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ABSTRACT 

A new method is presented for calculating chemical potentials using integral equation 

theories. The method uses a multi-step charging process which allows attractive and 

repulsive contributions to the chemical potential to be detenmined separately. Integral 

equation theories are used to provide needed correlation functions about the test particle. A 

novel application of particle scaling is used to determine the repulsive contribution to the 

chemical potential. A formal definition is given for the effective hard core diameter of a 

softly repulsive solute. A simple Kirkwood charging process is used to detennine the 

attractive contribution. The method provides accurate chemical potentials in mixtures of 

softly repulsive WCA particles when used with the HMSARogers-Young integral 

equation. Calculated excess Gibbs energies agreed with WCA repulsive simulations to an 

average of -0.67% for 2:l diameter ratio mixtures. The method provides approximate 

results in Lennard-Jones mixtures when used with the HMSA integral equation. Results 

for supercritical isotherms reproduce simulation data to an average of -3.0%. For 

subcritical isotherms, vapor results are exact while liquid results are qualitatively correct. 

The method used with the HMSA theory correctly predicts the effect of energy ratio on the 

Henry's Law constant. The predicted effect of size ratio on the constant has an incorrect 

slope at subcritical temperatures when the solvent density is near the value for a saturated 

liquid The incorrect slope reflects an inconsistency in the HMSA theory. 

X 



CHEMICAL POTENTIALS FROM INTEGRAL EQUATIONS 

USING SCALED PARTICLE THEORY 

CHAPTER I 

INTRODUCTlON 

The basic problem of statistical mechanics is to determine the properties of a fluid when 

the forces between molecules are known. Only recently have methods been devised for and 

applied to the calculation of chemical potentials. These approaches are based on molecular 

simulation or on perturbation theories and have limitations. Rigorous, though 

computationally intensive approaches are based on molecular simulation. Since molecular 

simulations can deal with only a small number of particles and generate only a sample of the 

population of particle configurations, the computed results have a degree of statistical 

uncertainty which is difficult to quantify. These uncertainties can sometimes be reduced by 

increasing the number of particles in the simulation or by increasing the run time. In other 

cases the statistical uncertainties can only be reduced by trying alternative methods designed 

to deliberately sample different regions of configuration space. The periodic boundary 

conditions used in molecular simulations to eliminate wall effects introduce unrealis tic 

periodicities which makes the simulation of states near the critical point difficult. 

Perturbation theories require the similarity of the structure of the fluid to that of a reference 

1 
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fluid; this similarly h a k s  down near the critical point or when there are very strong 

interparticle forces that are not present in the reference fluid. Discussed below are some of 

the well studied methods based on molecular simulation or on perturbation theories. Within 

their regions of applicability methods of these types can be used to test the accuracy of 

alternative techniques for estimating chemical potentials. 

A method which is frequently used with molecular simulations is the test particle 

method of Widom('). The technique requires little modification of existing simulations. In 

this method the residual chemical potential of species i is given by: 

where p; is the chemical potential of an ideal gas at the temperature, density and composition 

of interest and p = l/kT. Q; is the potential energy between a "ghost" test particle and the 

molecules in the fluid and the angle brackets denote the average value in the canonical 

(constant N, V, T) ensemble. A ghost test particle is a static measuring device introduced into 

the simulation which has the potential energy of a molecule of species i but which does not 

alter the trajectories of the surrounding particles. The Widom method has a disadvantage in 

that it is difficult to determine the statistical accuracy of the computed result. There is also 

an "inverse Widom" relationship which gives the residual chemical potential in terms of the 

average of the potential energies 0; of the real particles in the simulation(? 

* 

By "real particles" in this context it is meant that those particles are part of the simulation of 

the mixture. They have trajectories which can influence and are influenced by those of the 
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other particles in the simulation. The inverse Widom relationship is seldom applied directly 

since large values of 0; are inadequately sampled by molecular simulations at high densities. 

The Widom method has been applied to the calculation of residual chemical potentials 

in pure Lennard-Jones fluids(3) and in Lennard-Jones mixtures at infinite d i l~ t iod~,~) .  

Heinbuch and Fische#) have found that the method yielded results with a uncertainty of 

about 0.1 kT for pure fluids with reduced densities pa3 less than 0.7. The uncertainty was 

about 0.2 kT for PO' between 0.8 and 0.85. These uncertainties were estimated by comparing 

the results to those obtained from a trusted perturbation theory (these theories are described 

below). Lotfi and Fischefi4) found that a large cut-off size, a large number of particles, and 

a very large number of time steps were required in order to obtain a reproducable result for 

large solutes in mixtures at infinite dilution. Shing, Gubbins, and Lucad5) found that the 

Kirkwood method (described below) is preferable to the Widom method at moderate to high 

densities and for extemely non-ideal mixtures. 

The method of Powles(6" is more complex than the Widom method but has the 

advantage of providing a measure of the statistical uncertainty in the computed chemical 

potential at the state of interest. In this method the weighting functions f and g (2) which are 

implicit in the Widom and inverse Widom equations are explicitly determined: 

(4) 

f(u) is the probability that a ghost test particle experiences a potential energy between u and 

u + du. g(u) is the probability that a real particle experiences a potential energy between u 

and u + du. Shing and Gubbinsca noted a relationship (used by Powles, Evans, and Quirke'a) 
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between the temperature, the functions f and g, and the residual chemical potential: 

A plot of estimated L(u) values versus u should have a slope of p = l/kT and an intercept equal 

to the negative of the residual chemical potential divided by kT. Such plots are indeed very 

linear with the correct slope except at very large and very small values of u. The method has 

the disadvantage that redundant information must be accumulated which are sufficient to 

determine (imprecisely) the chemical potential from both the Widom and inverse Widom 

relationships. In addition, the values off and g must be estimated for enough points in order 

to estimate the intercept to within a small confidence interval. The confidence interval on the 

intercept then provides a measure of the statistical uncertainty in the reported chemical 

potential. 

Panagiotopoulos, Suter, and Reidm applied Powles' method to the computation of 

chemical potentials in pure and mixed Lennard-Jones fluids. They reported uncertainies in 

the computed chemical potentials which increased with density, becoming approximately 

0.3 kT at po3 = 0.8. The results for mixtures were found to be accurate to within 0.1 kT over 

the conditions examined. They applied the method to the determination of phase coexistence 

curves and found that the curves for mixtures of acetone and carbon dioxide could be 

qualitatively modelled using Lennard-Jones potentials. 

The Kirkwood charging method is based on a technique which changes the identity of 

some of the particles in the simulation. For instance, a pure fluid may be converted into a 

mixture. The changing identity of the particles is measured by a parameter h, referred to as 

a coupling parameter. Thus, the potential energy U of the system is a function of the 
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configuration of the system and the value of the coupling parameter: 

When the NVT ensemble is used the Helmholtz free energy change which occurs during this 

(7) 

J 1 0  

Similarly, when the isothermal, isobaric NPT ensemble is used the Gibbs free energy change 

is: 

Shing(9 et. al. used equation (7) to compute the free energy change when one particle in a pure 

fluid is converted into a solute particle. The result was the difference between the residual 

chemical potential of the solute at infinite dilution and the residual chemical potential of the 

original pure fluid. Shukla and Hafie(*$) have used equation (8) in the computation of excess 

Gibbs free energies of mixing at constant temperam and pressure. The mixing property was 

obtaining by computing the free energy differences between each of the pure fluids and the 

mixture and mole fraction averaging the results. Kirkwood charging methods are 

numerically intensive because the integrations in equation (7) and (8) require a number of 

separate simulations to generate the integrand at pints between h, and 1,. The multitude of 

simulations and the numerical integration make it difficult to determine the uncertainty in the 

resultsc5). The precision of the results is obtained by these methods is often judged from 

comparisons with perturbation theories. 
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In perturbation theory, the Helmholtz Eree energy of a model fluid is written as an 

expansion about that of a reference fluid whose properties are known. The goal of 

perturbation theory is to choose a reference fluid with a microscopic structure that closely 

approximates that of the fluid of interest, allowing the expansion to be truncated after the first 

order. The chemical potential of a species can then be determined from the Helmholtz free 

energy by differentiating with respect to species mole number at constant temperature and 

volume. The theory of Weeks, Chandler, and Andersen(lo) (WCA) involved dividing the 

intermolecular pair potential into a short-ranged, softly repulsive component uijo and a long- 

ranged attractive component uijl. The free energy A of the fluid was then Mitten as an 

expansion about that of a softly repulsive reference fluid'"), 

+ -  
A - A O  pp 1 - = - z x i x j  [ g!j(r)ui j(r) 4nr* dr NkT 2 , . 

(9) 

+. . . 
where Ao denotes the free energy of a fluid whose particles interact only with the repulsive 

component of the potential ui:. The gi: are the pair correlation functions (discussed in detail 

below) of the reference fluid at the temperature and density of interest. These functions 

describe the structure of the reference fluid. The fmt order truncation of the series in equation 

(9) is accurate under state conditions where the structure of the reference fluid approximates 

that of the fluid of interest: g,O = g,. This situation prevails at high (liquid-like) densities 

because, as the molecules of a fluid pack closely together, their strong mutual repulsions 

dominate the determination of fluid structure. Under such conditions the WCA attractive 

potential only slightly perturbs the structure determined by the repulsive forces. The free 

energy Ao of the WCA repulsive fluid is in turn approximated by that of a hard sphere fluid 
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with appropriately chosen effective hard spheredimeten. The free energy of the hard sphere 

fluid is then given by the accurate equation of state due to Carnahan and Starling(1213). 

Accmte procedures for estimating A 0 and the pair correlation functions in the reference fluid 

were given by Verlet and Weis(14) for pure fluids and by Lee and Levesque'") for mixtures. 

Modifications of these theories have been proposed which slightly improve the accuracy and 

thermodynamic consistency of the results'"). A disadvantage of perturbation theories is that 

the truncation of the free energy expansion at the first order is inaccurate near the critical point 

of the fluid and when intermolecular attractions are strong. For such systems the. smcture 

of the fluid of interest as measured by g, is not approximated well by g,:. 

Recent advances in integral equation theories for molecular correlation functions and 

in methods for solving the equations suggest that i t  is possible to use them to predicr chemical 

potentials. These theories provide a means of estimating the pair and direct correlation 

functions in a fluid These functions depend on the relative positions of two inolecules 

irrespective of the positions of the others and irrespective of molecular Orientations (when the 

molecules are non-spherical). Thermodynamic properties can be estimated from these 

functions using the relationships provided by statistical mechanics. Integral equation 

theories combine the use of the Omstein-Zernicke (02) integral equation which is an exact 

defining relationship between the direct and total correlation functions and a "closure" 

equation which is an approximate one. The 02 equation is written in terms of a canvolution 

integral (le, 
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where the intermolecular separation distance is r = II ri - rj II and the equation has been written 

for the case of a binary mixture. h, is called the total correlation function and is 

defined by h, = g, - 1, where gij is the pair correlation (or radial distribution) function. The 

pair correlation function is defined so that pi gij(ri,rj) is the local density of species i at position 

ri  surrounding a molecule of species j at position rj (17). Because of the attractive field which 

surrounds a molecule, this local density is greater than the average bulk density for separation 

distances in the neighborhood of the potential mininum. Ordering in the fluid (such as the 

ordered packing of hard spheres) also causes the local density of the nearest neighbors of a 

molecule to be higher that the bulk value. Thus g, is greater than 1.0 for these separation 

distances. For small separation distances the field becomes strongly repulsive, and the local. 

density is reduced. The pair correlation function is less than one for small separations, 

becoming zero in the limit of particle coincidence. At very large separation distances the field 

approaches zero, the local density of species i approaches the bulk average pi and g, 

approaches 1.0. Two special cases of interest are: 

1. Ideal gases, In this case there are no forces between the particles and g, = 1 for 

all separation distances. 

2. Low pressure gases. In this case the probability of more than two molecules 

being in the same neighborhood is very small. Then the probability of an 

arbitrary pair of molecules being a given distance r apart equals the Boltzmann 

factor, which is : exp[u,(r)kTI = g,, where uij is the intermolecular pair 

potential. 

C, is called the direct correlation function and equation (10) can be considered as its 

definition. Alternatively, as described by Percus(l*), the direct correlation function can be 
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defined in terms of the rate of variation in the required pair potential with respect to 

independent variations in the local density (a functional density derivative). From this 

alternative definition of C,, the 02 equation (10) can be derived. Thus, the direct correlation 

function appears as part of the solution to the problem of how the local density of the fluid 

around a field source (such as another molecule) varies with the potential energy between the 

source and the molecules of the fluid. At low densities the direct correlation function 

approaches the Mayer factor, exp[-u,./kTI - 1. Thus it approaches -1 at small separation 

distances where the potential is large and approaches -ui/kT at large separations where the 

magnitude of the potential is small. The long range behavior of the direct correlation function 

changes little as the density is increased; the function at small separation distances becomes 

much more negative. 

Equation (10) is solved numerically together with a closure equation. The closure 

equation implicitly contains all of the approximations in the theory being used. It is an 

approximate relation between the direct correlation function and the total correlation 

function. Such relationships have been created by choosing an objective (or "generating 

functional") which is some functional of the local density and potential energy due to a field 

source, and taking the functional Taylor expansion of it in powers of the difference between 

the local and bulk average densities('*). In this way a relationship between the local density, 

the direct correlation function, and the pair potential can be obtained. Truncating the 

expansion after the fist order yields the desired simplified closure. 

Different generating functionals yield different closures, which may differ in their 

suitabilities for pair potentials of varying sign and steepness. One such closure is the 

hypernetted chain (HNCJ eq~ation''~), 



10 

(1 1) 
Cij= hij-h(yij) 

where yij is called the background correlation function ant is defined as yij = gijexp(ui,/kT) . 

Each of the functions in equation (1 1) is dependent on the intermolecular separation distance. 

HNC theory was commonly used at low densities and for systems containing both attractive 

(or long range) and repulsive (or short range) forces. Another such closure is the Percus- 

Yevick (PY) equation(19): (12) 

Cij= 1 + hij-y.. 
'1 

PY theory was commonly used for systems containing only short range repulsive forces such 

as mixtures of hard spheres. Both the PY and HNC theories become more accurate as the 

density is reduced; from each of them exact second and third virial coefficients can be 

derived(19). They approach each other at low densities since in this case the background 

correlation function approaches 1. The PY equation (12) yields a direct correlation function 

which has a finite range if the pair potential has a fmite range (since in that case, for large 

enough separations g, = yij). The HNC direct correlation function does not vanish at large 

separation distances even if the pair potential does(19). 

One numerical method used to simultaneously solve the OZ and closure equations is 

that due to Labik et. al.OO). This method is a combination of Newton and direct iterations that 

involves decomposing h, - C, into come  and fine parts. The coarse part is described as a 

series of basis functions, the coefficients of which are found by Newton's method. The fine 

part is found by fixed point iterations in Fourier transform space. 

Thermodynamic properties can be obtained fiom the correlation functions by using the 

relations of statistical mechanics. For example, the residual (sometimes referred to as 
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configurational) internal energy of the fluid is given by(21): 

4 s  

Both the PY and KNC theories yield reasonably accurate predictions of the internal energy. 

However, for some properties themodynarnically inconsistent results can occur because the 

closure relation is approximate. In particular, properties obtained from the pair correlation 

functions tend to differ from those obtained from the direct correlation functions. If a 

comparison is made between the pressure computed from the virial equation(21), . += 

(where the prime superscript denotes aderivative with respect tor) and the pressure computed 

by integrating the compressibility equation, 

over density, the results will not agree in general since the relationship between the total and 

direct correlation functions is only approximate(16). For example, the compressibility 

equation (15) yields a more accurate pressure than does the virial pressure equation (14) when 

the PY theory is applied to hard spheres, though both are considerably in error (I3)(the correct 

pressure being nearly one third times the virial pressure plus two thirds times the 

compressibility pressure). The virial pressure equation (14) is derived from the canonical 

partition function. The compressibility equation (15) is derived from an analysis of particle 

number fluctuations in the grand canonical ensemble. So, it is evident that different routes 
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to calculating the thermodynamic properties from integral equation solutions tend to yield 

different results. 

Newer theories improve the prediction of the correlation functions by imposing 

thermodynamic consistency on some property calculated from two different routes. The 

closure equation is then parahetenzed to allow such an optimization. The Rogers-Young 

(RY) mixed integral equation theory @) provides a description of the properties and structures 

of repulsive fluids such as those composed of hard spheres or of softly repulsive particles. 

The RY closure is said to be "mixed" since consistency between the results of equations (14) 

and (15) for the pressure is obtained by using a combination of the PY and HNC closures, 

(16) 
Ci,= hij-(i) ln[sy..-(s 'J - l)] 

where "s" is a switching function. The switching function varies between zero and one and 

is chosen so that pressure consistency is obtained. When s = 1 the HNC equation (1 1) is 

recovered. In the limit when s approaches zero the PY equation (12) is recovered. An 

arbitnry form for the switching function is used which allows interpolation between the PY 

closure at short interparticle distances and the HNC at large distancesa3), 

and the mixing parameter a i s  varied in order to vary the switching function. In practice, the 

parameter a is chosen so that the derivative of the pressure with respect to density obtained 

from equation (15) matches the results of a numerical differentiation with respect to density 

of equation (14). The resulting a is state dependent. The numerical differentiation of the 

virial pressure is done assuming the a parameter is only weakly state dependent, therefore 

its derivative can be neglected - an assumption which is justified when the RY theory is 
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applied to repulsive fluids. This procedure is referred to as a local consistency criterion, as 

opposed to a global consistancy criterion which would compare a numerical integral over 

density of equation (IS) with the pressure from equation (14). The RY theory works when 

applied to fluids consisting of repulsive particles because the PY and HNC components of 

the theory yield compressibilities (from equation 15) that bracket the correct value. The 

theory reproduces the pair correlation functions, pressures, and internal energies obtained for 

these fluids from molecular simulations with surprising accuracy(22’ - though the resulting 

pressures are biased low for harshly repulsive fluids such as those composed of hard spheres. 

RY theory is not applicable to fluids with both attractive and repulsive forces because, in 

general, the PY and HNC components of the theory do not bracket the correct 

compressibility(u). 

The hybrid mean spherical approximation (HMSA) integral equation is a 

modification of the RY theory which can be used with realistic pair potential models and 

which reduces to the RY theory when the potential is purely repulsive. In the HMSA theory 

the intermolecular pair potential is divided into repulsive and attractive parts according to the 

division of Weeks, Chandler, and Andersen (WCA) (24): 

0 1  uij= uij+ uit 

The WCA repulsive potential is short ranged and is given by, 

where qj is the depth of the potentid minimum and rij*is the intermolecular separation at the 
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minimum. The WCA attractive potential is given by: 

- q j , r S r i j  min 

uij, r > r y  

The WCA potential division has been shown to be an effective basis forperturbation theories 

because the pair correlation functions in dense fluids are very nearly equal to those in a fluid 

whose particles interact with the steep WCA repulsive Under such conditions 

the direct correlation function is assumed to be approximated by that of a WCA repulsive 

fluid plus a correction which is exact for large separation distances. In the HMSA the direct 

correlation functions are divided into attractive and repulsive parts, the repulsive part is given 

by the RY theory and the attractive part is set equal to the negative of the WCA attractive 

potential. The resulting closure equation is: 

Cij= hij-($ ln[sg..ebu$-(s 1J - 1)] - pu;, 

As in the RY closure, when s = 1 the HNC equation is recovered. The E-XNC limit yields 

accurate pair correlation functions at low to moderate densities @). In the limit as s approaches 

zero the HMSA closure approaches the soft mean spherical approximation (SMSA) of 

Madden and Ricea) - an approximation which is accurate for liquids. The SMSA limit of the 

theory represents fluids which have softly repulsive cores and long range attractive forces. 

It assumes that the pair correlation functions are determined by the strength of the repulsive 

forces and are independent of the attractive forces - thus, the SMSA theory applies only at 

high densities. The switching function used in the HMSA theory is the same as that used in 

RY theory and the a parameter is found in the same way as in RY theory - by applying the 

local consistency criterion. The local consistency criterion is less satisfactory when the 
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theory is applied to fluids with attractive and repulsive forces since a has a limit of positive 

infinity (thus forcing the switching function to approach 1.0) as the density approaches zero. 

In any case, HMSA pressures and internal energies exhibit excellent agreement with 

molecular simulations for Lennard- Jones fluids(23). 

Integral equation theories have therefore progressed to the point where they can be be, 

used to predict the volumetric properties and internal energies of model fluids with 

spherically symmetric, pair-wise additive potentials. One might hope that it would be an easy 

matter to obtain chemical potentials, Gibbs free energies, and Helmholtz free energies from 

these theories. Integral equation theories can be applied to systems for which simulations or 

perturbation theories can not be used. Unlike perturbation theories, integral equation theories 

can in principle be applied to systems where intermolecular attractions have a large effect on 

the structure of the fluid (though the accuracy of the result depends on the closure equation 

used). Unlike both perturbation theories and molecular simulation, integral equation theories 

can be applied to states relatively close to the critical point of the fluid (though the location 

of the critical point obtained from integral equations theories may be inaccurate). If chemical 

potentials can be obtained from the integral equations theories then they can become useful 

tools for studying phase equilibrium near the critical point, particularly when large 

intermolecular attractions are present. 

One approach to obtaining the free energies from integral equation solutions would be 

to perform a thermodynamic integration over the relevant volumetric property. This 

approach is examined in Chapter III - Results. It has a number of disadvantages. If, as in the 

case of the RY results for the hard sphere system, the predicted pressure is slightly lower than 

simulation results for a range of densities then thermodynamic integration will accumulate 
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these errors and lead topoorresults. In addition, the aparameter must be recomputed at some 

number of intermediate density steps since it is state dependent. Recomputing a can impose 

a large computational penalty. Finally, for systems which exhibit two phases, it can be very 

difficult to numerically solve the integral equations for densities which lie within the phase 

dome thereby making it imposible to obtain a complete integral over density. As noted by 

Kjellander and Sarmar~(~), chemical potentials determined from integral equation theories 

depend on the method of calculation because of the approximate nature of the correlation 

functions they provide. If the correlation functions were exact, every calculation method 

would yield the same (exact) result. Since the correlation functions are inexact, there is the 

possibility that results obtained some calculation scheme are close to the results obtained 

from molecular simulation, even if the results from a thermodynamic integration differ 

greatly from simulation. 

In this work a calculation scheme based on a Kirkwood charging processm is used for 

obtainingchernical potentials, Gibbs free energies, and Helmholtz free energies from integral 

equation theories. In the charging process we pick one molecule in the fluid and imagine it 

is at the origin of OUT coordinate systemm). This central molecule is referred tu as a test 

particle. We consider what happens when the magnitude of the pair potential between the 

test particle and the surrounding molecules is reduced while all other molecules in the system 

interact normally. We shall refer to the surrounding molecules as the bath. Because the pair 

potentials for interactions with the central molecule have been perturbed, the pair correlation 

functions about it will also be perturbed. In effect, the test particle is a field source which 

induces inhomogeneity in the fluid. Integral equation theories can be used to calculate the 

perturbed pair correlation functions about the test particle. By reducing the test particle - bath 
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molecule pair potentials in a series of steps the test particle can be removed from the system. 

The Helmholtz free energy change for this process can be computed from the knowledge of 

the pair correlation functions about the test particle. The derivative of the free energy with 

respect to component density at constant temperature volume and densities of the other 

species equals the chemical potential: 

= A(T,V,ni, ..., n j  ,...) U T ,  v, ni 
-A(T,V,ni,..., nj- 1 ,... > 

= Pj 

Since the number of particles in the fluid is very large, the chemical potential equals the 

negative of the fiee energy change for removing the test particle (alternatively, i t  equals the: 

free energy change for inserting a new test particle) The Kirkwood charging approach has 

the advantage of only requiring solutions of the integral equation at the state of interest, 

thereby avoiding accumulation of errors, multiple 01 calculations, and numerical problems in 

crossing the phase dome. 

There is a unique analytical solution to the charging process for the case of the HNC 

integral equation theory m-30). For integral equation theories in general, the chemical potential 

obtained from integral equations using Kirkwood charging is not unique. This inconsistency 

arises from the approximate nature of integral equation theories. It has been proven by 

Kjellander and Sarman (26) that the calculated chemical potential obtained from the RY 

closure depends on the way the pair potential (or equivalently, the local density of the fluid 

about the test particle) is varied during the charging process and not just on its initial and final 

values. For the HNC closure the calculatedchemical potential is independent of the charging 
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path. Kjellander and S m a n  obtained exactresults for the RY theory with a chargingprocess 

which required that the total correlation function grow linearly from zero to its final value 

as the test particle is inserted into the fluid. The computed chemical potentials in hard sphere 

systems were accurate only at low densities. Slightly more accurate results were obtained by 

them using a modified RY closure, but the high density results were still poor. 

In the work presented here a numerical approach to the charging process was taken 

where the test particle is inserted into the fluid in a series of steps. The multi-step procedure 

used is based on well-known techniques and is designed to take advantage of accurate results 

provided by scaled particle Reiss, Frisch, Helfand and L e b o w i ~ ( ~ ~ ,  proposed 

dividing the residual chemical potential into attractive and repulsive conmbutions, the 

repulsive contribution being estimated as the work of inserting the hypothetical hard 

spherical core of a molecule into the fluid at a fixed position. The work of inserting a hard 

sphere test particle into the fluid was determined from a charging process provided by scaled 

particle theory (SPT) (3233). This particle scaling process has been shown to be able to provide 

accurate chemical potentials in hard sphere fluids. Reiss et. al. (32) were able to estimate 

Henry's Law constants-for helium in liquid argon and in liquid benzene by choosing hard core 

sizes equal to the Lennard - Jones size parameters and neglecting the attractive contribution. 

After using empirical data to estimate the attractive contribution they were also able to 

estimate the heats of vaporization of inert gases, and of hydrogen, nitrogen and benzene. In 

this work, we eliminate both the explicit and implicit assumption that molecules have hard 

sphere cores. Instead, the repulsive contribution consists of the work of inserting an effective 

hard sphere Core into the fluid plus the work of softening the hard sphere into a softly repulsive 

WCA sphere. This Softly repulsive sphere therefore represents the repulsive 
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core of a real molecule. We retain the idea that the repulsive conmbution to the chemical 

potential is given by SPT simply by choosing effective hard sphere sizes so that the work of 

softening is zero. Thus, we also eliminate the arbitrary specification of core sizes made in 

past applications of SPT to realistic fluids. Finally, we do away with any need for empirical 

data or approximations in the estimation of the amactive conmbution by using a formally 

exact Kirkwood charging process to couple the WCA attractive forces between the bath and 

the test particle. The calculation of the work of inserting the effective hard sphere, the work 

of softening, and the attractive contribution all requireknowledge of the correlation functions 

about the evolving test particle. These correlation functions are estimated using integral 

equation theories. 

The word "work" was used freely in the above discussion of Kirkwood charging in 

phrases such as "work of inserting a hard sphere" and "work of softening". This is a 

generalized notion of work (done on the system) which equals the Helmholtz free energy 

change of the process. In this case the displacement of the system occurs along an abstract 

coordinate which is not directly related to the physical movement of particles or system 

boundaries (though a reconfiguration of particles in the system does occur as tbe work is 

done). We imagine that the process of changing the pair potential between the test particle 

(which is present at a fixed position) and the fluid is accomplished by the equivalent process 

of turning on an external field source at that point. This process of turning-on is accomplished 

by varying an external coordinate referred to as the coupling parameter, denoted by 2.. The 

total energy of a member of the canonical ensemble is then a function of h. A generalized 

force generated by this member opposing the change in h can be defined as the negative of 
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the gradient of its energy with respect to h. The macroscopic force is then the ensemble 

average of these forces on the ensemble members. From statistical mechanics (16), the 

ensemble average force cF> is related to the derivative of the canonical partition function Z, 

which also shows the relationship between 6;> and the Helmholtz free energy A. So, the 

generalized work done on the system during the turning on process equals the negative of the 

integral over h of the ensemble average force, which in turn equals the change in the 

Helmholtz free energy of the system from initial to final values of the coupling parameter: 

(24) 

1 
A( 1) - A(0) = - J, (F) dh 

P 1  

= J, EL, v, N dh 

- <F> is the force exerted by the external agent; dh is the infinitessimal displacement over 

which the force is exerted. It can be proven that the integral in equation (24) depends only 

on the initial ( k = 0 ) and final ( h = 1 ) states of the system - it does not depend on the way 

in which the external field source is turned on. Thus, the integral has the mathematical 

properties of "work" and it can be legitimately written as the difference in scalar potential 

functions A( 1) - A(0). How this free energy change is related to the residual chemical 
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potential will be described in Chapter II - Theory. The Theory chapter will explain how the 

free energy change can be determined from the pair correlation functions for fluid molecules 

about a test particle (or equivalently, about the external field source). Equation (24) is path 

independent when the true correlation functions are used in evaluating it. As noted in 

reference (26), the path independence can be destroyed when approximate integral equation 

theories are used to estimate the correlation functions. 

The multi-step charging process will introduce three different coupling parameters 

which take the system from its initial to its final states in a sequence of steps. In order to apply 

the SPT formula effective hard core diameters are needed for each species in the fluid, as 

described above. The effective hard sphere diameters are based on the idea(l3 that the 

Helmhoitz energy of a fluid containing a soft WCA repulsive test particle can be 

approximated by the Helmholtz energy of a fluid containing a hard sphere test particle. The 

free energy difference between these two systems is defined as the work of softening. One 

coupling parameter is introduced to convert the hard sphere into the WCA repulsive particle. 

With hard sphere diameters chosen so that the work of softening is zero, the repulsive 

contribution to the chemical potential equals the work of inserting the hard sphere test 

particle. This work of insemon equals the fiee energy difference between a system 

containing the hard sphere and a system containing an non-interacting test panicle. The 

insertion of the effective ( in the sense that it approximates a WCA repulsive particle) hard 

sphere is done in two steps. First a hard sphere with a diameter of zero (a “hard point”) is 

inserted into the fluid. SPT provides a simple formula for this step which is a function of the 

effective packing fraction of the fluid. Second, the size of the inserted hard sphere is increased 

from a point up to the effective hard sphere diameter. Another coupling parameter increases 
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the hard sphere size. SPT provides an expression for the work of this step which utilizes the 

contact values of the pair correlation functions of the bath molecules with the test particle. 

These contact values are determined from the integral equation theory. Finally, the WCA4 

attractive potential is charged and the test particle becomes identical to other molecules of 

its species in the fluid. The final coupling parameter changes the attractive component of the 

potential. The free energy change in this step also depends on the pair correlation functions 

about the test particle. The Theory chapter which follows developes the mathematics of each 

of the charging steps in detail and describes how the pair correlation functions about the test 

particle are determined. The result is an effective method for computing the chemical 

potential. 

Chapter III - Results, describes the testing of the method. The testing procedure is 

designed to examine: 

1. Agreement with known (and path independent) results for the HNC closure. 
2. Effectiveness of the SFT based procedure in purely repulsive systems when 

used with the RY theory. 
3. Effectiveness of the SPT based procedure in realistic systems when 

used with the HMSA theory. 

The method is compared to the analytical HNC result in case where s = 1. The KNC results 

allow the estimates to be made of the errors (numerical or otherwise) of each step in the 

chargingprocess. In all cases these errors are negligible. The work of inserting the hard point 

obtained from the SFT is slightly inconsistent with the known exact HNC result, This 

inconsistency is shown to be smaller when the more accurate RY and KMSA integral 

equations are used. All other steps are consistent with the HNC when s = 1. The method is 

used with the RY integral equation theory to compute Gibbs and Helmholtz energies in pure 
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fluids which interact according to the WCArepulsive potential. For these fluids the attractive 

contribution to the chemical potential is zero. The computed Helmholtz energies agree with 

the accurate results of Valet and Weis(14) for these fluids but are slightly inconsistent with 

thermodynamic integration. The results from the proposed method are mote accurate than 

those of thermodynamic integration. The proposed charging process and thermodynamic 

integration should yield identical results. Inconsistent results occur because of errors in the 

correlation functions supplied by the integral equation theory. Unlike the procedure used in 

reference (26), the proposed method provides accurate results at high densities without 

modifying the RY closure. The accurate results confirm that the particle scaling procedure 

is appropriate for computing the repulsive contribution to the chemical potential. In mixtures 

of WCA repulsive particles the method accurately reproduces simulation results for the 

excess Gibbs free energies of mixing. These resuits are a strong proof of the method and of 

the RY theory since the free energies of mixing are! the small differences between large 

chemical potentials and so are sensitive to small mors in the chemical potentials. The method 

is then used with the HMSA integral equation theory to compute Gibbs free energies in pure 

fluids which interact according to the Lennard-Jones potential. The results are accurate at the 

lowest (pa3 c a b u t  0.4) and highest (po3 > about 0.8) densities examined. At intermediate 

densities the chemical potentials are overpredicted and are also inconsistent with 

thermodynamic integration. These errors disappear at supercritical temperatures. The 

inaccurate results at intermediate densities are related to errors in the pair correlation 

functions about the test particle predicted by the HMSA theory - errors which disappear at 

low and high densities. The effect of varying the solvent-solute size (0,) and energy 

parameters in mixtures at infinite dilution are examined. The trend 
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in the residual solute chemical potential with increasing E, is always correct - satisfying a 

consistency condition with the energy equation (13). The trend with increasing 0, is 

sometimes incorrect - a violation of a consistency condition with the pressure equation (14). 

This latter enor also disappears at supercritical temperatures. The source of the errors with 

increasing o,, is traced to increased errors in the pair correlation functions about the test 

particle predicted by the HMSA theory. The method is then applied to Lennard - Jones 

mixtures of finite concentration which are intended to model the coexistence curve of carbon 

dioxide and acetone at a temperature above the critical temperature of carbon dioxide. 

Chemical potentials in the vapor phase are accurately predicted by the method with the 

HMSA theory. In the liquid phase the chemical potentials of the supermitical species are 

reasonable, those of the subcritical species are overestimated. 

The method combined with the HMSA theory can always be used reliably at 

supercritical temperatures. In Chapter III - Results, the method is applied to the computation 

of chemical potentials in supercritical fluids. The method is used to determine how residual 

solute chemical potentials at infinite dilution in supercritical solvents depend on the fluid 

state and on the parameters of the intermolecular force relation. The predictions made in this 

section await experimental confirmation. They do show that the calculations can be 

performed for states near the critical point. 



CHAPTER Il 

THEORY 

1. Overall ApDroach 

The chemical potential of a species in solution equals the derivative of the Helmholtz 

free energy with respect to the number density of the species at constant temperature and 

volume. In the Kirkwood charging process'" this derivative is (in the thermodynamic limit) 

the change in the free energy which occurs upon the introduction of a test particle: 

= A(T,V,n1, ..., nj ,...) HT, v, ni 

-A(T,V,nl,..., nj- 1 ,...) 
- - Pj 

The ideal gas chemical potential can also be written as the free energy change in an ideal gas 

upon the introduction of an ideal gas particle. This free energy change also equals that which 

occm upon the introduction of an ideal gas particle into a real (not an ideal gas) system, 

* * . (26) 
A (T,V,nl ,..., nj ,... ) - A  (T,V,nl ,..., nj- 1 ,...) 

= A(T,V,nl ,..., nj- 1 + I * ' ,  ...) -A(T,V,nl ,..., nj- 1 ,...) 
= Pj * 

= kT '"(PJ hJ) 3 

25 
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where the notation nj - 1 + '*' denotes a system containing nj - 1 real molecules of species 

j and one ideal gas particle. The ideal gas particle has a mass equal to the mass of a molecule 

of species j (here we consider simple molecules without rotational or internal degrees of 

freedom). The residual chemical potential therefore equals the Helmholtz free energy change 

which occurs when an ideal gas particle is replaced by a real particle, 

* 
A(T,V,nl ,..., n j  ,...) -A(T,V,nl ,..., nj- 1+ I * ' ,  ...) = pj-pj 

which is the difference of equations (25) and (26). 

In this report, the residual chemical potential given by equation (27) is broken up into 

a number of positive and negative contributions which arise due to repulsive and attractive 

interactions between the fluid and the test particle. As a first step the ideal gas particle is 

replaced by a reference particle. The reference test particle interacts with the surrounding (or 

"bath") molecules with specifiedpairpotential energies. The free energy change for this first 

step is assumed to be known apriori. For example, the reference particle may be a hard sphere 

and the free energy change for the first step might then be estimated by scaled particle 

theoryo2). The residual chemical potential can then be computed by adding the free energy 

change which OCCLUS when the reference particle is replaced by a real particle. A schematic 

of this multi-step process is given in Figure 1. It is hoped that by making a proper choice of 

the reference system the free energy changes for the remaining steps will be easier to 

compute. The free energy change which occurs when the reference particle is replaced by 

a real particle will be determined from methods which use the results of integral equation 

theories. 

First, it is necessary to choose the reference system. It is known that the work of 
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inserting a hard sphere of diameter zero (or a "hard point") into a bath of hard spheres at afixed 

position is given exactly in the scaled particle theory ol). This work of insertion equals the free 

energy difference between a system containing a hard point and a system containing an ideal 

gas particle. It will be shown in Chapter III - Results, Application to Pure Lennard-Jones 

Fluids using Hypernetted Chain Theory, that the work of insertion into a bath of Lennard- 

Jones molecules is also given to high accuracy by SFT. Since the work of inserting a hard 

point into the fluid at a fixed position is known accurately, we choose a reference system 

consisting of a bath of real particles and a hard point test particle. The residual chemical 

potential is then equal to the sum of two free energy differences. The first is the free energy 

difference between the actual andreference systems. The secondis the free energy difference 

between the reference system and the system containing the ideal gas test particle. A 

schematic of this process is given in Figure 2. The pair potential energy for interactions of 

the bath molecules of species i with the hard point is, 

+ - , r I R i c = R i  
u$r;Ri)= [ O , r > R i ,  

where R, is the radius of the bath molecule of species i. If the bath molecules have hard cores 

then R, is well defined. If the bath molecules have softly repulsive cores then an effective 

value of R, must be defined which may depend on the temperature and density of the fluid. 

2Ri then represents an effective minimum distance of closest approach between two bath 

molecules of species i. Therefore 2RI = d, is defined as the effective diameter of species i. 

Also given in Figure 2 are schematics of the pairpotentials for interactions with ideal gas and 

hard point test particles. A procedure for estimating the effective diameters will be described 
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below. 

The free energy change which occurs when the ideal gas test particle is replaced by the 

hard point is given by SFT. Imagine a point test particle which can penetrate the core of a 

bath molecule of species i to within a center-to-center distance R + Ri , where Ri is the radius 

of the core of the bath molecule and R 2 0. At larger separations the test particle does not 

interact with the bath molecule. Such aparticle is excluded from spherical volumes of radius 

R -t Ri centered within bath molecules of species i. In the hard sphere system these volumes 

can not overlap, so any volume of radius R + Ri can contain at most one bath molecule of 

species i. The probability that this volume is occupied by a molecule of species i is just 

(4/3)xpi(R+Ri )’. The probability P,(R) of finding a hole to contain a hard sphere test particle 

of radius R 10 is: 

PO(R)= 1 -PI(R) 

= 1 --(R 4XP 1 + R,) 3 -----(R 4nP, + R,)’ 
3 3 

The work W(O), needed to create such a hole for the case where R = 0 is therefore giv en by(33): 

PW(0) = - lnP,(O) 

=-ln(1 -t3) 

where p = l/kT and 53 is the packing fraction. 53 for non-hard sphere fluids is an effective 

value based on the use of effective diameters. Since the developement of equation (30) 

depends on the assumption of non-overlap of molecular cores the equation will be 

approximate for soft-core molecules. Equation (30) will be accurate for non-hard sphere 

fluids if the molecular cores are in sufficiently hard. The accuracy of equation (30) for 

Lennard-Jones molecules will be demonstrated in Chapter I11 - Results with the aid of the 

HNC theary. 
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2. Re view of Kirk wood 

The free energy difference between the actual. and reference systems can be determined 

by integrating over a path where the test particle changes continously from a reference 

particle to an actual particle. Assume that the actual system contains n1 molecules of species 

1 and n2 molecules of species 2 that interact with spherically symmetric, pair-wise additive 

potentials. One of these molecules is the test particle. The difference between the free 

energies of the reference and actual systems is denoted by A(h'=l) -A(h'=O). h' = 0 indicates 

the system where the test particle interacts with the bath according to the reference pair 

potentials given by equation (28). h' = 1 indicates the system where the test particle interacts 

with the bath according to the real pair potentials. The parameter X is a coupling parameter. 

If Q is the configurational integral then, from the relation between the Helmholtz free energy 

and the canonical partition function: 

The configurational integral is defined by: 

(32) 
J 

therefore the derivative of the configurational integral with respect to the coupling parameter 

is, 
A 

where U(h') is the total potential energy of the system. rN is a condensed notation denoting 

the position vectors of all N = n1 + n2 particles in the system. Thus, the integral is 3 N -fold. 
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Each of the position vectors can range over the volume of the system. The potential energy 

is a function of the coupling parameter - that is, it depends on the pair potential energies for 

interactions between the test particle and the bath molecules. Integrating between the 

reference and actual systems gives the required free energy difference, 

A path between the reference and actual systems is specified by stating how the total 

potential energy of the system varies with the coupling parameter. If U(N - 1) is the sum of 

pair potentials which do not include the test particle then the total potential energy of the 

system is, 
I 

a sum of pair-wise 
'(' ) = U(N - ') + interactions with the test particle 

(35) 

where the s u m  of interactions with the test particle (which is sometimes called the excess 

potential) is a function of the coupling parameter. The pair potential between a mollecule of 

species i in the bath and amolecule of species j in the bath is assumed to be given by a Lennard- 

Jones type or similar (in the sense of having a short range repulsion and long range attraction) 

pair potential, 
12 

U i j  = 4 & i j [ ( 9  -($)I 
where r is the separation distance of the pair, oij is the distance at which the potential is zero, 

and E, is the depth of the potential minimum. The uij and thus U(N - 1) are independent of 



31 

the coupling parameter. The inside integral in equation (34) for the free energy change then 

where the equation has been written for the specific case where the test particle becomes a 

molecule of species 2 when h’ = 1. The equation for the case where the test particle becomes 

a molecule of species 1 can be obtained from equation (37) by swapping species indices. The 

test particle “c“ interacts with a molecule of species i in the bath with the reference potential 

when the coupling parameter is zero and with the Lennard-Jones type potential when the 

where in the example the test particle is assumed to become a molecule of species j when h’ 

=1. The parameter Ri in the reference potential is the effective distance of closest approach 

of the hard point to the bath molecule of species i which was illustrated in Figure: 2. 

The integral for the free energy difference equation (34), can be expressed in terms of 

the pair correlation functions for interactions of the bath with the test particle. These pair 

correlation functions are defined using basic statistical physics. The 3N-variate joint 

probability density function PN, for finding the molecules in a configuration rN , independent 
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of their momenta is: 

The potential energy, configurational integral, and probability density are all functions of the 

coupling parameter since one of the molecules in the system is the test particle. The marginal 

probability density for finding a specific molecule of species i at position ri and the test 

particle "c" at position rc is therefore: 

where the integration has been carried out over every molecular position except those of the 

test particle and of the molecule of species i. The two-body generic distribution functions for 

finding an arbitrary bath molecule of species i at position ri and the test particle at position 

r- are therefore: 

for the specific case where the test particle is considered to be a molecule of species 2 when 

h' = 1. The equations for the case where the test particle becomes a molecule of species 1 can 

be obtained from equations (41) and (42) by swapping the species index. The two-body 

generic distributions functions are obtained from equation (40) by multiplying it by the 

number of permutations of species i which are possible. The two-body generic distribution 

functions pa: (ri,rc) are the marginal probability densities for finding an arbitrary molecule 

of species i at position ri and the test particle at position re. The 1-body generic distribution 

functions (or "singlet densities") p(l), (ri) are the marginal probability densities for finding an 
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arbitrary molecule of species i at position ri independent of the positions of all of the other 

molecules. The correlation between the position of a molecule of species i and the position 

of the test particle can be measured by forming the pair correlation function which is defmed 

by: 

The pair correlation functions measure how the presence of the test particle disturbs the local, 

microscopic structure of the fluid surrounding it. The positions of the molecules of species 

i and the position of the test particle are independent when the pair correlation function is 1 

for all ri and rc. This is true when u, is identically zero and the test particle is an ideal gas 

particle. Since the fluid is homogeneous, the singlet densities equal the ordinary bulk 

densities. Therefore the pair correlation functions are, 

(2) p ic(ris rc> 
= V  

P i  

where the density of test particles is simply 1/V. Substituting equations (41) and (42) (or their 

equivalents for species 1) for the 2-body generic distributions yields a formal relationship 

between the pair correlation functions and the total potential energy of the system, 
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where the integration is carried out over every position except ri and rc. Substituting these 

into equation (37) yields")*"): 

' J  ax 

where rk = rc - ri is the center-to-center vector between the test particle and a molecule of 

species i. The last series of steps in equation (46) involves using the homogeneity property 

of the fluid in order to translate the origin of the system to the center of the test particle and 

to note that the result must be independent of the position r6. Substituting the result from 

equation (46) into equation (34) for the free energy difference between actual and reference 

systems gives: 
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Equation (47) is written in a general fashion for an arbiitrary path between the reference and 

actual systems. It can also be applied to calculate the free energy difference between any two 

systems containing different types of test particles. Therefore it can be used to compute the 

free energy difference between the reference and actual system in a series of steps. In each 

step the test particle is replaced with a new type of particle, beginning the series with a hard 

point and ending the series with a real particle. The multi-step process allows the attractive 

and repulsive contributions to the chemical potential to be determined. 

3.The Multi-step Chars-+~ Process 

In this work the free energy difference between the actual and the reference system is 

determined in three steps, each step having its own coupling parameter. The three step 

process allows achargingpath to be specifled for each step which will yield an accurateresult. 
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Suppose that the chemical potential of species j is to be calculated, where j is either 1 or 2. 

In the fxst step of the process the hard point test particle is replaced by a hard sphere of 

diameter djj, where dii is the effective diameter of species j. This hard sphere can approach 

to within a center-to-center distance dIj of a molecule of species 1 and to within dzj of a 

molecule of species 2. This step is called the particle scaling step. The Helmholtz free energy 

change for this step is calculated from an application of equation (47) which was given by the 

developers of scaled particle theory'3a. In the second step the hard sphere is replaced by a 

softly repulsive particle. This step is called the softening step. The softly repulsive particle 

repels the bath molecules with the repulsive component of the real potential. In this work the 

real potential is divided into repulsive and attractive components according to the method of 

Weeks, Chandler and Andersen (WCA)(%). The WCA repulsive potential is relatively steep. 

Therefore the structure of the fluid around the softly repulsive particle is similar to the 

structure of the fluid around the hard sphere. So the free energy change for the second step 

is reletively small. Indeed, the effective diameters 4, and d, will be chosen so that this free 

energy change is zero. The free energy change for this step is also calculated from an 

application of equation (47). However, a simplXication can be made to the coupling 

parameter integration since the free energy change comes from a small perturbation in the 

structure. This simplification allows the integration over the coupling parameter to be done 

analytically. The development of the simplified equation is based on the analysis due to 

Ladom). In the third step the WCA softly repulsive test particle is replaced by a real particle. 

The free energy change for this step is also calculated from an application of equation (47). 

A schematic of the entire process for computing the free energy change which occurs when 

an ideal gas test particle is replaced by a real particle is given in Figure 3. 
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The three step charging process used is based on assumptions about the nature of the 

fluids of interest. The fluid is assumed to consist of spherical bodies of definable extents and 

locations. Otherwise, it makes little sense to try to define their diameters or to apply scaled 

particle theory. In other words, the molecules must be sufficiently hard in order to take 

advantage of the SPT formula for the work of inserting the hard point and in order to develope 

a simple yet accurate expression for the work of softening the effective hard sphere into a 

WCA repulsive test particle. The Kirkwood charging process used here provides the free 

energy change which occurs when a new particle is inserted into the fluid at a fixed position. 

That is, the partition function is assumed to be separable in translational and configurational 

parts and the translational part does not change during particle insertion. In non-classical 

situations where the particle being inserted has a very small mass the uncertainty principle 

makes such a process meaningless. The perspective being applied here assumes that there 

are two kinds of forces, an attractive force which acts at a distance and arepulsive force which 

acts only at contact. The procedure for determining the effective diameters defines what is 

meant by "contact" in the context of this work. Such a viewpoint is probabiy inappropriate 

for describing many of the situations of interest in the physics of fluids. FIuids consisting of 

oppositely charged point particles (with long-ranged repulsions), or particles with very soft 

cores which are not adequately modelled by hard spheres, or delocalized particles (such as 

solvated electrons or other non-classical systems) are not easily described with the three step 

charging process given here. These restrictions are similar to those of perturbation theory. 

Unlike perturbation theory, the method does not assume that intennolecular attractions cause 

only small changes in the structure of the fluid. The structure of the fluid is determined by 

integral equation theories for every value of the coupling parameter. The changes in the 
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structure with coupling parameter thus determined can be quite large. The accuracy of the 

method will depend on the ability of the chosen integral equation theory to accurately model 

such structural changes. Unlike perturbation theory, the effective hard sphere diameters 

determined by the method are influenced by the strength of the attractive force. Changing 

the attractive forces between the bath molecules changes the local density about the test 

particle, thereby changing the effective diameters. 
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4. Particle Sca ling: from a Hard Point to a Hard SD here, 

Review of Scaled Particle Theory 

In the first step of the charging process for determining the chemical potential of 

species j the test particle grows from a hard point into a hard sphere with a diameter equal to 

the effective diameter of species j. This process is r e f e d  to as particle scaling in the SPTQ3). 

A schematic of this process is given in Figure 4. The coupling parameter is chosen to be the 

radius of a cavity surrounding a hard sphere test particle which has a radius of R, where 0 2 

R dJ2. In this case the total potential energy of the system as a function of the hard sphere 

radius is, 

where the test particle is assumed in equation (48) to become a molecule of species 2 in the 

actual system. The potential energy in the case where the test particle becomes a molecule 

of species 1 can be obtained from equation (48) by swapping species indices. The pair 

potential for interactions of the bath molecules of species i with the test particle is the hard 

sphere pair potential: 

+-,  r i c 5 r = ( R i + R )  
0 , Tic> r I u:(ric;r) = (49) 

where r = Ri + R is the radius of a cavity surrounding the test particle which excludes the 

centers of the molecules of species i. The superscript H has been used here to denote the fact 

that the test particle is a hard sphere. The free energy difference between the system 

containing a hard sphere of radius R and the reference system is given by aversion of equation 
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where the coupling parameter r is the cavity radius. In equation (50) the free energy 

difference W(R) - W(0) has been reduced by a factor of p = l/kT. The inside integrals over 

intermolecular separation can be re-written with the aid of, 

yielding, 

J o  JO 

where the background correlation function has been defmed as y," = g,: exp(puHlc). As 

described in reference (33), the integration over separtion distance in equation (52) can be 

performed analytically by noting that the following partial derivatives are the same Dirac 

delta function with impulse at r = Tis, (53) 
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where 1 - exp(-pukH) is a unit step function when plotted versus r and exp(-flu,”) is a unit 

step function when plotted versus rz The delta function is positive and obeys the 

normalization con& tion: 

J O  JO 
= 1  

That is, it is a probability density function. Therefore, the integral in equation (52) is an 

expected value calculation. Since the delta function is non-zero only at r = rlc the expected 

value of the integrand is: 

(55)  
y E(ric;r) $e- k$=;+d 1c driC = y :(r; r) 4m2 

= gE(r;r) 4113’2 

Substituting the result for the inside integral from equation (55) into equation (50) for the free 

energy change gives: 

In the above equation the integration over the radius of the cavity r has been replaced by an 

integration over the radius of the test parricle R. gXH(R +RI;R + Ri) is the contact value of the 

pair correlation function for a bath molecule of species i with a hard sphere test particle of 

radius R and R .t Ri is the cavity radius. An example plot of a pair correlation function 
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gkH(r,;R+Ri) about a hard sphere test particle is given in Figure 5. The contact value is the 

height of the peak at rk= R + R, . The test particle and bath molecules of species i can not 

get closer to each other than this distance because of their infinitemutual repulsion. The work 

of inserting a hard sphere of any radius can be determined by numerically integrating the 

equation (56) once the contact values have been determined over the range of integration. In 

the determination of the chemical potential of species j the upper limit of integration is R = 

Rj, where 2Rj = dii is the effective diameter of species j. 

$. Test Particle Correlation Functions 

Pair correlation functions about the test particle can be determined from the integral 

equation theory. The Omstein-Zernicke (OZ) equations for a terniary mixture of species 1, 

species 2, plus a finite concentration of species "c" are, 

r[hij(r) - Cij(rl] = p &h il(ri, r ,)C lj(r ,, ri) dr 

+ P 2  h i2 (p i s  r 2 ) ~ 2 j ( P 2 ,  ri) dr, 

+ pJvhiAris rJC cj(rc. ri) dr, 

(57) 

where indices i and j can be 1,2 or c and r = II q - 5 I!. The h, are the total correlation functions, 

where h, = gij - 1. The C, equal rC, where the C, are the direct correlation functions. Since 

there is only a single test particle, the density p, of species c is zero in the thermodynamic 

limit. Therefore the correlation functions for bath molecules about the test particle must 

satisfy the following test particle 02 equations, 
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the total correlation functions for the bath molecules with each other. These are obtained 

independently of the determination of the test particle correlation functions using the 02 

equations (10) for the bath and a closure such as (but not limited to) equation (16) or equation 

(21). The a parameter is obtained as described in Chapter I - Introduction. A simultaneous 

solution of the 02 equations (58) and approximate closure quation (21) yields results which, 

depend on the order of convolution(16)due to the MSA contribution to the closure equation. 

The order shownin equation (58) is consistent with the HMSA closure usedin this work. The 

other order of convolution C * h, is un-physical since it results in a computed h(r = 0) f - 1 

when s = 0. Taking the Fourier transform of the OZ equations yields, 

where the functions with the tildes have been Fourier transformed. The notation of reference 

(20) has been used in writing equation (59). The function rG is equal to r(h, - CJ. 

Alternatively, 

where t is the transform of r. Substituting equations (60) into equations (59) gives: 

Thus, TIC depends on r, and vice-versa. In a binary mixture there are two 02 equations (61), 

one for the correlation functions of each species about the test particle. They must be solved 

simulaneously to obtain the rG. In matrix form: 

(62) 



Solving for the transforms of rls and F, gives: 

N P W  N N  

N t j p $24622 i- p lh 1 lh22 - p $2] -1- p ,h lCh 121 

[(I + p l h l ) ( l  +p2i;22)-p1p2L;2] 
r 2 c =  

As a first step in solving equations (63) and (64), initial guesses are made for each Ti,. These 

are substituted into closure equations (16) or (21) (used with subscript j = c) to obtain 

estimates for the C, When computing correlation functions about the test particle the a 

parameter is kept fixed at the value obtained during the solution for the correlation functions 

in the bath. The functions rCJr) are Fourier transformed and substituted into re-arranged 

versions of equations (59) to obtain estimates of the transforms of the total conelation 

functions: 
N -  

tC;ic=Zic+ plhilC1,+ p2C;i22;2, (65) 

The transformed total correlation functions are then substituted into equations (63) and (64) 

to obtain the transforms of the ric. Inverting the transforms gives new guesses for the rlcand 

the process can be repeated until convergence, Final values of the direct correlation functions 

Clc about the test particle are obtained by substituting the converged r, into the closure 

equations (16) or (21). Final values of the background yic. and pair gi,, correlation functions 

are also obtained by substituting the ri, into either equations (16) or (21). A complete 
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FORTRAN program for performing these calculations is listed in Appendix A. The program 

uses the method of Lab& et. al. (20) to simultaneously solve the 02 and closure equations. 

6. SofteninP the Hard Suhere into a Soft Reuulsive Particle 

The second step determines the free energy difference between the system containing 

the softly repulsive test particle and the system containing the hard sphere test particle of 

diameter di. A schematic of this step is given in Figure 6. The system labeled I' 6 = 0" contains 

the hard sphere test particle and the system labeled "8 = 1" contains the softly repulsive 

particle. The softly repulsive potential u> between the test particle and a molecule of species 

i can be written as the sum of a reference pair potential uH, and a perturbation, 

where the test particle becomes a molecule of species j in the actual system and rm is the 

intermolecular separation distance. When the derivation has been completed we take the 

limit as the reference potentials approach the hard sphere potentials uH,(rY;R, + R)) given by 

equation (49). The derivation used here is a modification (for test particles) of that by Lado 

In this work the softly repulsive potential used is the Weeks-Chandler- Anderson (WCA) 

repulsive potentialm), 

ui,(ric) + qj , ric I r r  

0 ,  T i c >  rzm 
0 uic(ric;8 = 1) = 
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where uij is the real potential and r i j ~  is the separation distance at the potential minimum 

(2l6 times in the case where uij is Lennard-Jones). By introducing a coupling parameter 

6 which varies between zero and one a path for the variation of the test particle pair potential 

can be defined by, 

uyc(6) = uE+ 6Au ic 
(68) 

where, to save space, the dependency on intermolecular separation has not been shown. The 

total potential energy of the system is then, 

-1 -2 -1 sprdes2 

where, in this example the test particle becomes a molecule of species 2 in the actual system. 

The potential energy for the case where the test particle becomes a molecule of species 1 can 

be obtained by swapping indices, The free energy difference between a system with a softly 

repulsive test particle and a system with the reference test particle is given by another version 

of equation (47), 

6)  A u  

J O  

where the superscript "0" is used to indicate that the correlation functions are for the softly 

repulsive test particle. 

The coupling parameter integral in the equation (70) can not be easily estimated 

numerically. An analytical approach to eliminating this integration is presented which is 

based on the analysis of Lado(34). In this theory bridge functions Bok are defined by the 

following equation, 
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where the vector rk has not been written in order save space. So, is the series function: S,= = 

hole - (2,. Following Lado we assume (and will later demonstrate for specific cases) that for 

an appropriate choice of molecular parameters in the reference - bath molecule pair potential 

the dependence of the bridge functions on the coupling parameter can be neglected, The 

integration over the coupling parameter can be done after applying the test particle 02 

equations (58) and utilizing this approximation. This allows the free energy change to be 

calculated using only correlation functions about the WCA repulsive and hard sphere test 

particles - the final and initial states of the softening step. The coupling parameter and its 

limits are redefined in order to follow the notation of Lado more closely: 

Departure variables are defined in order to analyze the variations in the pair correlation 

functions due to variations in the series functions and bridge functions: 

The pair correlation functions written in terms of the departure functions are, 

go@ = gP(6 = Ole[ BSAu,+Ase@+AB:k)l 
1c 1c 

(74) 
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where Au, was defined in equation (68). The derivatives of the pair conelation functions with 

respect changes in the coupling parameter are obtained by differentiating equation (74): 

Re-arranging equation ( 75) yields the integrand of the coupling parameter integration, 

where the first term on the left can be integrated immediately over the coupling parameter. 

From the definition of the background correlation function yk : 

Therefore, 

The dependence of the series function on the coupling parameter in the second term on the 

left can also be integrated out. The term of interest is, 

where the departures of the total and pair correlation functions are defined as: 
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The total Correlation function can be moved inside the derivative since, 

yielding a new form of the integrand: 

The second term on the right still contains variations in the bridge and direct correlation 

functions. The product of the departure of the direct correlation and the derivative of the pair 

correlation function can be expressed as a derivative with the aid of the test particle 02 

equations. The spatial integral of this product can be =placed by an integral in transform 

space with the aid of the Parseval theoremn", 

where all of the functions involved are real valued. The test particle 02 equations allow the 

right hand side to be simplified. The 02 equations (58) in transform space are written in 
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departure form, 

and solved simulaneously for the direct correlation function departures in terms of total 

correlation functions: 

The product of the departure function for the direct correlation function and the derivative 

of the pair correlation function can be written as, (86) 



51 

where the last equality results from combining the total correlation function terms inside the 

derivative and applying the OZ based equations for the departure of the direct correlation 

function again. Integrating over the coupling parameter and applying the Parseval theorem 

0 
p l A c ~ c ( l ) A h k )  + p2Ac;c(1)Ah:c(l)) dr 

merefore, the difference between the free energy of the system with a softly repulsive test 

particle and the system with a hard sphere test particle is, 

p A g  = 0) - pA(6 = 1) 

A 

J V  

r 

A A 1  

J J o  
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where the reference potential is now identified with the hard sphere potential of equation (49) 

with R = Rj. The dependence of the series function on the coupling parameter 6 has been 

integrated out. Equation (88) is the test particle analog of equation (20) of reference 34. The 

free energy change given by equation (88) might be referred to as the “work of softening” the 

hard sphere into a WCA repulsive panicle. 

