
ORNL/TM-11454

A Data Acquisition Work Station
for ORELA

B. D. Rooney
J. H. Todd

R. R. Spencer
L. W. Weston

MANAGED BY
MAR EMS, INC.
FOR
DEPARTMENT OF ENERGY

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-840 1, FTS 626-840 1.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

NTlS price codes-Printed Copy: & Microfiche A01

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

I

8

Engineering Physics and Mathematics Division

A DATA ACQUISITION WORK STATION

FOR ORELA

B. D. Rooney
J. H Todd
R. R. Spencer
L. W. Weston

Date Published - September 1990

Prepared f o r
Energy Programs Div i s ion

OAK RIDGE NATIONAL LABORATORY
Qak Ridge, Tennessee 3783 1

opcrated by
Martin Marietta Energy Systems, Jnc.

for the
US. DEPARTMENT OF ENERGY

under Contract Nu. DE-ACO5-840R21400

3 4 4 5 b 0324244 4

TABLE OF CONTENTS

. V ABSTRACT

1 . INTRODUCTION . 1

2 . DESCRIPTION
2.1 General
2.2 Computer
2.3 MC-DIO-32F I/O Port Adapter
2.4 Software
2.5 Data Handler
2.6 Digitizers
2.7 Data Invertor
2.8 Scalers
2.9 Input Rates

.

.

.

.

.

.

.

.

.

.

3
3
5
5
5
6

. 6
7
7
7

3 . DATAHANDLER . 9
3.1 Description . 9
3.2 Functional Logic . 9

3.2.1 Software Control 13
3.3 Front Panel Switches and Connectors 13
3.4 Rear Panel Connectors 17
3.5 Software Control . 19
3.6 Output D.C. Logic . 19
3.7 MC-DIO-32F Interface Card 20

4 . CRUNCH FILES . 21
4.1 General . 21
4.2 Program LOADCRUN 21
4.3 Loading the Crunch File from Analyzer 22
4.4 Crunch File Format . 22

4.4.1 Tag Section . 24
4.4.2 PSD Mode Section 25
4.4.3 The Crunch Section 26

5 . PROGRAM ANALYZER 29
5.1 General . 29

5.3 Starting Analyzer . 30
5.2 Analyzer Installation . 29

5.4 Analyzer Display . 30
5.5 Function Keys . 31

5.6.2 Display Overflows 33

5.6 Bottom Line Commands 33
5.6.1 Load Crunch File Command 33

...
111

5.6.3 Displaying Total Events and Rejects 35
5.6.4 Setting the Preset Timer 35

5.7 The Auto Backup File 36

6 . DATA ACQUISITION DRIVER 37
6.1 General . 37
6.2 Driver Installation . 37
6.3 Loading in a Crunch Table 38
6.4 Data Acquisition Driver Control 38

APPENDIX A
Analyzer Commands . 45

APPENDIX B
Examples of Crunch Files 47

APPENDlX C
Example Program . 51

APPENDIX I>
Rear Panel Pin Connections 53

APPENDIX E
Data Handler Low Level I/O Commands 57

APPENDIX F
Source Code for Data Acquisition Driver 59

iv

A new multiparameter data acquisition system has been devcloped and fabricated at

the Oak Ridge Electron Linear Accelerator (ORELA) which utilizes an IBM PS/2 model 80

personal computer and data handler with a 2048 word buffer. The acquisition system can

simultaneously acquire data from one, two, or thrce digitizers, multiplex up to four detectors,

read and control up to 16 scalers, and output 32 D.C. logic signals which can bc used to

control external instrumcntation. Software has been developed for the OS/2 operating

system, supporting multiparameter data storage for up to three million channels with the

capability of collecting data in a background mode, to make the computer available for othcr

tasks while collecting data. The system also supports multiparameter biasing and can collect,

crunch, and store data at rates as high as 30,OOO events per second.

V

C m R 1

INTRODUCTION

Nuclear spectrometry frequently involves complex analyzer sys tems and computers to

rapidly analyze, sort, and store applicable data. Many systems can bc extremely elaborate and

costly, depending on the experiment and the type of information desired. For single

parameter events, such as pulse height analysis, there are an abundance of available analyzers

on the market, many at a very reasonable price. However, multiparamctcr data acquisition

systems involving multiple detectors and digitizers usually require a costly and elaborate

computer system having extensive memory requirements. The availability of analyzer systcms

that have storage capacity above one million channels is extremely limited with the cost of

available systems being very expensivc.

These requirements at the Oak Ridge Electron Linear Accelerator (ORELA), along

with the need to replace aging analyzers and computers within current budgets, led to the

design and fabrication of a data acquisition system consisting of a hardware interface and data

acquisition software which utilizes an IBM PS/2 model 80 personal computer. Developed as

the primary replacement and upgrade of older computer equipment, the new system is

capable of analyzing 64 bits of information per event into four parameter storagc, using non-

linear binning, and can employ multiparameter discrimination. Having a maximum capacity

of three million channcls, the system’s low cost makes it possible to provide each

experimenter at ORELA with an independent system.

An IBM PS/2 personal computer was chosen over its contemporaries bccause of its

architecture, compatibility, and multi-tasking capability. Collection of data can be performed

with top priority, while the computer is being used for other tasks such as data analysis,

making real time analysis of data possible in some situations. Software, in the form of a

device driver, allows users to easily write specialized programs that have access to data during

acquisition. All software in this manual has been designed to be run under the OW2

operating system.

This manual serves as a user’s guide for the IBM PS/2 data acquisition system

providing the reader with detailed information on setting up and using the system for a variety

of applications, including multiparametof data storage, multiparameter biasing, time of flight

energy display, and software development. This manual also serves as a guide for the

1

2

computer code ANALYZER, a general purpose program which provides real time display of

data, backup file support, timer support, time of flight energy calculation, and other functions.

Other programs can easily be written in either the protected mode or the DOS compatible

mode to interface with the acquisition driver by following the format specified in Chapter 6.

3

CHAPTER2

DESCRIPTION

2 1 GENERAL

A block diagram of the data acquisition system is shown in Figure 2.1. The system

consists of an IBM PS/2 model 80 personal computer attached to scveral external dcvices

through a data handier which includes a 2048 x 16 bit FIFO buffer. External instrumentation

for the initial implementation includes one ORTEC time digitizer duck, two Nuclear Data

ADCs, eight JQRWAY scalers, and an inverter for the data lines coming from the ADCs.

The experimenter has the option to configure the system for specific and fewcr digitizers

through switches on the front of the data handler. Therc are also 32 D.C. levcl output lincs

that can be used to control external instrumentation.

Control of the data handler is accomplished by a computer through a commercially

available 1/0 board, which allows the computer to communicate with the data handler and

transfer information. The data handler has been designed to acccpt and store data from each

digitizer until the computer is ready to analyzc it. The scalers are controlled likcwise with all

data being transferred via thc samc intcrface. Transfer and processing of data is performed

by the following procedure.

