.
DiR=SIGNA(3)
CALL TRAP(NBIG,DR,FUNCT,DIA, INT1)
ESTINATE AN UPPER BOUND OF THE ERROR IN ABS(INT1) DUE TO
NEGLECTING THE DIFFERENCE IN BRIDGE FUNCTIONS FOR HS AND
HCA REPULSIVE TEST PARTICLES (“E1°).
CALL TRAP(MNBIG,DR,FUN2,DIA,ET)

sTop
DO 10 I=1,NBIG
REALI=|

RAD=REAL | *DR
DELG=PRIR2(1,2)~PAIR(1,2)
DELC«DIR2(1,2)~DIRECT(1,2)
FUNCT(1)=0,5D0*DBELG*(DELG~DELC)
FUNCT(1)=FUNCT(1)+DELG
FUN2(1)=DLOG(BATH2(1,2)/BRTH(I,2))
FUNCT(1)=FUNCT(1)~(PAIR2(1,2)*FUN2(1))
FUN2(1)=FUN2(1)-DELG+DELC
FUN2(1)=DABS (FUN2(1))
FUN2(1)=FUN2(1)*DABS(DELG)
FUNCT(1)=4,0D0%P 1 *RAD*RAD*RO(2)*FUNCT(1)
FUN2(1)=4.0D0*P1*RAD*RAD*RO(2)*FUN2(I)
10 CONTINUE
DIA=SIGMA(2)
GET THE CONTRIBUTION OF SPECIES 2 IN THE BATH TD THE
HORK OF -SOFTENING (" {NT2").
© CALL TRAP(NBIG,DR,FUNCT,DIR, INT2)
CALL TRAP(NBIG,DR,FUN2,DIR,E2)
ELSE :
HANT CHENMICAL POTENTIAL OF SPECIES 1. THE TEST
PARTICLE BECONHES A NMOLECULE OF SPECIES 1 WHEN
FULLY CHARGED.
DO 20 I=1,NBIG
REAL 1=
RAD=REAL 1 *DR
DELG=PAIR2(1,1)-PRIR(1,1)
DELC=DIRZ2{1,1)-DIRECT(1,1)
FUNCT(1)=0,5D0*DELG*(DELG-DELC)
FUNCT{1)=FUNCT{1)+DELG
FUN2(1)=DLOG(BATH2( 1, 1)/BATH(1,1))
FUNCT(1)=FURCT(1)~(PRIR2(1, 1)*FUN2(1))
FUN2(1)=FUN2(1)~DELG+DELC
FUN2(1)=DABS{FUN2(1))
FUN2(1)=FUN2(1)*DABS(DELG)
FUNCT(1)=4,0D0*P | *RAD*RAD*RO( 1 )*FUNCT(I)
FUN2(1)=4,0D0*P 1 *RAD*RAD*RO( 1) *FUN2(1)
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CONTINUE

DIA=SIGHA(T)

CALL TRAP(NBIG,DR,FUNCT,DIA, INT1)
CALL TRAP(NBIG,DR,FUN2,DIA,E1)

00 30 I=1,NBIG

REALI=I

RAD=REAL 1 *DR

DELG=PAIR2(1,3)-PAIR(1,3)
DELC=DIR2(1,3)-DIRECT(1,3)
FUNCT(1)=0,SDO*DELG*(DELG-DELC)
FUNCT(1)=FUNCT(|)+DELG
FUNCT(1)=DLOG(BATH2(1,3)/BATH(1,3))
FUNCT(1)=FUNCT(1)-(PAIR2(I,3)*FUN2(I))
FUN2(1)=FUN2(1)-DELG+DELC
FUN2(1)=DABS(FUN2(1))
FUN2(1)=FUN2(1)*DABS(DELG)
FUNCT(1)=4.0D0*P | *RAD*RAD*RO(2)*FUNCT(I)
FUN2(1)=4,0D0*P!*RAD*RAD*RO(2)*FUN2(I)

CONT INUE

DIA=SIGHA(I)

CALL TRAP(NBIG,DR,FUNCT,DIA, INT2)

CALL TRAP(NBiG,DR,FUN2,DIA,E2)
END IF

¢ HRITE(NOUT2,32)
€32 FORMAT(/1X, '"LERVING INTGRD')
c DO 40 1=35,50

c
€35
c
c37

WRITE(HOUT2,35)PS1(1,1),PS1(1,2),PSI(1,3)
FORMAT(1X, 'PS1:',D13.6,1X,D13.6,1X,D13.6)
WRITE(NOUT2,37)RDFNEN(I, 1) ,ROFNENCI,2) ,RDFNEN(I,3)
FORHAT(1X, *RDFNEN:',D13.6,1¥X,D13.6,1K,D13.6)

C40 CONTINUE

RETURN
END

03 MO K K oK S K 3K S K KK K o KK
SUBROUTINE MUDRUR
PURPOSE-CALCULATES THE CHEMICAL POTENTIAL OF THE DESIRED

c
c
c
c
c
c
¢
c
c
c
C
POTENTIAL
c
c
c
¢
c
c
c
c
c
c
¢
c
D

IFFERENT)

SPECIES. ALSO DETERMINES (DERIVATIVE OF THART
CHEMICAL POTENTIAL H.R.T. TOTAL DENSITY AT CONSTANT
TENPERATURE AND CONPOSITION)*DENSITY OF THAT SPECIES.
THE DERIVATIVE IS FOR USE IN CHECKING TO SEE IF THE
G1BBS~-DUHEN CONSISTANCY TEST FOR THE CHEMICAL
POTENTIAL 1S SATISFIED. THE DERIVATIVE 1S ESTINATED
USING A THREE POINT FINITE DIFFERENCE FORMULA AFTER
CALCULATING THE CONTRIBUTIONS TO THE CHEMNICAL

AT THREE DIFFERENT DENSITIES. THE THERMO. CONSISTANCY
PARANETERS FOR THE BATH AND TEST PARTICLE DISTRIBUTION
FUNCTIONS ARE TAKEN TO BE CONSTANT WHEN DOING THIS.

DATE 10/27/88
REVISED 1/10/89- TO USE A THREE POINT FORNMULA INSTEAD OF A

FOUR POINT FORMULA.

CODED BY DAVID PFUND

THIS ROUTINE CALLS: SUBROUTINE SNMOOTH-INTERPOLATES THE

DISTRIBUTION FUNCTIONS OBTAINED BY “"FINDA"
TO FIT THE STEP SI12E (IN GENERAL
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USED BY TH!S SUBROUTINE. RESULT IS USED
ONLY RS AN INITIRL GUESS TO "LABIK™ BELOU.
SUBROUTINE NAYER-CRLCULRTES A VECTOR OF
NAYER FACTORS FOR THE DESIRED INTERACTION
POTENTIAL WHICH 1S USED IN THE

FUNC. CALCS. FOR THE BATH MOLECULES,
SUBROUTINE LABIK-CALCULATES THE
DISTRIBUTION FUNCTIONS FOR THE BATH AT THE
THREE DIFFERENT DENSITIES,

SUBROUTINE UIRIAL-CONPUTES THE VIRIAL
PRESSURE AT THE DIFFERENT DENSITY STEPS.
SUBROUTINE PERT-CALCULATES THE PERTURBING
POTENTIAL DIVIDED BY KT (UHICH IS THE
H.C.A. ATTRACTIVE PART). ALSO CALCULATES
THE U.C.A. REPLUSIVE PART OF THE
POTENTIAL.

SUBROUTINE CENMPOT-COMPUTES THE CHEMICAL
POTENTIAL OF THE SPECIES OF INTEREST,
SUBROUTINE RHODNMU-COMPUTES THE DENSITY
DERIUATIVE OF THRT CHEMICAL POTENTIAL

THE DENSITY OF THAT SPECIES.