The dependence of the free energy difference on variations in the bridge functions can 

be neglected with an appropriate choice of effective diameters for interactions of the bath 

molecules with the hard sphere test particle w). This assemon will be demonstrated in Chapter 

111 - Results for the case where the diameters are chosen as described here and the fluid 

consists of Lennard - Jones particles. The ability to neglect the bridge function integrals sterns 

from the fact that the WCA repulsive component of the Lennard - Jones potential is relatively 

hard and therefore easily modelled by an effective hard sphere potential. The goal k choosing 

effective diameters is to make the free energy of the system containing the hard sphere test 

particle equal to the free energy of the system containing the WCA repulsive test particle. 

That is, for intemolecular separations that are less than the effective diameter, the WCA 

repulsive potential is less than the hard sphere potential. These separation distances make a 

negative contribution to the free energy change. For intermolecular separations that are 

greater than the effective diameter, the WCA repulsive potential is greater than the hard 

sphere potential. These separation distances make a positive contribution to the free energy 

change. The proper choice of an effective diameter balances these two effects. The integrand 

of equation (88) is plotted versus separation distance in Figure 7 for an example pure fluid. 

For the specified choice of effective hard sphere diameter the integrand of equation (88) is 

non-zero over only a small range of intermolecular separation distances. The behavior of 
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integrand is andogous to the "blip" function of WCA perturbation theory(l0). The area under 

the curve to the left of the effective diameter bdances the area to the right. In mixtures, an 

appropriate choice for a species 1 - test particle effective diameter will make first term on the 

left of equation (88) equal to z m .  Similarly, an appropriate choice for a species 2 - test 

particle effective diameter will make second term on the left of equation (88) equal to zero. 

This choice will allow us to approximate the repulsive contribution to the chemical potential 

using by using scaled particle theory. 

Two effective diameters are detennined during each chemical potential calculation for 

a species in a binary mixture. There is a "like" effective diameter which is the distance of 

closest approach between the test particle and members of its own species. The "unlike" 

effective diameter is the distance of closest approach between the test particle and members 

of the other species. The like diameter was chosen so that its contribution to the work of 

softening equation (88) was O.OOO1 kT or less. The step size for the integral equation solution 

procedure was chosen so that the like diameter falls precisely on one of the mesh points. The 

diameter must fall exactly on a mesh point if accurate contact values of the pair correlation 

functions are to be obtained. The unlike diameter is obtained by making a table of work of 

softening versus unlike diameter and interpolating to zero work of softening. Each unlike 

diameter in the table is chosen to fall exactly on a mesh point. In a binary mixture there are 

four effective diameters which are calculated: dll, d12, &, G. d,, is approximately equal to 

d,,, though there is some numerical difference due to the different step sizes and correlation 

functions usedin the separate calculations and due to the interpolation technique used to find 

these unlike diameters. d,, (and 4,) are slightly less than (4, + Q/2. 



The third step determines the free energy difference between a system containing a 

Lennard-Jones test particle and a systemcontaining a WCA test particle. The Lennard-Jones 

potential is the sum of the WCA repulsive potential u,sO plus an attractive term u:: 

- qj, r 5 ry 
uij, r 2 rmm 

where, in this example, the test particle becomes a molecule of species j in the actual system. 

Plots of the WCA attractive and repulsive potentials versus separation distance are given in 

Figure 8. By introducing a coupling parameter h which varies between zero and one a path 

for the variation of the test particle pair potential can be defined by: 

When h = 1, u, = uij and the actual system is recovered. This process is illustrated in Figure 

8. The potential energy of the system is: 
n2- 1 n2- 1 

where again, in this example, the test particle becomes a molecule of species 2. The potential 

energy for the case where the test particle becomes a molecule of species 1 can be obtained 

from equation (91) by swapping indices. The free energy difference between a system with 

a Lennard-Jones test panicle and a system with a WCA repulsive test particle is given by 

another version of equation (47), 

J O  
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The WCA division of the pair potential into attractive and repulsive contributions is efficient 

since it nearly linearizes the variation in the free energy with respect to variations of the 

coupling parameter h. This property makes the numerical evaluation the outside integral over 

the coupling parameter efficient. No furthur analytical simplifications are required. The 

integrand of equation (92) for an example solute at infinite dilution is plotted versus 

separation distance in Figure 9. The plot is nearly linear. 

8. Summary of Charoing Stem 

In summary, the residual chemical potential has been expressed as the sum of an 

approximately determined work of inserting a hard point plus formally exact contributions 

duz to particle scaling, softening the hard sphere, and adding attractive potentials. Errors in 

the computed chemical potential can result from three sources: 

1. The SPT equation (30) for the work of inserting the hard point, which is inexact 

when applied to fluids with soft cores. 

2. Neglecting the integrals over the bridge functions in the work of softening 

equation (88). 

3. Errors in the correlation functions predicted by the intern equation (in this case 

the HMSA) theory being used. 

The chemical potential of species j can be computed from the sum of the above free 

energy changes. A clockwise path is taken around Figure 3 beginning with the actual system. 

First, the correlation functions in the actual system are obtained from the integral equation 

theory by using 02 equations (lo) and either closure equations (16) or (21). Next, the free 

energy difference between the actual system and a system containing a WCA repulsive test 
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particle is determined from equation (92). By trial and error, effective diameters for an 

equivalent hard sphere are determined from equation (88); the diameters being chosen so that 

the free energy change is small (104 kT or less). The free energy difference between the 

reference system containing the hard point and a system containing a hard sphere of diameter 

di = 2 Rj is determined from equation (56). Finally, the packing fraction based on the effective 

diameters is computed and used to obtain the work of inserting the hard point from equation 

(30). The total free energy change equals the configurational contribution to the chemical 

potential of species j. 



CHAPTER III 

RESULTS 

x d  C b  'The= 

The procedure was fmt validated by applying it to the HNC integral equation theory. 

The RY and HMSA integral equation theories reduce to HNC when s = 1 in either equation 

(16) or equation (21). Comparing the method with known results for the chemical potential 

in the HNC allows inconsistencies and numerical errors to be identified and reduced to a 

negligible level. fn this comparison thep, can be no errof in the method due to the correlation 

functions or due to neglecting the integrals over the bridge functions in equation (88). In 

addition, there is no path dependence to chemical potentials obtained from Kirkwood 

charging in the HNC theory@@. Therefore, the HNC test reveals the accuracy of the SPT 

formula for the work of inserting the hard point, combined with the numerical accuracy of 

the implementation. Morita derived an exact expression for the Gibbs free energy in a pure 

fluid whose correlation functions are described by the HNC theory. The n=sult involves only 

spatial integrals of the correlation functions for the fluid@): 

where the notation used follows reference (30). The subscripts have been omitted since the 

correlation functions are those in a pure fluid. The Morita equation can be obtained from 

57 
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equation (88) by letting 5 = 0 represent a system containing a real test particle and letting 6 
= 1 represent a system containing an ideal gas test particle. In the HNC theory the bridge 

functions are identically zero so equation (71) becomes, 

o ( 6 )  = e[ -BU~G)+SLG) ]  (94) 
g ic 

therefore the integrals over the bridge functions in equation (88) are identically zero for any 

chosen effective diameters. Since equations (56) , (88) (with AEIk E 0), and (92) are all exact 

in the HNC approximation, any inconsistency between the proposed method and Morita's 

equation stems from the work of inserting the hard point as given by equation (30) plus any 

numerical error. It was found that (G - G')/NkT obtained from the method agrees with known 

HNC results from equation (93) to within -0.014. The work determined from SPT equation 

(30) for inserting the hard point test particle was inconsistent with the approximate HNC 

theory. This inconsitency was found to account for most ofthe disagreement with the Morita 

equation under most conditions. 

HNC correlation functions for a pure Lennard-Jones fluid were calculated at three 

conditions: T = kT/& = 1.5, p* = p@ = 0.4 and T' = 1.2, p' = 0.7 and 0.85. Effective diameters 

for the fluid at each set of conditions were computed by setting the right hand side of equation 

(88) to zero. The effective diameters for each state are listed in Table 1. The Gibbs free energy 

of the fluid equals the work required to insert a hard sphere with the chosen effective diameter 

into the fluid plus the work of coupling the test particle attractive forces; the former being 

given by the sum of equations (30) and (56), the latter being given by equation (92). The work 

of coupling the attractive forces will be referred to as the attractive contribution. Summing 

the results from equations (30), (56) and (92) for each set of conditions gave estimates of the 

Gibbs Eree energies of the fluid. The results are compared to those from Morita's equation 



59 

(93) in Table 1. The magnitude of the inconsitency is acceptably small and increases with 

density. Because of the accurate HNC results it is reasonable to assert that, aside from 

neglecting the bridge function term in equation (881, the method will yield correct results 

when applied to other integral equation theories. The exact attractive and repulsive 

contributions to the HNC chemical potential are compared to those from the proposed method 

in Table 1. 

Listed in Table 2 are the values for the work of inserting the hard point from the SPT 

equation (30). The exact HNC values for the work of insemon can be obtained from the 

following specialization of equation (88): 

where the superscript HP denotes the HNC correlation functions about the hard point. The 

difference between the SPT formula and equation (95) accounts for most of the inconsitency 

between the proposed method and the Moritaequation. The difference between the formulas 

is zero at low densities and increases in magnitude with density. In the worst case, at T = 

1.2 and p' = 0.85, the difference between the HNC and SIT formulas for the work of insertion 

is -0.0065 kT - a relarively small error. 

Both the HNC and SPT formulas for the work of inserting the hard point were 

approximate in this application. As was discussed in Chapter II - Theory, the SPT formula 

is exact only when the cores of the molecules do not overlap - in other cases equauion 
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(30) must be taken to be an approximation. In the application to Lennard-Jones fluids the 

cores of the molecules are soft and therefore do overlap. The HNC theory is an approximate 

theory for the Lennard - Jones fluid, therefore equation (95) derived from it is also 

approximate. 

The purely numerical error in the implimentation of the method also increases with in 

magnitude with density, being -0.0074 at T' = 1.2, p' = 0.85. Similar numerical errors can 

be expected when the method is used with the RY or HMSA closures. The numerical errors 

for each of the three states examined are also listed in Table 2. The numerical errors shown 

were based on the the following choices of parameters in the numerical algorithm. The 02 

equations were solved at 2048 mesh points spaced at a nominal distance apart of Ar = 0.00625 

times the smallest value of oij. As noted in Chapter II - Theory, the precise value of the step 

size Ar used depended on the value of the effective hard sphere diameters. A small step size 

was necessary for accurate contact values of the bath molecule - hard sphere pair correlation 

functions used in equation (56). The procedure for calculating the contact values was valided 

by setting the switching function s equal to zero and comparing the results for hard sphere 

fluids to the analytical solution of the PY theory due to Leibowitz 07). At the upper integration 

limit of approximately 2048'Ar the pair correlation functions were found to have all decayed 

to unity for all of the fluids examined in this work. Tail corrections were added to the 

computed chemical potentials which were based on the homogeneity of the fluid-outside of 

the upper integration limit. The work of particle scaling equation (56) was calculated with 

a simple trapazoidal rule integration using a step size of 2'&. An additional decimal place 

of accuracy (units as in Table 2) in the calculated repulsive contribution can be gained at the 
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highest densities by furthur reducing the step size to 1.h. If only one decimal place of 

, 

accuracy is required in the repulsive conmbution a step size of 20Arcan be used in evaluating 

equation (56). The work of softening equation (88) was evaluated using the trapazoidal rule 

with step size equal to 1'Arand with one Romberg extrapolation step. The left andright halves 

of the integrand shown in Figure 7 were integrated separately and the results added to give 

the total work of softening. The limits of the integrand from the left and right at ttne contact 

point were determined from quadratic polynomials passed through the adjacent mesh points. 

Equation (92) for the attractive conmbution to the chemical potential was also integrated with 

the trapazoidalrule using one Rombergextrapolation step. Alarge step size of hh = 0.25 gave 

results accurate to the fifth decimal place because of the linearity of the integrand (as shown 

in Figure 9). 

Furthur evidence for the inconsistency between HNC and the SPTequation (30) for the 

work of insertion can be found by examining the contact values of the pair correlation 

functions with the hard point. An exactrelation~hip~~) for the derivative with respect to hard 

sphere radius of the work of inserting a hard sphere follows from equation (56): 

P x W  a = p,4n(R+ Ri)2gy$R + R1;R + R1) 

+ p247dR + Rz)2g;cm + R,;R + R2) 
(96) 

From equations (29) and (30) this derivative is known in the limit as R approaches zero from 

R c 0 ,  

which implies for pure fluids that the contact value of the hard point pair correlation function 
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The SPT equation (98) yields predictions for the contact values which disagree with the 

results from the HNC theory. The HNC contact values are result of taking the limit as r 

approaches zero fromr > 0 of theintegral equation theory solution. Contact values from SPT 

and from HNC are listed in Table 3. The average percent difference between the SPT and 

HNC contact values is -3.65%. The largest magnitude difference occured at T" = 1.2, p * =. 

0.85 - the error being -5.20%. The HNC contact values lie above the SPT results for every 

choice of effective diameters. The difference declines as the chosen effective diameters are 

made smaller. In order for both the SPT and HNC contact values to be correct, g"(R + Ri; 

R + Ri) would have to be discontinuous at R = 0 - a hypothesis which is disproven in the 

reference (3 1). The difference between the HNC and SPT contact values suggests that the 

work of inserting the hard point in the HNC is not given by equation (30). For theories other 

than the HNC it will not be possible to directly determine the accuracy of the SPT formula 

for the work of insertion. However, the formulacan be judged to be consistent with the theory 

if the contact values obtained from the theory agree with those obtained from SPT. The HNC 

calculations illustrate that the SPT formula for the work of insertion can be expected to be 

accurate even when the theory and the SPT are inconsistent. 

2. Effective Hard Sphere Diameters in Non-HNC Apdications 

In the application to the HNC theory discussed above, the bridge function integrals in 

equation (88) were identically zero. Thus, the work of softening was given exactly by the 

equation for every choice of effective diameters. In applying the method to other integral 

equation theories the bridge function integrals can also be neglected when the effective hard 

sphere diameters are chosen according to the zero work of softening criterion. This allows 
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the work of softening to be determined using only correlation functions about the effective 

hard sphere and about the WCA repulsive test particle. 

The ability to neglect the double integral in equation (88) stems from two facts about 

the integrand which combine to make it nearly zero for all intermolecular separation 

distances. The behavior of the integrand was examined by comparing correlation functions 

for bath molecules about a WCA repulsive test particle with the correlation functions about 

a hard sphere test particle with effective diameters chosen to give a zero work of softening. 

Computations were made with the HMSA theory for supercritical dense fluid and subcritical 

liquid states in pure Lennard-Jones fluids and for a large Lennard-Jones solute dissolved in 

a Lennard-Jones liquid. The fmt fact is that pair correlation functions gO(r,;C) are 

independent of the coupling parameter 6 except for a small range of separation distances 

between 0.9 and 1.2 times d,, thus their derivative with respect to 6 is zero except over this 

interval. These pair correlation functions are plotted versus separation distance in Figures 

10, 11 and 12. Secondly, over this interval where the derivative of the pair correlation 

functions is non-zero the bridge functions am nearly independent of 6,  thus AB; is nearly 

zero. These bridge functions are plotted versus separation distance in Figures 13,14 and 15. 

So for this choice of effective diameters the double integral involving the bridge functions 

in equation (88) can be neglected. In neglecting the double integral we are neglecting the 

effect of the potential perturbations Auk given by equation (68) on the bridge functions in 

equation (71) for the pair correlation functions - we are not neglecting the bridge functions 

themselves@’). 

For a given choice of effective diameter, the magnitude of the bridge function integral 



in equation (88) is bounded above by a simpler integral: 

Values of this upper bound for the conditions of Figures 10,ll and 12 are listed in Table 4. 

The correlation functions used in the calculations were supplied by the HMSA theory. Also 

listed in the Table are the effective diameters used and resulting works of softening (less the 

bridge function integrals). Equation (99) gives a conservative upper bound since the 

departures in the pair correlation functions are negative for separations less than the effective 

diameters and are positive for separations greater thm the diameters. These upper bounds 

are less than about 0.05 - this value is the maximum error in the residual chemical potential 

which would occur due to neglecting the bridge function integrals. Errors of this magnitude 

can be ignored. 

The sum of equation (30) for the work of inserting the hard point, equation (56) for the 

work of particle scaling, and equation (88) for the work of softening is the repulsive 

contribution to the chemical potential. These three components of the repulsive contribution 

are listed in Table 5 for an example pure Lennard-Jones fluid. The HMSA theory was again 

used to give the correlation functions about the test particle. The three repulsive components 

are listed for a number of choices of the hard sphere test particle diameter, ranging between 

0.9625 5 doc 1.0375. For the conditions shown in the Table, the optimum d/o (which gives 

a zero work of softening) is 1.00741. The double integral involving the bridge functions was 

dropped in calculating the work of softening, as discussed above. The estimated total 

repulsive contribution to the chemical has the desirable property of being nearly independent 
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of the choice of hard sphere diameter. The total would have been exactly independent of the 

choice if it were true that the bridge function integrals in equation (88) were exactly zero for 

all possible diameters. In addition, the derivative of the repulsive contribution with respect 

to diameter is nearly zero for the optimumd/s, since the repulsive contribution is nearly equal 

to its maximum value. Therefore the total repulsive contribution is insensitive to the choice 

of effective diameter. These results show that an alternative criteria for the effective 

diameter, which conceivably might yield bridge function integrals which are even closer to 

zero, would give very nearly the same result for the repulsive contribution as does the zero 

work of softening criterion. 

3. Amlication to Softlv Reuulsive Fluids Us ine Roeers-Young Th eory 

Pure Fluids 

The tests described above show that the SPT can be applied to fluids without hard 

cores; there are only mild inconsistencies that arise when softly repulsive cores are replaced 

by effective hard sphere cores. The tests with the €€NC theory show that the SPT formula 

for the work of inserting the hard point can be used in spite of the overlap of molecular cores. 

The use of the SPT formula (30) reduces the amount of effort needed to compute the repulsive 

contribution to thechemical potential. Another advantage of the SPT-basedapproach (which 

replaces the real soft core of a molecule with a hard sphere core) was revealed during the 

discussion of the bridge function integral - that the work of softening can be expressed only 

in terms of the difference between the correlation functions about the hard sphere: and those 

about a softly repulsive WCA panicle. It remains to be shown how accurate the SIT-based 
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charging path is when applied to inexact correlation functions obtained from the HMSA 

theory. Results obtained for WCA repulsive fluids show that the method successfully 

extends the SIT to softly repulsive fluids. 

The method can be used with more exact theories than the HNC, provided that the 

choice of effective diameters allows the second integral in equation (88) to be neglected. As 

described above, calculations suggest that this integral can be neglected for a choice of 

diameters which give a work of softening equal to zero. It is useful to check the method for 

systems that have a purely repulsive pair potential since all of the simpMications are made 

in development of the repulsive contributions given by equations (30) and (88) (after 

neglecting the bridge function integrals). The RY integral equation has been shown to be very 

accurate for such systemm. If the method can accurately describe softly repulsive systems 

when used with the accurate theory, then the simplifications will. be supported. Systems 

which interact with the WCA repulsive potential given byequation (19) are useful to examine 

since their repulsive interactions are those of the Lennard-Jones system and since the pair 

correlation functions in these systems are close to those in Lennard-Jones systems at high 

densities. In addition, the thermodynamic properties of these systems are known and are 

accurately predicted by theory of Verlet and Weis('". The first simplification has already 

been justified by the HNC calculations described above: that the SPT equation (30) for the 

work of inserting the hard point can be used. The second simplification, that second integral 

in equation (88) can be neglected, can be tested for fluids which are structurally similar to 

realistic model fluids at high densities. 

RY correlation functions for pure WCA repulsive fluids were calculated at three 
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condtions: T' = kT/& = 1.5, p* = pa3 = 0.4 and T' = 1.2, p* = 0.7 and 0.85. The compressibility 

factors predicted by the RY theory are slightly lower than those of the VW theory. The 

amount of the difference increases with density. The RY and VW compressibility factors are 

listed in Table 6. The slight error in the RY equation of state for the WCA repulsive fluid can 

be expected to produce some emr in the computed chemical potentials. Effective diameters 

for the fluid at each set of conditions were computed by setting the right hand side of equation 

(88) to zero, after neglecting the integrals over the bridge functions. The effective diameters 

for each state are listed in Table 7. The effective diameters differed from those specified by 

the Verlet-Weis theory by atmost0.027%. Summing theresults from equations (30) and (56) 

for each set of conditions gave estimates of the Gibbs free energies of the fluid. Equation (92) 

is identically zero since there is no amactive component in the pair potential. Predicted 

Helmholtz free energies were obtained by adding one minus the RY compressibility factor 

to the Gibbs energies. The predicted residual Helmholtz energies agree with the results of 

the Verlet-Weis procedure to within an average of 1.2%, the error increasing with the density. 

The error in the residual Helmholtz energy range between 0.0011 and 0.0806 kT. Predicted 

Gibbs energies are low by an amount approximarely equal to the error in the RY 

compressibility factor, suggesting that the accuracy of the method is being limited by the 

accuracy of the RY equation of state. The inaccurate RY compressibility factor does not 

reduce the accuracy of the predicted Helmholtz h e  energy. The relationship, 

A-A* e-e* ---- -- 
NkT - NkT (pZT ') 

shows how errors from this source on the right hand side approximately cancel those in the 

residual Gibbs energy. The average error in the predicted residual Gibbs energies is -1.5% 
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(the errorranging between ranging -0.0105 and -0.3002 kT) the error increasing in magnitude 

with the density. The Gibbs and Helmholtz free energies from the proposed method as well 

as those from the VW theory are also listed in Table 7. The differences between the method 

and the VW theory are to be expected considering the errors in the RY equation of state, as 

will be described below. The accurate results which have been obtained for WCA repulsive 

fluids support the assertion that the approximations made to the repulsive contribution to the 

chemical potential are accurate. 

The contact values of the bath - hard point pair correlation functions obtained from the 

RY solutions were consistent with the use of SPT equation (30) for the work of inserting the 

hard point. The contact values obtained from the RY solutions for the pure WCA fluid agreed 

with those obtained from equation (98) to within 0.006. The average percentage difference 

between the SPT and RY contact values was 0.15%. Therefore gkH(R + R,; R + RJ exhibits 

the required continuity at R = 0. The agreement suggests that the SPT formula for the work 

of insemon can be used reliably in this application. The RY and SPT contact values for each 

of the three conditions are listed in Table 8. 

As noted by Rogers and Young'", their integral equation tends to underpredict the 

compressibility factor of harshly repulsive fluids by an amount which increases with 

increasing density. The error in the RY properties are a result of minor errors in the RY pair 

correlation functions which are amplified by the very steep WCA repulsive potential in virial 

pressure equation (14). The proposed method gives more accurate results than does the 

thermodynamic integration, 
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a process which accumulates the errors in the RY properties as does the alternative 

thermodynamic path: 

G-G* 1’ (2-1)-+ dp (2- 1) -= 
NkT P 

J O  

Equation (101) yielded residual Gibbs energies that averaged -2.5% lower than VW results 

for the three states examined. The error from equation (101) ranged between -0.0206 and 

-0.5009 kT. The results from equation (102) averaged -2.3% lower than VW. For equation 

(102) the error ranged between -0.0185 and -0.4673 kT. The thermodynamic integrations 

underestimate the Gibbs and Helmholtz energies because the pressures are ccinsistently 

underestimated over the range of densities. The proposed method yields results that are 

different (and better) than either thermodynamic integration because it relies only on 

properties of the fluid at the state of interest. The predicted properties given by the. proposed 

method are listed in Table 9. Also listed in Table 9 are the results obtained from the Verlet- 

Weis procedure and from each thermodynamic integration of RY solutions. The results from 

the two thermodynamic integrations are nearly equal because of the imposition of pressure 

consistency in the RY method. The small difference between them results from the use of 

the local consistency criterion which neglects the density dependence of the switching 

function. This criterion works well for the WCA repulsive fluid. 

, The method was also applied to mixtures of WCA particles. Haile @) has simulated the 

excess Gibbs free energy of mixing WCA particles with equal E parameters and unequal CT 

parameters. The proposed method was used to reproduce these data for the cases c~Jcr,, = 
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1.125 and op/crll =2.0 at a reduced temperature of kT/Ell = 1.0 and a reduced pressure of 

P ~ J ~ ~ ~ / E ~ ~  = 0.5. Since the particles differ only in size and have no attractive forces these 

mixtures exhibit only small deviations from ideal solution behavior. Thus, the excess Gibbs 

free energies of mixing determined by the method provide a stringent test of the accuracy of 

the RY theory, the approximations made to the repulsive contribution, and the numerical 

accuracy of the application. The properties of the pure fluids and of mixtures of 25%, 50%, 

and 75% were calculated under isobaric conditions. The densities needed in the RY theory 

to meet the specified pressure of PcT,,’J/E,, = 0.5 were determined for each mixture. These 

densities agree to within an average of 0.35% of the simulationresults. The requireddensities 

are listed in Table 10 as are those obtained from Haile’s simulations. The RY densities are 

higher than simulation because of the tendency of the theory to underestimate the pressure. 

The chemical potentials were calculated for each species at the required densities and 

compositions. The effective diameters and residual chemical potentials in each mixture are 

listed in Table 11. The excess Gibbs fiee energies of mixing at constant temperature and 

pressure were then determined from: 

where p is the mixture density at the specified temperature and pressure and the superscript 

”Pure” denotes a property of the pure fluid of the indicated species. The terms involving the 
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residual chemical potentials sum to equal the configurational part of the free energy change. 

The remaining terms involving the fluid densities sum to equal the free energy change of 

mixing ideal gases starting from pure fluids with the indicated densities and compressing to 

the mixture density. Therefore the accuracy of total is areflection of both the accuracy of the 

proposed method and the accuracy of the RY equation of state. The results from the method 

agree with simulation data for the 2:l diameter ratio mixture to an average of -0.67%. For 

the 1.25: 1 diameter ratio mixture the method was in error by an average of -5.8%. This latter 

percentage is the result of small errors in the third or fourth decimal place in the very small 

result for AGE/NkT. The agreement of the method with simulation is remarkable when it is 

considered that small errors in the RY computed density can have a large influence on the 

accuracy of the ideal gas part. The results from the method and those from simulation are 

listed in Table 12. Also included in the Table axe configurational and ideal gas parts of the 

excess free energy change. The excess free energies are plotted versus the mole fraction of 

the small species in Figure 16 as are those obtained from sirnulation. These mixtures are 

nearly ideal - the excess free energies of mixing are small and negative. The smooth curves 

are the Redlich-Kister expansions which exactly go through the points obtained from the 

method. The proposed method reproduces the known(*) asymmetry in composition of the 

G&J~~ =2.0 curve, where the minimum in the curve is shifted toward an increased 

concentration of the small species. The success of the method for mixtures of WCArepulsive 

particles furthurvalidates the simplifications made to the repulsive contribution and validates 

the implimention of the method for mixtures. 
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4. ADDI ication to J.en nard-Jon= Flu ids Us ing the Hvbnd Mean SD herical 

Aumoximation 

Pure Fluids 

Applying the method to WCA repulsive fluids is straightforward in companion to 

applying it to realistic fluid models such as the Lennard-Jones model. In repulsive fluids, the 

residual chemical potentials always increase with increasing density along an isotherm. In 

Lennard - Jones fluids the attractive and repulsive contributions are nearly equal and opposite 

in sign under many conditions. This partial cancellation leads to residual chemical potentials 

along an isotherm which have a negative minimum when plotted versus density and which 

become positive at very high densities. In addition, the work of inserting a hard sphere into 

a repulsive fluid is a strictly monotonic increasing function of the radius. For Lennard - Jones 

fluids there are (metastable) conditions where the pressure is negative and the work of 

inserting a hard sphere is not a monotonic function of the radius of the sphere. These 

complications make the results for Lennard-Jones fluids a strhgent test of both the method 

and the HMSA theory. Given that the errors caused by using equation (30) for the work of 

inserting the hard point and by neglecting the bridge functions integral in equation (88) are 

small, the only s i m c a n t  source of errors are the HMSA correlation functions about the test 

particle. The accuracy of the method when applied to Lennard-Jones fluids was diminished 

by errors in the correlation functions about the test particle determined by the HMSA theory. 

There were no such errors at very low and very high densities and at supercritical 

temperatures. 

HMSA correlation functions for pure Lennard-Jones fluids were first calculated at the 
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three example conditions: T* = 1.5, p* = 0.4 and T* = 1.2, p* = 0.7 and 0.85. Effective 

diameters for the fluid at each set of conditions were computed by setting the right hand side 

of equation (88) to zero (afterneglecting the bridge function integrals). Summing the results 

from equations (30), (56) and (92) for each set of condtions gave estimates of the Gibbs free 

energies of the fluid. These results were compared to those obtained from molecular 

simulation. Simulation results at T* = 1.5 were obtained from Shing, Gubbins and Lucas(3, 

results at T* = 1.2 were obtained from Heinbuch and Fi~cher'~). At each state the proposed 

methodoverpredictedthe Gibbs energy. The smallest error was at the highest density, lowest 

temperature condition; the percentage error in this case was 4.5%. The error was the largest 

(12.8%) at T* = 1.2, p* = 0.7. The predicted results and those obtained from simulations are 

listed in Table 13. Also listed in Table 13 are the available perturbation theory results and 

the results from the Nicolas' equation of state for the Lennard - Jones fluidas). This small 

sample of results suggests that the method is reliable at very high and very low densities. The 

larger sample of results described below will confinn this observation. The small sample of 

results also suggests that the derivatives of the predicted chemical potentids with respect to 

density are incorrect since the error is small at low and at high densities. Themodynamic 

consistency tests were used to determine the size of this latter emr.  

The contact values of the bath - hard point pair correlation functions obtained from the 

HMSA solutions were consistent with the use of SPT equation (30) for the work of inserting 

the point hard sphere. The contact values obtained from the f S A  solutions for the pure 

Lennard-Jones fluid agreed with those obtained from equation (98) to an average of 0.13%. 

The largest difference was 0.54% at T = 1.2, p' = 0.85. Therefore gZH(R+Ri; R+R) exhibits 

the required continuity at R = 0. The HMSA and SPT contact values for each of the three 
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example conditions are listed in Table 14. The agreement suggests that the SPT formula for 

the work of insertion can be used reliably in this application. 

In order to gauge the state dependence of the errors, the method was used to estimate 

the residual Gibbs free energies in pure Lennard-Jones fluids along isotherms at reduced 

temperatures of To= kT/E = 1.556,1.15, and 0.928. The T' = 1.556 isotherm is supercritical, 

the others are subcritical; the critical temperature being approximately T' = 1.35. The results 

were compared to the simulations of Panagiotopoulos, Suter, and Reidm. Fourteen sets of 

conditions were examined covering a reduced density range of po = po )= 0.025 to pa3= 0.8. 

The two lower temperature isotherms did not include any points in the reduced density range 

of 0.05 to 0.6 (which mostly lies within the two phase region). The HMSA theory accurately 

represented the pressure and internal energy of the fluid over the range of conditions 

examined. Compressiblity factors were predicted to within an average absolute mor of 2.7% 

and configurational internal energies to within an average absolute emor of 0.49%. 

Therefore, errors in the HMSA equation of state are small and can be expected to contribute 

little to errors in the results from the method. Also, the accurate predictions of pressure and 

energy indicate the pair correlation functions up to and including the first peak, which 

determines the largerpartof the equation of state, are accurate (results formixtures, discussed 

below, will include a direct comparision of the pair correlation functions from HMSA with 

simulation). The conditions examined and the compressiblity factors and internal energies 

obtained from simulations and from the HMSA theory are listed in Table 15, The 

compressibility factors obtained from the HMSA theory are plotted versus density for the 

three isotherms in Figure 17 as are the simulation results. Additional simulation results from 

Hansen and Verleto9) are also displayed for the T' = 1.15 isotherm. These results indicate that 
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the HMSA equation of state for the Lennard-Jones fluid is qualitatively correct. 

The predicted residual chemical potentials were in error by an average of 0,OS kT for 

the supercritical isotherm and 0.2 kT for both of the subcritical isotherms. In general, the 

maximum errors occurred at reduced densities of about p' = 0.6 on each isotherm, the errors 

declining at higher and lower densities. The chemical potentials obtained from the method 

and from simulation are listed in Table 16. Figure 18 is a plot of residual chemical potential 

divided by p'kT versus reduced density for the three isotherms. Also shown are the 

simulation results and the exact low density limit obtained from second virial coefficients. 

The intercept of each isotherm is 2cr3B(T*), where B(T*) is the second virial coefficient for 

the isotherm. The method is exact at low densities, since under these conditions the HMSA 

theory reduces to the exact (in the low density limit) f-INC theory. The high density results 

are also plotted versus density in Figure 19. Included in Figure 19 are the results at T' = 1.2. 

There appears to be an inconsistency between the simulation results of Heinbuch and 

Fischer") at T = 1.2 and of Panagiotopoulos 0 et. al. at T' = 1.15 since the chemical potentials 

quoted for each of these isotherms a t p' = 0.7 is nearly the same. The proposed method agrees 

more closely with the results of Heinbuch and Fischer. The method correctly reproduces the 

increase in chemical potential with increasing temperature and yields accurate results at high 

densities. The slope of the chemical potential versus density curves are incorrect. The 

inaccurate results at intermediate densities suggests that there is a thermodynamic 

inconsistency in the proposed method This problem disappears at low densities and high 

temperatures where the closure approaches the HNC theory or at high densities where the 

fluid structure approaches that of a WCA repulsive fluid. 
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The thermodynamic consistency of the method was examined by comparing the results 

to those from thermodynamic integration. Residual Gibbs free energies were calculated 

using thermodynamic integration at 1"' = 1.556 and p' between 0.05 and 0.8. The fke  energies 

were calculated using both the integration over the compressibility, equation ( l O l ) ,  and the 

integration over the compressibility factor, equation (102). Equation (101) had an average 

absolute percent error of 6.2% and yielded results greater than simulation for p' 2 0.4. 

Equation (102) had an average absolute percent error of 4.9% and yielded results less than 

simulation. The proposed method had an average absolute percent error of 8.4% and yielded 

results that were generally higher than simulation. The two thermodynamic integrations 

yield different results because of the slight failure of the local consistency criterion (which 

neglects the density dependence of the switching function). The results from the two 

thermodynamic integrations are listedin Table 17 as are those from obtainedfrom simulation 

and from the proposed method. The results from the proposed method are larger than either 

thermodynamic integration, being between them only at the lowest reduced density of 0.05 

and highest reduced density of 0.8. The residual Gibbs free energies obtained from each 

procedure divided by p"kT are plotted versus reduced density in Figure 20. It is apparent 

that the slope of the chemical potential with respect to density obtained from the proposed 

method is inconsistent not only with simulation but also with the bulk phase properties 

obtained from the HMSA solution. Such inconsistencies probably develope in the repulsive 

conmbution, as will be discussed below. 

For subcritical isotherms the thermodynamic integration could not be performed 

because the integral equation solution procedure would not always converge for states within 



77 

the phase envelope. An alternative consistency test is based on the Gibbs-Duhem equation: 

The derivatives with respect to density can be evaluated with the aid of the local consistency 

criterion describedin the Chapter I - Introduction. That is, the derivatives are evaluated under ~ 

the assumption that the derivative of the a parameter in equation (17) with respect to density 

can be neglected. Under this assumption the derivatives of the chemical potential can be 

evaluated numerically. The derivatives of the effective diameters with respect to density can 

also be neglected - however, when a finite step is taken in the density in the numerical 

differentiation, the right hand side of equation (88) for the work of softening is non-zero and 

this contribution must be added to the chemical potential. The thermodynamic consistency 

of the methodcombined with the HMSA theory can be evaluated by comparing the left hand 

side of equation (104) as evaluated from the compressibility equation (15) to the right hand 

side as evaluated from chemical potentials obtained from the proposed method. Again it was 

found that the chemical potentials were not consistent with the bulk phase properties and 

correlation functions. The Gibbs-Duhem test was performed at each of the three example 

conditions: T* = 1.5, p. = 0.4 and r* = 1.2, pL = 0.7 and 0.85. The left and right hand sides 

of equation (104) are listed in Table 18 for each of three states examined. At the lowest 

density the rate of change in the chemical potential with density is overestimated by the 

method, at the higher densities it is underestimated. This result is consistent with the previous 

observation that the error in the chemical potential is maximum at areduced density between 

0.4 and 0.6 and declines as density is increased furthur. 
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lnfhtely Dilute Mixtures 

A direct test of the consistency of the method with the energy equation (13) and the 

virial pressure equation (14) can be made by examining the accuracy of calculated chemical 

potentials in infinitely dilute solutions. Lotfi and Fischer (4) have simulated chemical 

potentials of infinitely dilute Lennard-Jones solutes in a Lennard-Jones solvent at T' = 1.2, 

p' = 0.7. Residual chemical potentials at infinite dilution were obtained for a range of solvent- 

solute size and energy parameters. In addition, exact expressions were given for the 

derivatives of the chemical potential with respect to changes in these parameters. The 

derivatives of the infinite dilution solute chemical potentials with respect to solute-solvent 

size and energy ratios are given by(4), 

where species A is the solute, B is the solvent, and the derivatives are taken at constant solvent 

temperature and density and are evaluated at (T,/cT,, = E, /E~,  = 1. Z and 

(U - U')DJkT are the compressibility factor and the residual internal energy, respectively, of 

the pure solvent. Equation (105) can be obtained from the Kirkwood charging equation (47) 

by using CT, as a coupling parameter and using the Fundamental Theorem to evaluate the 

derivative of the integral with respect to oABc Equation (106) can be derived similarly. They 

provide a measure of consistency of the method with the virial pressure and energy equations. 
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The results from the proposed method were compared to simulation and to equations (105) 

and (106) for the cases, 

1. 

2. 

CYJO~, = 1 and E&,,, = 0.75,0.875, 1.0, 1.125, 1.5, and 2.0. 

EJL = 1 and (0&4,J3 = 0.75, 1.0, 1.5, and 2.0. 

of a Lennard - Jones solute present at infinite dilution in a L e n d  - Jones solvent at T' = 1.2, 

p' = 0.7. The results discussed below show that the chemical potentials for the dilute species 

had the correct trend as the E - ratio was varied. The trend in the chemical potential as the 

CY - ratio was varied was incorrect. This later error disappeared at higher solvent temperatures 

and lower densities. 

The chemical potentials obtained fiom the proposedmethod decreased with increasing 

E - ratio at constant uJoB, = 1 in agreement with simulation and the energy consistency 

equation (106). The procedure described in Chapter II - Theory for computing effective 

diameters provides no way to determine the solvent-solvent diameter, and therefore the 

packing fraction, when computing the chemical potential of an infinitely dilute solute. 

However, the packing b t i o n  is the same as that obtained during a pure solvent chemical 

potential calculation; it was this packing fraction which was used in determining the work of 

inserting the hard point in all of the infinite dilution cases. The method was constrained so 

that the packing fraction was the same as for each case. At T' = 1.2, p' = 0.7 the H M S A  internal 

energy for the solvent was W/kT = -3.9639, therefore the slope of the residual chemical 

potential with E - ratio should be, from equation ( 106), -7.9278. The proposed method yielded 

chemical potentials with a slope of -7.8108 - reasonably consistent with the internal energy 

of the solvent. The slope obtained from the simulation data was -7.929. The solute residual 

chemical potentials are plotted versus E - ratio in Figure 21. Also shown in the Figure are 
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the simulation results. The calculated chemical potentials decrease as required as the epsilon 

ratio increases, being in error only by the amount of the error in the pure solvent chemical 

potential. The results are listed in Table 19 as are those from simulation. Also listed in Table 

19 are the effective diameters for the solvent-solute interaction and the repulsive and 

attractive contributions to the chemical potentials. The repulsive part of the solute-solvent , 

pair potential becomes steeper as the E - ratio is increased; thus the effective diameters and 

repulsive contributions to the chemical potentials increase with epsilon ratio, though the 

effect is relatively small. Some pomon of this increase in the repulsive contribution is also 

due to an increase in local solvent density about the solute. The increase in local solvent 

density increases the contact values of the correlation functions in equation (56), leading to 

a slight increase in the repulsive contribution. The change in the chemical potential is 

dominated by the reduction (toward more negative values) in the attractive contribution as 

E, is increased. This reduction is in turn caused by an increased aggregation of solvent about 

the solute. A measure of solvent aggregation is the Kirkwood fluctuation integral@Q G,, the 

magnitude of which is an average volume surrounding a solute molecule within which the 

positions of solvent molecules are correlated with that of the solute, 

where g, is the pair correlation function for solvent about the solute. The above equation for 

G, has not been made dimensionless, so the size of the result depends on the size of the 
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solvent molecules. G, > 0 implies that, within this volume, there is a larger number of solvent 

molecules than in an equal amount of bulk fluid. G, < 0 implies that, within this volume, 

there is a smaller number of solvent molecules than in an equal amount of bulk fluid. Thus, 

a positive G, indicates an excess of solvent about the solute, and a negative G, indicates a 

deficiency. When E&,, = 1, G, = -57.6 cu. Angstroms and when EJG, = 2, G, = +5.4 

cu. Angstroms, based on a solvent size of o,,, = 3.8 Angstroms. Thus, when the E - ratio is 

increased, an excess of solvent collects around the solute, decreasing the attractive 

contribution to the chemical potential. As a partial compensation, the increase in local 

solvent density about the test particle caused by increasing with E - ratio acts to increase 

solvent-solute effective diameter and to increase the repulsive conmbution to the chemical 

potential. 

The chemical potentials obtained from the proposed method increased With increasing 

CY - ratio at constant E J ~  = 1 in disagreement with simulation andvirial pressure consistency 

equation (105). At T = 1.2, p’ = 0.7 the HMSA compressibility factor for the solvent was 

2 = 0.77117, therefore the slope of the chemical potential with a-ratio should be, from 

equation (1051, -1.373. The proposed method yielded chemical potentials with a slope of 

+1.356 - inconsistent with the bulk properties of the solvent. The slope obtained from the 

simulation data was -0.934. The solute residual chemical potentials are plotted versus a - 
ratio in Figure 22. Also shown in the Figure are the simulation results h m  reference (4). 

The effective diameters, repulsive and attractive contributions, and the residual chemical 

potentials obtained from the method are listed in Table 20. Also listed are the residual 

chemical potentials obtained from simulation. The HMSA solvent-solute pair correlation 

functions are nearly scaled versions of solvent-solvent function, therefore the repulsive and 
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attractive contributions obtained from the method both grow in magnitude nearly in 

proportion to (oJoBB)’. However, the repulsive contribution rises faster than the attractive 

contribution can decrease, leading to an increase in the chemical potential with a-ratio. 

Inaccurate HMSA correlation functions about the test particle cause the errors noted 

in the predicted solute chemical potentials at the solvent conditions of kT/GB = 1.2 and PO,: 

=0.7. The solvent-solute pair correlation functions in the bulk fluid obtained from the HMSA 

and from new simulations are plotted versus reduced separation distance in Figure 23 for the 

case where (oJ q J 3  = 2. These new molecular dynamics results are for a mixture of 1 atom 

of solute in 255 atoms of solvent. The two curves are nearly identical. When the attractive 

component of the pair potential is decoupled however, the first peak of the HMSA correlation 

function about the WCA repulsive particle is sigmfhntly larger (about 0.25) than the 

simulation result Plotted in Figure 24 are the pair correlation functions about the WCA 

repulsive particle obtained from the HMSA and from simulation. The large first peak in the 

Hh4SA result for correlation functions causes the predicted work of inserting a WCA 

repulsive test particle to be larger than the true value. It also causes an reduction in the 

predicted attractive conmbution which, in this particular case, does not offset the increase in 

the repulsive. When the solute size is reduced to that of the solvent so that (ad OJ = 1 the 

error in the fmt peak of predicted correlation functions about the WCA repulsive test particle 

remains large (about 0.25). Pair correlation functions for this case are plotted in Figure 25. 

When the temperature is increased to supercritical values and the density reduced, the HMSA 

makes an accurate prediction of the structure about the WCA repulsive particle, as is shown 

in Figure 26. The proposed method yields accurate chemical potentials under such 



conditions. At subcritical temperatures and high densities the HMSA theory (which 

approaches SMSA in such cases) once again accurately predicts the pair correlation function 

about the WCA repulsive particle, as shown in Figure 27. The simulation results for these 

liquid-like conditions show the independence of the fluid stmcmre on the attractive part of 

the pair potential which is the basis of perfurbation theories. The correlation functions 

predicted by the HMSA theory also change little as a attractive force is decoupled - a behavior 

which is a built into the SMSA part of the ciosure. In these cases the chemical potential is 

also accurately predicted by the method. 

The solvent is near saturated liquid conditions at areduced temperature of T" = 1.2 and 

areduced density of p* = 0.7. As noted by Shing et. al. 0) the local solvent structure is flexible 

in some sense under such conditions. The meaning of this statement is revealed by the 

molecular dynamics results discussed above for the pair correlation functions about repulsive 

test particles. The simulation results show that when arepulsive particle is inserted into such 

fluids it actually has to push aside fewer solvent molecules than the number predicted by 

simple theories. Under these conditions the HMSA, HNC, PY, and simple hydrostatic 

theories (using a local compressiblity equal to the bulk phase value) yield nearly the same 

inaccurate correlation functions about the WCA repulsive test particle when the bulk phase 

is described by the HMSA theory. 

At higher temperatures and lower densities the method correctly predicts both a 

decrease in residual chemical potential with increasing CT - ratio and a decrease with 

increasing E - ratio. At T = 1.4, p' = 0.35 the HMSA internal energy f a  the solvent was 

V/kT = - 1.7353, therefore the slope of the chemical potential with E - ratio should be, from 
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equation (106), -3.471. The slope obtained from the proposed method was approximately 

-3.487. At T = 1.4, p’ = 0.35 the HMSA compressibility factor for the solvent was Z = 0.345’7, 

therefore the slope of the chemical potential with CJ - ratio should be, from equation (103, 

-3.926. The slope obtainedhmthe proposedmethod was approximately -3.659. Therefore, 

under these conditions the method yields chemical potentials which are reasonably consistent 

with the energy and pressure of the bulk fluid. At CTJCT,, = 1 and EJG, = 1 the method yielded 

aresidualchemicalpotentiaidividedby kTof -1.3808 - inagreementwith theresult of -1.362 

from Nicolas’ equation of stat e(38) at equal PCT)IE = 0.1694. The effective diameters, amactive 

and repulsive contributions for this condition and for, 

1. o&,, = 1 and &A$EBB = 1.125 
2. (oJcT~,)’ = 1.25 and EA$%, = 1.0 

are listed in Table 21. The reduction in the chemical potential with increasing CT - ratio and 

with increasing E - ratio was acompanied by an increase in solvent-solute aggregation. When 

CT,/(T,, = E J ~ ,  = 1, G, =432.8 cu. Angstroms (based on on,, = 3.8 Angstroms). Increasing 

the 0 - ratio to (oJcT,,)~ = 1.25 caused the fluctuation integral.to increase to 495.2 cu. 

Angstroms. Increasing the E .. ratio to = 1.125 caused the fluctuation integral to 

increase to 662.3 cu. Angstroms. In each case the increased aggregation of solvent about the 

solute decreases the attractive contribution to the chemical potential. The increased local 

solvent density also acts to slightly increase the repulsive conmbution and the effective 

solvent-solute diameter. For the case where CTJCS,, = = 1, the effective diameter 

divided by CT, was 1.00367. Increasing the CT - ratio to (0$(3,,)3 = 1.25 caused the diameter 

divided by CT- to increase to 1.00400. 
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Finite Concentration Mixtures 

The method was also applied to seven finite concentration &tures. The results were 

compared to the simulations of PanagiotopolousO. The simulations were intended to be a 

simple model of carbon dioxide - acetone m i m s  above the critical temperame of carbon 

dioxide. The Lennard-Jones parameters given in the original reference were obtained Born 

the critical properties of the real fluids and are listed in Table 22. The hrenz-Berthelot 

combining rules were used for the unlike parameters. The simulations gave the coexistence 

curve at a temperature of 350 K. A subsequent study@') confirmed the properties of the 

coexisting phases given in reference (7) by directly simulating vapor-liquid equilibrim. In 

particular, the latest study confirmed the simulated chemical potentials in the liquid phase, 

since those in the equilibrium (and low density) vapor are easily calculated. The 

compositions and densities of these mixnuzs an listed in Table 23. Also given in the Table 

are the compressibility factors obtained from the simulations and h m  the HMSA theory. 

The HMSA theory predicted the compressibility factors to within an average of 0.0238, 

indicatingthat theHMSAequation of statcisaccurateforthesemixtures. Thepaircorrelation 

functions for a equimolar liquid mixture obtained from the M A  are plotted in F i p s  28, 

29 and 30. The symbols are results from. a new rnoiecular dynamics simulation. The 

c m b t i o n  functions frornHM!3Aaxein exceilentagxeementwithsimuiation. Therefore,any 

mrs in the muits fhm the proposed method are not due to trrors in the pair correlation 

functions for or properties of the bulk fluid obtained from the KMSA theory. 

The effective diameters and residual chemical potentials obtained fiom the proposed 

method are listed in Table 24. The chemical potentials are converted to the standard state of 
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reference (7) and are compared with the simulation results in Table 25. The results for the 

vapor phase were very accurate due to the low densities involved. The average absolute 

percent error in the chemical potentials for both species was 0.514%. The method was also 

in agreement with the chemical potentials obtained from the second virial coefficients. For 

the liquid phase the method overpredicted the chemical potentials of each species, which is 

consistent with previous observations for pure fluids. For the supercritical (carbon dioxide) 

species the method overpredicted the chemical potential by an average of 10.15% (based on 

Panagiotopolous' choice of standard state). For the subcritical (acetone) species the e m r  

averaged 10.49%. At least half of the observed error must be attributed to the calculated 

repulsive conmbution. The calculated attractive contibution has a greatest lower boundequal 

to the rate of change in the Helmholtz energy with respect to the attractive coupling parameter 

for the fully coupled test particle, That is, the amactive conmbution is bounded below by the 

integrand of equation (92) evaluated at 1 = 1 .O. Since the HMSA correlation functions for 

the bulk fluid are accurate, this lower bound is known for each of the liquid mixtures. These 

lower bounds are so close to the calculated attractive conmbution that the amactive 

conmbution can not be the sole source of e m  in these cases. It must also be true that the 

calculated repulsive conmbution is too large. This observation is consistent with the results 

obtained for the infinite dilution mixtures (where it was observed that the work of inserting 

a WCA repulsive test particle was overpredicted for near saturated liquid states where the 

fluid structure is flexible). 
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cal F l u i b  

The results for pure Lennard - Jones fluids were accurate at supercritical conditions, 

as were the variations of the residual chemical potentids at infinite dilution with respect to 

variations in the molecular parameters. Therefore, the method can be legitimately used as a 

tool to study how these chemical potentials depend on the fluid state and on the parameters 

of the intermolecular force relation. 

In near ideal and att~active(~~)supercritical fluid mixtures the attractive contribution to 

the chemical potential grows roughly in proportion to the bulk density. The repulsive 

contribution grows more rapidly. For a solute at infinite dilution with o&Y,, = 1.0772 and 

E&,, = 1.125 in a solvent at reduced temperature kT/ 

chemical potentials are: 

= 1.4 some predicted residual 

Reduced Density Repulsive Attractive 

!2?s 
BelowCP &: 

. .  . .  
Conm bubm nmbuhon 

4.4949 -6.881 1 
NearCP 0.35 2.4265 -4.6297 -2.2032 
AboveCP 0.5 4.4949 -6.881 1 -2.3862 

When the solute is large and amactive, the amactive contribution to the chemical potential 

is dominant. For an attractive solute at infinite dilution With = 1.2175 and E J ~ , ~  = 

2.6533 in a solvent at reduced temperam kT1 q,B = 1.4 some residual chemical potentials 

are: 

Reduced Density Repulsive Attractive 

Near CP 0.35 3.6953 -18.9897 - 15.2944 

For large attractive solutes the solute residual chemical potential is roughly proportional to 

the bulk density and therefore its derivative with respect to pressure along an isotherm is 
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roughly proportional to the derivative of the density with respect to pressure. This behavior 

was present in earlier models of supercritical 

For a given solvent density near the critical value the "attractive" and "repulsive" 

mixtures described by Debenedetti and Pet~che(~3 have large negative and slightly positive 

residual chemical potentials, respectively. These cases differ primarily in the size of the 

attractive conmbution to the chemical potential. Using the same solvent as in "Near CP" case 

(kT/q,, = 1.4 and PO,,' = 0.35) yields the following residual chemical potentials at infinite 

dilution: 

Repulsive Attractive 

Contnbunoq Conmbuhon b&,& *)/kT 
. .  . .  

Q*5 E&33 3.6953 - 18.9897 - t 5 . 2 9 ~  
Case 
Attractive 
Near ideal 1.0772 1.125 2.4265 -4.6297 -2.2032 
PUre 1 .o 1 .o 1.9314 -3.3122 -1.3808 
Repulsive 0.8484 0.3769 1.0390 -0.7616 0.2774 

Thus the repulsive case might be more descriptively, if more clumsily, termed "non- 

attractive." 

It is interesting to consider furthur the attractive and repulsive cases discussed above. 

The repulsive case consists of a small solute in a bath of large solvent molecules and the 

second being a large solute in a bath of small solvent molecules. The conditions and L e n n d -  

Jones parameters are chosen so that the reduced temperature and density of the solvent is the 

same in both cases and so that the solvent-solute intexmolecular pair potential is the same in 

both cases. Under these conditions the repulsive case has a large positive chemical potential 

and the attractive case has a large negative chemical potential, in spite of the equality of the 

solvent-solute pair potential- The effective diameters, and attractive and repulsive 

contributions to the chemical potentials for both cases are listed in Table 26. The difference 
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in the residual chemical potentials for the two cases is the result of large deviations in the 

solvent-solute pair correlation functions fromthe low density limit (which is the same in each 

case). In the repulsive case this deviation results in a low in solvent-solute aggregation: 

G, 0 

G,* G,*~ = +83.166. In the repulsive case the low aggregation yields a low local solvent 

density and a high (toward less negative values) attractive contribution, resulting in a positive 

= -9.675. In the attractive case there is a high solvent-solute aggregation: 

chemical potential. The repulsive contribution is also low in the "repulsive" case, due to both 

the reduction in solute size and to the reduction in local solvent density, but not low enough 

to yield a net negative chemical potential. The exact opposite situation prevails in the 

attractive case. The high aggregation of solvent about the solute greatly lowers the attractive 

contribution and slightly increases the repulsive contribution leaving a very negative 

chemical potential. It is this behavior which causes the high solubility of large solutes in 

supercritical fluids. 

The attractive contribution and its approximate proportionality to the bulk density are 

thus seen to be important factors in describing supercritical chemical potentials and therefore, 

solubilities in supercritical fluids. The above examples show that the proposed method can 

be used to make useful estimates of chemical potentials at near critical conditions from fluid 

structural data obtained from the HMSA theory. 

It is tempting to try to analyze how enhanced solvent aggregation in the different 

coordination shells surrounding a solute contribute to the very negative chemical potentials 

determined from the Kirkwood charging process. Unfortunately, the resulting function of 

intermolecular separation depends on the path of the coupling parameter integration. This 
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lack of path independence makes it impossible to uniquely assign the observed reduction in 

the solute chemical potential near the solvent critical point to either enhanced nearest 

neighbor or to enhanced long-ranged solvent-solute interactions. The residual chemical 

potential's independence of the path of the coupling parameter integration comes about only 

after averaging the positions of the test particle and all of the bath molecules over the entire 

volume of the fluid. Thus the entire volume of the fluid is important in determining the solute 

chemical potential. Care must be taken when making micro-structural interpretations of bulk 

phase thermodynamic properties. 



CONCLUSIONS AND RECOMMENDATIONS 

In this work a Kirkwood charging procedure was introduced for calculating chemical 

potentials from integral equation theories which used the particle scaling from SPT to 

calculate the repulsive conmbution. The multi-step charging procedure was particularly 

effective at high densities. A summary of the results obtained with the RY and HMSA 

theories follows: 

9 When used with the RY theory, the method reproduced the Gibbs free 

energies of pure WCA repulsive fluids to within the e m r  of the RY 

compressibility factor. The residual Helmholtz free energies were rcpraduced to 

within 0.081 kT. 

It also reproduced the excess Gibbs free energies of mixing WCA repulsive 

particles at constant pressure to within O.OOO9 kT at the moderate conditions 

examined. 

When used with the HMSA theory, the method reproduced the residual Gibbs free 

energies of pure L e ~ a r d  - Jones fluids to within 0.2 kT except within the reduced 

density range of about 0.6 5 pa3 2 0.75, (where emrs  reached as much as 0.4 

kT). The large errors at these intennediate densities disappeared for reduced 

temperatures kTk greater than abut  1.5. 

91 
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It reproduced the correct change in the chemical potential with changes in 

solvent-solute energy parameter in infinitely dilute mixtures - satisfying a 

consistency condition with the energy equation. 

It did not predict the change in the chemical potential with changes in 

the solvent-solute size parameter in infinitely dilute mixtures under some 

the 

conditions - violating a consistency condition with the pressure equation. This 

error also disappeared for reduced temperatures kT/& greater than about 1.5. 

Residual chemical potentials in vapor phase mixtures of dissimilar Lennard - Jones 

particles were predicted to within experimental error (which was 0.1 kT). 

Residual chemical potentials of supercritical components in liquid phase 

mixtures of Lennard - Jones particles were predicted only to within 0.2 - 0.3 kT. 

Residual chemical potentials of subcritical components in liquid phase mixtures 

of dissimilar Lennard - Jones particles were predicted poorly - to within 0.4 - 0.6 

kT. 

9 

The errors in the results for Lennard - Jones systems are due to inaccurate predictions 

of the correlation functions about the repulsive test particles by the HMSA theory for nex 

saturated liquid states. They were not caused by the approximations used in the method. The 

errors caused by the approximations used were: 

1. Error caused by using the SPT equation (30) for the work of inserting the hard 

point. The error in the residual chemical potential from this source was less than 

0.007 kT (as estimated from the HNC results, see Table 3). 

2. Numerical errors due to the procedure for solving the integral equations and to the 
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numerical integrations of the cmelation functions. This error was also estimated 

to be less than 0.007 kT (as estimated from the HNC results, see Table 3). Of 

course, this figure is implimentation dependent. 

3. Errors due to neglecting the integral over the bridge functions in equation (88) for 

the work of softening. A conservative upper bound on this errof when using the 

HMSA theory was 0.056 kT (see Table 4). 

Therefore, errors in the predicted chemical potential which were not due to errors in the 

HlWSA correlation functions were at most 0.07 kT. The overestimation of pure fluid chemical 

potentials at intermediate densities was caused by overestimates by the HMSA of the first 

peak of the pair correlation functions about the WCA repulsive test particle. The 

overestimate of the first peak caused an overestimate of the work required to insert the 

effective hard sphere. The E3MSA correlation functions for such a case were compared to 

simulation results in Figure 25. The increasing e m r  in the residual chemical potential. at 

infinite dilution with increasing size parameter was also caused by an overestimate of the fmt 

peak of pair correlation functions about the repulsive test particle. The predicted correlation 

functions for such a case were compared to simulation results in Figure 24. The HMS A yields 

accurate test particle correlation functions at low densities or supercritical temperatures 

(Figure 26) and at high densities (Figure 27). therefore the method yields accurate chemical 

potentials under these conditions. The ability to calcuiate chemical potentials of attractive 

solutes in supercritical fluids makes the method a useful suppliment to existing techniques 

based on molecular dynamics and perturbation theories which cannot be used under these 

conditions. 
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More accurate results for Lennard - Jones fluids Will requke an integral equation theory 

that can predict the correlation functions about the WCA repulsive test particle under a 

broader range of conditions. It is impossible to determine if a theory qualifies for this short 

of trying it. One theory worth trying is the reference hypernetted chain (F2HNC). 

The method is suitable for application to the RHNC theory since the imphentation of the 

method is then greatly simplified. The theory is based on the following definition of the 

bridge functions B: 

Thus, the bridge functions represent the error in the HNC closure equation (1 1). If the bridge 

functions were known exactly, an exact theory would result. However, bridge functions are 

known (approximately) for only the h a d  sphere system. In the RHNC theory the bridge 

functions of the system of interest are modeled by those of areference system of hard spheres, 

where di' is the diameter of the hard sphere which represents species i in the reference system 

of hard spheres. The hard sphere system is taken at the same temperature, density and relative 

composition as in the system of interest. The diameters are chosen in a way that minimizes 

the Helmholtz free energy of the system of interest@@ as determined from the RHNC 

correlation functions, under the assumption that the bridge functions do not vary as all of the 

particles are tranformed from hard spheres into real particles. In this case we divide the 

residual chemical potential of species j into hard sphere and non-hard parts. The non-hard 

part is given by equation (88) with 5 = 0 representing a system containing a Lennard - Jones 
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test particle of species j and 4 = 1 representing a system containing a hard sphere with diameter 

dj'. The integral over the bridge functions is identically zero in the RHNC. The test particle 

correlation functions in equation (88) are calculated using closure equation (109) with j = c 

and with the bridge functions being independent of the coupling parameter 6 of the non-hard 

forces. The hard sphere part is then given by the sum of equations (30) and (56). Equation 

(30) is evaluated with a packing hctio n &determined from Id:]. Equation (56) is evaluated 

with an upper limit of integration R = dj'/2. The correlation functions gH,(R + Ri ; R +R,) in 

equation (56) are determined from closure equation (109) using the bridge function for a hard 

sphere of diameter R + Ri in a bath of hard spheres with diameters { d l}. So, the determination 

of effective diameters and the evaluation of equation (92) is eliminated when applying the 

method to the RHNC theory. The major Hiculty is the determination of the { 4'). The fact 

that the integral over the bridge functions in equation (88) is identically zero (rather than being 

neglected) should slightly improve the thermodynamic consistency of the method's results. 

