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ABSTRACT 

Recently, a new formalism for solving nonlinear problems has been formulated. 
The formalism is based on the construction of advanced and retarded propagators 
that generalize the customary Green’s functions in linear theory. One of the 
main advantages of this formalism is the possibility of transforming nonlinear 
differential equations into nonlinear integral equations that itre usually easier to 
handle theoretically and computationally. The aim of this paper is to compare, on 
an example, the performances of the propagator method with other methods used 
for nonlinear equations, in particular, the decomposition method. The propagator 
method is stable, accurate, and efficient for all initial values and time intervals 
considered, while the decomposition method is unstable at large time intervals, 
even for very conveniently chosen initial conditions. 

V 





1. INTRODUCTION 

Recently, a new formalism for solving nonlinear problems has been formulated 
by Cacuci, Perez, and Protopopescu [3,4]-for scalar problems-and subsequently, 
generalized by Cacuci and Protopopescu [5] to multicomponent (;.e., matrix) 
systems. As shown in Refs. [3-51, this formalism is the natural generalization 
to nonlinear problems of the Green’s function formalism in linear theory, and 
is canonically and exactly applicable to any nonlinear operator equakion when 
the Giiteaux-derivatives of the respective operators exist. Fundamental to this 
formalism is the construction of advanced (forward) and retarded (backward) 
propagators; these propagators generalize the customary Green’s functions, to which 
they reduce exactly for linear problems. In particular, this formalism does not 
contain any inherent approximations, and is free of linearization of “smallness” 
assumptions. 

On the other hand, the decomposition method proposed by Adomian [l] is 
also presented as an exact method for solving nonlinear equations-involving 
no linearization or “~mallness’~ assumptions, This method is based on the 
decomposition of the nonlinear operator under consideration into an easily invertible 
linear operator and a polynomial expansion-an infinite series, in generd-of the 
remaining nonlinearities. 

The aim of this work is to present a comparison between the nonlinear 
propagators and decomposition methods for a simple, but often encountered, Riccati 
equation whose analytical solution can be obtained by standard methods. Following 
a brief review, presented in Section 2 of the nonlinear propagator formalism 
originally developed in Refs. [3-51, the application of this formalism to the Riccati 
equation is presented in Section 3. The decomposition method is applied to the 
Riccati equation in Section 4. The numerical results are presented in Section 5;  
these results allow a comparison of the stability (or lack thereof), accuracy, and 
computational efficiency properties of these two methods; this cornparison also 
includes results obtained by two standard, often-used methods (finite difference 
and Picard iteration) for solving nonlinear equations. 
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2. PROPAGATORS FOR NONLINEAR 
SYSTEMS: A BRIEF THEORETICAL REVIEW 

For the reader's convenience, a brief review of the formalism developed in 
Refs. [3-51 will be specifically applied to a scalar (one component) equation, in 
accordance with the application considered in this work. The general nonlinear 
equation in abstract form reads 

~ ( u )  + 6. r ( u )  = j + E e , (2.1) 
where N ( u )  represents the nonlinear equation itself, I?( u )  represents the nonlinear 
initial/boundary conditions, f represents the volume source, and g represents the 
boundary source (including initial conditions). The source term f includes the 
inhomogeneities of the nonlinear operators, so we can consider without loss of 
generality that N ( 0 )  = 0, and r(0) = 0. The &distributions multiplying the 
boundary terms in Eq. (2.1) allow a formally unified abstract treatment of both 
boundary conditions and operators. 

The vector u is considered to be an element in the Hilbert space LZ(R2) endowed 
with an inner product denoted by <, >; throughout this work, R denotes the set 
(including the time-domain for time-dependent problems) that defines the phase 
space for Eq. (2.1). Since we include the boundaries in the formal treatment, R is 
a closed set containing the boundaries of the phase space underlying the problem. 

The first Giiteaux-derivatives of the operators appearing on the left side of 
Eq. (2.1), defined as 

[ N ' ( ~ )  + s - r'(u)lh E {d/dEpv(.rt + Eh)  + q u  -t 4 1 } c = o  (2.2) 
are required to exist. The operators N'(u),"'(u) depend nonlinearly on u but act 
linearly on the vector h. 

