
3 4 4 5 b 0334530 0

L.

. , ~. ~~ -~ ~ ...-.. ~ -

. I . . . __.__I ,

.~ ~ -. ~ ~~ _ _ _ - ~

ORNL/TM-11786

Engineering Physics and Mathematics Division

Mathematical Sciences Section

MODELING SPEEDUP IN PARALLEL
SPARSE MATRIX FACTORIZATION

L.S. Ostrouchov +
M.T. Heath *

C.H. Itornine *

+ Computer Science Department
University of Tenrimsee
Knoxville, TN 37996-1301

OaJc Ridge National Laboratory
Oak Ridge, TN 37831-8083

* Mathematical Sciences Section

Prepared for
Office of Energy Research

KC 07 01 01 0

Date Published: December, 1990

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831

managed by
Martin Marietta Energy Systems, Inc.

for the
U.S. DEPARTMENT OF ENERGY

3 445b 033’t5l10 0

Contents

1 INTRODUCTION . 1
2 SPARSE CHOLESKY FACTORIZATION 4

2.1 Column Task Graph . 5
2.2 AnExample . 7

3 DETERMINATION OF MAXIMUM SPEEDUP 10
3.1 Strategy1 . 11
3.2 Strategy2 . 12
3.3 S t r a t e g y 3 . , . 13
3.4 Strategy4 . 14
3.5 Summary of Results for Example Problem 16

4 COMPARISON WITH OBSERVED SPEEDUPS 17
5 CONCLUSIONS . 21
6 References . 22

Acknowledgements

We wish to thank A1 Geist, Esmond Ng, and Barry Peyton for many helpful dis-
cussions and their contributions to this research.

-V-

MODELING SPEEDUP IN PARALLEL
SPARSE MATRIX FACTORIZATION

L.S. Ostrouchov
M.T. Heath

C.H. Romine

Abstract

This paper is an attempt to explain the observed performance of sparse matrix
factorization algorithms on parallel Computers. In particular, we examine whether
the disappointing performance of these algorithms is due to insufficient parallelism
in the problem or to the architectural characteristics of existing parallel computers.
Through a series of theoretical models of increasing realism, we first determine
upper and lower bounds on the speedup that can be expected in practice for
this problem, and end with a parameterized model that is capable of reprodiicing
the full range of behavior within these bounds, including the speedups actually
observed in practice. This model suggests that the current limits on speedup in
sparse factorization are due to poor communication performance of the present
generation of parallel computer architectures rather than to a lack of parallelism
in the problem.

1. INTRODUCTION

In this paper we attempt to gain, through a detailed study of a particular problem, a
better understanding of the factors affecting the performance of parallel architectures.
The problem we have chosen is Cholesky factorization of symmetric positive definite
sparse matrices. This factorization is the most computationally intensive step in solving
many large linear systems that arise in a l l areas of science and engineering, including
the analysis of structures and networks, and thus has received a substantial amount of
attention from developers of parallel algorithms (see [19] for a survey). However, sparse
Cholesky factorization has often shown disappointing performance results on parallel
computers. An additional motivation for selecting this problem is that we can make
use of the theoretical concepts and techniques, based largely on graph theory, that have
been developed for analyzing sparse elimination algorithms. Parallel sparse Cholesky
factorization is sufficiently complex to be typical of scientific computations in general,
as well as being interesting in its own right, yet is amenable to theoretical analysis.

The potential performance of a parallel computer in solving a given computational
problem depends on the nature of the problem being solved, the parallel algorithm
employed, and the architectural details of the particular parallel computer. For realistic
problems of interest, these factors interact in an extremely complex manner that is
difficult to analyze in detail. Two relatively simple and commonly used measures
of effectiveness are speedup and eficiency. The speedup resulting from the use of p
processors is defined by the ratio of execution times S, = Tl/Tp, where the subscript
indicates the number of processors used, and the best sequential algorithm is used for
the single-processor case. The efficiency in using p processors is defined by the ratio
Ep = Sp/p , which can be interpreted as the average utilization of the p processors.
Attaining perfect efficiency would require that S, = p , so that Ep = 1. Such ideal
performance is not generally achievable in practice, however, due to communication
costs, synchronization overhead, load imbalances, contention for resources, and various
other inhibiting factors. In attempting to understand and improve performance, it is
important to identify those limitations that are due to the architecture (which we will
refer to as hardware limits) and those that are due to the algorithm and/or the problem
(which we will refer to as sojtware limits).

Perhaps the simplest and best known model of parallel computer performance is due
to Amdahl [1,2]. In this model, the hardware is characterized by a single parameter,
namely the number of processors p , and the software is also characterized by a singlc
parameter, the fraction f of the computation that is inherently serial. “Amdahl’s Law”
then gives the following upper bound on speedup for a given problem of givcn size:

Although Amdahl’s analysis can yield useful insights, it suffers from a numbcr of sliort-
comings: (1) the serial fraction f is difficult to determine (2 priori; indeed, in practice
it is often inferred a posteriori from observed performance rather than used to predict
performance, (2) there is an implicit assumption that at any given time a,ll work is
either completely serial or completely (p-fold) parallel, which is seldom true, and (3)
the serial fraction f is not a very robust measure in that it tends to be a fuiictiun not

- 2 -

only of the algorithm used, hut also the problem size and the number of processors
used. Thus, for example, a constant value for f usually entails a fixed problem size,
which does not refleet the way that supercomputers tend to be used in practice (see
[18,28] for a discussion of this last point).

A performance model with greater flexibility and predictive power, yet still ap-
pealing in its simplicity, has been given by Eager, Zahorjan, and Lazswska [8]. Their
approach is based on the observation that speedup and efficiency, rather than rising
or falling together, often show an inverse relationship. Thus, for a fixed size problem,
execution time may be reduced by using more processors, but the consequent improve-
ment in speediip is usually accompanied by a decline in the average utilization of the
processas (is . , efficiency). Intuitively speaking, a5 the number of processors grows it
becomes increasingly difficult to keep them all busy doing useful work; the number of
L6~vasted9’ machine cycles increases more rapidly than the execution time decreases, so
the overall efficiency declines. The analysis in [8] of this tradeoff between speedup and
efficiency uses the concepts of hardware bound, software bound, and average paral-
lelism. The hardware bound on speedup is simply the number of processors used (Le.,
the speedup cannot exceed the number of processors). The software bound is based
on representing the parallel computation by a directed acyclic graph (DAG), whose
nodes correspond to (serial) computational subtasks, and whose arcs reflect precedence
constraints between suhtasks. The length of a path in this graph is defined to he the
sum of the computations at the nodes along the path. The software bound on speedup
is then given by the ratio of the total amount of computation to the length of a. longest
serial path in the subtask graph (i.e., regardless of how many processors are used,
executioii time must still be at least as loing as a longisst serial path in the subtask
graph). Finally, average pamlleld.srn is defined in four ways, which are then shown to
be equivalent [8]:

1. the average number of processom that are busy during the execution of a program,
given an iinliinited nnmber of processors;

2. the speedup, given an unlimited number of processors;

3. the ratio of the total arnount of computation to the length of a longest path in
the snhtask graph; and

4. the intersection point of the hardware bound and the software bound on speedup.

The hardware and software bounds and the actual speedup for a simple example of a
software system (taken from [a]) are shown in Figure 1. Based on the second definition
above, vie will use in this paper the more self-explanatory term maximum speedup rather
than average parallelism. Our principal tool in determining this quantity, however, will
he the third definition, using the subtask graph of the parallel computation.

In exploring the limits of parallelism in Cholesky factorization, we will naturally
focus on parallel architectures having a relatively large nurnber of processors. In the
current sta.te of technology, shared-memory architectures tend to be limited to a rela-
tively small niimher of processors, typically up to about thirty. To go beyond this level,

- 3 -

number of pmcusos, p

Figure 1: Hardware and software bounds on actual speedup.

to say a hundred or a thousand processors, the most popular and widely available solu-
tion at present i s distributed-memory architectures, typified by hypercubes. This is the
class of parallel architectures on which we will focus in selecting appropriate parallel
algorithms and in conducting numerical experiments. Still higher levels of parallelism,
with many thousands of processors, currently requires the use of very fine-grained al-
gorithms and S l M n architectures, typified by the Connection Machine, and is beyorid
the scope of the present investigation.

