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ABSTRACT 

A classical redundancy resolution scheme for an rn-degree of freedom robot 
involves the numerical or symbolic computation of the Moore-Penrose pseudo- 
inverse of the Jacobian matrix, which in turn leads to a least norm solution for 
the joint velocities (see for example [l]). Since the Jacobian matrix may be ill- 
conditioned, the computation of the inverse may often turn out to be lengthy and/or 
inaccurate. In this paper, we propose an alternative method to find this least norm 
solution. Namely we modify the original underdetermined problem by transforming 
it into a set of determined new problems. We compute in parallel the solutions ‘of 
these problems and find their least norm simplex combination. We prove that if the 
dimension of the task-space is n, we need only ( m  - n + 1) such solutions. We also 
show that the approach can take into account obstacle avoidance and maximum of 
manipulability or any other type of analytical criterion. We apply the method to a 
planar redundant arm. 
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1. INTRODUCTION 

We consider an m degrees of freedom robot. The state it occupies is determined 
by an articular position vector q of R", but usually the specification of a task takes 
place in mother space R" called operational space or task-space (for most industrial 
robots n = 6). It is easy to express the operational position X analytically as a 
function of the articular position q: 

X = F(q);  q E R";X E R". 
However, controlling the kinematics of a robot requires to find the inveke 

relationship: 

q = G(X);g E €2"; X E R". 

In most of the cases, it is impossible to obtain this relationship analytically 
and globally. Usually, the problem is solved by linearizing the operator F(q)  in 
the neighborhood of the point q. A small variation A X ,  called task-vector, of the 
end-effector position is expressed in the operational space (or task space) as: 

AX = J(q )Aq;  Aq E R"; A X  E R". (1) 
where J is the ( n  x m) Jacobian matrix and Aq is the corresponding small variation 
of the articular position. We assume that J has rank n; for a fixed q and for a 
specified A X ,  the set of solutions is an affine space of dimension m - 72, which we 
shall denote by E .  

Controlling the kinematics of the robot is equivalent to solve periodically this 
system, i.e. to determine a suitable control vector Aq as a function of AX, the 
task-vector. In most applications, the operational space has a dimension n = 6. In 
the case of a non-redundant arm, m = 6 and provided the Jacobian matrix J ( q )  is 
invertible ( q  is not a singular position), the solution Aq is given by: 

Aq = J- ' (q )AX;  AX f R6; Aq E R6; q f R6. 
In the case of redundant arms (rn > n = 6), the Jacobian matrix is not square 

and cannot be inverted. One method consists of finding the Ag of least norm that 
verifies Eq. (1). This leads naturally to the introduction of a pseudo-inverse of J ,  
namely JT( J J*)-'. To avoid the computation of the pseudo-inverse, algorithms 
work with square sub-matrices of the Jacobian matrix to compute the solutions, 
but these algorithms are tailored for 'I-d.0.f. manipulators (m  = 7) and it is not 
possible to generalize them for robot with more d.0.f. As an alternative, we propose 
to extract numerically well-behaved square sub-matrices of J ,  obtain their solutions, 
and find their least norm simplex combination. One advantage of this approach is 
its generality to rn-d.0.f. a r m s  and its inherent parallel structure. 
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2. THE PSEUDO-INVERSE ALGORITHM 

To solve min $llAq1I2 subject to the constraint (l), we introduce the Lagrangian: 

1 
q A q , P )  = ~11Aq1I2+ < P ,  JAq - A x  > 

and solve the necessary optimality conditions: 

Aq + J T p  = 0 

JAq - AX = 0 .  

Multiplying Eq. ( 3 )  by J and using Eq. (4), we get 

(3) 

(4) 

AX + J J ~ ~  = 0. 

If we assume that J ( q )  has a maximal rank ( q  is not a singular position), i.e. n, 
then we can invert J J T :  

= - ( J J ~ ) - * A x .  