The operator adjoint to N' (u )  + 6 - Y(u) is defined via the usual linear duality: 

< [ N ' ( ~ )  + 6 .  r+)p, >=< h, [ N ' * ( ~ )  + s* - rf*(u)12, > . (2.3) 
In Eq. (2.3), N"(u)  is the formal adjoint of N' (u ) ,  and I"*(u) includes all surface 

operators on w. Note in Eq. (2.3), that the operator S* is not the same &distribution 
as in Eqs. (2.1) or (2.2), but is a distribution associated with the adjoint boundary 
space. This distinction is highlighted by using the symbolic notation 6". 

Following Refs. [3-51, we define the operators 

and 

note that the operators L,  y, L*, and y* still act on h and w, respectively, 
while retaining a nonlinear parametric dependence on u. Note also the important 
relationship satisfied by L(u)  and y(u): 
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[qu) + 6. y(u)lu = qu) + 6 - . (2.6) 
Relationship (2.6) underscores the important role played by the integrated 

operators L(u) ,  L*(u),  ~('LL), y*(u): in contradistinction to the variational operators 
N'(u) ,  N'*(u), y'(u), y'*(u), that axe usually studied in relation to Eq. (Z.l), it is the 
pair of integrated operators {L(u) ,  y(u)} that restores exactly the original nonlinear 
system (2.1) when applied to u. 

The backward (retarded) and forward (advanced) propagators are defined as 
the inverses of the operators L(u)  + 6 - y(u)  and t * ( u )  + S* - -y*(u), respectively: 

[.L*(u) + S* - r * ( ~ ) ] G z  = 1 , (2.81, 
where 1 denotes the unit operator. The Eqs. (2.7) and (2.8) can be written in terms 
of formal integral kernals as 

[L(u(t))  + S - +y(~( t ) ) ]G(u( t ) ;  t,t') = S ( t  - t ') , (2.9) 
and 

[L*(u(t)) + 6* +y*(u(t))]G*(~(t);  t ,  t")  = 6(t  - if") , (2.10) 
where t is a shorthand notation for the generic variable in the domain R (including 
its boundaries), 

y ( u )  and L*(u) + 6" - y*(u) act linearly on 
the respective propagators, the relationships between the propagators and the 
expression for the solution u in terms of these propagators can be derived, as 
previously noted [3,4] in the same spirit as for the usual Green's functions in linear 
theory. Thus, forming the inner products of Eqs. (2.9) and (2.10) with G*(u(t); t ,  i") 
and G(u(t); t ,  f), respectively, and subtracting leads to the reciprocity relation 

Since the operators L(u)  + 6 

G*(u(t); t ,  t ' )  = G(u(t'); i', t )  . (2.11) 
The solution u of the original nonlinear system (2.1) is obtained in terms of the 

forward propagator G: as follows: 
u = [by Eq. (2.1)] 

= < u , d > - < N ( u ) + 6 . r ( z l ) , G = > + < f + 6 . g , G * , > = [ b y E q s . ( Z . l O ) a n d  

= < U, [L*(u) + 6* Y*(u)]GE > - < [L(u)  + 6 ~ ( u ) ] u ,  GG > + < f + 6 g, G: > (2-611 

= < f +6.q,G: > ,  (2.12) 

where the new surface term q contains the original surface term g and the surface 
terms arising from the respective integrations by parts of L* and L over Q. (Recall 
that L" is the formal adjoint of L.) Using the reciprocity relationship (2.11) in 
Eq. (2.12) yields the solution u in terms of the backward propagator G, as 

(2.13) 



3. APPLICATION OF THE 
NONLINEAR PROPAGATOR METHOD 

T O  THE RICCATI EQUATION 

We consider the Riccati equation 

- + + u  du 2 - c = o ,  

dt 

subject to the initial condition 

lim u( t )  = ui , 
t+O 

where t E ( O , t f ) ,  and b > 0, c > 0, ui  > 0 are positive constants. A simple 
identification yields N ( u )  = 9 + bu2, 6 - r ( u )  = 6(t) - u(t) ,  f = c, g = U i -  The 
unique solution of Eqs. (3.1) and (3.2) can readily be obtained by standard methods 
as 

u, + (~/b) ' /~tanh[t(bc) ' /~] 
u(t) = 

1 + ~ i ( b / ~ ) ' / ~ t ~ ~ ~ ~ h [ t ( b c ) ' / ~ ]  (3.3) 