In addition, the RHNC produces correlation functions which yieldconsistent Helmholtz free 

energies, v i d  pressures and internal energies. The consistency between the Helmholtz 

energy and virial pressm may enhance the consistency between the chemical potentials and 

the virial pressure. 
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Table 1 

Cornparision of the Proposed Method Using the HNC Theory to 
Known HNC Results For Pure Lennard-Jones Fluids 

Effective Repulsive Attractive Total 
Diameter, Contribution Contribution (G - G )/NkT 

! h s d s I  This Wo r t  JINC ThisWo rk HNC This Work HNC(1) 

1 1.00057 2.3855 2.3867 -3.5786 -3.5786 -1.1931 -1.1919 

2 1.00537 7.8419 7.8476 -8.5562 -8.5562 -0.7144 -0.7086 

3 1.00166 13.6559 13.6698 -10.7773 -10.7773 2.8786 2.8925 

The conditions examined were: 

Reduced Reduced 

Temperature, Density, 

Gi% kx!€ pn3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

(1) HNC results for the residual Gibbs free energies were obtained from equation (93). 
The HNC repulsive and attractive contributions were obtained from modified 
versions of equation (88), with the bridge function integrals being identically zero in 
this (HNC) case. The results from the SPT-based charging process used in this work 
are in agreement with the known results from HNC theory. 
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Table 2 

Cornparision Between Exact and SFT Values for the 

Work of Xnsertln ' tztheMardPointIntheHN C ADDroximation 

Repulsive Work of Inserting Residual 
Contribution the Hard Point Numerical 

Gas2 Thiswork mic Error H N C ~  Frror Error 

1 2.3855 2.3867 -0.0012 0.2355 0.2367 -0.0012 0.0000 

2 7.8419 ' 7.8476 -0.0057 0.4659 0.4706 -0.0047 -0.0010 

3 13.6559 13.6698 -0.0139 0.5929 0.5994 -0.0065 -0.0074 

Pure Lennard-Jones fluids were examined under the following conditions: 

Reduced Reduced 

Temperature, Density, 

Uk m3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

(1) HNC results for the work of inserting the hard point were obtained from 
equation (95). The corresponding SPT values were obtained from equation (30). 
The repulsive contributions shown were taken from Table 1. The SPT formula 
equation (30) provides a good estimate of the work of inserting the hard point even 
thouglrn it is based on the false assumption of the non-overlap of molecular cores. 
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Table 3 
Cornparision Between Exact and SET Pair Correlation 

Functions at Contact With the Hard Point In the HNC Amximation 

Contact Values of the Pair Correlation Function 
With the Hard Point, gH(d/2;d/2)  

cas2 SET HNc= Error 
1 126550 1.28706 -0.02156 

2 159352 1.66131 -0.06779 

3 1.80923 1 .go846 -0.09923 

Pure Lennard-Jones fluids were examined at the following conditions: 

Reduced Reduced 

Temperature, Density, 

tax m on3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

The contact values of the pair correlation functions shown are those for bath molecules in 
contact with a hard point. The effective diameters used are those shown in Table 1. The 
SPT contact values from equation (98) do not agree with the HNC results, indicating an 
inconsistency between the SET equation (30) for the work of inserting the hard point and 
the HNC equation (95). It is expected that, for a given integral equation theory, a small 
difference between the SPT and integral equation contact values implies consistency 
between the SPT equation (30) for the work of inserting the hard point and the integral 
equation theory. As shown in Table 2, the effect of this inconsistency on the accuracy of 
the work of insertion is very small. 
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Table 4 
Upper Bounds on the WMSA Bridge 

Functio~&ggg&. in L e ~ a r d  - Jones Fluids 

Trial Effective Soft Upper Bound 
Diameter, Repulsive on Bridge 

2.6439 x 10-6 7.7152 x lO-5 
sh% hF&RB 
A 1.oO071 

B 1.26556 0.12844 0.0083 19 1 

C 1.27 186 -0.17363 0.05561 1 

D 1.00570 - 4.4102 x 10-6 0.041039 

The cases are for mixtures of an infinitely dilute species A in a solvent species B: 

Reduced Reduced 

catis 
A 

Temperature, Density, 

UBB 
1.5 

P S 8 B 3  
0.4 

B 1.2 0.7 2.0 1 .o 
C 1.2 0.7 2.0 1.0 

D 1.2 0.85 1 .o 1.0 

Cases A and D are pure fluids. The mal diameters shown for cases B and C are not the 
optimal value (which pves a work of softening qual to m) for these conditions. The 
sub-optimal values are shown in order to make the case that the bridge function integrals in 
equation (88) are small even when the diameters are not perfectly chosen. The soft 
repulsive contributions shown were obtained from equaticm (88) with the bridge function 
integrals ne lected and the upper bounds on the neglected integrals were obtained from 
equation( 98 ). 
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Table 5 
The Effect of the Choice of Effective Hard Sphere Diameter 

on the Calculated Rmulsive Contribution to the Chemical Potential 

Trial EYfective 
Diameter, Work of inserting Work of softening Total Repulsive 

PlSI - - 
0.9625 5.9921 1.0151 7.0072 

0.9750 6.2768 0.7555 7.0323 

0.9875 6.5698 0.4784 7.0482 

1.oooO 6.87 12 0.1835 7.0547 

1.0074 1 7.0620 0 . m  7.0620 

1.0125 7.1920 -0.1295 7.0625 

1.0250 7.5122 

1.0375 7.8417 

-0.4608 

-0.8 106 

7.0514 

7.03 1 1 

The work of inserting the hard sphere is the s u m  of results from equations (30) and (56). 
The work of softening was obtained from equation (88) with the bridge function integrals 

neglected, Calculations were performed for a test particle in a pure Lennard - Jones solvent 

bath at a reduced temperature of kT/e = 1.2 and a reduced density of po3 = 0.7. If the test 

particlebath molecule bridge functions were actually invarient during the softening process, 
then the numbers in the last column would have been all the same. The fact that they are 
nearly so for the whole range of reasonable choices of hard sphere size suggests that it is 

reasonable to assume that the bridge functions are invaxient during softening. Note that the 

work of inserting the hard sphere includes the work of inserting the hard point, which is 

also changing (over a range of 0.3957 to 0.5265) with changes in the choice of effective 

diameter. The proper accounting of each of these variations leaves the balance in the final 

column unchanged. The resulting repulsive contribution is insensitive to the choice of 
effective hard sphere diameters. For these conditions the effective diameter for a WCA 

repulsive reference fluid determined by Verlet - Weis perturbation theory is d/o = 1 .OO693. 

The presence of attractive forces in this case acts to increase the effective diameter. 
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Table 6 

Cumparision Between the Rogers - Young and Verlet - Weis 
Eauations of State for pure WCA Rmulsive Rui& 

Compressibility Factor, P/pkT 

Veriet - W& llkux Ga% 
1 2.5064 2.5209 -0.0145 

2 5.7548 5.9109 -0.1561 

3 8.8577 9.2385 -0.3808 

Pure WCA repulsive fluids were examined at the following conditions: 

Reduced Reduced 

Temperature, Density, 
cas2 m w3 

- 1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 
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Table 7 

Comparision of Free Energies From the Method Using the 

ROEt3-S - YounP Them t o Known Nerlet - Weis) Results 

For Pure WCA Repulsive Fluids 

Effective Residual Gibbs Residual Helmholtz 
Diameter, do Energy, (G - G*)/NkT Energy, (A - A*)/NkT 

!2m Thiswork Y E  Work Y E  This Work rn 
1 1.00068 1.00066 2.6461 2.6566 1.1396 1.1357 

2 1.00706 1.00693 7.5556 7.6773 2.8009 2.7664 

3 1.00516 1.00490 11.9459 12.2461 4.0882 4.0076 

Pure WCA repulsive fluids were examined at the following conditions: 

Reduced Reduced 

Temperature, Density, 

!&.e m pn3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

Helmholtz free energies are accurately predicted by the proposed method The accuracy of 
the predicted Gibbs energies is reduced by emrs in the RY equation of state for the WCA 
repulsive fluid. The errors in the Gibbs h e  energies roughly equal the errors in the 
compressibility factors pmhcted by the RY theory (see Table 6). Errors in the 
compressibility are related to errors in the Gibbs energy through equation (100). For the 
WCA repulsive fluid the effective diameters obtained from the proposed method agree with 
those obtained from VW perturbation theory. 
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Table 8 
Cornparision Between Exact and SP" Pair Cmlation 

Funmons at Con tact With the Had Point In the 
ROPreB - Younp Auprox imation 

Contact Values of the Pair Correlation Function 
With the Hard Point, gH(d/2;d/2) 

case SET By Error 
1 126561 1.26512 o.oO049 

2 159830 1.59669 0.00161 

3 1.82478 1.8 1923 0.00555 

Pure WCA repulsive fluids were examined at the following conditions: 

Reduced Reduced 

Temperature, Density, 

Gar& klxE M3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

The contact values of the pair carrelation functions are for bath rnwcules in contact with a 
hard point The effective diameters used are those shown in Table 7. The consistency 
beween the SPT contact values h m  equation (98) the RY values suggest that the work of 
inserring the hard point can be reliably obtained from SET equation (30). 
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Table 9 
Comparision of Free Energies From the Method to 

Thermodynamic Integration of the Rogers - Young 
Eauation of State For Pure WCA Remlsive Fluids 

Residual Ggbs 
Energy, (G - G )/NkT 

Residual Helqholtz 
Energy, (A - A )NcT 

Thiswork ui2l YB! This Work vw 
1 2.6461 2.6381 2.6360 2.6566 1.1397 1.1316 1.1296 1.1357 

2 7.5556 7.4844 7.4657 7.6773 2.8009 2.7296 2.7109 2.7664 

3 11.9459 11.7788 11.7452 12.2461 4.0882 3.9211 3.8875 4.0076 

(1) From integration of the virial pressure, using equation (102). 
(2) From integration of the compressibility, using equation (101). 

Pure WCA repulsive fluids were examined at the following conditions: 

Reduced Reduced 

Temperature, Density, 

GiGX kT/E pa3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

Results from the proposed method (which uses an S€T-based Kirkwood charging process) 
are more accurate than either thermodynamic integration. The thermodynamic integrations 
accumulate the mrs in the pressure @cted by the RY theory. The errors in the RY 
pressure were illustrated in Table 6. 
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Table 10 
Densities Required for Isobaric Farmation of Some WCA Repulsive 

tores - A Comuarison of R o m  - Young Densities to Simulation 

Density Required, pq13 

to Give P ~ T ~ ~ ~ / E ~ ~  = 05 

0 0.19746 

25 0.21136 

50 0.22726 

75 0.24561 

100 0.26698 

0 0.086048 

25 0.10375 

50 0.13053 

75 0.17567 

100 0.26698 

0.1964 

0.21 11 

0.2274 

0.2447 

0.2665 

0.0855 

0.1035 

0.1301 

0.1743 

0.2665 

Error 

0.00106 

0.00026 

-0.00014 

o.oO091 

O.OOO48 

0.000548 

O.ooo25 

0.00043 

0.00137 

O.OO048 

Configurational Internal 
Energy, UCkT 

By 

0.1644 

0.1463 

0.1284 

0.1106 

0.0930 

0.5322 

0.4202 

0.309 1 

0.1996 

0.0930 

0.1664 

0.1469 

0.1280 

0.1116 

0.0930 

0.5402 

0.4222 

0.31 16 

0.2030 

0.0930 

Simulation results were obtained from reference 8. The densities are used in the calmlation 
of the excess Gibbs free energy of mixing at constant pressure. At the pressure us@ here 
the RY equation of state for the WCA repulsive fluid is accurate. 

8 
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Table 11 
Residual Chemical Potentials in Mixtures of WCA ReDulsive Particles 

Effective 
Mole 96 Diameters, d#~l1 

m u  2d L2 2d 

Q2&11 = 1.24993: 

0 - - 1.26999 

25 1.01645 1.14353 1.14340 1.27004 

50 1.01648 1.14357 1.14343 1.27008 

75 1.01650 1.14361 1.14347 1.27013 

100 1.01653 - - - 

Q2*1 &uk 
- - - 0 2.02798 

25 1.01628 1.52419 1.52379 2.02825 

50 1.01633 1.52435 1.52395 2.02858 

75 1.01641 1.52458 1.52418 2.02907 

100 1.01653 - - - 

Residual 
Chemical Potentials 

UlSl*IlhT u2=l4;m 

- 2.68560 

1.81231 2.61460 

1.74789 2.53496 

1.67526 2.44109 

1.59306 - 

- 7.62915 

2.36914 7.4 1 658 

2.21617 7.11854 

1.98403 6.67466 

1.59306 - 

The chemical potentials were calculated for the compositions, temperatures and densities 
specified in Table 10. The 1-1 and 2-1 effective diameters were determined during the 
calculation of p1 and the 1-2 and 2-2 diameters were determined during the (separate) 

calculation of p.2. The 1-2 and 2-1 effective diameters differ because their calculation is 
only accurate to the third decimal place. 
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Mole % 
small 

= 1.24993: 

25 

50 

75 

Q 2 ~ l l s u k  

25 

50 

75 

Table 12 

Free Enevies of MixinP WCA Reuulsive Particles 

Excess Gibbs Free Energies of 
Mixing A G E ~ T ,  at Constant Pressure 

This Work with RY Theory 
I d e a L h s u  

0.00156 -0.00737 -0.005 8 1 

0.00209 -0.01026 -0.008 17 

0.00052 -0.00802 -0.00750 

-0.0064 

-0.0085 

-0.0072 

0.03459 -0.09601 -0.06142 -0.0623 

0.05625 -0.14948 -0.09323 -0.0937 

0.05461 -0.13552 -0.08091 -0.08 10 

The mixtures used were those specified in Table 10. The computed excess Gibbs energies 
were calculated from the residual chemical potentials given in Table 11 and the densities 
given in Table 10 using equation (103). The configurational parts shown consist of those 
terms in equation (103) involving the residual chemical potentials. 

Simulation results were obtained from reference 8. 
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Table 13 

Comparision of the Proposed Method Using the HMSA Theory to 

Simulation Results For Pure Lennard-Jones Fluids 

Effective 
Diameter, Repulsive Attractive (G - G*)/M~T 

s&!2dls 

1 1.00071 2,3857 -3.5978 -1.2121 -1.3395 - -1.33 

Qn 

(3) 

2 1.00741 7.0620 -8.67 82 -1.6166 -1.9865 -1.94 -1.854 (4) 

3 1.00570 1 1 .M82 -10.9466 0.5016 0.3346 0.68 0.48 ( 5 )  

The conditions examined were: 

Reduced Reduced 

Temperature, Density, 

!As2 m en3 
1 1.5 0.4 

2 1,2 0.7 

3 1.2 0.85 

Notes: 
(1) Eauation of state for D u r e  Lennard-Jones fluids due to Nicolas, Gubbins, Streett, 
. I  

ana Tildesley, refereke (38). 
(2) Perturbation theory due to Fischer from reference (3). 
(3) Result of Shing, Gubbins, and Lucas, reference (5). 
(4) Average of -1.86 (Heinbuch and Fischer, reference 3) and -1.848 (Lofi and 

Fischer, reference 4). 
(5) Result of Heinbuch and Fischer, reference (3). 

For the Lennard - Jones fluid the effective diameters obtained from the proposed method 
disagree with those obtained h m  VW perturbation theory (which were listed in column 3 
of Table 7). Unlike permbation theory, in this work the presence of attractive forces 
infiuences the choice of effective hard sphere diameters. 
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Table 14 
Cornparision Between Exact and SPT Pair Correlation 

Functions at Co ntact With the Hard Point In the HMSA ADWO ximation 

Contact Values of the Pair Correiation Function 
With the Hard Point, gH(d/2;d/2) 

QSs SET HMSA EtxK 
1 1.26564 1.27047 -0.00483 

2 159931 1.59586 0.00345 

3 1.8272 1 1.81737 0.00984 

Lennard-Jones fluids were examined at the following conditions: 

Reduced Reduced 

Temperature, Density, 

GXE kz!€ M3 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

The contact values of the pair cmlation functions are for bath molecules in contact with a 
hard point The effective diameters used are those shown in Table 13. The consistency 
between the SPT contact values from equation (98) the HMSA values suggest that the work 
of inserting the hard point can be reliably obtained frwn equation (30). 



Reduced 
Temp., 

m 
0.928 

0.928 

0.928 

0.928 

0.928 

1.15 

1.15 

1.15 

1.15 

1.556 

1.556 

1.556 

1.556 

1.556 

114 

Table 15 
Cornparision Between the HMSA Equation of State for Pure 

Lennard - Jones Fluids and Molecular Simulation 

Reduced 
Density, 

m3 
0.025 

0.6 

0.7 

0.75 

0.8 

0.05 

0.6 

0.7 

0.8 

0.05 

0.2 

0.4 

0.6 

0.8 

Compressibility 
Factor, P/pkT 

H M s A S i m ,  Error 

0.8488 0.8487 (l) O.OOO1 

-0.8485 -0.819 -0.0295 

-0.3694 -0.385 0.0156 

0.1477 0.0661 0.0816 

0.8965 0.843 0.0535 

Configurational Internal 

HMsASim. Error 
Energy, UckT 

-0.2691 -0.2619 (1) -0.0072 

-4.5650 -4.596 0.03 1 

-5.3099 -5.322 0.0121 

-5.6806 -5.698 0.0174 

-6.0334 -6.037 0.0036 

0.7982 0.802 -0.0038 -0.3755 -0.375 -0.0005 

0.0109 0.0 0.0109 -3.5778 -3.581 0.0032 

0.6075 0.596 0.0115 -4.1626 -4.167 0.0044 

1.8555 1.857 -0.0015 -4.7057 -4.701 -0.0047 

0.8894 0.888 0.0014 -0.2378 -0.236 -0.0018 

0.6321 0.646 -0.0139 -0.9102 -0.983 -0.0072 

8.5034 0.553 -0.0496 -1.7112 -1.724 0.0128 

0.9164 0.955 -0.0386 -2.5255 -2.527 0.0015 

2.7762 2.768 0.0082 -3.2742 -3.273 -0.0012 

Notes: 
(1) The simulation values for this state of 0.866 for the compressibility factor and 

0.238 for the internal energy m apparently in error. The values shown are the 
second virial coefficient results, where P/pkT = 1 + Bp, UCkT = -pT (dB/dT), 
and B is the second virial coefficient at a reduced temperature of 0.928. 

Simulation results were obtained from reference 7. 
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Reduced 
Temp., 
m 
0.928 

0.928 

0.928 

0.928 

0.928 

Table 16 
Cornparision of Chemical potentials From the A.oposed 

Method using the HMSA Themy with Molecular 
Simulation Results T~nnard - Jone s nuids 

Reduced 
Density, 

pn3 

0.025 

0.6 

0.7 

0.75 

0.8 

Imdve 
Diameter 

rila 

1.01987 

1.01768 

1.01700 

1.01657 

1.01604 

Residual Gibbs Free 
Energy, (G - G*)/NkT 

EpnL; Attract.TotalSim. ErrOr 
0.1104 -0.412'7 -0.3023 -0.3026 (1) 0.0003 

5.1364 -9.1003 -3.9639 -4.360 0.3961 

7.3830 -1 1.1679 -3.7849 -3.964 0.179 1 

8.7637 -12.1880 -3.4243 -3.732 0.3077 

10.3776 -13.1973 -2.8197 -2.923 0.1033 

1.15 0.05 1.01210 0.2183 -0.6234 -0.4051 -0.413 0.0079 

1.15 0.6 1.00978 5.0715 -7.4649 -2.3934 -2.689 0.2956 

1.15 0.7 1 .oO904 7.1183 -9.0506 -1.9323 -1.835 -0.0973 

1.15 0.8 1.00800 9.8605 -10.6433 -0.7828 -0.327 -0.4558 

1.556 0.05 1.00060 0.2141 -0.4385 -0.2244 -0.218 -0.0064 

1.556 0.2 1.00017 0.9412 -1.7073 -0.7661 -0.775 0.0089 

1.556 0.4 0.99926 2.3857 -3.4775 -1.0918 -1.192 0.1002 

1.556 0.6 0.99804 4.8698 -5.5770 -0.7072 -0.871 0.1638 

1.556 0.8 0.9961 1 9.1244 -7.8528 1.2716 1.149 0.1226 

Notes: 
(1) The simulation value for this state of -0.266 for the residual Gibbs energy is 

apparently in error. The value shown is the second virial coefficient result, where 
(G - G*)MkT = 2 €39, and B is the second virial coefficient at a reduced 
temperam of 0.928. 

Simulation results were obtained fiom reference 7. 



116 

Table 17 
Comparision of Chemical Potentials From the Proposed 

Method using the MMSA Theory with Results From 
Thermodvnamic Interntion for Pure Lennard - Jones Fluids 

Reduced Reduced Residual Gibbs Free Energy, (G - G*)/NkT 
Temp., Density, 
m asr3 fu (2) This Work Simulation 

1.556 0.05 -0.2243 -0.2245 -0.2244 -0.218 

1.556 0.2 -0.7864 -0.7786 -0.7 66 1 -0.775 

1.556 0.4 - 1.2260 -1.1595 - 1.09 18 -1.192 

1.556 0.6 -0.9661 -0.7810 -0.7072 -0.87 1 

1.556 0.8 1.0751 1.3163 1.2716 1.149 

(1) From integration of the virial pressure, using equation (102). 
(2) From integration of the compressibility, using equation (101). 

Simulation results were obtained h m  reference 7. The charging process used in this 
work with the HMSA theory tends to be overestimate the residual Gibbs energy except at 
low and high densities. At the supercritical temperature used in preparing this table the 
error is small. 
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Table 18 
Compressibilities From the Proposed Methd Using the HMSA Theory Compared to 

Results From the Cmmss  ibilitv Eaua tion For Pure Le mad-Jones Flui& 

czs 
1 

2 

3 

From Compressibility From the Chemical 
Eauation I3z&nw 
0.6724 0.8145 

7.3503 6.7802 

20.5357 19.1750 

The conditions examined were: 

Reduced Reduced 

Temperature, Density, 

cast kzk Jd 
1 1.5 0.4 

2 1.2 0.7 

3 1.2 0.85 

The compressibility equation results we= obtained from the f A  theory using equation 
(15). The results in the chemical potential colunur were obtained by numerically 
diffmntiating chemical potentials obtained hxn the proposed method and applying the 
isotherrnal, non-isobaric Gibbs-Duhem equation. The underestimated values obtained from 
the chemical potentials indicate that the test particle sees a local environment (predicted by 
the HMSA theory) that is reletively incompressible; this resuits in an overestimate in the 
repulsive contribution to the chemicaf potential. 
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Table 19 

Comparision of the Proposed Method Using the HMSA Theory to Simulation 
Results For Chemical Potentials at Infinite Dilution and Different Enerw Ratios 

Solvent-Solute 
Effective 

E&BB  AB 
Diameter, Repulsive Attractive (PA - PA*)/kT 

C o n t m  Tptal Simulation ERQK . .  . .  

0.75 0.99619 6.7854 -6.4927 0.2927 0.067 0.2257 

0.875 1.00281 6.9479 -7.5829 -0.6350 -0.865 0.2300 

1 .o 1.00741 7.0620 -8.6786 -1.6166 -1.848 0.2314 

1.125 1.01265 7.1940 -9.7803 -2.5863 -2.826 0.2397 

1.25 1 -0 1 629 7.2865 -10.8884 -3.6019 -3.861 0.2591 

1.5 1.02279 7.4534 -13.1244 -5.6710 -5.949 0.2780 

2.0 1.03224 7.7004 - 17.68 14 -9.9810 -10.304 0.3230 

In each case the L e ~ a r d  - Jones solute properties at infinite dilution were calculated for a 
Lennard - Jones solvent at a reduced temperature kT/EBB = 1.2 and a reduced density of 

p B B 3  = 0.7, where the subscript B denotes the solvent. Equal size ratios were used: 

= CJBB = om. Each calculation of the work of inserting the hard point was done at an 

effective packing fraction of 5 3  = 0.37473. The estimated slope at EM = EBB = 
residual chemical potential compared to the required slope from the energy equation is, 

of the 

~ ~ ( c L A  - CLA*)/~TI/ I 
IS woa -lation 2KJ - U*MkT 

-7.811 -7.929 -7.928 

where (U - U*)/kT was obtained from the HMSA theory using equation (13). Thus, the 
variation in solute chemical potential with variations in the solvent-solute energy parameter 
agrees with simulation and meets the consistency condition with the internal energy given 
by equation (106). 

Simulation results were obtained from reference 4. 
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Table 20 

Comparision of the Proposed Method Using the HMSA Theory to Simulation 
Results For C h e a  Potena *ds at Infinite Drlunon a nd Different Size Ratios 

. .  

Solvent-Sdute 
Effective 
Diameter, Repulsive Attractive (PA - pA*)bT 

Tp;tplSimulation Esrnr . .  . .  
&&BBl3 & l B b A 3  Contnbutlon 

0.75 1,00799 5.0028 -6.6699 -1.6671 -1.761 0.0939 

1.0 1.00741 7.0620 -8.6786 -1.6166 -1.848 0.2314 

1.5 1.00740 11.3315 -12.5677 -1.2362 -1.979 0.7428 

2.0 1.Oo660 15.6709 -16.3577 -0.6868 -2.144 1.4572 

In each case the Lennard -Jones solute properaes at infinite dilution were calculated for a 
knnard - Jones solvent at a reduced temperaturt kT/&BB = 1.2 and a reduced density of 

~ 0 ~ ~ 3 3  = 0.7, where the subscript I3 denotes the solvent Equal energy ratios were used: 
EAA = EBB = EB. Each calculation of the work of hserthg the hard point was done at an 
effective packing fraction of e 3  = 0.37473. The estimated slope at OM = CYBB = OM of 
the residual chemical potential compared to the required slope h m  the pressure equation 
is, 

This Worh Simulation- §a- 1) 
1.356 -0.934 -1.373 

w h m  2 = P/pkT was obtained from the HMSA theory using equation (14). Thus, the 
variation in solute chemical potential with variations in the solvent-solute size parameter 
disagrees with simulation and violates the consistency condition with the virid pssure 
given by equation (105). 

Simulation results were obtained from reference 4. 
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Table 21 
Effect of Size and Energy Ratios on the 

Predicted Chemical Potential for Near Critical States 

Solvent-Solute 
Effective 
Diameter, Repulsive Attractive 

U * S A * ) f l C T  
. .  

g&BB &E&BB)3 hJ3&4B ContrlbutlQn 

1.0 1.0 1.00367 1.9314 -3.3122 -1.3808 

1.125 1.0 1.00898 1.9612 -3.7778 -1.8166 

1.0 1.25 1.00400 2.3938 -4.057 1 - 1.6633 

In each case the L e ~ a r d  - Jones solute properties at infinite dilution were calculated for a 
knnard - Jones solvent at a reduced temperature kT/&BB = 1.4 and a reduced density of 

pGBB3 = 0.35, where the subscript B denotes the solvent. Each calculation of the work of 

inserting the hard point was done at an effective packing fraction of 53 = 0.18528. The 

estimated slopes of the residual chemical potentials at EM = E- = EBB and CJAA = OM = 
OBB compared to the required slopes from the energy and pressure equation are: 

where (U-U*)/kT and Z = P/pkT were obtained from the HMSA theory using equations 
(13) and (14), respectively. Thus, the variation in solute chemical potential with variations 
in the solvent-solute energy and size parameters meets the conditions for consistency with 
the internal energy (equation 106) and with the virial pressure (equation 105). The 
hconsitency noted in Table 20 disappears at supercritical temperatures. 



121 

Interaction 
Q&&J 

1- 1 

1-2 

2-2 

Table 22 
The Lennard - Jones Parameters Used 
Fur the Finite Concenmtion Mixtureg 

Sue 

Qij- 

3.800 

4.375 

4.950 

Energy 

&jKelvin 

225.000 

29 1.247 

377.000 
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Table 23 

The Volumetric Properties Predicted From the HMSA 
Theory For Mixtures of L e ~ a n l -  Jones Particles at Finite Concentration 

Comuared to Results From Molecular Simulation 

Mole 9% 
Large, 

x2 
Vapor Phase 

0.19 

0.12 

0.1 

Liauid Phase 

0.625 

0.5 

0.375 

0.25 

Reduced Compressibility 
Density, Factor, P/pkT 

WZ3 HMSA 

0.09 

0.13 

0.24 

0.8504 0.862 

0.8201 0.829 

0.7010 0.732 

0.86 0.1246 0.090 

0.88 0.0829 0.122 

0.92 0.1671 0.191 

0.9 1 0.2148 0.232 

Error' 

-0.01 16 

-0.0089 

-0.03 1 

0.0346 

-0.039 1 

-0.0239 

-0.0172 

All mixtures were! at a reduced temperature of kT/&z = 0.928, where the index 2 denotes 
the large species. The Lennard - Jones parameters for each species rn listed in Table 22. 

Simulation results were obtained from reference 7. 
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Table 24 

Residual Chemical Potentials Predicted by the Proposed Method in Finite 
ConcentrationMixturesUs in E th e HM SA,  I n t e d  Eauation Theory 

Effective Residual Chemical Potentials 

1 1.OOO64 1.16338 1,16365 1.32845 0.1925 -0.4287 -0.2362 

2 1.00060 1.16332 1.16361 1.32892 0.2702 -0.5785 -0.3083 

3 1.ooo46 1.16311 1.16347 1.32821 0.5063 -1.0336 -0.5273 

Liquid Phase 

4 0.99823 1.16021 1.16061 1.32457 4.7627 4.0796 -1.3169 

5 0.99842 1.16043 1.16087 132485 4.2998 -5.6340 -1.3342 

6 0.99852 1.16054 1.16100 132499 4.0327 -5.3202 -1.2875 

7 0.99880 1.16086 1.16138 1.32542 3.3752 4.6444 -la= 

0.2953 -0.8744 -0.5791 

0.4158 -1.1816 -0.7658 

0.7736 -2.1042 -1.3306 

7.7473 -11.1946 -3.4473 

6.9438 -10.4386 -3.4948 

6.4922 -9.9300 -3.4378 

5.3635 -8.7591 -3.3956 

The temperatures, densities, and compositions for the cases listed above are given in Table 
23. The L e ~ a r d  - Jones parameters used are given in Table 22. The 1-1 and 2-1 effective 
diameters wen determined during the calculation of pl and the 1-2 and 2-2 diameters were 
determined during the {separate) calculation of p2. The 1-2 and 2-1 effective diameters 
differ slightly since these values are accurate to only three decimal places. 
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Table 25 
Chemical Potentials Predicted by the Method in Finite 

Concentration Mixtures Cornmired to Simulation Results 

Chemical Potentials(') 

1 

& l k M E 2 d S i m . m  
VaDor Phase 
1 -2.649 -2.657 0.008 
2 -2.298 -2.303 0) 0.005 
3 -1.911 -1.90 [5] -0.011 

Subm- 
.. 

i 2  

Method Sim. E m r  

-4.313 -4.3 [l]  -0.013 , 

-4.572 -4.5 [l] -0.072 
-4.696 -4.7 [l]  0.004 

Liauid Phase 
4 -2.272 -2.55 [5] 0.278 -3.775 -4.3 [l] 0.525 
5 -2.000 -2.19 [5 ]  0.190 -4.005 -4.5 [l] 0.495 
6 - 1.708 -1.90 [5] 0.192 -4.178 -4.7 [l] 0.522 
7 -1.532 -1.72 [5] 0.188 -4.525 -4.9 [l] 0.375 

The temperatures, densities, and compositions for the cases listed above are given in 
Table 23. The Lennard - Jones parameters used are given in Table 22. The figures in 
square brackets indicate the estimated (by the original authors) error in the last digit of 
the simulation results. Results for the vapor phase are in agreement with simulation. 

for the saturated liquid are poor. 

The chemical potentials presented in this Table are, 

1 (residual chemical potential of i) 
kT 

where the residual chemical potentials divided by kT are given in Table 24 and 
the reduced densities and compositions are given in Table 23. These units are 
used in the Table since the quoted error bounds on the simulation results include 
unknown errors in density and composition and they can not be converted with 
certainty to a residual basis. 
The value shown is the result obtained from second virial coefficients. The 
simulation result was -2.55 [5]. 
The value shown is the result obtained from second virial coefficients. The 
simulation result was -2.19 [SI. 

Simulation results were obtained from reference 7, 
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Table 26 

The predicted Chemical Potent4 of a a g e ,  

A-0 've. Dilute Solute i n a  NearCn 'tical Sol vent 

Solvent-Solute 
Effective 
Diameter, Repulsive Attractive 

mBB3 &wQAE & A S A ' ) l k T  * 

0.35 1.03809 3.6953 -18.9897 - 15.2944 

The Lennard - Jones solute properties at infinite dilution were calculated for a Lemard - 
Jones solvent at a reduced temperarwe kT/&BB = 1.4, where the subscript B denotes the 
solvent The wark of inserting the hard point was done at an effective packing fraction of 
c 3  = 0.18528 (as in Table 21). 
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Figure 1 
Kirkwood Charging Scheme 
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Figure 3 
Multi-steD Charging Scheme 

/ Choose diameters effei so 

-lard 
;phere 

New 
Particle of 

ive 



129 

Figure 4 
Jnserting the Hard Sphere 
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Figure 5 
Pair Correlation Functions About 

an Inserted Hard Sphere 
Test particle-1T bath molecule 
Pair Correlation 

diameter for 

I .2 1.4 1.6 1 .e 2.0 2.2 2 .4  2.6 

Interparticle separation distance, r /OBB 

An example of the pair correlation functions for a pure Lennard - Jones (denoted by B) 
fluid about an inserted hard sphere. The diameter of the hard sphere equals some 
specified minimum distance of closest approach between the inserted particle and the 
Lennard - Jones particles: for small separations the pair correlation function is zero. 
The contact value of the pair correlation function is used in the calculation of the work 
required to insen the hard sphere into the fluid. The larger the contact value is the 
more molecules will be in contact with the hard sphere and the larger the work of 
insertion will be. The correlation function shown was determined with the HMSA 
integral equation theory. 
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Figure 6 
Softening the Hard Sphere 
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Figure 7 
Internand of the Work of Softening Formula 

Contribution to the work of softening 

kT 
" T 
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Effective 
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The integral of the above function gives the work required to change a hard sphere 
test particle into a softly repulsive WCA test particle. The function is the integrand 
of equation (88). neglecting the integrals over the bridge functions. The effective 
hard sphere diameter has been chosen so that the work of softening is zero. The 
shape of the function is similar to that of the "blip" function used in perturbation 
theories. However, for fluids which are not purely repulsive the effective diameter 
differs slightly from that of perturbation theory, since the function includes the 
effects of attractions between the bath molecules. The diameters determined by the 
method depend on the attractive forces in a way which is different drom 
perturbation theories. 
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Figure 8 
Charging the Attractive Potential 
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Rate of change of Helmholtz Energy 
With Change in the Attractive Coupling 

Figure 9 

Attractive coupling parameter, h 
0 0  0.1 0.2 0.3 0 4 0.5 0 6  0 7  0 8  0 9  1 0  

- 16.5 

molecules and the test particle 
- 17.0 

- 17.5 

Attractive forces ful ly  

- 18.0 

- 18.5 

- 19.0 

Integrand of equation 92 for the case of a Lennard-Jones salute present at 

infinite dilution in a Lennard-Jones solvent. The solvent conditions were 

kT/ E B B  = 1.2 andp& = 0.7, where the subscript B denotes the Lennard-Jones 

parameters for the solvent. The solvent-solute parameters were, 

and E-= 2 EBB 
= oBB 

The linearity of the function simplifies the numerical 

integration needed to determine the attractive contribution to the chemical 

potential. The integral over the coupling parameter gives the attractive 

contribution, which is in this case -17.6814. 
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Figure 10 
HMSA Pair Correlation Functions About 

the Effective Hard Suhere Compared 
to Those About the WCA Repulsive Test Particle 

Pure Lennard-Jones bath ui supercritical conditions 

Test particle - U 
bath molecule pair 
correlation 
function 
1.6 

0.8  

0.4 

0.2 

Correlation function about / the effective hard sphere. (f = 1) 

h 
..... 

Correlation function about 
the softly repulsive 
WCA particle. 

(5 = 0) 

I 

1.2 I .4 1.6 1 .a 2.0 2.2 

-1 i 
0 .0  

0.6 0.0 1 .o 

Interparticle separation distance, r/ a 

The pair correlation functions of a pure Lcnnard - Jones fluid about a WCA 
repulsive particle with the same size and energy parameters are compared to 
those about the effective hard sphere. In the case shown the fluid is at a reduced 
temperature of kT/ E = 1.5 and a xeduced density of pa3  = 0.4. For an effective 
hard sphere size determined as &&bed in Figure 7, the strumre about the 
hard sphere accurately represents that about the WCA repulsive particle. They 
differ only within are narrow range of separation distances about the contact 
point. Intuition requires that an appropriate hard sphere model of a softly 
repulsive test particle will exhibit a hard sphere - bath molecule pair 
correlation function which mirnicks the soft sphexe - bath molecule function. 
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2 5 

4 
\ Correlation funcaon about 
\ /the effccuve hard sphere. (5 = 1)  
\ 

.- 

The pair correlation function about a large WCA repulsive solute in a pure 
knnard -Jones bath is compared to that of its effective hard sphere. The fluid is 
at a reduced temperature of kT/EBB = 1.2 and a reduced density o f P e B  = 0.7, 
where the subscript B denotes the Lennard - Jones parameters of the solvent bath. 
The bath and solute have equal energy parameters and the size parameters are given 
by (%B/%IB)~ = 2. In this case the choice of effective solvent - solute diameter 
also allows the structure about the large WCA repulsive particle to be approximated 
by the structure about the effective hard sphere, except for separation distances 
in the neighborhood of the contact point. 
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Figure 12 
HMSA Pair Correlation Functions About 

the Effective Hard Sphere Compar ed 
to Those About the WCA Rep ulsive 

Test Particle 
Pure Lennard - Jones bath at compressed liquid conditions 

Test particle - I J  bath 
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The pair correlation functions of a pure Lennard - Jones fluid about a WCA 
repulsive particle with the same size and energy parameters are compared to 
those about the effective hard sphere. In the case shown ?he fluid is at a reduced 
temperature of kT/ = 1.2 and a reduced density of pa3 = 0.85. For an effectivi 
hard sphere size determined as described in Figure 7, the structure about the hard 
sphere accurately represents that about the WCA repulsive particle. They differ 
only within are narrow range of separation distances about the contact point. 
Figures 10,ll and 12 show that method of specifying the effective diameters 
yields structures about the hard spheres which always approximate those about 
the WCA repulsive particles. 
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Figure 13 
HMSA Bridge Functions About 

the Effective Hard SDhere Compared 
to Those About the WCA Repulsive 

Test Particle 
Pure Lennard-Jones bath at supercrihcal conditions 

Interparticle separation distance, r/ 
0.7 0.0 0.9 1 .o 1 1  1.2 1 3  

0.00 
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test panicle 

-0 12 

-0.14 

hard sphere Test particle - U 
bath molecule 
bridge function 

Bridge functions about the WCA repulsive and hard sphere test particles for the 
conditions of Figure 10. The bridge functions for the two cases are nearly 
identical, implying that the integral over their difference in equation (88) can be 
neglected. This allows the work of softening to be determined using only 
correlation functions from the initial and frnal states of the softening process. 
Without such a simplifiction in the work of softening there would be little 
incentive to using a charging path which proceeds through the hard sphere 
particle and which applies the scaled particle theory. 
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Figure 14 
J-IMSA Bridge Functions About 

the Effective Hard Sphere Compared 
to Those About the WCA Repulsive 

Test Part icle 
For a large test particle immersed in a pure Lennard - Jones 

bath at condirions near saturated liquid 

Interparticle separation distance, r/ 0 33 
1 .o 1 . 1  1.2 1.3 1 4  1 .s 1 6  
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Bridge functions about the WCA repulsive and hard sphere test panicles for the 
conditions of Figure 11. Once again, the bridge functions for the two cases are 
nearly identical, implying that the integral over their difference m equation (88) 
can be neglected. Therefore, thc conclusions of Figm 13 also apply here. The 
large asymmeuy of the components in the mixture does not reduce the accuracy 
of the assumption that the bridge functions axe invarient during the softening 
process. 
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Figure 15 
HMSA Bridlee Functions About 

the Effective Hard Sphere Comnared 
to Those About the WCA Repulsive 

Test Particle 
Pure Lennard - Jones bath ut compressed liquid conditions 

Interparticle separation distance, r/ CJ 
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Bridge functions about the WCA repulsive and hard sphere test particles for the 
conditions of Figure 12. Once again, the bridge functions for the two cases are 
nearly identical, implying that the integral over their difference in equation (88) 
can be neglected. Therefore, the conclusions of Figure 13 also apply here. In 
this case, the assumption of the invarience of the bridge functions remains 
accurate even though their magnitude is large. Figures 13.14 and 15 together 
show that the bridge function integrals can be neglected under all conditions. 
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Figure 16 
Predicted Excess Gibbs Free Energies 

of Mixing in Softly Repulsive WCA)  Fluids 

Mole fraction small species, x 
0 0 0 I 0.2 0.3 0 4 0.5 0 6 0.7 0 . 8  0 9 1.0 

(from equation 103) 
NkT 

Lines - theory 
Symbols - Simulation of Haile 

(reference 8 I 

Excess Gibbs free energies of mixing WCA repulsive fluids at constant pressure 
Pof, /E11 = 0.5 and temperature kTkl, = 1.0. The fluids being mixed have equal 
energy parameters and unequal size parameters. The proposed method accurately 
predicts the free energies of mixing of these nearly ideal mixtures; qualitative 
features such as the asymmetry of the bottom curve are predicted correctly. 
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Figure 17 
Comuressibilitv Factors in Pure 

Lennard-Jones Fluids 
Comparision of HMSA results to molecular simulation 

Compressibility factor, 

A comparison of compressibility factors for pure Lennard-Jones fluids 
obtained with the HMSA theory with simulation results from references 
(7) and (39). Results for three isotherms are plotted versus reduced 
density. The highest temperature isotherm is supercritical, the others are 
subcritical. The HMSA theory accurately describe the P-V-T properties 
of Lennard-Jones fluids. Thus, it should be possible to obtain accurate 
chemical potentials using it. 
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Figure 18 
Predicted Residual Gibbs F ree Energies 
in Pure Lennard-Jones Fluids Compared 

With Simulation 
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The residual chemical potentids divided by the reduced d- n-d v-nus 
reduced density for &e different isothefis, as an those obtained &om simulation. 
Simulation results an from reference (7). The intercept of each isotherm is twice 
the rtducxd second virial coefficient. ?he highest temperature isotherm, which is 
supercritical, is well desaibed by the method. For the two subcritical isotherms the 
method yields accurate results at the lowest and highest densities. 
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*, x Simulation 
Proposed Method with HMSA 

Figure 19 
Predicted Residual Gibbs Free Energies 
in f i r e  Lennard-Jones Fluids Compared 

With Simulation 
high density range 

Reduced Density, PO 4 
0 5 5  0.60 0.65 0.70 0.75 0.80 0 . 8 5  

G - G *  - 
(PO' ) NkT 

The residua chemica ootentia 

1.2 

I divided by reduced density are plotted versus 
reduced density for the'high density range, as are those obtained from simulation. 
Simulation results are from references (7) and (3). This figure shows the high 
density range of Figure 18 and includes an additional isotherm at a reduced 
temperature of 1.2. The proposed method yields very accurate results at the 
highest densities. The temperature dependence of the methods results is also very 
good. The slope of the method's results with respect to density is less than that 
of the simulation data for the density range shown. 
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Figure 20 
Predicted Res idual Gibbs Free Energies 

Compared to,Th e m d v  namic Integration 
For Pure Lennard - Jones Fluids 

Reduced Density, PO3 
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The residual chemical potentials divided by reduced density are plotted versus 
reduced density at a reduced temperature of 1.556, as an those obtained from 
sirnufation. Simulation results anz from reference (7). Also plotted are results 
from two different thermodynamic integrations of HMSA properties (which yield 
different results due to failure of the local consistency criterion). There is a slight 
thermodynamic inconsistency between the method and the P-V-T properties of the 
bulk fluid. The inconsistency disappears at the highest and lowest densities. 
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Figure 21 
Predicted Residual Chemical Potentials 

of a Dilute Lennard - Jones Solute 
in a Lennard - Jones Solvent 

versus Energy Ratio 

-- 
- 

well depth, &AB /EBB solvent-solute 
solvent-solvent 

1 .o 1.2 I .4 I .6 I .e 2 0  0 6  0.8 

* 
P A  - P A  
kT 

-. 
---\ 

3- 
--\ t 

Solute identical to 
solvent 

-\ 

Simulation (reference 4) I HMSA I 
The residual chemical potential of an infinitely dilute solute is plotted versus the 
ratio of Lennard-Jones well depths. The solvent is at a reduced temperature of 
1.2 and a reduced density of 0.7. The solvent and solute have equal Lennard - 
Jones size parameters. The method exhibits the correct trend in the chemical 
potential as the energy ratio is vaned, the chemical potential declining nearly 
linearly as the solvent-solute attraction is increased. The correct slope indicates 
consistency with the energy equation, meeting the test of equation (106). 
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Figure 22 
Predicted Residual Chemical Potentials 

of a Dilute Lennard - Jones So lute 
In a J,ennard - Jones Solvent 

versus S ize Ratio 
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solvent- solute 
solvent-solvent 

size parameter, GAB / oBB __+c 

T 
Solute identical 
to solvent 

Simulation (reference 4) - HMSA - Tangent to simulation 

m 

The residual chemical potential of an infinitely dilute solute is plotted versus the 
ratio of Lennard-Jones size parameters. The solvent is at a reduced temperature 
of 1.2 and a reduced density of 0.7. The solvent and solute have equal Lennard - 
Jones energy parameters. The method exhibits the wrong trend in the chemical 
potential as the size ratio is varied, the predicted chemical potential increasing 
rather than decreasing as the solvent-solute size is increased. The incorrect slope 
indicates inconsistency with the vinal pressure equation; the method fails to meet 
the test of equation'(l05) under these conditions. 
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Interparticle separation distance, r /OBB 

The pair correlation function for the case of a solute present at infinite dilution 

in a Lewd-Jones  solvent. 'Ihe solvent conditions were kTkBB = 1.2 and 

paBB = 0.7, where the subscript B denotes the Lennard-Jones parameters 

for the solvent. n e  solvent-solute parameters were, (0- /OB,) = 2 and 

Em= EBB 

about the infinitely dilute solute, except for a small descrepancy in the 

neighborhood of the fmt peak. 

3 

3 

The HMSA theory accurately predicts the structure of the solvent 
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The pair correlation function for the case of a WCA repulsive test particle in a 
Lennard - Jones bath. The bath is identical to the solvent used in Figure 23 and 
the test particle has molecular parameters identical to those of the solute in Figure 
23. Thus, the WCA repulsive test particle represents a solute molecule with the 
attractive force de-coupled. Also shown is the HMSA correlation function about 
the effective hard sphem The HMSA correlation function about the WCA 
repulsive particle is considerably steeper than simulation; it can be expected that 
the correlation function about the hard sphere is also too steep at contact. This 
latter error causes the repulsive contribution to the chemical potential to be 
overestimated. That is, the overprediction of the first peak height made by the 
HMSA theory results in an overestimate of the work requixtd to insert a WCA 
repulsive test particle. 
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Figure 25 
HMSA Pair Correlation Functions About 

a Small WCA Re~ulsive Test Particle 
in a Lennard - Jones Bath 

ComDared to Molecular Simulation 
For a bath near saturated liquid conditions 

Test particle - LJ bath 
molecule pair 
correlation function 

A 
= Simulation about WCA - HMSA about WCA 

0 .o I 

0.5 I .o 1.5 2.0 2.5 3.0 3.5 4 0  

Interparticle separation distance, r /OBB 

The pair correlation function for the case of a WCA repulsive test particle in a 
knnard -Jones bath. The bath is identical to the solvent used in Figure 23. The 
test particle has molecular parameters identical to those of the solvent. Thus, the 
WCA repulsive test particle represents a solvent molecule with the amactive 
force de-coupled. As in Figure 24, the first peak of the HMSA correlation 
function about the WCA repulsive particle is considerably higher than simulation, 
resulting in an overprediction of the repulsive contribution to the chemical 
potential. 
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Figure 26 
HMSA Pair Correlation Functions About 

a Small WCA Remlsive Test Particle 

.." x-. - ------/U..- 

.- 
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.I -- 
= Simulation about WCA - HMSA about WCA - -  

* 4 

in a Lennard - Jones Bath 
Conmared to Molecular Simulation 

For a bath near the critical point 

Interparticle separation distance, r /GBB 

The pair correlation function about a WCA repulsive particle immersed in a pure 
solvent is plotted versus separation distance divided by the solvent size parameter. 
In this case the solute size and energy parameters are identical to those of the 
solvent. The solvent is at a reduced temperature of 1.5 and a reduced density of 
0.4. Under these conditions the HMSA theory accurately represents the 
correlation functions abour the test particle for every value of the attractive 
coupling parameter. The proposed method for calculating chemical potentials 
works well in this case. 
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Figure 27 
HMSA Pair Correlation Functions About 

a Small WCA Renulsive Test Particle 
in a Lennard - Jones Bath 

ComDared to Molecular Simulation 
For a compressed liquid bath 

Test particle - LJ bath 
molecule pair 
correlation function 

- Simulation about WCA 
- HMSA about WCA 

0 5  1 0  1 5  2.0 2.5 3 0  5 s  

Interparticle separation distance, r /GBB 

The pair correlation function about a WCA repulsive particle immersed in a pure 
solvent is plotted versus separation distance divided by the solvent size parameter. 
In this case the solute size and energy parameters are identical to those of the 
solvent. The solvent is at a reduced temperature of 1.2 and a reduced density of 
0.85. Under these conditions the HMSA theory accurately predicts the correlation 
function about the WCA repulsive test particle. The HMSA pair correlations 
change little with the attractive coupling parameter - this lack of change is a 
consequence of the fact that the closure approaches the SMSA limit in this case 
(a =0.208 ). The method accurately predicts the chemical potential for this fluid 
since the correlation functions are accurately predicted for every value of the 
coupling parameter. 
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Figure 28 
HMSA Pair Correlation Functions 

in a Lennard - Jones Mixture 
ComDared to Molecular Simulation 

A model of carbon dioxide and acetone 

- Function, g 11 

. . . . . . . . . . . . . . .  . n ...-,-.._ .. .  .........--...-. ........... - - ...... . . . . . . . . . .  
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Simulation 

-- 

-- 

- -  

The '1 - 1' pair correlation function in a mixture consisting of the following 
Lennard - Jones species: 

0,,=3.8 A 0,2=4.375 A 022= 4.95 A 
Erl/k = 225 K 

kT/EI1' 15549 p = 0.39812 X I  ~ 0 . 5  

E 12/k = 291.247 K E22 /k = 377 K 
The conditions were: 

The HMSA theory accurately reproduces the pair correlation function obtained 
from molecular simulation. The accurate structural results obtained from the 
HMSA theory imply a low error in the attractive contribution to the chemical 
potentials determined from the proposed method. Therefore the large positive 
error in the predicted chemical potentials must be due, at least in part, to errors 
in the repulsive contribution. 
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Figure 29 
HMSA Pair Correlation Functions 

in a Lennard - Jones Mixture 
ComDared to Molecular Simulation 
A model of carbon dioxide and acetone (cont.) 

-- 
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Pair Correlation 
Function, g 
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The '1 - 2' pair correlation function for the same conditions as in Figure 28. 
Again, the agreement of the HMSA theory with simulation data is good. 
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HMSA Pair Correlation Functions 
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Compared to Molecular Simulation 
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Simulation - -  

I 

A model of carbon dioxide and acetone (cont.) 

P, 

The '2 - 2 pair correlation function for the same conditions as in Figure 28. 
Again, the agreement of the HMSA theory with simulation data is good. 
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C 
C 
C 
C 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAH SPT 
PURPOSE- CALCULATES THE CHEHICRL POTENTIAL OF A SOLUTE 

IN A FLUID USING A TEST PARTICLE HETHOD. 

DATE 6/16/87 
REVISED 9/20/87 -TO USE DISTRIBUTION FUNCTIONS OBTAINED 

FROH INTEGRAL EQUATION THEORIES, 

FOR EACH CALCULATION OF THE SRTH MOLECULE 
DISTRIBUTION FUNCTIONS. 

HAIN PROGRRfl BY DAVID PFUND 
(SOURCE CODE, DOCUHENTRTION, EXAHPLE INPUT AND OUTPUT RRE 

10/21/88 -TO ALLOU HULTIPLE TEST PARTICLE CALCS 

AUA I LABLE UPON REQUEST) 

THIS ROUTINE CALLS: SUBROUTINE FILES-TO SET 1/0 DEUICE 
NUHBERS . 
INTERACTION POTENTIAL THE USER DESIRES 
AND READS THE PARRHETERS. 
SUBROUTINE STATE-READS THE DESIRED 
CONDITIONS OF TEHPERATURE AND DENSITV. 
SUBROUTINE REDUC-CALCULATES REDUCED 
POTENTIAL PRRAtlETERS FROtl THE ABSOLUTE 
ONES. 

DISTRIBUTION FUNCTIONS FOR THE HlXTURE 
USING THE HtlSA CLOSURE. 
SUBROUTINE PRINTR-PRINTS THE RESULTS 
FOR THE BULK PHASE PROPERTIES AND 
DISTRIBUTION FUNCTIONS. 
SUBROUTINE GOOF-PRINTS ERROR HESSAGES 
UHEN "FlNDA' FAILS TO COHPUTE THE BULK 
PHASE PROPERTIES. 
SUBROUTINE TPRRflS-READS THE DESIRED 
(TRIAL) CAUITY DIRHETERS. 
flLS0 RERDS COHPONENT HOLECULAR WEIGHT. 
SUBROUTINE HUDRUR-CALCULflTES THE 
CHftllCRL POTENTIAL OF THE SOLUTE. 
SUBROUTINE PRNTnU-PRINTS THE RESULTS 
OF THE CHEnlCAL POTENTIRL CRLCULRTIONS. 
SUBROUTINE HUGOOF-PRINTS ERROR llESSAGES 
UHEN "HUDRUR" FAILS TO COHPUTE THE TEST 
PARTICLE PROPERTIES. 

SUBROUTINE PARHS-DETERHINES THE 

SUBROUTINE FINDR-CRLCULRTES THE RRDIRL 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
ItlPLlClT REAL*8(R-H,O-Z) 
RERL*8 
REAL*8 
RERL*8 
REAL*8 
REflL*8 
REAL*8 
REAL*8 
REflL*B 
REAL*B 
RERL*8 
RERL*8 
REAL*8 

G (  2048,3), PA I R(2048,3), D I RECT( 2048,3) 
TOTAL( 2048,3), flATH(2048,3) 
RFFINS(2,2) 
AS 1 GtlA(31, KEPS I (3) 
SOFTD (3  1 
SlGnR(3),EPSI (3) 
RSOFTD (3) 
R O ( 3 )  
TEHP,Xl 
YU,VUIDL,ENERGY,ALPHA,COHPC 
HU 
PRESSU,CERROR,YUHS 
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REAL*8 INTl,INT2 
REAL*8 El, E2 
INTEGER ERROR,COUNT 
INTEGER DOlT 
LOGICAL OKPAR,OKCON,OKTP 
LOGICRL LOTS 
COflHON/DEUICE/NIN,NOUTl,NOUT2 

C INITIALIZE 1/0 DEU 
C 

CALL FILES 
CALL DETAIL(L0TS) 

C 
C GET DESIRED POTENT 
C 

CALL PRRllS (OKPRR , KEPS I , SOFTD 1 
C 

1 NOPT 
CE NUIIBERS. 

AL AND PRRAflETERS. 

C GET DESIRED STATE CONDITIONS. 
C 

JP=2 
IF(0KPAR) THEN 

200 CONT I NUE 
Ell=KEPSI(l) 
CALL STATE(OKCON,EI l,RO,TEIlP,Xl,DOIT) 
IF(OKC0N) THEN 

C 
C FIND THE BULK PHASE PROPERTIES AND THE DISTRIBUTION FUNCTIONS FOR 
C THE BATH HOLECULES. 
C 

CALL REDUC(KEPSI,SOFTD,EPSI,RSOFTD) 
TRED=TEIlP/KEPS I ( 1 ) 
ERROR-0 
CALL FINDA(NBIG,Nfl,DR,JP,RSOFTD,EPSI,RO,TRED,G, 

$ 
$ PRESSU,ENERGY,TCORR,COHPC,CERROR,COUNT, 
$ ERROR,RFFINS) 

PA IR,DIRECT, TOTAL, BATH, ALPHA, 

IF(ERROR.EQ.0) THEN 
C PRINT BULK PHASE PROPERTIES AND DISTRIBUTION FUNCTIONS. 

CALL PRINTR(LOTS,DR,PAIR,DIRECT,TOTAL,BATH, 
$ KEPSI,SOFTD,TEHP,RO,Xl,G,COUNT, 
$ ALPHA,PRESSU,ENERGY,CERROR,COHPC,AFFINS) 

ELSE 
CALL GOOF( ERROR, KEPS I , SOFTD, TEnP, RO,  X1) 
JP=2 

END IF 
I F ( ( E R R O R , E Q . O ) . A N D . ( D O I T . E O . 1 ) )  THEN 

C 
C DOlT * 1 :  
C UANT TO DO R CHElllCAL POTENTIAL CALCULATION. 
C RERD IN RSSUHED EFFECTIUE DlAnETERS FOR THE CAVITIES (DIHENSIONLESS). 
C ALSO READS IN A SUITCH WHICH INDICATES WHICH SPECIES THE TEST 
C PARTICLE I S .  

CALL TPARHS( OKTP, I POT, HU DRNEU , DL I KE, DUNLKE) 
IF(0KTP) THEN 

300 COHT I NUE 
C CALCULFITE CHEHlCAb POTENTIRL. 

CALL HUDRUR(NBIG,Nfl,DR,DRNEU,lPOT,KEPSI,SOFTDJ 
s 
$ PRESSU,COHPC,DLIKE,DUNLKE,nW,G, 

EPS I ,  RSOFTD, TEIlP, TRED, RO, X1, JP, ALPHR, 
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$ ASIG~A,VU,YUIDL,YUHS,lNTl,lNT2,EllE2, 
$ DflUDRO, ERROR) 

IF(ERROR.EQ.0) THEN 
C PRINT CHElllCAL POTENTIAL AND ANALYSIS OF ATTRACTIVE, REPLUSIUE, 
C RND IDEAL TERI1S. 

$ 
$ 

C 

CRLL PRHTIIU(lPOT,DRNEW,DLIKE,DUNLKE, 
INTl, INT2,El,E2,YU,YUlDL.,WHS,nW, 
DIIUDRO) 

ELSE 

END IF 
CALL tlUGOOF(ERROR,DLIKE,DUNLKE) 

CALL TPRRtlS(OKTP,IPOT,tlU,DRNEUIDLIKE,DUNLKE) 
IF(0KTP) GOT0 300 

END IF 
END IF 

ELSE 
CRLL PRRtlS(OKPRR,KEPSI,SOFTD) 
JP-2 
JP= 1 

END IF 
IF(0KPAR) GO TO 200 

C IPOT NEGATIUE ItIPLlES USER URNTS TO QUIT, 
END IF 
END 

Y 

C SUBROUTINE SIIOOTH 

C TEST PARTICLE GAtltlR FUNCTIONS FROH THOSE OBTAINED 
c FROfl THE BATH. AN INTERPOtRTlON ROUTINE. 
C 
C DATE 1 1 /01/88 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CRLLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C PURPOSE-SILLY SUBROUTIHE TO f lAKE UP AN INTIRL GUESS FOR THE 

SUBROUTINE SHOOTH(N,DROLD,DR,GOLD,G) 

REAL*8 GOLD(N,3), G(N, 3) 
RERL*8 DROLD, DR 
REAL*8 RERLK,REALI,RAD 
REAL*8 RO,Rl 
IHTEGER I,K 
COtItlON/DEUICE/NIN,NOUTl,NOUT2,itiOPT 

IllPLlClT REflL*8(A-H,O-Z) 

C SUBROUTINE SnOOTH INTERPOLATES BETUEEN THE GAtlnR FUNCTiOHS FOR THE 
C BATH ‘GOLD’ (UHICH ARE SPACED RT ”DROLD’) TO 08TAIN INTIAL GUESSES 
C FOR ”G“ (UHICH RRE SPRCED AT “DR”). 