Parallel algorithms for sparse Cholesky factorization on hypercubes and other dis-
tributed-memory, message-passing architectures have been the object of considerable
research. Although the performance of these algorithms has shown steady improve-
ment, it is still fair to say that they have yet to achieve satisfactory performance levels
in practice, with efficiencies seldom exceeding 50%. One of our main objectives in this
study is to gain a better understanding of this disappointing performance: is it due to
an inherent lack of parallelism in the problem, or is it due to the architectural char-
acteristics of the current generation of distributed-memory parallel computers? We
will attempt to answer this question by developing theoretical models of the sparse
factorization process that will enable us to estimate the maximum speedup achievable
for a given problem. Further, we will compare these theoretical estimates with results
obtained on a real machine.

The remainder of the paper is organized as follows. Section 2 contains a detailed
discussion of parallel sparse Cbolesky factorization, an explanation of the subtask graph
we use to model this application, and a small example problem illustrating these con-
cepts. Section 3 contains a discussion of the calculation of maximum speedup for our
application, including three strategies that ignore communication costs and one strat-
egy that incorporates communication costs. Section 3 concludes with a comparison
of the four strategies on a small example problem. Section 4 compares our theoretical

- 4 -

results with actual speedups observed on an Intel iPSC/2 hypercube multicomputer for
a series of finite-difference grid problems. Finally, section 5 conta,ins OUT conclusions.

Consider an iz x n symmetric positive definite matrix A. Its Cholesky factor is a
lower triangular matrix 1; such that A = ELT. The computational significance of the
Cholesky factor is that a system of linear equations Az = b can be solved by successive
forward and back substitutions in the triangular systems L y = b and L’x = y. If A is
a sparse matrix, meaning that most of its entries are zero, then during the coi~rse of the
factorization process some entries that are initially zero in the lower triangle of A may
become nonzero entries in L. These entries of TJ are known as fill or fill-in, Usually,
however, many zero entries in the lower triangle of A remain zero in L. For efficient
use of computer memory and processing time, it is desirable to keep the amoiant of fill
s m d , and to store and sperate oil only the nonzero entries of A and L .

A given linear system yields the same solution regardless of the particular order
in which the equations and unknowns are numbered. This freedom in choosing the
ordering can be exploited to enhance the preservation of sparsity in the Cholesky fac-
torization process. Let P be any permutation matrix. Since YAPT is also a symmetric
positive definite matrix, P can often be chosen so that the Cholesky factor of P’RPT
has less fill than I,. The permuted system is equally useful for solving the original lin-
ear system, with the triangular solution steps simply becoming f.y = Pb and L T z = y,
and finally 2 = P’z. Unfortunately, finding a permutation P that minimizes fill is
a very dificiilt combinatorial problem (an NP-complete problem) [29]. Thus, a great
deal of research effort has been devoted to developing good heuristics for limiting fill in
sparse Cholesky factorization, including the nested dissection algorithm [10,14] and the
minimum degree algorithm [17,22]. The choice of ordering also has a substantial effect
on the potential parallelism with which the Cholesky factorization can be computed,
as we will disciiss in section 2.1.

Graph theory provides a iiurnber of extremely helpful tools in modeling the struc-
tural aspects of sparse eliminatioa algorithms. The graph of an n x n symmetric matrix
A , denoted by G (A) , is an undirected graph having n vertices (or nodes), with an edge
between two vertices i and j if the corresponding entry ai3 is nonzero in the matrix.
Thc filled graph of A , denoted by k’ (A) , is the graph of A with all fill edges added: there
is an edge between two vertices i and j of F (A) , with i > j , if + 0 in the Cholesky
factor matrix L (equivalently, F (A) is the graph of E + L T) . Finally, the elimination
tree associated with the Cholesky factor L of A , denoted by T (A) , is a graph having n
vertices, with an edge between two vertices i and j , for i > j, if i = p a r e n l (j) , where
p r e n t (j) is tht. row indrx of the first off-diagonal nonzero, if any, in column j of L .
Throughout this paper, we will assume that the matrix A is irreducible, so that column
n is the only colurnln having no off-diagonal nonzero, and hence Y’(A) is indeed a tree
with node n as its unique root. See [24] for a survey of the role of elimination trees in
sparse factorization. For a much more detailed general discussion of sparse Cholesky
factorization, we refer the reader to [16].

- 5 -

2.1. Column Task Graph

In exploiting parallelism to solve any problem, the computational work must be bro-
ken into a number of subtasks that can be assigried to separate processors. The most
appropriate number and size of these tasks depend on the target parallel architecture
arid the extent of the pmallelism at various levels in the problem. The term often
used to denote the size of computational tasks in a parallel implementation is granular-
i ty . 111 sparse factorization, as in most problems, a number of levels of cornpiitstional
granularity can potentially be exploited. Liu [23] characterizes three models of parallel
Cholesky factorization that exhibit fine, medium, and large granularity, respectively:

1. fine-grain parallelisnz, in which each subtask is a single multiply-add pair,

2. medium-yruin parallelism, in which each task is an operation on an entire column.
Examples of such operations include adding a scalar multiple of one column to
another or multiplying a column by a scalar. These operations correspond, respec-
tively, t o saxpy ancl sscal from the RLAS (Basic Linear Algebra. Subroutines)

[211.

3 . large-grain pnmblelism, in wliich each task is the complete coniputation of a col-
umn of the Cliolesky factor or perhaps an entire set of columns in a subtree of
the elimination tree.

A fine-grained model for studying the parallel soliltion of linear systems was in-
troduced by Wing and FTuaxlg [27] . It associates each task with a single mu1 tiplicative
operation in tlie factorization. A precedence relation is inaintainrd in the following way.
If one task compiites a value needed by another task, then the first task iniist precede
the second one. The clirccted edges of the task graph follow this precedence re1 a t’ ion.
The resulting task graph is a directed acyclic graph (DAG). The numbcr uf nodes in
the graph is equal to the number of rnultiplicative operations required to p d o r m the
Cholesky factorization. For large problems, this fine-grained nioclel is appropriatc oiily
if several thousands of processors arc available.

Jess and Kees I201 introduced a model in which the structure of the task graplr is
essentially that of tlie elimination tree defined above. Thus, the nodes of tlie task g r i ~ l ~ h
are simply the columns of the Cholesky factor and the preccdcncc relation defining the
directed edges is given by the parent relation defined above. This large-grained modrl
is most appropriate when only a relatively small number of processors is available.

For parallel dense Cliolesky factorization, a medium-grajned task model was intro-
duced in 1111 and then extended to the sparse case in [l’t] ancl I131 and many subsequent
papers (see [191 for a survey). The scheduling of the medium-grained tasks fur parallel
sparse Cholesky factorization is studied in detail by Liu in [2 3] . Each coinlmtational
subtask in this model is a column-oriented operation of one of the followiiig two types:

1. cd iv (j) : division of column j by a scalar;

2. c m o d (j , k) : modification of column j by column k , j > k .

- 6 -

Specifically, c d i v (j) divides the nonzero entries in column j by the square root of its
diagonal element, and cmod(j , k) subtracts a scalar multiple of coliimn k from column
j . The precedence relation among these column-oriented tasks is as follows:

Thus, c d i v (j) cannot begin until c m ~ d (j , k) has been completed, and c d i v (j) must finish
before c n ~ o d (i , j) can begin. In terms of operations on individual matrix elements, some
of the operations in c d i v (j) could in principle be executed without requiring that all
operations in crnod(j, k) first be completed, and similarly for the relationship between
c d i v (j) and ernod(i, j) . However, in the medium-grained model this potential fine-
grained parallelism is not exploited, the rationale being that the conirnunication and
other overhead costs of exploiting parallelism at the level of individual floating point
operations would be greater than the potential gain in execution time for the target
architect we.