1) The data handler receives a data ready signal from each applicable digitizer,
informing the data handler that there is converted data ready to be tramfcrrcd.

2) The data handler stores the data from each digitizer into a buffer (FTFO) and
then simultaneously resets each digitizer. This is performed in less than two
microseconds, after which each digitizer is ready to acquire new data.

3) Every 31 milliseconds the computer halts the current program and jumps to an
interrupt routine where each 16 bit word in the data handler is transferred directly
to the CPU. Transfer of data to the computer does not prevent the data handler
from accepting new events at any time.

4) The CPU checks the most signiticant bit on each word using a 1,0,0,0 sequence
to ensure thc correct number of 16 bit words have been transferred for every event.

5) After the correct number of words have been transferred, as determined by the
word select switch, thc event is analyzed and stored in its applicable channel(s).

6) After the FIFO buffer in the data handler is emptied, the computer returns to the
current program or process that was halted.

4

TIME DIGITIZER
TOF CLOCK SCALERS

DATA INVERTER

DATA HANDLER
32 D.C.
OUTPUT

LINES

DAPTER CARD

IBM PS/2 COMPUTER

MODEL 80

Figure 21. Block diagram of data acquisition system.

5

22 COMPUTER

This data acquisition system utilizes an IBM PS/2 model 80-111 personal computcr

to control the data handler and analyze each evcnt. The computer contains an 803%

microprocessor with a 20 MHz clock and has a 80387 math co-processor. Additional adapters

installed into the computer consist of an 1/0 parallel port card and extendcd memory.

Memory may be extended up to 16 megabytes, giving thc system approximately a three million

channel capacity, with each channel consisting of 32 bits (four billion counts per channcl).

At least 2 megabytes of memory are reserved for the OW2 operating system.

23 MC-DIO-32F I/O PORT ADAPTER

The computer requircs a 32 bit parallel port I/O adapter to enablc the computer to

communicate with the data handler. The acquisition system has been dcveloped to usc a

commercially available interface card, MC-DIO-32F, from National Instruments Corporation.

This I/O card is installed into one of the computer expansion slots and connected to the data

handler using a 50 line ribbon cablc.

The MC-DIO-32F adapter must bc installed and configured to a base port address o C

D O hex before operation. To accomplish this, the user is referred to the instructions that

come with the board. The interrupt level and DMA channel are currently not used in this

system, thus these parameters may be disabled or set to whatever thc user desires.

All communication with thc data handler, including thc transfer of data, is

accomplished through this adapter using four parallcl I/O ports (A,B,C, & D). Ports A and

B are used for transferring data, while ports C and D arc used for interface control (start,

stop, etc.). Port C also controls which data is currently on ports A and B. Thus, ports A and

B can be used for transferring digitizer data, scaler data, or input of test data into the data

handler FIFO memory.

2 4 SOFIWARE

The methodology of software development has been to provide the user with a

versatile data acquisition system that can easily interface with any user program in the OSd

operating system. This provides the user with thc ability to expand and enhancc data analysis

and display routines at his or her leisure and to support possible upgrades in computcr

hardware.

6

Three main programs have been written to assist the user in eontrolling and displaying

data; LOADCRUN.EXE, ANALYZEREXI?, and DEVICE2.SYS. Each of these programs

are described in detail in Chapters 4,5, and 6, respectively. DEVICE2.SYS is a device driver

that controls the data handler, performing all necessary tasks to start, stop, and transfer data.

Program LOADCRUN is used to load a crunch file into the device driver. A crunch file is

an ASCII data file containing parameters supplied by thc user to determine how data is to

be stored. ANALYZER provides the user with a general purpose program which starts,

stops, and displays data by acccssing the device driver. Other data acquisition programs can

easily be written to replace ANALYZER using the format in Chapter 6 and the example in

Appendix C.

2 5 DATAI-IANDLER

The data handler provides thc necessary hardware for receiving data from each

digitizer and storing it in a 2048 x 16 bit word first in first out (FI(F8) buffer until the

computer is ready to receivc it. ‘The FIFO buffer enables the computer to transfer data from

the buffer whilc the data handler is accepting data from the digitizers. The data handler also

provides the essential signals required to start, stop, and read up to 16 scalers; however,

current software supports only eight scalers. The device also has an output port with 32 DC

logic lines which can be used to control external instrumentation. Although control is

primarily through software, some configuration must be performed using the switches on the

front panel of the data handler. Detailed information on thc data handler is provided in

Chapter 3.

26 DIGITIZ,ERS

As many as four digitizers may be used in this data acquisition system; however,

current software supports only three at this time, one clock and two ADCs. Which digitizers

are employed can be controlled from switches on the front face of the data handler. The

system is currently set up to accept up to 13 bits of data (8192 channels) from two pulse

height ADCs and 26 bits of data and four tag bits from a single time digitizer (clock).

Additional bits may be used if required; however, this will require some modification in the

device driver software. The data line configuration from each digitizer to the data handler

is described in Appendix D. Other digitizers may be used in place of those described in this

report; however, each data line signal must correspond to the same lines defined in

Appendix D. Some ADC’s may require a data line inverter.

7

27 DATAINVERTER

The system shown in Figure 2.1 includes a data inverter bctween two of the ADCs

and the data handler. This is needed when using Nuclear Data ADCs, since all logic on the

data bus is inverted from that for which the system has been designed for. Thc data inverter

illustrated in Figure 2.1 supports up to three Nuclear Data ADCs.

28 SCALERS

Up to eight JORWAY scalers are supported by software on this data acquisition

system. Each scaler connects to the data handler by way of a cable assembly which has nine

connectors, one for each scaler and one to the data handlcr. Other scalers may be uscd if

they follow the same control logic as JORWAY scalers.

In addition, there are three BNC connectors on the back side of the data handler that

are used to provide start, stop, and reset signals to all scalers. On the front face, there are

stop, start, and reset buttons that can be used to control the scalers manually.

The dead time of the data handler is no greater than 2 microscconds. This permits

an input rate in excess of 500,000 events per second for bursts of data not exceeding the

buffer capacity of 2048 words. The MC-D10-32F interface performs all the necessary

handshaking requirements with the data handler to place any data in the FIFO buffer directly

onto the designated port address in the computer. This transfer to the computer is

accomplished in less than 200 nanoseconds, giving programs almost immediate access to data.

The maximum average input rate of this data acquisition systcm over an extended

period of time is highly dependent on the crunch table loaded into memory. For example,

the acquisition driver is capable of taking one event and crunching and storing it in up to nine

different locations. The driver can also perform multiparameter discrimination on each event

for multiple detectors. All this takes time. Measurements, using software referenced in this

manual, have resulted in input rates as fast as 30,000 events per second when using a simple

crunch routine with one digitizer. This was performed while the computer was running

entirely in the protected mode. Acquiring data in the DOS compatibility mode results in a

10 percent reduction in the input rate due to the operating system switching in and out of the

protected mode during data storage.