To apply the propagator method of Refs. [3-51 as sketched in Section 2, we 
consider that u E & ( [ O , t j ] )  and calculate the Gcteaux-derivative, N'(u) ,  of N ( u )  
by applying the definition given in Eq. (2.2) to Eq. (3.1). This gives 

dh 
dt 

N'(u)h = - + 2buh ; (3.4) 

note that the operator N' (u )  acts linearly on h and depends parametrically on u.  
The formal adjoint, [N'(u)]*,  of N ' ( u )  is readily obtained from Eq. (3.4) as 

dv 
[N'(u)]*v = --& + 2buv . (3.5) 

The operators L(u)  and L*(u) are obtained by applying Eqs. (2.4) and (2.5) to 
Eqs. (3.4) and (3.5), respectively. This yields 

dh 
dt 

L(u)h = - + buh , 
and 

do 
dt 

As shown by Eqs. (2.12) and (2.13), the solution ~ ( t )  of the Riccati equation 
can be obtained in terms of either the forward propagator G*,(t, t ') or the backward 
propagator G,(t, t'). The forward propagator GG(t, t ') is the solution of 

L*(u)v = -- + buv . (3.7) 

dGE(t, t') 
dt 

+ bu(t)G:(t,t') = 6(t - t ' )  , L*(u)G*,(t,t') = - 
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Gt( t , t ' )  = 0, at t = t f  (i.e., for t > t ') . (3.9) 
As expected, Eq. (3.8) is a (first-order, nonhomogeneous) linear equation for 
G:(t, t ' );  its solution is 

G:(t, t ' )  = H+(t' - t )  exp [ l,t bu(r)dr] , 
where H+(t' - t )  is the unit step (Heaviside) function defined as 

(3.10) 

(3.11) 

The retarded propagator G,(t, t") satisfies the linear system 

(3.12) 
dG,(t, t")  

d t  
+ b~(t)G,( t ,  t")  = 6( t  - t")  , L(u)G,(t, t") = 

G,(O,t") = 0, at t = 0 (;.e., for t < t") . (3.13) 

Tlie solution of Eqs. (3.12) and (3.13) is 

G,( t ,  t") = H+(t - P) exp [ [ I  bu(i)di] . (3.14) 

As expected, the propagators GE and G, satisfy the reciprocity relationship (2.11). 
The operations leading to Eq. (2.12) are performed as follows: 

-u(t') = / t 3 ( e G ; ( t , f ' ) +  bu2G;(t,t') - cG;(l,t ')) dt  

0 dt 

= [u(t)G:(t, t')]? - cG;(t,t')dt . 
This expression can be further reduced by using Eq. (3.9) and interchanging t and 
t' to obtain 

u( t )  = 1'' cG:(t', t)dt' + u*G;(O, t )  . (3.15) 

Using the reciprocity relationship (2.12) in Eq. (3.15) gives 

u( t )  = Lt3 cG,(t, t')dt' + uiG,(t, 0) . (3.16) 

Replacing the propagators G*, and G, in Eqs. (3.15) and (3.16) by their 
respective expressions given by Eqs. (3.10) and (3.14) gives the following fixed-point 
form equation for u( t ) :  
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where the nonlinear operator JV' is given by 

t 
(n /u) ( t )  = u; e - s,' b u ( r ) d r  + c 1 dt' e- L: b U ( T ) d T  (3.17) 

By direct substitution, it is easy to verify that Eq. (3.16) satisfies the Riccati 
equation (3.1) and (3.2). The fixed-point Eq. (3.16) can be solved numerically by 
several methods. In the following, we solve it by the Picard iterative scheme, which 
is simply 

,("+I)( t )  = Nu'")(t) , (3.18) 

where u(')(t) is an initial guess, for example, uo(t) = u;. 
To write a computer code for an arbitrary number of iterations, it is necessary 

to approximate the integrals in Eq. (3.17). For this purpose, we divide the time axis 
[ O , t f ] ,  where t f  is the final time, into J equal closed intervals [ t j - I , t j ] ,  j = 1,. . . , J, 
where t J * E  j A  and A E t f / J .  If A is chosen to be sufficiently small, the iterate 
u(")( t )  can be approximated by 

where u:?' E u(")(tj).  Evaluating Eq. (3.18) at an arbitrary time step t j  gives 