Cc K 0O 0 5K K 3 25 R0 K e 5 3k 5 5 e K o S o 3R o o R o ok 5K O 3 o KN oK K K oK K XK K

SUBROUTINE MUDRUR(HN,HN,DROLD,DR, IPOT,KEPSI,SOFTD,EPSI,RSOFTD,
$TENP, TRED, RO, X1, JP, ALPHA, PRESSU, CONPC, DL 1KE, DUNLKE , U,
$G0LD, ASIGHA, YU, YUSTR, YUHS, INT1, INT2,E1,E2, DNUDRO, ERROR)
IMPLICIT REAL*8(R-H,0-2)

REAL*8 GOLD(H,3)

REAL*8 G(2048,3),PAIR(2048,3),DIRECT(2048,3),T0TAL(2048,3)

RERL*8 BATH(2048,3)

REAL*8 BU1J(2048,3),F(2048,3)
REAL*8 TU1J(2048,3),AHC0{2048,3),PS1(2048,3)

REAL*8 UPRINE(2048,3)

REAL*8 SI1GMA(3),EPS1(3)
REAL*8 ASIGNA(3),KEPSI(3)
REAL*8 RSOFTD(3),SOFTDB(3)

REAL*8 RO(3),RHO(3)
REAL*8 CORE(3)
REAL*8 INT1, INT2
REAL*8 E1,E2

REAL*8 DR,DROLD
REAL*8 DMUDRO
REAL*8 DELTA

REAL*8 TENP, TRED
REAL*S PU3,PUZ2,PRESSY
REAL*8 CONPC

REAL*8 DLIKE,DUNLKE
REAL*8 CORF1,CORF2
REAL*8 ALPHA

REAL*8 YU,YUSTR, YUHS

REAL*8 SOFT3,S0FT2,SOFTO
REAL*8 GAAC3,GARCZ,GAAC
REAL*8 GABC3J,GABCZ,GABC

RERAL*S MU
INTEGER ERROR
INTEGER COUNT

INTEGER N,NH, IE,JP, IPOT
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LOGICAL BADMAT
LOGICAL LOTS
COMNON/DEYI CE/NIN, NOUT1, NOUT2, INOPT
DATA DELTA/-0.0005D0/
DATA DELTR/-0.001D0/
DATA DELTA/-0.00025D0/
DROLD= STEP SI1ZE AUTOMATICALLY SELECTED BY SUBROUTINE FINDA.
DR=STEP SIZE INPUT BY THE USER SO THAT IT DIVIDES BOTH THE
SPECIES 1/TEST PARTICLE AND SPECIES 2/TEST PARTICLE EFFECTIVE
DIAMETERS (ALSO INPUT).
HAKE DISTRIBUTION FUNCTIONS CONFORM TO THE NEW MESH BY
INTERPOLATING.
CALL SHOGTH(N,DROLD,DR,GOLD,G)
DELTA=STEP SIZE FOR THE NUMERICAL ESTIMATE OF THE DENSITY DERIUATIVE,
STEP THE DENSITY BACK:
RHO(1)=(1.000+(2.0DO*DELTA))*RO(1)
RHO(2)=(1.0D0+(2.0DO*DELTA) ) *R0(2)
RHO(3)=(1.0D0+(2.0D0*DELTA) )*RO(3)
COMPUTE BRTH DISTRIBUTION FUNCTIONS:
CORE(1)=0.0D0
CORE(2)=0.0D0
CORE(3)=0.0D0
CALL NMAYER(DR,RSOFTD,EPS|,CORE,TRED,F,BUl1J,UPRINE, IPOT,N)
CALL LABIK(IPOT,BUIJ,F,RSOFTD,EPS|,RHO, TRED,G,PAIR,
$ DIRECT, TOTAL,BATH, IE, BADNAT, DR, JP, Ni)
IF((I1E.GT.0).AND.(.NOT.BADNAT)) THEN
COMPUTE THE UIRIAL PRESSURE AT DENSITY + 2*DELTA.
CALL UIRIAL(IPOT,DR,RHO, TRED,RSOFTD,EPSI,CORE,BULJ, UPRIME,
$ PAIR,PU3)
HRITE(NOUT2,*)PU3
COMPUTE THE CHEMICAL POTENTIAL, SOFT (ATTRACTIVE AND SOFT REPLUSIVE)
CONTRIBUTIONS, AND THE CONTACT UALUES OF THE PAIR CORRELATION
FUNCTIONS WITH THE CAUITY.
IFCIPOT.EQ.1) THEN
CORF1=DL IKE
CORF2=(SOFTD(1)/SOFTD(2) )*((2.0DO*DUNLKE)-CORF 1)
ELSE
CORF2=DL IKE*(SOFTD(1)/SOFTD(2))
CORF 1=(2.0D0*DUNLKE )~DL I KE
END IF
CALL PERT(N, IPOT,DR,TENP,CORF1,CORF2,ASIGHA,KEPSI,SOFTD, TUI,
ACO,PS1)
CALL CEMPOT(N,NM,DR, IPOT,KEPS|,SOFTD,EPSI,RSOFTD, TENP, TRED,
RHO, X1, ALPHR, PU3, CORF 1, CORF2, MY,
TUIJ, ANCO,PSI,
6,PAIR,DIRECT, TOTAL,BATH, ASIGMA, YU,
YUSTR, YUHS, INT1, INT2,E1,E2, GARC3, GABC3, ERROR)

L L R [ 2]

STOP

SOFT3=(YU-YUHS)/(RHO(1)+RHO(2))

SOFT3=(YU-YUSTR)/(RHO{1)+RHO(2))

IF(ERROR.EQ.0) THEN
RHO(1)=(1.000+(DELTA))*R0O(1)
RHO(2)=(1.0D0+(DELTA) )*R0(2)
RHO(3)=(1.000+(DELTR) )*R0O(3)

CONPUTE DISTRIBUTION FUNCTIONS:
CALL LABIK(IPOT,BU!IJ,F,RSOFTD,EPSI,RHO, TRED,G,PAIR,
$ DIRECT,TOTAL,BATH, 1E, BADNAT, DR, JP, NI1)

IF((1E.GT.0).AND. (.NOT.BADNAT)) THEN
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CALL VIRIAL(IPOT,DR,RHO, TRED,RSOFTD,EPSI,CORE,BUIJ, UPRINE,
$ PAIR,PU2)
URITE(NOUT2,*)PU2
cALL CEMPOT(N,NH, DR, 1POT,KEPS],SOFTD,EPSI,RSOFTD, TENP,
TRED,RHO, X1,ALPHA,PVU2,CORF1,CORF2,NU,
TUlJ,AUCO,PSI, :
G,PAIR,DIRECT, TOTAL,BATH,ASIGHR, YU,
YUSTR, YUHS, INT1,INT2,E1,E2,GARC2, GABC2, ERROR)
SOFT2=(YU-YUHS)/(RHO(1)+RHO(2))
SOFT2=(YU-YUSTR)/(RHO(1)+RHO(2))
IF(ERROR.EQ.0) THEN
JP=1
CALL LABIK(IPOT,BUIJ,F,RSOFTD,EPS], RO, TRED,G,PAIR,
$ DIRECT, TOTAL,BATH, |E,BARDNAT, DR, JP,NIT)
IF((1E.GT.0).AND. (.NOT.BADMAT)) THEN
LOTS=.FALSE.
K1=R0(1)/(R0O(1)+R0(2))
COUNT=0
ENERGY=0.0D0
CERROR=0.0D0
conpC=0.000
cALL PRINTR(LOTS,DR,PAIR,DIRECT, TOTAL,BRTH,
EPS1,RSOFTD, TRED,RO, K1,G,COUNT,
ALPHA, PRESSV, ENERGY, CERROR, COMPC)

9 A N

o

sTop
URITE(NOUT2,*)PRESSU
CALL CEMPOT(N,Nn,DR, IPOT,KEPSI,SOFTD,EPSI , RSOFTD,
TENMP, TRED,RD, X1,ALPHA, PRESSV, CORF1,CORF2,
hu,TuiJ,AUCO, PSH,
G,PAIR,DIRECT, TOTAL ,BATH,ASIGNA, YU,
YUSTR, YUHS, INT1, INT2,E1,E2,GRAC, GABC, ERROR)
SOFTO=(YU-YUHS)/(RO(1)+R0(2))
SOFTO=(YU-YUSTR)/(RO(1)+R0(2))
IF(ERROR.EQ.D) THEN
CALL RHODHU(IPOT,DELTA,X1,CONPC,RO,
$ AS1GNA, SOFTD, GARC3, GAAC2,
$ GARC, GABC3, GABC2,GABL, SOFT3,
S SOFT2,S0FTO, YU, YUHS,YUSTR, DIIUDRO)
END IF
END IF
END IF

W N H N

END IF

END IF

END IF

IF((IE.LE.0).0R.BADNAT) THEN
ERROR=6

END IF

RETURN

END
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FUNCTION DERIU2
PURPOSE-NUMERICALLY DIFFERENTIATES THE CHEMICAL POTENTIAL
OF A SPECIES/KT W.R.T, THE TOTAL DENSITY.