8

If desired, additional performance and speed may be obtained by modifying the data

acquisition driver software. Simplifying thc crunch and interrupt routines in the device driver

can substantially affect the niaximum average input rate. Measurements have resulted in data

acquisition rates in excess of 100,OOO events per second for simple storage routincs; however,

modifying the data acquisition driver is only recommended for very spccific applications where

flexibility is not a requirement.

9

CHAPTER 3

DATA HANDLER

3-1 DESCRIPTION

The data handler is an external device that provides an interface bctwcen each

digitizer and the PS/2 computer. It provides the necessary hardware and controls to acccpt

data from one to four digitizers, read 16 scalers or digital registers, and outputs 32 D.C. logic

signals which can be used to control instrumentation. It contains a 2048-word FIFO burrer

allowing non-synchronous input and output of data. This enables the data handler to accept

data independently from the computer, resulting in very short deadtimes, less than two

microseconds, for data storage. The total deadtime can be shortened to approximately one

microsecond through modifications in the data handler, depending upon the requirements o f

the external digitizers. The data handler is completely software controlled, except for some

switches on the front panel which select the applicable digitizers and control the number o f

sixteen bit words to be included in each event.

3 2 F7JNcrIoNm LOGIC

Figure 3.1 is an outline of the data handler integrated into a system. Figure 3.2 is a

functional outline of the data handler. There are four ports in the system. In addition, there

is one control linc from the system. Ports 1 and 2 are data input ports with their attendant

control lines. Port 3 is an output port only. Port 4 is an I/O port to the PS/2 computer via

the MC-DIO-32F adapter card.

Data is presented to port 1 and consists of up to 64 bits per event. The data handler

accepts the data as one, two, three, or four words, each word consisting or 16 bits and stores

the event into temporary memory (FIFO). The number of words per event that are accepted

and stored is controlled by the word select switch on the front panel.

The temporary memory has a capacity of 2048 words containing 18 bits. Two of these

bits are not used as data bits but can be used for other purposes such as a flag to indicatc

specia1 situations. An example of the use of the bits would be to maintain correlation whcn

an event consists of many words. A front panel switch permits the use of all 16 bits in thc

four data words for data or in another positioawill encode the most significant bit of the four

words in a sequence of 1,0,0,0. This encoding will permit software checks to ensure that

10

Figure 3.1. Data handler system.

11

.J

1
1

. . ..

..

12

correlation of the four words are maintained. If the words are detected out of sequence

action can be initiated by the program. In the software outlined in this manual the detection

of an out-of-sequence series of words causes a Master Clear signal to be generated. This

signal clears the temporary memory and generates a data accepted signal to clear the external

equipment.

Time required to accept an event of four words is less than two microseconds. This

time can be reduced to less than one microsecond by reducing the width of the data accepted

pulses to the external equipment. The action oE the input can be considered as a hardware

DMA with a transfer rate of 1 million words per second and a word length of 64 bits. The

size of the temporary memory is 512 words of 64 bit length or 2048 words of 16 bits length.

The input and output of the temporary memory are independent processes. The

memory control processes the data ready signals from the selected external digitizers. When

all of the data ready signals from the selected equipment are present, the data is transferred

to the memory and a data accepted signal is generated and sent to all external equipment.

The output of data from the tcmporary mcmory to the PS/2 is controlled by the PS/2 through

the bus control system. The speed with which data can be removed from the temporary

memory via the MC-DIO-32F adapter card varies with the program being used.

Measurements have resulted in a maximum transfer rate of approximately 400,000 words of

16 bit length per second. However, software in this manual has been written to crunch each

event before storage. To crunch and store a single event of four 16 bit words takes

approximately 30 microseconds (see Section 2.9). This permits a maximum average input rate

of approximately 30,OOO events of 64 bits length per second.

Port 2 is an input port. This port will accept 32 bit data from one to sixteen digital

registers. Sixteen control lines are available, under software control, to read up to the

selected number of units.

Port 3 is an output port. This port will output D.C. levels on 32 lines. These 32 lines

can be used directly to control external equipment or can be decoded to generate up to Z3*

lines. These lines are under software control. Port 4 is attachcd to the MC-DIO-32F

interface card installed into one of the expansion slots in the PS/2. This port contains 32

bidirectional lines, four lines used for handshaking with the data handler, two input control

lines, and two output control lines.

13

Thc two additional lincs, one control into and onc indicating line out of the system,

are used to perform the following functions. The control line into the system writcs a bit into

an internal register. The program monitors this bit and causes the system to stop taking data

as long as this bit is low and restarts the system when the bit rcturns high. The indicator line

is used by the software to output a pulse that indicates that thc levels on the 32 D.C. lines

have been changed.

All input and output lines, with the exception of the scaler control lincs (the 16 lincs

in port 2) and the start, stop, and reset lines to the scalers should be considercd to be

standard TTL drivc and input. The 16 scaler control lines will sink 20 milliamperes. The

start, stop, and reset lines will drive 50 ohms with a +12 volt pulse.

3.21 Software Control

Port 4 contains two bi-directional 16-bit buses, bus I and bus 2, two pairs of data

handshaking lines, and two pairs or flag lines. The two pairs of flag lines go to regislers in

the MC-DIO-32F card. One line in each pair reflects the condition of a bit that is set by the

software. The other line in each pair can be uscd to set a bit in an intcrnal register that can

be monitored by the software. Line IN1 is accessed through the temporary memory and can

be used for data correlation if dcsired (software in this manual does not support this). Linc

IN2 is set by a D.C. level generatcd externally. The software recognizcs a low on this bit and

generatcs a signal that stops the data acquisition as long as the bit is low and restarts when

the bit goes high. The other two flag lines, OUT1 and OUT& are used in the data handlcr

with their respective buses, bus 1 and bus 2, to generate data and control functions. For

example, bus 2 with OUT2 low will generate the software control pulses that control the

system. Bus 2 with OUT2 high will cause the output of the 32 D.C. lines.

Table 1 is a listing of the codes and their functions.

3.3 FRONTPAWELSWITCHESAND CONNECTORS (see Figure 3.3)

POWER (ON/OFF): This switch provides power to the data handlcr. The power

should be turned off prior to connecting or disconnecting any of the rear panel cable

assemblies.

DATA READY SWITCHES (ON/OFF): These four switches enable or disable the

data ready signals and determine which digitizcrs must supply a data ready signal before the

data handler recognizes a valid event. Table 2 illustrates thc propcr setting for these switches

for various combinations of digitizers when using software referenccd in this manual.