(3.20) 

The first integral in the definition of n/ is discretized by replacing Eq. (3.19) in 
(3.18) and performing the respective integration over 7, i.e., 

(3.21) 

Using Eq. (3.19) in the second integral of n/(t) in Eq. (3.17) leads to expressions 
involving the error function. Evaluating these expressions exactly would result in a 
substantial computational penalty; instead, we ignore the quadratic (in t )  part of 
the exponential to obtain 

(3.22) 
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The approximation in (3.22) is justified a posteriori by the very high accuracy of 
the resulting solution. The expressions (3.22) and (3.21) are replaced in Eq. (3.20) to 
calculate iteratively the solution u( t )  to the Riccati equation. To avoid re-evaluating 
the sums and double sums at each time step, the equation that results by replacing 
(3.22) and (3.21) in Eq. (3.20) is 

i 
U .  3 (n+l) = ui sj"' + c pi"! 1 . l  , (3.23) 

k= 1 

where 

(3.24) 

(3.25) 

(3.26) 



4. APPLICATION OF THE DECOMPOSITION 
METHOD TO THE RICCATI EQUATION 

As amply discussed in Ref. [l] and references therein, the decomposition method 
involves the separation of a nonlinear equation into a linear part that can be 
inverted, and expressing all remaining nonlinearities in a polynomial form. This 
separation is somewhat arbitrary and when the linear part is zero one has to create 
one by adding and subtracting a convenient linear operator. For the Riccati equation 
considered in Eqs. (3.1) and (3.2), one naturally identifies the linear and nonlinear 
operators with and c - bu2, respectively. The decomposition method leads to the 
following iterative expression for the solution u( t ) :  

d 

00 

u ( t )  = c , 
n = O  

where 

and 

with starting values, for n = 0, given by 

and 

f " ) ( t )  = c - buj  2 . 

The Nth approximate to Eq. (4.1) is defined as 

N 

(4.5) 

n=0 

To implement Eqs. (4.2) through (4.6) into a computer program for any N ,  it is 
necessary to derive a general expression for ~ ( ~ ) ( t ) .  Furthermore, the computational 
efficiency of such a code can be improved substantially if ~ ( ~ ) ( t )  could be written 
in a recursive form. It is easy to show that, for all n > 0, we can write ~ ( ~ ) ( t )  in 
the implicitly recursive form 

and 
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k=O 

where the coefficients cdn) satisfy the recursive relation 

with 

= U ;  , = (C - bu: ) .  (4.10) 

The recursion relationship (4.9) for the coefficients dn) is obtained by replacing 
Eqs. (4.7) and (4.8) in Eqs. (4.2) and (4.3), and performing the respective 
integration. The validity of Eqs. (4.7) and (4.8) can be readily verified by 
mathematical induction. Thus, the Nth approximate, u ~ ( t )  to the solution u( t )  of 
the Riccati equation is obtained by substituting Eqs. (4.7) through (4.9) in Eq. (4.6); 
this gives 

(4.11) 



5. NUMERICAL RESULTS AND CONCLUSIONS 

This section presents the results of comparing the stability, accuracy, and 
computational efficiency of the nonlinear propagators methods coupled with the 
Picard iteration scheme, as given by Eq. (3.23), and the decomposition method, 
as given by Eq. (4.11). In the tables presenting the numerical results, these 
methods will be labeled as PROP-PIC and DECOMP, respectively. For comparison 
purposes, we will also include the results given by applying two standards methods- 
an implicit finite difference (FD) and a Picard iteration schemes-directly on the 
Riccati equation. 

The finite difference (FD) scheme yields an expression for the solution at the 
current time step, uj, in terms of the solution at the previous time step, ~ j - 1 ~  as 

1 + 4bA2 ( C  + uj-l/A) /2bA , j 2 1 . (5.1) 1 
The negative square root results in an unstable method; hence, only the positive 
sign in Eq. (5.1) was implemented in the computer program used to generate the 
nu*merical results. The evolutionary nature of Eq. (5.1), whereby the solution at 
any time step relates to the solution only at the immediately previous step, enabled 
us to use a time-stepping algorithm in our code. 