DATE 1/10/89
CODED BY DAUID PFUND

THIS ROUTINE CALLS: -
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REAL FUNCTION DERIV2(PUO,PUt,PRESSV,DELTA,RC)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 DELTA

REAL*8 PUO,PVU1,PRESSV

REAL*8 RO(3)

REAL*8 RHO
CONMON/DEVICE/NIN,NOUT1,NOUT2, INOPT

THIS FUNCTION CURRENTLY USES A THREE POINT BACKUARD DIFFERENCE

FORMULA WHICH HARS THIRD ORDER ACCURACY.

PUD IS TUWO STEPS BACKUARD.

PUT IS ONE STEP BRCKUWRRD.

PRESSU 1S ON THE NODE OF INTEREST.
RHO=RO(1)+R0(2)
DERIU2=((-PU0)+(4.0D0*PVU1)-(3.0DO*PRESSV))/

$(2.ODO*DELTA*RHO)
RETURN
END
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SUBROUTINE DILUTE

PURPOSE-SOLUTION OF THE TEST PARTICLE 02 EQUATIONS FOR A
NMOLECULE (INFIRITELY DILUTE) OF SPECIES "2" IN A
HIXTURE OF SPECIES "1™ AND "2,

REVISED 9/21/87 -DEVELOPED FROM A COPY OF SUBROUTINE
GALER FOR USE HITH THE 02 EQUATIONS
FOR A TEST PARTICLE.

ORIGINAL UERSION FOR PURE SYSTENS WRITTEN BY S.LABIK

AND A. MALIJEUSKY, INSTITUTE OF CHEMICAL TECHNOLOGY

PRAGUE, CZECHOSLOVAKIA

(UERSION 1, FEBRUARY 1985, C.F, LABIK, NALIJEUSKY, AND

UOMKA, MOL. PHYS., UOL.56 (3), P.709, (1985).)

THIS ROUTINE CALLS: SUBROUTINE FFS3D- FOURIER TRANSFORN AND
{NUERSE FOURIER TRANSFORH.
SUBROUTINE GFC2- INPUT THE TRANSFORN OF
THE R*{DIRECT CORRELATION FUNCTION)-OUTPUT
THE TRANSFORM OF THE “GANMMA" FUNCTION
OBTAINED FROH DIRECT SUBSTITION OF “C"
INTO THE TRANFORNMED 02 EQUATIONS FOR
INTERACTIONS HITH A TEST PARTICLE.
SUBROUTINE CFG2- INPUT “GANMA"., OUTPUT
"C*. THESE QUTPUTS RRE
OBTAINED FRON SUBSTITUTION INTO THE
CLOSURE EQUATION,
3K AR A KK HC K A IR IR ISR A K MK SR 3 SR K 3R KKK 33K K K
SUBROUTINE DILUTE(G,BUIlJ,F,PSI,ETA,HNM,DR,RO0,JP,
$1E,RSOFTD, S1GNA, RC, BADHAT, ANCO)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 GN(2048,3),G7(2048,3),6NT(2048,3),0C(2048,3),CT(2048,3)
REAL*8 C(2048,3)
REAL*8 CSN(2048)
REAL*8 G(2048,3),F(2048,3)
REAL*8 BUIJ(2048,3)
REAL*8 PS1(2048,3)
REAL*8 RC(2048,3)
REAL*8 HT(2048,3)
REAL*8 AWC0(2048,3)
REAL*8 CCT(3),GGNT(3),R0(3)
REAL*8 TTT(3)
REAL*8 RSOFTD(3),S1GNMA(3)
REAL*8 WFFTR(5133)
REAL*8 ETA
INTEGER SELECT
LOGICAL BADHAT
COMMON/CORU/CONUD ] , CONUNR
CONNON/LUDOL /P
COHMMON/HTHING/HT
CONMON/DEVICE/NIN, HOUT1,HOUT2, INOPT
DATAR OUCH,HAI1T/0,9900,1.0D0/
€ INPUT PARANETERS-
c G: GANMA FUNCT10NS=G(R)=R*(H(R)-C(R))
c F: HAYER FUNCTIONS=EXP(~U(R)/T*) - 1 FOR
¢ INTERACTIONS WITH THE TEST PARTICLE.
c RC: THE R*(DIRECT CORRELATION FUNCTIONS) OF THE SPECIES IN
c THE MIXTURE. THESE ARE CONSTANTS.

c
¢
c
c
¢
¢
c
¢
C
c
c
¢
c
c
c
c
c
c
c
c
o
c
c
c
¢
c
c
¢
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hhiE NUMBER OF DEFINING NUMBER OF GRID POINTS
N=2**NH
HT: TRANSFORNS OF TOTAL CORRELATION FUNCTIONS
{N THE BATH. PASSED FROM SUBROUTINE GALER.
ETA: IF ETA>=0 1TS THE COUPLING PARANETER FOR THE MHCA
ATTRACTIVE PART. IF ETA<O IT INDICATES THAT THE
TEST PARTICLE IS A HARD SPHERE.
UITH CURRENT ARRAY DIMENSIONS, MAX Nh=11,
RO: REDUCED DENSITY=N*(1-1 LJ SI2E PARNM**3)/U
DR: REDUCED STEP SIZE
JP:
JP.EQ.0 ... LOH DENSITY LIMIT - G(R) = 0.
JP.EQ.1 ... INPUT G(R) IS USED.
JP.EQ.2 ... HARD SPHERE G(R) IS USED.
OUTPUT PARAMETERS-
G: G{R)=R*(H(R)-C(R))
6(1,1) 1S UNCHANGED BY THE SUBROUTINE.
G(1,2) DENOTES LIKE-LIKE INTERACTIONS WITH THE
TEST PARTICLE.
G(1,3) DENOTES UNLIKE-LIKE INTERACTIONS HITH THE
TEST PARTICLE.,
{E: NUNMBER OF 1TERATION STEPS
1E<Q MEANS SOLUT!OH NOT FOUND

(NOTE: THE STRUCTURE OF SUBROUTINE GALER IS TERMINAL- SORRY)
HRITE(NOUTZ, 1)
1 FORNMAT(1X,' IN DILUTE")
ROT=R0O(2)/R0(1)
N=2**NN
N2=2*N
Rri=DR*H
DT=P{ /RN
Th=P1/DR
P1=PI/N
00 S I=1,N
€ INITIALIZE AN ARRAY OF COSINE FUNCTIONS FOR USE LRTER.
P2=1*P1
C START BY ASSUMING “C" FUHCTIONS FOR THE TEST PARTICLE ARE
APPROX INATED
C BY THE BATH VALUES.
c(1,1)=RC(I, 1)
c(1,2)=RC(1,2)
c(1,3)=RC(1,3)

OO0 0OO0000O00000

5 CONTINUE
NN=N-1
CALL DFSINI(HN,UFFTR)
c
¢ DEFINITION OF INITIAL VALUES OF G(R) AND GT(T)
o
Do 25 J=1,3
DO 24 I=t,N
DC{1,J)=6(1,J)*RO(J)
24 CONTINUE
25 CONTINUE
c STOP
SELECT=1

C FIND THE TRANSFORI OF THE DENSITY HULTI{PLIED GAHMNA FUNCTIONS FOR
C THE TEST PARTICLE INTERACTIONS.