14

Table 1. Software codes and Functions

Code Function

xxxxxxxxxxxxoooo
xxxxxxxxxxxxo0o1
xxxxxxxxxxxxoo10
xxxxxxxxxxxxooll
xxxxxxxxxxxx0100
xxxx xxxx xxxx 0101
xxxx xxxx xxxx 01 10
xxxx xxxx xxxx 011 1
X X X X ~ X X X X 1 o 0 o
xxxxxxxxxxxxlool
xxxx XXXX xxxx 1010
xxxx xxxx xxxx 1011
xxxxxxxxxxxxlloo
xxxx xxxx xxxx 1101
xxxxxxxxxxxx 1110
xxxx xxxx xxxx 1111

Not Used
Bus to Scalers
Stop Scalers
Reset Scalers
Start Scalers
Bus to Data Input
Test Data Out
Master Clear
Not Used
Step Through Scaler Reads
Start System Acquire
Stop System Acquire
Not Used
Output Test Word
Pulse Indicates D.C. Line Change
Removes Bus From All Ports

Table 2. Front Panel Switch Settings

Data Ready

Digitizer SW1 SW2 SW3 SW4 Word Select

TOF~ Only ON OFF OFF OFF 2

PH12 Only OFF OFF ON OFF 3

Only OFF OFF OFF ON 4

TOF & PH1 ON OFF ON OFF 3

PH1& PH2 OFF OFF ON ON 4

TOF, PH1, & PH2 ON OFF ON ON 4
'TOF refers to the clock digitizer
2PH1 refers to pulse height analyzer #I
3PH2 refers to pulse height analyzer #2

15

b

0

Q
,

1
0

p
r)
0

N

16

DATA READY (BNC): These four BNC connectors are attached to the data ready

lines of each corresponding connector on the rear panel (CN4 - CN7), respectively. These

connectors therefore provide monitoring points for these signals.

ALL DATA READY (BNC): This connector provides a monitoring point for the

signal that indicates that all of the selected data ready signals are present.

ALL DATA READY START (BNC): This connector monitors the data ready signal

as seen by the FIFO input (indicates that all of the selected data ready signals are present and

that the system has bcen started).

MSB WD ENCODING (IN/OUT): When set to the IN position, this switch sets the

most significant bit of each word transferred to memory using a 1,0,0,0 pattern for up to four

words. Software in this manual requires that this switch be set to the IN position at all times.

MASTER RESET The two pushbuttons with this label between them must be

depressed at the same time. This action clears all data from the temporary memory,

generates a data accepted signal to the external digitizers, and removes the bus from the

temporary memory. The system must be restarted after this action. This action can also be

generated by software. The software can, of course, restart the system after a program

generated master clear.

WORD SELECI' (1-4): This switch determines the number of 16 bit words stored

for each valid event. Software in this manual assumes the first word contains the most

significant bits coming from a time digitizer and the second contains the least significant bits.

The software also assumes that the othcr two 16-bit words contain data from two other

digitizers. Software herein requires that this switch must be set to at least two words.

DATA ACCEPTED (BNC): This BNC is a monitor for the data accepted signal that

is sent to all external equipment aEter each valid event.

START MONITOR (BNC): This BNC connector supplies a TIL high when the

system is started (is in the acquire mode).

EXT DATA ACCEPT INPUT '(BNC): A logic pulse (TTL high) input to this

connector will produce a data accepted output to all external digitizers. This input can be

used to ensure correlation of data contained in external digitizers.

17

EXT DATA ACCEPT INPUT ON/OFF (SWITCH): This switch enables/disables the

above input. This switch must be in the off position if the input is not being used.

SCALER START SWITCH: This pushbutton generates a pulse to the rear panel

BNC connector. This signal can be generated by software. This signal will drive 50 ohms

with a 12 volt pulse.

SCALER STOP (SWITCH): This pushbutton generates a pulsc to the rear panel

BNC connector. This signal can also be generated by software and will drivc 50 ohms with

a 12 volt pulse.

SCALER RESET (SWITCH): This pushbutton generates to a rear panel BNC

connector. As above, this pulse can be generated by software and has the same drive

capability.

ACCEPT DATA (LED): This LED is lighted when the system is in the acquire

mode.

DATA RATE HIGH (LEDk This LED is lighted when the temporary mcmory

(FIFO) is full. This is an indication that the data rate is high enough to fill the FlFO and

that data is probably being lost.

3.4 REAR PANEL ONNECTORS (see Figure 3.4)

CN4 (WORD 1 INPUT): This connector corresponds to the first 16 bit word stored

for every valid event. It is normally attached to the tags and most significant bits of the time

digitizer. Thc pin connections are illustrated in Appendix D.

CNS (WORD 2 INPUT): This input connector corresponds to the second 16 bit

word stored for every valid event. It is normally attached to thc less significant bits o f the

time digitizers. The pin connections are illustrated in Appendix D.

CN6 (WORD 3 INPUT): This input connector corresponds to thc third word stored

for every valid event. This connector is normally attached to a pulse height analyzer (dcnoted

by PH1). The pin connections are illustrated in Appendix D.

CN7 (WORD 4 INPU?"): This input corresponds to the fourth word stored for each

valid event. This connector is normally attached to a second pulse height analyzer (denoted

as PH2). The pin connections arc illustrated in Appendix D.

r P

I I

t

c

19

CN8 (D.C. OUTPUT): This is a 37 pin connector which supplies the 32 D.C. output

lines that can be used to control external instrumentation. A high signal on each line is

approximately +5 volts. Thc pin connections are illustrated in Appendix D.

CN9 (SCALER INPUT): This conncctor contains the 32 input lines and 16 output

The pin control lines that are used to read external instrumentation, such as scalcrs.

connections are illustrated in Appendix D.

CNlO (COMPUTER): This is a 50 pin connector which attaches the data handler

to the MC-DIO-32F interface card thal is installed in one of the computer expansion slots.

AI1 data and control signals to and from thc computer are routed through this connector.

The pin connections are the same as for the MC-DIO-32F card.

SCALER START: This is a BNC connector that can be used to generate a start

pulse for scaler control.

SCALER STOP: This is a BNC connector that can be used to generate a stop pulse

for scaler control.

SCALER RESET: This is a BNC conncctor that can be used to generate a reset

pulse for scaler control.

D.C. CHANGE: This is a BNC connector that will generate a pulse whenever a

command 14 is written to the data handler. Software presented in this manual automatically

generates a pulse at this connector every time the D.C. output lines are modified.

35 soFTwAREcomoL

The data handler is controlled by the four least significant bits written to port C of

the MC-DIO-32F interface card. Ports C and D on the interface card must be configured

as output ports with the handshaking mode enabled. This is performed by the device driver

referenced in this manual. Writing a number from 1 to 15 to port C will control the data

handler. Again, the devicc driver given in this manual performs all these functions for the

user, along with the other required operations. Each command is briefly described in

Appendix E for the user’s reference.