Substituting this value of p in Eq. (3) gives: 

Aq* = JT(  J JT)-’AX ( 5 )  

where J T ( J J T ) - ]  is the Moore-Penrose pseudo-inverse of the Jacobian matrix [3]. 
Nevertheless, the implementation of this algorithm very often fails because the 
numerical computation of the pseudo-inverse is often very ill conditioned (small 
determinants, large differences between various elements, etc.) [3]. Furthermore, the 
determination of the pseudo-inverse using the SVD (singular value decomposition) 
technique is too slow for a real-time implementation. Other difficulties in resolving 
the redundancy using the SVD method to calculate the pseudo-inverse of J ( q )  are 
described in [4]. 
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3. THE PROPOSED ALGORITHM 

To avoid the computation of the Moore-Penrose pseudo-inverse,[5] applies 
Gradient Projection Method to a 7-d.0.f. arm and the form of the solution is: 

Aq Aqp + k&h; Aq E R7; Aqp E R7; Aqh E R7; k E R. 
Here Aqp is a particular solution of Eq. (1) and Aqh is the solution of the 
homogeneous equation: 

0 = J(q)Aqh;&h E R7;0 E R6. 
This algorithm is computationally efficient and was successfully implemented. 

However, concerning optimality, no proof was provided that the result is the least 
norm solution. Moreover, it is not possible to guarantee an upper bound of the 
computation delay as the algorithm includes (repeat .... until) statements in the flow 
control. Besides, no study was carried out to study efficient implementation of 
the Gradient Projection Method applied to an arbitrary number m of degrees of 
freedom. 

In [6], an interesting combinatorial approach to Inverse Kinematics is proposed. 
The idea is to extract all the s possible n x n submatrices of the Jacobian matrix, 
invert them, and solve in parallel the associated linear systems analogous to Eq. (1). 
Then, among the s solutions, one picks the one with the least norm. The intuitive 
interpretation is that it is possible to physically block enough joints to compensate 
the underspecification of the problem. In that case the time boundedness of the 
computation is guaranteed. However, the solution obtained is not necessarily the 
least norm one, since the best solution produced by this scheme always includes the 
blocking of one of the joints. 

We suggest a similar technique, based on the linear properties of the coordinate 
transformation in the neighborhood of the point q expressed by the Jacobian matrix 
J and its s = Cl sub-matrices J1 ,J2 , .  . . , J k , .  . . , J ,  of dimension n x n If each J k  

is assumed invertible, it is possible to obtain n-dimensional vectors Aqk such that: 

A g k  = JF'AX, ( A q k  f R", k E { 1,. . . , s}) (6) 
Without changing their names, we cam rewrite these vectors Aqk as 

m-dimensional vectors in the articular space, setting the (rn - n) complementary 
components to 0. Specifically, if the submatrice J k  is formed by blocking columns 
21, ~ 2 , ~ .  . . , i m - n  in J ( g ) ,  then the components of positions i l , i z , .  . . , im-n are set to 
zero in the corresponding rn-dimensional vector Aqk. Let us consider a maximal 
set of independent vectors Aqk, I; = 1,. . . , p .  We now introduce E, the affine space 
of dimension dirn(E) = p - 1 spanned by the family {Agl, . . . , Aqp}: 

. .  

Since the rn-dimensional vectors A q k  are solution of the original problem, E is 
a subspace of the &ne space E (of dimension m - n) defined by the solutions of 
Eq. (1) and thus p - 1 5 m - n. Now: 
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6 THE PROPOSED ALGORITHM 

0 If p - 1 < m - n, the optimal least norm solution of Eq. (1) may not belong to 

If p - 1 = m - n, then E coincides with E the set of solutions of Eq. (1) and 

We can thus find the least norm vector using the parameterization (7). Specifically, 
we have to find: 

E, therefore the algorithm does not necessarily give it; 

the optimal solution necessarily belongs to E. 

(8) 
1 

minslltlAql + - . e  +tpAqpl12 

subject to the constraint E',=, t k  = 1. The corresponding Lagrangian is: 

P 
1 

. c ( t k , P )  = p A ? 1  + ... + tpAq,Il2 + P ( Z t k  - 1) 
k = l  

from which we derive the necessary optimality conditions: 

D 

k= 1 

(Vk E {l,...p,})(t~ < Aq1,Aqk 9 + . * . + t p  < Aqp,AQk > + p = Q ) .  (10) 

We denote by G the Gramian matrix of the vectors {Aql , . . . , Aqp} for which 
g ( i ,  j )  =< Aqi,Aqj 9. We call. t = ( t l ,  . . . ,tp)* and e the pdimensional 
vector(l,l,. . . ,1, 1)*. Then Eqs. (9) and (10) can be expressed in the simpler 
form 

Since G is invertible ({  Aq1,. . . , Aqp} are independent), we get easily 

The least norm AQ is thus 

k= 1 

In conclusion, (rn - n + 1) independent solutions of Eq. (1) suffice to compute 
the least norm AQ. For instance, in the case of the 7-d.0.f. spatial serial link arm, 
only two 6-dimensional vectors are required to control the robot. Moreover, the 
advantage of this algorithm over the Pseudo-Inverse Algorithm is that the square 
submatrices can be tested for ill-conditioning or singularity. Since, for a m-d.0.f. 
redundant robot, (7; > m - n, one has a very good chance to find rn - n + 1 
well-conditioned sub-matrices and use those to determine the solution space. In the 
following, we illustrate the method on a 4-d.0.f. planar arm, using the symbolic 
manipulation environment Mathernatica [7] on Macintosh 11. 