DO 100 K=l,N 
REALK=K 
RAD=REALK*DR 
I=RRD/DROLD 
IF(I .EQ.O) THEN 

REALI=l.ODO+I 
Rl=REALI*DROLD 
G(K, 1 )=((GOLD( 1+2,1 )-GOLD( 
G(K,1)=G(K,l)+GOLO(l+l,l) 
G(K,2)~((~OLD(l+2,2>-GOLD( 
G(K,2)=G(K,Z)+GOLD( 1+1,2) 
G(K,3)1( (GOLD( I +2,3)-GOLD( 

+ 1 , 1  ))/DROLD)*(RAD-R 

+1,2) )/DROLD)*(RRD-R 

+1,3) )/DROLD)*(RRD-R 
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G(K,J)=G(K,S)+GOLD( 1+1,3) 
END IF 
IF((I.GT.O'),ANO.(l.LE. (N-1))) THEN 

REAL I = I 
RO=REALI*DROLD 

G(K, 1 )=G(K, 1 )+GOLD( I ,  1 )  

G(K,2>=G(K,2)+GOLD(I,2) 

G(K,3)=G(K,J)+GOLD( I ,3) 

G(K, l)~((GOLO(l+l,l)-GOLO(l, l))/DROLD)*(RAD-RO) 

G(K,Z)=((GOLD( I+1,2)-GOLD( I ,Z))/DROLD)*(RAD-RO) 

G(K,3)=((GOLD(l+1,3)-GOLD( I ,3))/DROLD)*(RAD-RO) 

END IF 
lF(l.GT.(N-l)) THEN 

G(K,l)=O.ODO 
G(K, 2) =O.ODO 
G(K,S)=O.ODO 

END IF 

C DO 200 l=2000,2048 
C 
C 200 CONTINUE 
C STOP 

100 CONTINUE 

UR I TE(NOUT2, *)GOLD( I, 1 ) , G( I ,  1 

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE RHODtlU 
C PURPOSE-COtlPUTES THE DENSITY DERIUATIUE OF THE CHEnlCRL 
C POTENTIAL OF THE SPECIES OF INTEREST TltlES THE DENSITY 
C OF THAT SPECIES. 
C 
C DATE 1 0/3 1 /88 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CRLLS: FUNCTION DERIU- NUtlERlCALLY DIFFERENTIRTES 
C THE CHEHICRL POTENTIAL U . R . T .  DENSITY. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE RHOD~U(IPOT,DELTR,Xl,CO~PC,RO,ASlGHA,SOFTD,GRRC3, 
$GAAC2, GRAC, GRBC3, GABC2, GABC, SOFT3, SOFT2, SOFTO, 
$YU,YUHS,YUSTR,DtlUDRO) 

REAL*8 RO(3) ,RH0(3) 
REAL*8 SOFTD(3),ASIGtlR(3) 
CO~tlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

C UR I TE (NOUT2, *)DELTA, RO( 1 ) , RO (2), RO (3)  
C URITE(NOUT2,*)SOFT3,SOFT2,SOFTl,SOFTO 
C URITE(NOUT2,*)GAAC3,GAAC2,GARCl,GAAC 
C URITE(NOUT2,*)GABC3,GABC2,GRBCl,GRBC 
C URITE(NOUT2,*)YU,YUHS 

I tlPL I C IT REAL*8( A-H, 0-2) 

SOFT=DERIU2(SOFT3,SOFT2,SOFTO,DELTA,RO) 
C ' A A '  = >  LIKE-LIKE 
C 'RB' = >  UNLIKE 

ROH=RO(l )+R0(2) 
IF(IPOT.EQ.0) THEN 

C SPECIES 2 I S  SOLUTE 
C 'AR' *> 2-2 
C 'AB' =>  1-2 

XJ=l.ODO-Xl 
END IF 
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IF(IPOT.EQ.1) THEN 
C SPECIES 1 I S  SOLUTE 
C ' A A '  1-1 
C 'AB' => 1-2 

XJ=Xl 
END IF 
SAUE~XJ*(l.ODO+YU-YUSTR)+(XJ*ROH*ROH*SOFT) 
DHUDRO=SRUE 

RETURN 
END 

C URITE(NOUT2,*)DMUDRO 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE PARHS 
C PURPOSE-READS IN INTERACTION POTENTIAL PARAHETERS. INPUT 
C 
C ZERO MEANS USER UANTS TO QUIT (OKPAR*.FALSE. IN 
C THIS CASE). 
C 
C DATE 6/9/87 
C REUISED 10/21/88 -REtlOUED THE INPUT OF UARIRBLES NEEDED 
C 
C THIS SUBROUTINE. 
C CODED BY DAUIO PFUND 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

OF PARAMETERS THAT ARE LESS THRN OR EQUf3L TO ZERO 

FOR CHEMICAL POTENTlAL CALCULATIOH FROn 

C NOT 
175 

200 

300 

320 

C 
C 
C 
C 
C 
C 

C 

SUBROUTINE PARnS(OKPAR,KEPSI,SOFTD~ 
IllPLlClT REAL*8(R-H,O-Z) 
REAL*8 SOFTD(J),KEPSl ( 3 )  
REAL*8 MU 
INTEGER IPOT 
LOGICAL OKPAR 
CO~MON/DEWICE/NINJNOUT1,NOUT2,lNOPT 
OKPAR*.TRUE. 
TIRE TO QUIT. GET NEU POTENTIAL PARAHETERS. 

CONT 1 NUE 
IF(NIN.EQ.5) THEN 

URITE(HOUTI,200) 

URITE(NOUT1,300) 

WRITE(HOUT1,320) 

FORHAT(/lX, 'ENTER LJ SMALL DIAtlETER, LJ LARGE DIAHETER, AND') 

FORtlRT(lX,' LJ CROSS DlAnETER IN ANGSTROHS, UHERE SRALL<LRRGE,') 

FORHFiT(lX,'ENTER ZERO FOR CROSS DIAHETER TO USE DEFAULT.') 
END IF 
RERD(N I N, *)SOFTD( 1 ) , SOFTD(21, SOFTD( 3) 

IF((SOFTD(l).GT.SOFTD(2)).AND.(NlN.EQ.5)) GO TO 175 
IF( (SOFTD< 1 1. GT. SOFTD(2) 1. AND. (H I N . NE. 5)  1 THEN 

END IF 
I F( ((SOFTD( 1 1. LT . O s  0) .  OR I ( (SOFTD(2). LT.  0.0). OR a ( 

IF( ((SOFTD( 1 LE. 0.0)  I OR. ((SOFTD(2) .LE. 0 0 ) .  OR. ( 

OKPAR=.FALSE. 

SiSOFTD(3) .LT. 0.0)) 1. AND. (N I ti. EQ . S )  1 GO TO 175 

BSOFTD(3) .LT.O.O)))) THEN 
$SOFTD(3). LT. 0 . 0 ) ) ) .  AND. (N IN. NE . 5 ) )  THEN 

DKPRR=aFALSE. 
END IF 
IF(0KPAR) THEN 

I F(SOFTD(3) . EQ . 0 .O) THEN 
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C USE DEFAULT MIX ING RULE (ARITHt lATIC tlEAN) FOR THE LJ CROSS DIAMETER 
SOFTD(3)=0.5DO*(SOFTD(I)+SOFTD(2)) 

END I F  

UR I TE(NOUT2,402) 
4 0 2  

UR I TE(NOUT2 4 0 4  
4 0 4  

URITE(NOUT2,406) 
4 0 6  FORtlRT(lX, 'ZERO AND THE SECOND DIAHETER ENTERED tlUST BE ' )  

UR ITE(NOUT2,408) 
4 0 8  FORflAT( 1 X, ' LARGER THAN THE F I RST , D I RMETERS ARE I N RNGSTROMS ' 

W R  I TE(NOUT2 4 1  0) 
4 1 0  FORt lAT( lX ,  ' T H I S  RUN IS TERMINATED')  

ELSE 

FORMAT( / lX , ' INUALID  CHOICE OF tlOLECULRR DIRHETERS URS n A D E . ' )  

FORMRT(lX,'ERCH DIAHETER DUST BE GREATER THAN OR EQURL TO ' 1  

END IF  
IF(0KPAR) THEN 

500 CONT I NUE 
I F ( N I N , E Q . S )  THEN 

URITE(NOUT1,600) 

UR I TE(NOUT1,700) 
600 FORHAT(/lX,'ENTER ENERGY FOR StlRLL, ENERGY FOR LARGE AND' )  

700 F O R I A T ( l X , '  CROSS ENERGY I N  K E L U I N . ' )  

800 
URITE(NOUT1,800) 

FORtlAT(lX, 'ENTER ZERO FOR CROSS ENERGY TO USE D E F A U L T . ' )  
END IF  
R E A D ( N I N , * ) K E P S l ( l ) , K E P S I ( Z ) , K E P S I ( 3 )  

C lF(((KEPSl(~).LT.O.O).OR.(KEPSl(2).LT.O.O~,OR.~ 

IF(((KEPSl(l).LE.O.O).OR.(KEPS1(2).LE.O.O~.OR.~ 
C $  K E P S I ( ~ ) . L T . O , O ) ) . A N D . ( N I N . E ~ . ~ ) )  GO TO 500 

$ KEPS1(3) .LT.O.O)))  THEN 

OKPfiR=.FRLSE. 
C $  KEPSl(3>.LT.O.O)).AND~(NlN.NE.5)) THEN 

END I F  
IF(0KPAR)  THEN 

C USE DEFAULT t l l X l N G  RULE (GEOtlETRIC tlEAN) FOR THE CROSS ENERGY. 

802 

8 0 4  

806 

8 0 8  

8 1  0 

lF (KEPSI (J ) .EQ.O.O)  THEH 

END IF  
KEPSl(3)=DSQRT(KEPSl(l)*KEPSI ( 2 ) )  

ELSE 
URITE(NOUT2,802) 

UR I TE(  NOUT2, 8 0 4 )  

UR I TE (NOUT2 ,806 )  

URITE(NOUT2,808) 

UR I TE(NOUT2,810> 

END I F 

FORf lAT( / lX , ' INUALID CHOICE OF HlN lMUt l  P A I R  POTENTIALS UAS ' >  

FORMAT(lX,'MADE. EACH ENTRY W S T  BE GREATER THAN OR EQUAL ' 1  

FORtlRT(lX, 'TO ZERO. THE ENTRIES ARE TO BE I N  KELUIN, SO ' )  

FORHAT( 1 X, 'THEY HUST BE REDUCED BY BOLTZHANN CONSTANT. ' ) 

FORHAT( 1 X, ' TH I S RUN I S TERtl I NATED ' ) 

END IF 
C ( I  DON'T KNOU HOU TO TRAP ERRORS INUOLUING TOO L I T T L E  INPUT ON R 
C L I N E .  OH UELL.)  

RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE STATE 
C PURPOSE-READS I N  TEtlPERATURE, DENSITY, AND COMPOSITION 
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C ALSO READS A PARAtlETER WHICH INDICATES WHETHER OR NOT fl 
C CHEfllCAL POTENTIRL CALCULRTION I S  DESIRED. 
C 
C DATE 6/9/87 
C CODED BY DAUlD PFUND 
C 
C THIS ROUTINE CALLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

100 

200 

300 

400 

500 

600 

700 

800 

SUBROUT I HE STRTE(OKCON, El 1 , RO, TEHP, X1, DO I T )  

REAL*$ RO(3) 
RERL*8 El 1 
REAL*8 TEllP,Xl 
IHTEGER DOIT 
LOGICRL OKCON 
COtltlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
OKCON=.TRUE. 
DO I T=O 
IF(NIN.EQ.5) THEN 

FORtlAT(/lX, 'ENTER THE TEtlPERRTURE (KELVIN), REDU 

I tlPL I C IT REAL*8( A-H 0-2) 

UR I TE(NOUT1,lOO) 

URITE(HOUT1,200) 
ED ' 

FORtlAT(lX,'DENSITY (RHO*SIGtlA11**3), AND tlOLE FRACTION') 
URITE(NOUT1,300) 

FORtlfIT(lX,'OF THE StlALL COtlPONENT, ENTER ZEROS OR ' 1  
URITE(NOUT1,400) 

FORtlRT(lX,'NEGflTIUE NUHBERS TO CHANGE THE POTENTIAL OR ' )  
URITE(HOUT1,SOO) 

FORflAT(lX, 'TO QUIT, ' 1  
URITE(NOUT1,tiOO) 

FORtlAT(lX,'ON THE SAtlE LINE ENTER 1 IF YOU UANT THE ' 1  
UR I TE(NOUT1,700) 

FORtlAT(lXJ'CHEtllCt31 POTENTIAL. ENTER ANOTHER NUtlBER IF') 
URlTE(NOUT1,800> 

FORtlRT(lX,'YOU DON"T UANT IT,') 
END IF  
RERD(N IN , *)TEtlP, RD( 1 1 , X 1 ,  DO IT 

C I'UE GIVEN UP ON ERROR TRAPPING- IF  YOU CAN'T GET THIS RUCH 
C RIGHT, TOO BAD. 

IF( (TEtlP , LE. 0.0) .OR. ( (RO( 1 .LE . O n  0) .  OR. ( (X1 .LE. 0.0). OR. ( 
SX1 .GE.l . O ) ) ) )  THEN 

OKCON=.FRLSE, 
ELSE 

' R0(2)=RO( 1 I*( 1 .ODO-XI ) 
RO( 1 )=RO( 1 )*X1 
RO(J)=RO(l) 

END IF 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTIHE TPARtlS 
C PURPOSE-READS 1 N (TR I RL) EFFECT 
C ALSO READS IN A PARAtlETER WHICH 
C INDJCRTES UHICH SPECIES I S  THE 
C UEIGHT OF THAT SPECIES. 
C 
C DATE 10/21/88 
C CODED BY DAUID PFUND 

UE HARD CORE DIAIIETERS. 

EST PARTICLE AND THE ROLECULAR 
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C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE TP'ARBS( OKTP, I POT, HU, ORNEU, DL I KE, DUNLKE) 
I HPL I C IT REAL*B(A-H, 0-Z) 
REAL*8 HU 
RERL*8 DLIKE,DUNLKE 
INTEGER IPOT 
LOGICAL OKTP 
COHllON/DEUICE/NlN,NOUTl,NOUT2,lNOPT 
OKTP=.TRUE. 
IF(NIN.EQ.5) THEN 

URITE(NOUT1,lOO) 

UR I TE(NOUT1,200) 

UR I TE(NOUT1,300) 

UR I TE(NOUTl,310) 

URITE(NOUTI,315) 

URITE(NOUT1,320) 

URITE(NOUTl,33O) 

URITE(NOUT1,340) 

UR I TE(N0UT 1 ,390) 

UR I TE(N0UT 1,400) 

100 FORHAT(/lX,'ENTER 0 IF YOU UANT THE CHEHICAL POTENTIAL') 

200 FORtlAT(lX,'OF SPECIES 2, ENTER 1 IF YOU UANT THE CHEtlICAL') 

300 FORtlAT(lX,'POTENTIRL OF SPECIES 1 .  ON THE SRNE LINE') 

310 

315 

FORHAT(lX,'ENTER THE tlOLECULAR UEIGHT OF THAT SPECIES,') 

FORNAT(lX,'THE DESIRED STEP SIZE FOR TEST PARTICLE CALCS.,') 

320 FORHAT(lX,'THE LIKE-LIKE RND THE LIKE-UNLIKE CORE SIZES,') 

330 

340 FORHAT(lX,'TEST PARTICLE DlSTRlBUTlON FUNCTIONS.') 

390 

400 

C DRNEU=STEP SIZE FOR THE CHEtllCRL POTENTIAL CALCULATION. DRNEU SHOULD 
C BE OF THE ORDER OF 0.00625 TO GET GOOD CONTACT VALUES OF THE RDF'S 
C WITH THE HARD SPHERE TEST PARTICLE. 
C DUNLKE-UNLIKE EFFECTIVE HARD SPHERE DIAllETER, HUST BE DlUlSlBLE 
C BY DRNEU. 
C DLlKE-LIKE EFFECTIUE HARD SPHERE DIAHETER. HUST BE EUENLY DlUlSlBLE 
C B Y  DRNEU. 
C DRNEU, DLIKE AND DUNLKE ARE DIHENSIONLESS, HRUING BEEN REDUCED 

C lPOT=O =>  YOU UANT THE CHEHICAL POTENTIAL OF SPECIES 2 (THE TEST 
C PARTICLE BECOflES A HOLECULE OF SPECIES 2 UHEN FULLY CHARGED). IN 
C THIS CASE DLlKEsSPEClES 2 - SPECIES 2 EFFECTIUE DIAHETER RND DUNLKE= 
C THE SPECIES 2 - SPECIES 1 EFFECTIVE DIAtlETER. 
C lPOT=l - >  YOU WANT THE CHEHICAL POTENTIAL OF SPECIES 1 (THE TEST 
C PARTICLE BECOflES A HOLECULE OF SPECIES 1 UHEN FULLY CHRRGED). IN 
C THIS CASE DLIKEsSPECIES 1 - SPECIES 1 EFFECTIUE DlAtlETER AND DUNLKE= 
C THE SPECIES 1 - SPECIES 2 EFFECTlUE DIAtlETER. 

FORHAT(lX,'AND THE THERHO CONSISTANCY PARAtlETER FOR THE') 

FORHAT(lX,'ENTER ZEROS OR NEGATIUE NUtlBERS TO CHANGE THE') 

FORtlAT(lX, 'THE STATE OR TO QUIT, ' 1  
END IF 

C BY THE 1-1 LENNARD-JONES SIZE PARAtlETER ASlGllA(1). 

READ(NIN,*)IPOT,flU,DRHEU,DLIKE,DUNLKE 
IF((IPOT.NE.~>.AND.(IPOT,NE.l)) THEN 

END IF 
IF( (flu. LE e 0.0). O R .  ((DL IKE .LE. 0.0). OR. ((DUNLKE. LE, 0 e 0) 

S ) ) )  THEN 

END IF 

OKTP=.FALSE, 

OKTP=.FALSE. 
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IF(DRNEU.LE.O.0) THEN 

EN0 I F  
RETURN 
END 

OKTP=.FALSE. 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE REDUC 
C PURPOSE-CRLCULRTES REDUCED POTENTIAL PARAHETERS. 
C 
C DATE 9/20/87 
C CODED BY DAUID PFUND 
C 
C THIS ROUTINE CRLLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE REDUC(KEPSI,SOFTD,EPSI,RSOFTD) 
InPLlClT REAL*8(A-H,O-Z) 
REflL*8 KEPSl(3) 
RERL*8 SOFTD(3) 
RERl*8 EPSI(3) 
RERL*8 RSOFTD(3) 
COflRON/DEUICE/NINJNOUTIJNOUTZ,lNOPT 
RSOFTD ( 1 1 = 1 ,000 
RSOFTD (2)=SOFTD(2) /SOFTD( 1 1 
RSOFTD (J)=SOFfD( 3) /SOFTD( 1 ) 
EPSi ( 1  )E1 .OD0 
€PSI (2)oKEPSI (2)/KEPSI ( 1  1 
EPSl(3)sKEPSI (31/KEPSI ( 1  1 
RETURN 
END c *******f**+****+*******+***+*+*********************R********************* 

C PURPOSE-COflPUTES THE UALUE OF THE HIISA fllXlNG PARAflETER 
C SUBROUTINE FlNDA 

C "ALPHA" NEED TO HATCH OERIUATIUES OF THE UlRiflL 
C RND CO~PRESSlBlLlTY PRESSURES UlTH RESPECT TO 
C THE TOTAL DENSITY OF THE HIXTURE. NEU GUESSES 
C OF ALPHA ARE HRDE BY SOLUING A QURDRRT1C F I T  
C OF COtlPRESSIBlLlTIES US. ALPHA FOR THE URLUE THRT 
C GIUES ZERO ERROR. 
C THE RLPHR THRT IS FOUND OBEYS ZERflH RND HflNSEH'S 
C "LOCAL CRITERION'. 
C SUBROUTINE FlNDA RLSO RETURNS THE DISTRIBUTION 
C FUNCTIONS AND THE UIRIflL PRESSURE DIVIDED BY KT 
C AND RULTIPLIED BY THE (SHALL LJ SIZE PflRR**3), 
C AND THE CONFIGURATIONAL INTERNRL ENERGY DlUlDED 
C BV KT. 
C (C.F. ZERAH AND HANSEN, J. CHEH. PHYS. , 
C UOL. 84, NO 4, P, 2336, FEBRUARY 1986) 
C 
C DATE 8/11/87 
C REUISED 10/23/87 TO USE R tlODlFlED LINEAR INTERPOLATION 
C HETHOD TO FlNO THE ALPHA. 
C ALSO CHANGED THE CONUERGENCE TEST TO R 

C 2/18/88 TO USE A QUADRATIC INTERPOLATION HETHOD. 
C CODED BY DAUID PFUHD 
C THIS ROUTINE CRLLS: SUBROUTINE GUESSA-PROVIDES TU0 INITIAL 
C GUESSES OF THE HtlSR PARfVlETER. 
C 

C TUO-URY TEST. 

FUNCTION HAYER-CALCULATES A UECTOR OF 
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C tlAYER FACTORS FOR THE DESIRED 
C INTERACTION POTENTIAL UHICH IS USED IN 
C THE DISTRIBUTION FUNC. CALCS. ALSO 
C CALCULATES R UECTOR OF PAIR POTENTIRL 
C DERIUATIUES UHICH ARE USED I N  UlRlAL 
C PRESSURE CALCS. 

C FUNCTION OF THE INTERPOLATION IIETHOD FOR 
C A GIUEN UALUE OF THE ALPHA. 

C CONFIGURATIONAL INTERNAL ENERGY DlUlDED 
C BV KT. 
C SUBROUTINE POLY-FINDS THE COEFFICIENTS 
C OF THE QUADRATIC FIT. 
C SUBROUTINE NEUALF-SOLUES THE QUADRATIC 
C FOR THE NEU ALPHA. c *********4***********4********************************************** 

C SUBROUTINE D03D-COtlPUTES THE OBJECTIUE 

C FUNCTION CONFIG- CALCULATES THE 

SUBROUTINE FINDA(NBIG,Nfl,DR,JP,SIGIIf l ,EPSI,RO,TRED,G, 
s PAIR,DIRECT,TOTAL,BRTH,ALPHR, 
s PRESSU,ENERGY,TCORR,COtlPC,SAUEFN,COUNT, 
s ERROR, RFF INS) 
ItIPLlClT REAL*8(A-H,O-Z) 
RERL*8 G(2048,J) 
REAL*8 PA I R(2048,3), D I RECT(2048,3), TOTAL(2048,3), BATH(2048,3) 
REAL*8 F(2048,3) 
REAL*8 UPR lHE(2048,3) 
REAL*8 BUIJ(2048,3) 
REAL*8 SIGflA(3),R0(3),EPSI (3) 
REAL48 CORE(3) 
REAL*8 ALPHO,ALPHl,ALPHA 
REAL*8 CCO,CCl,CC2 
RERL*8 CUO,CUl,CU2 
REAL*8 PAESSU,ENERGY 
RERL*8 TRED,DR 
RERL*8 TCORR 
REAL*8 AFFINS(2,2) 
INTEGER IPOT,.IE,JP,Nll,N 
INTEGER COUNT,IIRX 
INTEGER ERROR 
LOGICAL BADflAT,BADALF 
LOGICAL DONE 
LOGICAL LOTS 
COnllON/TYP/JT,N 
COtltlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
DATA FTOL,ATOL/0.001D0,0.OOOOlDO/ 

C DATA FTOL,ATOL/1.000001DO,l,OlDO/ 
DATA IIAX/20/ 
DONE-.FALSE. 
BADALF=,FALSE, 
CORE(l)=O.ODO 
COflE(2)=0.000 
CORE(S)=O.ODO 

C 
C SET STEP SIZE AND NUtlBER OF GRID POINTS, 
C 

NB I G=2048 
N b l 1  
DR=0.00625DO 
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COUNT*O 
C NOTE: FOR SUBCRITICAL tllXTURES HULTlPLE ALPHA ROOTS EXIST AT 

, 

C 
C 
C 
C 
C 
C 

C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

C 

C 

C 

C 

INTERIIEDIATE DENSITIES, THE PROGRAH DOES ALLUAYS FUNCTION 
WELL UNDER THESE CONDITIONS. SOtlE OF THESE ROOTS t lRV NOT BE 
PHYSICALLY SIGNIFICANT. HAY ALSO HRPPEN FOR PURES, BUT I HAUEN'T 
DISCOVERED THIS YET. BAD flNSUERS t l A Y  ALSO OCCUR UHERE THE PRESSURE 
UERSUS ALPHA CURUE GOES THROUGH ZERO, UlTH ALPHA ANSWERS POSSIBLE 
ON ERCH SIDE OF THE ZERO. 

H=NB I G 
CO~PC=O.ODO 

GET TWO INITIAL GUESSES OF THE HUSR PARAtlETER "RLPHR" WHICH BRACKET 
THE OPTlflUtl VALUE. 

CALL GUESSA(TRED,RO,SIGHR,EPSl,flLPHO,ALPH1) 
DEFINE THE tlAYER FUNCTION F(R). RADIAL DISTANCES ARE IN 
REDUCED UNITS. UPRltlE IS R UECTOA OF DERIURTIUES OF 
PAIR POTENTIALS/KT W.R.T. REDUCED SEPARATION DISTANCE R/ASIGtlR(l). 
BUlJ IS A UECTOR OF PAIR POTENTIRLS/KT. 

CRLL t l R Y E R ( D R ,  S I CUR, EPSI ,CORE, TRED, F, BUI J, UPR 1 RE, 1 POT, N) 
DO 10 1=30,80 

WR I TE(NOUT2, *)F ( I ,  1 1, F( I ,  31, F( I , 2 )  
10 CONTINUE 

"D03D" CALCULATES THE DISTRIBUTION FUNCTIONS 
AT FOUR DENSITIES. FROtl THESE IT ESTltlATES 

THE DERIUATIUE OF THE UlRlAL PRESSURE UlTH RESPECT TO DENSITV 
DIVIDED BY K T .  
IT ALSO CRLCULATES THE DERIURTIWE OF THE 
COtlPRESSlBlLlTY PRESSURE U.R.T. DENSITY DIVIDED BY KT 
THE DIFFERENCE BETWEEN THE TU0 DERIUATIUES I S  THE OBJECTIVE 
FUNCTION OF THE ALPHA ITERATION. THE INTERPOLATION IIETHOO TRIES TO 
FORCE THIS DIFFERENCE TO ZERO. 

CflLL D03D(~LPHO,IPOT,SIGtlR,EPSI,CORE,RO,TRED,G,BUlJ,UPRl~E,F,  

IF ( ( IE .GT.O>.AND.( .NOT.BADnAT))  THEN 
$PR I R,  D 1 RECT, TOTRL, BATH, I E, BADtlAT, DR, JP , H t l ,  PRESSU, CUO, CCO) 

CRLL D03D~ALPH1, IPOT,S IGt l~ ,EPSI ,CORE,RO,TR€DfG,BUlJ ,UPRl I l~ ,F ,  

CU2=OI OD0 
CC2=0.000 
SAUEFN=CCl-CUl 
COnPC-CCl 
ALPHR=RLPHl 

%PAIR,DIRECT,TOTAL,BRTH~lE~BADtlAT,DR,JP,NflfPRESSU,CUl,CCl) 

100 CONTINUE 
lF((lE.GT.O).AND,(,NOT.6ADtlAT)~ THEN 

URITE(NOUT2,*)ALPHl 
IF(COUNT.NE.0) THEN 

FIT COflPRESSlBlLlTlES TO R QUADRATIC 

dCC0 CC1 CC2, BO, B 1 ,B2) 
CALL POLY(COUNT,ALPHOJALPHl,ALPHA,CU0,CUl,CU2, 

ALPHO=ALPHl 
ALPHl-ALPHA 
cuo=cu 1 
cu 14.32 
CCO=CCl 
cc 1 =cc2 

CRLL NEUALF(COUNT,BO,Bl ,BZ,ALPHR) 
SOLUE QUADRRTIC FOR RLPHA S.T. CU=CC: 

ELSE 
I F  COUNT=O (FIRST TltlE THROUGH LOOP) TAKE THE IllDPOlNT OF THE 
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C THE INTERUAL. 
ALPHR=O .5DO*(ALPHO+ALPHl) 

END I F  
C 
C URITE(NOUT2,*)ALPHR 

C RLL  DONE, THING UORKED, 

C CALCULATE INTERNAL ENERGY/KT: 

IF((DfiBS(SAUEFN),LE,FTOL).OR,(DRBS(ALP 

DONE=.TRUE. 

PH1) .LE.ATC HEN 

ENERGY=CONF I G(  OR, I POT, R O ,  BU I J, PA I R, 
$ TRED,EPSI , S I  GHA, TCORR) 

C TCORR=TRlL CORRECTION TO THE INTERNAL ENERGY OVER K T ,  
C CALCULATE FLUCTUATION INTEGRALS. 

ELSE 
CALL K I  RKUD(DR, TOTAL, AFF INS)  

C NOT DONE, NOT FAILED.  
COUNT-COUNT+l 

CRLL D03D(ALPHR,IPOT,SIGtlA,EPSI,CORE,RO,TAED,G,~UlJ,UPRltlE,F, 
$PAIR,DIRECT,TOTAL,BATH,IE,BRDtlAT,DR,JP,Nfl ,PRESSU,CUZ,CC2) 

C URITE(NOUT2, l lO)COUNT 
c 1 1 0  FORtlAT(/ lX, 'RFTER ' , l 3 , '  T R I R L S : ' )  
C URITE(NOUT2,120)RLPHO,ALPHl,flLPHA 
C 120 FORHAT(lX, 'AO-' ,D13.6, '  R l= ' ,D13 .6 , '  R=' ,D13.6)  
C URITE(NOUT2,130)FO,Fl  
C 1 3 0  FORtlAT(IX, 'FO=',D13.6,  ' F l = ' , D 1 3 . 6 )  

SAUEFN-CC2-CU2 
c o n P c - c c 2  

END IF 

C D ISTRIBUTION FUNCTION CALCS FAILED.  
ELSE 

DONE=.TRUE. 
END I F  

IF((.NOT.DONE).RND.(COUNT.LE.tlRX)) GO TO 1 0 0  
END I F  

C ALPHA CARRIES A FACTOR OF ASIGHA(1) ( I . E .  THE St lALL LJ DIf l t lETER) AND 
C SO I S  Dlt lENSIONLESS. 

IF(COUNT.GT.tlRX) THEN 
C ALPHA D I D N ' T  CONVERGE, BAD NEUS, 

BADALF=.TRUE. 
END I F  
ERROR=O 
IF(BADHAT) THEN 

END I F  
I F ( I E . L T . 0 )  THEN 

END I F  
IF(BADALF) THEN 

END I F  
RETURN 
END 

ERROR=l 

ERRORe2 

ERROR=3 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE DETAIL  
C PURPOSE-DETERHINES I F  THE USER UANTS LONG OR SHORT OUTPUT. 
C 
C DATE 6 / 9 / 8 4  
C CODED BY DRUID PFUND 
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C 
C THIS ROUTINE CALLS:- 
C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE DETAIL(L0TS) 

LOGICRL LOTS 
COHflON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 
INTEGER lCODE 
LOTS-,FALSE. 

ItlPLlClT REfiL*8(A-H,O-Z) 

50 CONTINUE 
IF(NIN,EQ.S) THEN 

URITE(NOUT1,lOO) 
FORtlAT(/ 1 X, ' DO VOU WANT DETR I LED OUTPUT ( 1 /O >? ' ) 100 

END IF 
READ(NI N, *) 1 CODE 

IF((N1N.EQ.5).AHD.((ICODE.NE.O).AND.(ICODE.NE.l))) GO TO 50 
IF( (N 1 N. NE. 5 ) .  AND. ( (  I CODE .HE. 0) I AND I ( ICODE, NE, 1 ) ) )  THEN 

C USER FOULED UP FILE INPUT, CHOOSE RESTRICTED OUTPUT RHD 
C KEEP GOING. 

150 

160 

170 

180 

190 

I CODE=O 
URITE(NOUT2,lSO) 
FORtlAT(/lX,'AN INURLID CHOICE FOR PRINT OPTION UAS flRDE.') 

FORflAT(lX, 'UALID CHOICES ARE: ' )  
URlTE(NOUT2,160) 

URlTE(NOUT2,170) 

UR I TE(NOUT2,180) 

UR I TE(NOUT2,190) 

FORHAT(lX,' 1-  DETAILED OUTPUT') 

FORHAT(lX,' 0- SHORT OUTPUT (RDF ONLY)') 

FORHfIT(lX,'I HAUE CHOSEN OPTION 0 FOR VOU.') 
END IF 
IF(ICODE.EQ.1) THEN 

END IF 
RETURN 
END 

LOTS=,TRUE. 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE FILES 
C PURPOSE-SETS DEUICE NUHBERS FOR INPUT AND OUTPUT. 
C DEUICE NUnBERS FlRE CONTAINED IN COIItlON BLOCK 
C /DEUICE/. READS ARE FROII OEUICE ' N I N ' ,  URITES ARE 
C TO DEUICES 'NOUT1' RND 'NOUT2'. 
C NOUTl I S  FOR DIALOG, NOUT2 IS FOR ANSUERS. 
C 
C DFlTE 1/23/86 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE FILES 
COfltlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

C 
C READ CODE FROH SCRATCH UNIT FT25F001 
C FT25FO01 URS SET UP IN CLlST RND PASSED TO THE PROGRRn 
C CODE CAN HAUE THE FOLLOWING UALUES: 
C -1 OR 1 CONVERSATIONAL 1NPUT;TERDlNRL OUTPUT 
C -2 OR 2 FiLE INPUT; TERtllNRL OUTPUT 
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C -3 OR 3 F I L E  INPUT; F I L E  OUTPUT 
C - 4  OR 4 CONUERSATIONAL INPUT; F I L E  OUTPUT 
C END OF F I L E  INDICATES A BATCH RUN. 
C 
C P O S l T l U E  INTEGER IHDICATES A CRT I S  BEING USED 
C NEGATIUE INTEGER INDICATES A TELETYPE TYPE OF DEUlCE IS BEING USED, 
C 

REWIND 25 
RERD(25,*,END=500) INOPT 

I NABS= I ABS ( I NOPT) 
GO TO (100 ,200 ,300 ,400) ,  INABS 
WR I TE ( 6 , 5 )  

STOP 

C I NOPT=3 

5 FORtlAT ( / /  ' I NUAL ID I NPUT/OUTPUT CODE. JOB TERn I HATED I ' ) 

C 
C CONUERSATIONAL INPUT; TERHINRL OUTPUT 
C 

100 CONTINUE 
N I N=5 
NOUT 1 =6 
NOUT2=6 
GO TO 600 

C 
C F I L E  INPUT; TERHINAL. OUTPUT 
C 

200 CONTINUE 
N I N=4 
NOUTl36  
NOUT2=6 
GO TO 600 

C 
C F I L E  INPUT; F I L E  .OUTPUT 
C 

300 CONTINUE 
N I N-4 
NOUT 1-6 
NOUT2=7 
GO TO 600 

C 
C CONUERSATIONAL INPUT; F I L E  OUTPUT 
C 

400 CONTINUE 
N I N=5 
NOUT 1 =6 
NOUT2=7 
GO TO 600 

C 
C END OF F I L E  - BATCH EXECUTION 
C 

500 CONTINUE 
N I ti34 
NOUT 1 =6 
NOUT2=6 

C NOUTl=17 
C NOUT2117 
C 

600 CONTINUE 
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RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUT I NE GOOF 
C 
C 
C THE BULK PHASE FAIL. 
C 
C DATE 7/23/87 
C REUISED 10/24/88 
C 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PURPOSE-PRINTS A NASTY IlESSAGE WHEN HIlSA CALCULATIONS FOR 

SUBROUT I NE GOOF (ERROR, KEPS I , SOFTD, TEtlP, RO , X 1 ) 

REflL*8 SOFTD(3),KEPS I(3) 
REAL*8 TEtlP,Xl 
REAL*8 R O ( 3 )  
INTEGER ERROR 
COtlBON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
UR I TE(NOUT2,3) 
FORBAT(/lX,'HflSA CALCULATIONS FRILED FOR THE FOLLOUING 

UR I TE(NOUTZ,5) 

UR I TE(NOUT2,l O)SOFTD( 1 ) , KEPS I ( 1 ) 

ItlPLlCIT REAL*8(A-H,O-Z) 

3 
$CONDITIONS') 

5 FORtIAT(/lX,'lNPUT PARRHETERS FOR THE LENNRRD-JONES POTENTIRL: ' 1  

10 FORBRT(3X,'SIGBAll: ',Dll.4,' RNGSTROHS, EPSlLONll: ', 
$011,4,' KELUIN') 
UR 1 TE(NOUT2,20 )SOFTD( 3 1, KEPS I (3) 

20 FORtlAT(3X,'SIGtlR12: ',D11.4,' ANSTROtlS, EPSILON12: I ,  

$D11.4,' KELVIN') 
UR I TE(NOUT2,30)SOFT0(2), KEPSl(2) 

30 FORtlflT(3X,'SIGtlA22: ',D11.4,' RNGSTROtlS, EPSILON22: I ,  

$011.4,' KELUIN') 
URITE(NOUT2,70)TEtlP 

URITE(NOUT2,8O)RO(l)/X1 
70 FORflAT(/SX, ' TEtlPERATURE= ',D11.4,' KELUIN') 

80 FORBAT(3X, ' DENSITY= ',011.4,' (DENSITY* 

90 

$SIGHA11**3)') 
UR I TE(NOUT2,9O)X 1 
FORHAT(3X, 'BOLE FRACT 1 ON SPEC I ES 1 - ' , D1 1 - 4 )  
IF(ERROR.EQ.1) THEN 

URITE(NOUT2,lOO) 
FORtlAT(3X, ' H I  XTURE RDF CALC . FA I LED. 6AD BATR I X I  ' ) 100 

END IF  
IF(ERROR.EQ.2) THEN 

URITE(NOUT2,2OO) 
FORHfiT(SX,'tllXTURE RDF CRLC. FAILED. RDF NOT CONUERGED.') 200 

END IF 
IF(ERR0R .EQ. 3) THEN 

URITE(NOUT2,300) 
FORBAT(3X,'BlXTURE RDF CALC. FAILED. ALPHA NOT CONUERGED.') 300 

END IF 
RETURN 
EHD c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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C SUBROUTINE UUGOOF 
C 
C PURPOSE-PRINTS A NASTY UESSAGE TEST PARTICLE CALCULATIONS 
C FAIL. 
C 
C DATE 1 0 / 2 4 / 8 8  
C 
C CODED BY DAUID PFUND 
C 
C T H I S  ROUTINE CALLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE HUGOOF( ERROR, DL I KE, DUNLKE) 

RERL*8 DLIKE,DUNLKE 
INTEGER ERROR 
COUUON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 
WRITE( NOUT2, 3) 

I U P L l  C I T  REAL*8(A-H,O-Z) 

3 FORUAT(/ lX, 'CHEUlCAL POTENTIAL CRLC. FA ILED FOR THE FOLLOWING 
$flSSUHED PARRtTETERS:') 

UR I TE(NOUT2, lO)DL I KE, DUNLKE 

IF(ERROR.EQ.4) THEN 
UR I TE (NOUT2,400) 

1 0  F O R U A T ( S X , ' D A A / S I G f l R l l :  ' ,D13 .6 , '  D A B / S I G U A l l :  ' , D 1 3 , 6 )  

400 FORtlAT(JX,'TEST PARTICLE RDF CRLC, FA ILED.  RDF NOT CONUERGED.') 
END I F  
IF(ERROR.EQ.5) THEN 

C NOTE, T H I S  ERROR SHOULD NO LONGER OCCUR SINCE THE NEUTON ITERATIONS 
C HAUE BEEN REUOUED FROfl SUBROUTINE D ILUTE.  

500 FORtlAT(SX,'TEST PARTICLE RDF CRLC. FA ILED.  BAD I I A T R I X . ' )  
UR I TE (NOUT2,SOO) 

END I F  
IF(ERROR,EQ.6)  THEN 

URITE(NOUT2,600) 
600 FORflAT(3X, 'DERIURTIUE CALC. FA ILED.  UIXTURE RDF NOT CONUERGED.') 

END I F  
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE PRINTR 
C PURPOSE-PRINTS RESULTS OF THE CALCULATIONS FOR THE BULK PHASE. 
C DATE 6/9/86 
C REUISED 1 / 1 5 / 8 8  TO PRINT (COUPRESS. EQN. - U l R l A L  EQN,) 
C COt lPRESSlB lL lT lES  D l U l D E D  BY KT AND ALPHA 
C ITERRTION COUNT. 
C 10/24/88 REtlOUED THE CHEtl lCAL POTENTIAL CALCULATION 
C RESULTS I 

C 
C CODED BY DAUID PFUND 
C 
C T H I S  ROUTINE CALLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE PRINTR(LOTS,DR,PAIR,DIRECT,TOTAL,BATH, 
$ KEPSl  ,SOFTD,TEtlP,RO,Xl ,G,ACOUNT, 
$ ALPHA,PRESSU,ENERGY,CERROR,COIIPC,AFFINS) 
I HPL I C I T REAL*8(A-H, 0-2) 
REAL*8 G(2048,3) 
REAL*8 PA I R(2048,3)  ,D IRECT(2048,3),  TOTAL(2048,3) ,BATH(2048,3) 
REAL*8 FiFFINS(2,2) 
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1 0  

20 

30 

65 

70 

80 

8 2  

83 

RERL*8 K E P S I ( 3 )  
REAL*8 SOFTD(3) 
REAL*8 R O ( 3 )  
REf lL*8 TEtlP,Xl 
REAL*8 DR 
REAL*8 PRESSU,ENERGY 
REf lL*8 CERROR 
REAL*8 COHPC 
INTEGER H 
INTEGER L,fl 

LOGICRL LOTS 
COfltlON/TYP/JT,N 
COfltlON/DEU I CE/N I N, NOUTl , NOUT2, I NOPT 
DATA CONU/0.602204500/  
URITE(NOlJT2,S) 
FORflAT(/ lX,  ' INPUT PARAtlETERS FOR LENNARD-JONES 
URITE(NOUT2,1O)SOFTD(l),KEPSI ( 1 )  
F O R f l A T ( 3 X , ' S I G t l A l l :  ' ,D11 ,4 , '  ANGSTROnS, EPSILON11:  I ,  

UR I TE (NOUT2,20 )SOFTD (31 ,  KEPS I ( 3 )  
FORt lAT(3X, 'SIGt lA12:  ' , D 1 1 , 4 , '  ANGSTROtlS, EPSILONIZ :  I ,  

INTEGER AC0UN.T 

POTENT I R L :  ' 1 

$D11 .4 , '  K E L U I N ' )  

$ 0 1  1.4, ' K E L V I N ' )  
UR I TE(NOUT2,30 )SOFT0 ( 2 ) ,  KEPS 1 (2) 
FORtlF1T(3X, 'SIGtlA22; ' ,D11.4, '  AHGSTROtlS, EPSILON22:  ' 

URI TE(NOUT2,65)ACOUNT 
FORflRT(/ lX, 'AFTER ' , 1 3 , '  ITERRTIONS ON THE HtlSR PARRtlE 
WRITE(NOUT2,70)TEtlP 
FORtlRT(/ lX, 'SOLUTION FOR TE!lPERATURE= ' , 0 1 1 . 4 , '  K E L V I N  
UR I TE(NOUT2,8O)RO( 1 ) /X1 
FORtlAT ( 1 X, ' DENSITY= ' , D l 1 . 4 ,  

$ '  (OEHSITY*SIGnA11**3) ' )  
URITE(NOUT2,82)Xl 
FORt l f lT( IX, '  nOLE FRACTION SPECIES 1 5  ' , 0 1 1 , 4 )  
URITE(NOUT2,83)flLPHA 
FORRAT(/lX, 'HtlSA PARRtlETER: ' ,D11.4)  
UR ITE(HOUT2,84)COtlPC 

$Dll,f,' K E L U I N ' )  

ER: ' 1  

? 

C COflPC-(l/KT)*(THE P f l R T l f l L  DERIUATIUE OF THE PRESSURE W.R.T. THE 
C DENSITY AT CONST TEtlPERflTURE AND COtlPOSITION). 
84 

85 

FORnRT (1 X, ' COflPRESS I B I L I TY/KT : I ,  Dl 3.6) 
URITE(NOUT2,85)CERROR 
FORflRT(1 X , ' (CORPRESS-VIR 1AL)COflPRESS I B 11 I TY/KT: ' , 0 1 3 . 6 )  

C UE'RE PRINTING OUT THE C O t l P R E S S l B l L l f Y  FACTOR Z=P/(RHO*KT) HERE: 
UR I TE( NOUT2,86 )PRESSU/(RO( 1 1 +R0(2) 

86 FORtlAT(lX, ' U l R I A L  PRESSUAE/(RHO*KT): ' ,D13.6) 
C ENERGYsCONF IGURAT I ONAL (OR RES I DUAL) INTERNAL ENERGY *( 1 /KT) . 

UR I TE(NOUT2,88)ENERGY 
88 FORflAT(/lX,'CONFIGURRTlONRL ENERGY/KT: ' , 0 1 3 . 6 )  

C CONUERT A F F I N I T I E S  FROR CU.ANGSTROn/(SOFTD(1)**3) TO CU.ANGSTROtlS 
C BEFORE PRINTING. THE A F F I N I T I E S  ARE ACTUALLY THE KIRKUOOD FLUCTURTION 
C INTEGRALS. THE tlAGNlTUDE I N  CU. ANGSTRORS DEPENDS ON THE S I Z E S  (IN 
C ANGSTROflS) OF THE tlOtECULES I N  THE F L U I D .  

CUBE=SOFTD( 1 )*SOFTD( 1 )*SOFTD( l )  
AFFINS(l,l)=f3FFINS(1,1)*CUBE 
AFF INS(  l ,Z )=AFF I NS( 1 ,2)*CUBE 
AFF 1 NS(2,l )=RFFINS( 1,2) 
AFF I NS ( 2 , Z  ) 4 F F  I NS (2,2)*CUBE 
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UR I TE(HOUT2,92) 

UR I TE(NOUT2,93)AFF I NS( 1 , l )  

UR I TE(NOUT2,94)AFF I NS( 1,2) 

UR I TE(NOUT2,9S)AFF I HS ( 2 , 2 )  

I F ( L 0 T S )  THEN 

92 FORnAT(/ l  X, ' K I RKUOOD-BUFF FLUCTURT 1 ON INTEGRALS: ' ) 

93 FORflAT(3X, 'G11- ' ,013 .6 ,  ' CU. ANGSTROHS') 

94 FORflRT(3X,'G12= ' , 0 1 3 . 6 , '  CU, ANGSTROHS') 

95 FORflAT(3X, 'G22= ' ,D13.6,  ' CU. ANGSTROtlS') 

C USER URNTS THE LONG FORHAT PRINT OUT. 
C PRINT OUT ALL CORRELATION FUNCTIONS (CURRENT FORHAT I S  UERY 
c SLOPPY). 

DO 1 5 0  J=1,3 
L=J 
tl=J 
I F ( J . E Q . 3 )  THEN 

LE 1 

END I F  
URITE(NOUT2,99)L,tl 

UR I TE(NOUT2,l OS) 
FORflAT(/lX,ZX, ' R / S  I GHAl 1 I ,  B X ,  'G(L, f l )  I ,  BX, ' C(L,  H )  I ,  

DO 1 2 0  1160 ,404  

n=2 

99 FORHAT(/ lX, 'FOR L=  ' , l 3 , '  f l =  ' , I31 

1 0 5  
$8X, ' V (  L, f l )  ' 1 

REAL I = I  
RADIUS=DR*REALI 

UR I TE(NOUT2,llO)RAO I US, PA I R (  I, J) , D I RECT( I, J) , BR I OGE 
UR I TE(NOUT2,llO)RRD I US, PA I R (  I, J) , 0 I RECT( I , J) , BATH( I , J) 

UR I TE(NOUT2,llO)RAD I US, G (  I, J), 0 I RECT( 1 ,  J), SUT, BATH( I ,  J) 

C BRlDGE~OLOG(BATH(I,J))-((PRlR(I,J)-1.0DO)-DIRECT(I,J)) 
C 

C SUT=SUITC2(RROIUS,ALPHR) 
C 
1 1 0  FORflAT(1X,D13.6,4X,D13.6,4X,Dl3,6,4X,O13.6~ 
c 1 1 0  FOR~AT(1X,D12.5 ,2X,D12.5 ,2X,D12.S,2X,O12.5 ,2X,Ol2 .5~ 
1 2 0  CONTINUE 

DO 1 4 0  1=408,600,4 
REAL1 = I 
RADIUS=OR*REALI 

URI TE(NOUT2,130)RADI US, P A I R (  I, J), D I RECT( 
UR I TE(NOUT2,13O)RRD I US, PA I R( I, J), D I RECT( 

C B R I O G E = O L O G ( B A T H ( I , J ) ) - ( ( P A I R ( I , J ) - I . O D O  
C 

C SUT=SUITC2(RADIUS,ALPHA) 

- D I R E C T ( I , J ) )  
, J),BRIDGE 
,J) ,BATH( l ,J)  

C URITE(NOUT2,130)RkDIUS,G( I ,J ) ,D IRECT( I ,J  ,SUT,BATH(I,J)  
1 3 0  FORtlRT( 1 X, D13,6,4X, D l  3,6,4X, 01 3 .6 ,4X,  D 1 3 . 6 )  
C130  FOR~RT(1X,D12.5,2X,D12.5,2X,D12.5,2X,Dl2~5,2X,Ol2.5) 
1 4 0  CONT I NUE 
1 5 0  CONT I NUE 

ELSE 
UR I TE( NOUT2,200) 

200 FOR~AT~/lX,2X,'R/SlGnAII',llX,'Gll',14X,'Gl2',l4X,'G22'~ 
DO 300 1=60,300,1 

RERL I = I 
RADIUS=DR*REALI 
UR I TE(NOUT2,250)RAD I US, PA I R (  I ,  1 1, PA I R (  I, 3), PA I R (  I ,  2 )  
FORnAT( 1 X, D 13.6,4X, 0 1  3,6,4X, D13,6,4X, 0 1  3 .6)  250 

300 CONT I NU€ 
DO 4 0 0  l=304 ,416 ,4  

RERL I = I 
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350 
400 

RADJUS=DR*REALI 
URITE(NOUT2,350)RADIUS,PRIR(I ,  l),PWIR( 1,3),PRIR(I,2) 
FORHAT(lX,D13.6,4X,Dl3.6,4X,D13.6,4X,D13.6) 

CONT 1 NUE 
DO 500 1=424,2048,8 

RERL I = I 
RRDIUS=OR*REALI 
URI TE(NOUT2,450)RRDI US, PA1 R (  I ,  1 ) ,PW I R (  I, 3), PR I R (  I ,  2 )  

450 FORtlAT(lX,D13,6,4X,D13.6,4X,Dl3.6,4X,D13.6) 
500 CONTINUE 

END IF  
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE PRNTnU 
C PURPOSE-PRINTS RESULTS OF THE CHEHICAL POTENTIAL CALCULATIONS. 
C DRTE 10/24/88 
C 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 

10 

50 

100 

SU3ROUTlNE PRNTtlU(IPOT,DR,DLIKE,DUHLKE, 
$ I NT1, I NT2, El, E2, VU, VU IDL, VUHS, flu, DflUDRO) 
IHPLlClT RERL*8(fl-H,O-Z) 
RERL*8 YU,YUIDL,YUHS 
RERL*8 INT1,IHTZ 
REAL*8 E1,E2 
RERL*8 MU ' 

REAL*8 DLIKE,DUNLKE 
RERL*8 DHUDRO 
INTEGER IPOT 
COMHON/DEUICE/NIH,NOUTl,NOUT2,1NOPT 
UR I TE(NOUT2,5) 
FORHRT(/lX,'INPUT PRRRflETERS CHEfl, POTENTIAL CALCULRTION:') 
URI TE(HOUT2,10)DLIKE,DUNLKE 
FORnAT(3X,'DAR/SIGnAll: ',D13.6,' DAB/SIGflAll: ',D13.6) 
IF( IPOT,EQ.O) THEN 

URITE(NOUT2,5O)YU 
FORHAT(/lX,'CHEtllCAL POTENTIAL OF SPECIES 2/KT: ',D13.6) 

EN0 IF 
lF(IPOT.EQ.1) THEN 

URITE(NOUT2,lOO)YU 
FORflRT(/lX,'CHEtllCAL POTENTIAL OF SPECIES l/KT: ',013.6) 

END IF 
C CORE- THE UORK OF INSERTING THE EFFECTIUE HRRO SPHERE TEST PRRTICLE: 
C DlUlDED BY KT. 

CORE=YUHS-YUIDL 
URITE(NOUT2,200)CORE 

200 FORflfiT ( 1 X, ' (CORE CONfRIBUTION/KT UAS: ',D13.6,')') 
C BE= I3 CRUDE UPPER BOUND ON THE ABSOLUTE URLUE OF THE NEGLECTED BRIDGE 
C FUNCTION INTEGRALS IN THE UORK OF SOFTENING FORtlULR *(l/KT). 

BE-E 1 +E2 
URITE(HOUT2,300)INTl,INT2,BE 

C INTl=THE CONTRlBUTlON TO THE UORK OF SOFTENING/KT DUE TO 1NTERRCTlONS 
C OF THE TEST PARTICLE U l T H  SPECIES 1 IN THE BATH. 
C INT2sTHE CONTRIBUTION TO THE UORK OF SOFTENING/KT DUE TO INTERRCTIONS 
C OF THE TEST PARTICLE UlTH SPECIES 2 IN THE BATH. 
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300 FORtlAT(lX, ' (SOFT REPULSIUE CONTRIBUTION/KT 
$D13 ,6 ,  ' +/- ' ,D13,6,  I ) ' )  

YUATTR4"T'-YUHS-INTl-INT2 
URITE(NOUT2,400)YUATTR 

URITE(NOUT2,500)YUIDL 

URITE(NOUT2,600)t lU 

400 FORf lAT( lX , '  (ATTRACTIUE CONTRIBUTION/KT 

500 FORt lRT( lX ,  ' ( I DEAL GAS CONTR I BUT I ON/KT 

URS: ' ,D13 .6 , '  + I ,  

UAS:  ' , D 1 3 . 6 , ' ) ' )  

UAS: ' , D 1 3 . 6 , ' ) ' )  

600 FORHAT( 1 X , ' (BASED ON A t lOL.UT. OF: ' , D 1 3 . 6 , ' ) ' )  
C URITE(NOUT2,700) 
C700 FORt lAT( lX , 'SPECIES DENSITY*(DERIURTIUE OF THE COtlPONENT ' 1  
C URITE(NOUT2,800)DtlUDRO 
C800  FORt lAT( lX , 'CHEl l .  POTENTIAL U . R . T .  DENSITY):  ' , D 1 3 . 6 )  

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTION CONFIG 
C PURPOSE-DETERtllNES THE CONFIGURATIONAL INTERNAL ENERGY 
C D l U l D E D  BY KT.  
C 
C DATE 8/24/87 
C REUISED 8 / 2 8 / 8 7  - FlDDED T A I L  CORRECTION. 
C CODED BY DRUID PFUND 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE SltlP-INTEGRATES THE REQUIRED 
C PRODUCTS OF ENERGIES,DENSITIES AND RDF 'S .  
C SUBROUTINE T A I L -  COtlPUTES THE T A I L  
C CORRECTION TO THE CONFIGURATIONAL 
C INTERNAL ENERGY D l U l D E D  BY K T .  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION CONFIG(DR,IPOT,RO,BUIJ,PAIR,TRED,EPSI, 
$SIGTIA,TC) 

REAL*8 OR 
REflL*B RO(3) 
RERL*8 EPS l (3 ) ,S IG t lA (3 )  
REAL*8 B U I J ( 2 0 4 8 , 3 )  
REAL*8 P A I R ( 2 0 4 8 , 3 )  
REAL*8 FUNCT(2048,3) 
REFlL*8 ENERGY 
REAL*8 TRED 
REAL*8 TC 
REAL*8 RHO 
INTEGER IPOT 
INTEGER ERROR 
INTEGER JT,N 
INTEGER IFUNC 
LOGICRL PNOU 
COtltlON/TYP/JT,N 
CO~f10N/DEUICE/NIH,NOUTlJNOUT2,1NOPT 
PNOU=,FALSE, 

C NEED TOTAL DENSITY: 
RHO=RO(l)+RO(2) 

C PREPAIR INTEGRFlND: 
DO 100 I - l , N  

I t l P L l C l T  RERL*8(R-H,O-Z) 

FUNCT(I,l)=BUIJ(I,l)*PAIR~l ,1)  
FUNCT(l,2)=BUlJ(l,2)*PRlR(l,2) 
FUNCT( I , 3 )=BU I J( I , 3)*PA I R (  I , 3) 
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100 CONTINUE 
C INTEGRATE. .. 

PNOU*,FALSE. 
CRLL S I nP (DR, RO, FUNCT , ENERGY , PNOW) 
ENERGV=O.SDO*ENERGY/RHO 

C COHPUTE TAIL CORRECTION. 
C "IFUNC" I S  A SELECTOR. IFUNC-0 IIEANS DO TRlL CORRECTION TO THE 
C INTERNAL ENERGY. 

I FUNC=O 
CALL TAIL( IFUNC,DR, IPOT,TRED,EPSI ,SIGtlA,RO,TC,ERROR) 
ENERGY=ENERGY+TC 
CONFIGPENERGY 

C RESULT IS ENERGY DIUIDED BY 
C KT; IT IS DltlENSIONLESS. 

RETURN 
END 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE D03D 
C PURPOSE-CALCULATES THE DISTRIBUTION FUNCTIONS AT FOUR 
C DENSIT IES FOR R GIUEN URLUE OF THE PARAHETER 
C "ALPHA". THE ( U I R I A L  PRESSURE*(ASlGHR(1)**3))/KT 
C I S  CALCULATED 
C AT EACH OF THESE DENSIT IES AND THE RESULTS ARE 
C USED THE ESTIHATE THE COt lPRESSIBILITY.  THE 

COt lPRESSlB lL lTY  I S  ALSO CALCULATED FROH THE C 
C 
C 
C 
C 
C 
C 
C DATE 8/ 
C REU I SED 
C 
C 
C 
C CODED B 
C 

COHPRESSlBlL lTY EQUATION, 
SUBROUTINE D03D ALSO RETURNS THE DISTRIBUTION 
FUNCTIONS AND THE U l R l R L  PRESSURE D l U l D E D  BY K T .  
( C . F .  ZERAH AND HANSEN, J. CHEtl. PHYS., 

UOL. 84 ,  NO 4, P. 2336, FEBRUARY 1986) 

4/87 
2/.18/88- TO tlRKE FOUR CALCULATIONS OF THE U l R l A L  

PRESSURE INSTEAD OF JUST THREE AND TO 
PASS COHPU AND COHPC BACK TO SUBROUTiNE 
F INDA.  

DRUID PFUND 

C T H I S  ROUTINE CALLS: SUBROUTINE HINS- EUALUATES I l i N l H U H  
C P A I R  POTENTIALS D l U l D E D  BY KT AND THE 
C SEPARATION DISTANCES AT THE H l N l H A  
C D l U l D E D  BY THE SHALL CORE DiAt lETER. 

C D ISTRIBUTION FUNCTIONS. 

C PRESSURE D l U l D E D  BY KT.  