20

3.6 OUTPUT D.C. LOGIC

To modify the D.C. output lines on the rear panel connector, the OUT2 bit on the

MC-DIO-32F interface card must be set high by the program. Once this bit is set high the

program must write two 16-bit words to ports C and D (bus 2 in port 4 of the data handler)

to output the desired 32 lines. Once the output lines are changed, the OUT2 bit must be

brought low again. The device driver referenced in this manual will perform all these steps

along with pulsing the D.C. CHANGE connector on the rear of the data handler.

3.7 MC-DIO-32F IN'IERFACE! CARD

The MC-DIO-32F interface card is manufactured by National Instruments.

References on this card can be found in the manual on this card.

21

CH R 4
CRUNCH FILES

4.1 GENERAL

Since as many as 64 bits of information may be contained in every cvent, a mcthod

to pull out applicablc data and crunch it into available computer mcmory is required. A

crunch table supplies the parameters for this proccss. Each cvent is analyzcd using a crunch

table that has been loaded into the data acquisition driver. The crunch tablc also cstablishcs

the parameters that are nccded to enable tag inputs, setup multiparameter biasing (PSD), and

determine how each evcnt is binned and storcd (i.e. one, two, or three dimcnsional storage).

Either of two procedures can be used to load crunch tables: 1) program

LOADCRUN.EXE, run from thc protectcd mode o f OS/2; or 2) the load command directly

from program ANALYZER. This chapter dcscribcs both procedures and also providcs a

description of the format used to create and edit crunch files. Appendix B illustrates several

examples of crunch files.

4.2 PROGRAM LOADCRUN

A crunch file may be loaded into computer memory using program

LOADCRUN.EXE. This program must be run from the OSi2 protected mode with the

device driver, DEVICE2.SYS, installed. The following cxample illustrates thc command line

format.

UIIAJ>CRUN D:\CALIB.TBL /p

The above command loads the crunch parameters listed in file CALIB.TBL, found in

the root directory on drive D. The optional parameter, /p, is used to prin't out the crunch

table after loading it into memory. If a format error is found in the crunch file, the program

will display an error message and thcn terminate loading. If computer nicmory does not allow

memory allocation for thc number of storage channels nceded for thc crunch tablc, thc

program will terminate loading without allocating any memory. Memory allocated by

LOADCRUN will be de-allocated .whenever a new crunch file is loaded into memory.

22

Successful loading of the crunch table will be confirmed with a message displaying the

crunch file name and the number of channels allocated. One channel is equal to four bytes

(32 bits) of computer memory; thus, to allocate one million channels, the computer must have

at least four megabytes of consecutive free memory. Starting LOAnCRUN without including

a file name on the command line causes the program to prompt the user for a path and file

name.

4 3 LOADING THE CRUNCH FILE FROM ANALYZER

The crunch parameters needed for the data acquisition driver may also be loaded from

program ANALYZER. Chapter 5 describes ANALYZER in more detail; however, the load

command is discussed briefly here. The load command in ANALYZER performs the same

operation as program LOADCRUN. It reads a crunch file and transfers the parameters into

the data acquisition driver.

The load command is entered by typing the letter "L", followed by the name of the

crunch file. The following example illustrates the format used to reload a crunch file using

ANALYZER.

L D:\CALIB.TBL

The above example loads the crunch file CALIB-TBL, found in the root directory on drive

D. An error in the crunch file results in ANALYZER informing the user and terminating

execution.

4.4 CRUNCH FiILE FORMAT

All crunch files contain only ASCII text characters, yet may be comprised of several

crunch sections. Comments may be inserted at the beginning of each crunch file; however,

no remark may contain the key words TAG#1, PSD MODE, or SECTION, since these words

mark the beginning of a new crunch section. The rest of this chapter describes the format

used in each crunch section and provides examples to aid the user in setting up and editing

his own crunch files. Figure 4.1 provides a listing of crunch file CRUNCH-TBL, an example

of a typical crunch file that uses tags, PSD mode, and several crunch sections for multiple

storage.

Any crunch file may be edited by a line or full screen editor, from either the OS/2

protected mode or the DOS compatibility mode. Remember, once a crunch table is edited,

23

Figure 4.1. Listing of cxample crunch file.

24

it mist be reloaded into the data acquisition driver to activate any changes. The following

rules apply to all crunch files.

1. Any character may be lower or upper case.

2. TOF is used to refer to the time digitizer clock.

3. PH1 is used to refer to the first pulse height ADC.

4. PH2 is used to refer to the second pulse height ADC.

5. No more than 64 windows may be used in PSD mode.

6. No more than nine separate crunch sections may be included in any one crunch

7. Each channel coming from the time digitizer clock is assumed to be one

file.

nanosecond (i.e. the clock "tic" is one nanosecond).

4.4.1 TAG SECTION

An optional data section in the crunch file, referred to as the tag section, may be used

to dcfine which tag inputs on the time digitizer are enabled. If used, it must be the first data

section found in the crunch file and must be comprised of four lines. Each tag must be listed

with a "YES" or "NO" following the tag number. A "YES" indicates that the tag input is

enabled while a "NO" indicates that the tag input is disabled. If enabled, tags one, two, three,

and four are worth a value of 1, 2, 4, and 8 respectively. This permits identifying any

combination of tags per event. The following example,

TAG#l: YES

TAG#2 YES

TAG#3: YES

TAG#4 NO

/* value = 1 */
/* value = 2 */
/* value = 4 *i

/* value = 8 */

illustrates a tag section that can be used to enable tags one, two, and three. The comments

to the right of each line are only a reminder of what each tag is worth, and are not required.

An event which includes a high signal at tag input number one will add a 1 to the tag data

register. A high signal at tag input number two will add a 2 to the tag register. A high signal

at tags one and two will result in a tag register value of 3. A high signal at tags one and three

will rcsult in a tag value of 5. A high signal at tag four will have no effect when using the

above cxample. If thc tag section i s completely left out of the crunch file, all tag inputs are

disabled and the tag value for each event is zero.

25

4.4.2 PSI3 MODE SECTION

Another optional data section, refcrred to as the PSD section, may be used to set up

multiparameter discrimination, also rcferred to as pulse shape discrimination (PSD). The

PSD section must follow the tag section, if used, and come before any crunch sections.

Comprised of eight lines, it uses the format listed below. Thc readcr may see other examples

in Appendix B containing remarks and dcscriptions insertcd on each of these lines. Remarks

are allowed since LOADCRUN and ANALYZER recognizes only numbcrs and ccrtain kcy

words (PSD MODE, PHl, PH2, and TOF).

PSD MODE ON

PIX2

PH1

128

4

100

1, 224

64,64, 128,256,512, 1024, 1024, 1024, 1024, 1024,2048

Line 1: This line indicates that the next seven lines of the crunch file are PSD

parameter data. A "YES" or "ON found on the first line of the PSD scction will

enable the PSD modc. One may keep this section in the crunch file and disable the

PSD mode by replacing the "ON" key word with the word "OFF'.