4. APPLICATION T O  A 4-D.O.F. PLANAR ARM 

Let us apply the algorithm to the arm illustrated in Fig. 1. We specify the 
translational position of the robot tip at point X E ,  but do not specify orientation 
of the outermost link and end effector. Since we have 4 degrees of freedom and the 
task space is 2-dimensiona.l, we need (4 - 2 + 1) = 3 solutions Aqk. The Cartesian 
displacement is denoted AX = (Ax:,Ay). Among the 4 2 x 2 submatrices J,, that 
can be extracted from J by selecting successive columns (with obvious notation 
J12 corresponds to blocking joints 3 and 4), we select the three having the largest 
determinant (for a reason of sensivity to noise) and compute the three corresponding 
Aqrs 

Aqrs = (JT:')AX. 

We then compute the associated Gramian matrix G, get t* from Eq. (12), and 
Aq from Eq. (13). Figure 2 illustrates the motion of the arm when the end- 
effector follows a circular trajectory. Fifty elementary displacements AX are used 
to describe the circle. We refer the reader who is familiar with Maihematica to the 
listing of the program given in Appendix A. 

1 

.~ ~~~ ~~ 

Fig. 1. Four-degree-of-freedom planar arm. 

This simulation was performed by a classical sequential program. However, it 
is possible to improve the time performance of this inversion by parallelking data 
processings. Let us recall that the robot has rn degrees of freedom and that the 
task has n degrees of freedom. The first step of the algorithm is to select the 
p = (rn - n + 1) matrices that will determine the solution. We extract in parallel 
rn n x n matrices J k ,  compute their determinants, inverses, and associated vectors 
Aqk (for a more efficient on-line implementation, the explicit inversion of J k  can 
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8 APPLICATION T O  A 4-D.O.F. PLANAR A R M  

be avoided by using a Gaussian elimination with partial pivoting). We keep the 
vectors Aqk corresponding to the largest determinants. Then the computation of 
the Gramian matrix G is also made in parallel. The remaining computations are 
the inversion of G (which is symmetric and well-behaved) and the computation of 
the vectors t* ( t l , .  . . , t P )  and Aq. 

I 

0.5 1. 1.5 2. 2.5 

Fig. 2. Plotting of the arm and the end effector obtained by simulation. 



5. GENERALIZATION OF THE 
ALGORITHM TO OTHER CRITERIA 

In the preceding section, we have shown that it is possible to resolve the 
redundancy without explicitly computing the pseudo-inverse of the Jacobian matrix. 
Our approach was to minimize a criterion over the affine space defined by Eq. (1) 
that we parameterized using p vector solutions. Suppose that we now also want to 
minimize a potential function in order to avoid obstacles, (like in Khatib et al. [8], 
or to maximize a manipulability index, as defined in Yoshikawa [9]. Let us denote 
by P(Aq)  such a criterion, expressed as a function of Aq( t l  , . . . , t P ) ,  the elementary 
displacement in the articular space. Then, we only need to replace the problem in 
Eq. (8) by the new problem 

1 
min ZlltlAql + t A q 2  + . . - + tp&pl12 + XP(Aq( t l , . .  . , t p ) )  (14) 

where X is a weight factor, and the real parameters t k  are still subject to the 
constraint t k  = 1. In this case, one must note that, in general, no closed-form 
solution like Eq. (13) will be found. This is the subject of our future work. 