C THE DENSITY DERlURTlUE OF THE U l R l A L  
C PRESSURE D l U l D E D  BY K T ,  
C FUNCTION COHPRS-CALCULATES THE DENSITY 
C DERIUATIUE OF THE COHPRESSIBILTY PRESSURE 
C D l U l D E D  BY KT. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE LABIK-CALCULATES THE 

C SUBROUTINE UIRIAL-CALCULATES THE U l R l A L  

C FUNCTION DERIU-NUHERICALLY ESTIHATES THE 

SUBROUTINE D 0 3 D ~ A L P H A , I P O T , S I G t l ~ , E P S I , C O R E , R O , T R E D , G , B U l J , U P R l ~ E ,  
f F,PAIR,DIRECT,TOTRL,BATH,IE,BADHAT,DR,JP,Nn, 
$ PRESSU, COHPU, COHPC) 

I H P L l C l T  REAL*8(A-H,O-Z) 
REAL*8 G(2048,3)  
RERL*8 PA I R(2048,3) ,  D I RECT(2048,3), TOTAL(2048,3) ,  BATH(2048,3)  
REAL*8 S I Gt lA (3 ) ,  R0 (3 ) ,  EPS 1 (3 
REAL18 F ( 2 0 4 8 , 3 )  
REAL*8 UPRlHE(2048 ,3 )  
REAL*8 B U I J ( 2 0 4 8 , 3 )  
REAL*8 ALPHA 
REAL*8 PUO,PUl,PUZ,PRESSU 
REflL*8 TRED,DR 
REAL*8 DELTA 
REAL*8 RHO(3) 
REAL*8 CORE(3) 
REAL*8 S I J ( 3 ) , U I J ( 3 )  
REflL*8 RLFNEU 
INTEGER IPOT, IE,  J P  
INTEGER JT, N, Nf l  
LOGICAL BADHAT 
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COHHON/HflSA/ALFNEU,UIJ,SIJ 
COtlUON/TYP/JT,N 
COHHON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
DATA DELTA/-O.OOOSDO/ 

C DATA DELTA/-0.0002500/ 
C ALPHA I S  THE HHSA PARAHETER. IT I S  PASSED THROUGH COHflON/HflSR/ 
C TO SUBROUTINE CFG, UHERE I S  I S  USED IN THE HflSA THEORY'S 
C CLOSURE EQUATION. COHHON/HflSR/ I S  ALSO USED TO PASS ALPHA TO 
C SUBROUTINE CORFU, WHERE THE CORRELATION FUNCTIONS RRE CRLCULRTED. 
C UIJ ARE (POTENTIAL HlNlHA)/KT. 
C SIJ=(SEPARATION OF I AND J RT THE POT. fllNlHUfl)/ASIGflA(l) 

CRLL fl I NS( 1 POT, S I GHA, EPS I ,  TRED, U I J, S I J) 
RLFHEU=RtPHR 

RHO(1 )=(l .OD0+(4.0DO*DELTR))*RO(l) 
RHO (2 )-( 1 , OD0+(4,ODO*DELTfl) ) *RO(  2 1 
RH0(3)=( 1 .OD0+(4 .ODO*DELTR))*R0(3) 

CRLL LflBIK(IPOT,BUIJ,F,SIGHA,EPSI,RHO,TRED,G,PAIR, 

1 F( ( IE .GT . 0) . AND. ( .HOT .BRDHAT)) THEN 

CALL UIRIAL(IPOT,DR,RHO,TRED,SIGHA,EPSI,CORE,BUIJ,UPRIflE,PRIR, 

RHO(1~~(1.OD0+(2.0DO*DELTA)~*RO~l) 
RHO ( 2  1 4  1 .ODO+(2,ODO*DELTR) 1 *R0(2) 
RHO ( 3 )=( 1 ,OD0+(2,000*DELTA) ) *RO( 3)  

C DELTA=STEP SIZE FOR THE NUflERlCAL ESTIIIATE OF THE DENSITY OERIURTIUE. 

C COtlPUTE DlSTRlBUTlOH FUNCTIONS: 

$ DIRECT,TOTAL,BRTH, IE,BADHflT,DR, JP,NH) 

C COflPUTE THE (UIRIAL PRESSURE*(ASIGflA(1)**3))KT: 

$PUO) 

C JPp2 => USE HARD SPHERE INITIAL GUESS WHEH CALCULATIHG 
C DISTRIBUTION FUHCTIONS. 
C JP=1 => USE LAST RESULT RS INITIAL GUESS 
C (THE PROGAAH BEGINS UITH JP=2 THEN SWITCHES TO JP=l IF THE 
C FIRST CALL TO LABIK RETURNS SUCESSFULLY). 

JP=l 
CALL LABIK(IPOT,BUIJ,F,SIGHR,EPSI,RHO,TRED,G,PAIR, 

IF((IE.GT.O).AND.(,NOT.BflDHAT)) THEN 
CflLL UIRIAL(IPOT,DR,RHO,TRED,SlGtlAJEPSI,CORE,BUlJ,UPRlflE,PAlR, 

$ D I RECT, TOTAL, BATH, I E, BAOnAT, DR , JP, HH) 

$Pull 
RHO(l)=( l.ODO+DELTA)*RO( 1 )  
RH0(2)=( 1 .ODO+DELTfl)*RO(Z) 
RH0(3)=( 1 .ODO+DELTA)*RO(J) 

CALL LRBIK(IPOT,BUIJ,F,SIGflR,EPSI,RHO,TRED,G,PAIR, 

IF ( ( IE .GT.O) .RND.( .NOT.BADf lRT) )  THEN 

C DO TWO HORE TIHES. GOTTfi GET THAT NUHERICRL DERIUATIUE ACCURATE: 

s OIRECT,TOTAL,BATH,IE,BRDilRT,DR,JP,Nfl) 

$PU2) 

$ DIRECT,TOTRL,BATH, IE,BADflAT,DR, JP,NH) 

CALL UIRIAL~1POT,DR,RHO,TRED,SIGHAJEPSI,CORE,BUIJ,UPRIflE,PAIR, 

CALL LRBIK(IPOT,BUIJ,F,SIGtlA,EPSI,RO,TRED,G,PAIFi, 

lF(( lE.GT.O).AND.(.NOT.BAOflAT)) THEN 
CALL U1AI~L~lPOT,DR,R~,TRED,SlGHR,EPSl,~ORE,BUlJ,UPRlHE,PAlR, 
$PRESSUI 

C NUflERlCALLY ESTlflATE THE DERlUflTlUE OF THE (UIRlRL 
C PRESSURE)/KT 
C U.R.T. DENSITY. 

C CALCULATE THE (COHPRESSIBILTY PRESSURE)/KT 
C FROtl THE COHPRESSIBILITY EQUATION. 

COflPU=DERIU(PUO,PUl,PU2,PRESSU,DELTR,RO) 



C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 

C 

C 

C 

C 
C 

C 

C 

C 
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COflPC=COHPRS( IPOT,DR,RO,TRED,SIGHA,EPSI ,DIRECT) 
URITE(NOUT2,100)PUO,PUl,PU2,PRESSU 

URITE(NOUTZ,ZOO)COflPU, COflPC 
100 F O R f l A T ( / l X , ' P U O = ' , D 1 3 , 6 , '  PUl * ' ,D13 .6 , '  PU2= ' ,D13 ,6 , '  PU=' ,D13,6)  

200 FORflAT( 1 X, 'COHPU=' ,013 .6 ,  ' CoilPC=', D 1 3 . 6 )  
END I F  

END I F  
END I F  
END IF 
RETURN 
END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE GUESSA 
PURPOSE-PROUIDES TWO I N I T I A L  GUESSES OF THE HHSA PARAflETER 

"ALPHA" (C,F .  ZERAH AND HANSEN, J. CHEfl. PHYS., 
UOL, 84, 

DATE 8 / 1 4 / 8 7  
REUISED i o / 2 3 / a - ~  

2 / 1 8 / 8 8 -  

NO 4, P .  2336 ,  FEBRUkRY 1986) 

TO ATTEHPT TO PROUIDE I N I T I A L  GUESSES 
UHICH U l L L  BE HORE L I K E L Y  TO BRACKET 
THE SOLUTION UITHOUT LEADING TO 
EXCESSIUE ITERATIONS I N  SUBROUTINE 
FINDA. 
ADDED AN Ef lP lR lCFlL  CORRELATION FOR A 
PREDICTED ALPHA URLUE AS A FUNCTION OF 
DENSITY AND COflPOSITION. ADDED L O G I C  
TO G lUE UPPER AND LOUER BOUNDS BRSED ON 
THE PREDICTED UALUE, 

CODED BY Df lUlD PFUND 

T H I S  ROUTINE CALLS:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE GUESSfl(TEHP,RO,SOFTD,KEPSl,ALPHO,ALPHl) 
I f l P L l C l T  REAL*B(R-H,O-Z) 
REAL*8 SOFTD(3),KEPSI (3)  
REAL*B R O ( 3 )  
REAL*8 TEflP 
COllHON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

FOR ROUGH ESTl f lATES FOR I N T I A L  GUESSES C.F.  TABLE I I  I N  ZERAH AND 
HANSEN. 

RHO=RO(l )+R0(2) 
Sl l=SOFTD(1)**3.0DO 
S22=SOFTD(2)**3,ODO 

COIIPUTE RUERAGE SIGtlA**3: 
S=((RO(l)*Sll)+(RO(2>*S22))/RHO 

RHO=SOIIE APPROPRIATE REDUCED DENSITY. 
RHO=RHO*(S/Sll)  

COflPUTE RUERAGE SIGtlA: 
S=S**O,333333333DO 

Dl f lENSlONLESS ALPHA FROH CORRELATION OF PURE LENNflRD-JONES AND 
STELL-UEIS RESULTS (VERY GOOD FOR PURES): 

RHEAN=(O. 5736066DO/RHO)-O. 6 4 8 7 6 6 0 0  
PREDICTED ALPHfl UALUE RUST BE REDUCED BY SOFTD(1) 

ESTl f lATE UPPER AND LOUER BOUNDS ON ALPHA: 
AflEAN=AnEAN*(SOFTD(l)/S) 

ALPHl=1.333333DO*RflEAN 
ALPH0-0.666667DO*AflEAN 

YOU f l A Y  F I N D  THAT ALPHO IS TOO SHALL UHEN UORKING NEAR THE C R I T I C A L  
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C POINT. IF  SO, TURN ON THE NEXT L I N E  OF CODE. 
C RLPHO=AtlEAN 

I F(AtlEAN. L T .  (O16DO*SOFTD( 1 ) /$) I  THEN 

END I F  
I F ( A L P H l . L T , O . 2 0 0 )  THEN 

END I F  

ALPHQ=O. 13500 

ALPHl S O .  200 

C ALPHO AND ALPHl ARE ASSUtlED TO CARRY A FACTOR OF SOFTD( l ) ,  AND 
C SO ARE DIHENSIOHLESS, 

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE tiAYER 
C PURPOSE-CALCULATES FI UECTOR OF HRYER FACTORS FOR THE DESIRED 
C INTERnOLECULAR POTENTIAL. 
C 
C REUISED 6 / 4 / 8 7  
C 
C T H I S  ROUTINE CALLS: FUNCTION PSIIJ- TO CALCULATE THE PAIR 
C POTENTIAL DlUlDED BY KT FOR A GIUEN 
C SEPARRTION DISTANCE. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE HAYER(DR,SlGtlA,EPSI,CORE,TRED,F,BUIJ,UPRlflE,lPOT,N) 
I HPL I C I T RERL*8 ( A-H, 0-2) 
RERL*8 F(2048,3  1, S I  Gf lA(3) ,  E P S l ( 3 )  
REAL*8 CORE(3) 
RERL*8 3 U I J ( 2 0 4 8 , 3 )  
REAL*8 UPR I HE(2048,3)  
REAL*8 EU,BUP 
INTEGER IP 
COtlflQN/DEUICE/NIN,NOUTl,HOUT2,1NOPT 

FORHAT(/ l  X, ' I N  flAYER', 13, ' ' ,I3, ' ' , D11 - 4 ,  ' ' , D l  1 . 4 )  
C URITE(NOUTl,lO)IPOT,N,DR,TRED 
C l O  
C 
C 
C F => A UECTOR OF flAYER FACTORS. 
C F ( l , l )  tlAYER FACTOR FOR SPECIES 1 - SPECIES 1 INTERACT 
C BATH. 
C F ( I , Z )  .i flAYER FRCTOR FOR SPECIES 2 - SPECIES 2 INTERACT 
C BATH. 
C F ( 1 , 3 )  flAYER FACTOR FOR SPECIES 1 - SPECIES 2 INTERACT 
C BATH. 
C S l H l L A R L Y  FOR B U I J  AND UPRIHE. 
C B U I J  - >  A UECTOR OF P A I R  POTENTIALS/KT 

LIR I TE(NOUT1 ,*)SI GnA( 1 )  ,SIGHA(2),  S I GflR(3) 
URI TE(NOUT1 ,*)EPSI ( 1  ),EPS I (2)  ,EPSI (3)  

ONS 

ONS 

ONS 

N THE 

N THE 

N THE 

C UPRl t lE - >  FI UECTOR OF OERIURTIUES OF P R l R  POTENTIRLS/KT - USED I N  THE 
C CALCULATION OF THE U I R I A L  PRESSURE. 
C U.R.T. REDUCED SEPRRflTION DISTANCE R / A S I G f l R ( l ) .  
C "CORE" I S  UNUSED FOR THE LENNRRD-JONES POTENTIAL. 

1 PRO 
Rti= 1 ,000 
DO 20 K = l , 3  

ORR~OR*SlGnR(l)/SlGtlA(K) 
T-TRED*EPSI ( 1  ) /EPSI  (K)  
DO 30 191,N 

REAL I - I 
RR=RERLI*DRR 
BU=PSl I J( I P, RR,Rn, T,BUP) 
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B U I  J( I ,K)=BU 
UPR I HE( I , K)=BUP*(S I Gf lA (  1 ) / S  I GtlR(K) ) 

IF((BU.GT.6l.ODO).OR.((REALl*DR).LT.CORE~K~~~ THEN 

ELSE 

END I F  

C LENNARD-JONES PART 

F( I , K ) x - l  ,OD0 

F ( I , K ) ~ ( D E X P ( - B U ) ) - l . O D O  

C URITE(NOUT2,18)1 , K  
c 1 8  FORf lAT( lX,  ' I -  ', 13, ' K =  I ,  13) 
C 
30 CONTINUE 
20 CONT I NUE 
C STOP 

UR I TE(NOUT2, *)BU I J( I ,K) ,UPRI t lE( I ,K), F(  I, K) 

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE NEWALF 
C PURPOSE-FINDS THE ROOT OF A QUADRATIC I F  COUNT>=l 
C ( I N  SUBROUTINE F INDR) .  
C 
C DATE 2 / 1 9 / 8 8  
C CODED BY DAUlD PFUND 
C 
C T H I S  ROUTINE CALLS: - 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE NEURLF(COUNT,BO,Bl ,BZ,ALPHR) 
I f l P L l C l T  REAL*8(A-H,O-Z) 
REAL*8 BO,Bl,B2 
REAL*8 ALPHA 
REf3L*8 DlSCRt l  
INTEGER COUNT. 
COfltlON/DEUICE/NINJNOUT1,NOUT2,lNOPT 

C BOJB1,B2 ARE THE COEFFICIENTS OF A QUADRATIC FOR THE COt lPRESSlB lL lTY  
C ERROR (COflPU - ConPC) AS R FUNCTION OF ALPHA DERTERtllNED BY 
SUBROUTINE 
c POLY. 
C DON'T CALL T H I S  SUBROUTINE WHEN COUNT30 I N  F INDA.  

D l S C R f l = ( B l * B l ) - ( t . O D O * ( B O * B 2 ) )  
I F(D I SCRfl. L T .  0. ODO) THEN 

ELSE 
ALPHAP-BO/Bl 

ALPHA=( (-B 1 )+ (DSQRT ( D  I SCRfl) 1) /(2.ODO*B2) 
C (THE OTHER ROOT OF THE QUADRATIC CAUSES DIUERGENCE) 

END I F  
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE POLY 
C PURPOSE-FITS THE DIFFERENCE OF THE C O t l P R E S S l B l L l T l E S  FROfl THE 
C 
C I N  ALPHA. 
C 
C DATE 2 / 1 9 / 8 8  
C CODED BY DAUlD PFUND 
C 
C T H I S  ROUTINE CALLS: - c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

U l R l A L  AND COflPRESSIBILITY EQUATIONS TO A QUflDRATlC 
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SUBROUTINE POLY( COUNT, RO, A1 , A2 CUO, CU1, CU2, CCO, CC1, CC2, BO, B 1 , B2) 
IflPLlClT RERL*8(A-H,O-Z) 
RERL*8 CUO,CUlJCU2,CC0,CCl,CC2 
RERL*8 BO, Bl,B2 
REAL*8 CO, C1, C2 
RERL*8 TERflO,TERfll,TERll2 
INTEGER COUNT 
COflt10N/DEUICE/NIN,NOUTlJHOUT2,1NOPT 

C DIFFERENCES IN UlRlRL RND COtlPRESSIBlLlTV COtlPRESSlBlLlTlES AT EACH 
C 

C 
C 

C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 

STEP : 
co=cuo-cco 
Cl=CU1-CC1 
c2=cu2-cc2 

DON'T CRLL THIS SUBROUTINE UHEN COUNT=O IN SUBROUTINE FINDR, 
THIS I S  THE LRNGRANGIAN FORR OF THE POLYNOfllAL, REARRRNGED SLIGHTLY, 

TERROSCO/( (RO-A1 )*(RO-A2)) 
TERtl141/( ( A 1  -A0 ) * ( A 1  -R2) ) 
TERiI242/( (A2-AO)*(R2-R1)) 
BO=(Rl*A2*TERflO)+(RO*A2*TERtll)+(~O*fll*TERtl2~ 
6 1 =( ( A 1  +R2 )*TERflO )+ ((RO+RZ)*TERfll)+ ( (AO+A 1 ) *TERR2) 

B2=(TERllO+TERtll +TERR2) 
81 s-61 

B'S ARE THE COEFFICIENTS OF THE QUADRATIC REQUIRED BY SUBROUTINE 
NEURLF. 

RETURN 
END 

******+*******+***+*************************n************************* 

PURPOSE-NUflERICRLLY ESTltlRTES THE CO PRESSlBlLlTV FROR 
PRESSURES OBTAINED FROfl THE IRlRL EQUATION. /I FUNCTION DERlU 

DRTE 8/17/87 
REVISED 2/18/88 - CHRNGED FROfl A SEC ND ORDER TO A FOURTH P ORDER FORflULR. 

I 
CODED BY DRUID PFUND 

THIS ROUTINE CRLLS: - 
********************n****%**n%************************************** 

REflL FUNCTION DER 1 U(PU0, PU1 PU2, PRESSU, DELTA, RO) 
I llPL I C I T REflL*8(fl-H, 0-2) 
REAL*8 DELTA 
RERL*8 PUO,PUl,PUZ,PRESSU 
REAL*8 RO(3) 
RERL*8 RHO 
COHt10N/DEUICE/N1N,HOUTlJNOUT2, INOPT 

THIS FUNCTION CURRENTLY USES A FOUR POINT FORURRD DIFFERENCE 
FORtlULfl WHICH HAS FOURTH ORDER RCCURRCY. 
PUO IS FOUR STEPS FORURRD. 
PUl I S  TU0 STEPS FORURRD. 
PU2 IS ONE STEP FORURRD. 
PRESSU IS ON THE NODE OF INTEREST, 
(ACTUALLY, UHETHER THE STEPS ARE FORUARD OR BRCKUClRO DEPENDS 
ON THE SIGN OF THE URRIRBLE 'DELTR" IN SUBROUTINE 0030) 

RHO=RO(l )+RU(2) 
DERIU~~PUO-~12.0DO*PUl~~~32.ODO*PU2~-~21~ODO*PRESSU))/ 

RETURN 
END 

$(12.0DO*DELTA*RHO) 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE L A B l K  
C 
C THEORY USING THE HETHOD OF LABIK,HRLIJEUSKV, AND 
C AND UONKA (HOLECULAR PHYSICS, UOL. 56, NO, 3, 
C PP.709-715  ( 1 9 8 5 )  ) 
C 
C REVISED: 6 / 4 / 8 7  - ADDED COHtlENTS, IHPROUED I/O, ETC, 
C 2 / 1 8 / 8 8 -  TIGHTEND TOLERANCES ON NEUTON AND 

PURPOSE-SOLUES THE 02 EQUATION FOR HIXTURES U l T H  THE HflSR 

C DIRECT ITERATIONS TO BE DONE BY SUBROUTINE 
C GRLER (DONE TO I flPROUE THE REPRODUCAE I L I TV 
C OF THE U l R l A L  PRESSURE AT LOU PRESSURES). 
C 
C T H I S  PROGRRH CALLS: 
C SUBROUTINE GALER-TO SOLUE THE 02 
C EQURT I ON. 
C SUBROUTINE CORFU-CALCULATES THE PAIR ,  
c DIRECT, AND TOTAL CORRELATION FUNCTIONS 
C FROfl THE 02 SOLUTION. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE LABIK(IPOT,BUIJ,F,SIGHA,EPSI,RO,TRED,G,PAIR, 
$ DIRECT,TOTAL,BRTH,IE,BADnAT,DR,JP,NH) 

I HPL I C  I T REAL*8( A-H, 0-1) 
REAL*8 G(2048,3)  
REAL*8 PA I R(2048 ,3 ) ,  D I  RECT(2048,3)  TOTAL(2048,3) ,  BRTH(2048,3)  
REAL*8 F ( 2 0 4 8 , 3 )  
REAL*8 BU I J( 2048,3)  
REAL*8 S I GHA(31, R0(3), EPS I (3)  
LOGICAL BADHAT 
COHHON/TYP/JT,N 
COHtlON/CONU/CONUDI,CONUNR 
COHHON/LUDOL/PI 
COHHON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 

C N0TE:UP-DIHENSIONED THE ARRAYS FROH 256 TO 2 0 4 8  (COHPflRED TO 
C L A B I K ' S  ORIGINAL PROGRAH. 
C THE INCREASED A R R A Y  S I Z E  ALLOUS A HAX NU OF 1 1 .  
C URITE(NOUT1,lO) 
c 1 0  
C URITE(NOUTl,*)IPOT,TRED 
C URITE(NOUTl,*)EPSl(l),EPS1(2),EPS1(3) 

P l = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 D Q  
BADllAT=.FALSE. 

FORHAT( l X ,  ' I N  LAB I K '  ) 

C 
C SET CONUERGENCE CRITERION FOR DIRECT ITERATION. 

C 
C SET CONUERGENCE CRITERION FOR NEUPON-RAPHSON TRIALS,  

CONUD1=0.000001 

CONUNR=0.0001 

J T = l  
C J T  I S  UESTIDUAL (SPELLING?).  LERUE I T  ALONE. 

C 
C 
C THE 'G' OBTAINED FROH THE LAST UALUE OF TEHP AND RO I S  AUTOflATlCALLV 
C USED AS AN I N I T I A L  GUESS FOR THE NEU CASE, AS LONG AS THE LJ PRRflS 
C DON'T CHANGE AND SUBROUTINE GRLER DOESN'T F A I L .  
C 

SOLUE THE 02 EQUATIONS FOR THE HIXTURE. 

CALL GRLER(G,BUlJ,F,NN,DR,RO,JP,IE,SIGHR,ERDNRT) 
IF((IE.GT.O).AND.(.NOT.BADHAT)) THEN 
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C IF NOT ERRORS OCCURRED, CALCULATE THE PAIR,DIRECT,BRTH, AND TOTAL 
C CORRELATION FUNCTIONS. 

CRLL CORFU(DR, 60 I J, F, G , PFll R,  DIRECT, TOTAL, BATH) 
END IF 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE tllNS 
C PURPOSE-CALCULATES THE HlNlHUtl VALUES OF ALL THREE P A I R  
C POTENTIALS DlUlDED BY KT. ALSO RETURNS THE 
C SEPARATION DISTANCES AT THE t l lNl t lA DlUlDED 
C BY THE 1- 1  LENNARD-JONES S I Z E  PARAtlETER. 
C 
C REVISED 8/21/87 
C 
C THIS ROUTINE CRLLS: FUNCTION PSIIJ- TO CALCULATE THE PAIR 
C POTENTIAL DlUlDED BY KT AT THE POTENTIAL 
C f l  IN1  Null. 
c ****************************************%*************************** 

SUBROUTINE tllNS( IPOT,RSOFTD,EPSI ,TRED,UIJ,SIJ) 
I HPL IC I T RERL*8(A-H, 0-2) 
REfiL*8 RSOFTD(3 1, EPS I (3) 
REAL*8 TRED 
RERL*8 UIJ(3) 
REAL*8 S I  J(3) 
REAL*8 BUP 
INYEGER IPOT 
COflHON/DEU1CE/NIN,NOUTl,NOUT2JlNOPT 

C SIJ(1) THE REDUCED SEPARRTION DISTANCE OF THE 1-1 POTENTIAL FIT 
C THE I l lNl f lUf l .  
C UIJ(1) - UALUE OF THE 1-1 POTENTIAL AT THE tllNltlU!l. 

S I  J(1)*(2 .ODO**( 1 . OD0/6. ODO))  
Rtl= 1 , OD0 
I PI0 

V I  J( 1 )-PSI I J( IP,SI J( 1 )  ,R!l,TRED, BUP) 
UlJ(3)-UlJ(l>*EPSl(3)/EPSl~l) 
U I J(2)=U 1 J( 1 )*EPS I (2 )/EPS I ( 1 ) 
SI J(3)=S I J( 1 )*RSOFTD(3) 
SlJ(2)~SlJ(l)*RSOFTD(2) 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCT I ON PS I I J 
C PURPOSE-CALCULATES THE PRlR POTENTIAL DlUlDED BY KT. 
C CURRENT VERSION DOES LENNARD-JONES, 
C 
C DATE 1/8/87 
C CODED BV DAVID PFUND 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION PSIIJ(IPOT,RSTAR,SSTAR,TEnP,BUP) 

REAL*8 RSTAR,TEHP,BUP 
RERL*8 SSTAR 
INTEGER IPOT 
COHHON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
DATA EOUERK/l.ODO/ 

ItlPLlClT REAL*8(A-H,O-Z) 
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C TEtlP=SYSTEfl TEtlPERATURE. IF  EOUERK=l.O, THE T E I P  I S  ASSUflED TO 
C BE THE TEtlPERATURE REDUCED BY E P S I L O N ( I , J ) .  
C BUP=THE DERlUAT lUE OF (PAIR  POTENTIAL/KT) U.R.T.  REDUCED SEPARATION 
C DISTANCE R/RSIGt lR (J ) .  

C R=(AS I G t l A  I J/SEPARAT I ON O I STANCE) 

LENNRRD 
C JONES POTENTIAL. 

C IPOTsO a >  USE LENNARD-JONES POTENTIAL. 

C SSTARz (LENNARD-JONES SlGt lA I ) / A S I G t l A ( l )  -UHICH I S  ONE FOR THE 

R=l,ODO/RSTAR 

R=R*SSTAR 
C LENNARD-JONES POTENTIAL 

PSl~(4.ODO*EOUERK)*((R**12.ODO)-(R**6.ODO~~ 
BUP~(24.ODO*EOUERK*R)*((R**6.ODO)-(2.ODO*(R**l2~ODO~~~ 
BUP=BUP/TEtlP 
P S I I J = P S I / T E t l P  
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE U l R l A L  
C PURPOSE-DETERtllNES THE U l R l A L  PRESSURE T l t l E S  
C (ASIGf lA (1 ) * *3 ) /KT ,  
C 
C DATE 8 / 1 7 / 8 7  
C CODED BY DRUID PFUND 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE Slt lP-INTEGRATES THE REQUIRED 
C PRODUCTS OF POTENTIAL GRADIENTS AND 
C RADIAL D ISTRIBUTION FUNCTIONS. 
C SUBROUTINE TAIL-CALCULATES THE TAIL 
C CORRECTION TO THE U l R l A L  PRESSURE. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE UIRIAL( IPOT,DR,RO,TRED,SIGf lA,EPSI ,CORE,BUIJ ,UPRIf lE ,  
$PRIR,PRESSU) 

I I f l P L l C I T  REAL*8(A-H,O-Z) 
REAL*8 OR 
RERL*8 R O ( 3 )  
REAL*8 S I G t l A  (.3) 
RERL*8 CORE(3) 
REAL*8 EPS I ( 3 )  
REALf8 B U I J ( 2 0 4 8 , 3 )  
REAL*8 UPRl t lE(2048,3)  
REAL*8 PA I R ( 2 0 4 8  , 3)  
RERL*8 FUNCT(2048,3) . 
REAL*8 TRED 
REAL*8 PRESSU 
REAL*8 PHARD 
REAL*8 REAL1 
RERL*8 RADIUS 
REAL*8 TC 
INTEGER IPOT 
INTEGER JT,N 
INTEGER ERROR 
INTEGER IFUNC 
LOGICAL PNOU 
COfltlON/TYP/JT,N 
COtltlON/DEUICE/NIN,NOUT1,NOUT2,1NOPT 

C PREPARE THE ARGUHENTS FOR SUBROUTINE S l t l P .  
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C 
C 1 0  FORt lAT( / lX , ' IN  UIRIAL, IPOT= ' ,13 , '  DR=',D11.4, '  TRED=' ,D11,4)  
C 
C 
C 
C PAIR  => PAIR  CORRELATION FUNCTIONS. 
C UPRl l lE  ->  THE DERIUATIUE OF THE PAIR  POTENTIAL U.R.T .  REDUCED 
C SEPARATION DISTANCE D l U l D E D  BY KT. flLL DISTANCES ARE REDUCED BY 

C RO(1) = NUtlBER DENSITY OF SPECIES 1 *  AS1 GnA(1)**3.  
C RO(2) = NUNBER DENSITY OF SPECIES 1* ASIGnR(1)* *3 .  

UR I TE(NOUT2,lO) I POT, DR, TRED 

UR I TE(NOUT2, * )RO( 1 1, R0(2), R O ( 3 )  
WR I TE(NOUT2, *)S I GtlA( 1 ) ,S I  GIlR(2), S I GtlR(3) 
UR 1 TE (NOUTZ, * )U I J( 1 ) , U I J(2), U I J( 3) 

C THE 1-1 LJ S I Z E  PRRAHETER ( " R S l G f l A ( 1 ) " ) .  

C RO(3) = R O ( 1 ) .  
DO 100 I = l , N  

R E A L l = l  
RADIUS*REALI*DR 
FUNCT( I, 1 )=UPR I HE( I, 1 )*PA 
FUNCT(~,~)IUPR~~E(I,~)*~A 
FUNCT(1,3)=UPRltlE(I,3)*PA 
UR I TE(NOUT2,ZO)RAD I US C 

C 20 FORt lRT( / lX ,D13.6)  

R ( I , l ) * R A D  
R (  I ,2)*RRD 
R (  I , 3 ) *RRD 

C URITE{NOUT2, * )UPRl t lE ( l , l ) ,UPRl~E(1 ,2  

us 
us 
us 

C UR 1 TE(NOUT2, *)PA I R (  I ,  1 ) , PA1 R( I, 2 )  , PA I R( I , 3 )  
1 0 0  CONTINUE 

C INTEGRATE. .. PNOU=.FALSE. 

CRLL S I IlP (DR, RO, FUNCT , PRESSU, PNOU) 

PRESSU=PRESSU+RO( 1 )+R0(2) 
PRESSU=-PRESSU/6,0DO 

C URITE(NOUT2,l lO)PRESSU 
C 1 1 0  FORtl f iT( lX,  ' INTEGRRL+DENSITY= ',D13,6) 
C CALCULATE THE T A I L  CORRECTION TO THE UIRJAL  PRESSURE. 

PHRRD-COREPR(DR,SIGIlA,CORE,RO,BUIJ,PRIR) 
PRESSU=PRESSU+PHARD 
I FUNCs 1 
CRLL T R I L ( I F U N C , D R , I P O T , T R E D , E P S I , S I G ~ R , R O , T C , ~ R R O ~ ~  

C URITE(NOUT2,130)TC 
C 1 3 0  FORt lRT( lX , 'TA IL  CORRECTION= ' ,D13.6) 

PRESSU=PRESSU+TC 
C UR ITE(NOUT2,ZOO)PRESSU 
C 200 F O R t l A T ( l X ,  'TOTOL PRESS',D13.6) 

C KT; I T  IS Dlt lENSIONLESS. 
C RESULT I S  PRESSURE TINES THE 1-1 LJ S I Z E  PARAtlETER CUBED D l U l D E D  BY 

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTION COtlPRS 
C 
C C O n P R E S S l B i L l T Y  EQUATION. 
C 
C DRTE 8 / 1 7 / 8 7  
C REUISED 9/3/87- TO INCLUDE THE TAfL CORRECTION TO THE 
C COt lPRESSIBIL ITY.  
C CODED BV DAUID PFUND 
C 
C 
C DIRECT CORRELATION FUNCTIONS. 
C SUBROUTINE TAIL-ESTl t lATES THE T R l L  
C CORRECTION TO THE COt lPRESSIBIL ITY.  

PURPOSE-DETERtllNES THE COf lPRESSIBIL ITY OUER KT FROfl THE 

THJS ROUTINE CALLS; SUBROUTINE Slt lP-INTEGRATES THE REQUIRED 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
REAL FUNCT I ON COtlPRS ( I POT, DR , RO, TRED, S I GHR, EPS I , D I RECT) 
I t lPL I C I T  REAL*8(A-H , 0-2) 
REAL*[) DR 
REAL*8 TRED 
REAL*8 RO(3) 
RERL*B S IGt lA (3 ) ,EPSI  (3 )  
REAL*8 D IRECT(2048 ,3 )  
RERL*8 PRESSC 
INTEGER IPOT,IFUNC 
INTEGER ERROR 
LOGICAL PNOU 
COfltlON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 
PNOU=.FRLSE. 

C DIRECT = >  DIRECT CORELRTION FUNCTIONS. 
C RO(1) = NUflBER DENSITY OF SPECIES 1 *  A S I G R A ( l ) * * 3 .  
C R O ( 2 )  = NUtlBER DENSITY OF SPECIES 1 *  ASIGf lA(1)**3.  
C RO(3)  = R O ( 1 ) .  
C INTEGRRTE . . .  

CALL SltlP(DR,RO,DIRECT,PRESSC,PNOU) 
PRESSC=-PRESSC/(RO( 1 )+R0(2) 1 

C CALCULATE THE T A I L  CORRECTION TO THE COtlPRESSlB 
I FUNC=O 

PRESSC=PRESSC+(2,ODO*TC) 
PRESSC=PRESSC+I.ODO 
COtlPRS=PRESSC 

C RESULT IS COt lPRESSlB lL lTY  D l U l D E D  BY 
C KT; I T  I S  Dlf lENSIONLESS. 

CALL TflIL(IFUNC~DRJIPOT,TRED,EPSI,SIGtlAjRO, 

RETURN 
END 

L I T Y .  

C, ERROR 

C SUBROUTINE CORFU 

C CORRELATION FUNCTIONS. 
C CURRENT UERSION ONLY DOES HtlSA. 
C 
C (C .F .  ZERRH AND HANSEN, J.CHEfl.PHYS. UOL.84,  N0.4,  P . 2 3 3 6 ,  
C FEBRUARY, 1986,  FOR DETRILS ON THE HtlSR CLOSURE) 
C 
C 
C DATE 1 / 8 / 8 7  
C REVISED FOR fl lXTURES 6/9/87 
C FOR HflSA 8/20/87 
C CODED BY DAUID PFUND 
C 
C T H I S  ROUTINE CALLS: FUNCTION SUITCH-COtlPUTES THE HHSR 
C SWITCHING FUNCTION. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C PURPOSE-CALCULRTES THE PAIR,DIRECT,flND TOTAL 

SUBROUT I NE CORFU(DR, BU I J, F,G , PA1 R, D I RECT , TOTAL,BRTH) 

REAL*8 B U I  J ( 2 0 4 8 , 3 )  
REAL*B G(2048,3)  
RERL*8 F ( 2 0 4 8 , 3 )  
REAL*8 PA I R (2048,3) ,  D I RECT(2048 , 3) , TOTAL(2048,3), BATH ( 2 0 4 8  , 3) 
RERL*8 DR, REAL I 
REflL*8 U I  J(3), S I J(3) 
REAL*8 BOLT2 

I H P L l C l T  REAL*B(A-H,O-Z) 
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C 

COHHON/HHSA/ALFNEU,UIJ,SIJ 
COllflON/TYP/JT,N 
C0iltl0N/DEUICE/NIN,N0UT1,H0UT2,lN0PT 

C G=R*(H(R)-C(R)); 
C F 4 A Y E R  FUNCTI ONIEXP(-U(R)/KT)-l I 

DETERHINED BY SUBROUTINE GALER, 

C URlTE(NOUTl,*)N 
DO 200 I=l,N 

REAL I = I 
RRDIUS=REALl*DR 
DO 100,J=1,3 

C IF JT=l THEN HHSA. 
C HnSR.,. 
C SUT = HHSR SUlTCHlNG FUNCTION. IT'S THE SAnE FOR ALL THREE 
C INTERRCTIDNS. ALFNEU = THE PRRRHETER I N  THE SUlTCHlNG FUNCTION 
C WHICH IS IIRNIPULATED BY SUBROUTINE FINDR TO RCHIEUE PRESSURE 
C CONSISTENCY. 

SUT=SUITCH(RADIUS,RLFNEU) 
IF(RfiD 1 US. GE. ( 1  ,0000001 DO*Sl J( J) 1) THEN 

EXPOsSUT*( (G( I ,  J)/RRDIUS)-BUI J( I I J)) 
BOLTZmBU I J( I , J) 

ELSE 
EXPO=SUT*( (G( 1 , J)/RAD I US)-U I J( J) 
BOLTZ-UlJ(J) 

EHD IF 
UR 1 TE (NOUTZ , *)RAD, G( 1 , J) , BU 1 J( I , J) , SUT 
IF(EXPO.LT.-61,000) THEN 

END IF 
IF(EXPO.GT.61.ODO) THEN 

END IF 

EXPOS-61 . OD0 

EXPO*61.0DO 

IF(BOLTZ.LT.-61,0DO) THEN 
BOLTZ=-61.000 

EN0 IF  
BOLTZ-DEXP(B0LTZ) 
BRTH(I,J)-O.ODO 
IF(Di3BS(SUT).CT.O.UOOOOOOOOlDO) THEN 

END I f  
BRTH(1, J)-bATH( I ,J)+l .OD0 
BATH( I , J)-BATH( I, J)*BOLTZ 
PAIR(I,J>-3~TH(I,J>*(l .ODO+F(I,J)) 

BATH( I ,  J)*((DEXP(EXPO))-l. ODO)/SUT 

TOTAL(l,J)~PAlR(I,J)-1 .OD0 
DIRECT(I,J)~TOTAL(I,J)-(G(l,J)/RADIUS) 

100 CONT 1 HUE 
200 CONTINUE 

RETURN 
END c *****************************************************************4** 

C SUBROUTINE SlnP 

C OUER THE UOLUHE OF THE SYSTER. PROCEDURE 5lt IP USES 
C THE SIHPSON'S RULE. 
C 
C DATE 6/16/87 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS: - 

C PURPOSE- I HTEGRATES A 'FUNCT I ON T I ~ E S  DENS I T I ES 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE SltlP(DR,RO,FUNCT,INTGRL,PNOU) 
l n P L  I C l T  REAL*8(R-H,O-Z) 
REAL*8 OR 
RERL*8 R O ( 3 )  
REAL*8 FUNCT(2048,3) 
REAL*8 PLAST 
RERL*8 INTGRL 
REAL*8 SPUD 
INTEGER JT,N 
LOGICAL PNOU 
COtlflON/TYP/JT, N 
COflflON/LUDOL/PI 
COflflON/DEUICE/NIN,NOUT1,NOUT2,1NOPT 
INTGRL=O.ODO 

C NOTE: FOR T H I S  PARTICULAR RPPLICATION THE INTEGRAND AT THE LEFT 
C END POINT IS ZERO AND IS NOT E X P L I C I T L Y  INCLUDED I N  THE SUflf lATIONS 
C BELOU. 
c THIS SUBROUTINE I S  NOT R GENERAL s i n P s o t i l s  RULE SUBROUTINE. 

tlAXPN-1 
DO 1 0 0  I= l , t lAX,2  

REAL I = I 
RADIUS=REALI*DR 

C NOTE: RADIUS IS THE INTERtlOLECULRR SEPARATION DISTANCE D I V I D E D  BY 
C ASIGt lA (1 ) .  S I L L Y  UARIABLE SPUD IS USED FOR DIAGNOSTICS. 

$+(2.0DO*RO(l)*RO(2~*FUNCT(lJ3)))*RADlUS*RADlUS 
SPUD=((RO(l )*R0(1 )*FUNCT( I , 1 ))+(RO(2)*RO(2>*FUNCT( I ,2)) 

I NTGRL= I HTGRL+(4,ODO*SPUD) 
C DIAGNOSTIC PRINTINGS: 
C IF(PNOU.RND.(I.LE.255))4HEN 
C URITE(NOUT2,*)4.0DO*Pl*SPUD 
c END IF 
1 0 0  CONTINUE 

n A x = m x -  i 
DO 200 1=2,flAX,2 

REAL I = I  
RADIUS=REALI*DR 
SPUO-((RO(I)*RO(l )*FUNCT(I, l))+(RO(2)*RO(2)*FUNCT( I , 2 ) )  

I NTGRL= I NTGRL+(2. ODO*SPUD) 
$+(2.ODO*RO(l)*RO(2~*FUNCT(1,3)))*RADlUS*AADlUS 

C DIAGNOSTIC PRINTINGS: 
C IF(PNOU.AND.(I.LE.256))THEN 
c URITE(NOUT2,*)RADIUS,4.0DO*Pl*SPUD 
C END I F  
200 CONTINUE 

nAX=N 
REAL I 4 A X  
RADIUS=RERLI*DR 
PLAST=((RO( 1 )*RO( 1 )*FUNCT(flAX, 1 ))+(RO(2)*RO(2>*FUNCT(nAX, 2 )  1 

INTGRL=INTGRL-cPLAST 
I NTGRL=l NTGRL*(4,ODO*P I ) 
INTGRL=INTGRL*DR/3.0DO 
RETURN 
END 

$+( 2.ODO*RO(  1 1 *RO (2 1 *FUNCT (fl AX, 3) ) ) *RAD I US*RAD I US 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE CFG 
C PURPOSE-CALCULATES EITHER C(R) I N  TERMS OF G(R) OR THE 
C DERIURTIUE OF C(R) UNDER G ( R ) .  THIS PROCEDURE AND 
C SUBROUTINE CORFU 
C I S  CHANGED FOR ANOTHER THEORY. THE PROGRAH IS 
C CURRENTLY SET UP TO USE ONLY THE HHSA CLOSURE. 
C (C.F. LABlK, MALIJEUSKY AND UONKA, HOL. PHYS, UOL.56, N0.3, 
C P.709, (19851, FOR DETAILS OF THE NUHERICAL PROCEDURE) 
C 
C (C.F. ZERAH AND HANSEN, J.CHEH.PHYS. UOL.84, N0.4, P.2336, 
C FEBRUARY, 1986, FOR DETAILS ON THE HllSA CLOSURE) 
C 
C REV I SED 6/4/87 
C 8/18/87-CHANGED TO HnSA CLOSURE 
C 
C THIS ROUTINE CALLS: FUNCTION SUITCH-COHPUTES THE HtlSA 
C SUlTCHlNG FUNCTlON FOR A GIUEN SEPARATION 
C DISTANCE AND ALPHA PRRAHETER, 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE CFG(G , BU I J, F , C,  OR, K, RO)  
I tlPL I C I T REAL*8(A-H, 0-2) 
REAL*8 G(2048,3), F(2048,3 ) , C (2048,3 ) , R O ( 3 )  
REAL*8 BUIJ(2048,3) 
REAL*8 REAL1,RRD 
REflL*8 SUT,BOLTZ 
RERL*8 EXPO 
REAL*8 ALFNEU 
REAL*8 UIJ(3),SIJ(3) 
COMHON/HtlSA/ALFNEU,UIJ,SIJ 
COtlHOH/TYP/JT,N 
COH~OH/DEUICE/HIN,HOUTl,NOUT2,1NOPT 

C 
C INPUT PARAHETERS- 
C G: G(R)=R*(H(R)-C(R)) 
C F: HAYER FUNCTION 
C N: HUHBER OF GRID POINTS 
C OR: STEP SIZE IN R, RS A FRACTION OF 1-1 LJ SIZE PARH. 
C K: 
C K.EQ.0 ,,, R*DIRECT CORRELATION FUNC. I S  CALCULATED. 
C K.HE.0 ,,, 1ST DERIURTIUE OF C(R) I S  CALCULATED. 
C flLFNEU: THE HllSA tllXlNG PRRAHETER. PFiSSED THROUGH COtltlON/HllSA/ 
C FROtl SUBROUTINE 0030. LAZY. I T  IS FiSSUflED TO CARRY A 
C OF ASlGHR(1) (I.E. THE StlALL DlAtlETEfl) UHlCH HAKES IT 
C DlflEHSIONLESS. 
C UIJ: THE MlNltlUH URLUE OF THE IJ-TH PAIR POTENTIAL DlUlOED 
C BY KT. 
C SIJ:  THE SEPARATION DISTANCE (DIUIDED BY THE 1-1 S I Z E  PflRfl) 

C OUTPUT PARAHETERS- 
C AT THE POTENTIAL nitiinun. 

C 
C 
C 
C 
c10 
C 
C 
C 

C: 
K.EQ 
K.NE 

URITE(N0UT 
FORHAT(lX, 
UflITE(N0UT 
URITE(N0UT 
UAITE(N0UT 

0 ,,. R*DIRECT CORRELATION FUNC. 
0 ,,, 1ST DERIUATIUE OF C(A) U.R.T. G. 

IN CFG') 
, *)RO( 1 1, R0(2), R O ( 3 )  
,*)SI J( 1) ,SI J(2) , S I  J(3) 
, *)UI J( 1) ,UI J(2) ,U1 J(3) 

110) 
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C 

IF (K.GT.0) GO TO 120 
C UR I TE(NOUT2,102) 
c 102 FORtlAT(/lX, ' IN CFG. .DOING C CALC') 

DO 115 J=1,3 
DO 110 I=l,N 

C COVPUTE R*(DIRECT CORRELATION FUNCTION): 
REALl-l 
RAD=REALI*DR 
SUT=SUl TCH(RAD, ALFNEU) 
WR I TE( NOUT2, * )RAD,  G( I , J) , BU I J( I , J) , SUT 
IF(RAD.GE.(l.OOOOOOlDO*SlJ(J))) THEN 

EXPOlSUT*((G(I ,J) /RAD)-BUIJ( I  ,J)) 

C 

C URITE(NOUT2,666)RRD 
C 666 FORHAT(lX, ' IN BLOCK 1 ',D13.6) 
C WRITE(NOUT2,*)I,J,BUIJ(I,J) 

ELSE 

C WRITE(NOUT2,777)RAD 
c 777 FORtlAT(lX,'IN BLOCK 2',013.6) 
C URITE(NOUT2,*)1,J,UIJ(J)  

EXPOpSWT*((G(I ,J>/RAD)-UIJ(J))  

END IF 
IF(EXPO.GT.61.000) THEN 

END IF 
EXPO-61 . OD0 

IF(EXPO,LT.-61.0DO) THEN 
EXPO--61.000 

END IF 
URITE(NOUT2,f)EXPO 
C(I,J)=O.ODO 
IF(DABS(SUT).GT.O.OOOOOOOOO~DO> THEN 

IF(RRD.GE.(~.OOOOOO~DO*SIJ(J))) THEN 

C( I,J)=((DEXP(EXPO))-l .ODO)/SUT 
END IF 

BOLTZ=l.ODO 
ELSE 

BOLTZ=-(BUlJ(I ,J)-UIJ(J)) 
IF(BOLTZ.LT.-61.0DO) THEN 

BOLTZ~-61,ODO 
END IF 
BOLTZ=DEXP(BOLTZ) 

END IF  
C(I,J)=C(I,J)+l.ODO 
C( I ,d)=C( I ,  J)*BOLTZ 
C( I, J>=C( I ,  J)-1 .OD0 
C( I ,  J)=RAD*C( I, J) 
C( I ,  J)=C( I ,  J)-G( I ,  J) 

C URITE(NOUTZ,*)C( I ,  J) 
110 CONTINUE 
115 CONT 1 NUE 
C STOP 

RETURN 
120 CONT I NUE 
C URITE(NOUT2,122) 
c 122 FORtlRT(/lX, ' IN CFG. .DOING DERlU CALC') 

DO 140 J=1,3 
DO 130 I=l,N 

C COVPUTE DERIUATIUE OF R*(DIRECT CORRELRTION FUNCTION): 
C C.F. LRBIK'S EQUATION (10). 
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C 

C 

RERLl=l 
RAD=REALI*DR 
SUT=SU 1 TCH(RRD, ALFNEU) 
UR I TE( NOUT2, * )RAD, G( I , J) , BU I J( I , J) , SLIT 
IF( RAD, GE. (1  .0000001D0*S 1 J( J> ) )  THEN 

ELSE 
EXPO=SUT*((G(I,J>/RRD)-BUIJ(I,J)) 

EXPO=SUT*((G( I ,J)/RAD)-UIJ(J)) 
END IF 
I F(EXP0. LT a -61 ,000) THEN 

EXPO=-61,0DO 
END IF 
IF(EXPO.GT.61.0DO) THEN 

EXPO=61.000 
END IF 
UR I TE( NOUTZ , *)EXPO 
IF(RRD, GE. ( 1  10000001 DO*S I J( J))) THEN 

BOLTZ=l. OD0 
ELSE 

BOLTZ~-(BUIJ(I ,J)-UIJ(J)) 
IF(BOLTZ.LT.-61.0DO) THEN 

END IF 
BOLTZ=DEXP( BOLTZ) 

BOLTZz-61.0DO 

END IF 
C( I , J)=DEXP(EXPO) 
C(I,J)=C(I,J)*BOLTZ 
C( 1 ,  J)=C( I J)-l.ODO 

C URITE(NOUTZ,*)C( I ,J> 
130 CONT I HUE 
140 CONT I NUE, 

END 
RETURN 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE FFS30 
C PURPOSE-FRST FOURIER TRRNSFORtl IN ONE Dl f lENSION.  
C SlflULTANEOUSLY TRRNSFORtlS ALL THREE COLUflNS OF THE INPUT 
C ARRfW AT ONCE. 
c (SEE LRBlK,flRLlJEUSKY, RND UONKR, 
C tlOLECULRR PHYSICS, UOL. 56, NO. 3, 
C PP.709-715 (1985) ) 
C 
C REVISED 6 
C REUR 1 TTEN 
C 
C 
C THIS ROUT 
C 
C 
C 
C 
C 

4/87 
CORPLETELY 2/18/88 - NOU ONLY PREPARES RRGUflENTS 

FOR DFZINT. 

NE CALLS: InSL ROUTINE DFZINT- CALCULRTES THE 
SINE TRRNSFORtlS AND THE INVERSIONS. 
THIS IS fl ROUTINE USED FOR tlULTlPLE 
TRflNSFORnS UHICH REQUIRES THE f l R R R Y  
UFFTR BE INTIRLtZED ( BY ROUTINE 
"DFSINI" -CALLED IN SUBROUTINE GALEfl ) .  c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE FFS3D(KRtl,X,Y4N,NH,DR,UFFTR) 

RERL*8 X(2048,3) , Y (  2048,3) 
REAL*8 UFFTR(5133) 
REflL*8 XX(2047) 

ItIPLlClT REAL*B(R-H,O-Z) 
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REAL*8 VY(2048)  
RERL*8 DR 
REAL*8 COEFF 
INTEGER KAtl 
COntlON/LUDOL/PI 
COtltlON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 

Y Y  tlUST HAUE Dl f lENSlON N 

N=Ntl*Ntl, 
DIRECT TRANS. KAtl>O 
INUERS TRANS. K A f l < O  
! ! ! ! ! ! ! !  X(N, I )  tlUST BE ZERO ! ! ! ! ! ! ! !  

URITE(NOUT1,5) 

XX nUST HRUE DI f lENSION N-1 

c 5  FORt lAT( lX , '  I N  FFS3D '1 

C INVERTING, . .  IF (KAt l . LT .0 )  THEN 

RERLN=N 
COEFFSl , ODO/( 4,OOO*P I *DR*REALH) 

C DT=PI/(REALN*DR) 

C TRRNSFORtllNG . . .  
C RH=DR*H 
C DT=DR 

ELSE 

COEFF=2.000*PI*OR 

END I F  

DO 100 1=1,3 
Ntl I N  1xN- 1 

DO 50 J = l , N t l l N l  
XX(J>=X(J,  I )  

50 CONTINUE 
C THE SUtlf lATION I N  THE TRRNSFORtl RUNS FROtl 1 TO H-1. THE RRGUtlEHTS 
C OF THE S I N E  FUNCTIONS ARE ( P I * I * J / N ) .  THE SERIES RETURNED BY 
C DF21NT HAS AN EXTRA FACTOR OF 2.0 ATTACHED TO I T .  THUS, I N  ORDER 
C TO REPRODUCE THE EQUATION GIUEN I N  L A B I K ' S  PRPER AN ADDITIONAL 
C FACTOR OF COEFF=2.0DO*PI*DR flUST BE INCLUDED WHEN TRANSFORtllNG. 

C CALL OFFSJD(KAtl ,X,Y,N,Nt l ,DT)  
CALL OF2 I NT(Ntl I N1 ,XX, YY, UFFTR) 

DO 75 J = l , N t l l N l  
Y(J ,  I)=COEFF*YY(J) 

75 CONTINUE 
Y(N,I)-O.ODO 

1 0 0  CONTINUE 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE GAUSEL 
C PURPOSE-SOLUES LINEAR EQUATIONS U l T H  GAUSS' tlETHOD. 
C 
C REUISED 6/4/87 
C 
C T H I S  ROUTINE CALLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE GAUSEL(N,R,RES,BADtlflT) 

RERL*8 R(N+1 ,N+1 ),RES(N) 
REAL*8 S , Y Y  
LOGICAL BRDllAT 

I t l P L l C l T  REAL*8(A-H,O-Z) 
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COHflON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
C URITE(NOUT1,lO) 
c10 FORHAT(lX,' IN GAUSEL') 

8ADRA73. FALSE. 
DO 450 l=l,N-1 

S=O. DO 
DO 430 K=l,H 

YY=DRBS(R(K, I ) )  
IF ('4V.LE.S) GO TO 425 

I S=K 
S=YY 

425 CONT I HUE 
430 CONT 1 NUE 

I F  (S.EQ.O.DO) GO TO 999 
DO 435 K=l,N+l 

S=R( I ,  K) 
R( I ,  K)=R(  IS, K) 
R( IS,K)=S 

DO 445 K=l+l,N 
S=R(K, I )/R( I ,  I )  
DO 438 J=I,N+l 

435 CONTINUE 

R(K,  J)=R(K, J)-S*R( I ,  J) 
438 CONT I HUE 
445 CONT 1 NUE 
450 CONT I NUE 

IF (R(N,N).EQ.O.DO) GO TO 999 
RES( N ) -R( N, N+ 1 1 /R (N , ti) 
DO 460 K=l,N-1 

KKxN-K 
s-0 I DO 
DO 455 J=KK+l, ti 

S*S+R(KK, J)*RES( J) 
455 CONT I HUE 

460 CONT I NU€ 

999 CONT I NUE 
C ZERO PlUOT DETECTED..,OUCH. 

BRDtlRT=.TRUE. 
END 

RES (KK)s( R (KK, N+l )-S)/R(KK, KK) 

RETURN 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUT I NE GFC 
C PURPOSE- CALCULRTES THE TRRNSFORR OF GAtlflR FROfl THE TflRNSFORfl 
C OF THE DIRECT CORRELATION FUNCTION. 
C 
C REU I SED 6/+/87 
C 
C THIS ROUTINE CALLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE GFC(C, G ,  ROT, T) 
I nPL I C 1 T REflL*8(R-H, 0-2) 
REflL*8 C(3),G(3) 
CO~HON/DEUICE/NIN,NOUTl,NOUT2,ItiOPT 

c1 l=C( 1 )  
C22=C(2) 

C URITE(NOUTl', 10) 
c10 FORtlAT(lX, ' IN GFC ' )  
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C12=C(3) 
C12C21=Cl2*C12*ROT 
C l l C 2 2 = C l l * C 2 2  
CT=C12C21-Cl lC22 
DET=(T-Cll)+(T-C22)-C12C21 

C THESE ARE THE OZ EQUATIONS I N  TRANSFORII SPACE. 
G ( l  )= (T* (C l  l * C 1  l+C12C21)+C l  l *CT) /DET 
G ( ~ ) P ( T * ( C ~ ~ * C ~ ~ + C ~ ~ C ~ ~ ) + C ~ ~ * C T ) / D E T  
G(3)=(T*(Cll+C22)+CT)*Cl2/DET 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE HSANAL 
C PURPOSE- PROUIDES I N I T I A L  GUESSES OF THE DIRECT CORRELATION 
C FUNCTION TO SUBROUTINE GALER. I T  USES THE ANALYTICAL 
C SOLUTION FOR HARD SPHERE SYSTEtlS GIVEN BY LEBOUITZ 
C 
C REV I SED 6 / 4 / 8 7  
C 10/23/87-INCREASED THE RANGE OF THE DO LOOP FROtl 
C 256 TO 2 0 4 8  TO INSURE THAT ALL UALUES OF 
C "C' ARE I N l T l R L l Z E D  ON NON-IBfl I lACHINES. 
C 
C T H I S  ROUTINE CALLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE HSANAL(C, RO, S I GtlA, DR) 
I I IPL  I C I T REAL*B(fl-H, 0-2) 
REAL*8 C(2046,3) ,  R0(3) ,  S I GflA(3) 
COIIIION/LUDOL/PI 
COtlIION/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

C URITE(NOUT1,lO) 
c 1 0  FORtlAT(lX, '  I N  HSANAL ' 1  

RHOl=RO(l )  
RH02=R0(2) 
D l -S lG t lA (1 )  
D2=SIGtlA(2) 
RHO=RHOl+RHO2 
Yl=P1/6.*RH01*01**3 
Y2=P1/6.*RH02*D2*Y3 
DD=Dl-D2 
Y - Y l  +Y2 
P1=1 . / ( l - Y )  
P2=P 1 *P 1 
P3=1+Y/2. 
G l l=P2* (P3+1  .5*Y2/02*DD) 
G22=P2* (P3- 1 5*Y 1 /D 1 *DO) 
G 12=(D2*G 1 1 +D1 *G22) / (D 1 +D2) 
P3=P2*P1 , 

T l = l + Y l + ( l + Y 2 ) * 0 1 / 0 2  
T2=T1* (1+3*Y l *P l )+Y l  

T+=( l .+Y)*Y+l  

T l= l+Y2+(1+Y l ) *D2 /D l  
T2=T1*(1+3*Y2*Pl )+Y2 

D l 3 4 1  **3 
D23*D2**3 
D 1 2= (8 1 +D2) /2. 

T31(1-01/02)**2 

fll~P3*(T4+(Y+2)**2*Pl*Yl*(1+RHO2/RHOl}-3*T3*Y2*T2) 

T3=(D2/D1-1)**2 
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A2~P3*(T4+($'+2)**2*Pl*Y2*( 1 +RHO1 /RH02)-3*T3*Yl *T2) 
Bl~-6.*(Yl/Dl*Gll*Gll+'f2/(D23)*G12*Gl2*Dl2*Dl2) 
821-6. *(Y2/D2*G22*G22+Yl /(Dl 3)*G 12*G12*D 12*D12) 
B~-6,*(Yl/Dl/Dl*Gll +Y2/D2/D2*G22)*G12*D12 
CC=O.5*(Al*Y1/013+A2*Y2/023) 
DLAtll(D2-01)/2. 
DO 100 191,2048 

C(I, 1 ) = O m  
C(I,2)=0. 
C(I ,314. 
R= I *DR 
R3*R**3 
IF  (R.LT.Dl) THEN 

END IF  
IF  (R,EQ.Dl) THEN 

END IF  
IF  (R,LT.D2) THEN 

END IF  
I F  (R.EQ.02) THEN 

END IF 

I F  (R.LT.DLAH) THEN 

ELSE 

C(I,I)P-RI-B~*R-CC*R~ 

C( I , 1 )=( - A 1  -81 *R-CC*R3 )*On 5 

C(I,~)P-A~-B~*R-CC*R~ 

C( I ,2)=(-R2-B2*R-CC*R3)*Oa5 

X=R-DLAH 

C( I ,3)=-A1 

IF  (R.LT.Dl2.AND.R.GE.DLfltl) THEN 

ELSE 
C ( 1 , 3 ) ~ - R l - ( B * X * X + ( t * D L A l I + X ) * X * * 3 * C C ) / R  

IF (R.EQ.Dl2) THEN 

END IF  
C( I , 3  )a( -A 1 -(B*X*X+ (4*DLf\tl+X )*X**3*CC) / R ) * O .  5 

END IF  
END IF 

100 CONT I HUE 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE JACOB 
C PURPOSE-? 
C 
C DATE 6/4/87 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE JACOB(C,G,F,T,ROT) 

REAL*8 C(3 1, G( 31, F( 3,3) 
CO~NON/DEU1CE/NIN,NOUTl,NOUT2,lNOPT 

C URITE(NOUT1,lO) 
c10 FORtlRT(lX,' IN JACOB ' )  

Cl=C(l) 
C2=C(2) 

I flPL I C 1 T REAL*8(R-H, 0-2) 

C12=C(3) 
GlrG(1) 
G2=G(2) 
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G12=G(3) 
C12C21 =ROT*C12*C12 
OETS(T-Cl)* (T-C2)-Cl2C21 
F ( 1 , 1 ) ~ ( T - C 2 ) * ( G 1 + C 1 + C 1 ) + C 1 2 C 2 1  
F(1,2)=Gl*(T-Cl)-Cl*Cl 

F(2,2)=(T-C1 )*(G2+C2+C2)+C12C21 
F(2,l )=G2*(T-C2)-C2*C2 

F(3,1)=(G12+C12)*(T-C2) 
F(3,2)z(G12+C12)*(T-C1) 
F(3, J)PROT*CI 2*(G 12+G12+3*C12)-Cl *C2+T*(C1 +C2) 

F( l13)=2*ROT*C12*(T+G1 +C1) 

F (2,3)=2*ROT*C12* (T+G2+C2 

DO 110 1=1,3 
DO 100 J'=1,3 

F(I,J)=F(I,J)/DET 
100 CONT I NUE 
110 CONT I NUE 

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTION SUITCH 
C PURPOSE-COflPUTES THE FUNCTION UHICH GIUES A SflOOTH TRANSITION 
C BETUEEN HNC AND SflSR THEORIES IN THE HflSR CLOSURE. 
C THIS FUNCTION USED BV SUBROUTINE CFG IN THE 
C COflPUTATlON OF THE CORRELATION FUNCTIONS FOR THE 
C BATH IlOLECULES. 
C (C.F. ZERAH AND HANSEN, J.CHEfl.PHYS. UOL.84, H 0 . 4 ,  P.2336, 
C FEBRUARY, 1986) 
C 
C DATE 8/18/87 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION SUITCH(RADIUS,ALPHA) 

REAL*8 RADIUS,ALPHA 
REAL*8 EXP0,SAUE 
COflflON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

IflPLlClT REAL*8(A-H,O-Z) 

C RADlUStSEPARATlON DISTANCE/(l-l LJ SIZE PARfl). 
C ALPHA=HflSFI PARAIlETER*(l-l LJ SIZE PRRfl) 
C SO, BOTH INPUTS ARE DlflENSIONLESS. 
C BOTH HAD BETTER BE ALURYS POSITIVE. 