1 here is a one-to-one correspondence between the off-diagonal nonzero entries f j k

in the Cholesky factor matrix L and the cnzod(j, I C) operations. Thus, as observed by
Liu [23], the medium-grained model based on column-oriented tasks, which he calls the
C Q ~ U W Z ~ L tusk graph, is stracturally equivalent to the filled graph F (A) of the matrix A .
Since each column division operation cdiv corresponds io a diagonal element of L , and
each column update operation cmod corresponds to a nonzero OR-diagonal element of
I,, thc column task graph, which we wid denote by C (A) , is simply the elimination
tree T (A) with edges added to incorporate the additional nonzeros in the factor niatrix
L . The nodes of the graph C(i2) correspond to the cdiu operations and the edges
correspond to the cmod operations. To derive a true task graph, in which all tasks
are represented by nodes and a11 edges represent precedence relations, we could merely
insert a node representing each @mod operation within each ““edge” in the above sense,
but we will not make such a distinction, since nu confusion should arise.

There is an intimate structural interplay between the elimination tree and the col-
umn task graph. The two graphs have the same node set, and the elimination tree is a
spanning tree for the coliirnn task graph. Thus, the elimination tree serves as a conve-
nient mechanism for traversing the column task graph, as required by some algorithms.
Unfortunately, there is great potential for confusion in the terminology for referring
to the relationships among nodes in the two graphs. In the standard terminology for
a DAG representing a task graph, naturally enough, the ancestor tasks precede their
descendants in time. In the standard terminology for trees, however, the parent/child
relationship among immediate neighbors, or more generally the ancestor/descendan t
relationship among more distant nodes, places a parent or ancestor node between its
child or descendant node and the root node. Thus, in the case of elimination trees,
the leaf nodes are descendants of the other nodes in the tree yet are the first to be
executed, while the root is an ancestor of the other nodes in the tree yet is last to be
cxecnted, which is precisely backward from the notion of ancestor and descendant in a
DAG. Since the elimination tree terminology is much more established and pervasive
in the sparse matrix field, we will iise the terms parent/child and ancestor/descendant
in the “tree” sense throughout this paper.

The structure of the elimination tree gives an indication of the potential parallelism
in sparse Cholesky factorization. Kaiighly speaking, the height of thp tree determines

cmod(j , k) with k < j -+ c d i v (j) + crnod(i,j) with j < i.

, -

- 7 -

the longest serial path in the column task graph and the width of the tree determines
the degree of concurrency available (these notions will be made more precise later).
Thus, a wide tree has many tasks that can be executed simultaneously, and a short
tree has a relatively small parallel execution time. The structure of the elimination
tree for a given matrix A is strongly affected by the particular ordering chosen for
the matrix. For example, nested dissection orderings tend to produce short and wide
elimination trees that are good for parallel factorization, whereas bandwidth or profile
reducing orderings tend to produce relatively tall and narrow elimination trees that are
poor for pa rde l factorization. Another desirable property of the elimination tree for
parallel execution is that it be well balanced, by which we mean that subtrees at the
same level are reasonably uniform in size and reqilire roughly the same amount of work.
For example, on highly regular problems such as k x k grids, some nested dissection
orderings produce well balanced binary trees. Minimum degree orderings, on the other
hand, often produce unbalanced elimination trees. Having a well balanced elimination
tree is helpful in scheduling the column task graph so that the computational load is
well balanced across processors. However, Geist and Ng [9] havc developed a method
for partitioning the work in an unbalanced elimination tree and scheduling it so that
the computational load is well balanced across the processors.

In the computational experiments to be reported below, the software package
Sparspak [G,1.5] is used to perform the preliminary symbolic processing of our test
matrices, which are derived from k x k grid problems. Sparspak is a sparse matrix
software package designed to order, factor, and solve sparse systems of linear equa-
tions. We did not use the standard orderings from Sparspak on our test problems,
however. As mentioned above, minimum degree orderings tend t s produce unbalanced
elimination trees. Moreover, the automatic nested dissection ordering in Sparspak uses
a level structure to find separators. While this approach is effective for many purposes
on a wide range of problems, for some highly regular problems such as IC x IC grids with
a nine-point operator it fails to identify the ideal separators that produce an optimally
short, wide, and balanced elimination tree. Therefore, we used instead a version of
nested dissection patterned after [lo] that takes advantage of the special structure of
rectangular grid problems to yield the theoretically “correct” sequence of separators.
After the ordering of the matrix A has been completed, a symbolic factorization is
performed on the ordered matrix to obtain the structure of the Cholesky factor matrix
L , from which we can construct the column task graph. We are then ready to begin
our exploration of maximum speedup.

2.2. An Example

As an example of the ideas presented thus far, consider the 10 x 10 matrix R whose
nonzero entries are denoted by x in Figure 2. Since the matrix A is synimetric, we
concern ourselves only with its lower triangular structure, and we assume t4hat i t has
already been ordered. Symbolic factorization yields the structure of the factor matrix 1;
shown in Figure 3, where fill entries resulting from the factorization are denoted by +.
The elimination tree for this example is shown in Figure 4. TJsing Liu’s representation,
we arrive at the column task graph shown in Figure 5. Next to each cdiv node and

- 8 -

X

X

X
X

X
X

X

X
X

X

X
X

X
X

X X
X

Figure 2: Lower triangular structure of a 10 x 10 symmetric matrix A.

X

X

X
X

+

X

X
X

X

X

X

+

X

X

X

X

X X

X

Figure 3: Structure of factor matrix L for example in Figure 2.

cmsd edge in the column task graph is a value in parentheses that indicates the number
of floating point operations involved in that column operation. The calculation of these
values is discussed in chapter 3.

Now, consider the Cholesky factorization of the matrix A . From the figures we
observe some important facts about the progression of the factorization of this matrix.
Since 1 2 , is zero, coliimn 2 is not affected by column 1, and hence the computation of
column 2 need not await, the completion of column 1. On the other hand, since 132 is
nonaxo, column 3 depends on column 2, and therefore the computation of column 3
must await the completion of column 2. Similarly, we can continue this type of analysis
for all columns of the matrix L. In terms of the elimination tree (Figure 4), we see
that column i aRects a subset of the columns that are ancestors of node i, and the
completion of the columns (i.e., the cdiv operations) corresponding to the nodes along
a path to the root must be computed sequentially in the given order. For nodes that
are on independent branches of the tree and do not affect each other, such as nodes 1,
2,5, and 7, the corresponding columns of L can be computed in parallel. Completing a
column of I ; by performing its cdiv operation corresponds to removing that node from

- 9 -

Figure 4: Elimination tree of example matrix.

Figure 5: Column task graph of example matrix.

- 1 0 -

the tree. At the first step of the factorization, aU of the leaf nodes are removed (recall
that we are assuming an unlimited number of processors). This elimination results in
the creation of more leaf nodes, and the factorization continues. At each stage, the
cdiv operations for all of the current leaf nodes can be computed in parallel.

The parallel execution of multiple cdiv tasks i s possible only in the sparse case;
this type of parallelism is not available in factoring dense matrices (for a dense matrix,
the elimination tree is a linear chain). For both sparse matrices and dense matrices,
however, many cmod operations can potentially take place in parallel. Thus, in our
example, cmod(3,2$ and cmod(4,2) can take place simultaneously, even though cdiv(3)
and cdi71(4) must be computed sequentially, with ediv(3) preceding cdiv(4). These
precedence relations among the column tasks are shown pictorially in the column task
graph (Figure 5). To be fully effective, a para1,llel sparse factorization algorithm should
exploit both types of parallelism: simultaiieoiis cdiv operations on multiple leaf nodes
and simultaneous cmod operations where possible.

3. DETERMINATION OF MAXIMCJM SPEEDUP

After obtaining the structure of L , we can count the number of floating point operations
required for each cdiv and cmod column operation. In the cdiv we consider each
scalar division of an element of the column as one floating point operation. Thus, to
calculate the number of operations required for cdiv(k) , we simply count the number
of nonzeros, including the diagonal element, in column k of the matrix L . Each scalar
multiply/subtract pair in a emod is also considered as one floating point operation.
The number of Boating point operations required for a cmod(j, k), j > 1, is calculated
by counting the number of nonzero entries in column k of L on and below row j. The
total amount of work involved in the factorization is the sum of all of the cdiv and
cmsd column operations.