o0

245

CALL FFS3D(SELECT,DC,GT,N, N, DR, HFFTR)
IF(JP.EQ.2) THEN
JP=2 => HARD SPHERE INTIAL GUESS.
CALL HSANAL(C,RO,S!GHA,DR)
DO 26 I=1,N
RR=DR*|
cCi,1)=Re(1,1)
DCC1, 1)=C(1,1)*RO(1)*RR
DC(1,2)=C(1,2)*RO(2)*RR
DC(1,3)=C(1,3)*RO(3)*RR
26 CONT I NUE
SELECT=1
FIND THE TRANSFORM OF THE DENSITY MULTIPLIED GAHMA FUNCTIONS FOR
THE TEST PARTICLE INTERACTIONS.
CALL FFS3D(SELECT,DC,CT,N,NH,DR,UFFTR)
DO 140 J=1,H
T=J*0T
DO 141 iB=1,3
CCT(1B)=CT(J, 1B)
TITCIB)=HT(J, 1B)
141 CONT I NUE
CALL GFC2(TTT,CCT,GGNT,R0,ROT,T)
(NOTE: 1-1 DIDN'T CHANGE- IT'S JUST ALONG FOR THE RIDE)
6T(J,2)=GGNT(2)
6T(J,3)=GGHT(3)
140 CONT INUE
SELECT=-1
CALL FFS3D(SELECT,GT,G,N,Nn,DR,UFFTR)
DO 126 I=1,H
6(1,1)=6(1,1)/R0(1)
6(1,2)=6(1,2)/R0(2)
6(1,3)=6(1,3)/R0(3)
126 CONT INUE
END IF
1E=0.
IR=0,
CONOLD=10000.

START OF DIRECT ITERATION

1000 CONTINUE

c
¢
c

1E=|E+1
CONCUX=10000.
IF (IE.GT.300) GO TO 3000
CALCULATION OF C(R) FRON G(R)

SELECT=0

C FRON DIRECT SUBSTITUTION OF "GANMMA* INTO THE CLOSURE
C EQUARTIONS GET NEW "C*'S (FOR THE TEST PARTICLE).

80
83

CALL CFG2(G,BUIJ,F,PS1,ETA,C,DR,SELECT,RO,AUCO)
DO 85 J=1,3 '
DO 80 I=1,N
C(1,J)=C{1,*R0(J)
CONT I NUE
CONT I NUE

CALCULATION OF CT(T), THE FOURIER TRANSFORH OF C(R)
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SELECT=1
CALL FFS3D(SELECT,C,CT,N,NH,DR,UFFTR)
¢
c CALCULATION OF NEM GT(T)
c ‘
DO 40 J=1,N
T=J*DT
Do 41 1B=1,3

CCT(I1B)=CT(J, 1B)
TTT(18)=HT(J, IB)
41 CONTINUE
C FROM DIRECT SUBSTITUTION OF THE TRANSFORM OF "C* [NTO THE 02
C EQUATIONS GET NEM “GANMNMA™'S (FOR THE TEST PARTICLE; IN TRANSFORN
C SPACE).
CALL GFC2(TTT,CCT,GGNT,RO,ROT,T)
GNT(J,1)=6T(J, 1)
C (NOTE: 1-1 DIDN'T CHANGE- 1T'S JUST ALONG FOR THE RIDE)

GNT(J,2)=6GGNT(2)
GNT(J,3)=GGNT(3)
40 CONTINUE
NA=32
2000 CONT INUE

DO 310 n=1,NA
GT(I,1)=6GNT(M, 1)
GT(M,2)=GNT(N,2)
GT(M,3)=GHT(N,3)

310 CONTIHUE

DO 335 1=1,3

DO 330 J=HA+1,N
GT(J, 1)=GNT(J, 1)

330 CONTINUE
335 CONTINUE
c
c CALCULATION OF NEW APPROX. FOR DIRECT ITERATION.
c

SELECT=-1

CALL FFS3D(SELECT,GT,GH,N,NN,DR,UFFTR)

P3=0

DO 195 J=1,3

Do 190 I=1,H

GN(1,J)=6N(1,J)/RO(H

P1=G(l,J)-GN(I,Jd)

P3=P3+(P1/1)**2
G(1,Jd)=((1.0D0-UHAITI*G(1,J))+(HRIT*GN(I,J))

c URITE(NOUT2,188)
€188 FORNAT(1X, *OUCH")
180 CONT{NUE
185 CONTINUE

P3=SQRT(P3)
c
c TEST TO END ITERATIONS.
c

IF (P3.LT.CONUDI) THEN
c HRITE(NOUT2,*) IE

RETURN
ELSE

IF (P3.LT.CONOLD) THEN
1C0=0
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CONOLD=P3
GO TO 1000
ELSE
IF (1C0.EQ.0) THEN
1CO=1C0+1
G0 TO 1000
END IF
END IF
END IF
c WRITE(NOUTZ,*)IE
c RETURN
60 TD 1000
3000  CONTINUE
C IF IT'S HERE,
C SUBROUTINE DILUTE HRS FAILED...SORRY,
[E=-IE
c HRITE(NOUT2, *) IE, IR
RETURN
END
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SUBROUTINE GFC2
PURPOSE- IHPLINENTS A REARRANGED, TRANSFORHED 02 EQUATION
FOR INTERACTIONS OF BATH MOLECULES WITH A
TEST PARTICLE.

9/22/87-COPIED FROM SUBROUTINE GFC AND CHANGED TO
- TRANFORHED 02 EQUATIONS FOR A TEST PARTICLE
IN A HIXTURE.

THIS ROUTINE CALLS:-
T T e P e S
SUBROUTINE GFC2(TTT,C,6,R0,ROT,T)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 €(3),6(3)
REAL*8 TTT(3)
REAL*8 RO(3)
COMHON/DEVICE/NIN,HOUT1 ,NOUT2, INOPT
¢ URITE(HOUTZ,10)
c10 FORMAT(1X, " IN GFC2')
C C: TRANSFORNM OF (1TH DENSITY*(BIG C FOR 1-TEST PARTICLE))
C G: TRANSFORN OF (1TH DENSITY*(BIG GANMA FOR |-TEST PARTICLE))
C THE ORDER OF COMUOLUT{ON USED {S:
C TOTAL CORRELATIONS FOR BATH*DIRECT CORRELATIONS FOR TEST PARTICLE.
C TOTAL CORRELATION FUNCTIOHS FOR INTERACTIONS IN THE BATH:
H11=TTT(1)*RO(1)
H22=TTT(2)*R0(2)
H12=TTT(3)*R0(3)
DET={(1.0D0+H11)*(1.0D0+H22))~(H12%H12*ROT)
C DIRECT CORRELATION FUNCTIONS FOR INTERARCTIONS WITH
C THE TEST PRRTICLE: ’
C2C=C(2)
C1C=C(3)
TRH1C=C1C+{H11*C1C)+(H12*C2C)
TRH2C=C2C+{H12*C1C*ROT) +(H22*C2C)

C
c
c
c
c
c
c REVISED 6/4/87
»
c
c
¢
c
¢

c
6(1)=0.0D0
C SPECIES 2-TEST PARTICLE INTERACTIONS:
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G(2)=TRH2C* (H22+(H11*H22)-(H12*H12*R0OT))
G(2)=G(2)+(TRHIC*H12*ROT)

G(2)=G(2)/DET

C SPECIES 1-TEST PARTICLE INTERACTIONS:
G(3)=TRHIC*(H11+(H11*H22)~-(H12*¥H12*R0T))

G(3)=G(3)+(TRH2C*H12)

6(3)=6(3)/DET
RETURN
END

DRATE 6/15/87
REVISED
9/20/87~
6/4/88 -

10/22/88-

3/14/89~

C
c
C
c
c
c
c
c
c
C
c
c
c
c
¢
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
C
c
c
C
¢
c
c
c
c
c
c
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SUBROUTINE CENPOT

PURPOSE-CALCULATES THE CHEMICAL POTENTIRL OF THE SOLUTE.
THE SOLUTE CHERICAL POTENTIAL IS CALULATED USING THE METHOD
OF COUPLING. CHENMICAL POTENTIALS ARE DIMENSIONLESS,

HRVING BEEN DIVIDED BY KT.

TO USE DISTRIBUTION FUNCTIONS FROMH AN
{INTEGRAL EQUATION CALCULATION (HMSA).

TO USE A HCA DIVISION OF THE PAIR
POTENTIAL.