C SO=O. OD0 
EXPO=ALPHA*RADIUS 

IF(EXPO.GT.61.0DO) THEN 

ELSE 
SAUE-1 .OD0 

IF(EXPO.LT.O.OOOOOOO1DO) THEN 
SAUE-0.00000001DO 

C SAUE=SO 
ELSE 

SAUEIl .ODO-(DEXP(-EXPO)) 
C SAUE~l.ODO-((l.ODO-SO)*DEXP(-EXPO)) 

END IF 
END IF 
SUITCH=SRUE 

C SUITCH-0.000001DO 
C SU 1 TCH=l , OD0 
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RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTION SWITCH2 
C PURPOSE-COMPUTES THE FUNCTION WHICH GIUES A SnOOTH TRf lNS lT lON 
C BE.TWEEN HNC AND StlSA THEORIES I N  THE HnSR CLOSURE. 
C T H I S  FUNCTION USED BY SUBROUTINE CFG2 I N  THE 
C COMPUTATION OF THE CORRELATION FUNCTIONS FOR THE 
C TEST Pf lRTICLE.  
C (C.F.  ZERAH AND HflNSEN, J,CHEfl.PHYS. UOL.64, N0.4,  P .2336 ,  
C FEBRUARY, 1 9 8 6 )  
C 
C DATE 8/18/87 
C 
C T H I S  ROUTINE Cf lLLS:-  c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

RERL FUNCT I ON SU I TC2( RAD I US, RLPHR) 
I HPL I C I T  RERL*6(A-H, 0-2) 
REAL*8 RADIUS,RLPHR 
REAL*8 EXP0,SAUE 
COflMON/DEUICE/NlN,NOUTI,NOUT2,1NOPT 

C RflD I USxSEPRRRT I ON DI STANCE/( 1-1 LJ S I ZE PflRM) 
C RLPHA-HllSR PARRIlETER*(l- l  LJ SIZE PARH) 
C SO, BOTH INPUTS ARE Dlt lENSIONLESS. 
C BOTH HAD BETTER BE RLUAYS POSIT IUE.  

C SO=O , OD0 
EXPO=ALPHA*RRDIUS 

IF(EXPO,GT.Bl.ODO) THEN 

ELSE 
SAUE-1,ODO 

lF(EXPO.LT.O.OOOOO~OlDO) THEN 
S A U E ~ 0 . 0 0 0 0 0 0 0 1 D O  

C SAUE-SO 
ELSE 

SRUE=l .ODO-(DEXP(-EXPO)) 
C SAUE*l , O O O - ( (  1 .ODO-SO)*DEXP(-EXPO)) 

END IF  
END I F  
SWITC2=SAUE 

C SWITC2-0.00000100 
C SUITC2=1.ODO 

RETURN 
END 

c **************************************4******************************* 

C SUBROUT I NE TA I L 
C PURPOSE-SETS UP PARAflETERS NEEDED BY SUBROUTINE INTEGR. 
C COflPUTES THE T A I L  CORRECTION TO THE COHFIGURATIONflL 
C INTERNAL ENERGY DIU IDED BY KT IF IFUNCPO. COtlPUTES 
C T A I L  CORRECTION TO THE U l R l A L  PRESSURE I F  IFUNC= l .  
C 
C DATE: 7/14/87. 
C 
C T H I S  PROGRRH CALLS; SUBROUTINE INTEGR-INTEGRATES THE PRODUCT 
C OF THE POTENTIAL OUER UOLUnE 
C fROn R LOUER L I l l l T  (UHERE THE R.D.F IS 
C RPPROXlflATELY 1.0) UP TO A UERY LRRGE 
C UPPER L I H I T .  c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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C 
C 
C 

C UPPER 

SUBROUTINE TRIL(IFUNC,DR,IPOT,TRED,EPSI,SIGtlA, 

ItlPLlClT REAL*8(A-H,O-Z) 
REAL*8 S I GtlA(31, R0(3), EPS I (3) 
REAL*8 INTGRL,LOUER,UPPER,TRED 
REAL*8 PRHS(30) 
REAL*8 RBlG 
INTEGER IFUNC 
INTEGER ERROR 
INTEGER IPOT 
COtltlON/TYP/JT,N 
COHtlON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 
PRtiS( 1 )=TRED 
PRtlS(Z)=EPS I(1) 
PRtlS(J)=EPS I(2) 
PRUS(4)=EPSI (3) 
PRtlS(5)=S I GtlA( 1 ) 
PRtlS(6)=SIGtlA(2) 
PRtlS(i’)-S I GllA(3) 

PRllS(8)-SOFTD( 1 ) 

$RO, I NTGRL, ERROR) 

C RESERUE 8,9,10 FOR STELL-UEIS OR KIHARA. 

PRllS (9)-SOFTD(2) 
PRtlS( 1 O)=SOF TD(3) 
PRtlS(l1 )PRO( 1 ) 
PRtlS( 12)-RO( 2) 
PRtlS(13)=R0(3) 
RBI G=N 
LltllT I S  51,2*ASIGtlA(l) UHEN Ns2048 AND DR=0.00625. 
UPPER=4,0DO*RBIG*DR 
LOWER=RBIG*OR 
CALL INTEGR(IFUNC,IPOT,PRUS,LOUER,UPPER,INTGRL,ERROR) 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE TEST 
C PURPOSE-TESTS DIFFERENCES OF G(T) I N  NEUTON ITERATION. 
C 
C REUISED 6/4/87 
C 
C THIS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE TEST(DG, D IF, NA, I K, N, DR) 

REAL*8 DG (NA, 31, D I F (NA, 3 )  
COHflON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

I HPL IC I T REAL*8(A-H, 0-2) 

C 
C INPUT PARAtlETERS-. 
C DG: UALUES OF DIFFEAENC GT(T) 
C DIF: THEIR HODlFlCATlON FROll ITERATION STEP. 
C NA: NUtlBER OF EQUATIONS IN NEUTON ITERATION. 

C NEU UALUES OF DIFFERENCE GT(T) 
C USUALLY DG(T)=DG(T) +Dl F(T) 
C IK: 
C IK.EQ.0 . . .  NEUTON ITERRTION BAY CONTINUE. 
C IK.NE.0 . . .  FORCES SUBROUTINE GALER TO PERFORtl DIRECT 
C ITERATION (PROBABLY DUE TO TOO HIGH URLUES 
C OF DG(T) 1. 

C OUTPUT PARAHETERS- 
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C URITE(NOUT1,lO) 
c10 FORtlAT(lX, ' IN TEST') 

I K=O 
DO 20 J=1,3 

DO 10 K=l,NR 
DG(K, J)=DG(K, J)+DIF(K, J) 

10 CONTINUE 
20 CONTINUE 

IF (JT.EQ.1) RETURN 
EHD c .................................................................... 

C FUNCT I ON FUHCO 
C PURPOSE-CALCULATES THE INTEGRRND FOR THE TRlL CORRECTION 
C TO THE INTERNRL ENERGY. RLSO USED TO CALCULATE 
C THE TAIL CORRECTION TO THE COtlPRESSIBILITY FROII 
C THE COnPRESSlBlLlTY EQUATION. 
C 
C DATE 6/29/87 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS: SUBROUTINE PSIIJ-CALCULATES THE P A I R  
C POTENTIRLS DIVIDED BY KT FOR A GIVEN 
C SEPARATION DISTANCE. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION FUNCO(PRtlS,IPOT,ARG,ERROR) 

REAL*8 ARG 
REAL*8 T,RR,PI 
REAL*8 BUl,BU2,BU12 
REflL*6 BUP 
REflL*8 SAUE,RHO 
REAL*8 PRtlS(30) 
INTEGER IPOT 
INTEGER IP 
INTEGER ERROR 
COIItlOH/LUDOL/PI 
COtl~ON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

T=PRtlS ( 1 1 
RR=flRG 
Rfl= 1 . OD0 
I P=O 
BUl*PSlIJ(IP,RR,Rtl,T,BUP) 

T=PRtlS(l ) /PRIIS(4) 
RR=RRG*PRtlS ( 5 )  /PRtlS ( 7 )  
BUl2=PSl I J( IP,RR,Rtl,T,BUP) 

T=PRtlS(l )/PRtlS(3) 
RR=flRG*PRtlS(5)/PRnS(s) 
BU2=PS I I J( I P,RR, Rfl,T, BUP) 
SAUE=(PRtIS ( 1 1 *PRflS( 1 1 )*BUl)+( PRHS ( 12 )*PRtlS ( 1 2 1 *BU2) 
SAUEfSAUE+(2.0DO*PRtlS( 1 1  )*PRtlS{12)*BU12) 
RHO=PRIlS(ll )+PRtlS(12) 
SAUE=SAUE/RHO 
FUNCO=2.0DO*PI*ARG*ARG*SRUE 
RETURN 
END 

ItlPLlClT REAL*8(A-H,O-Z) 

C DO 1-1 INTERACTION 

C DO 1-2 INTERACTION 

C DO 2-2 INTERACTION 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C FUNCTION FUNCl 
C PURPOSE-CALCULATES THE INTEGRAND FOR THE T A I L  CORRECTION 
C TO THE U l R l R L  PRESSURE. 
C 
C DRTE 9/3/87 
C CODED BY DAUID PFUND 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE PSIIJ-CALCULATES THE P A I R  
C POTENTIALS D l U l D E D  BY KT FOR A GlUEN 
C SEPARATION DISTANCE. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C DO 

C DO 

C DO 

REAL FUNCTION FUtiCl(PRtlS,IPOT,ARG,ERROR) 

REAL*8 ARG 
REAL*8 T,RR,PI 
REAL*8 BUl,BU2,BU12 
REAL*8 BUPl l ,BUP12,BUP22 
RERL*8 SRUE 
REAL*8 PRtlS (30) 
INTEGER IPOT 
INTEGER I P  
INTEGER ERROR 
COtltlON/LUDOL/PI 
COtltlON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 

Rt l= l  . OD0 
I P a 0  
T=PRI1S( 1 ) 
RR=ARG 
BUlmPSl  IJ ( IP ,RR,Rt l ,T ,BUPI l )  

T=PRHS(l ) /PRt lS(4) 
RR=ARG*PRIlS ( 5 )  /PRtlS(7 1 
BU 125PS I I J( I P, RR, Rtl ,  T, BUP12) 
BUPl2=BUP12*(PRtlS(5)/PRtlS(7 ) 

T=PRtlS( l  )/PRflS(3) 
R R P R R G * P R ~ ~ S ( S ) / P R ~ ~ S ( ~ )  
BU2-PS I I J( I P, RR, Rtl,  T, BUP22) 
BUP22=BUP22*(PRtlS(S)/PRtlS(6)) 
S~UE-(PRtlS(ll)*PR~S(ll)*BUPll)+~PRI1S~12~*PRI1S~l~)*BUP22~ 
SAUE=SAUE+(2.0DO*PRtlS(ll)*PRtlS(12)*BUP12) 

RETURN 
END 

I f lPL I C  I T  REAL*8(A-H, 0-2) 

1-1 INTERACT I ON 

1 -2  INTERACTION 

2-2 INTERACTION 

FUNC1=-2.ODO*PI*flRG*ARG*ARG*ARG*SRUE/3.000 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C FUNCTION FUNC2 
C PURPOSE-CALCULATES THE INTEGRAND FOR THE T R l L  CORRECTION TO 
C THE CHEtl lCRL POTENTIAL. 
c 
C DflTE 6/29/87 
C CODED BY DRUID PFUND 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE PSIIJ-CALCULRTES THE PERTURBING 
C POTENTIALS D l U l D E D  BY KT FOR R GlUEN 
C SEPARATION DISTANCE. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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. 

REAL FUNCTION FUNC2(PRilS,IPOT,RRG,ERROR) 
I HPL IC I T RERL*8(R-H, 0-2) 
REAL*8 RRG 
REAL*8 T,RR,SSTRR,PI 
REAL*[] BU1, BU2 
RERL*8 BUP 
RERL*8 PRt lS(30)  
INTEGER IPOT 
INTEGER ERROR 
COtltlOH/LUDOL/PI 
COtltlON/DEUICE/NIH,NOUTl,NOUT2,1NOPT 
SSTRR=l,ODO 
I P=O 

T=PRt lS( l ) /PRt lS(4)  
RR=RRG*PRM ( 5 )  /PRtlS(7 1 
B U l  =PS I I J( I P, RR, SSTRR, T, BUP) 

I F ( l P O T . E Q . 0 )  THEN 

C DO 1-2 INTERRCTION 

C 00 L I K E - L I K E  INTERRCTION 

C SPECIES 2 IS SOLUTE 
T=PRtlS( 1 )/PRllS(3) 
RR=ARG*PRtlS(S)/PRHS(6) 

ELSE 
C SPECIES 1 IS SOLUTE 

T=PRt lS( l )  
RR=ARG 

C SSTRR=PRtlS(8)/PRnS(S> 
END IF 
BU2=PSIIJ(IP,RR,SSTRR,T,flUP) 
IF(  IPOT.EQ.0)  THEN 

ELSE 

END I F  
FUNCZPSRUE 
RETURN 
END 

SRUEE~.ODO*P~*ARG*RRG*( (PRtlS( 11 ) * B u t  )+(PRt lS(12)*BU2))  

SAUE~4.0DO*PI*ARG*RRG*((PRflS(12)*3Ul)+(PRflS(ll)*BU2)) 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE GAUSS 
C PURPOSE-PERFORflS THE GflUSS-LEGENDRE INTEGRRTION FOR A 
C GIUEN NUllBER OF PANELS. SUBROUTINE "GAUSS" CURRENTLY USES 
C R THIRD ORDER LEGENDRE POLYNOfl lRL, 
C 
C DRTE 2/17/86 
C COOED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS: FUNCTION SUBINT-ESTlt lATES THE INTEGRRL 
C 
C 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE GAUSS(IFUNC,SIZE,PRtlS,IPOT,LOUER,UPPER,NUHPAN, 

FOR A SINGLE PANEL."GAUSS" THEN RDDS UP 
THE URLUES FOR RLL PANELS. 

$LRtlBDA,UEIGHT,INTGRL,ERROR) 

REAL*8 INTGRL,LOWER,UPPER 
INTEGER ERROR,SIZE,NUHPAN 
INTEGER lPOT,IFUNC 
RERL*8 PRtlS(30) 
REAL48 LRnBoA(SlZE),UEIGHT(SlZE) 

1 HPL I C  I T  REAL*B(R-H, 0-2) 
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COHtlON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 
ERROR=O 
INTGRL=O.ODO 
RNUH=NUtlPAN 

C CALCULATE THE WIDTH OF EACH INTEGRATION PANEL. 

C A=LOUER L l f l l T  OF THE CURRENT PANEL. B=UPPER L l l l l T  OF THE CURRENT 
C PANEL. 

DELTAX=(UPPER-LOUER)/RNUtl 

A=LOUER 
B=A+DELTAX 

I s 1  
1000 CONTINUE 

C I I S  THE PANEL COUNTER. 

C URITE(NOUT2,1100)R,B 
C l l O O  F O R H A T ( / l X , ' I N  GAUSS. A = ' , D l l . 4 , '  B= ' ,D11.4)  
C EST l f lATE THE AREA UNDER THE CURUE OUER THE CURRENT PANEL USING 
C FUNCTION "SUBINT" .  ADD THE RESULT TO THE URLUE OF THE INTEGRAL. 

INTGRL=INTGRL+SUBINT(IFUNC,SIZ~,PRHS,IPOT,A,B,LRtlBDR, 
$UEIGHT,ERROR) 

C URITE(NOUT2,1150)1NTGRL,ERROR 
C1150  FORflRT(/ l  X, ' I NTGRL= ' , Dl 1 I 4 ,  ' ERROR= ' , I 3 )  
C THE LOUER L l H l T  OF THE NEXT PANEL=THE UPPER L l t l l T  OF THE CURRENT 
C ONE. 

C GET THE UPPER L l H l T  OF THE NEXT PANEL. 
R=B 

B=B+DELTAX 
l = l + l  

C REPEAT ADDING ON AREAS U N T I L  ALL PANELS HAUE BEEN ADDED ON. 

C URITE(HOUT2,1200)INTGRL 
C1200  FORHAT(/ lX,  'LEAUING GAUSS. lNTGRL= ' , D l 1  - 4 )  

IF((I.LE.NUHPAN).AND.(ERROR.EQ.O))GO TO 1000 

RETURN 
END c **+*******++*****+*++*+**+********++++++**************************** 

C SUBROUTINE INDURS 
C 
C U l T H l N  THE INTEGRATION PANEL FOR UHlCH THE INTEGRAND U l L L  
C BE EVALUATED. 
C 
C DATE 2 / 1 8 / 8 6  
C CODED BY DRUID PFUND 
C 
C T H I S  ROUTINE CRLLS: FUHCTiON tlAP-SOnEHOU tlAPS THE DESIRED 
C PANEL ONTO SOllE K I N D  OF STANDARD GAUSS- 
C LEGENDRE INTERUf lL . I  FORGOT HOU I T  UORKS. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

PURPOSE-DETERHINES AN ORDER NUHBER OF UNEQUALLY SPACED 

SUBROUTINE INDURS(SIZE,ORDER,LOUER,UPPER,LAHBDA,XARRfl'f) 

REflL*8 LOUER,HAP 
INTEGER ORDER,SIZE 
REflL*8 LRHBDA(S1ZE) 
REf lL*8 XARRRY(0RDER) 
COflHON/DEUICE/NIN,HOUTl,NOUT2,lNOPT 
XARRAY(l )=HflP(LOUER,UPPER,LARBDA(l) )  

I f l P L l C l T  REAL*8(A-H,O-Z) 

C REtlEHBER, ORDER HUST BE I N  2 . . 1 0  
IF (  (0RDER.EQ. 3 )  . O R .  ((0RDER.EQ .5) I O R .  ((ORDER. EQ.  7 ) ,  OR I (ORDER I EQ I 9 )  

$1)) THEN 
I =2 
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J=2 
ELSE 

XARRAY(2)eflAP(LOUER,UPPER, -LAflBDfl( 1 1) 
I =3 
J=2 

END IF  
IF(I.LE,ORDER) THEN 

1000 CONT I NUE 
XARRRY( I >PHRP(UPPER,LOUER,LRHBDR(J)) 
XRRRAY( I+l)lHAP(UPPER,LOUER, -LRHBDB(J)) 
J=J+l 
1=1+2 

IF(1 .LE.ORDER) GO TO 1000 
END I F  
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C 
C 
C 
C 
C 
C 
PRNELS 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE INTEGR 
PURPOSE-INTEGRATES . . . ,  
SUBROUTINE INTEGR USES THE GAUSS-LEGENDRE tlETHOD FOR NUtlERlCRL 
INTEGRATION. CURRENTLY USES A THIRD ORDER LEGENDRE POLVNOlllRL. 
"INTEGR" PROGRESSIVELY DOUBLES THE NUtlBER OF INTEGRRTION 

USED UNTIL A CONUERGED RESULT I S  OBTAINED. 

DATE 2/17/86 
REVISED 2/20/88 - COHHENTED-OUT AUTOtlRTlC CONUERGENCE TO 

SPEC'ED TOLERANCE RHO SET THE NUflBER OF 
PANELS TO BE USED TO 64; THESE ARE ENOUGH 
PRNELS FOR SIX FIGURE ACCURRCY OF THE TRlL 
CORRECTION INTEGRRLS. 

CODED BY DRU1D PFUND 

THIS ROUTINE CRLLS: SUBROUTINE RTSUTS-LOADS THE ROOTS AND 
WEIGHTS OF THE LEGENDRE POLYNOfllRL lNTO 
ARRAYS. 

LEGENDRE INTEGRRTION FOR A GIUEN 
NUHBER OF PANELS. 

SUBROUTINE GRUSS-PERFORHS THE GAUSS- 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE INTEGR(IFUNC,IPOT,PRHS,LOUER,UPPER,INTGRL,ERROR) 
ItlPLlClT REAL*8(fI-H,O-Z) 
RERL*8 INTGRL,LOUER,INTNl,INTN2 
REAL*E PRHS(30) 
RERL*8 LAHBOA(2) ,UEIGHT(Z) 
INTEGER ERROR,SIZE,SIGFIG 
INTEGER IPOT,IFUNC 
COHHON/OEU1CE/NIN,NOUT1,NOUT2,lNOPT 
DRTFI HRXPAN,SIZE,SIGFIG/256,2,6/ 

UAXPRN-tlRXlHUtl NUHBER OF PANELS ALLOUED FOR 
LOWER=LOUER lNTEGRATlON LltllT. 

ITEGRRT ON. 

UPPER=UPPER INTEGRRTIOH LltllT.THESE ARE THE LlHlTS OF THE INTEGRATION 
PATH PRRRflETER AS DESCRIBED RBOUE. 
SIGfIG=NUH3ER OF SlGHlFlCANT FIGURES IN THE CONUERGED RESULT, 
SIZE=RH... 
LRflBDR UlLL CONTAIN THE ROOTS OF THE LEGRENDRE POLYNOHIAL, UEIGHT 
LL 
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C CONTAIN THE UEIGHTS,NOTE: I N  ALL ROUTINES BUT T H I S  ONE LAHBDR RND 
C WEIGHT ARE Dlt lENSlONED BY " S I Z E " .  CURRENTLY S I Z E = 2 .  ALUAYS SET THE 
C CONSTANT D l f lENS lON IN T H I S  ROUTINE TO S I Z E .  
C I N T N l  U l L L  CONTAIN AN ESTl t lATE OF THE INTEGRAL. 
C INTN2 U l L L  CONTAIN AN ESTIf lATE OF THE INTEGRAL OBTRINED BY USING 
C TUICE THE NUtlBER OF PANELS USED TO GET I N T N l .  

INTGRL=O.ODO 
C EST l l lRTE THE RELATIVE TOLERANCE NEEDED TO G lUE THE REQUIRED NUHBER 
C OF S IGNIF ICANT FIGURES. 

TOL~( lO .ODO)* * ( -S IGFIG)  
NUtlPAN=64 

CRLL RTSUTS(SIZE,LRtlBDA,UEIGHT) 
UR I TE(NOUT2,lOO) LAtlBDA( 1 1, LRtlBDR(2) 

UR I TE(NOUT2,ZOO)UE I GHT( 1 ), UE I GHT(2) 

C PUT THE ROOTS AND WEIGHTS INTO ARRAYS LAtlBDR RND WEIGHT,RESPECTIUELV. 

C 
C 1 0 0  F O R t l A T ( / l X , ' I N  INTEGR, LAt lBDAl= ' ,D11.4 , '  LRt lBDA2=',D11.4) 
C 
C 200 FORllRT(/lX,'UEIGHTl=',Dll . 4 , '  WEIGHT2=' ,DI l  . 4 )  
C OBTAIN AN ESTl t lRTE OF THE INTEGRAL USING ONLY ONE PANEL. RESULT 
C I S  I N T N l .  
C CALL GAUSS(IFUNC,SIZE,PRtlS,IPOT,LOUER,UPPER,NUHPAN,LAHBDR, 
C 
ClOOO CONTINUE 
C IF(ERROR.EQ.0) THEN 
C DOUBLE THE NUtlBER OF INTEGRRTION PANELS AND GET A NEW ESTl t lATE=INTN2.  
6: NUtlPAN=NUtlPAN+NUtlPAN 

CALL eAUSS(IFUNC,SIZE,PRnS,IPOT,LOUER,UPPER,NU~PR~,LR~BDR, 

$UE I GHT, I NTN 1, ERROR) 

$UEIGHT,INTNZ,ERROR) 
C IF(ERROR.EQ.0) THEN 
C CALCULATE THE RELATIUE CHANGE I N  THE INTEGRAL THAT RESULTED FROH 
C DOUBLING THE NUtlBER OF PANELS. 
C 
C Ef'SILN~DfiBS((INTN2-INTN1)/INTN2) 

I F(DABS( INTN2)  .GE. ( 10 .ODO**(-14 I ODO) 1) THEN 

C ELSE 
C INTGRL=O.ODO 
C EPSILN=O.ODO 
C END I F  
C URITE(NOUT2,1100)INTNl,lNTN2,EPSILN 
C l l O O  FORtl~T(/lX,'INTNl=',Dll,4,'1NTN2=',Dll .4 , 'EPSILN=' ,D11 . 4 )  
C I NTNl  =I NTN2 
C END I F  
C END IF 
C I F  THE RELATIUE CHANGE IF GRERTER THAN THE DESIRED TOLERANCE,REPERT. 
C 
C $GO TO 1000 
C URITE(NOUT4,*)NUtlPAN 
C IF (NUtlPAN,GT.tlAXPAN) THEN 

C CONUERGED. SET ERROR FLAG BEFORE QUITT ING.  
C ERROR=4 
C END IF  

IF (  (EPS I LN.  GT. TOL) .AND I ((ERROR .EQ. 0) .AND. (NUtlPRN .LE.  IIAXPRN) 1) 

c HAUE USED THE nfixinun N U ~ B E R  OF PANELS AND INTEGRAL HAS NOT 

IF(ERROR.EQ.0) THEN 
lNTGRL=lNTNZ 

END I F  
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE RTSUTS 
C PURPOSE-LOADS THE ROOTS AND WEIGHTS FOR THE LEGENDRE 
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C POLVNOtl lAL IN TO ARRAYS LAtlBDA AND UEIGHT, RESPECTIUELV. 
C 
C SUBROUTINE RTSUTS CURRENTLY CONTAINS ROOTS AND UElGHTS FOR A 
C THIRD ORDER LEGENDRE POLYNOfl lAL. 
C 
C DATE 2 / 1 7 / 8 6  
C CODED BY DAVID PFUND 
C 
C T H I S  ROUTINE CALLS: - 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I HE RTSUTS( S I ZE , LARBDA , UE I GHT) 

INTEGER S I Z E  
REAL*8 LAtlBDA(S1 ZE) , UE IGHT(S I ZE) 
REAL*8 LRHl,LFIH2 
C0llH0N/0EVICE/NIN,N0UT1,N0UT2,lN0PT 
DFITA LAtll,LAtl2,UGHTl,UGHT2/O.ODOJO.77459666924l483DOJ 

LFI t lBDR( l )=LAt l l  
LAf lBDA(2)=LRtl2 
UEIGHT(1 )=UGHTl 
UElGHT(Z)=UGHTZ 

I t l P L I C I T  RERL*8(A-HJO-Z) 

$0.888888888888889D0,0.555555555555556DO/ 

C URITE(NOUT2,100)LRHlJLRt12 
C 1 0 0  FORt lAT( / lX , ' IN  RTSUTS. L A H l = ' , D 1 1 . 4 , '  LRf lZ= ' ,D11.4)  
C URITE(NOUT2,200>LRHBDA~l >,LAflBDR(2) 
C 200 FORtlAT(/ lX,  'LflHBDA(1 )= ' ,D l  1 . 4 ,  ' L R H B D A ( 2 ) ~ ' , D 1 1 . 4 )  

RETURN 
END 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  

C FUNCTION SUBINT 
C PURPOSE-ESTlnRTES THE INTEGRAL FOR A SINGLE PANEL. SUBINT 
C CURRENTLY USES A THIRD ORDER LEGENDRE POLVNOtllAL. 
C 
C DATE 2 / 1 7 / 8 6  
C REUISED 9/3/87- ADDED A SUITCH ( " IFUNC")  AND DUPLICATED 
C CODE FOR USE U l T H  THREE DIFFERENT INTEGRANDS, 
C 
C CODED BY DRUID PFUNC 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE INDURS-DETERtllNES AN ORDER 
C NUHBER OF UNEQUALLV SPACED POINTS U l T H l N  
C THE INTERUAL (LOUER,UPPER) FOR UHICH THE 
C THE INTEGRAND U l L L  BE EVALUATED. 

C TO BE INTEGRATED."SUBINT" EUALUATES 
C THE INTEGRAND AT THE POINTS GIUEN BY 
C "INDURS" FOR INTERNAL ENERGY CALC. 

C TO BE INTEGRATED."SUBINT" EVALUATES 
C THE INTEGRAND AT THE POINTS GIUEN BY 
C "INDURS" FOR U l R l f l L  PRESSURE CALC. 

C TO BE INTEGRATED."SUBINT" EVALUATES 
C THE INTEGRAND AT THE POINTS GIUEN BY 
C "INOURS" FOR CHEtl. POTENTIAL CRLC. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTION FUNCO-CALCULATES THE FUNCTION 

C FUNCTION FUNCl-CALCULATES THE FUNCTION 

C FUNCTION FUNC2-CALCULATES THE FUNCTION 

REAL FUNCTION SUBINT(IFUNC,SIZE,PRHS,IPOT,LOUER,UPPER, 
$LRHBDA,UEIGHT,ERROR) 
I t lPL  I C I T  REAL*8(A-H, 0-2) 
INTEGER ERROR,ERRl,ERR2,0ROER,SIZE 
REAL*8 LOWER 
REAL*8 PRtlS(3O) 
REAL*8 LAtlBDA(S I ZE) , UE I GHT( S I ZE) 
REAL*8 XARRAY (3) 
INTEGER IPOT,lFUNC 
COntlON/DEUICE/NIN,NOUT 
DATA ORDER/3/ 

ERROR-0 
ERR 1 -0 
ERR2=O 
SUtl=O. OD0 
CALL INDURS(SIZE,ORDER,LOUER,UPPER,LAHBDfl,XARRAY) 

C ORDERPORDER OF LEGENDRE POLYNOHIAL USED. NOTE:XARRRY=ARRAY(l..ORDER) 

C URlTE(NOUT2,1OO)XARRAY(l),XARRAV(2) 
C 1 0 0  FORHAT( / lX , ' IN  SUBINT. XARRAVl=' ,D11.4, '  XARRAY2=',011.4) 
C URITE(NOUT2,200)XARRAY(3) 
C 200 F O R t l A T ( / l X , ' X A R R R V 3 ~ ' , D l l , 4 )  
C ORDER HAD BETTER BE I N  2 . . 1 0  OR THING U l L L  NOT UORK RIGHT.  

C ENERGY CALC (PRETTY SHABBY). 
IF( IFUNC.EQ.0)  THEN 

IF (  (ORDER. EQ. 3 ) .  OR. ((ORDER. EQ. 5 ) .  OR. ((ORDER. EQ - 9 ) .  O R ,  (ORDER, EQ, 9 )  
$ ) I )  THEN 

SUfl=SUtl+(UEIGHT( 1 )*FUNCO(PRtlS, IPOT,XARRAY(l ),ERR1 1) 
ELSE 
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END I F  
162 
J-2 

C URITE(NOUT2,300)ERRl,ERR2 
C 300 FORtlAT(/lX, * IN SUBINT, ERR1= ', 13, * ERRZs I ,  13) 

IF(  ( I .LE . S  1 ZE) .AND, ( (ERR1 , EQ, 0). AHD . (ERR2 .EQ .O)> )THEN 
IF( (ORDER, EQ.3). OR. ((ORDER .EQ, 5 ) .  O R .  ((ORDER. EQ. 7 ) .  OR,  (ORDER.  EQ. 9 )  

1000 COHT I NUE 

$1)) THEN 

$ERR 1 ) )+(LIE I GHT( I ) *FUNCO(PRtlS, I POT, XARRAY( J+1) , ERR21 
SUtl=SUH+(UEIGHT( I )*FUHCO(PRtlS IPOT, XARRAY(  J ) ,  

1 = 1 + 1  
J=J+l 

J=J+l  
SUtl=SUtl+(UEIGHT( I )*FUNCO(PRtlS, IPOT,XARRAY(J), 

1=1+1 

1F((I.LE.SlZE).AND.((ERRl,EQ.O).~HD.(ERR2.EQ.O~~~GO TO 1000 

ELSE 

$ERR1 ) )+(LIE I GHT( I )*FUNCO(PRtlS, I POT, %ARRAY(  J+l ) ERR2) ) 

END IF 

END IF 
IF((ERR1 .EQ.O) .AND, (ERR2.EQ.O)) THEN 

ELSE 
SUBlHT~SUfl*((UPPER-LOUER)/2.ODO) 

SUBINT=0.000000001DO 
IF(ERR1.NE.O)THEN 

ELSE 

END IF  

ERROR=ERRl 

ERROR=ERRZ 

END I F  
END IF 

IF(IFUHC.EQ.1) THEN 

IF( (ORDER. EQ. 3). OR. ((ORDER .EO . 5 > ,  O R .  ((ORDER. 

C 

C PRESSURE CALC. 

$1)) THEN 
7).OR.(OF 

SUtl=SUtl+(UElGHT(1)*FUHCl(PRtlS,IPOT,X~RRRY(l),ERRl)) 

SUfl=~Utl+(UElGHT(1)*FUNCl(PRns, IPOT,XRRRA~(l ) ,  
ELSE 

$ERR 1 ) )+(UE I GHT( 1 )*FUNCl (PRllS, I POT, XARRRY(Z) ,  ERR21 1 
END IF 
1-2 
J-2 

C URITE(NOUT2,300)ERRl,ERR2 
C 300 FORflRT(/lX,'IN SUBIHT. ERRl= ' , 1 3 , '  ERR2= ' , I 3 1  

1 F( ( I .LE. SIZE) .FIND. ((ERR1 . EQ. 0). AND. (ERR2 . EQ 0))) 
IF((ORDER.EQ.3).OR.((ORDER.EQ.5),0R.((DRDER.EQ.?) 

2000 CONTINUE 

b))) THEH 

HEN 

O R ,  

SUH=SUIl+(UEIGHT( I )*FUNCl (PRtlS, IPOT,XARRAV(J), 
$ERR1 ))+(LIE 1 GHT( I )*FUNC 1 ( PRllS, I POT, %ARRAY(  J+ 1 1, ERR21 ) 

1=1+1 
J=J+1 

J= J+ 1 
S U ~ ~ $ U t l + ( U E I G H T ( I ) * F U H C l ( P R t l S , I P O T , X A R R ~ ~ ~ J ) ,  

ELSE 

$ E R R ~ ) ) + ( U E I G H T ( I > * F U N C ~ ( P R ~ ~ S , I P O T , X A R R R A ~ ( J + ~ ) , E R R Z ) )  

ER . Q.9) 

ORDER.EQ.9) 
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1=1+1 

IF (  ( I I L E D  S I Z E )  I AND. ((ERR1 , E Q . 0 )  .AND, (ERR2. E Q a  0)) )GO T O  2 0 0 0  
END I F  

END I F  
IF((ERR1 .EQ.O) .AND. (ERR2.EQ.O)) THEN 

ELSE 
SUBlNT~SUtl*((UPPER-LOUER)/2.0DO) 

SUBINT=0.000000001DO 
IF(ERR1.NE.O)THEN 

ELSE 

END I F  

ERROR=ERRl 

ERROR=ERRZ 

END I F  
END I F  

I F ( I F U N C . E Q . 2 )  THEN 

I F((0RDER. EQ.  3 ) .  OR.  ((ORDER. EQ.  5 ) .  OR. ( 

SUtl=SUtl+(UEIGHT(l)*FUNC2(PRtlS,lPOT 

C 

C CHEIIICAL POTENTIAL CALC. 

$1)) THEN 

ELSE 
SUH=SUtl+(UEIGHf( 1 )*FUNC2(PRtlS, IPOT,XARRAY(l>, 

$ERR1 ) ) + ( U E I G H T ( l  )*FUNC2(PRtlS, IPOT,XARRAV(2>,ERR2)) 
END I F  
I =2 
J=2 

C URITE(NOUT2,300)ERRl,ERRZ 
C 380 F O R t l A T ( / l X , ' I N  SUBINT. ERRl-  ' , 1 3 , '  ERR2= ' , I 3 1  

IF (  ( I ,LE.  S I ZE) ,AND. ((ERR1 .EO. 0 ) .  AND. (ERR2. EQ. 0)) )THEN 

I F (  (ORDER. EQ 3 ) .  OR.  ((ORDER. EQ. 5 ) .  OR. ( (ORDER EQ - 7 )  O R .  (ORDER. EQ 9) 
3000 CONT I NUE 

$1)) THEN 
SUfl=SUtl+(UEIGHT( I )*FUNCZ(PRtlS, IPOT,XARRAY(J), 

$ERR1 ) )+ (UEIGHT( I  )*FUNC2(PRIIS, IPOT,XARRAY(J+l ) ,ERR2))  
1=1+1 
J -J+1  

J= J+ 1 
SUt l4J f l+ (UEIGHT(  I )*FUNCZ(PRtlS, IPOT,XARRAY(J), 

1=1+1 

IF((I.LE.SlZE).AND.((ERRl,EQ.O).AND.(ERR2.EQ.O)))GO TO 3000 

ELSE 

$ERR 1 1) +( UE I GHT( I ) *FUNC2( PRnS, I POT, XRRRAY( J + 1 )  , ERR2 

END I F  

END I F  
I F( (ERR1 . EQ . 0) .AND. (ERR2 . EQ . 0)  ) THEN 

ELSE 
SUB INT=SUn*((UPPER-LOUER)/2 .ODO> 

SUBINT=0.000000001DO 
IF(ERR1.NE.O)THEN 

ELSE 

END I F  

ERROR=ERRl 

ERROR=ERR2 

END I F  
END I F  

C 
C URITE(NOUT2,200O)SUtl,SUBINT 
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C2000 FORtlAT(/lX,'LEAUING SUBINT.SUfl=',D11.4,' SUBINT=',D11.4) 
RETURN 
END 

C FUNCTION COREPR 
C PURPOSE-CALCULATES THE CONTRIBUTION TO THE UlRlRL PRESSURE 
C DUE TO HflRD CORE REPULSIUE FORCES. 
C (USED UlTH STELL-UEIS POTENTIAL. NOT USED UlTH 
C 
C 
C DATE 9/1/87 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CRLLS: FUNCTION CONRDF-HUIIERICRLLV ESTIIIRTES 
C THE COMTACT URLUES OF THE PRIR CORRELATION 
C FUNCTIONS, c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

LENNARD- JONES POTENT 1 RL) 

REAL FUNCTION COREPR(DR,SIGtlA,CORE,RO,BUIJ,PRIR) 
IIIPLICIT REfiL*8(R-H,O-Z) 
REflL*B DR 
REAL*8 S 1 G I I R ( 3 1 ,  RO(3) 
REAL*8 BUIJ(2048,3) 
RERL*8 PAIR(2048,3) 
RERL*8 CORE(3) 
REAL*8 XCON 
RERL*8 GllCON,G12CON,G22COH 
RERL*8 SRUE,CUBE 
INTEGER NCON 
COflIION/LUDOL/PI 
CO~tlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

C ESTlnATE CONTACT URLUES OF THE PfllR CORRELELATION FUNCTIONS, 
C DO 1-1  FIRST. 
C GET THE LOCRTl ON RT CONTACT (WHICH I S  REDUCED B Y  SOFTD( 1 ) )  : 

C TRUNCRTE: 
XCON=CORE(l)/DR 

NCON-XCON 
X N - N C 0 N 
XN=XN+l.ODO 
IF(DABS(XC0N-XN) .LT .O.OOlDO) THEN 

NCON=NCON+l 
END IF 

C EXTRAPOLATE FROfl HESH POINTS TO THE RIGHT OF THE CONTACT DISTRNCE 
C TO 

C 

C 
C DO 

ESTIHATE THE CORRELRTION FUNCTION AT CONTACT. 

SPA I R (NCON+3,1) 1 
G 1  lCON=CONRDF(NCON,XCON,PAlR~NCON+l, 1 ),PAIR(NCON+2, 11, 

UR I TE (NOUT2, *)GI 1 CON 
IF(GllCON.LT.O.OOOOl> THEN 

END IF  
G11 CON-0,000 

1-2: 
XCON=CORE(S)/OR 
NCON=XCON 
XN=XN+l.ODO 
IF(DABS(XCON-XN>.LT.O.OOlDO) THEN 

EN0 IF 
G12CON~CO~RDF~NCON,XCO~,PAJR~NCON*1,3),P~lR~NCON+2~3), 

NCON-NCON+l 
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%PA I R(NCON+J, 3) ) 

G1 2CON=OI OD0 
l F ( G 1 2 C 0 N . L T . 0 . 0 0 0 0 1 )  THEN 

END I F  

XCON=CORE(Z)/DR 
NCON=XCON 
XN=NCON 
XN=XN+l.ODO 

C DO 2-2: 

IF(DABS(XCON-XN).LT,O.OOlDO) THEN 
NCON=NCON+l 

END I F  
G22CON=CONRDF(NCON,XCON,PAlR(NCON+1,2) ,PAIR(NCON+2, 21,  

IF(G22CON.LT.O.00001)  THEN 

END I F  

$PAlR(NCON+3,2)) 

G22CON=O.ODO 

C ADD UP SEPARATE CONTRIBUTIONS TO THE PRESSURE FROfl EACH P A I R  
C INTERACTION. 

SAUE=RO(l )*RO( l )*Gl lCON 
CUBE=(SIGf lA(3))**3.0DO 
SAUE-SAUE+(2.0DO*RO(1)*RO~2)*CUBE*G12CON~ 
CUBE-(SlGflA(2))**3,ODO 
SAUE-SAUE+( R0(2)*RO(Z)*CUBE*G22CON) 
SAUE=(2.0DO*P1/3.ODO)*SAUE 

COREPR-SAUE 
C URITE(NOUT2,*)GllCON,G12COH,G22CON 

C RESULT IS PRESSURE T l f l E S  THE SflALL DlRflETER CUBED D l U l D E D  BY 
C KT; IT I S  Dlf lENSIONLESS, 

RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE GALER 
C 
C SYHHETRIC SYSTEflS. 
c 
C REUISED 6 / 4 / 8 7  
C 1 0 / 2 3 / 8 7  -TO DAUPEN OUT NEWTON AND F IXED POINT 
C ITERATIONS UHEN THE UPDATED RESULTS 
C ARE TOO LARGE. 

C INCREASED THE HAX NEUTOH AND DIRECT 
C ITERATIONS RLLOWED TO LET TIGHER SPECS 
C BE HET. 
C ORIGINAL UERSION FOR PURE SYSTEflS WRITTEN BY S . L R B I K  
C AND A .  HALIJEUSKY, INSTITUTE OF CHEfl lCAL TECHNOLOGY 
C PRAGUE, CZECHOSLOUAKIA 
C (UERS I ON l., FEBRUARY 1 9 8 5 )  
C 
C T H I S  ROUTINE CALLS: SUBROUTINE FFS3D- FOURIER TRRNSFORU 
C SUBROUTINE HSANRL-CALCULATES THE ANALYTIC 
C SOLUTION FOR THE HARD-SPHERE DISTRIBUTION 

PURPOSE-SOLUTION OF THE UIXTURE 02 EQUATION FOR SPHERICALLY 

C 2 / 1 8 / 8 8  -REUISED FOURIER TAANSFORU SUBROUTINES. 

C FUNCTIONS FOR USE AS AN l N l T l A L  GUESS, I F  
C DESIRED BY THE USER. 
C 
C 
C 
C 

SUBROUTINE GFC- CALCULATES THE TRANSFORtI 
OF G FROn THE TRANSFORH OF C USING THE 
02 EQUAT I ONS . 
SUBROUTINE CFG- CRLCULATES C FROfl G USING 
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C THE CLOSURE EQUATION. 
C SUBROUTINE JACOB 
C SUBROUTINE GNJSEL 
C SUBROUT I NE TEST 
C IflSL ROUTINE DSFINI- PREPRRE UORKRRRAY FOR 
C THE IHSL SINE FFT PROCEDURE. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE GALER(G,BUIJ,F,Ntl,DR,RO,JP,IE,SIGnA,BADflAT) 
ItlPLlClT RERL*8(f+H,O-Z) 
REAL*B GH( 2046,3), GT( 2048,3), GNT (2048,3) , DC(2048,3) , CT (2048,3) 
REAL*$ C(2048,3) 
REAL*8 P(65,3), DGT(32,3 1, D I F(32,3) 
RERL*8 CSN(2048) 
REAL*8 U( 97,971, G(2048,3), F(2048,3) 
RERL*8 BUIJ(2048,3) 
REAL*8 HT(2048,3) 
REAL*B DIFF(96) 
REAL*8 CS(32,3) ,fJ(3,3) 
REAL*8 CCT(31, GGHT(J), CT I (3) , GNT I (31, DGTC(3), R o w ,  S 1 GflR  (3) 
REAL*8 UFFTR(5133) 
RERL*8 DR 
RERL*8 SIG(3) 
REAL*8 RH,DT,TH,Pl,P2 
INTEGER KAfl  
LOG 1 CAL BADflAT 
COHHON /CONU/CONUDI,CONUNR 
COHHON/LUDOL/PI 
COflflON/HTHIHG/HT 
COHtlON/DEUICE/NIH,NOUTl,HOUT2,INOPT 
DRTA OUCH,UAtT,URIT2/1.25DO,O.25DO,O.25DO/ 
DATA CUTI,CUTR/O,O1DO,O.OlDO/ 

C INPUT PARRflETERS- 
C G: G(R)=R*(H(R)-C(R)) 
C F: HAYER FUNCTlON-EXP(-U(R)/T*) - 1 
C NH: NUflBER OF DEFINING NUHBER OF GRID POINTS (? )  
C N=2**Nfl 

C RO: REDUCED DENSITYIN*(ASIG~~A(~)**~)/U 
C DR;  REDUCED STEP SIZE 
C JP : 

C JP.EQ.1 ... INPUT G(R) IS USED, 
c JP.EQ.2 ... HARD SPHERE G(R) I S  USED. 

c UITH CURRENT ARRAY D I ~ E N S I O N S ,  m x  ~ n = i i .  

C JP.EQ.0 ... LOU DENSITY LllllT - G(R) = 0. 

C OUTPUT PARAHETERS- 
C G : G (R )4*( ti (R -C (R ) 
C IE: NUflBER OF ITERATION STEPS 
C fE<O tlEFlNS GflLER FAILED, NO SOLN. FOUND. 
C HT: THE FOURIER TRRNSFORHS OF THE TOTAL 
C CORRELATION FUNCTIONS, H. THESE RRE PFtSSED 
C THROUGH COHflON/HTHING/ TO SUBROUTINE 
c DILUTE (THEY'RE USED THERE IN THE 02 
C 
C 
C (NOTE: THE STRUCTURE OF SUBROUTINE GALER I S  TERIIINRL- S O R R Y )  
C UR 1 TE(NOUT1,l) 
c1 FORtlAT(lX,' I N  GALER ' 1  

ROT=RO(Z)/RO(l 1 
N=Z**NH 

EQUATIONS FOR A TEST PRRTICCE). 
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24 
25 

26 
27 

141 

N2=2*N 
Rn=DR*N 
DT=P I / R t l  
Ttl=P I /OR 
P1 =P I /N 
DO 5 I=l,N 

P2=1*P1 
CSN( I )=DCOS(P2) 

5 CONTINUE 
C INITIAL WORKRRRAY FOR lnSL SINE FFT ROUTlNE: 

NNZN-1 
CALL DFS I N I (NN, UFFTR) 

C UFFTR tlUST HAUE D I nENS I ON I NT(2,5*NN+15). 
C 
C DEFINITION OF INITIAL UALUES OF G(R) AND GT(T) 
C 

IF (JP,EQ.O) THEN 
DO 20 J=1,3 

DO 10 I=l,N 
G(I,J)=O,ODO 
G T (  I ,  J>=O. OD0 

10 CONT I NUE 
20 CONTINUE 

ELSE 
IF (JP.EQ.1) THEN 

DO 25 J=l,3 
DO 24 I m 1 , N  

CONT I NUE 
DC( I,  J)=G( I ,  J)*RO(J) 

CONT I NUE 
K A f l = l  
DC(N,l)=O.ODO 

DC(N,3)=O.ODO 
CALL FFS3D( KRtl, DC, GT, N, Ntl, OR,  UFFTR) 

DC(N,Z)=O.ODO 

ELSE 
C USE HARD-SPHERE AS INITIAL GUESS 
C PRINT*, 'INITIAL GUESS BY HARD-SPHERE POTENTIAL' 

S I  G( 1 ) i o I  9DO*S IGIIR( 1 ) 
SI G(2j-O. 9DO*S I GtlA(2) 
SIG(3)=SIGtlR(3) 
CALL HSANAL (C, RO,  S I G, OR) 
DO 27 J=1,3 

DO 26 I=l,N 
RR- I *DR 
DC( I ,  J)=C( I ,  J)*RO(J)*RR 

CONT I NUE 
CONT I HUE 
KRtl=l 
DC(N,l)-O.ODO 
DC(N,Z)=O.ODO 
DC(NJ3)=0.0D0 
CALL FFS3D(KAtl, DC, CT N, Ntl, OR, UFFTR) 
DO 140 J=l,N 

T=J*DT 
DO 141 IB=1,3 

CONT I NUE 
CCT(lB)=CT(J, IB) 
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C 

143 
139 
140 

126 
127 

. 

CRLL GFC(CCT, GGNT,ROT,T) 
DO 142 1B=1,3 

GT(J, IB)=GGNT(lB) 
CONT I NUE 
IF (J.GT.64) GO TO 139 

PRINT*, (GT(J, IB), 1B=1,3) 
DO 143 1B=1,3 

CONT 1 NUE 
IF  (GT(J,IB).LT.O.) GT(J,I3)=O, 

CONT I NUE 
CONT 1 NUE 

CALL FFS3D(KAtl,GT,G,H,NR,DR,UFFTR) 
DO 127 J=1,3 

KATIE- 1 

DO 126 l=l,N 

CONT I HUE 
G( I ,  J)=G( I,  J)/RO(J) 

CONT I NUE 
END IF 

END IF 
IF (JP.EQ.4) RETURN 
I Ea0 
I R=O 
CONOLD=10000. 

C 
C STRRT OF DIRECT ITERATION 
1000 CONT I NUE 

C 
C 
C 

80 
85 
C 
C 
C 

C 
C 
C 

IF  

I E= I E+l 
CONCUX=10000. 
(IE.GT.160) GO TO 3000 

CALCULRTION OF C(R) FROR G(R) 

KONST=O 

DO 85 J=1,3 
CRLL CFG(G, BU I J, F, C, DR, KONST, RO) 

DO 80 I=l,N 

CONT 1 NUE 
C( I,  J)=C( I ,  J)*RO(J) 

CONT I NUE 

CALCULATION OF CT(T), THE FOURIER TRRNSFORII OF C(R) 

KRt l= l  
C(N,l)=O.ODO 
C(N, 2 1 =O ,000 
C(N, 3 ) = O B  OD0 
CALL FFS3D(KAil,C,CT,N,NR,DR,UFFTR) 

CALCULRTIOM OF NEW GT(T) 

DO 

41 

40 J=l,N 
T= J*DT 
DO 41 IB=1,3 

CONT I NUE 
CRLL GFC(CCT,GGNT,ROT,T) 
DO 42 lB=l,3 

CCT(IB)=CT(J, I B )  
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GNT(J, IB)=GGNT( I B )  
C SAVE THE TRRNSFORtlS OF THE TOTAL CORRELATION FUNCTIONS, 

42 
40 
C 
C 
c 

C 
C 
C 

50 

57 
56 
5s 

95 
96 
C 
C 
C 
2000 

1 0 9  
1 1 0  

HT(J,  IB)=(GGNT( IB)+CCT( I B ) ) / T  
HT(J,  IB)=HT(J ,  IB)/RO( I S )  

CONTINUE 
CONT I NUE' 

NUtlBER OF EQUATIONS (NA) I N  NEUTON ITERATION. 

NA=32 

CALCULRTION OF DERIUATIUE OF C(R) UNDER G(R) AND I T S  TRRNSFORtl. 

KONST=l 
CRLL CFG( G, BU I J, F, DC, OR, KONST, R O )  
DO 55 tl=0,2*NA 

DO 56 1B=1,3 
P1 =o 
L=N 
P2=-1 
DO 57 J = l , N  

L=L+n  
IF (L .LE .N)  GO TO 50 

LaL-N 
P2=-P2 

CONT I NUE 
P 1 =P 1 +P2*DC (J, I B )*CSN (L) 
P ( f l + l , l B ) = P l / N  

CONT I HUE 
CONTINUE 

CONT I NUE 
DO 96 J=l ,NA 

DO 95 1B=1,3 

CONTINUE 
DGT(J, IB)=O 

CONT I NUE 

START OF NEUTON ITERATION 

CONT I NUE 
I R= I R+1 

I F  ( IR .GT.160)  GO TO 3000 
DO 200 fl==l,NR 

T=tl*DT 
DO 110 IB=1,3 

CT I  ( IB)=CT(H,  18) 
DO 109 J-1 ,NR 

I P= J+tl+ 1 
I f l = l A B S ( H - J ) + l  
CS(J, I B ) p P ( l H ,  IB ) -P ( IP ,  I B )  
C T l ( l B ) = C T l ( l B ) + D ~ T ( J , I B ) * C ~ ( ~ , I B )  

CONT I NUE 
CONT I NUE 
CRLL GFC (CTI,GNTI ,ROT,T) 
CALL JACOB (CT I  ,GNTI,FJ,T,ROT) 
DO 1 1 1  1B=1,3 

DGTC( lB)aGT( t l ,  IB)+DGT(tl, 18)-GNTI ( I B )  
U(32* (1B- l  )+tl,3*NA+l )sDGTC( l B >  
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1 1 1  

120 
125 
130 
200 

20 1 

202 

205 
210 

388 
C 
389 
399 
C 
C 
C 

CONT I HUE 
DO 130 lR=1,3 

DO 125 1B=1,3 
DO 120 J=l,NR 

CONT I HUE 
U(32*(l~-l)+fl,32*~IB-l~+J~~FJ~IA,IB~*CS~J,lB~ 

COHT I NUE 
CONT I NUE 

CONT I HUE 
DO 201 I=l,3*NR 

CON1 I NU€ 
NSltE=3*NR 
CRLL GRUSEL(NS IZE, U, D I FF, BADflRT) 
IF(BRDI1RT) GO TO 3000 
DO 202 I=l,NR*3 

U( I ,  I)=U(I, 1)-1 

IP=(I-l)/NA+l 
IQ~I-NA*(IP-l) 
D1 F( IO, IP)=DIFF( I ) 

COHT 1 NUE 
P3=0, 
P4-0 I 

DO 210 1B=1,3 
DO 205 J-1,NA 

P~=P~+(CIIF(J,IB)+GT(J,IB)+DGT(J,IB))**~ 
PS=P4+DIF(J, IB)**2 

CONT I NUE 
CONT I NUE 
PZ=SQRT(P4/P3) 
CRLL TEST(DGT, D I F, NR, 1 K, N, DR) 
IF (UOD(IR,S).NE . 1 >  GO TO 399 

DO 389 fl-l,Nfl 
DO 388 16=1,3 

CONTINUE 
PRINT*, tl,(CTI(IB),IB=l,3) 

CTI(IB)=GT(tl, IB)+DGT(H, IB) 

CON1 I NUE 
CON1 1 NUE 

TEST TO END NEUTON ITERATION. 

IF (P2.GT.CONUNR.AND~lK,EQ.O,AND.P2.LT.COHCUX) THEN 
CONCUX=P2 

GO TO 2000 
END IF 

DO 310 fl-l,NR 
DO 390 J=1,3 

C DRflPEN OUT NEUTON CYCLES. ” IF”  STRTEUENTS RND TUNING PRRRHETERS RRE 
C USED IN RN RTTEHPT TO RLLOU LRRGE CHFMGES IN THE “GT” UNDER SOHE 
C CONDITIONS AND TO CRUSH SUCH CHRNGES UNDER OTHER CONDITIONS. 

lF(DRBS(GT(fl, J))  .GT.CUTR) THEN 
I F(DABS (DGT ( fl, J) ). GE . ORBS(OUCH*GT( fl, J) ) THEN 

END IF 
DGT(f l ,J )PURIT*DGT(f l ,J ) *DRBS(GT(t l ,J ) /DGT(f l ,J~)  

390 
310 

END IF 
GT(fl, J)=GT(H, J)+DGT(fl, J) 

CON1 I HUE 
CONT I HUE 
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D O  335 1=1,3 
DO 330 J=Nfl+l,N 

GT(J, I )=GNT(J, I )  
330 CONT I NUE 
335 CONT I NUE 
C 
C CALCULATION OF NEU RPPROX. FOR DIRECT ITERATION.  
C 

K A I I a -  1 
CALL FFS3D(KAtl,GT,GN,N,Nll,DR,UFFTR) 

C DO 1 1 9  l=30 ,40  
C 
C 
c 1 1 9  CONTINUE 

WRI TE(NOUT2, *)GT( I , 1 1 , GT( I , 2 ) ,  GT( I , 3 )  
URI TE(NOUT2, *)GN( I , 1 ), GN( I, 2), GN( I ,  3 )  

P3=0 
DO 1 9 5  J=1,3 

DO 1 9 0  I -1 ,N  
GN( I, J)=GN( I, J ) /RO(J )  
P l=G(  I , J)-GN( I , J) 
P 3 = P 3 + ( P l / l ) * * 2  

C DRBPEN OUT DIRECT ITERRTIONS. 

C 
c 1 1 9  
C 

1 9 0  
1 9 5  

C 
C 
C 

C 

C 
C 

IF,(DRBS(G(l,J>>.GT.CUTI) THEN 

FORl lAT( lX , 'D IRECT ' 'S  EXCEEDED CUTOFF')  
WRITE(NOUT2,119) 

URITE(NOUT2,*)I,J,G(I,J) 

G( I ,  J)=GN( I, J> 
IF(DABS(Pl>,LT.DflB5(OUCH*G(I,J))) THEN 

ELSE 
G ( l , J ) ~ ( ( l . O D O - U A l T 2 > + t ~ l , J ) ) + ~ U A l T 2 * G N ~ l , J ~ ~  
G(  I , J)=(O.  9DO*G( I, J> >+( 0 .1  DO*GN( I, J) ) 

END I F  

G( I ,  J)=GN( I, J> 
ELSE 

END IF 
CONT I NUE 

CONT I NUE 
P3=SQRT(P3) 

TEST TO END ITERATIONS. 

I F  (P3.LT.CONUDI) THEN 
URITE(NOUT2,*) lE,  IR 

ELSE 
RETURN 

I F  (P3.LT.CONOLD) THEN 
I co-0 
CONOLDPPJ 

GO TO 1000 
ELSE 

IF  ( ICO.EQ.0)  THEN 
I co- I co+1  

GO TO 1 0 0 0  
END I F  

END IF  
END I F  
URITE(NOUT2,*)1E,IR 

RETURN 
GO TO 1 0 0 0  
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3000 CONT I NUE 
C IF  IT'S HERE, 
C SUBROUTINE GALER HAS FAILED.. .SORRY,  

IE=-IE 
URITE(NOUTZ,*)IE, IR 
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C FUNCTION RAP 
C PURPOSE-tlRPS THE DESIRED PANEL INTERURL ONTO SOIIE KlHD OF 
C STANDARD GAUSS-LEGENDRE IHTERUAL. I'll NOT QUITE SURE 
C HOU THIS THING UORKS ANYIIORE. 
C 
C DATE 2/18/86 
C CODED BV DBUID PFUND 
C 
C THIS ROUTINE CFILLS: - c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION HAP(LOUER,UPPER,ALPHR) 
IIlPLlClT REAL*8(A-H,O-Z) 
REAL*8 LOUER 
COtl~ON/DEUICE/NIti,NOUTl,NOUT2,1HOPT 

RETURN 
END 

IIRP~(O.SDO>*((LoUER+UPPER)+((UPPER-LOUER)*ALPH~)) 

c **********************************************n********************* 
C FUNCTION CONRDF 
C PURPOSE-NUHERICRLLY ESTInATES THE CONTACT UALUES OF THE PRIR 
c CORRELATION FUNCTIONS FOR SYSTEnS UlTH A N  INFINITE 
C REPULSION AT CONTACT. CURRENT UERSION EXTRAPOLATES 
C TO CONTACT WITH A QUADRATIC LAGRANGIAN POLYNOtllAL. 
C (USED UHEN THE TEST PRRTICLE I S  A HARD SPHERE) 
C 
C DATE 9/1/87 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS: - c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION CONRDF(NCON,XCON,Gl,G2,G3) 
InPL I C I T REAL*8(A-HI 0 - Z )  
REAL*8 XCONIGl,G2,G3 
REAL*8 XHllXN2,XN3 
RERL*8 SAUE 
INTEGER NCOH 
COIlHON/DEUICE/tiIN,NOUTllNOUT2,1NOPT 

C XCONeURLUE OF SEPARATION AT CONTFKT IN REDUCED UNITS R/RSICHR(l). 
C NCON=TRUNC(XCON) 
C G l 4 R L U E  OF THE CORRELATION FUNCTION AT THE nESH POlNT IIltlEDlRTELY 
C TO THE RIGHT OF THE CONTACT DISTRNCE=PAIR(NCON+l,J). 
C GZ=PAIR(NCON+2,J), I .E. TU0 nESH POINTS FROR COHTACT. 
C GJ=PRIR(NCON+3,J), I.E. THREE nESH POINTS FROII CONTACT. 