These individual floating point operation eoiints for the cdiv and ~ m ~ d column op-
erations are maintained as weights for the nodes and edges, respectively, of the column
task graph. Three of the strategies to be described in the next section use these weights
to ca!culate the length of the longest serial path in the column task graph representing
the factorization. A fourth strategy, rather than using the individual weights, instead
assumes a unit cost per cdiv or cmod, but also incorporates communication costs into
the calculation of maximum speedup.

Once the length of the longest serial path and the total amount of work have been
determined, we are ready to calculate our estimate of maximimm speedup. We calculate
maximum speedup according to the third definition for average parallelism of Eager,
Zahorjan, and Lazowska [8]:

maximum speedup (total work) / (length of longest path)

'l'his theoretical bound ignores the performance. degrading effects of communication
delays, synchronization overhead, poor load balancing, etc. The effects of these factors
will be examined in section 3.4.

The general problem of scheduling an arbitrary task graph for optimal parallel exe-
cution is another very difficult combinatorial problem (again, an NP-complete problem)

- 11 -

[26]. Thus, we seek heuristic scheduling strategies that provide an approximation to the
longest serial path in the column task graph, whose length is required for computing
maximum speedup. Initially, we consider three strategies that neglect communication
costs, concentrating instead simply on the potential parallelism in executing the var-
ious column operations simultaneously, without regard for delays in propagating any
data that might be required from other processors. Our strategies apply a depth-first
search to either the elimination tree or the column task graph of L. The three different
strategies result from different restrictions placed on the parallelism allowed in execut-
ing the column operation tasks. These restrictions result in different actions taken as
each node is visited during the depth-first search. Two of the strategies serve as upper
and lower bounds for the length of the longest serial path, while the third gives an
intermediate estimate.

3.1. Strategy 1

Our first strategy is the most optimistic. It assumes that a given cdiv(j) task can be
executed as soon as cmod(j, k) has been completed, where node k is the final descendant
of node j in the elimination tree to be completed. Thus, this strategy assumes that any
other required crnod(j, i) tasks, corresponding to any other descendants of node j , will
have already been completed by this point in the execution of the algorithm, which may
not be realistic in practice due to limited computational resources or Communication
delays. This strategy can be interpreted as placing no restriction on which processor
can execute a given task. Thus, this optimistic strategy provides a lower bound on the
length of the longest serial path, and hence an upper bound on maximum speedup.

Given the assumptions in Strategy 1, we compute the longest serial path by ap-
plying depthfirst search to visit all nodes of the elimination tree. The total weighted
path lcngth is computed using the cdiv and cmod weights previously computed. The
recursive depth-first search begins at the root of the tree. The following visit pro-
cedure is applied upon reaching a leaf node, and subsequently to the other nodes as
the algorithm backtracks out of the recursion. We use the notation t (v) to denote the
cumulative weight at node Y,

visit(v)
t(w) = 0
let TI have children V I , . . . ,vk
for i = 1 to IC

endfor
t (v) I= maz(t(v) , t (v ,) + cmod(v, TI*))

t(v) = t(v) + cdiv(v)

Using this algorithm on our small example, we obtain the weighted elimination tree
shown in Figure 6, where the cumulative weights t (v) of each node are shown in square
brackets beside the node. Each of the brackets contains two values in the form [a ,b] ,
where a is the incremental contribution of that node, and b is the length of the longest
path at that point in the tree. By examining this weighted tree, we see that the length
of the longest serial path for the example problem is 14.

- 12 -

Figure 6: Weighted elimination tree for Strategy 1.

3.2, Strategy 2

Our second strategy is the most pessimistic, severely restricting the possible parallelism
in the factorization. It assumes that a given c$iv(j) operation and all of its emanating
cmod(i , j) operations must be done sequentially, which would be the case, for example,
if the cdiv and resulting cmod operations were all done by the same processor. This
extremely pessimistic approach foregoes one of the principal soiirces of parallelism in
matrix factorization, namely the simultaneous execution of multiple cmod operations
emanating from a single coluniii, and thereby provides us with a lower bound 011 the
spcediip that can be expected in practice. In computing the longest serial path using
Strategy 2; we apply depth-first search to visit the nodes of the column task graph,
again using the cdi71 and cmod weights previously computed. The visit procedure
applied at each node is as follows, where again t (v) denotes the cumulative weight at
node u .

vis i t (v)
t (v) = 8
let v haarc children V I , . , , ,vk then
for i = 3. to k

end for
t (v) = maz(t (v) , t (v ;))

t (v) = t (w) t cd iv (v) t C&&,pocmod(v,v)

The results of this strategy for our example are shown in Figure 7, where the bracket
notation is as before. The length of the longest serial path obtained from this strategy
is 16.

- 1 3 -

Figure 7: Weighted column task graph of Strategy 2.

3.3. Strategy 3

Our third strategy places only a mild restriction on the possible parallelism in the fac-
torization. Tt assumes that a given cdiv(j) operation and all of its incoming cmod(j , i)
operations must be done sequentially, which would be the case, for example, if the
cdiv and immediately preceding cmod operations were all done by the same processor.
Superficially, this third strategy may seem similar to the pessimistic Strategy 2, but
it is in fact quite optimistic. In particular, since all of the incoming cmod(j, i) opera-
tions are updating the same column, thcy would have to be done sequentially anyway
to maintain data integrity. Moreover, some of the cnzod operations can be computed
while waiting for the cdiv operations that provide the data for other cmod operations
to be completed. Thus, this strategy provides an estimate for the longest serial path,
and hence for maximum speedup, which should lie between those provided by the first
two strategies. While Strategy 3 does not assume that all “earlier” cmods will have
been completed before the final cdiv(i) upon which c d i w (j) depends, in practice this is
often the case, so that Strategy 3 often gives similar results to the optimistic Strategy
1.

In implementing Strategy 3 we again apply depth-first search to the column task
graph. If there are few ties in the path lengths as we proceed up the graph, then the
results for Strategy 3 resemble those for Strategy 1. As bcfore, we use the previously
computed cdiv and cmod weights, and our depth first search begins at the root of the
graph, with notation as before.

visit(v)
t (v) = 0
let w have children V I ,. . . ,213, then
sort children so that E(v1) 5 t(v2) 5 . . . 5 t (v k)

- 14 -

Figure 8: Weighted column task graph for Strategy 3.

for i = 1 to k

endfor
t (v) = maz(l(v>,t(v;)) + cmod(v, v;)

t (v) = t (v> -i- cdiv(v)

The results of this strategy for our example are shown in Figure 8. It reveals a
longest serial path length of 15.

3.4. Strategy 4

Unlike the first three strategies, our fourth strategy takes into account communication
delays in making results produced by earlier tasks available to later tasks that may
require such data. The specific approach we use is due to Papadimitriou and Yaniiakakis
[XI. The intent of [26] is to provide a simple, architecture-independent method for
evaluating the performance of any algorithm on any parallel computer. The algorithm
is represented by a directed acyclic graph (DAG), with the computational subtasks as
its nodes and precedence constraints or data dependencies between tasks as its edges.
As in [8], this analysis assumes that sufficiently many processors are available to handle
the width of the DAG (i.e., the potential parallelism is not limited by any fixed number
of processors).

As we have seen, a lower bound on the parallel completion time for a DAG is
determined by its longest serial path. However, OUT earlier methods for determining
the length of this path did not take into account communication delays in propagating
results along the path before tasks that need these results can begin execution. In [26],
the communication delay between tasks is measured in units of elementary processor
steps, which is conveniently expressed as the “ineSsage-to-instruction” ratio, denoted

- 15-

by r. Thus, the communication delay is expressed as a multiple of the time required
for an elementary computational task. There are in fact two models given in [2 6] , one
in which all tasks are of unit size and the communication delay is w fixed constant given
by T , and another in which both the task sizes and communication delays vary as a
function of the amount of computation and sizes of messages, respectively.