To apply the Picard iteration to the Riccati equation, we first integrate Eq. (3.1) 
once to obtain 

where 

(5.3) 2 f ( ~ ) =  C -  bx . 
Applying Picard's iterative method to Eq. (5.2) and evaluating the resulting 
expression at time step t j  gives 

This equation can be written in the recursive form 

J" ~ ( u ( ~ - ' ) ( T ) )  d r  . (5.5) 
(n) - (n) uj - u j - 1 +  

tj-1 

The integral in Eq. (5.5) is evaluated using the trapezoidal formula on f itself 
so that 

In the following, the results given by Eq. (5.6) will be labeled INT-PIC (standing 
for "integral- Picard"). 

10 
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The comparative study of the stability, accuracy, and computational efficiency 
of the DECOMP, PROP-PIC, FD, and INT-PIC methods can be greatly simplified 
by rescaling Eqs. (3.1) and (3.2) so as to reduce the number of parameters from 
three (;.e., b,  c, and P L ~ )  to only one. This is achieved by introducing the scaling 

to recast Eq. (3.1) into the equivalent form 

dv/& = 1 - V* , ~ ( 0 )  = . (5.8) 

Thus, the numerical comparisons to follow will be done for Eq. (5.8) which is 
equivalent to Eq. (3.1) with b = c = 1; the initial conditions we have chosen are: 
vi = 1.1, 1.5, 2, and 4. The analytical solution of Eq. (5.8) is 

vi + tanfi s 
V ( s )  = 

1 + vjtanh s * 
(5.9) 

The availability of the exact solution, Eq. (5.9), makes it possible to evaluate the 
relative pointwise accuracies of the numerical solutions obtained from the different 
methods. This accuracy is defined as 

(5.10) 

where sj z & t,. 
exact solution at s J is within 
This time step, S J ,  can be calculated from the approximate formula 

The final time step for each value of the initial condition was chosen so that the 
of its steady state value v = 1 (i.e., PL = m), 

(5.11) 

As will be seen in the tables below, not all methods were stable everywhere. 
However, for the unstable methods, which diverged numerically before reaching SJ, 
we experimented to obtain for each vi the largest time level that the respective 
method can calculate before diverging. Also, the number of time steps, J ,  was 
chosen for each vi so that a smaller J would result in an unacceptable accuracy; we 
set 

The results of our comparisons for the four initial conditions are shown in 
Tables 1 through 4. It is clear from these results that the DECOMP method is 
highly unstable. Even for the smallest initial condition, vi = 1.1, the method 
diverges at s = 1.5, long before the specified find time s = 2.3. For the larger 
initial conditions, the method diverges at even smaller time levels. Instability of 
the DECOMP method likely stems from the secular terms that it generates. For 
final time levels where the DECOMP method is stable, the results produced axe 

to be the threshold for acceptable accuracy. 
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quite accurate, even though the method takes a very large number of iterations to 
converge. 

In contradistinction to the DECOMP method, the PROP-PIC method is stable 
for all initial conditions and final time levels considered here. This method 
achieved the specified level of accuracy with rather large time steps (especially 
when compared to thc implicit FD method) and in a relatively small number of 
iterations. The stability of this method has been predicted earlier [1,2] because the 
secular terms appear only in their summed form, which is a decaying exponential. 

The implicit FD method is stable, as expected on theoretical grounds, for 
all cases considered; however, the larger initial conditions require extremely large 
numbers of time steps in order to achieve the specified accuracy. This, of course, 
reflects very heavily on the CPU time requirements (e.g., between ten and twenty 
times that required by the PROP-PIC method). The INT-PIC method is unstable, 
but less so than the DECOMP method-in the sense that for the same initial 
condition, the INT-PIC method can reach a larger time level before diverging. This 
method is inferior to the PROP-PIC and the implicit FD methods because it is 
unstable at large time levels for vi 2 1.5. When it converges, the INT-PIC method 
requires a moderate number of time steps to achieve the specified accuracy. For 
the case oi = 1.1, when the INT-PIC method converged over the entire specified 
time interval, it required three times as many time steps, almost twice as many 
iterations, and slightly more CPU time than the PROP-PIC method to achieve 
comparable accuracy. Even for the case vi = 1.5, the PROP-PIC method required 
fewer time steps, fewer iterations, and only a slightly larger CPU time, even though 
the INT-PIC method diverged beyond s = 2.7. 