XNI =NCON 
IF(XN1.LT.(XCON-O~OOOlDO)) THEN 

C DO NOT EXTRAPOLflTE TOO FAR TO THE LEFT OF THE BEST COtlPUTED UALUE. 
SAUE-G 1 

ELSE 
XN1 =XN1+1 . OD0 
XNZ=XNl+l . OD0 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 

XN3=XN1+2.ODO 
SAVE=( (XCON-XN3)*Gl)+( (XCON-XNl )*G3) 
SRUE=SAUE*( (XCON-XN2)*O ,500) 
SAUE=SRUE-((XCON-XNl)*(XCON-XN3)*G2) 

END I F  
CONRDFPSAUE 
RETURN 
END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE INSIDE 
PURPOSE-SETS UP PARAIIETERS NEEDED BY SUBROUTINE S l f l P .  

DATE: 6 / 2 9 / 8 7 .  
REVISED 9/20/87 -TO USE THE TEST PARTICLE RDF FROtl THE 

6 /4 /88 -  TO USE UCA POTENTIAL D I U I S I O N .  
HflSA INTEGRAL EQUATION THEORY. 

T H I S  PROGRRD CALLS: SUBROUTINE NEUGIJ-CALCULATES THE 
ESTIl lATED P A I R  CORRELATION FUNCTION 
FOR THE TEST PARTICLE.  
SUBROUTINE SlflP-INTEGRATES THE PRODUCT 
OF THE PERTURBING POTENTIAL TIRES THE 
ESTlf lRTED P A I R  CORRELATION FUNCTION. 
FUNCTION CONRDF-COtlPUTES THE CONTACT 
UALUES OF THE CRUITY RDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE INSIDE(ALPHR,NBIG,ND,DR,IPOT,RSOFTD,EPSI,RO,TR~D, 
$LAflBDR,TUIJ,AUCO,PSI ,GADflA,DIRECT,INTGRL,ERROR,SIGflA,  
$GCAA,GCAB,RDFNEU,BATHNU,DIRNEU,JP) 

I f l P L l C l T  RERL*8(A-H,O-Z) 
RERL*8 
REAL*8 
REFlL*8 
REAL*8 
RERL*8 
REAL*8 
REAL*8 
RERL*8 
REAL*8 
REALf8 
REAL*8 
REAL*8 
REAL*8 
REAL*8 

RSOFTD(31, EPS I ( 3 )  
S I GHA (3) 
DR,TRED,LAIIBDA 
PS I (NB I G, 31, GADflA(NB I G, 3) 
TU1 J(NBIG,3)  ,AUCO(NBI G, 3) 
D I RECT(NB I G, 3) 
RDFNEU(2048,3) 
BATHNU(2048,3) 
DIRNEU(2048,3)  
FUNCT(2048,3) 
RO(3) 
ALPHA 
I NTGRL 
GCAA, GCRB 

INTEGER ERROR 
INTEGER IPOT 
LOGICAL PNOU 
COrlnON/LUDOL/PI 
COflllON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 

"PSI '=> THE PERTURBING POTENTIAL D l U l D E D  BY KT .  
"LAf lB0A"-> THE COUPLING PARAIIETER. 
RO( I )= (DENSITY) * ( ITH DOLE FRAC.)* ( (LJ D I A .  OF COHPONENT 1 ) * *3 )  
ESTlDFlTE THE PAIR CORRELRTION FUNCTION FROfl THE HRRD SPHERE 
CORRELRTION FUNCTION. 
"PNOU" =>  PRINT DIAGNOSTIC NOU. 
GCAR=LIKE-LIKE CONTACT URLUE OF THE CAVITY RDF. GCAB= CONTACT 
UALUE OF THE UNLIKE CAVITY RDF. THESE ARE COflPUTED ONLY UHEN 
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C LAMBDA-0. 
CALL NEUG 1 J( NB I G, Ntl, DR , I POT , RSOFTD, EPS I , RO, TRED, LAtlBDA, TU I J, 

$RUCO, PS I , Gfltltlfl, D I RECT, ROFNEU, BATHNU , D I RNEU, ERROR, 
$SIGtlA,UAY,TOTRL, JP) 

GCAR=O.ODO 
GCAB-O.ODO 

C IF LRllBDA.;-l THE TEST PARTICLE I S  A HARD SPHERE. GET THE CON 
URLUES 
C OF THE CAUITY RDF: 
C SOflETlHE IN THE FUTURE, NEED TO IIOUE THIS CONTACT RDF STUFF 
C IT'S OUN SUBROUTINE AND REtlOUE THE DETERtllNflTlON OF CONTACT 
C RDF'S FROtl SUBROUTINE INSIDE. 

IF( LRtlBDA I LE .-0 ~00000100) THEN 
I F( I POT. EQ. 0) THEN 

C WANT GCAAs2-2 CONTACT UALUE. GET THE LOCATION AT CONTACT 
C XCON.; (S I GtlR ( 2 /OR + 1 . OD0 

XCON- (S 1 GtlA (2)  /DR) 
NCON-XCON 
X N = N C 0 N 
XN-XN+l.ODO 
IF(DABS(XC0N-XN).LT.O,OOlDO) THEN 

NCON=NCON+l 
END IF 
GCRA=CONRDF(NCON, XCON,RDFNEU(NCON+l,2), 

$ RDFNEU(NCON+2,2),ROFNEU(NCON+3,2)) 
ELSE 

C UANT GCRAI1-1 CONTACT UALUE. 
C XCON=(SlGnA(l>/DR>+1.ODO 

XCON=(SIGHA(l)/DR) 
NCONmXCON 
XN=NCON 
XN=XN+l .OD0 
IF(DfIBS(XCON-XH).LT.O.OOlDO) THEN 

NCON-NCON+l 
END IF 
GCAA=COHRDF(NCON,XCON, RDFNEU(NCON+l , 1 1, 

s RDFNEU(NCON+2, 1 )  ,RDFNEU(NCON+3,1)) 
EHD IF 

C GCABsl-2 CONTACT VALUE RLUAYS, 
C XCON-(S I GHR(3)/DR)+1 , OD0 

X C O N 4  S 1 GHR(3 )/DR) 
NCON=XCON 
XN=NCON 

. XN*XN+I, 000 
IF(DABS(XCON-XN).LT.O~OOlDO) THEN 

NCON-NCON+l 
END IF 
GCRB=CONRDF(NCON,XCON,RDFNEU(NCOH+1,3), 

$ RDFNEW(NCON+2,3) ,RDFNEU(NCON+3,3)) 
URITE(NOUT2,*)GCAA,GCA0 

END IF 
INTGRL-O.0DO 
IF(L~tlBDA.GE.-O.OOOOOOlDO) THEN 

C COflPUTE THE INTEGRRND FOR SUBROUTINE SltlP; 

C UANT CHEHICAL POTENTIAL OF SPECIES 2 
IF(IPOT.EQ.0) THEN 

DO 5 I=l,NBIG 
REAL I = 1 

ACT 

NTO 
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RAD=REALI*DR 
FUNCT(I,l)=RDFNEU(I,3)*PSI~I,3)/RO~l) 
FUNCT(I,~)PRDFNEU(I,~)*PSI(I,~)/RO(~) 
FUNCT(1,3)=0.0DO 
TERfl=RDFNEU( I ,  3)*PS I ( I ,  3)*RO( 1 ) 
TERfl-TERfl+(RDFNEU( I ,2)*PSI ( I  ,2)*R0(2)) 
TERtl=TERfl*4.0DO*PI*RRD*RAD 

C IF((I,GE.140).AND.(I.LE.210)) THEN 
C URITE(NOUT2,*)1,RDFNEU(1,3),PSl(l,3) 
C URITE(NOUT2,*)RDFNEU(1,2),PSI ( I  ,2) 
C URITE(NOUT2,*)FUNCT(l,l),FUNCT(1,2) 
C END I F  

5 CONT I NUE 
ELSE 

C UANT CHEIIICAL POTENTIAL OF SPECIES 1 
DO 7 I=l,NBIG 

REAL I = I 
RRD=REALI*DR 
FUNCT( 1,2>=RDFNEU(l,3)*PSl(l,3)/RO(2) 
FUNCT(I,l)=RDFNEU(I ,l)*PSl(l,l)/RO(l) 
FUNCT(1,3)=0.0DO 

TERII=TERfl+(RDFNEU( I ,  1 )*PSI ( I ,  1 ) * R O (  1 
TERn=TERH*4.ODO*PI*RAD*RRD 

T E R ~ ~ R D F N E U (  I ,  ~)*Ps I ( I ,  3)*R0(2) 

7 CONTINUE 
END IF 

C INTEGRATE THE PRODUCT OF THE CORRELATION FUNCTION AND THE 
C PERTURBING POTENTIAL. 
C "PNOU" =>  PRINT DIAGNOSTIC NOU. 

PNOU=,FALSE. 
C IF((LA~BDA.GT.O.499DO).AND.(LA~BDfl,LT.O.SOlDO~~ THEN 
C PNOU=.TRUE. 
C END IF 

CALL SlIlP(DR,RO,FUNCT,INTGRL,PNOU) 
END IF 

C IF((LA~BDA.GT.O.499DO),AND.~LAflBDA.LT.O.SOlDO~~ THEN 
C URITE(NOUT2,10)LAtlBDfl,lNTGRL 
c 10 FORflflT(/lX, ' LAflBDR- I ,  D13.6, ' I NS IO€- ' , D13.6) 
C END IF 
C URITE(NOUT2,32) 
C32 FORflAT(/lX,'LEflUING INSIDE') 
C DO 10 1-35,50 
C 
c35 
C 
c37 FORflRT(lX,'RDFNEU:',D13.6,1X,D13.6,1X,D13.6) 
C40 CONTINUE 

WR ITE(NOUT2,35)PS I ( I ,  1 ),PSI ( I ,  2), PSI  ( I ,  3 )  
FORflAT( 1 X, 'PS 1 : ' , D13.6,l X, Dl 3.6,l X,D13.6) 
UR I TE(NOUT2,37)RDFNEU( I , 1 1, RDFNEU( I, 21, RDFNEU ( I , 3 )  

RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE NEUGIJ 
C 
C TEST PARTICLE FROH AN INTEGRAL EQUATION CALCULATION. 
C 
C DATE: 9/20/87. 
C 
C POTENTIAL. 
C 

PURPOSE-ESTIflRTES THE PAIR CORRELATION FUNCTIONS FOR THE 

6/4/88- TO USE THE UCA DlUlSlON OF THE PAIR 

3/13/89- TO ELllllNATE THE ASSUflPTlON THAT UHEN THE 
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C TEST PARTICLE I S  A HARD SPHERE THAT THE 
C 1-1 INTERACTION DIAIIETER I S  THE StlALLEST. 
C 
C T H I S  PROGRAn CALLS: SUBROUTINE tlflYER2-CALCULATES THE IIAVER 
C FACTORS FOR INTERACTlONS U l T H  THE TEST 
C PART 1 CLE. 
C SUBROUTINE DILUTE-SOLVES THE 02 EQUATIONS 
C FOR A TEST PARTICLE AT I N F I N I T E  D I L U T I O N  
C I N  R BATH OF THE ACTUAL HIXTURE. 

D ISTRIBUTION 
C FUNCTIONS FOR THE TEST PRRTICLE FROtl  THE 
C OZ SOLUTION. 
C SUBROUTINE FLIP-SUAPS COnPONENTS 1 AND 
C 2 I N  ALL ARRAYS. USED WHEN CALCULRTING 
C THE CHEHICAL POTENTIAL OF COIIPONENT 1 
C BEFORE CALLING SUBROUTINE DILUTE.  
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE CORFU2-CUtlPUTES THE 

SUBROUTINE NEUGIJ(NBIG,Nfl,DR,IPOT,RSOFTD,EPS1,RO,TRED,LA~BDA, 
$TUIJ,AUCO,PSl,GAtlt lR,DIRECT,RDFNEU,BATHN~,DIRNE~,ERROR, 
%SIGHR.JP) 

C NOTE: 

c 
C 

C 

I n p i  i c i  T REAL*~(A-H,  0-2)  
REAL*B RSOFTD(3),EPSI (3) 
REAL*8 SI GnA(3) 
REAL*8 U l J ( 3 ) , S l J ( 3 )  
REAL*B U I  JT(31 ,S I  J T ( 3 )  
REAL*8 R O ( 3 )  
REAL*8 PS 1 (HB I G, 31, Gflfltlfl(NB I G, 3 )  
RERL*8 TU1 J(ffB I G 3 ) ,  RUCO(NB I G ,  3) 
REAL*8 RFFINS(2 ,2 )  
REAL*8 D I RECT(NB I G, 31, RDFNEU (NB I G, 3) 
REAL*8 D t RNEU(2048,3 ), TOTNEU(2048,3), BRTHNU(2048,3) 
RERL*8 G(2048 ,3 )  
RERL*8 B U I J ( 2 0 4 8 , 3 )  
REAL*8 F (2048 ,3 )  
REAL*8 RC(2048 3 )  
REAL*8 TRED,LAtlBDR 
RERL*8 ALFNEU 
IHTEGER N B l G  
INTEGER ERROR 
LOGICAL BRDtlflT 
LOGICAL LOTS 
CORflON/HflSA/ALFHEU,UIJ,SIJ 
COfltlON/HHSRT/ALPHAT,UIJT,SlJT 
COtlHOH/TVP/JT,N 
COIItlON/CONU/CONUD1,CONUNR 
COIIflON/LUDOL/PI 
COtlflON/DEUICE/N1N,NOUTl,NOUT2,ltiOPT 
THE P A I R  POTENTIRL HAS ALREADY BEEN DIU IDED BY K T ,  
BADflAT=.FRLSE, 
CONUDI=0.000001DO 
CONUNR=O.OOOlDO 
N=NB I G 
JT=  1 
J P = l  
DO 100 I-1,NBIG 

C USE GARtlA FOR THE f l lXTURE AS RN I N I T I A L  GUESS FOR THE TEST PARTICLE.  
C RAKE A COPY. 
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G( I, 1 )=GAflt lA( I, 1 ) 
G( I ,2)=GAtlflA( I ,2) 
G( I ,3)=GRfltlA( I ,3) 
R E R L I u I  
RflDIUS=REALI*DR 
RC( I, 1 )=RADIUS*DIRECT( I, 1 )  
RC( I ,2)*RADIUS*DIRECT(I  ,2) 
RC( I,3)=RADIUS*DIRECT(I , 3 )  

C COilPUTE THE INTERACTION PRIR POTENTIALS FOR THE TEST PRRTICLE U l T H  
C THE REST OF THE IIIXTURE. 

C JP-2  

C R COflPONENT OF SPECIES 2 I S  BEING CHRRGED 

IF(LAHBDA.LT.-0,  000001D0)  THEN 

I F ( I P O T . E Q . 0 )  THEN 

B U I  J( I, 1 )=TU1 J( I, 1 )  
BUIJ(1,2)=1OO.ODO 
BUIJ(1,3)=1OO.ODO 

ELSE 
C A COflPONENT OF SPECIES 1 I S  BEING CHARGED 

B U I  J( I ,2)=TUI J( I ,2) 
E N I J ( l , l ) = l O O . O D O  
BUIJ(1,3)=100.ODO 

END I F  
I F ( R A D I U S . G E . ( O . ~ ~ ~ ~ ~ ~ D O * S I G ~ A ( ~ ) ) )  THEN 

I F ( I P O T . E Q . 1 )  THEN 
' BUIJ ( I , l )=O.ODO 

END IF 
END IF 
IF(RAOlUS.GE.(O.999999DO*SlGilR(3))) THEN 

END I F  
IF(RADlUS.GE.(O.999999DO*SiGflR(2))) THEN 

BU1J(1,3)-O.ODO 

I F ( I P O T . E Q . 0 )  THEN 
BUIJ(1,2)=O.ODO 

END I F  
END IF 

I F ( I P O T . E Q . 0 )  THEN 
ELSE 

C f3 CORPONENT OF SPECIES 2 I S  BEING CHARGED 
BU I J( I, 1 )=TU1 J( I, 1 ) 
BUIJ(1,2)=AUC0(1,2)+(LAtlBDR*PS1(1,2)) 

ELSE 
C R COnPONENT OF SPECIES 1 I S  BEING CHARGED 

B U I  J( I ,2)-TUI  J( I , 2 )  
BUl J( I, 1 >-AUCO( I, 1 )+(LAtlBDA*PS I ( I, 1 ))  

END IF  
BU I J( I ,3)=RUCO( I, 3)+ (LARBDA*PS I ( I ,3) ) 

END I F  
100 CONTINUE 

C HtlSA PARAHETER : 
RLPHATLALFNEU 

C COtlPUTE OTHER PARAtlETERS FOR TEST PARTICLE INTERACTIONS NEEDED I N  
C THE HflSA CLOSURE EQUATION. 
C SIZE: 

s I JT( 1 )=s I J( 1 
S I J T ( 2 ) - S  I J(2) 
S I  J T ( 3 ) = S I  J(3) 

C ENERGY 
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IF( IPOT.EQ.0) THEN 
UIJT(l)=UIJ(l) 
UIJT(2)=LAnBDA*UI J(2) 
IF(LA~BDR.LE.-O.OOOOlDO) THEN 

UIJT(Z)=O.ODO 
S I JT ( 2  )=S 1 GIIA (2) 

END IF 

U1 JT(2)=UI J(2) 
U1 JT( 1 )=LAIIBDA*U I J( 1 )  

ELSE 

IF(LAflBDA.LE.-O~OOOOlDO) THEN 
U I JT( 1 100 .OD0 
SI JT( 1 )=SIGHA(l) 

END IF 
END IF 
UIJT(3)=LAIIBDA*UIJ(3) 
I F(LfWBDA. LE. -0 I 0000 1 DO)  THEN 

UIJT(3)=0.000 
S I JT(3 )US I GflR(3 ) 

END IF 
UR I TE(NOUT2, *IS I JT( 1 ) , S I  JT(21, S I JT(3) 
UR I TE(HOUT2, *)U I JT( 1 I ,  U I JT(2) ,U 1 JT(3) 

CALL tlAYER2(DR,LAflBDA,SIGHR,RSOFTO,EPSI,TRED,F,BUIJ, 

C 
C 
C CALCULATE IIAYER FACTORS FOR THE TEST PARTICLE INTERACTIONS. 

$IPOT,NBIG) 
C SOLVE THE 02 EQUATIONS FOR AN INFINITELY DILUTE PARTICLE OF SPECIES 
C "2" (THE TEST PARTICLE) IN A fllXTURE OF SPECIES 1 RNO 2, WHERE THE 
C TEST PARTICLE INTERRCTIONS UlTH SPECIES 1 AND 2 UI A  THE tlAYER FACTORS 
C DEFINED ABOUE. 

C OH UERV LFIZY. I 
IF(IPOT.EQ.1) THEN 

CRLL FLlP(NBIG,G,BUIJ,F,PSI,AUCO,RO,RSOFTD,S1G~A,RC) 
END IF 
CALL DILUTE(G,BUIJ,F,PSI,LRnBDR,Ntl,DR,RO,JP,IE,RSOFTD, 

IF(IPOT.EO.1) THEN 
$ SIGflA,RC,BADIIRT,AUCO) 

CALL FL IP(NB I G, c, BU I J, F, PSI ,AUCO, RO, RSOFTD, s I G ~ A ,  RC) 
END IF 
IF(IE,LT.O) THEN 

C "G" FUNCTION NOT FOUND-TOO UANY TRIALS TAKEN. 
ERROR-S 

END IF 
IF(BADHAT) THEN 

C "G" FUNCTION NOT FOUND-BAD IIATRIX FOUND IN THE CRLCULflTION. 
ERROR-S 

END IF 
iF(ERROR.EQ.0) THEN 

C SUBROUTINE DILUTE UORKED OK, CAN NOLI CALCULRTE THE DISTRIBUTION 
C FUNCTIOHS FOR THE TEST PARTICLE, 

CRLL CORFU2(NBIG,DR,RSOFTDJBUIJ,F,PSI,LA~BDA,G,RDFNEU, 
$Dl RNEU,TOTNEU,BATHNU, IPOT,FIUCO) 

C LOTS=.FALSE. 
C 
C LOTS-.TRUE. 
C END IF 
C Xl =o ,500 
C ICOUNT=O.ODO 
C PRESSU=O,OOO 

IF( (DRBS(LAflBDR-1 .ODO)). LT. 0 I 2SDO) THEN 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c s  
C %  
C 

ENERGY=O.ODO 
CERROR-O.ODO 
COtlPC=O.ODO 
YU=O. OD0 
YUIDL=O.ODO 
YUHS=O.ODO 
t l U = O .  OD0 
I D=O 

IF(LAl lBDA.LT.O.OD0) THEN 
lF (LAl lBDA.LT .0 .24DO)  THEN 

CRLL PRINTR(LOTS,DR,RDFNEU,F,TOTNEU,BUIJ, 
CRLL PRINTR(LOTS,DR,RDFNEU,PSI,TOTNEU,BFITHNU, 
CALL PRINTR(LOTS,DR,RDFNEU,DIRNEU,TOTNEU,BRTHNW, 

E P S I , S I G t l A , T R E D , R O , X 1 , G J I C O U N T J  
RLFNEU,PRESSU,ENERGY,CERROR,COtlPC,AFFINS) 

END IF  
END IF  
RETURN 
END 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE PERT 
C PURPOSE-CALCULATES ARRAYS OF UCA ATTRACTIUE AND REPULSIUE 
C POTENTIALS FOR INTERACTIONS UlTH THE TEST PARTICLE. 
C 
C DATE 6/30/87 
C REVISED 9/8/87- TO CRLCULATE THE DERIURTIUE OF THE PAIR 
C POTENTIAL. 
C 6/2/88- TO USE THE UCR DIUISION OF THE 
C POTENTIAL. 
C 10/22/88-CHANGED ARGUtlENT LIST OF REDUC TO FIT NEW 
C UERSION. 
C 11/03/88-REtlOUED DERIURTIUE CALCULATION. UNNECESSRRY. 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS: SUBROUTINE REDUC- TO CONVERT THE 
C LENNARD-JONES PARRHETERS TO REDUCED 

C SUBROUTINE tllNS- TO CALCULATE THE 
C UNITS. 

C POTENTIAL t l lNlt lUflS RND FIND THE 
C CORRESPONDING SEPARATION DISTANCES. 

C POTENTIAL FOR R GIUEN SEPARRTION 
C D 1 STRNCE 

C FUNCTION PSIIJ- TO CALCULRTE THE 

Y 

SUBROUTINE PERT(NBlG,lPOT,DR,TEHP,CORFl,CORF2,ASIGnA,KEPSl, 
SSOFTO,TUIJ,AUCO,PSI) 
ItlPLl CiT REAL*8(R-H,O-Z) 
REAL*B AS1 GflA(3),KEPSI ( 3 )  
REAL*8 EPS I ( 3  1 
REAL*8 S I  J(3),Ul J(3) 
RERL*8 SOFTD(3) 
RERL*8 RSOFTD(3) 
REAL*8 PSI (NBIG,3) 
REAL*8 TU1 J(NBIG,3) 
REAL*8 AUCO(NBIG,3) 
REAL*8 TEtlP 
REAL*8 TRED 
REAL*8 BUP 
INTEGER IPOT 
CO~t10N/DEUICE/NtN,NOUTllNOUT2,1NOPT 
Rfl=  1 . OD0 
1 P-0 
ASIGtlA(1 )-CORFl*SOFTD(l) 
AS I GtlA(2 )-CORF2*SOFTD(2) 
R S l G H ~ ( 3 ) = 0 . 5 o O * ( A S I G n A ( l ) + A S l G f l R ( 2 ) )  
CRLL REOUC(KEPSI,SOFTD,EPSI,RSOFTD) 
TRED-TEtlP/KEPS I ( 1 
CRLL tl INS( 1 P0.T) RSOFTD, EPS I, TRED U I J S I J) 
DO 20 K-1,3 

DRR=DR*SOFTD(l)/SOFTD(K) 
T-TEtlP/KEPSI(K) 
DO 30 I-1,NBIG 

REAL I = I 
RR=REALI*DRR 
RAD=REALI*DR 

C "PSI" I S  THE UCfl ATTRRCTIUE PART OF THE 
C POTENTIAL DlUlDED BV KT. "RUCO" I S  THE UCA REPULSIUE 
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C PRRT/KT. " T U I J "  I S  THE TOTAL P A I R  POTENTlAL FOR 
C INTERACTIONS U l T H  THE TEST PARTICLE/KT.  

P S I  ( I  ,K)=UI J ( K )  
BU=PS I I J( I P, RR,  Rfl ,  T, BUP) 
TU1 J( I ,K)=BU 
AUCO( I ,K)=BU-UIJ(K)  
IF(RAD.GT.(O.9999999DO*SIJ(K))) THEN 

C OUTSIDE OF THE POTENTIAL f l l N  THE UCA ATTRRCTIUE PART 
C EQUALS THE TOTAL PAIR  POTENTIAL AND THE REPULSIUE PART 
C IS ZERO, 

P S I  ( I K)=BU 
AWCO(I,K)=O.ODO 

END IF  
30 CONTINUE 
20 CONTINUE 
C 
C URITE(NOUT2,32) 
C32 FORf lAT( / lX, 'LERUING P E R T ' )  
C DO 4 0  1=35,50 
C UR I TE( NOUT2, 35 )PS I ( I ,I) , PS I ( I , 2 ) ,  PS I ( I ,3) 
c35 F O R f l A T ( l X , ' P S I : ' , D 1 3 . 6 , 1 X , D 1 3 . 6 , 1 X , D 1 3 . 6 )  
C WRITE(NOUT2,37)AUCO( I,l),AUCO(l,2),AUCO(l,3) 
c37 FOR~flT(lX,'AWCO:',D13,6JlX,D13.6,1X,D13.6) 
C40 CONTINUE 

RETURN 
END 

UR I TE(NOUT2, * )AS I G f l A (  1 ), AS I Gf lR (2 )  AS I GflA(3) 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

C 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
FUNCT I ON YU I DL 
PURPOSE-CALCULATES THE IDEAL GAS CONTRIBUTION TO THE 

SOLUTE CHEfl lCAL POTENTIAL D l U i D E D  BY KT. 

DATE 6 / 1 6 / 8 7  
CODED BY DRUID PFUND 

T H I S  ROUTINE CALLS:- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
REAL FUNCTION YUIDL(  IPOT,flU,TEflP,RO,SOFTD) 
I f l P L l  C I T  REAL*8(R-H,O-Z) 
REAL*8 R O ( 3 )  
REflL*8 SOFTD(3) 
REAL*8 TEflP,RHO2 
REAL*8 flu, flESS, DEBROG 
COfltlON/LUDOL/PI 
COfltlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
DATfl f lESS/+ .37547995D l /  

flESS=PLRNCK' S CONST. *AHGSTROflS PER Ctl.  /SQRT(BOLTZ. CONST/AUG. NUVBER) 
TEVPERATURE, KELVIN .  
DEBROGLE THERflRL UAUELENGTH I N  ANGSTROflS. 

DEBROG=2.000*Pl*flU*TEflP 
DEBROG=flESS/(DSQRT(DEBROG)) 

I F ( l P O T . E Q . 0 )  THEN 

ELSE 

END I F  

SAUE=DLOG(RH02*DEBROG*DEBROG*DEBROG) 

SOLUTE DENSITY, NUtlBER PER CUBIC ANGSTROfl: 

RHO2=RO(Z)/(SOFTD( 1 ) *SOFTD( l  ) *SOFTD(1>)  

RHO2=RO( 1 )/(SOFTD( 1 )*SOFTD( 1 )*SOFTD( 1 1) 

IDEAL GAS CONTRIBUTION TO THE SOLUTE CHEVICAL POTENTIAL, I N  ERGS: 
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, 

C URITE(NOUT2,*)DEBROG,RH02,SAUE 
C URITE(NOUT2,*)SAUE 

YUIDL=SAUE 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTION XI3 
C PURPOSE- CRLCULATES A UEIRD FUNCTION OF DENSITY THAT APPEARS 
C IN SCALED PARTICLE THEORY. FUNCTION XI3 ALSO RPPEARS 
C IN THE ANALYTICAL SOLUTION OF PY FOR HARD SPHERES 
C GIVEN BY LEBOUITZ. XI3 I S  ACTUALLY A SORT OF PACKIHG 
C FRACTION FOR THE RIXTURE, 
C (C , F , LEBOU I TZ, HELFAND, AND PRAESTGARRD, J I CHEtI . PHYS . , 
C UOL. 43, NO. 3, P. 774, AUGUST 1965) 
C 
C DATE 6/17/87 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CflLLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REAL FUNCTION X13(RO,ASIGMA) 
InPLlClT RERL*8(A-H,O-Z) 
REAL*8 AS I GllA(3) 
REAL*8 RO(3) 
REflL*8 SAUE 
COnnOH/LUDOL/PI 
COtl~ON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

SAUE~ASlGnA(Z) /ASIGnf l ( l )  
Xl3-(RO(l)+(RO(2)*SflUE*SAUE*SAUE))*Pl~6.ODO 
RETURN 
END 

C L-H-P'S EQUATION 2.8 UlTH L13. 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE CORFUZ 
C PURPOSE-CALCULATES THE PAIR,DIRECT,AND TOTRC 
C CORRELATION FUNCTIONS FOR THE TEST PARTICLE. 
C CURRENT UERSION ONLY DOES HtlSA, 
C 
C DATE 9/21/87 
C CODED B4 DRUID PFUND 
C 
C THIS ROUTINE CALLS: FUNCTION SUlTC2-CORPUTES THE HtISA 
C SUlTCHlNG FUNCTION. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CORFU2(NBIG,DR,RSOFTD,BUlJ,F,PSJ,ETA,G, 
SPflIR,D1RECT,TOTAL,BATH,lPOT,AUCO) 
ItIPLlClT RERL*8(A-H,O-Z) 
REflL*8 BUIJ(NBIG,3) 
REAL*8 PSI(NBIG,3) 
RERL*8 G(NBIG,3) 
REAL*8 F(NBIG,3) 
REflL*8 AUCO(NB IG, 3) 
RERL*8 PA IR(NB IG, 31, D I RECT(NBIG, 31, TOTRL(N3 IG, 31, BATH( NB I G, 3) 
REAL*8 RSOFTD(3) 
RERL*8 ETR 
RERL*B DR,REALI 
RERL*8 UIJT(J),SIJT(3) 
REflL*8 UIJ(3),SIJ(3) 
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RERL*8 BOLT2 
INTEGER IPOT 
LOGICAL H I T  
COfltlON/HtlSA/RLFNEU,UIJ,SIJ 
COtltlON/HtlSAT/RLPHRT,UlJT,SIJT 
COflllON/TYP/JT, N 
COtlIlON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 

C G=R*(H(R)-C(R)) 
C F=llRYER FUNCT ION=EXP(-U(R 
C THE TEST PARTICLE.  
C URITE(NOUT2,*)N 
C SUBROUTINE CORFU2 I S  A SL  

DO 200 I = l , N  
REAL I = I 
RRDIUS=REALI*DR 
DO 100,J=1,3 

ALPHA=ALPHAT 
HIT=.FRLSE. 

/ K T ) - l  FOR INTERACTIONS U I T H  

GHTLY f l O D l F l E D  SUBROUTINE CORFU. 

C 

IF(  ( I POT .EQ.  0 ) .  AND. (J  I E Q .  1 ) )  THEN 
RLPHR=RLFNEU 
HIT=.TRUE. 

END I F  
IF((IPOT,Eq.l).AND.(J.EQ.Z)) THEN 

ALPHR=ALFNEU 
HIT=.TRUE. 

END I F  
BRTH(I,J)=O.ODO 

SUT-SUITC2(RAOIUS,RLPHA) 
EXPO-SUT*(G( I, J) /RADIUS) 
IF( (ETR. GE. O . O D O ) .  OR. H IT) THEN 

I F(RAD I US, GE. ( 1 ,0000001 DO*S I J T (  J ) )  ) THEN 
BOLTZ=BU I J( I , J) 
EXPOPEXPO-(SUT*BUI J( I, J) )  

BOLTZ-BUI J( I, J)-flUCO( I I J) 
EXPOPEXPO-( SUT*U I J T (  J) ) 

ELSE 

END I F  

BOLTZ=O.ODO 
ELSE 

END I F  
URI TE(NOUT2,*)RAD,G( I ,  J) ,BU I J( I, J), SUT 
IF(EXPO.LT.-Sl  .ODO) THEN 

EXPOm-61.0DO 
END IF 
IF(EXPO.CT.61.0DO) THEN 

END I F  
IF (BOLTZ.LT . -61  . O D O >  THEN 

EXPO-6l.ODO 

BOLTZ~-61.ODO 
END I F  
BOLTZ=DEXP(BOLTZ) 
IF(DRBS(SUT).GT.O.OOOOOOOOOlDO) THEN 

END IF  
BATH( I ,J )=BATH( I ,J )+ l ,ODO 
BATH( I, J)=BRTH( I ,  J)*BOLTZ 

BRTH( I, J)a((DEXP(EXPO))-l  .ODO)/SUT 

PRlR~l,J)=BATH(l,J)*(l.ODO+F(I,J)) 
T O T A L ( I , J > ~ P A I R ( I , J ) - l  .OD0 
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DIRECT( I,J)=TOTRL( I ,  J)-(G( I, J)/RADIUS) 
1 0 0  CONT I NUE 
C I F ( ( I  .GE.30 ) .AND. ( I  .LE.SO)) THEN 
C URITE(NOUTZ,*)PAIR(l , l ) , P R l R ( l  , Z ) , P f i I R ( I  , 3 )  
C END IF  
200 CONTINUE 

RETURN 
END 

C SUBROUTINE F L I P  
C PURPOSE-UHEN IPOT.EQ. 1 (USER URNTS CHEfl lCRL POTENTIAL OF 
C COflPONENT 1 )  SURPS ELEHENTS 1 AND 2 I N  EUERY A R R R V  
C USED BY SUBROUTINE DILUTE) .  A QUICK RND DIRTY SOLN. 
C TO A UERY CONFUSING PROBLEH. 
C 
C DATE 2 / 2 9 / 8 8  
C CODED BY DFlUlD PFUND 
C 
C T H I S  ROUTINE CFlLLS:- 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE FLIP(NBIG,G,BUIJ,F,PSI,TOTRL,RO,RSOFTD,SlGIIR, 
JRC) 
I flPL I C 1 T RERL*8( A-H, 0 - Z )  
RERL*8 BUI  J (NBIG,3 )  
RERL*8 P s i  (NB IG, 3) 
RERL*8 G(NBIG,3) 
REAL*8 F(NBIG,3 )  
REAL*8 RC(NB I G, 3 )  
RERL*8 TOTRL(NBIG,3) 
REAL*B HT(2048 ,3 )  
RERL*8 RO(3) 
REAL*8 RSOFTD(3) 
RERL*8 S IGnR(3 )  
REAL*8 U I J T ( 3 ) , S I  J T ( 3 )  
COfltlON/HflSRT/RLPHRT,UIJT,SIJT 
COtltlON/HTHING/HT 
COflflON/DEU1CE/NINJHOUTl,NOUT2, INOPT 

C I F  I P O T . E Q , l  NEED TO F L I P  COfltlON BLOCK/HflSRT/ (SINCE I URS FOOLISH 
C ENOUGH TO USE COtlflON) BEFORE CALLING SUBROUTINE DILUTE (UHICH IS 
C NOT SYflHETRlCAL U.R.T. COnPONENTS 1 RND 2 ) .  

SRUE=U I JT (2) 
U I J T ( 2 ) - U I J T ( l )  
UI  J T (  1 )-SfiUE 
SRUE=Sl JT(2) 
S I  J T ( 2 ) - S I  J T ( 1 )  
S I  J T (  1 )=SAllE 

C F L I P  THE L I T T L E  RRRAYS 
R0(3 ) -R0(2 )  
SRUE=RO(2 1 
R0(2)=RO( 1)  
RO(l)=SAUE 
SAUE-RSOFTD(2) 
RSOFTD(2)=RSOFTD(l) 
RSOFTO( 1 )=SRUE 
SRUE=S I GtlR (2) 
SI Gt lR(2)=SIGt l f l ( l )  
SIGt lA( l )=SRUE 

C F L I P  THE B I G  ONES. 
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DO 1 0 0  I= l ,NB, IG 
SRUE=G( I ,2) 
G ( I  ,2)=G(I ,  1 )  
G( I , l )=SAUE 

SAUE=BUI J( I ,2) 
B U I J ( I , 2 ) = B U I J ( I , l )  
B U I J ( I , l ) = S A U E  

SAUEaF ( I ,2) 
F( I , t ) = F (  I, 1 )  
F ( I , l ) = S f l U E  

SAUE=RC( I , 2 )  
RC( I ,2)=RC( I ,  1 )  
RC( I, 1 )=SRUE 

SRUE=TOTRL( I , 2 )  
TOTflL( I , 2)=TOTflL( I, 1 ) 
TOTAL( I, 1 >=SAUE 

SRUEnPS I ( I ,2) 

P S I  (I, 1 )=SRUE 
P S I  ( 1,2)=PSI ( I, 1 )  

SRUE-HT( I ,2) 
HT( I ,2)=HT( I, 1 )  
HT( I, 1 )=SRUE 

100 CONTINUE 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE RAYER2 
C PURPOSE-CALCULRTES A UECTOR OF tlAYER FACTORS FOR INTERACTIONS 
C OF THE TEST PARTICLE U l T H  THE RIXTURE. 
C 
C DATE 9 / 2 1 / 8 7  
C 
C T H I S  ROUTINE CRLLS: - c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE t lAYER2(DR,LAtlBDA,SlGnA,RSOFTD,EPSI,TREO,F,BUlJ, 

I I l P L  1 C I T RERL*8 (FI-H, 0-2) 
$I POT,N) 

REAL*8 F(N, 3 ) ,  RSOFTD(31, EPS 1 ( 3 )  
REAL*8 S 1 GtlR(3) 
RERL*8 BUI J(N,3) 
RERL*B DR,TRED 
REAL*8 LRRBDA 
INTEGER IPOT,N 
CO~RON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

c . URITE(NOUTZ,~O)IPOT,N,DR,TRED 
c 1 0  FORt lAT( / lX , ' IN  t lAYER', IJ , '  ' , l 3 , '  ' , D l l . + , '  ' , D l l . 4 )  
C URITE(NOUT2,*>SlGt lR( l  ) ,SIGRA(2),SIGRA(3) 
C 
C F = >  R UECTOR OF RAYER FACTORS FOR TEST PARTICLE 
C INTERACTIONS. 

UR I TE(NOUT2, *) EPS I ( 1 ) , EPS I (2), EPS I ( 3)  

DO 20 K=1,3 
T=TRED*EPS I ( 1 )/EPS I ( K )  
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DRR=DR*RSOFTD( 1 1 /RSOFTD ( K  
C IPOTrO : URNT CHEtllCAL POTENTIRL OF SPECIES 2. 
C THE TEST PARTICLE BECOflES fl IIOLECULE OF SPECIES 2 
C UHEN FULLY CHARGED. 
C IPOT-1 : UANT CHEIIICAL POTENTIAL OF SPECIES 1 .  
C THE TEST PRRTICLE BECOflES A HOLECULE OF SPECIES 1 
C WHEN FULLY CHRRGED, 

DO 30 I=l,N 
IF((IPoT.EQ.O).AND.(K.EQ.l)) THEN 

IF(BUIJ(I,K).GT.61 .OLIO) THEN 

ELSE 

END IF 

IF((IPOT.EQ.l).~ND.(K.EQ.2)) THEN 

IF(BUIJ( I,K).GT.61 ,000) THEN 

ELSE 

END IF  

IF(LfiHBDA.LT.O.OD0) THEN 

C LJ RAYER: 

F(I,K)=-l.ODO 

F(I,K)=(DEXP(-BUIJ(I,K)))-l .OD0 

ELSE 

C LJ IIAYER: 

F( l,K)a-1 .OD0 

F( I, K)a(DEXP(-BU I J( I ,  K) ) 1-1 . OD0 
ELSE 

C CFIUITY tlAYER (TEST PRRTICLE IS HARD SPHERE): 

C INSIDE CAUITY: 
IF(EUIJ(I,K).GT.61 .ODO)  THEN 

F( I ,K)*-l .OD0 
ELSE 

C OUTSIDE CAUITY: 
F(I,K)=O.ODO 

C FIX-UP CONTACT VALUES. WANT HAVER FACTORS FOR 

C BATH IlOLECULES TO BE -0.5 RT THE CONTACT DISTANCE. 
C INTERACTIONS OF A HARU SPHERE TEST PARTICLE UlTH THE 

RERL I - I  
RR=REALI*DR 
IF((UABS(RR-Sl~HA~K)>).LT.O.OOlDO) THEN 

F(I,K)=-O.SDO 
BU1J(I,K)=0.693147lDO 

END I F  
END IF 

ELSE 
C TEST PARTICLE (NOT A CAUITY) HAVER: 

IF(SUlJ(l,K).GT.6l.ODO) THEN 

ELSE 

END IF  

F(1,K)S-l .OD0 

F( 1 ,  K)s(DEXP(-BU I J( I ,K)) ) - t . O D O  

END IF 
EHD IF 

END IF 
C URITE(NOUT2,18)I,K 
C 18 FORHAT(lX, ' I= ', 13, ' K= ', 13) 
C URITE{NOUT2,*)BUIJ(I,K),UPRlHE(I,K),F(I,K) 
30 CONT I NUE 
20 COHT 1 HUE 

RETURN 
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END 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE CFG2 
C PURPOSE-CALCULATES C(R) I N  TERHS OF G ( R ) .  
C T H I S  PROCEDURE AND SUBROUTINE CORFU IS CHANGED 
C FOR ANOTHER THEORY. THE PROGRAH I S  CURRENTLY SET UP 
C TO USE ONLY THE HtlSA CLOSURE. 
C (C.F. L A B I K ,  HALIJEUSKY AND UONKA, HOL. PHYS. UOL.56,  N0.3, 
C P .709 ,  (1985), FOR DETAILS OF THE NUnERlCRL PROCEDURE) 
C 
C ( C . F ,  ZERAH AND HANSEN, J,CHEH.PHYS. UOL.84,  N 0 , 4 ,  P . 2 3 3 6 ,  
C FEBRUARY, 1986,  FOR DETAILS  ON THE HHSA CLOSURE) 
C 
C REVISED 6 / 4 / 8 7  
C 8/18/87-CHANGED TO HHSA CLOSURE 
C 9/22/87-CRERTEO FROfl A COPY OF SUBROUTINE CFG. 
C COllHON/HnSA/ UAS REPLACED U l T H  
C U l T H  COtlHON/HMSAT/ (CONTAINS PflRflnETERS 
C FOR THE TEST PARTICLE INTERACTIONS). 
C 
C T H I S  ROUTINE CALLS: FUNCTION SWITCZ-COHPUTES THE HnSR 
C SUlTCHlNG FUNCTION FOR f l  GIUEN SEPARATION 
C DISTANCE AND ALPHA PARAHETER. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUT I NE CFGZ(G,BU I J,F, PS I ,ETA, C, DR, K, RO, RUCO) 
I n P L l C l T  REAL*8(R-H,O-Z) 
REAL*8 G(2048,3), F(2048,3) ,  C(2048,3)  ,R0(3)  
REAL*B BU I J (2048,3 ) 
REAL*8 PS I ( 2 0 4 8 , 3 )  
REAL*€! AUC0(2048,3) 
REAL*B REALI,RAD 
REAL*8 SUT,BQLTZ 
REAL*8 EXPO 
RERL*8 ETA 
RERL*8 ALPHAT 
RERL*8 U I J T ( 3 ) , S I J T  
RERL*B U I J ( 3 ) , S I  J(3 
COllflON/HnSA/ALFNEU, I J , S I J  
COHtlON/HtlSAT/ALPHAT,UIJT,SIJT 
COflHON/TYP/JT,N 
CO~HON/DEUICE/HIN,NOUT1,NOUT2,1NOPT 

C 
C INPUT PARAHETERS- 
C G :  G(R)=R*(H(R)-C(R)) FOR I N  
C THE TEST PARTICLE. 
C F: TEST PARTICLE HAYER FUNCT 
C N: NUHBER OF GRID POINTS 
C OR: STEP SIZE I N  R 
C K: NO LONGER USED. 
C ALPHAT: THE HHSA f l l X l N G  PARAllETER 

ERACT I ONS W I TH 

ONS. 

PRSSED THROUGH COHtlON/HtlSAT/ 
C U I J T :  THE f l l N l l l U n  VALUE OF THE I J - T H  P A I R  POTENTIAL D IU IDED 
C BY K T .  
C S I J T :  THE SEPARATION DISTANCE (D IU IDED BY THE 1-1 LJ S I Z E  
C PRRAHETER) RT THE POTENTIAL H l N l f l U H .  
C OUTPUT PARRHETERS- 
C C: R*DIRECT CORRELATION FUNC. 
C 
C URITE(NOUT2,lO) 
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c10 FORflAT(lX, ' IN CFG2') 
C UR I TE(NOUT2, *)RO( 1 1, RO (2) RO (3) 
C UR I TE(NOUT2, * > S I  JT( 1 S I JT(2), S I JT(3) 
C URITE(NOUT2,*)UIJT(1)JUlJT(2),UlJT(3) 
C URiTE(NOUT2,*)ALPHAT,ALFNEU 
C STOP 
C WR I TE(flOUT2,102) 
c 102 FORtlRT(/lX,'IN CFG2..001NG C CALC') 

DO 115 J=1,3 
DO 110 I=l,N 

REAll=I 
RAD=REALI*DR 
C(I,J)=O.ODO 
ALPHA4LPHAT 
IF(J.EQ.1) THEN 

flLPHfl=ALFNEU 
END IF  

SUT=SUITC2(RRD,RLPHR) 
EXPO=SUT*(G( I ,  J)/RAD) 
IF((ETA.GE.O.ODO>.OR.~J.EQ.l)) THEH 
1F(RAD.GE.(l.ODOOOOlDO*S1JT(J))) THEN 

C COtlPUTE TOTAL CORRELATION FUNCTION: 

EXPO=EXPO-(SUT*3UlJ(l,J)) 
IF((I.~E.lSO>.AND.(,LE.290)) THEN 

WR1TE(NOUT2,666)1,J,RflD 
FORtlAT(lX,'IN BLOCK 1',14,1X,14,1X,D13.6) 
URITE(HOUT2,*)BUIJ(I,J),F(I,J) 

END IF 
ELSE 

EXPOpEXPO-(SUT*UlJT(J)) 
IF((I.GE.lSO).AND.(I.LE.290)) THEN 

URITE(NOUT2,777)I,J,RRD 
FORtlAT(lX, ' I N  BLOCK 2 1 1  14, lX, 14,1X,D13.6) 
UR1TE(NOUT2,*>BUlJ(l,J),F(I,J) 

END IF 
END IF 
END IF 
IF(EXPO.GT.61.0DO) THEH 

END I F  
IF(EXPO.LT.-61.0DO) THEN 

EXPO-61.0DO 

EXPO=-61.000 
EHD 1F 
URITE(NOUT2,*)EXPO 
IF(DRBS(SWT).GT.O.OOo0000001DOlDO) THEN 

C(I,J>~((oEXP(EXPO>)-l.ODO)/SUT 
END IF  
lF(RflD.GE.(l.OOOOOOlDO*SIJT(J))) THEN 

ELSE 
' BOLTZ=l.ODO 

BOLTZs-AUCO( I, J) 
1 F(B0LTZ. LT. -61 . ODO) THEN 

BOLT2~-61.0DO 
END I F  
BOLTZ=DEXP(BOLTZ) 

END IF 
IF((ETA.Lr.O.ODO>.flND.(J.NE.l)) THEN 

BOLTZ=F( I, J)+l.ODO 

C 
C 
C 666 
C 
C 

C 
C 
c 777 
C 
C 

C 
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END I F  
C (  I, J ) = C ( I ,  J)+ l .ODO 
C (  I, J)=(C(  I, J)*BOLTZ) 

C ( l , J ) ~ C ( l , J ) - l . O D O  
C (  I ,  J)=RAD*C( I ,  J) 
C(  I, J ) *C(  I ,  J)-G( I, J) 

1 1 0  CONT I NUE 
1 1 5  CONTINUE 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 

C 
C 
C 
C 

STOP 
RETURN 

END . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SUBROUTINE INTGRO 
PURPOSE-SETS UP PARAflETERS NEEDED BY SUBROUTINE TRAP. 

DATE: 4/28/88. 

T H I S  ROUTINE CALLS: SUBROUTINE TRAP-ESTlflATES THE DIFFERENCE 
BETUEEN THE WORK OF INSERTING A UCA 
REPLUSIUE PARTICLE AND THE WORK OF 
INSERTING A HARD SPHERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE INTGRD(NBIG, IPOT,DR,RO,PAlR,PAlR2,BATH,BATH2,  

I f l P L I C l T  REAL*B(A-H,O-Z) 
REAL*8 PAIR'(NBIG,3) 
REAL38 PA I R2(NB I G, 3) 
REAL*8 BATH(NB I G, 3)  
REAL*B BATH2(NB IG ,  3 )  
REAL*8 D I RECT(NB I G, 3) 
REAL*8 D I R2(NB I G, 3)  
REAL*8 FUNCT(2048) 
REAL*8 FUN2(2018)  
REAL*8 R O ( 3 )  
REAL*8 S IGHR(3) 
REAL*8 DR 
REAL*8 INT1 , INTZ 
REAL*B E l , E 2  
REAL*8 DELG,DELC 
INTEGER NBIG,IPOT 
COtlHON/LUDOL/PI 
COflflON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

t DIRECT,DIR2,1NTl,INT2,El,E2,SIGtlR) 

RO( I )=(DENSITY)*(  I T H  flOLE FRRC. )*((LJ S I Z E  OF COflPONENT 1 )**3) 
R0(3)=RO( 1)  
COflPUTE THE INTEGRAND FOR SUBROUTINE S I I l P :  

URNT CHEfl lCAL POTENTIAL OF SPECIES 2. TEST PARTICLE BECOflES 
SPECIES 2. 

I F ( I P O T . E Q . 0 )  THEN 

DO 5 I = l , N B I G  
R E A L I = I  
RRD=REALI*DR 

SUFFIX '2" INDICATES CORRELATION FUNCTIONS ABOUT THE UCA REPULSIUE 
TEST PARTICLE.  
NO SUFFIX INDICATES CORRELATION FUNCTIONS ABOUT THE EFFECTIUE HARD 
SPHERE. 

DELGxPRIR2( I ,3) -PAIR( I ,3) 
DELC=D I R2 ( I ,3)-0 I RECT ( I, 3)  
FUNCT( I )IO .5DO*DELG*(OELG-DELC) 
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FUNCT ( I )-FUNCT( I ) +DELG 
FUN2( I )=DLOG(BATHZ( I ,3)/BATH( 1,311 
FUNCT(1)~FUHCT(I)-(PflIR2(1,3)*FUN2(1)) 
FUN2(l)=FUN2(l>-DELG+DELC 
FUH2( I )=DABS(FUNZ( I > >  
FUN2( I )=FUN2( I )*DABS(DELG) 
FUNCT( I )=4,ODO*P I*RRD*RAD*RO( 1 )*FUNCT( I ) 
FUN2( I )=4,ODO*P I *RRD*RRD*RO( 1 )*FUN2( I 

C URITE(HOUT2,*)RAD,FUNCT( I 

C INTEGRfiTE THE PRODUCT OF THE CORRELATION FUNCTION AND THE 
C PERTURBING POTENTIAL. GET THE CONTRIBUTION OF SPECIES 1 IN 
C THE BATH TO THE UORK OF SOFTENING ("INT1)". 

5 CONT 1 NUE 

D 1 R=S I G t l A ( 3 )  
CALL TRAP(NB I G, DR, FUNCT, D I A ,  I NTl 

C ESTlflATE AN UPPER BOUND OF THE ERROR IN ABS( INTl) DUE TO 
C NEGLECTING THE DIFFERENCE IN BRIDGE FUNCTIONS FOR HS AND 
C WCR REPULSIUE TEST PRRTICLES ("El"). 

C STOP 
CALL TRAP( NB I G, DR, FUN2, D I A, E 1 

DO 10 I-1,NBIG 
REAL I = I 
RRD=REALI*DR 
DELG=PAIRZ( I ,2 ) -PAIR(  I ,2) 
DELC-DIRZ( 1,2)-DIRECT(1,2) 
FUNCT(l)=0.5DO*DELG*(DELG-DEl.C) 
FUNCT( I )=FUNCT( I )+DELG 
FUN2( 1 )-DLOG(BRTH2( I ,Z)/BRTH( 1,211 
FUNCT( I ) -FUNCT(I ) - (PAIR2(~,2)*FUN2(1))  
FUN2(l)~FUti2(l)-DELG+DELC 
FUN2( 1 )-DRBS(FUNZ( I ) )  
FUNS( I )=FUN2( I )*ORBS(DELG) 

FUN2( I )=4.ODO*PI*RRD*RRD*R0(2)*FUN2( I 
FUNCT( I )-+,ODO*PI *RAD*RAD*RO(Z)*FUNCT( I ) 

10 CONT I NUE 
DIR-SIGllA(2) 

C GET THE CONTRIBUTION OF SPECIES 2 IN THE BRTH TO THE 
C UORK OF SOFTENING ("INT2"). 

CALL TRAP(NBIG,DR,FUNCT,DIR,lNT2) 
CALL TRAP(N3 I G, DR,FUN2, D I A, E2) 

ELSE 
C UAHT CHEHICAL POTENTIAL OF SPECIES 1 .  THE TEST 
C PARTICLE BECONES A HOLECULE OF SPECIES 1 UHEN 
C FULLY CHRRGED. 

DO 20 I=l,NBIG 
REAL I = 1 
RAD-RERLI*DR 
DELG=PAIR2(1,1)-PRIR(l,l) 
DELC~DIR2(1,1)-DIRECT(l,l) 
FUNCT( I )=O.SDO*DELG*(DELG-DELC) 
FUHCT( I )=FUNCT( I )+DELG 
FUN2( I )=DLOG(BATHZ( I ,  1 )/BATH( I ,  1)) 

FUN2( I )=DRBS(FUNZ( 1 ) )  
FUN2(l)=FUN2(l)*DRBS(DELG) 
FUNCT ( 1 )-4.ODO*P 1 *RAD*RAD*RO ( 1 *FUNCT ( I ) 
FUN2( 1 )=4,ODO*P I *RRD*RRD*RO( 1 )*FUH2( I 1 

FUNCT( I )=FUNCT( I )-(PA I R2( I ,  1 ) *FUN2 ( I ) ) 
FUN2( I )mFUN2( I 1-DELG+DELC 
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2 0  

3 0  

C 
C32 
C 
C 
c35 
C 
c37 
640 

CONT I HUE 
D I R = S I G t l A ( l )  
CALL TRAP(NB I G, DR, FUNCT, D I A, I N T l  
CALL TRAP( NB I G, OR, FUN2, D I A ,  E l  ) 
DO 30 I = l , N B I G  

REAL I = I 
RRD=REALI*DR 
DELG=PRIR2( I ,3)-PAIR( I ,3) 
DELC=D I R2( I ,3)-D I RECT( I, 3) 
FUNCT,(l)4.5DO*DELG*(DELG-DELC) 
FUNCT(I)=FUNCT(I)+DELG 
FUNCT( I )=DLOG(BATH2( I ,  3)/BATH( I, 3))  
FUNCT( I)=FUNCT( I ) - ( P R I R 2 ( l , 3 > * F U N 2 ( I ) )  
FUN~(I)PFUN~(I)-DELG+DELC 
FUN2( I )=DABS(FUN2( 1 ) )  
FUN2( I )=FUN2( I )*DABS(DELG) 
FUNCT( I )=4 .ODO*P I *RAD*RAD*R0(2)*FUNCT( I 
FUN2( I )=4,ODO*PI *RAB*RRD*R0(2)*FUN2( I 

CONT I NUE 
D I R=S I G t l A ( 3 )  
CALL TRAP (NB I G, DR, FUNCT, D I A, I NT2) 
CALL TRAP(NB 1 G, DR,FUN2, D I A, € 2 )  

END I F  
UR I TE(NOUT2,32) 
FORtlAT( / 1  X, 'LEAU I NG I NTGRD' ) 
DO 40 1-35,50 

UR ITE(NOUT2,35)PS 1 ( I, 1 1, PSI  ( I ,2), PSI ( I ,3) 
FORtlAT(lX,'PSI:',D13.6,1X,D13.6,1X,D13.6) 
URITE(NOUT2,37)RDFNEU(l,l),RDFNEU(1,2),RDFNEU(l,3) 
FORHAT( 1 X, 'RDFNEU: I ,  D l  3.6, l X ,  D13 .6 , l  X, 013.6) 

CONT I NUE 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE tlUDRUR 
C PURPOSE-CALCULATES THE CHEnlCAL POTENTIRL OF THE DESIRED 
C SPECIES. ALSO DETERnlNES (DERIURTIUE OF THAT 
C CHEtl lCRL POTENTIRL U.R.T.  TOTAL DENSITY AT CONSTANT 
C TEtlPERATURE AND COtlPOSITION)*DENSITY OF THAT SPECIES. 
C THE DERIVATIVE I S  FOR USE I N  CHECKING TO SEE I F  THE 

C POTENTIAL I S  SATISF IED.  THE OERIUATIUE IS ESTl t lATEO 
C USING A THREE POINT F I N I T E  DIFFERENCE FORtlULA AFTER 
C CALCULATING THE CONTRIBUTIONS TO THE CHEtl lCAL 
POTENT I RL 
C AT THREE DIFFERENT DENSIT IES.  THE THERI10. CONSISTRNCV 
C PARAtlETERS FOR THE BRTH AND TEST PARTICLE D ISTRIBUTION 
C FUNCTIONS flRE TAKEN TO BE CONSTANT UHEN DOING T H I S .  
C 
C DATE 1 0 / 2 7 / 8 8  
C REUISED 1 / 1 0 / 8 9 -  TO USE A THREE POINT FORflULR INSTEAD OF A 
C FOUR POINT FORtlULR. 
C CODED BY DAVID PFUND 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE Stl00TH-INTERPOLATES THE 
C D ISTRIBUTION FUNCTIONS OBTAINED BY "F INDR"  

C GIBBS-DUHEtl CONSISTANCY TEST FOR THE CHEtl lCAL 

C 
D I FFERENT) 

TO F I T  THE STEP S I Z E  ( I N  GENERRL 
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C 
C 
C 
C 
C 
DISTRIBUTION 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
TI llES 

USED BV THIS SUBROUTINE. RESULT I S  USED 
ONLY AS AN INITIAL GUESS TO "LABIK" BELOW. 
SUBROUTINE tlAYER-CALCULATES A VECTOR OF 
HAYER FACTORS FOR THE DESIRED INTERRCTION 
POTENTIAL UHICH IS USED IN THE 

FUNC. CALCS. FOR THE BATH tlOLECULES. 

DISTRIBUTION FUNCTIONS FOR THE BRTH AT THE 
THREE DIFFERENT DENSITIES. 

PRESSURE AT THE DIFFERENT DENSITY STEPS, 

POTENTIAL DlUlDED BY KT (UHICH I S  THE 
U.C.A. RTTRRCTIUE PART). ALSO CALCULATES 
THE U.C.R. REPLUSIUE PART OF THE 
POTENTIAL. 

POTENTIRL OF THE SPECIES OF IHTEREST, 

DERIURTIUE OF THAT CHERICAL POTENTIf4L 

SUBROUTINE LRBIK-CALCULRTES THE 

SUBROUTINE UIRIAL-CORPUTES THE UlRlRL 

SUBROUTINE PERT-CALCULATES THE PERTURBING 

SUBROUTINE CEtlPOT-COIIPUTES THE CHEtllCRL 

SUBROUTINE RHODHU-COtlPUTES THE DENSITY 

C c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  THE DENSITY OF THRT SPECIES. 