The heart of the approach of I261 is an approximation algorithm for solving the
problem of scheduling the DAG for parallel execution. This approximation algorithm
is shown in [26] to produce a scheduling of the DAG that is within a factor of two
of being optimal in the time to complete execution of the DAG. Our interest is not
in the schedule itself, but in the longest serial path that it implies, thereby giving
us an additional estimate of maximum speedup that, unlike our previous strategies,
incorporates communication delays.

For the first model, with computational tasks of unit cost and constant commu-
nication delays, the approximation algorithm given in [26] is relatively simple, quite
comparable in its complexity to the algorithms for implementing the previous threc
strategies given above. This simple model is mainly intended to address fine-grain
computations, in which the computational tasks are individual arithmetic operations
and messages consist of individual numbers. The second model, in which both com-
putational tasks and messages are allowed to vary in cost, leads to a generalization of
the approximation algorithm that is substantially more complex. The second model is
intended for relatively coarse-grained computations in which the computational tasks
require several arithmetic operations and the messages consist of several numbers, and
both quantities vary in size from task to task. Strictly speaking, the second model is
obviously more applicable to our medium-grained approach to sparse matrix factoriza-
tion. However, we found the simplicity and elegance of the approximation algorithm for
the first model to be much more appealing, and much more in keeping with the spirit of
our first three strategies for estimating maximum speedup. Moreover, as we will see in
section 4, the simpler model proved to be adequate for explaining the observed results
for sparse Cholesky factorization. We therefore make some simplifying assumptions
that enable us to apply the basic approximation algorithm to our problem.

The basic approximation algorithm of [26] assumes the following:

1. a directed acyclic graph whose nodes are computational tasks requiring equal
execution time;

2. arcs in the graph representing time precedence and functional dependence; and,

3. a positive integer T that measures the communication delay relative to the cost
of the computational tasks.

For the purposes of irnplementing this strategy, we take the column task graph of
L as a representation of the DAG, which includes both the cdiv and cmod column
operations. We assume a uniform “average” cost per column task, and a constant
communication delay T (implicitly assuming a fixed %verage” message size). These
assumptions would be significantly in error for dense matrix factorization, since the
computational tasks and message sizes vary by a factor of n over the course of the fac-
torization. However, they are not grossly in error for sparse matrix f;tctorization, since

- 16 -

the columns get shorter but tend to become more dense as the factorization proceeds.
In this setting, the proper choice of T is somewhat problematic. Given the composite
nature of the “average” message, it is not clear that the basic “communication-to-
computation” ratio of a given architecture (Le., the time to send one floating point
number relative to the time to compute one floating point operation) is applicable,
since the start-up cost for sending the message is amortized over a larger message size.
Moreover, there are various cornmimication protocols and message packetizing effects
that come into play. In addition, the rate at which floating point operations ran be
sustained in a sparse matrix code is dependent iipoa the amount of indexing and in-
direct addressing required by the compact storage scheme. Therefore, in applying this
strategy we will consider a range of plausible vdncs for T.

Since the approximation algorithm can be implemented by a depth-first search of
the task graph, we can express this algorithm in terms similar to our previous three
strategim, again using the same nota,tion.

visit [v)
let “J have descendants q,. . . ,vk

if i = IC then

else

i = sPLin(7- -t 1 , k)

t (v) = k f 1

t(v) = t (v ;) + 2’
sort descendants so that t(v1) 2 t(v2) 2 . . . 2 t (v k)

endif

For illustrative purposes, we will use the value T = 2 for our example problem.
‘raking T = 2 in the above algorithm, we obtain the weighted column task graph
shown in Figure 9, where we have represented the cmod operations, as well as the cdiv
opcrntions, explicitly as nodes of the DAG, and the cumulative weights of the nodes
are shown in parentheses beside each node. The value given in parentheses indicates
the length of the longest path at that node, specifying in “computational units” when
the execution of that task is completed. Examining this weighted column task graph,
we see that the length of the longest serial path is 9 for the example problem.

For any value of T, the path length determined by the approximation algorithm, as
well as the total amount of work, must be multiplied by the average number of floating
point operations required by each task, which is about 1.8 for our small example, in
order to determine the cost in units comparable to those we have used previously.
However, since speedup is a ratio of costs, the particular value of the average cost docs
not enter into the results.

3.5. Summary of Results for Example Problem

The results of the four strategies applied to the example problem are given in tlie
Table 1. As expected, we see that Strategy 3 gives results lying between those given by
Strategies 1 and 2, which serve as upper and lower bounds, respectively, on maximum

- 1 7 -

Figure 9: DAG for Strategy 4 (7 = 2).

Table 1: Siiminary of results for four strategies on example problem.

Strategy 2 2.6875000
Strategy 3 43 2.8666667

24 2.6666667

speedup, at least in the absence of communication delays. Given that it includes the
additional time required for communication delays, Strategy 4 provides an estimate
consistent with the other results.

4. COMPARISON WITH OBSERVED SPEEDUPS

We now compare the estimates for maximum speedup determined by the four stratcgies
outlined above to the speedups actually observed for sparse Cholesky factorization on
an Intel iPSC/2 hypercube. For this purpose we obviously need some test problems
and a parallel algorithm for computing the factorization. To date there have beell
three main types of approaches to developing practical parallel algorithms for sparse
Cholesky factorization on distributed-memory architectures: fan-out [13], fan-in [3] ,
and multifrontal [25]. For a direct comparison of these three schemes, see [5]. All three
approaches are colurnn-based and medium-grained, and therefore fit into the frainework
we have developed. The differences among the schemes amount to different ways of
scheduling the work required for the factorization; in particular they amalgamate sub-

- 18 -

grid size
3 x 3
7 x 7

15 x 15
31 x 31
50 x 50
63 x 63

.........

~

..

tasks and communications in different ways. The column task graph described earlier
applies to each of the schemes in the sense that the temporal precedence relations hold
among the subtasks it specifies. There is, however, no simple relationship between the
arcs of the DAG and the messages actually sent when executing one of these parallel
algorithms. For our numerical experiments, we have chosen to use the fan-in algorithm
given in 131 and further refined in [4]. We have selected this algorithm because it is
among the best performing available and it is the most easily accessible to us in the form
of .z working program for the Intel iPSC/2. 'The performance results we cite below were
provided by Barry Yeyton of Oak Ridge National Laboratory. The speedups cited are
relative to the serial execution time on a single processor of the numeric factorization
phase of Sparspak [6] for the same problem and ordering.

For our set of test problems we use a sequence of sparse matrices derived from a
9-point finite-difference operator on k x k grids ordered by theoretical nested dissection.
The b; x IC grid problem is a standard model problem in sparse matrix computations
because its sparsity pattern is representative of real (planar) applications and because
its high degree of regularity lends itself to theoretical analysis. In addition, we have
chosen to use grid problems and theoretical nested dissection orderings because they
tend to yield better performance in parallel factorization than less regular problems and
orderings, and we wish to understand the performance shortcomings of the factorization
under the ideal conditions in which it should do best. Information about the test
problems is given in the table 2. Symbolic factorization is used to determine the
structure of the Cholesky factor L , from which we can determine the total number of
floating point operations that are required for the factorization. The latter quantity is
reported in the table as "total work.''

no. of eqns. nonzerm in A ____
9 49

361
225 1849
961 8281

21904 2500
3969 34969

_
~

49

....

..

_...-

Table 2: Characteristics of test problems.

Figure 10 shows the estimated maximum speedups for the sequence of test problems
as a function of grid size using each of the four strategies discussed previously, together
with the speedups observed for sparse Cholesky factorization on the Intel iPSC/2 hy-
percube. The speedups shown in the figure for the actual factorization are the best
that were observed over several runs using various numbers of processors up to 64 (the
best speedup is usually obtained for a larger number of processors as the problem size
grows). We see that Strategies 1 and 2 indeed provide upper and lower boiinds on
the other speedups, except for very small grids whose cost is completely dominated by
communication overhead, so that speedup is worse than predicted by even the most

- 19 -

d

I

80

Figure 10: Comparison of results for various strategies with observed speedups for IC x k
grid problems.

pessimistic strategy. We also note that Strategy 3 is almost as optimistic as Strategy
1.