TO ALLOW NULTIPLE CALCULATIONS OF TEST
PARTICLE DISTRIBUTION FUNCTIONS PER CALC.
OF BATH MOLECULE DISTRIBUTION FUNCTIONS,
TO CALL NEW PARTICLE SCALING SUBROUTINE
“CENREP“ TO CALC. THE REPULSIVE
CONTRIBUTION TO THE CHEM!ICAL POTENTIAL.
CODED BY DAVID PFUND

TH!S ROUTINE CALLS: SUBROUTINE PERT- CALCULATES THE PERTURBING

POTENTIAL DIVIDED BY KT AND ITS
DERIVATIVE,

SUBROUTINE INSIDE~ CARLCULATES THE INTEGRAL
OVER UOLUNE OF THE PRODUCT OF THE
PERTURBING POTENTIALS AND THE ESTINATED
PAtR CORRELATION FUNCTIONS FOR THE TEST
PARTICLE.

SUBROUTINE TAIL~-CALCULATES THE TAtL
CORRECTION TO THE CHEMICAL POTENTIAL OF
THE DILUTE SOLUTE.

FUNCTION YU!DL-CALCULATES THE IDEAL GRS
CONTRIBUTION TO THE SOLUTE CHEMiCAL
POTENTIAL, ‘

SUBROUTINE CEHREP- CALCULATES THE HORK
CHANGE IN INFLATING AN INSERTED HARD
SPHERE FROM A RADIUS OF 2ERO TO A

A RADIUS OF THE EFFECTIVE DIAMETER/2.
FUNCTION YUCORE- CALCULATES THE HARD CORE
CONTRIBUTION TO THE SOLUTE CHENICAL
POTENTIAL.

FUNCTION INTGRD - COMPUTES THE FREE ENERGY
CHANGE FOR SOFTENING THE INSERTED HARD
SPHERE INTO fi HCA PARTICLE.

KKK oK 2 3 K K IR 3K KK 33 3 55K oK K 3K oK o o 3 ok o o oK A o K oK K oK K 2K KoK K oK K K KKK

SUBROUTINE CEHPOT(NBIG,NN,DR, IPOT,KEPS1,SOFTD,EPSI,
$ RSOFTD, TENP, TRED, RO, X1, ALPHA,
$ PRESSU, CORF1,CORF2, 14,
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TU1J,AUCO,PSH,
G,PAIR,DIRECT, TOTAL,BATH,ASIGMA,
vU,YUSTR, YUHS, INT1, INT2,E1,E2,SGCAA, SGCAB,
ERROR)

IMPLICIT REAL*8(A-H,0-2)

REAL*B RO(3)

REAL*8 ASI1GHA(3),KEPSI(3)

REAL*8 SIGMA(3),EPSI(3)

REAL*B SOFTD(3)

REAL*8 RSOFTD(3)

REAL*8 PSI(2048,3),UPRINE(2048,3)

REAL*8 TUIJ(2048,3),AUC0(2048,3)

REAL*8 G(2048,3),PAIR(2048,3),DIRECT(2048,3)

REAL*8 TOTAL(2048,3),BATH(2048,3)

REAL*8 PRIR0(2048,3),BATHO(2048,3)

REAL*8 PAIRTP(2048,3)

REAL*8 BATHTP(2048,3)

REAL*8 DIRTP(2046,3),DIR0(2048,3)

REAL*8 TEMP, TRED

REAL*8 ALPHA

REAL*8 CORF1,CORF2

REAL*8 YU,YUHS,YUSTR

REAL*8 ANUM,DELTA,LAMBDA, INTGRL, PANEL , RONBRG, ROFF

REAL*8 MU

REAL*8 TPARTS

REAL*8 PRESSUV

REAL*8 X1

REAL*8 GCAA,GCAB

REAL*8 INT1,INT2

REAL*8 E1,E2

REAL*8 DR

INTEGER NBIG,NH

INTEGER 1POT,JP

INTEGER NUMPAN, 1 COUNT, ERROR

INTEGER SUAP,OFF

INTEGER IFUNC

COMMON/LUDOL /P

CORMON/CONY/CONUD |, CONUNR

COMMON/DEUICE/NIN, NOUT1, HOUT2, INOPT

DATA NUMPAN/4/

URITE(NOUT2,*)NB1G, NN, DR, 1POT

URITE(NOUT2,*)XEPSI (1) ,KEPSI(2),KEPSI(3)

URITE(NOUT2,*)SOFTD(1),SOFTD(2),SOFTD(3)

URITE(NOUT2, *)EPS1(1),EPSI(2),EPSI(3)

URITE(NOUT2,*)RSOFTD(1),RSOFTD(2),RSOFTD(3)

UR1TE(NOUT2,*) TEHP, TRED

URITE(NOUT2,*)RO(1),R0(2),R0(3)

HRITE(NOUT2,*)X1,JP,ALPHA, PRESSU, CORF 1, CORF2, i

LURITE(HOUT2,*)RSIGNA(1),ASIGNA(2), ASIGHA(3)

YU=0.000

YUHS=0.0D0

YUSTR=0.0D0

¢ NUMPAN- NUMBER OF INTEGRATION PANELS FOR THE INTEGRATION OVER THE

C COUPLING PARRMETER FOR THE WCR ATTRACTIVE PART.

C NBIG- NUMBER OF MESH POINTS USED TO CALCULATE THE RADIAL DISTRIBUTION

C FUNCTIONS.

RNUN=HUNPAN
C STEP THE COUPLING PARRMETER BACKHARDS BEGINING WITH A FULLY CHARGED

o 7 N N

QOOOOOOO0
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C TEST PARTICLE (IDENTICAL TO A BATH HOLECULE).
DELTA=-1.000/RNUMN
INTGRL=0,0D0
PANEL=0.000
UNITS: TEHMP, KEPSI- KELUIN.
AsicnA (HARD DIA.), SOFTD (SOFT DIA.)- ANGSTRONS
PS! (UCA ATTRACTIVE POTENTIAL/KT)- DIHENSIONLESS.

OOOOO0O00

CALCULATE REDUCED EFFECTIVE HS SI1Z2ES FRON ABSOLUTE UALUES.
SIGHA{1)=ASIGNA(1)/SOFTD(1)
SIGNA(2)=ASIGMA(2)/SOFTD(1)
SIGHA(3)=ASIGMA(3)/SOFTD(1)
C INITIAL UALUE OF THE COUPLING PARANETER 1S ONE
LANBDA=1.0D0
FOR A COUPLING PARANETER OF ZERO THE POTENTIAL TO BE USED IS
HUCA REPLUSIVE PART, "LAMBD1"=>THE COUPLING PARANMETER.\
JP=1
CONUDI=0.000001D0
CONUNR=0.0001D0
RSTAR=RO(1)+R0O(2)
caLL
INSI1OE(ALPHA,NB1G, NN, DR, |POT,RSOFTD,EPSI, RO, TRED, LANBDA, TULJ,
$Alco,Pst,G,DIRECT, INTGRL,ERROR,S1GNA, GCAA, GCAB,PRIRTP,
$BATHTP,DIRTP, JP)
c URITE(HOUT2,*)LANBDA, INTGRL
IF(ERROR.EQ.0) THEN
ICOUNT=1
LANBDA=LANBDA+DELTA
C THIS SUBROUTINE ALSO TAKES ONE ROHBERG STEP FOR EXTRA ACCURACY.
C GET READY:
RONBRG=INTGRL
SUAP=-1
100 CONTINUE
C FIND THE INSIDE INTEGRAL(OVER UOLUME) FOR COUPLING PARAMETERS
C BETWEEN ZERO AND ONE.
CALL
INSIDE(ALPHA,NB1G,NI1, DR, IPOT,RSOFTD,EPS!,R0O, TRED, LANBDA, TUIY,
$ANCO,PS!,G,DIRECT, PANEL , ERROR, SIGHA, GCAR, GCAB, PAIRTP,
$BATHTP,DIRTP, JP)
c HRITE(NOUT2, *)LAMBDA, PANEL
IF(ERROR.EQ.0) THEN
INTEGRATION OVER COUPLING PRRANETER IS DONE WITH THE TRAPAZOIDAL
RULE.