SUBROUTINE t lUDRUR(N,N~,DROLD,Dfl , IPOT,KEPS~JSOFTD,EPs~,~SoFTDJ 
$TEtlP,TRED,RO,Xl,JP,ALPHA,PRESSU,COnPC,DLlKE,DUNLKE,~U, 
$GOLD, AS I GHA, YU ,VUSTR, YUHS, I NTl , INT2, El, E2, DHUDRO, ERROR) 
IHPLICIT REAL*B(R-H,O-Z) 
RERLf8 GOLD(N,3) 
REAL*8 G( 2048,3) ,PA I R(2048,3), Dl RECT( 2048,3), TOTAL(2048,3) 
RERL*8 BATH(2048,3) 
REAL*8 BU I J(20S8,3), F(2048,3) 
RERL*8 TU I J(20+8,3), RUC0(20+8,3), PS I (2048,3) 
REAL*8 UPR I tlE(2048,3) 
REAL*8 S I GHf3 ( 3  1, EPS I (3 )  
REAL*8 RSIGHA(3),KEPSI (3) 
REflL*8 RSOFTD(31, SOFTD(3) 
REAL*8 R0(3), RHO(3) 
REAL*8 CORE(3) 
REAL*8 lNT1,INTZ 
RERL*8 El,E2 
REAL*8 DR,DROLD 
RERL*8 DIIUDRO 
RERL*8 DELTA 
REAL*8 TERP,TRED 
REAL*8 PU3,PUZ,PRESSU 
RERL*8 COHPC 
RERL*8 DLIKE,DUNLKE 
REAL*8 CORF1,CORFZ 
REAL*8 RLPHCI 
REAL*8 YU, YUSTR, YUHS 
REAL*8 SOFT3,SOFTZ,SOFTO 
RERL*8 GAACJ,GAAC2,GAAC 
REAL*8 GABC3,GRBCZ,GABC 
REAL*8 nu 
INTEGER ERROR 
INTEGER COUNT 
INTEGER NJNHJ IE, JP, IPOT 
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LOGICAL BADRAT 
LOGICAL LOTS 
CO~HON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

C DATA DELTA/-0.000500/  
C DATA DELTA/-O,OOlDO/ 

DATA DELTA/-O.O0025DO/ 
C DROLD= STEP S I Z E  AUTOHATICALLY SELECTED BY SUBROUTINE FINDR. 
C DR=STEP S I Z E  INPUT BY THE USER SO THRT I T  D I V I D E S  BOTH THE 
C SPECIES l / T E S T  PARTICLE AND SPEClES 2/TEST PARTICLE EFFECTIUE 
C DlAf lETERS (ALSO INPUT) ,  
C HAKE DISTRIBUTION FUNCTIONS CONFORH TO THE NEU HESH BY 
C INTERPOLRTING. 

C DELTR=STEP S I Z E  FOR THE NUHERICRL ESTl f lRTE OF THE DENSITY DERIURTIUE 
C STEP THE DENSITY BACK: 
C RHO(1)=(1 .000+(2.0DO*DELTR))*RO(1) 
C RH0(2)- (  1 , OD0+(2.ODO*DELTR) ) *R0(2)  
C RHO (3) =( 1 , ODO+ (2,ODO*DELTA) *RO( 3 1 
C COflPUTE BRTH DISTRIBUTION FUNCTIONS: 

CORE(l)=O,ODO 
CORE(Z)=O.ODO 
CORE(3)=0 .OD0 
CALL MAYER(DR,RSOFTD,EPSI ,CORE,TRED,F,BUI J,UPRlIlE, IPOT,N) 

CRLL SllOOTH(N,DROLD,DR,GOLD, G )  

C CRLL LABIK(IPOT,BUIJ,F,RSOFTD,EPSI,RHO,TRED,G,PAIR, 
C S  DIRECT,TOTRL,BATH,IE,BAD~AT,DR,JP,NR) 

C COflPUTE THE U l R l A L  PRESSURE A T  DENSITY + 2*DELTA. 
C CALL UIRIRL(IPOT,DR,RHO,TRED,RSOFTD,EPSI,CORE,BUIJ,UPRIflE, 
C S  PAIR,PU3) 
C URITE(NOUT2,*)PU3 
C COHPUTE THE CHEHICRL POTENTIAL, SOFT (ATTRRCTIUE AND SOFT REPLUSIUE) 
C CONTRIBUTIONS, AND THE CONTRCT VALUES OF THE P A I R  CORRELATION 
C FUNCTIONS WITH THE CRUITY. 

C IF((IE.GT.O).AND.(.NOT.BAD~AT)) THEN 

I F ( I P O T , E Q . l )  THEN 
CORFl=DLlKE 
CORFZ=(SOFTD( 1 )/SOFTD(Z) )*((2.0DO*OUNLKE)-CORFl) 

ELSE 
CORF2=DLIKE*(SOFTD( 1 )/SOFTD(2) 
CORF1~(2.0DO*DUNLKE)-DLlK€ 

END I F  
CALL PERT(N,IPOT,DR,TEMP,CORFl,CORF2,ASlGHA,KEPSl,SOFTD,TUlJ, 

CALL CEHPOT(N,NH,DR, IPOT,KEPSI ,SOFTD,EPSI ,RSOFTD,TEflP, TRED, 
S AUCO, PS I 1 

C 
C $  RHO,Xl,flLPHA,PU3,CORFl,CORF2,tlU, 
C $  TU I J, RUCO, PS I, 
c s  G,PAIR,DIRECT,TOTfiL,BflTH,RSIGtlA,YU, 
C $  YUSTR,YUHS, I N T l ,  INT2,E l  ,E2,GARC3,GABC3,ERROR) 
C STOP 
C 
C SOFT3p(YU-'fUSTR)/(RHO( 1 )+RH0(2) ) 
C IF(ERROR.EQ.0) THEN 
C RHO( 1 )-( 1 . ODO+(DELTA) )*RO( 1 ) 
C RHO(2)=(l .ODO+(DELTA))*R0(2) 
C RH0(3)=( 1 .ODO+(DELTA))*R0(3) 
C COnPUTE DISTRIBUTION FUNCTIONS: 
C CRLL LRBIK(IPOT,BUIJ,F,RSOFTD,EPSI,RHO,TRED,G,PAIR, 
C S  
C IF((IE.GT.O).AND.(.NOT.BADHAT)) THEN 

SOFT3=(YU-YUHS) /(RHO( 1 )+RHO (2) ) 

D I RECT, TOTAL, BRTH, I E, BADRAT, DR, JP, NH) 
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C 
C 
C 
C 
C. 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
cc 
C 
C 
C 

CALL UIRIAL(IPOT,DR,RHO,TRED,RSOFTD,EPSI,CORE,BUIJ,UPRIllE, 
$ PRIR,PUZ) 

UR I TE(NOUT2 ,*)PU2 
CALL CE~POT(N,NH,DR,IPOT,KEPSI,SOFTD,EPSI,RSOFTD,TEllP, 

$ TRED,RHO,Xl,ALPHR,PU2,CORFl,CORF2,llU, 
$ TUIJ,fiUCO,PSI, 
$ G,PAIR,DIRECT,TOTAL,BRTH,RSIGHR,YU, 
$ YUSTR,VUHS,INTl,INT2,El,E2,GRfiC2,GABC2,ERROR) 

SOFT2=( VU-YUHS) /(RHO( 1 )+RH0(2) ) 

IF(ERROR.EQ.0) THEN 
SOFT~P(VU-VUSTR)/(RHO( 1 )+RH0(2) 1 

JP= 1 
CALL LRBIK(IPOT,BUIJ,F,RSOFTD,EPSI,RO,TRED,G,PRIR, 

$ DIRECT,TOTAL,BRTH, IE,BRDflAT,DR, JP,Nfl) 
IF( ( 1 E. GT -0) . AND . ( , NOT, BRDHRT) THEN 

LOTS=.FALSE. 
Xl=RO(l )/(R0(1 )+R0(2)) 
COUNT=O 
ENERGY=O.ODO 
CERROR=O.ODO 
COHPC=O.ODO 
CALL PRlNTR(LOTS,DR,PAIR,DIRECT,TOTflL,BRTH, 

$ EPSI,RSOFTD,TRED,RO,Xl,G,COUNT, 
s ALPHA,PRESSU,ENERGY,CERROR,COtlPC) 

STOP 
URlTE(NOUT2,*)PRESSU 

CALL CEllPOT(N,NH,DR,IPOT,KEPSI,SOFTD,EPSI,RSOFTD, 
s TE~P,TRED,RO,X1,ALPHA,PRESSU,CORFl,COflF2, 
$ tlU,TUIJ,AUCO,PSI, 
$ G,PAIR,DIRECT,TOTAL,BATH,RSIGIIA,YU, 
$ YUSTR,YUHS,1NTl,INT2,El,E2,GRflC,GABC,ERROR~ 

SOFTO=(YU-VUHS>/(RO( 1 )+R0(2)) 
SOFTO=(YU-YUSTR)/(RO( 1 )+R0(2)) 

I F(ERR0R. EQ . 0) THEN 
CALL RHODIN( IPOT,DELTR,Xl ,COllPC,RO, 

s t3SIGtlA,SDFTD,GAAC3,GRRC2, 
s GARC,fABC3,GRBC2,GRBC,SDFT3, 
5 SOFTZ,SOFTO,YU,YUHS,YUSTR,D~UDRO) 

END IF  
END IF 

END IF 
END IF 

END IF  
END IF 
IF(  ( I E .LE. 0) .  OR.  BADHAT) THEH 

END IF 
RETURN 
END 

ERROR=6 

L. . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C FUNCTlON DERIUZ 
C PURPOSE-NUllERICfitLY DIFFERENTIfiTES THE CHEHICRL POTENTIRL 
C OF A SPECIESKI U,R,T. THE TOTRL DENSITY. 
C 
C DATE 1/10/89 
C CODED BY DRUID PFUND 
C 
C THIS ROUTINE CALLS: - 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
REAL FUNCTION DERIU2(PUO,PUl ,PRESSU,DELTA,RO) 

RERL*8 DELTA 
REFiL*8 PUO,PUl,PRESSU 
REAL*8 R O ( 3 )  
REAL*8 RHO 
COIltlON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

C T H I S  FUNCTION CURRENTLY USES A THREE POINT BACKUARD DIFFERENCE 
C FORtlULA UHICH HAS THIRD ORDER ACCURACY, 
C PUO I S  TWO STEPS BACKWARD. 
C PU1 I S  ONE STEP BACKUARD. 
C PRESSU IS ON THE NODE OF INTEREST. 

RHO=RO(l )+R0(2) 

$(2.0DO*DELTA*RHO) 

I I l P L l C l T  REAL*8(A-H, 0-2) 

DERlU2=((-PUO)+(4,ODO*PUl)-(3.0DO*PRESSU))/ 

RETURN 
END 
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c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE DILUTE 
C PURPOSE-SOLUTION OF THE TEST PARTICLE 02 EQUATIONS FOR A 
C HOLECULE (INFINITELY DILUTE) OF SPECIES "2" IN A 
C HIXTURE OF SPECIES "1" AND "2". 
C 
C REVISED 9/21/87 -0EUELOPED FROH A COPY OF SUBROUTINE 
C GALER FOR USE UlTH THE OZ EQUATIONS 
C FOR A TEST PARTICLE. 
C ORlGlHAL UERSION FOR PURE SYSTEHS URITTEN BY S.LRBIK 
C AND A .  HRLIJEUSKV, INSTITUTE OF CHEtllCRL TECHNOLOGY 
C PRAGUE, CZECHOSLOUAKIR 
C (UERSION 1, FEBRUARY 1985, C.F, LABIK, tlRLl JEUSKV, AND 
C UONKR, noL. PHYS., 
C 
C THIS ROUTINE CALLS: 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

UOL.56 ( 3 ) ,  P,709, (1985).) 

SUBROUTINE FFS3D- FOURIER TRANSFORtl RND 
INVERSE FOURIER TRANSFORH. 
SUBROUTINE GFC2- INPUT THE TRRNSFORH OF 
THE R*(DIRECT CORRELATION FUNCTION)-OUTPUT 
THE TRRNSFORtl OF THE "GRHtlR" FUNCTION 
OBTAINED FROtl DIRECT SUBSTITION OF "C" 
lNT0 THE TRAHFORRED 02 EQUATIONS FOR 
INTERACTIONS UlTH A TEST PARTICLE. 

"C". THESE OUTPUTS ARE 
OBTAINED FROH SUBSTITUTION INTO THE 
CLOSURE EQUATION. 

SUBROUTINE CFG2- INPUT "GRHHA". OUTPUT 

SUBROUTINE DILUTE(G,BUIJ,F,PSI,ETA,Hn,DR,RO,JP, 

ItlPLlClT REAL*8(R-H,O-Z) 
REfiL*8 GN(2048,3 1, GT(2048,3), GNT(2048,3), DC(2048,3), CT (2048,3) 
RERL*8 C(2048,3) 
RERL*8 CSN(2048) 
REAL*8 G(2048,3),F(20t8,3) 
RERL*8 BUIJ(2048,3) 
REAL*8 PSI (2048,3) 
RERL*8 RC(2048,3) 
REAL*8 HT( 2048,3) 
REAL18 AUC0(2048,3) 
REAL*8 CCT (3 1, GGNT(31, RO( 3) 
REAL*8 TTT(3) 
RERL*8 RSOFTD(3), S I GtlA (3) 
RERL*8 UFFTR(S133) 
REAL*8 ETA 
INTEGER SELECT 
LOGICAL BADflAT 
COflHON/CONU/CONUDI,CONUNR 
COHHON/LUDOL/PI 
COflHON/HTHltiG/HT 
COHHON/DEUICE/NIN,NOUTl,NOUT2,lNOPT 
DATA OUCH,UAlT/0.99DO,1.0DO/ 

$IE,RSOFTD,SIGHA,RC,BAOHflT,AUCO) 

C INPUT PARAtlETERS- 
C G: GAflHA FUNCTlONSPG(R>tR*(H(R)-C(R)) 
C F: tlAYER FUNCTlONS=EXP(-U(R)/T*) - 1 FOR 
C INTERACTIONS UlTH THE TEST PARTICLE. 
C R C :  THE R*(DIRECT CORRELATION FUNCTIONS) OF THE SPECIES IN 
C THE HIXTURE. THESE ARE CONSTANTS. 



244 

C NH: NUMBER OF DEFINING NUHBER OF GRID POINTS 
C N=2**Ntl 
C HT:  TRANSFORHS OF TOTAL CORRELATION FUNCTIONS 
C I N  THE BATH. PASSED FROn SUBROUTINE GALER. 
C ETA: I F  ETR>=O I T S  THE COUPLING PARAMETER FOR THE WCA 
C RTTRACTIUE PART. I F  ETA<O I T  INDICRTES THAT THE 
C TEST PARTICLE I S  A HARD SPHERE. 
C U l T H  CURRENT ARRAY DIHENSIONS, HAX Nn=11.  

C O R :  REDUCED STEP S I Z E  
C J P  : 
C JP,EQ.O . . ,  LOU DENSITY L l H l T  - G(R) = 0. 
C JP.EQ.1 ... INPUT G(R) IS USED. 
C J P . E Q . 2  . , ,  HARD SPHERE G ( R )  I S  USED. 
C OUTPUT PRRAHETERS- 
C G: G(R)=R*(H(R)-C(R)) 

C G(1,2) DENOTES L I K E - L I K E  INTERACTIONS U l T H  THE 

C G(1,3) DENOTES UNLIKE-L IKE INTERACTIONS WITH THE 

C R O :  REDUCED DENSITY4t*(1-1 LJ S I Z E  PRRtl**3)/U 

C G ( l , l )  I S  UNCHANGED BY THE SUBROUTINE. 

C TEST PARTICLE. 

C TEST PARTICLE. 
C I E :  NUMBER OF ITERATION STEPS 
C IE<O HEANS SOLUTION NOT FOUND 
C 
C (NOTE: THE STRUCTURE OF SUBROUTINE GALER I S  TERMINAL- SORRY) 
C UR I TE(NOUT2,l) 
c1 FORt lAT( lX, '  I N  D I L U T E ' )  

ROT=RO (2 ) /RO(  1 1 
N=2**NH 
N2=2*N 
RH=DR*N 
DT=P I /Rtl 
TRIP I /DR 
P l = P I / N  
DO 5 I - l , N  

P2= I *P1 
C I N I T I A L I Z E  AH RRRAY OF COSIHE FUNCTIONS FOR USE LATER. 

C START BY ASSUfllNG 'C' FUHCTIONS FOR THE TEST PARTICLE ARE 
APPROXIHATED 
C BY THE BATH UALUES. 

C( I, 1 )=RC( I ,  1)  
C ( I ,2 )=R.C ( I ,2 1 
C (  I ,3)-RC( I , 3 >  

5 CONT I NUE 
NNIN-1 
CALL DFS I N I (NN, UFFTR) 

C 
C D E F I N I T I O N  OF I N I T I A L  UALUES OF G(R) AND GT(T) 
C 

DO 25 J=1,3 
DO 24 I = l , N  

DC( I, J)=G( I, J)*RO(J) 
24 CONT I HUE 
25 CONTINUE 
C STOP 

SELECT= 1 
C F I N D  THE TRANSFORH OF THE DENSITY HULTIPL IED GAHHA FUNCTIONS FOR 
C THE TEST PARTICLE INTERACTIONS. 
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CALL FFS3D(SELECT,DC,GT,N,Ntl,DR,UFFTR) 
I F( JP EQ. 2) THEN 

C JP52 => HARD SPHERE INTIRL GUESS. 
CRLL HSANAL(C, RO,  S 1 GHA ,DR) 
DO 26 I=l,N 

RR-DR* I 
C(1 ,l)=RC( I ,1) 
DC( I ,  1 )=C( I, 1 )*RO( 1 )*RR 
DC( I ,2)=C( 1,2)*R0(2)*RR 
DC( I ,3)=C(1,3)*R0(3)*RR 

26 CONTINUE 
SELECTol 

C FIND THE TRRNSFORtl OF THE DENSITV RULTIPLIED GRtlllA FUNCTIONS FOR 
C THE TEST PRRTICLE INTERACTIONS. 

CRLL FFS3D(SELECT,DC,CT,N,NR,OR,UFFTR) 
DO 140 Js1,N 

T=J*DT 
DO 141 1B=1,3 

CCT(lB)=CT(J, IS) 
TTT(IB)=HT(J, I B )  

141 CONT I NtlE 
CALL GFC2(TTT,CCT,GGNT,RO,ROT,T) 

C (NOTE: 1 - 1  DIDN'T CHANGE- IT'S JUST ALONG FOR THE RIDE) 

140 

126 

C 
C 
1000 

C 
C 
C 

80 
85 
C 
C 
C 

GT( J,2)-GGNT(2) 
GT(J,S)=CGNT(3) 

CONT I NUE 
SELECT=-1 
CALL FFS3D(SELECT,GT,G,N,Nfl,DRJWFFTR) 
DO 126 I - 1 ,H  

G( I ,l)=G( 1,1 )/R0(1) 
G( I ,2)=G( I ,2)/R0(2) 
G( I ,3)-G( I ,3)/R0(3) 

CONT I NUE 
END IF 
1 Ex0 . 
I R-0. 
CONOLD-10000. 

START OF DIRECT ITERATION 
CONT I NUE 

1 E- I E+l 
CONCUX-10000. 

I F  (IE.GT.300) GO TO 3000 

CALCULRTION OF C(R) FROR G(R) 

SELECT-0 
C FROR DIRECT SUBSTITUTION OF *GRtlRA' INTO THE CLOSURE 
C EQUATIONS GET NEU "C"'S (FOR THE TEST PRRTICLE). 

CRLL CFG2(G,BUIJ,F,PSI,ETA,C,DR,SELECTJRO,RWC0) 
DO 85 J-1,3 

DO 80 I-1,N 

CONT I HUE 
C( I ,  J)=C( I,  J)*RO(J) 

CONT I HUE 

CRLCULATION OF CT(T), THE FOURIER TRANSFORH OF C(R) 
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C EQUAT 
C SPACE 

C (NOTE 

SELECT=l 
CRLL FFS3D( SELECT, C, CT, N, Ntl, DR, UFFTR) 

C 
C CRLCUCRTION OF NEW GT(T) 
C 

DO 4 0  J-1,N 
T=J*DT 
DO 41  1B=1,3 

CCT( IB)=CT(J ,  I B )  
TTT( IB )=HT(J ,  I B )  

4 1  CONT I NUE 
C FROfl DIRECT SUBSTITUTION OF THE TRANSFORfl OF " C "  INTO THE 02 

ONS GET NEU "GflflflA"'S (FOR THE TEST PARTICLE; I N  TRANSFORfl 

CALL GFC2(TTT,CCT,GGNT,RO,ROT,T) 
GNT(J , l )=GT(J , l )  

1-1 D I D N ' T  CHANGE- I T ' S  JUST ALONG FOR THE RIDE)  

40 

2000 

310 

3 3 0  
335 
c 
C 
C 

C 
C188  
1 9 0  
1 9 5  

C 
C 
C 

C 

GNT (J, 2)*GGNT(2) 
GNT(J, 3)=GGNT(3) 

CONT I HUE 
NA=32 
CONT I NUE 
DO 310 t l= l ,NA 

GT(fl, 1 )=GNT(fl, 1)  
GT(II,2)=GNT(fl, 2) 
GT(tl,3)=GNT(fl,3) 

CONT I HUE 
DO 335 1=1,3 

DO 330 J=NA+l,N 

CONTINUE 
GT(J, I )-GNT(J, I )  

CONT I NUE 

CRLCULRTION OF NEU APPROX. FOR DIRECT ITERATION. 

SELECT=- 1 
CRLL FFS3D(SELECT,GT,GN,N,Nll,DR,UFFTR) 
P3=0 
DO 1 9 5  J-1,3 

DO 1 9 0  I-1,N 
GN( I , J)=GN( I, J)/RO( J) 
Pl=G(  I ,  J)-GN( I ,  J) 
P 3 = P 3 + ( P l / l ) * * 2  
G( I ,  J)p( ( 1 ODO-UA I T)*G( I , J) )+(UA I T*GN( I , J) ) 

URITE(NOUT2,188) 
FORtlRT ( 1 X , ' OUCH ' ) 

CONT I NU& 
CONT I NUE 
P3=SQRT(P3) 

TEST TO EHD ITERATIONS. 

I F  (P3.LT.CONUDI) THEN 
URITE(NOUT2,*) IE 

RETURN 
ELSE 

I F  (P3.LT.CONOLD) THEN 
I c o s 0  
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CONOLD=P3 
GO TO 1000 

ELSE 
IF (ICD.EQ.0) THEN 

ICO= I co+1 
GO TO 1000 

END IF 
END IF 

END IF 
C UR I TE (NOUT2 *) 1 E 
C RETURN 

3000 CONT I NUE 
C I F  IT'S HERE, 
C SUBROUTINE DILUTE HAS FAILED...SORRV, 

C 

GO TO 1000 

IEz-IE 
UR I TE(NOUT2, *> I E, I R 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE GFC2 
C PURPOSE-ItlPLltIENTS A REARRANGED, TRANSFORIIED 02 EQUATIOH 
C FOR INTERACTIONS OF BATH tlOLECULES UlTH A 
C TEST PARTICLE. 
c 
C REUlSED 6/4/67 
C 9/22/87-COPIED FROH SUBROUTINE GFC AND CHANGED TO 
C 
C IN A IllXTURE. 
C 
C THlS ROUTINE CALLS:- c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

TRANFORHED 02 EQUATIONS FOR A TEST PARTICLE 

SUBROUT I NE GFCZ(TT1, C, G, RO, ROT, T) 

RERL*6 C(3),G(3) 
RERL*8 TTT( 3 > 
REAL*6 R O ( 3 )  
COtl~ON/DEUICE/N1N,NOUTl,tiOUT2JlNOPT 

InPLlClT REAL*8(A-H,O-Z) 

C URITE(NOUT2,lO) 
c10 FORHAT(lXJ' I N  GFC2') 
C C: TRANSFORIl OF (ITH DENSITY*(BIG C FOR I-TEST PARTICLE)) 
C G: TRRNSFORn OF (iTH OEHSITY*(BlG GAI I I IA  FOR I-TEST PARTICLE)) 
C THE ORDER OF CONUOLUTION USED IS: 
C TOTRL CORRELATIONS FOR BATH*DIRECT CORRELATIONS FOR TEST PARTICLE. 
C TOTAL CORRELATION FUNCTIONS FOR INTERRCTIONS IN THE BATH: 

HlI=TTT(l)*RO(l) 
H22-TTT (2 )*RO( 2) 
HlZ=TTT(3)*R0(3) 
DET~((l.ODO+H11)*(1,ODO+H22))-(Hl2*Hl2*ROT) 

CZC=C( 2) 
ClC=C(3> 
TRHl C-Cl C+(Hll *C1 C)+(H12*C2C) 
TRH2C=CZC+(H12*ClC*ROT)+(H22*CZC) 

G( 1 bo. OD0 

C DIRECT CORRELATION FUNCTIONS FOR INTERACTIONS UlTH 
C THE TEST PRRTICLE: 

C 

C SPECIES 2-TEST PARTICLE INTERACTiONS: 
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G ( ~ ) P T R H ~ C * ( H ~ ~ + ( H I ~ * H ~ ~ ) - ( H ~ ~ * H ~ ~ * R O T ) )  
G(2)=G(2 )+(TRH 1 C*Hl2*ROT) 
G (2 )=G (2  )/DET 

C SPECIES 1-TEST PARTICLE INTERACTIONS: 
G(3)~TRH1C*(H11+(Hll*H22)-(H12*H12*ROT)) 
G(3)=G(  3)+(TRH2C*H12) 
G( 3 )=G(3)/DET 
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE CERPOT 
PURPOSE-CALCULATES THE CHEtl lCAL POTENTIAL OF THE SOLUTE. 
THE SOLUTE CHEtl lCAL POTENTIAL I S  CALULRTED USING THE tlETHOD 
OF COUPLING. CHEI ICAL  POTENTIALS ARE Dlt lENSIONLESS, 
HAVING BEEN DIU IDED BY KT. 

DATE 6/1s/a7 
REU I SED 

9 / 2 0 / 8 7 -  TO USE DISTRIBUTION FUNCTIONS FROn AN 

6/4/88 - TO USE A UCA D l U l S l O N  OF THE P A I R  
I NTEGRAL EQURT I ON CALCULRT I ON (HHSR) . 
POTENTIAL. 

PARTICLE D ISTRIBUTION FUNCTIOHS PER C A L C .  
OF BATH HOLECULE DISTRIBUTION FUNCTIONS. 

"CEHREP" TO CALC. THE REPULSIVE 
CONTRIBUTION TO THE CHEtl lCAL POTENTIAL.  

1 0 / 2 2 / 8 8 -  TO ALLOU t lULT lPLE CALCULATIONS OF TEST 

3 / 1 4 / 8 9 -  TO CALL NEU PARTICLE SCALING SUBROUTINE 

CODED BY DAUID PFUND 

T H I S  ROUTINE CALLS: SUBROUTINE PERT- CALCULATES THE PERTURBING 
POTENTIAL D IU IDED BY KT AND I T S  
DERIUATIUE. 
SUBROUTINE INSIDE-  CALCULATES THE INTEGRAL 
OVER UOLUtlE OF THE PRODUCT 
PERTURBING POTENTIALS AND 
P A I R  CORRELRTION FUNCTIONS 
PART I CLE. 
SUBROUTINE TAIL-CRLCULATES 
CORRECTION TO THE CHEnlCRL 
THE DILUTE SOLUTE. 

CONTRIBUTION TO THE SOLUTE 
POTENTIAL. 

FUNCTION YUIDL-CALCULATES 

OF THE 
HE ESTl t lATED 
FOR THE TEST 

THE T A I L  
POTENTIAL OF 

HE IDEAL GAS 
CHEtl I CAL 

SUBROUTINE CEtlREP- CALCULATES THE UORK 
CHANGE I N  INFLATING AN INSERTED HARD 
SPHERE FROtl A RADIUS OF ZERO TO A 
A RADIUS OF THE EFFECTIUE DIAt lETER/2.  
FUNCTION YUCORE- CALCULATES THE HARD CORE 
CONTRIBUTION TO THE SOLUTE CHEt l lCAL 
POTENTIAL. 
FUNCTION INTGRD - COtlPUTES THE FREE ENERGY 
CHANGE FOR SOFTENING THE INSERTED HARD 
SPHERE INTO A UCA PARTICLE.  c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CE~POT(NBIG,Nt l ,DR, IPOT,KEPSI ,SOFTD,EPSI ,  
f RSOFTD,TEnP,TRED,RO,Xl,RLPHA, 
f PRESSU,CORFl,CORF2,tlU, 
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TUIJ, f lUCU,PSI,  
G,PflIR,DIRECT,TOTAL,BRTH,flSlGtlR, 
YU,YUSTR,YUHS,INTl,IHT2,El,E2,SGCRA,SGCAB, 

$ ERROR) 
I t l P L l C l T  REAL*8(R-H,O-Z) 
REf lL*8 R O ( 3 )  
RERL*8 AS 1 Gt lA(3 )  ,KEPSI (3 )  
REAL*8 SIGtIR(3),EPSI (3) 
REflL*8 SOFTD(3) 
REAL*8 RSOFTD(3) 
REAL*8 P S I  ( 2 0 4 8 , 3 ) ,  UPR I f lE (2048 ,3 )  
RERL*8 TU I J ( 2 0 4 8 , 3 ) ,  RUCO (2048 ,3 )  
REflL*8 G(2048,3) ,  PA I R ( 2 0 4 8 , 3 ) ,  D 1 RECT(2046,3)  
REAL*B TOTRL(2048,3)  ,BATH(2048,3) 
RERL*8 PA I RO( 2048,3),  BATH0 ( 2 0 4 8 , 3  ) 
RERL*8 P A I R T P ( 2 0 4 8 , 3 )  
REAL*8 BATHTP(2048,3)  
REAL*8 D I RTP(2048,3) ,  0 I R 0 ( 2 0 $ 8 , 3 )  
REAL*8 TEtlP,TRED 
RERL*8 RLPHR 
RERL*8 CORF1,CORFZ 
REflL*8 YU,YUHS,YUSTR 
REAL*8 RNUtl,DELTR,LAtlBDR,INTGRL,PANEL,ROtlBRG,ROFF 
REAL*8 flu 
REflL*8 TPARTS 
REAL*8 PRESSU 
REAL*8 X 1  
REAL*8 GCAA,GCAB 
REflL*8 I N T l , I H T 2  
RERL*8 E l , E 2  
REAL*8 DR 
INTEGER NBIG,NH 
INTEGER IPOT, JP 
INTEGER NUtlPRN,ICOUNT,ERROR 
INTEGER SUAP,OFF 
INTEGER IFUNC 
COnfiON/LUDOL/PI 
COntlON/COHU/CONUOI,CONUN~ 
COtltlON/DEUICE/NIH,NOUTl,~OUT2,lNOPT 
DRTA NUtlPAN/4/ 
UR I fE(NOUT2, *)NB 1 G ,  Nfl, DR, I POT 
URlTE(NOUT2,*)KEPSI ( 1  ),KEPSI (21,KEPSI (3) 
UR I TE(NOUT2, *)SOFTD( 1 ) , SOFTD(2), SOFTD (3) 

UR I TE (NOUT2, *) RSOFTD ( 1 1, RSOFTD (21, RSOFTD( 3) 
UR I TE(NOUT2, *)TEtlP, TRED 
UR I TE(NOUT2, * )RO( 1 ) , R0(2),  RU(3) 

UR I TE( NOUT2, *)AS I Gt lA (  1 1, AS I Gl lR(2),  RS I Gt lA(3)  
YU-0.ODO 
YUHS-O.OD0 
YUSTR-O.ODO 

C 
C 
C 
C URlTE(NOUT2,*)EPSI ( l ) , E P S I ( Z ) , E P S I ( S )  
C 
C 
C 
C URITE(NOUT2,*)Xl,JP,ALPNR,PRESSU,CORFl,CORF2,l lU 
C 

C NUIIPAN- NUHBER OF INTEGRATION PANELS FOR THE INTEGRFIT 

C NBlG- NUHBER OF IlESH POINTS USED TO CALCULATE THE RAD 
C COUPLING PARRtlETER FOR THE UCR ATTRACTIVE PRRT, 

C FUNCTIONS. 

C STEP THE COUPLING, PRRAtIETER BRCKUARDS BEGlNlNG U l T H  R 
RNUfl-NUtlPAN 

ON OUER THE 

AL DISTRIBUTION 

FULLY CHRRGED 
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C TEST PARTICLE ( IDENTICAL TO A BATH HOLECULE). 
DELTA=-l.ODO/RNUtl 
INTGRL=O.ODO 
PANEL=O.ODO 

C UNITS:  TEtlP, KEPSI -  KELUIN.  
C ASlGnR (HARD D I R . ) ,  SOFTD (SOFT D I R . ) -  RNGSTROIIS 
C P S I  (UCA ATTRACTIVE POTENTIAL/KT)- DIHENSIONLESS. 
C DR ( (STEP S I Z E  FOR INNER I N T E G R A L ) / ' l l '  SOFT D I A . ) -  DIHENSIONLESS 
C 
C CRLCULATE REDUCED EFFECTIUE HS SIZES FROtl ABSOLUTE UALUES, 

S I GHA( 1 )=AS I G t l A (  1 )/SOFTD( 1 ) 
SlGHA(2)aASlGHA(2)/SOFTD( 1 )  
S I GHA( 3)=AS I G f l A ( 3 )  /SOFTD ( 1 

LAHBDA=l . OD0 
C I N I T I A L  VALUE OF THE COUPLING PARRHETER i s  ONE 

C FOR R COUPLING PARRVETER OF ZERO THE POTENTIRL TO BE USED IS 
C UCA REPLUS I WE PART, "LAt lBDl  "=>THE COUPL I NG PARAtlETER . \ 

J P = l  
CONUDI=0.000001DO 
CONUNR-0.0001DO 
RSTAR-RO( 1 )+RO(2) 
CALL 

INSIDE(ALPHA,HBIG,NH,DR,IPOT,RSOFTD,EPSI,RO,TRED,LAtlBDR,TUIJ, 
$AUCO,PSI,G,DIRECT,INTGRL,ERROR,SIG~A,GCAA,GCAB,PAlRTP, 
$BATHTP,DIRTP,JP) 

C WRITE(HOUTZ,*)LAnBDA,lNTGRL 
IF(ERROR.EQ.0) THEN 

I COUNTS1 
LRHBDR=LAtlBDA+DELTA 

C T H I S  SUBROUTINE ALSO TAKES ONE ROHBERG STEP FOR EXTRA ACCURACY. 
C GET READY: 

ROtlBRG=lNTGRL 
SUAP-1 

100 CONT 1 NUE 
C F I N D  THE INSIDE INTEGRAL(0UER UOLUHE) FOR COUPLING PARAtlETERS 
C BETUEEN ZERO AND ONE. 

INSIDE(RLPHA,HBIG,NH,DR,IPOT,RSOFTD,EP5l,RO,TRED,LAHBDR,TUlJ, 
CALL 

SAUCO,PSI,G,DIRECT,PANEL,ERROR,SlGHA,GCAA,GCAB,PAlRTP, 
$BATHTP,DIRTP,JP) 

C URITE(NOUT2,*)LRHBDA,PANEL 

C INTEGRRTIOH OVER COUPLING PRRAHETER I S  DONE U l T H  THE TRAPRZOIDAL 
C RULE. 

IF(ERROR.EQ.0) THEN 

I NTGRL= I NTGRL+ ( 2  e ODO*PANEL 
LAHBDA=LAHBDA+DELTA 
ICOUNT=ICOUNT+l 

OFF=SUAP+l 
ROFF-OFF 
ROnBRG=ROllBRG+(ROFF*PRNEL) 

SUAP--l*SUflP 

C SRUE UP EVERY OTHER PANEL FOR THE ROtlBERG EXTRAPOLATION: 

C URITE(NOUT2,*)LAHBDA,INTGRL,ROtl6RG 

END I F  
C BE CAREFULL, THING DOESN'T WORK IF  NUHPAN=l (OR 2 WITH ROHBERG). 

IF(  ( ICOUNT .LE. (NUtlPAH-1)) .AND I (ERROR. EQ I 0)) 
$GO TO 100 

I F(ERR0R. EO. 0) THEN 



L 

C CALCULnTE THE INSJDE INTEGRRL FOR THE FULLY DECOUPLED TEST PRRTICLE 
C UHICH IS UCR REPULSIVE 
C (THE FULLY COUPLED TEST PARTICLE UAS LENNRRD-JONES). 

CALL 
INSIDE(ALPHA,NBIG,Nfl,DR,IPOT,RSOFTD,EPSI,RO,TRE~,~~HBDA,TUIJ, 

$AUCO,PSI,G,DIRECT,PRNEL,ERROR,SlGflA,GCAR,GCAB,PAlRTP, 
SBATHTP, D I RTP, JP) 

C UR I TE(NOUT2, *)LAflBDA,PANEL 
IF(ERROR.EQ.0) THEN 

INTGRL=INTGRL+PANEL 
ROfl0RG-ROflBRG+PflHEL 

INTGRL~(INTGRL*DRBS(D€LTR))/2.0~0 
ROflBRG-(ROHBRG*DABS(DELTA)) 

C URITE(NOUT2,*lLRtlBDA,INTGRL,ROllBRG 

C URiTE~NOUT2,*~LA~0DA,ltiT~Rl,ROnBRG 

C ORDER ACCURACY!: 

C URITE(NOUT2,*)LAtlBDA,INTGRL 
C NOTE: I'fl ASSUHING THAT YU HRS BEEN DIUIDED BY KT RLRERDY, THAT 
C IS THAT "PSI" INCLUDED A FACTOR OF l/KT. 
C 
C CALCULATE THE TRIL CORRECTION TO THE COUPLING INTEGRAL. INTEGRRTE 
C OVER THE RANGE UHERE THE TEST PRRTICE R.D.F. I S  RPPROXIHATELY 1.0. 

C ABSOLUTE RATHER THAN REDUCED TEflPERflTURE IS USED IN THIS CRLL TO 

C nRKE THE ROHBERG EXTRAPOLATION TO THE LltllT- GET FOURTH 

INTGRL~INTGRL+(( 1NTGRL-ROHBRG)/3.ODO> 

I F UNCa2 

C SUBROUTINE TAIL, ALSO ALL PNiflS HRUE UNITS I H  THIS CRLL. 
CRLL TAIL(IFUNC,DR,IPOT,TEflP,KEPSI,SOFTD, 

SRO, TPRRTS, ERROR) 
YU=INTGRL+TPRRTS 

C CALCULATE THE IDEAL GAS CONTRIBUTION TO THE CHEtllCRL POTENT 
C OlUlDED BY KT. 

C URITE(NOUT2,*)YUSTR 
C CALCULATE THE HARD CORE CONTRIBUTION TO THE SOLUTE CHEnlCAL 
C DlUlDED BY KT, 

YUSTR-YU I DL( I POT, HU, TEflP, RO, SOFTD) 

CONUD1=0.00001DO 
CONUNR=O.O0001DO 

AL 

POTENT I FIL 

CRLL CEHREP(RLPHR,NBIG,NH,DR,IPOT,RSOFTD,EPSI, 
$SOFTD,ASlGHA,RO,TRED,TU1J,RUCO,PSI,G,D1RECT,TOTAL,CORFl,~O~F2, 
$PRIRO,BATHO,D1RO,SGCAA,SGCAB,PAtiEL,ERROR) 

I F(ERROR, EQ . 0 )  THEN 

C YU- THE CHEtllCAL POTENTIAL OF THE SOLUTE DlUlDED BY KT. 

C COtlPUfE THE FREE ENERGY DIFFERENCE BETUEEN THE PROCESS OF INSERTING 
C A HRRD SPHERE AND THE PROCESS OF INSERTltiG FI UCR (SOFTLY) REPLUSIUE 
C PARTICLE (=INTI+INTZ). INTl IS THE CONTRIBUTION TO THE WORK OF 
C SOFTENING/KT DUE TO INTERRCTIONS BETUEEN SPECIES 1 IN THE BATH RND 
C THE TEST PARTlCLE. 
C PARTICLE INTERACTIONS. 
C PAIRTP: PAIR CORRELRTIOH FUNCTIONS ABOUT THE UCR REPULSIUE TEST 
C PRRTICLE. 
C P A l R O :  PRIR CORRELATION FUNCTIONS ABOUT THE EFFECTIUE HARD SPHERE. 

YUHS=YUCOR(IPOT,PRNEL,YUSTR,RO,RSIGnA,SOFTD~ 

YU=YU+YUHS 

IHT2 IS THE CONTRIBUTION DUE TO SPECIES 2 - TEST 

CRLL 1NTGRD(HBlG,lPOT,DR,RO,PRIRTP,PAlRO,BATHTP, 
s BATHO,D1RTP,DlRO,INTl,lNT2,El,E2, 
$ SIGtlR) 

C URlTE(NOUT2,190)CORFl,CORF2 
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FORVAT(/lX, 'FOR CORFl= ' ,D13.6, ' CORF2= ' ,D13.6) 
URITE(NOUT2,192)YU,INTl,INT2 

FORIIAT(3X, 'tlUO= ' ,013 .6 , '  INT1=  ' ,D13 ,6 , '  INT2=  ' , D 1 3 . 6 )  
URITE(NOUT2,194)YU+INTl+lNT2 
FORIIAT(3X , ' TOTAL= ' , D13 .6 )  
YU=YU+INTl+INT2 

END I F  
END IF  

END I F  
END I F  
URITE(NOUT2,200)ERROR 
FORIIRT(/ lX, 'CEIIPOT f l l S S l O N  ACCOIIPLISHED. ERROR= ' , I 3 1  
RETURN 
END 

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C SUBROUTINE CEIIREP 
C PURPOSE-CAtCULATES THE UORK OF INFLFtTlNG AN INSERTED HARD 
C SPHERE FROfl A RADIUS OF ZERO TO A RADIUS EQUAL TO THE 
C EFFECTIUE DIAf lETER/2.  
C 
C DATE 3 / 1 4 / 8 9  
C CODED BY DAVID PFUND 
C 
C T H I S  ROUTINE CALLS: SUBROUTINE INSIDE-  CALCULATES THE INTEGRAL 
C OUER UOLUflE OF THE PRODUCT OF THE 
C PERTURBING POTENTIALS AND THE ESTl f lATED 
C P A I R  CORRELATION FUNCTIONS FOR THE TEST 
C PART I CLE. 
C FUNCTION X13- TO COIIPUTE THE 
C PACKING FRACTION UHICM 
C APPEARS I N  THE SPT. 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE CEtlREP(RLPHA,NBIG,NII,DR,IPOT,RSOFTD,EPSI, 
$SOFTD,ASIG~A,RO,TRED,TUlJJAUCO,PSI ,G,DIRECT,TOTAL~CORFl ,CORF2,  
$PAIRO,BATHO,DIRO,SGCAA,SGCAB,INTGRL,ERROR) 

I I I P L l C l T  REAL*B(A-H,O-Z) 
REAL*8 R O ( 3 )  
RERLf8 RHO(3) 
REfiL*8 AS I G I I A ( 3 )  
REAL*8 SIGf lA(3) ,EPSI  (3 )  
REAL*8 SOFTD(3) 
REAL*8 S I G ( 3 )  
REAL*8 RSOFTD(3) 
REAL*8 PS 1 (2048,3)  
REAL*€! TU1 J(2018,3),AUC0(2048,3) 
REAL*8 6 ( 2 0 4 8 , 3 )  ,PA IR(2048,3) ,  D l  RECT(2048 , 3) 
REAL*8 TOTAL(2048,3) ,BATH(2048,3) 
REAL18 PAIR0(2048,3),BATHO(2048,3) 
REAL*8 PA lRTP(2048 ,3 )  
REAL*8 BATHTP(2018,3) 
REAL*8 D I RTP(2048  , 3) ,D I R0(2048,3)  
RERL*8 TRED 
REAL*8 ALPHA 
REAL*8 CORF1,CORFZ 
REAL*8 INTGRL,ICRUDE 
REAL*8 GCRA, GCAB 
REAL*8 DR 
REAL*8 LAIIBDA 
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INTEGER NBIG,NH 
INTEGER IPOT,JP 
INTEGER NUtlPRN,ICOUNT,ERROR 
INTEGER SWAP,OFF 
INTEGER COUNT 
COHtlON/LUDOL/PI 
COHHON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
DATA NSTEP/2/ 

C URITE(NOUT2,*)NBIG,HH,DR,IPOT 
C URI TE(NOUT2, *)SOFTD( 1 ) ,SOFTD(2),SOFTD(3) 
I: UR I TE(NOUT2, *)EPS I (1 ), EPS I(2), EPS I (3) 
C URITE(NOUT2,*)RSOFTD(l),RSOFTD(2),RSOFTD(3) 
C URITE(NOUT2,*)TRED 
C 
C URITE(NOUT2,*)JP,RLPHA,CORFl ,CORF2 
C 

UR I TE(tiOUT2, * )RO( 1 ) , R0(2), RO ( 3 )  

URITE( NOUT2, * )AS I GHR( 1 ) ,AS I GHR(2), AS I GHA(3) 
I NTGRLrO. OD0 
SI GtlA( 1 )=AS1 GMR( 1 )/SOFTD( 1 )  
S I GflFI(2)=AS I GHA(2) /SOFTD( 1 
SlGnA(3)~ASlGnA(3>/SOFTD(l) 
JP=2 

C DAA = DISTANCE OF CLOSEST RPPROACH OF CENTERS BETUEEN THE TEST 
C PARTICLE AND LIKE HOLECULES IN THE BATH. 
C DAB - UNLIKE DISTANCE OF CLOSEST APPROACH. 
C SPECIES 2 I S  TEST PARTICLE. 

RRF-S1GtIfl(2)/2,0DO 
DAA=SIGHA(2) 
RHOA=RO(2) 
RHOB-RO( 1 )  

C SPECIES 1 I S  TEST PARTICLE. 
RAF=S 1 G I I A (  1 )/2.000 
DRR=S I GHA( 1 1 
RHOR-RO(1) 
RHOB=RO( 2) 

IF(IPOT.EQ.0) THEN 

ELSE 

END IF 
DAB=S 1 GHFl(3) 

C INSERTED HARD SPHERE I S  FULL SIZED: 
LARBDA=-l, 000, 
CALL 

INSIDE(ALPHA,HBIG,H~,DR,IPOT,RSOFTD,EPSI,RO,TRED,LAHBDA,TUlJ, 
fAUCO,PSI ,G,D1RECTJPANEl ,ERRO~,SlG~A,SGC~R,SGCAB,PAlRO,  
SBATHO, D 1 RO, JP) 

UR I TE(HOUT2, *IS I GIIR( 1 ) ,S IGIIA(2>, SI GHR(3) 
C URJTE(NOUT2,*)SGCAAJSGCAB 

IF(ERROR.EQ.0) THEN 
Fl=4.ODO*P I *( (DAA*DRA*RHOA*SGCAfl)+(DRB*DflB*RHOB*SGCflB) 1 
UR I TE(NOUT2, *) F 1 
F 1 NT-F 1 

C START PARTICLE SCALING. REDUCE DISTANCES OF CLOSEST APPROACH BY 
C NSTEP*DR. USE OF NSTEPz2 GIVES THE NUHERICAL INTEGRAL TO RT UORST 
C FOUR DECltlfll PLACES OF ACCURACY. 

C 

R 1 =DAA-RAF 

IF(tPOT.EQ.0) THEN 
SIG(1 )=SIGHR(l) 

DAA=SIG(2) 
S I G (216 1 GHA(2) -(DR*NSTEP) 
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ELSE 
SI G(2)=S I GtlA(2) 

DRA=SIG( l )  
SI G( 1 )IS I GtlA( 1 )-(DR*NSTEP) 

END I F  

DRB=SIG(3) 
COUNT=O 

I F(DAR. L E .  ( 1 I 400*RAF) ) THEN 

END I F  

S I G ( 3  )pS I GIIA( 3)- (DR'NSTEP 1 

100 CONTINUE 

JP=2 

CALL 
I NS I DE(ALPHt3, NB I G, Ntl,DR, I POT, RSOFTD, EPS I ,  RO, TRED, LAtlBDA, TU I J, 

$AUCO,PSI,G,DIRECT,PANEL,ERROR,SIG,GCAA,GCAB,PAIRTP, 
SBRTHTP, D I R I P ,  JP)  

URITE(NOUT2,*)SIG(l  ) ,SIG(Z),S IG(3) 

IF(ERROR.EQ.0) THEN 

C URITE(NOUTZ,*)FO 

C URITE(NOUT2,*)GCAA,GCAB 

F O = 4 , 0 D O * P I * ( ( D R A * D A R * R H O A * G C ~ A ) + ( D A B * D A B * R H O ~ * G C A B ~ ~ ,  

ROoDRA-RAF 
I NTGRLs I NTGRL+( (F 1 +FO)*(Rl - R 0 ) / 2 . 0 0 0 )  
COUNT=COUNT+l 
F2=F1 
R2=R 1 
F 1  =FO 
R1 -RO 

C KEEP REDUCING THE DlAt lETERS U N T I L  THE TEST PARTICLE I S  A HARD 
C POIHT (OCCURS WHEN THE L I K E  DISTANCE OF CLOSEST APPROACH = RAF) .  

I F ( I P O T . E Q . 0 )  THEN 
S I G ( l ) = S I G t l A ( l )  

DRA=SIG(2) 

S IG(2 )=S IGt lA (2 )  

DAA=SIG( l )  

SlG(2)=SlG(2)-(DR*NSTEP) 

ELSE 

S 1 G( 1 )IS 1 G (  1 )-(DR*HSTEP) 

END IF 

D A B 4  I G(3 1 
S I G(3 )IS I G(3 )-(DR*NSTEP) 

END I F  
IF( (DAR.GT. ( l  .0000001DO*RAF)) .RND.(ERROR,EQ,O)) GO TO 100 
IF(ERROR.EQ.0) THEN 

C COtlPUTE F I N A L  FUNCTION VALUE FROfl THE SPT FORRULA FOR SPHERE SIZE 
C OF ZERO. 

I F( I POT I EQ 0) THEN 
SIG( 1 ) -S IG t lA ( l )  

C NOTE: IF  THE TEST PARTICLE DlAt lETERS DON'T F A L L  ON THE nESH POINTS 
THE 
C THING UON'T UORK (CONTACT tlflYER FACTORS AND RDF'S WILL BE BAD), 
C CAREFULL ! ! !  

. 

S l G ( 2 > ~ S l G n A ( 2 ) / 2 , O D O  
DAA=S I G (2) 
S lG(3 )=S lGnA( l ) / 2 .ODO 

S IG(2 )=S lGt lA (2 )  
S lG( l )=S lG t lA (1 ) /2 .ODO 

ELSE 
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DRR=SIG(l) 
S I G (31.15 I GflR(2) /2.ODO 

END IF 
D A B 4  1 G( 3) 

CALL 
INS I DE( ALPHA, NB 1 G Nt l ,  DR, I POT, RSOFTD, EPS 1 RO, TRED, LRnBOR, TU I J, 

$AUCO,PSl,G,DIRECT,PANEL,ERROR,SIG,GCRR,GCRB,P~IRTP, 
$BATHTP,DIRTP,JP) 
URITE(NOUT2, *)SI G (  11, SIG(21, SIG(3) 
URITE(HOUT2,*)GCRA,GCAB 

IF(ERROR.EQ.0) THEN 
FO~t.ODO*PI*((DRA*DAR*RHOA*GCRA)+(DAB*DAB*RHOB*G~~B)) 

XCOUNT4OUNT 
URITEfNOUT2,*)COUNT 
XCOUNT-XCOUNT+XCOUNT 
WRITE(NOUT2,*)1CRUDE,INTGRL 

ICRUDE=(FINT+Fl )*(RAF-R1)/2.000 

OELI=INTGRL-ICRUDE 
INTGRL*INTGRL+(DELl/((XCOUNT)-l .ODO>) 
URITE(HOUTZ,*) INTGRL 
P I ECE=( (F 1 +F O)*(  R1/2.000) 1 
UR I TE (NOUTZ, *)P I ECE 
F I X-(F2/R2) - ( F  1 /R1) - (FO/R2 ) + (FO/R 1 ) 
F I XpF 1 X/(R2-R 1 1 
P I ECE-P I ECE-(F I X*R1 *R1 *R 1 /3.ODO) 
URITE(NOUT2,*)PIECE 
INTGAL=INTGRL+PIECE 

END IF 
END IF 

END IF 
URITE(fiOUT2,200)ERROR 

C 200 FORURT(/lX,'CEUREP nlSSlON RCCOI'IPLISHED. ERROR= ' , I 3 1  
RETURN 
END 

C FUNCTION YUCOR 

C SOLUTE CHEMICAL POTENTIRL. THE PROCEDURE USES THE 
C EXPRESSIONS FROtl  SCALED PRRTICLE THEORY. 
C 
C DATE 6/17/87 
C REUISED 3/14/88 TO USE THE CONTRCT URLUES OF THE CAUITY 
C RDF'S OBTRINED FROtl THE SOLUTION OF INTEGRRL 
C EQUATIONS FOR THE TEST PARTICLE TO IUPROUE 
C THE ESTltlATE OF THE UORK OF CAUITY FORtlflTlON. 
C 3/14/89 TO DUtlP SPT EXCEPT FOR UORK OF INSERTING A 
C POiHT PRRTICLE. 
C CODED BV DAUID PFUND 
C 
C THIS ROUTINE CRLLS: FUNCTION X13- CRLCULRTES THE PACKING 
C FRACT I OH. c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C PURPOSE- CRLCULRTES THE HRRD SPHERE CONTRI8UTION TO THE 

RERL FUNCTION YUCOR(IPOT,PflNEL,YUSTR,RO,ASiGflR,SOFTD) 

RERL*B ASICltlR(3) 
REflL*8 SOFTD(3) 
AEAL*8 PRESSU 
RERL*8 VUSTR 

IUPLlClT RERL*B(R-H,O-Z) 
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REAL*8 R O ( 3 )  
REAL*8 RHO(3) 
REAL*8 Y 3  
REAL*8 UORK 
REAL*8 HARD3,SOFT3 
COtl~ON/DEUICE/NIN,NOUTl,NOUT2,1NOPT 

SOFTJ=SOFTD( 1 )*SOFTD( 1 )*SOFTD( 1 ) 
HARD3=ASlGIIA(l>*ASlG~A(l)*ASIGtlA(l) 
RHO(1 )=R0(1 )*HRRD3/SOFT3 
RH0(2>+?0(2)*HARD3/SOFT3 
RHO(3)1RO(3)*HARD3/SO~T3 
Y3=X I3(RHO, AS 1 GtIA) 

C URITE(NOUT2,*)YUSTR 

C WORK TO FORn A CRUITY OF DlAt lETER EQUAL TO THE SOLUTE DIAtlETER, 
C PLUS THE L IBERATION ENERGY EQUALS HARD SPHERE SOLUTE CHEIIICRL 
C POTENTIAL. 
C URITE(NOUT2,*)YUSTR,PRES,UORK 

UORKaPANEL-DLOG( 1 OOO-Y3) 
URITE(NOUT2,*)Y3,PANEL,UORK 
YUCOR=YUSTR+UORK 
RETURN 
END c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C SUBROUTINE TRAP 
C PURPOSE-ESTltlATES THE DIFFERENCE BETUEEN THE UCA REFERENCE 
C CONTRIBUTION TO THE CHEtl lCAL POTENTIAL AND THE 
C UORK OF INSERTING R HARD SPHERE. THE PROCEDURE 
C INTEGRATES FROtl ZERO TO THE tlESH POINT LEFT OF THE 
C DIRIIETER, THEN FROtl THE tlESH PT.  TO THE RIGHT OF 
C THE DlAt lETER TO I N F I N I T Y .  I N  THE GAP SURROUNDING 
C THE OlSCONTlHUlTY POLYNOHIALS ARE EXTRAPOLATED TO 
C CONTRCT ON EACH SIDE, INTEGRATED, THEN ADDED TO 
C THE RESULT. THE FUNCTIONS BEING INTEGRATED ARE 
C S l t l l L A R  TO THOSE OF LADO. 
C 
C DATE 6/7/87 
C REUISED 6 / 2 9 / 8 9  ADDED A SECOND ORDER EXTRAPOLRTION TO CONTRCT. 
C CORRECTED AN ERROR I N  THE COflPUTRTlON OF "K". 
C CODED BY DRUID PFUND 
C 
C T H I S  ROUTINE CALLS: - 
c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

SUBROUTINE TRAP(NBIG,DR,FUNCT,DlA,INTGRL) 
I t lPL I C  I T  REAL*8(R-H, 0-2) 
REAL*8 DR, D I A' 
REAL*8 FUNCT(NBIG) 
REAL*8 INTGRL 
REAL*8 XK,ROFF,ROtlBRG,SRUl,SAU2 
REAL*8 RK,RKl,REST,THING 
I NTEGER I ,  NB I G 
INTEGER K,SUAP,OFF 
COtItION/DEUICE/NIN,NOUTl,NOUT2,1NOPT 
INTGRL=O.ODO 
XK=(DIA+0,000000001DO)/DR 
K=XK 

C URITE(NOUTZ,*)K 
C U l L L  BE USING TRAPRZOIDAL RULE PLUS ROtlBERG EXTRAPOLATION. 
C INTEGRRTE LEFT OF CONTRCT POINT.  
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C IF THE DIRHETER LIES PRECISELY ON A nESH POINT THE GIUEN 
C UALUE OF FUNCT(K) IS ASSUnED TO BE THAT FROtl THE RIGHT 
C BRANCH OF THE FUNCTION. 

SAU 1 =FUNCT( 1 
RORBRG=FUNCT( 1 )  
SURPE- 1 
DO 100 1 ~ 2 , K - 2  

SAU 1 =SAU 1 + (2.ODO*FUNCT ( I ) ) 
OFF=SURP+l 
ROFFmOFF 
ROflBRG=ROIIBRG+(ROFF*FUNCT(I)) 
SWAP~-l*SURP 

100 CONTINUE 
SAUl=SRUl+FUNCT(K-l) 
ROflBRG4?OHBRG+FUNCT(K-l) 
SRUl =SRUl *DR/2,ODO 
ROflBRG*ROnBRG*DR 

C URITE(HOUT2,*)SRUl ,RORBRG 

C URITE(NOUTZ,*)SAUl 
C 

SAUl~SRUl+((SR~l-ROtl3RG)/3.ODO) 

C INTEGRATE RIGHT OF CONTRCT POINT, 
SRU2=FUNCT(K+l) 
ROtlBRG=FUNCT(K+l) 
SWAP*-l 
DO 200 I=K+Z,NBIG-l 

SRU2-SAU2+(2.0DO*FUHCT(l)) 
OFF-SUAP+l 
ROFFeOFF 

SUAP=-1 *SUAP 
RO~BRG=RO~BRG+(ROFF*FUNCT(I)) 

200 CONTINUE 
SRUZ=SAU2+FUNCT(NBIG) 
ROtll3RG=ROflBRG+FUHCT(NB I G) 
SAU2=SRU2*DR/2,ODO 
ROflBRG=ROtlSRG*DR 

C URITE(NOUT2,*)SRU2,ROnBRG 

C URlTE(NOUTZ,*)SAU2 
C ESTlnATE INTEGRAL FROtl ONE HESH POINT LEFT OF 
C COHTACT TO OHE tlESH POlHT RIGHT OF CONTRCT. 

XK=K 

RKl=(XK+l.ODO)*DR 
C URITE(NOUT2,*)XK,RK,RKl 

SAU2*SRU2+ ( (SAU2-ROflBRG) /3. ODO) 

RK=(XK-I.ODO)*DR 

REST-(FUNCT(K-1 )*(DJR-RK>>-(FUNCT(K+l )*(DIA-RKl)) 
THING~(DIA*DIR)-(2.0DO*DIR*RK)+(RK*RK) 
REST=REST+(((FUNCT(K-l >-FUNCT(K-2>)/(2,ODO*DR))*THING) 
TH I NG*(D I A*D 1 A)-(2.ODO*D I A*RKl )+(RKl *RKl ) 
RESTIREST-( ((FlJNCT(K+2)-FUNCT(K+l) ) / (2  .ODO*OR) )*TH I NG) 

THING~(DlA-RK)*(DlA-RK)*(DlR-RK)/(DR*DR*DR) 
REST2=(FUNCT(K-1)-(2.0DO*FUHCT(K-2) )+FUNCT(K-3))*(THI NG*DR/6,ODO> 

TH I NGs(D I A-RK1 ) * (Dl A-RKl )*(D I A-RKl )/(DR*DR*DR) 
REST2=(FUNCT(K+l>- (Z.ODO*FUNCT (K+2) )+FUNCT (K+3) ) * (TH I NG*DR/6,ODO 1 
REST4EST-REST2 

C ADD ON QURDRATIC TERRS: 

REST=REST+REST2 

C URITE(NOUT2,*)REST 
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