The value used for T in generating the curve shown in Figure 10 for Strategy 4 was
T = 59, which is the basic communication-to-computation ratio (sending one word to
performing one flop) reported by Dunigan [7] for the Intel iPSC/2 hypercube. Since,
as explained earlier, the choice of this value is somewhat arbitrary, we experimented
with a range of choices for T in estimating speedups using Strategy 4. The results of
this experiment are shown in Figure 11. The striking similarity of Figures 10 and 11
indicates that the model used in Strategy 4 is capable of subsuming all of the 0 t h
models, as well as accurately modeling the observed speedups for the actual factor-
ization, simply by choosing an appropriate value for the parameter T . These results
suggest that the intent of Papadimitriou and Yannakakis in [26] to produce a model
that effectively parameterizes this class of parallel architectures has been successfully
realized, at least for this particular problem. Further, the results indicate that the Intel
i Y S C / 2 executes the parallel sparse Cholesky factorization algorithm with an efjcective
communication-to-computation ratio of about 500, which is an interesting fact about
the machine itself, again for this specific problem.

- 20 -

120

100

RQ

60-

40

20

0-

a
E

-

-

-

-

-

_........ 140

, tau=30

rau=59

tau=500

... . . -
rau=4OOo

I
10 20 30 40 50 @I 70

k

0

Figure 11: Estimated speedups for various values of T .

- 21 -

5 . CONCLUSIONS

In this paper we have tried to explain the causes of the observed speedups in sparsc
Cholesky factorization on distributed-memory, message-passing parallel computers.
this end we developed and analyzed a number of theoretical models for determining the
maximuni speedup that coiild be expected for this problem. The first two strategies
were based on rather extreme assumptions concerning the available parallelism, one
very optimistic and the other very pessimistic, and these two strategies provided upper
and lower bounds, respectively, on the maximum speedup. Unfortunately, the gap
between these two hounds is too large for either to be of significant help in explaining
the observed behavior of an actiial parallel algorithm for sparse Cholesky factorization,
which is not surprising considering that these models ignore any communication delays.
A third strategy was based on assumptions of intermediate restrictiveness regarding
possible parallelism, but still neglected communication costs and resulted in a very
optimistic estimate of speedup.

A fourth strategy that takes explicit account of communication delays was based on
an approximation algorithm given in [26] for scheduling an arbitrary DAG for parallcl
execution, which in turn leads to an estimate of the longcst serial path and hence o f
maximum speedup. This model proved to be much more successful, arid by appropriate
choice of the communication parameter r , a full range of behaviors can be produced,
including those of the previous theoretical models as well as the speedups observed
for the actual parallel sparse Cholesky factorization algorithm. Since the pa,ramcter 7

enters the model specifically to characterize communication performance, this model
indicates that a high degree of parallelism is attainable in solving this problem if coni-
munication is sufficiently fast. Moreover, the relatively poor performance observed in
practice can be simulated in the model by assuming poor communication performance.

These results suggest that the answer to the question posed in the introductioii
is that the relatively poor performance of sparse Cholesky factorization lo date on
clistributen-memory, message-passing parallel computers is primarily due to the poor
communication performance ol these machines relative to their floating point speed,
rather than to insufficient parallelism in sparse factorization. For a number of reasons,
however, this conclusion can only be regarded as tentative. First, we have experimented
with a single algorithm (fan-in), a single class of highly regular test problems (k x k
grids), and a single ordering (theoretical nested dissection). Further experimentation
with a wider variety of choices in all three areas is called for in future work. Second,
the models and strategies we have employed involved a number of simplifying assump-
tions, heuristics, and approximations, and therefore cartnot provide absolutely rigorous
resiilts. Finally, we observe that one should not read too much significance into the
close match between observed performance and the model simulation. In particular,
there is no necessary resemblance between the task schedule actually used by the fan-
in algorithm and the schedule implicitly derived by the approximation algorithm of
Strategy 4. Thus, we cannot rule out the possibility that the performance of the fan-in
algorithm was determined as much by its choice of task schedule as by its communi-
cation requirements. Given this fact, one might ask why the approximation algorithui
is rrcat used in practical sparse factorization algorithms, and the answer is simple: al-

- 22 -

though the scheduling algorithm of Strategy 4 is simple to state, it is very expensive to
execute for large problems. Tn fact, this scheduling algorithm is much more expensive
than the factorization itself, and thus its value is for theoreticaa analysis rather than
for practical computation,

Despite our inability to draw definitive conclusions based on our results thus far, we
have nevertheless gained considerable insight into the factors affecting the performance
of a complex and sophisticated algorithm on distributed-memory parallel architectures.
Further analysis and experimentation dong these fines should provide additional evi-
dence to allow more rigorous conclusions, and may also help show the way to improved
performance.

6. References

[l] G.M. Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. Proc. AFIPS, 30:483485, 1967.

[a] G.M. Amdahl. Limits of expectation. International Journal of Supercomputer
Applications, 2188-94, 1988.

[3] C. *4shcraft, S.C. Eisenstat, and J. W-H. Liu. A fan-in algorithm for distrihiited
sparse numerical factorization. SIAM Journal on Scientific and Statistical Com-
puting, 11~593-599, 1990.

[4] C. Ashcraft, S.C. Eisenstat, J. W-N. Eiu, B.W. Peyton, and A H . Sherman.
A compute-ahead implementation of the fan-in sparse distributed factorization
scheme. Technical Report ORNL/TM-11496, Oak Ridge National Laboratory,
Oak Ridge, T N , 1990.

[5] C. Ashcraft, S.C. Eisenstat, J. W-IT. Liu, and A.H. Sherman. A comparison of
three column-based distributed sparse factorization schemes. Technical Report
YALEU/L)CS/RR-S10, Yale University, New Haven, CT, 1990.

[6] E.C.H. Chu, J.A. George, J. W-H. Liu, and E. G-Y. Ng. User’s guide for
SPARSPAK-A: Waterloo sparse h e a r equations package. Technical Report CS-
84-36, University of Waterloo, Waterloo, Ontario, 1984.

[7] T.H. Dunigan. Performance of the Intel iPSC/SSO hypercube. Technical Report
ORNL/TM-11491, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1990.

[8] D.L. Eager, 3 . Zahorjan, and E.D. Lazowska, Speedup versus efficiency in parallel
systems. IEEE Transactions on Computers, 38:408-423, 1989.

[9] G.A. Geist and E. Ng. Task scheduling for parallel sparse Cholesky factorisation.
International Journal of Pal-allPl Programming, 18291-314, 1989.

[lo] J.A. George. Nested dissection of a regular finite element mesh. SIAM Journal
on Numerical Analysis, 10:345-363, 1973.

- 23 -

[1 3] .J.A. George, M.T. Heath, and J. W-H. Liu. Parallel Cholesky factorization on a
shared-memory multiprocessor. Linear Algebra and Its Applications, 77:165-187,
1986.

[la] J.A. George, M.T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse positive
definite systems on a shared memory multiprocessor. International Journal of
Parallel Progmmming, 15:309-325, 1986.

[13] J.A. George, M.T. Heath, J. W-€I. Liu, and E. G-Y. Ng. Sparse Cholesky fac-
SIAM Journal on Scientific and torization on a local-memory multiprocessor.

Statistical Coniputing, 9327-340, 1988.

[14] J.A. George and J . W-€I. Liu. An automated nested dissection algorithm for
irregular finite element problems. SIAM Journal on Numerical Ariulysis, 15:1053-
1069, 1978.

[15] J.A. Georgc and J. CV-€I. Liu. The design of a user interface for a sparse inatrix
package. A C M Transactions on Mathematical Sofiware, 5:134-162, 1979.

[16] J.A. George and J. W-€1. Liu. Computer Solution of Large Sparse Positive Definitc
Systems. Prenticc-Hall, he . , Englewood Cliffs, New Jersey, 1981.

[17] J.A. George and J. W-€1. Liu. The evolution of the minimum degree ordering
algorithm. SIAM Review, 31:1--19, 1989.