Line 2: This line determines the parameter used to sct thc bias channel for PSD.

It is this parameter's spectrum that is displayed when program ANALYZER is in the

PSD mode. Normally this parameter corresponds to the pulse shape ADC.

Line 3: This line determines the parameter used in establishing the window bins for

the PSD decisions. Normally this parameter corresponds to the pulse height ADC.

The window bin width parameters are given in line 8.

Line 4: Number of channels into which the PSD analyzer data will be crunched. This

is the number of channels that will be allocated by the computer for cach window and

must range from 32 to 512.and be factorable by 2".

Line 5: This is the crunch factbr for the PSD paramctcr. For the above example, the

PSD digitizer gain must be set on 512. Thus, each event from the PSD analyzer will

26

be crunched by a factor of 4 into 128 channels. The crunch factor here must be a

number from 1 to 128, and be factorable by 2".

Line 6: This is the value added lo the tag register if the cvent falls on or above the

PSD bias channel. All bias channels are input separately using program

ANALYZER.

Line 7: These are the event tags applicable for PSD analysis. If the tag register

consists or one of these tag values, PSD analysis will be performed; otherwise, PSD

analysis will be discarded for that event and crunching will continue (Le., a tag of 3

will not be analyzed for PSD).

Line 8: 'I'hese numbers establish the window bins for each tag listed in line 7. Each

number represents the nuniber of consecutive channels from the window parameter

(normally the pulse height analyzer) that will be used for each PSD window. All

numbers here must be on the same line and separated by commas and should sum to

the ADC conversion gain. This line may extend out to 256 characters.

4-4.3 THE CRUNCH SECIION

The crunch file may contain as many as nine crunch sections, not including the tag or

PSD sections. Each crunch section establishes the parameters that will be used to analyze

and store each event. Thus, every event may be crunched several times, each with different

crunch parameters. AI1 crunch sections follow both the tag and PSD mode sections. They

may use one, two, or three parameters, allowing up to three dimensional storage capability.

An example illustrating two parameter crunching follows with a brief explanation of each line.

SECTION

PAIXAMEIERS 2

PH1

1024,8

TOF

1, 1m

8,32

10,100

24 2.m
TAGS: 1, 2,4,101,102,104

27

Line 1: The key word "SECTION identifies the start of a new crunch section. Every

crunch section must begin with this key word.

Line 2: Number of parameters used for this section. This must be a number from

1 to 3. The word PARAMETERS is optional on this line.

Line 3: This is the rirst crunch parameter. It must be either a PHI, FH2, or a TOF.

Line 4: This line represents the crunch factor for the first parameter (PH1). This

will crunch the PH1 digitizer data by a factor of 8, into no more than 1024 channels.

For this example, the gain of the PH1 digitizer should be set on 8192. More lincs

may be inserted here to divide this parameter into different crunch factors.

Line 5: This identifies the second parameter used for this crunch section. This must

be a PHl, PH2, or a TOF.

Lines 6-9: These lines are similar to line 4, except they represent the crunch factors

for the second parameter (TOF). i n the above example, any evcnt occurring in the

first 1OOO nanoseconds will be stored in the first TOF channel. The next 8 x 32

nanoseconds will be crunched down into eight channels using a crunch factor of 32

and so Iorth.

Line 10: This line is always the last line in each crunch section. It determines which

tags are applicable to this section and under which tag base the event will be stored.

A tag base is the starting channel for the applicable tag section. For this section, data

would be stored as a function of three parameters (PH1 x TOF x TAG). If all tag

inputs are disabled, this line should contain a zero.

29

ANALYZER, Version IT, is a general purpose program used for controlling the data

acquisition driver and providing real time display of data. The program has been dcsigned

to provide sevcral useful functions which include time of flight energy calculation,

multiparameter biasing (PSD), and backup file support. ANALYZER communicates with the

data acquisition device driver using the same methods as described in Chapter 6.

Program ANALYZER functions only in the DOS compatibility mode of OS/2 and

must be run From a hard disk cnvironment. This chapter will describe the installation of

ANALYZER and provide detailed information on using available functions and commands.

5.2 ANALYZER INSTALEATION

To instal? ANALYZER onto the hard disk, run the program INSTALL.EXE located

nn the installation disk. This installation program will prompt the user for the drive and

directory where the ANALYZER files are to be installed and then copies the following files

into that designated directory.

M A L Y ZEREXE @KEY.WIN

L,OADCRUN.EXE @PSD.WIN

CKUNCH.TBL @SCALER. WIN

@ANAL. WIN @SCRNTOP.WIN

@ CALIB. WIN README

The File CRUNCH.'I'RL contains a crunch table which can be modified by the user

to obtain the appropriate crunch parameters desired or the user may create a separatc crunch

rile under a diffcrcnt filc name. Other files that bcgin with the @ character are data files

used by ANALYZER for graphic display. The RE ME document contains a summary of

ANALYZER commands and provides any information that may not have been included in

this manual.

After the above riles have bcen copicd, the installation program copies

DE'VICE2.SYS into the root directory of drive C and modifies thc file CONE1G.SYS to

include the foollowing device command.

DEVICE = DEVICE~~SUS

30

This command loads the data acquisition driver into computer memory whenever the

computer is started (booted up). After the installation program finishes, the computer must

be rebooted before program ANALYZER can be started.

53 STARTINGANALYZEB

Program ANALYZER may be run only in the DOS compatibility mode. Every time

ANALYZER is run, it reads the last crunch rile that was loaded into the data acquisition

driver. This obtains the same crunch parameters used by the driver so ANALYZER may

display tag and calibration information. If the number of channels calculated by ANALYZER

differs from that of the device driver, the crunch table will be reloaded and all channels

zeroed. This avoids incorrect display of tag and calibration information if the crunch file has

been changed and not reloaded into computer memory. Thus, care must be taken not to

change crunch files during data acquisition or loss of data may result when re-starting the

ANALYZER program. If no crunch file has been loaded into the driver, ANALYZER will

reload the last crunch file automatically. If starting ANALYZER for the first time and no

crunch file has been loaded, the user will be automatically prompted for a crunch file name.

As long as the crunch file that ANALYZER reads matches the crunch table loaded

into the data acquisition driver, ANALYZER will not change anything in the system. If the

system is in the acquire mode when ANALYZER is started, it will continue to accumulate

data. If the acquisition driver is not acquiring data when ANALYZER is started, it will still

display whatever data is in computer memory. Thus, care should be taken to zero all mcmory

prior to acquiring new data.

5.4 ANALYZER DISPLAY

ANALYZER has the capability of real time two-dimensional display (Channel versus

Counts) and can scale the display from 32 to 2048 channels horizontally and up to 67 million

counts vertically. It can also overlap and display different sections of memory while in the

static mode.