oo

o0

INTGRL=INTGRL+ (2. ODO*PANEL)
LANBDA=LANBDA+DELTA
ICOUNT=1COUNT+1

C SAVE UP EVERY OTHER PANEL FOR THE ROMBERG EXTRAPOLATION:
OFF=SUAP+1
ROFF=OFF
RONMBRG=RONBRG+(ROFF*PANEL )

c WRITE(HOUT2,*)LANBDA, INTGRL, ROMBRG
SUAP=-1*SUAP

END IF
C BE CAREFULL, THING DOESN'T WORK IF NUHPAN=1 (OR 2 WITH ROMBERG).
IF((ICOUNT.LE. (NUNPAN-1)) .AND . (ERROR.EQ.0))
$60 T0 100
IF{ERROR.EQ.0) THEN

DR ( (STEP S12E FOR INNER INTEGRAL)/'11' SOFT DIA.)- DIMENSIONLESS
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C CALCULATE THE INSIDE INTEGRAL FOR THE FULLY DECOUPLED TEST PARTICLE
¢ UHICH 1S HCA REPULSIVE
C (THE FULLY COUPLED TEST PARTICLE UAS LENHARD-JONES),
CALL
INSIDE(RLPHA,NBIG,NH,DR, | POT,RSOFTD,EPS 1, R0, TRED,LANBDA, TUL,
$ALCO,PSI,G,DIRECT, PANEL,, ERROR, SIGHR, GCAR, GCAB,PAIRTP,
$BATHTP,DIRTP,JP)
¢ HRITE{NOUT2,*)LANBDA, PANEL
{F(ERROR.EQ.0) THEN
INTGRL=1NTGRL+PRANEL
ROHBRG=RONBRG+PANEL
¢ URITE(NOUT2, *)LAMBDA, INTGRL , RONBRG
INTGRL=( {NTGRL*DABS{DELTA))/2.000
ROMBRG=(ROMBRG*DABS{DELTA))
URITE(NOUT2, *)LANBDA, INTGRL , ROMBRG
HAKE THE ROMBERG EXTRAPOLATION TO THE LINIT- GET FOURTH
ORDER ACCURACY!:
IHTGRL=INTGRL+{( ( INTGRL~ROIMBRG)/3.0D0)

OO0

c WRITE(NOUT2, *)LANMBDA, INTGRL

C NOTE: 't ASSUNING THAT YU HAS BEEN DIVIDED BY KT ALREADY, THAT

C IS THAT "PS1" INCLUDED A FACTOR OF 1/KT.

¢

C CALCULATE THE TAIL CORRECTION TO THE COUPLING INTEGRAL. INTEGRATE

C OUVER THE RANGE WHERE THE TEST PARTICE R.D.F. IS APPROXINATELY 1.0.
IFUNC=2

C ABSOLUTE RATHER THAN REDUCED TEMPERATURE IS USED IN THIS CALL TO

C SUBRCUTINE TAIL. ALSO ALL PARNS HAUE UNITS {H THIS CALL.

CALL TRIL(IFUNC,DR, IPOT, TENP,KEPSI,SOFTD,
$RO, TPARTS, ERROR)
YU=INTGRL+TPARTS
CALCULATE THE IDEAL GAS CONTRIBUTION TO THE CHEMICAL POTENTIAL
DIVIDED BY KT,

[ M o

YUSTR=YUIDL(IPOT, N, TENP,RO, SOFTD)
HRITE(NOUTZ, *)YUSTR
CALCULATE THE HARD CORE CONTRIBUTIOH TO THE SOLUTE CHEMICAL POTENTIAL
DIVIDED BY KT,
CONUD =0, 0000100
CONUNR=0.00001D0
CALL CENREP(RLPHA,NBI1G,NMN,DR, IPOT,RSOFTD,EPS!,
$SOFTD,ASIGNA, RO, TRED, TU1J,AUCO,PSI,6,DIRECT, TOTAL, CORF1,CORF2,
SPAIRD,BATHO,DIR0, SGCAR, SGCAB, PANEL , ERROR)
{F{ERROR.EQ.0) THEN
YUHS=YUCOR( IPOT,PANEL ,YUSTR,RO,ASIGNA, SOFTD)
YU= THE CHEMICAL POTENTIAL OF THE SOLUTE DIVIDED BY KT.
YU=YU+YUHS
CONPUTE THE FREE ENERGY DIFFERENCE BETUEEN THE PROCESS OF INSERTING
A HRARD SPHERE AND THE PROCESS OF INSERTING A WCA (SOFTLY) REPLUSIVE -
PARTICLE (=INT1+INT2). INTY IS THE CONTRIBUTION TO THE HORK OF
SOFTENING/KT DUE TO INTERACTIONS BETWEEN SPECIES 1 IN THE BATH AND
THE TEST PARTICLE. INT2 1S THE CONTRIBUTION DUE TO SPECIES 2 - TEST
PRRTICLE {NTERACTIONS,
PRIRTP: PAIR CORRELATION FUNCTIONS ABOUT THE UCA REPULSIVE TEST
PARTICLE.
PAIRO: PAIR CORRELATION FUNCTIONS ABOUT THE EFFECTIVE HARD SPHERE.
CALL INTGRD(NBIG, IPOT,DR,RO,PAIRTP,PA{RD,BATHTP,
$ BATHO,DIRTP,DIRO, INT1, INT2,E1,E2,
$ SIGHA)
¢ WRITE(NOUT2,190)CORF 1, CORF2

QOO0

o

OO0 O0OO0OO00



252

C 190 FORMAT{(/1%, 'FOR CORF1= ',D13.6,' CORF2= ',D13.6)
c URITE(NOUT2,192)YU, INT1, INT2
Cc 192 FORMAT(3X, 'MU0= ',D13.6,' INT1= *,D13.6,"' INT2= ',D13.6)
c HRITE(NOUT2, 194)YU+INT1+INT2
C 194 FORMAT(3X, 'TOTAL= ',D13.6)
YU=YU+IRT1+INT2
END IF
END IF
END IF
END IF

c HR1TE(NOUT2,200)ERROR
C 200 FORMAT(/1X,'CEMPOT MISSION ACCOMPLISHED. ERROR= ',13)
RETURN
END
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SUBROUTINE CEMREP
PURPOSE-CALCULATES THE WORK OF INFLATING AN INSERTED HARD
SPHERE FROM A RADIUS OF ZERO TO A RADIUS EQUAL TO THE
EFFECTIVE DIANETER/2.

DATE 3/14/89
CODED BY DARVID PFUND

OVER UOLUME OF THE PRODUCT OF THE
PERTURBING POTENTIALS AND THE ESTIMATED
PAIR CORRELATION FUNCTIONS FOR THE TEST
PARTICLE.
FUNCTION XI3- TO COMPUTE THE
PACKING FRACTION WHICH
APPEARS IN THE SPT.
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SUBROUTINE CENREP(ALPHA,NBIG, NI, DR, 1POT,RSOFTD,EPSI,

$SOFTD,ASIGMA, RO, TRED, TUIJ, ALCO,PS1,G,DIRECT, TOTAL, CORF 1, CORF2,

$PAIRO,BATHO, DIRD, SGCAR, SGCAB, INTGRL, ERROR)

INPLICIT REAL*8(A-H,0-2)

REAL*8 RO(3)

REAL*8 RHO(3)

REAL*8 ASIGNA(3)

REAL*8 SIGMA(3),EPSI(3)

REAL*8 SOFTD(3)

REAL*8 S16(3)

REAL*8 RSOFTD(3)

REAL*8 PS1(2048,3)

REAL*8 TUIJ(2048,3),AUCO(2048,3)

REAL*8 G(2048,3),PAIR(2048,3),DIRECT(2048,3)

REAL*8 TOTAL(2048,3),BATH(2048,3)

REAL*8 PAIR0(2048,3),BATHO(2048,3)

REAL*8 PAIRTP(2048,3)

REAL*8 BATHTP(2048,3)

REAL*8 DIRTP(2048,3),DIR0(2048,3)