Ba.sed on the foregoing discussion of numerical results, we conclude that the 
method of nonlinear propagators is at least as efficient and accurate as the finite 
difference or straightforward Picard iteration method, while the decomposition 
method diverges quickly-being useful only for small time values. Of course, 
the Riccati equation-a simple ordinary differential equation-considered in this 
work is not a definitive benchmark for judging the comparative efficiency and 
accuracy of either the method of decomposition or the method of nonlinear 
propagators. These methods should be benchmarked on initial/boundary value 
problems involving nonlinear partial differential equations. A first step in this 
direction for benchmarking the method of nonlinear propagators has recently .been 
taken by Cacuci and I<arakashian [2], who report that for the Korteweg-de Vries 
equation this method is superior to all but one (a finite element method, which is 
of eqzlzvizlent efficiency) of the methods presently available for solving this equation. 



ACCURACY 

PROP-PIC 

~ 

NUMBER NUMBER 
CPU (sec) ITERATIONS TIME STEPS 

1 INT-PIC 

.3E-4 .181 624 10 

I I 

METHOD 

DECOMP 

i 

(final time = 1.5) 

.9E-4 

I 

.972 NA 900 

'8E-4 1 .144 1 l6 I 30 

COMMENTS 

I 
Unstable for 

final time 2 1.6 
Number time steps 

= 10,000 

I 
Stable 

------I 
Stable 

1 Stable 

Table 1. Comparison of Results of the Four Methods for 
Initial Condition vi  = 1.1 and Final Time s = 2.3 Unless Stated Otherwise 



I METHOD 

DECOMP 

PROP-PIC 

F. D. 

INT-PIC r- 
ACCURACY 

.8E-4 

.8%4 

.9%4 

.9E-4 

CPU (sec) 

.625 

.190 

6.458 

.165 

NUMBER 
ITERATIONS 

1514 

12 

NA 

20 

NUMBER 
TIME STEPS 

10 
(final time = .8) 

45 

6500 

100 
(final time = 2.7) 

COMMENTS 

Unstable for 
final time 2 .9 

Number time steps 
= 10,000 

Stable 

Stable 

Unstable for 
final time 2 2.5 

Number of time steps 
= 10,000 

Table 2. Comparison of Results of the Four Methods for 
Initial Condition vi = 1.5 and Final Time s = 3.0 Unless Stated Otherwise 



METHOD ACCURACY 

DECOMP 

PROP- P IC 

NUMBER NUMBER 
CPW (sec) ITERATIONS TIME STEPS 

1 F.D.  

.8E-4 

.9&4 

1 INT-PIC 

-412 13 95 

12.653 NA 15000 

.9Ex 

~ 

.184 20 130 
(find time = 2.3) 

Table 3. Comparison of Results of the Four Methods for 

COMMENTS 

Unstable for 
final time 2 .G 

Number time steps 
= 10,000 

Stable 

Stable 

Unstable for 
final time 2 2.4 

Number of time steps 
= 10,000 

Initial Condition vi = 2.0 and Final Time s = 3.3 Unless Stated Otherwise 



METHOD 

DECOMP 

PROP- P IC 

F. D. 

INT-PIC 

ACCURACY CPU (sec) 

. 3 w  

~ 

.099 

.9%4 2.661 

. 9 E 4  36.317 

I 
NUMBER NUMBER 

ITERATIONS TIME STEPS 

163 10 
(final time = .24) 

~ 50000 

15 210 
(final time = .9) 

COMMENTS 

Unstable for 
final time 2 .3 

Number time steps 
= 10,000 

Stable 

Stable 

Unstable for 
final time 2 1.0 

Number of time steps 
= 10,000 

Table 4. Comparison of Results of the Four Methods for 

Initial Condition vi = 4.0 and Final Time s = 3.6 Unless Stated Otherwise 
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