The following keys are used to adjust the display; however, these keys apply only to

the non-PSD mode since the PSD mode uses some of these keys differently. Additional

control of the display is available through the commands listed in appendix A.

Hitting the page up key will shift the display up by one screen. If this key is

used in the PSD mode, it will shift the display to the next higher window.

31

PFDn: Hitting the page down key will shift the display down by one screen. I€ this

key is used in the PSD mode, it will shift the display to the next lower window.

LEFT ARROW The left arrow key will shift the display by one channel in the

positivc direction. In the cursor mode, this key will shift the cursor down by one

channcl.

RIGHT ARROW: The right arrow key will shift the display by one channel in the

negalive direction. In the cursor mode, this key will shift the cursor up by one

channel.

CTRL LEFT ARROW: Pressing the left arrow key while holding down the control

key will shift the display approximately 5 percent of the horizontal width in the

positive direction.

CTRL RIGHT ARROW: Pressing the left arrow key while holding dowri the control

key will shift the display approximately 5 percent of the horizontal width in the

negative direction.

UP ARROW: The up arrow key will decrease the vertical scale of the display by a

factor of two. The minimum vcrtical scale available is 32 counts. T h i s key has no

effect in lhe logarithmic mode.

DOWN ARROW: The dawn arrow key will increase the vertical scale of the

by a factor of two. The maximum vertical scale available is over 67 million counts.

This key has no effect in the logarithmic mode.

START (F1): 'This [unction key will start and stop data acquisition.

highlighted when the system i s ~ q u i ~ i n g data.

CLEM [E): This function. key will zero a11 scalers and channels as

crunch table.

CURSR (F3): This function key activates a cursor on the current display.

active, it displays the cursor channel and numbcr of counts in that channel. It will

also display thc neutron energy for TOF data if cali ration parameters Rave been

entered using F4. "be cursor is not available in the BS mode and it will be

32

deactivated if a new crunch file is reloaded into computer memory.

CALTB (F4): This function key prompts the user for time of flight energy calculation

parameters. The gamma flash channel must be entered in units of

uncrunched channels and each channel is assumed to be one nanosecond. The flight

path must be entered in units of meters. Incorrect input may disable any energy

calculation. An error message may indicate an impossible energy calculation.

NOTE:

<< >> (FS): This function key expands the horizontal display by a factor of two.

Minimum horizontal display is 32 channels.

>> << (F6k

displayed by a factor of two.

displayed is 2048.

This function key increases the number of channels horizontally

The maximum number of channels that may bc

LOG (IT): This function key will toggle the vertical display between a logarithmic

and linear scale.

PSD (F8): This function key places ANALYZER into the PSD display mode, giving

the user the capability to casily adjust the bias channel for each PSD window by using

the right and left arrow keys. The PgUp and PgDn keys will shift the display through

different windows and tags, where each window has one bias marker. This marker

represents the bias channel where any event occurring on or to the right of the

marker is tagged with the value given in the PSD section of the crunch file. This tag

value is added to the current tag register before any crunching of data is performed.

If the event falls to the left of thc bias marker, the tag register is not affected.

Function key E3 has no effect if the PSD mode is not enabled in the crunch file.

SAVE (F9): This function key is used to save all channel data and scaler counts into

a data filc. If pressed the user will be prompted for an output file name and whether

it i s to be saved in text (ASCII) or binary format. Binary format consists of unsigned

long integer format (4 bytes per channel). Scaler and run time data are also saved

at the end of each data file.

LOAD (F10): This function key is used to load an ANALYZER data file into

memory. When this key is pressed the ilscr will be prompted for a file name. The

program will automatically determine if the file contains text (ASCII) or binaIy data

33

and will then load the file into computer memory. If the scalers are currently being

displayed when a file is loaded into memory, the scalers will also be loaded into the

computer; however, the scaler data wil1 not be physically loaded into each scaler.

PLOT (F11i This function key will dump the screen contents to a HP Laserjet

Printer.

EXIT (F12): This function key will cause the computer to exit program ANALYZER

and return to the DOS operating system. If this key is pressed during data acquisition

the computer will continue to acquire data. Ekiting will not effect any data in the

computer memory, unless the crunch file currently being used is changed.

5.6 BOTTOMLINECOMMANDS

Special instructions may be entered into ANALYZER by typing them out on the

keyboard; thcsc are echoed to the bottom line of the display. Hitting the enter key only will

always execute the command line that was last entered. For example, entering "A512" will

shift the display by 512 channels. Every time the return key is hit thereafter, the display will

be shifted 512 channels until a new command is entered.

These commands are designed to perform specific tasks not covered by the function

keys and gives the user additional versatility in displaying and analyzing data. A summary of

all ANALYZER commands are given in Appendix A with a brief definition. The rest of this

section contains additional details on several of these commands for the reader's information.

The load crunch file command may be used to load a new crunch table into the data

acquisition drivcr from program ANALYZER. This command may be employed by entering

an L and the crunch file name. This pcrforms the exact same function as program

LOADCRUN.EXE, except that it may be executed while running ANALYZER. If the

system is in the acquire mode when this command is used, the system will be stopped and all

channels zerocd. A n example of this command would be "L D:\CRUNCH.TE%".

5.62 DISPLAY OVERFLOWS

The overflow command displays overtlows (events that are not stored) that have been

detccted during crunching of data. Overflows are displayed by typing the letter "0" and then

hitting the enter (return) key. Several parameters will be displayed on the screen, halting the

34

real time display if the system is running; however, the system will continue to acquire data.

Hitting any key thereafter will clear the screen and return the display to its normal mode.

An explanation of each overflow parameter follows.

PSD =

TOF =

PHI =

Prn =

PS
UNDER =

MAX
CHAN =

PSD
TAGS =

Number of events that were outside the range of the PSD parameter

as listed in thc PSD section of the crunch file. Any counts here

indicate that the PSD section or ADC gain should be modified. Each

event listed here is completely discarded with no additional crunching.

Number of events from the time digitizer clock (TOF) that were

outside TOF crunch section. Since several TOT; crunch sections may

be used in a crunch file, a single event may result in more than one

TOF overflow.

Number of events from Pulse Height Analyzer #1 (PH1) that were

outside PH1 crunch section. Since several PH1 crunch sections may

be used in a crunch file, a single event may result in more than one

PH1 overflow.

Number of events from Pulse Height Analyzer #2 (PH2) that were

outside PH2 crunch section. Since several PH2 crunch sections may

be used in a crunch file, a single event may result in more than one

PN2 overflow.

Number of PSD events that fall within the first two channels of any

PSD window. Each event recorded here is discarded completely with

no additional crunching.

Number of crunches that fall above the maximum allocated channel.