9 





6. CONCLUSION 

In this paper, we have presented a alternative scheme to resolve the kinematics 
of a redundant robot. This scheme can be efficiently pardelized and contains well- 
behaved matrices for numerical processing with a computer. The future work that 
we envision is an extensive comparison of this method with current approaches 
when the task function [lo] of the robot includes several other criteria as well. In 
particular, the application of decomposition/coordination schemes (see for example 
Cohen [ll] and references therein) should enable us to preserve the parallel structure 
even with non-additive criteria such as potential and manipulability functions. * 
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APPENDIX A 

PLANAR 4 DOF REDUNDANT ARM 

Homogeneous Transformation Matrix 

1 = 1; le =I; 
mat = { {ci,-siJ*ci}, {si,ci,l*si}, {O,O,I}}; 
m10 = mat /.{ci --f Cos[tl], si --t Sin[tl]}; 

m21 = mat /.{ci + Cos[t2], si 4 Sin[t2]}; 

m32 = mat /.{ci -t Cos[tS], si -t Sin[t3]}; 

me3 = mat /.{ci t Cos[t4], si 4 Sin[t4]}; 

m20 = m10.m21; 

m30 = m20.m32; 

me0 = m30.me3; 

Location of Particular Points of the Arm 

m Computation of Square Sub-Matrices 

13 



14 Appendix A 

Path Generation 

Initializations 

nsteps = 50; 
tini = { Pi/3,-Pi/3,073/4 Pi}; 
thetastar = tini; 

effector = {numxe}; 

Generation Loop 

For[k=l, ki= nsteps, k=k+l ,  
deltax = -O.O2*Pi * Sin[O.Ol*Pi*k]; 
deltay = O.O2*Pi * Cos[O.Ol*Pi*k]; 

numj12 = Nlj12 /. tlistini]; 
numj23 = Nlj23 /. tlistini]; 
numj34 = Nlj34 /. tlistini]; 
numj14 = Nb14 /. tlistini]; 

detl2 = Det[numjl2]^2; 
det23 = Det(numj231-2; 
det34 = Det[numj34]-2; 
detl4 = Det[numj14]^2; 

click = 0; 
click = If[detl2 == Min[det12,Abs[det23],Abs[det34] ,Abs[detl4]],l,click]; 
click = If [det 23 == Min [ det 12,Abs [det 231, Abs [ det341, Abs [det 14]],2 ,click] ; 
click = IfIdet34 == Min[det 12,Abs[det23] ,Abs[det34] ,Abs[detl4]] ,3,click]; 

dt 12 = N [ Flat ten[ { Inverse[ numj 121. { deltaqdelt ay } ,O ,O}]] ; 
dt 23 = N [ Flat ten[ { O,Inverse[numj23]. { delt ax,delt ay } ,O}]] ; 
d t 34 = N [Flat ten[ { 0,O ,Inverse[numj34]. { deltax,delt ay } } ]] ; 

dt 14 = { u14[ [ l]] ,O,O +14[ (211 } ; 
1114 = N[ Inverse[numj 141. { deltax,del tay }] ; 
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dthii = RotateLeft [ {dt 12,dt23,dt34,dt14} ,click]; 
dthl  = dthii[[l]]; 
dth2 = dthii[[2]]; 
dth3 = dthii[[3]]; 

gram = Table[O,{ t 1,3} ,{ t2,3}] ; 
gram[[l,l]] = dthl.dth1; 
gram[[2,2]] = dth2.dth2; 
gram[[3,3]] = dth3.dth3; 
gram[[2,1]] = gram[[l,2]] = dthl.dth2; 
gram[[3,1]] = gram[[3,l]] = dthl.dth3; 
gram[[2,3]] = gram[[3,2]] = dth2.dth3; 
gmoinsun = Inverse[gram]; 
tsol = gmoinsun.{ I,I,I} / { I,l,l}.gmoinsun.{ 17171}; 

dthetastar = tsol[[l]] dthl + tsol[[2]] dth2 +tsol[[3]] dth3; 

thetastar = tini + dthetastar; 
tini = thetastar; 
numxl = N[xl /. tlistini]; 
numx2 = N[x2 /. tlistini]; 
numx3 = N[x3 /. tlistini]; 
numxe = N[xe /. tlistini]; 
posit ions = Append[positions,numx 11 ; 
positions = Append[positions,numx2]; 
positions = Append[positions,numx3]; 
positions = Append[positions,numxe]; 
positions = Append[positions,numx3]; 
positions = Append[positions,numx2] ; 
positions = Append[positions,numxl]; 
positions = Append[posi tions ,O,O] ; 
effect or = Append[effect or ,nume] ; 
I; 

Plots 

ListPlot[effector, PlotJoined -+ True] 
ListPlot[positions, PlotJoined --+ True] 
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