REAL*8 TRED

REAL*8 ALPHA

REAL*8 CORF1,CORF2

REAL*8 INTGRL, | CRUDE

REAL*8 GCARA, GCAB

REAL*8 DR

REAL*8 LAMBDA

¢
c
c
c
c
c
c
c
c
¢ THIS ROUTINE CALLS: SUBROUTINE INSIDE- CALCULATES THE INTEGRAL
c
c
c
c
c
c
c
(>
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INTEGER NBIG,NM
INTEGER IPOT,JP
INTEGER NUMPRN, |COUNT, ERROR
INTEGER SURAP,OFF
INTEGER COUNT
COMMON/LUDOL/P |
COMMON/DEV I CE/NIN, NOUT1, NOUT2, INOPT
DATA NSTEP/2/
HRITE(HOUT2, *)NB1G, N, DR, 1POT
URITE(NOUT2,*)SOFTD(1),S0FTD(2),SOFTD(3)
URITE(NOUT2, *)EPS! (1),EPSI(2),EPSI(3)
LRI TECNOUT2, *)RSOFTD(1),RSOFTD(2) ,RSOFTD(3)
URITE(NOUT2, *) TRED
URITE(NOUT2, *)RO(1),R0(2),R0(3)
HRITE(NOUT2,*)JP, ALPHA, CORF 1, CORF2
URITE(NOUT2,*)AS1GNA(1),ASIGNA(R), RSIGNA(3)
INTGRL=0.0DO
SIGHA(1)=ASIGHA(1)/SOFTD(1)
SIGHA(2)=AS I GMA(2) /SOFTD(1)
SIGNA(3)=AS1GMA(3)/SOFTD(1)
JP=2
C DAA = DISTANCE OF CLOSEST APPROACH OF CENTERS BETWEEN THE TEST
c PARTICLE AND LIKE HOLECULES IN THE BRTH.
C DAB = UNLIKE DISTANCE OF CLOSEST APPROACH.
IF(IPOT.EQ.0) THEN
C SPECIES 2 IS TEST PARTICLE.
RAF=S1GNA(2)/2.000
DAR=S1GMA(2)
RHOR=RO(2)
RHOB=RO( 1)
ELSE
C SPECIES 1 1S TEST PARTICLE.
RAF=S1GMA(1)/2.0D0
DAR=S 1 GHA(1)
RHOA=RO(1)
RHOB=RO(2)
END IF
DAB=S 1 GMA(3)
C INSERTED HARD SPMERE 1S FULL SIZED:
LANBDA=-1, 000
CALL
INS1DE(ALPHA,NB1G, NN, DR, 1POT,RSOFTD, EPS 1, R0, TRED, LANBDA, TU1J,
$ANCO,PS1,G,DIRECT, PANEL , ERROR, SIGHA, SGCAR, SGCAB, PAIRD,
$BATHO,DIRO, JP)
HRITE(NOUT2,*)SIGNA(1),SIGMA(2),SIGHA(3)
¢ URITE(NOUTZ, *)SGCAR, SGCAB
IF(ERROR.EQ.0) THEN
F1=4,0D0%P | *( (DAA*DAR*RHOA*SGCAA ) +( DAB*DAB*RHOB*SGCAB) )
c HRITE(NOUT2,*)F1
FINT=F1
R1=DAA-RAF
C START PARTICLE SCALING. REDUCE DISTRANCES OF CLOSEST APPROACH BY
C NSTEP*DR. USE OF NSTEP=2 GIVES THE NUMERICAL INTEGRAL TO AT HORST
¢ FOUR DECINAL PLACES OF RACCURACY.
IF(IPOT.EQ.0) THEN
SI1G(1)=S1GHA(1)
S16(2)=S1GNA(2) -(DR*NSTEP)
DAR=S1G(2)

OO0 00
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ELSE

S16(2)=SIGNA(2)

$16(1)=SI1GHA(1)-(DR*NSTEP)

DAR=S1G(1)

END IF
S16(3)=S1GNA(3)~(DR*NSTEP)
DAB=S1G(3)
COUNT=0

100 CONTINUE
IF(DAA,LE. (1.4DO*RAF)) THEN

JP=2

END IF
CALL
INSIDE(ALPHA,NBIG, NN, DR, IPOT,RSOFTD,EPS|, RO, TRED, LANBDA, TUIJ,
$ANCO,PSI,G,DIRECT, PANEL, ERROR, S1G,GCAA, GCAB, PAIRTP,
$BATHTP,DIRTP, JP)
WRITE(NOUT2,*)S16(1),516(2),516(3)
c R1TE(NOUT2, *)GCAR, GCAB
IF(ERROR.EQ.0) THEN
FO=4.0DO*P | *( (DAA*DAA*RHOA*GCAR )+ ( DAB*DAB*RHOB*GCAB) ) .
c URITE(NOUT2,*)FO
RO=DRA-RAF
INTGRL=1NTGRL+( (F1+F0)*(R1-R0)/2.0D0)
COUNT=COUNT+1
F2=F1
R2=R1
F1=FO
R1=RO
C KEEP REDUCING THE DIAMETERS UNTIL THE TEST PARTICLE IS A HARD
C POINT (OCCURS WHEN THE LIKE DISTRANCE OF CLOSEST APPROACH = RAF).
IF(IPOT.EQ.0) THEN
S16(1)=SIGNA(1)
S16(2)=S16(2)-(DR*NSTEP)
DAR=S16(2)
ELSE
$16(2)=SIGNA(2)
S16(1)=516(1)~(DR*NSTEP)
DAR=S1G(1)
END IF
$16(3)=516(3)-(DR*NSTEP)
DAB=S16(3)

END IF
IF((DAR.GT.(1.0000001DO*RAF)) . AND. (ERROR.EQ.0)) GO TO 100
IF(ERROR.EQ.0) THEN

C COMPUTE FINAL FUNCTION UALUE FROM THE SPT FORNULA FOR SPHERE SIZE
C OF ZERO.
IF(1POT.EQ.0) THEN
SI16(1)=SIGHA(1)
C NOTE: IF THE TEST PARTICLE DIAMETERS DON'T FALL ON THE NESH POINTS
THE
C THING WON'T WORK (CONTACT MAVER FACTORS AND RDF'S WILL BE BAD).
C CAREFULL !!!
S16(2)=S16HA(2)/2.0D0
DAA=S16(2)
S1G(3)=SIGMA(1)/2.000
ELSE
S16(2)=SIGNA(2)
$16(1)=SIGNA(1)/2.0D0
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DAR=SI1G(1)
S16(3)=51GMA(2)/2.000
END IF
DAB=516(3)

CALL
INSIDE(ALPHA,NB1G, NN, DR, IPOT,RSOFTD,EPS1,R0, TRED, LAMBOA, TUIJ,
$AUCO,PSY, 6, DIRECT, PANEL, ERROR, S16, GCRA, GCAB,PAIRTP,

$BATHTP,DIRTP, JP)
URITE(NOUT2,*)S16(1),516(2),516(3)
c WRITE(NOUT2,*)GCRA, GCAB
IF(ERROR.EQ.0) THEN
FO=4,0D0*P | *( (DAR*DAA*RHOA¥GCAA ) + (DAB*DAB*RHOB*GCAB ) )
ICRUDE=(FINT+F1)*(RAF-R1)/2.000

KCOUNT=COUNT

c URITE(HOUT2, *)COUNT
XCOUNT=XCOUNT*XCOUNT

c URITE(NOUT2, *) 1CRUDE, INTGRL

DEL {=INTGRL~ICRUDE
INTGRL=INTGRL+(DEL!/{(XCOUNT)-1.0D0))

c HRITE(HOUTZ, *) INTGRL
PIECE=((F1+F0)*(R1/2.000))
c HRITE(NOUT2, *)PIECE

Fi¥=(F2/R2)~(F1/R1)~(FO/R2)+(FO/R1)
FiX=FiX/(R2-R1)
PIECE=P{ECE-(FIX*R1*R1*R1/3.000)

c HURITE(NOUT2,*)PIECE
INTGAL=1NTGRL+PIECE
END IF
END IF

END IF
c HRITE(NOUT2,200)ERROR
C 200 FORMAT(/1X, 'CENMREP NMISSION ACCONPLISHED. ERROR= ',13)

RETURN

END

T e T T R P T e T P R e P
FUNCT10N YUCOR
PURPOSE- CALCULATES THE HARD SPHERE CONTRIBUTION TO THE
SOLUTE CHEMICAL POTENTIAL. THE PROCEDURE USES THE
EXPRESSIONS FROI SCALED PARTICLE THEORY.