[18] J.L. Gustafson. Reevaluating Amdahl's law. Communications of the A CM,
31:532-533, 1988.

[19] M.T. Heath, E. Ng, and B.W. Peyton. Paarallel algorithms for sparse linear sys-
tems. SIAM Review, 33, 1991. to appear.

[XI] J A G . Jess and 1I.G.M. Kees. A data structare for parallel L/U decomposition.
1EE.E Tramactions on Computers, 31:231-239, 1982.

[21] C. Lawson, R . Tianson, D. Kincaid, and E'. Krogh. nasic Linear algebra suhpro-
grams for Fortran usage. ACM Transactions on Mathematical Sofiiuare, 5:308-371,
1979.

[22] J . W-H. Liu. Modification of the minimum degree algorithm by multiple elirnina-
tion. ACM Transactions on Mathematical Software, 11:141---153, 1985.

[23] J. W-H. Liu. Computational models and task scheduling for parallel sparse
C holesky factorization. Parallel Computing, ~327--342, 1986.

[24] J. W-H. Liu. The role of elimination trees in sparse factorization. SIAM Journal
on Matrix Analysis and Applications, 11:134-172, 1990.

[25] R.F. Lucas. Solving planar systems of equations on distributed-nzernory multipro-
cessors. PhD thesis, Department of Electrical Engineering, Stanford University,
1987.

- 24 -

[26] C.H. Papadimitriou and M. Yannakakis. ‘Towards an architecture-independent
analysis of parallel algorithms. SIAM Journal on Computing, 19(2):322--328,1990.

[27] 0. Wing and J.W. Huang. A computational model of parallel solution of linear
equations. IEEE Transactions on Computers, 29:632-638, 1980.

[28] P.H. Worley. ‘The effect of time constraints on scaled speedup. S U M Journal on
Scientific and Statistical Computing, 115338-858, 1990.

[29] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal
on Algebraic anti Discrete Methods, 2:77-79, 1981.

- 25 -

ORNWTM-11786

INTERNAL DISTRIBUTION

43.

44.

45.

46.

47.

48.

49.

50,

51..

52.

1.
2-3.

4.
5.
6.

7-11.
12.
43.
14.
15.
16,
17.

18-22.

B. R. Appleton
T. S. Darlancl
E. F. D’Azevedo
J. J. Dongam
G. A. Geist
M. T. Hcalh
E. R, Jessup

23-27.
28.

29-33.
34.
35.
36.
37.
38.
39.

40.
41-42,

C. H. Romine
T. H. Rowan
R. c. Ward
P. H. Worley
A. Zucker
Central Research Library
O W L Patent. Office
K-25 Plant Library
Y-12 Technical Library

Document Reference Slation
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTRIBUTION

Cleve Ashcraft, Bocing Computcr Services, P.Q. Box 24346, M/S 7L-22 Seattle, WA 98124-
0346

Donald Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St., S.E., Minncapolis,
m 55455

Lawrence J. Bakes, Exxon Production Research Company, P.0. Box 2189, Houston, TX

Jesse L, Barlow, Department of Computer Science, Pennsylvania State University, University
Park, PA 16802

Edward 1%. Warsis, Computer Science and Mathcmatics, P. 0. Box 5800, Sandia National
Laboratory, Albuquerque, NM 87185

Chris Bischof, Mathematics and Computer Science Divison, Argonne National Laboratory,

Ake Bjorck, Department of Mathematics, Linkoping University, Linkoping 58 183, Swedcri

Jean R.S. Blair, Department of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996- 130 1

James C. Browne, Wpartment of Computer Scierrccs, University of Texas, Austin, TX 78712

7’7252-2 189

Cass Avenue, Argonne, IL 60439

u z k c , Scientific Computing Division, National Center for Ahnospheric Rescarch,
odder, CO 80307

- 26 -

53. Donald A. Cdahan, Department of Electrical and Computer Engineering, University of
Michigan, Ami Arbor, MI[48 109

51. J o b C'avallini, Acting Dimctor, Scientific Co p;ating Staff, Applied Mathematical Sciences,
Office of Energy Mesearch, W.S. DepartPnent of Energy, Washington, DC 20585

55. Ian Cavers, Department of Computer Science, University of British Columbia, Vancouver,
Bri,tisb Columbia VBT 1W5, Canada

56. Tony Chm, Depament of Mathematics, Univelrsity of California, Los Angeles, 405 Hilgard
Avexue, Los Angelcs, C.4 90024

57. Jagdish CRmdra, A m y Wszarch Office, P.O. Box 1221 1, Research Trkngie Park, NC 27709

58. Eleanor Chu, Depaaicnt of Computer Science, IJniversiey of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

59. Melvyn Ciment, National Science Foundation, 1800 G Street NW, Washhgton, DC 20550

60. Tom Coleman, Department of Computer Sciencx, Come21 University, Ithaca, NY 14853

6 1. Paul Concus, Mathhem atics and Computing, Lawrence Berkeley I,
94720

62. Andy Cam, IBM T.J. Watson Rcsearch Center, P.0 . Box 228, Yorktown Heights, NY 10598

53. J O ~ I M. Conroy, Supercomputer Rcscarch Center, 17100 Science, Howie, MD 287 15-4300

6-4. Jane K. Cullurn, IBM T. J. Watson Research Centcr, P. 0. Box 218. Yorktown Heights, NY
1059%

65. George Cyknko, Center for Supercomputing Research & Development, 104 South Wright
Stiwt, Ui-bma, IL 61801-2933,

66. George Davis, DqmmzYment of Mathematics, Georgia State University, Atlanta, GA 30303

67. Tim A. Davis, CERFACS, 42 Avcmue Guseave Coriolis, 31057 Toulouse Cedex, France

68. John 9. Dorning, Deparlnient of Nuclear Engineering Physics, Thornton Hall, McCorrnick
Road, University of Virginia, Charlottesville, VA 22901

69. Iain Duff, CSS Division, Harv~Al Lahoraeoiy, lJidcot, Qxon OX1 1 ORA, England

70. Derek L. Eager, Deparlmene of Computational Science, University of Saskatchewan, Saska-
toon, Saskatchewan, Canada

72. Patricia Ekrlein, IIcpam,ent of Computer Sciencc, SUNY at Buffalo, Buffalo, NY 14260

72. Stanley Eisenstat, Rpaurment of Computer Science, Yale University, P. 8. Box Z 158 Yale
Station, New Haven, @TI' 06520

'73. Lars Elden, Department of Mathematics, Linkoping University, 58 1 823 Linkoping, Sweden

14. Ilswasd C. Elmaw, Computer Science k p a m e n t , University of Maiylmd, College Park, M11
20742

ratory, Berkeley, CA

- 27

- 28 -

96. Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling Air Force
Base, W a s ~ ~ ~ ~ O ~ ~ DG 20332

97. Robert E. Huddleston, Computation Department, Lawrence Livermore National Laboratory,
P. 0. Box 808, T.ivemore, CA 94550

98. Ilse Ipsen, I>cpamient of Computer Science, Yale University, P.O. Box 2158 Yale Station,
New Haven, C T 06520

99. knnar t S, J O ~ S S O A , D e y m e n t of Computer Science, Yale University, P. 0. Box 2158 Yale
Station. New Haven, @T 06520

100. Harry Jordan, Department of Elcctrkal and Computer Engineering, University of Colorado,
Boulder, CO 803W

101. Barry Joe, Department of Computer Science, University of Alberta, Edmonton, Alberta T4G
2H1, Canada

102. Ro Kagstrom, Instime of Infomiation Processing, IJniversity of Umea, 5-901 87 Umea,
Sweden

103. Malvyn Kalos, Courant Instihitc for Mathematical Sciences, New Vork University, 25 Z
Mercer Street, New York, NY 10012

104. IIans Kapcr, Mathematics and Computer Science Division, Argonne National Laboratory,
9700 South Cass Avenue, Argonne, IL 60439