DATE 6/17/87

REVISED 3/14/88 TQ USE THE CONTACT URLUES OF THE CAUITY
RDF'S OBTAINED FROM THE SOLUTION OF INTEGRAL
EQUATIONS FOR THE TEST PARTICLE TO IMPROVE
THE ESTINATE OF THE UORK OF CAUITY FORMATION,

3/14/89 TO DUNP SPT EXCEPT FOR WORK OF INSERTING A

POINT PARTICLE.

CODED BY DAUID PFUND

THIS ROUTIHE CALLS: FUNCTION X13- CALCULATES THE PRACKING
FRACTION,
S e 3 e S 0 e 3 3 3 9 K R 3 20 R R e e sl ol ke ake o ol ke e a0 e R 20 36 38 2 3 358 0 2k o8 53 e 3k 3 a8 S 3 8 3 3 3K ol 3 sk ek 3K K K 2 3K oK K
REAL FUNCTION YUCOR(IPOT,PANEL,YUSTR,RO,ASIGNA,SOFTD)
INPLICIT REAL*B(R-H,0-2)
REAL*8 RSIGHA(3)
REAL*8 SOFTD(3)
REAL*8 PRESSV
REAL*8 YUSTR

OO0
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REAL*8 RO(3)
REAL*8 RHO(3)

REAL*8 Y3
REAL*8 HORK

REAL*8 HARD3,SOFT3
COMNON/DEVICE/NIN,NOUT1,NOUT2, INOPT
HRITE(NOUT2,*)YUSTR
SOFT3=SOFTD(1)*SOFTD(1)*SOFTB(1)
HARD3=ASIGNA(1)*ASIGHA(1)*ASIGHA(1)
RHO(1)=R0O(1)*HARD3/SOFT3
RHO(2)=R0(2)*HARRD3/SOFT3
RHO(3)=R0O(3)*HARD3/SOFT3
¥3=X13(RHO,ASIGNA)
WORK TO FORH A CAVITY OF DIAMETER EQUAL TO THE SOLUTE DIANETER,
PLUS THE LIBERATION ENERGY EQUALS HARD SPHERE SOLUTE CHEMICAL

POTENTIAL.

URITE(NOUTZ, *)YUSTR, PRES, HORK
HORK=PANEL-DLOG(1.0D0~Y3)
HRITE(NOUT2,*)¥3, PANEL ,WORK
YUCOR=YUSTR+WORK

RETURN

END

3K AR A A A AR K K 3 R A IS K3 K236 5 KKK K K KK oK oK KK
SUBROUTINE TRAP
PURPOSE-ESTINATES THE DIFFERENCE BETWUEEN THE WCA REFERENCE

CONTRIBUTION TO THE CHEMICAL POTENTIAL AND THE
WORK OF INSERTING A HARD SPHERE. THE PROCEDURE
INTEGRATES FRON Z2ERO TO THE HMESH POINT LEFT OF THE
DIANETER, THEN FROff THE MESH PT. TO THE RIGHT OF
THE DIANETER TO INFINITY. IN THE GAP SURROUNDING
THE DISCONTINUITY POLYNOHIALS RRE EXTRAPOLATED TO
CONTACT ON EACH SIDE, INTEGRATED, THEN ADDED TO
THE RESULT. THE FUNCTIONS BEING INTEGRATED ARE
SINILAR TO THOSE OF LADO.

DRTE 6/7/87
REVISED 6/29/89 ADDED R SECOND ORDER EXTRAPOLATION TO CONTACT.

CORRECTED AN ERROR IN THE COHPUTATION OF *K".

CODED BY DAUVID PFUND

THIS ROUTINE CALLS: -
0K 3R K 3K K R 3K 6K K SO 3 3K K K K KK KK M oK K o MK K KK K K
SUBROUTINE TRAP(NBIG,DR,FUNCT,DIA, INTGRL)
IMPLICIT REAL*8(A-H,0-2)
REAL*8 DR,DIA
REAL*8 FUNCT(NBIG)
REAL*8 INTGRL
REAL*8 XK,ROFF,ROMBRG,SAV1,SAV2
REAL*8 RK,RK1,REST, THING
INTEGER |,NBIG
INTEGER K, SHAP,OFF
COMMON/DEVICE/NIN,HOUT1,NOUT2, INOPT
INTGRL=0.0D0
XK=(DIA+0.,000000001D0) /DR

K=XK

HRITE(NOUT2,*)K

C HILL BE USING TRAPAZOIDAL RULE PLUS ROMBERG EXTRAPOLAT!ON.
C INTEGRATE LEFT OF CONTACT POINT.
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C IF THE DIAMETER LIES PRECISELY ON R MESH POINT THE GJUEN
C UALUE OF FUNCT(K) IS ASSUNED TO BE THAT FROM THE RIGHT
C BRANCH OF THE FUNCTION.
SAUT=FUNCT(1)
ROMBRG=FUHCT(1)
SUAP=~1
DO 100 1=2,K-2
SAU1I=SAUT+(2., 0DO*FUNCT (1))
OFFuSHAP+1
ROFF=0FF
RONMBRG=RONBRG+(ROFF*FUNCT(1))
SUAP=— 1 ¥SUAP
100 CONTINUE
SAU1=SAVUT+FUNCT(K-1)
ROMBRG=RONMBRG+FUNCT(K-1)
SAU1=SARU1*DR/2.0D0
ROMBRG=ROMBRG*DR
c LWRITE(HOUT2,*)SAV1, RONBRG
SAU1=SAV1+( (SAV1-RONBRG)/3.000)
UR{ITE(HOUT2,*)SAUY

OO0

INTEGRATE RIGHT OF CONTACT POINT.
SAU2=FUNCT(K+1)
ROMBRG=FUNCT(K+1)
SWUAP=-1
DO 200 i=K+2,NBiG-1
SAV2=SAU2+ (2, 0D0*FUNCT(1))
OFF=SUAP+1
ROFF«OFF
RONBRG=RONBRG+(ROFF*FUNCT (1))
SUAP=-1*SUAP
200 CONTINUE
SAU2=SAU2+FUNCT(NB1G)
RONBRG=RONBRG+FUNCT(NBIG)
SAU2=SAU2*DR/2,0D0
RONBRG=ROUBRG*DR
c URITE(NOUT2,*)SAUZ, RONBRG
SAV2=SAU2+{ { SAU2-RONBRG) /3.0D0)
c URITE(NOUT2,*)SAU2
C ESTINATE INTEGRAL FROM ONE HESH POINT LEFT OF
C COHNTACT TO OHE MESH POINT RIGHT OF CONTACT.
XK=k
RK=(XK-1.000)*DR
RK 1= (XK+1.0D0)*DR
¢ HRITE(NOUT2,*)XK,RK,RK1
REST=(FUNCT(K-1)*(D1A~RK) )~ (FUNCT{(K+1)*{DIA-RK1))
THING=(DIA*D1A)~(2.0D0*D{A*RK ) +{RK*RK)
REST=REST+(((FUNCT(K=~1)~FUNCT(K-2))7/{2.0DO*DR) }*THING)
THING=(DIA*D1A)~{(2.0D0*DIA*RK1 )+ {RKI1*RK1)
REST=REST~(( (FUNCT(K+2)~FUNCT(K+1))/(2.0D0*0R) Y*THING)
C RDD ON QUADRATIC TERMNS:
THING=(D1R-RK)*(D1A~-RK)*{(DIA-RK)/(DR*DR*DR)
REST2=(FUNCT(K-1)~(2.0DO*FUNCT(K-2))+FUNCT(K-3))*(THING*DR/6.000)
REST=REST+REST2
THING=(D1A-RK1)*{D{A-RK1)*(DIR~RK1)/(DR*DR*DR)
REST2=(FUHCT(K+1)~(2.0DO*FUNCT (K+2) Y+FUNCT (K+3))*{ THING*DR/6.0D0)
REST=REST~REST2
¢ UR ITE(NOUT2,*)REST
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