105. Thda Kaufman, Bell Lahratorics, 6fXI Mountain Avenue, Murray Hill, NJ 07974

106. Rcbett J. Kee, Applied Mathematics Division 833 1, Sandia National Laboratories, Livemorc,
CA 94550

10'1. Kenneth Kennedy. Department of Computer Science, Rice University, P.O. Box 1892, Hous-

108. Tom Kitchens, Deparlment of Encrgy, Scientific Computing Staff, Office of Energy Research,
EK-7, Office G-236 Gcmantown, Washington, DC 20585

109. Richard Lau, OIfice of Naval Research, 1030 E. Green Street, Pasadena, CA 91 101

110. Alan J. Laub, Department of Electrical. and Computer Engineering, University of California,
Santa Barbara, @A 93106

11 1. Wo'cxp.9 L. I,auner, Amy Research Office, P. 0. Box 1221 E I Research Triangle Park, NC
27709

112. Charles Lawson, MS 301-490, Jct Propulsion Laboratsly, 4800 Oak Grove, Pasadena, CA
91 l@

ton, $x 77001

113. Peter D. Lax, Courant Institute of Mathematical Science, New York IJniversity, 251 Mercer
Street, New York, NY 10012

114. Edward D. Lazowska, Department of Computer Science, Univ. of Washington, Seattle, Wta

115. James E. k i s s , 13013 Chestnut Oakk, Gaithersburg, 20878

- 29 -

116. John 6. Lewis, Boeing Computer Services, P. 0. Box 24346, M / S 7L-21, Seattle, WA

117. Jing Li, UlSL Inc., 2500 Park West Tower One, 2500 City West Blvd.. Houston, TX 77042-
3020

118. Heather M. Liddell, Director, Center for Parallel Computing, Department of Computer Sci-
ence and Statistics, Queen Mary College, University of London, Mile End Road, London E1
4NS, England

119. Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
Downsview Ontario, Canada M3J 1P3

120. Robert F. Lucas, Supercomputer Research Center, 17100 Science ve, Bowie, MD 20715-
4300

121. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY 14853

122. Thomas A. Manteuffel, Computing Division, Los Alamos National Laboratory, Los Alamos,
NM 87545

123. Paul MeSSind, Mail Code 158-79, California Institiutc of Technology, 1201 E. California
Blvd., Pasadcna, CA 91 125

124. James McGraw, Lawrence Livcrmore National Labordtory, L-306, P. 0. Box 808, Livermore,
CA 94550

125. Neville Moray, Department of Mechanical and Industrial Engineering, University of Illinois,
1206 West Green Street, Urbana, IL 61801

126. Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025

127. Brent Moms, National Security Agency, Ft. George G. Meade, MD 20775

128. Dianne P. O’Leary, Computer Science Deparlment, University of Maryland, College Park,
MD 20742

129, James M. Ortega, Department of Applied Mathematics, Thornton Hall, University of Virginia,
Charlottesville, VA 22901

130-134. L. Susan Ostrouchov, Department of Computer Science, Ayres Hall, University of Tennessee,
Knoxville, TN 37996-1301

135. Chris Paige, Department of Computer Science, McGill University, 805 Sherbrooke Street W,
Montreal, Quebec, Canada H3A 2K6

136. Christos PI. Papadimitriou, Department of Computer Science and Engineering, University of
California, San Diego, CA 92093

137. Roy P. Pargas, Department of Cornpuler Science, Clemson University, Clemson, SC 29634-
1906

98 124-0346

138. Beresford N. Parlett, Department of Mathematics, University of California, Berkeley, CA
94726)

139. Memll Patrick, Department of Computer Science, Duke IJniversity, Durham, NC 27705

- 30-

14Q.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

Mobat J. Plenmorps, Kkpaments of Mathematics and Computer Science, North Carolina
State University, Raleigh, NC E7650

Jcsse Poore, Department of Computer Science, Ayms Hall, University of Tennessee, Knox-
ville, 'IW 37996-1301

Alex Pothen, Dcparmene of Computer Science, Pennsylvania State IJniversity, University
Pak, PA 16802

Yuanchang Qi, IBM European Petroleum Application Center, P.O. Box 585, N-4040
Hafrsfjord, Norway

Giuseppe Radicati, IBM Europen Center for Scientific and Engineering Computing, via del
Giorgione 159,1-00147 Roma, Italy

John K. Reid, CSS Division, Building 8.9, AEIE Hmelil, Didcot 0x011, Englmd OX1 1 ORA

Werner C. Rheinboldt, Department of Mathematics and Statistics, IJniversity of Pittsburgh,
Pittsburgh, PA 15260

John R. Rice, Computer Science Department, Purdue University, West Lafayeete, IN 47907

Garry Ksdrigue, Numerical Mathematics Group, Lawnrnce Livernlol-e National Laboratory,
Livemore., CA 945.50

Donald J. Rose, Department of Computer Science, Duke University, Durham, NC 27706

Edward Rothberg, Fkpaatment of Computer Science, Stanford Universily, Stanford, CA
94305

Axel Wuhe, Departinem of Computer Science, Chalmers University of Technology, S-4 1296
Gotmbrg, Sweden

Joel Salt;., ICASE, MS 132C, NASA Langley Research Center, FPamyton, VA 23665

Ahied €3. Sameli. Center for Supercomputing K&D. 1384 W. Springfield Avenue, University
of Illinois, Urbana, IE 61801

Michael Saunders, Systems Optirni,%ition Laboratory, Operations Research Department, Sran-
ford Universily, Stanford, CA 94305

R c k r t Schreiber. RIACS, MS 230-5, NASA Ames Research Center, Mofett Field, @A 94035

I II . Sca"nult7, Department cf Computer Science, Yale University, P. 0. Box 2158 Yalc
Station, New Haveil, c"T 06520

David S. Scott, Intel Scientific Computers, 1520% N. W. Greenbrier Parkway, Beaverton, OR
97006

Lawrencr, F. Shampine, Mathematics Depammcne, Southern Methodist IJniverslty, Dallas, T X
7527s

Andy Shenmm, Depafimenat of Connputcr Science, Yak University, P.O. Box 2158, Yale Sta-
tion, New Haven, CT 06520

- 31 -

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

178.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180-1 89.

Kermit Sigmon, Department of Mathcmatics, University of Florida, Gainesville, FL 326 1 1

Horst D. Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA 94035

Danny C. Soremen, Department of Mathematical Sciences, Rkc University, P. 0. Box 1892,
Houston, TX 7725 1

G. W. Stewart, Computer Science Department, University of Maryland, College Park, MD
20742

Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000, Boulder,
co 80307

PMippe Toint, Beparttnenl of Mathematics, University of Nmur, FUNOP, 61 rue de Brux-
elks, B-Namur, Belgium

Hank Van der Vorst, Department of ‘Ikchn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

Charles Van I m n , Department of Computer Scicnce, Cornel1 University, Ithaca, NY 14853

James M. Varah, Centre for Integratcd Computer Systems Research, University o f British
Columbia, Office 2053-2324 Main Mdl, Vancouver, British Columbia V6T lW5, Canada

Robert G. Voigt, XCASE, MS 132-C, NASA Langley Research Center, Hampton, VA 23665

Phuong Vu, Cray Research Inc., 1408 Northland, Mendota Heights, MN 55120

amcr, Department of Mathematical Sciences, 0- 104 Martin Hall, Clemson
University, Cleemson, SC 2963 1

Mary F. Whceler, Rice University, Deparlmerit of Mathematical Sciences, P.O. Box 1892,
Houston, TX 7725 1

White, Los Alamos National Laboratory, P. 0. Box 1663, I M S - ~ ~ S , Los Alamos,

Margarct Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Mihalis Yannakakis, AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150, Austin, TX
78731

07974-2070

John Zahorjan, Depamcnt of Computer Science, University of California, Santa Barbara, CA
93106

Earl Ymijewski, Department of Computer Science, University of California, Santa Barbara,
CA 93106

Office of Assistant Manager for Energy Research and Development, U.S. Department of
ak Ridge Operations Office, P.O. Box 2001, Oak Ridge, T N 37831-8600

Office of Scientific & Technical Information. P. 0. Box 62. Oak Ridge. TN 37831