T h i s indicates a severe sofiwarc or operating system problem and

should be corrected.

Number of events with a tag value not applicable to the PSD section

of the crunch file. For example, if PSD is to be performed 011 evcnts

with tags 1,2, or 4 only, and an event occurs with a tag 5, no PSD will

35

be performed and the event will be counted here. Crunching would

still continue.

PSD
WINDOW = Number of PSD evcnts that fall into a window not covered by the

PSD section in the crunch file. This indicates that either more

windows are needed or larger channel widths for some windows are

needed. The crunch file should be modified if any counts are

recorded here.

5.63 DISPLAYING TOTAL EVENTS AND l3EECIS

'This command displays total events, rejects, and the average event count rate for the

current run. It is employcd by typing the letter "R' and hitting the enter (return) key. The

number of rejects displayed corresponds to the uncorrelated events. Since each event may

consist of as many as four 16 bit words, each word has its most significant bit set or cleared

to provide a method for the data acquisition driver to detect missing or extraneous data in

the buffer. If the acquisition driver detects a bad event it discards it and clears the interface

buffer, recording it as a reject. A short beep will sound for each reject.

5.6.4 SETTXNG THE PRESETTIMER

This command allows the user to set the run time for ANALYZER. It is employed

by entering the letter "T" and the desired run time in seconds (Le. T100). Setting the timer

to zero equals infinity. This command is used with the ANALYZER program only. Data

acquisition will not stop if uscr is acquiring data in the background mode.

A variation of this command can be used to automatically save all data when time out

occurs, then clear and restart the system. An example would be, T1000+FILE.000. If the

extension is left oft' of this command, the program will automatically start from OOO. Ln this

example, program ANALYZER would perform the following steps:

1) Acquire data for lo00 seconds then stop.

2) Save all data under the file name of FTLE.000. If FILE.000 exists, the
data would be saved under the tile name of FILE.OO1, and so forth.

3) Zero all channels and scalers.

4) Start acquiring new data.

5) Go back to step one.

36

5.7 THE AUTO BACKUP FILE

Every 5000 seconds during data acquisition, program ANALYZER automatically

backups all data to the hard disk using file name @BACKUP.DAT. This insures that

malfunctions in the wmputer or power outages result in no more than the last 5000 seconds

of data being lost. Reloading the backup'file into memory is accomplished the same way as

loading in any other ANALYZER data file, using the LOAD function key (F10).

Program ANALYZER performs the backup procedure by first stopping data

acquisition and saving the current run into file @BACKUP.DAT using binary format. Once

all data is saved, ANALYZER continues data acquisition and displays the time at the bottom

of the screen when backup was performed. Program ANALYZER uses this backup

procedure only when ANALYZER is running. No backup procedure is employed while

running the data acquisition in the background mode. Program ANALYZER never deletes

the data file @BACKUP.DAT, except during the next backup when it overwrites

@BACKUP.DAT with new data.

37

R 6

DATA ACQUISITION DRIVER

ala acquisilion and control. of the data handler is accomplished by software in the

form of a device driver. This methodoloby i s required to utilize hardware interrupts under

the QSD operating system and also to permit other high level programs to control and access

data, either from thc OS/2 protcctcd modc or the DOS compatibility mode. In thc OS/;?

protected mode, the devicc driver allows sevcral programs to access thc data amcurrently

during data acquisition.

The device driver, also referred to as the data acquisition driver, performs the actual

transfer of data from the interface buffer to computcr memory and also performs required

crunching and binning of data. Other programs wanting to start, stop, and access data must

go through the device drivcr labeled DEVICE2.SYS described here.

DEVlCE2.SYS is installed into memory during computer startup (boot up), allowing

other programs to access the drivcr by writing to the device file name "DEVICE-2". An

example program written in Microsoft C is included in Appendix C.

This chapter describes the format and procedurcs which allow othcr programs to

communicate with the data acquisition driver. The I'ollowing will be of specific interest for

readers who want to writc programs to display and analyze data. For those who do not need

a specialized program, a general purpose program, ANALYZER, runs in the DOS

compatibility mode. Chapter 5 contains more information on program ANALYZER.

5.2 DRIVER PNSTALLATiON

The data acquisition driver is installed into computer memory using the DEVICE

command from the CONFIGSYS file. The CONFXGSYS file is found in the root directory

of the boot up drive (normally drive C) and must be edited to include the following line.

This example assumes that the file, DEVICE2.SYS7 is locatcd in thc root directory on drive

C; howevcr, any path may be spccificd. Remcmber, once the CONFIG.SYS file is edited, the

computer must be rebooted to install the device driver.

3 8

Installation may also be performed by running INSTALLEXE, located on the

ANALYZER installation disk. This installation program automatically copies DEVICE2SYS

to the root directory of drive C and includes the above command in CONFIG.SYS.

6.3 LQADING IN A CRUNCH TABLE

A crunch table provides the parameters needed by the data acquisition driver to sort

out applicable data in each event and store it into an appropriate channel. 'fie crunch table,

or crunch file as it may be referred too, is provided by the user and must be loaded into the

driver before acquiring data.

A crunch table may be loaded into the data acquisition driver by running the program

LOADCRUN.EXE. The LOADCRUN program is run from the protectcd mode which reads

an ASCII file containing parameters needed by the acquisition driver to analyze and store

data. These crunch parameters are installed into the device driver by LOADCRIJN and

remain in memory until a new crunch table is reloaded or a specific command is sent to the

driver to deallocate all crunch memory. Chapter 4 contains additional information on

LOADCRUN.EXE and on crunch table format.

Until a crunch table is loaded into the data acquisition driver, most commands to the

driver are disregarded. The exception to this rule is the "DRIVER STATUS" command.

This command may be used at anytime and can determine if a crunch table has been loaded

into memory by examining the number of channels allocated by the driver. If the number of

channels allocated is zero, no crunch table has been loaded.

6.4 DATA ACQUISITION DRIVER CONTROL

Control of the data acquisition driver and transfer of data is performed by writing thc

address of a long integer array to the device called "DEVICE-T. The first integer of the

array should contain a value from 1 to 15, which will instruct the data acquisition driver which

specific command is to be executed. This section explains each of these commands and

provides an example that can be used by the readcr in a C language program.

Before any of these command statements can be executed, the program must first

open a path to the device driver using an unbuffered format. The following example, written

in Microsoft C, illustrates how a program may open a path to the data acquisition driver.

int device;

device = open("DEVICE-2",C);

39

The preceding statements allow a C language program to write commands to the driver using

the format described below and are intended to be used with all of the fdl43wirng examples.

All of thc following commands can be used while the system is acquiring data. The reader

is also referred to Appendix G for an example of a complete C languagc program which

implements scveral commands together.

(1) DRIVER STATUS This command returns wvcral

acquisition driver that can be use fur checking the status of the current run.

C program example:

long a[S2];

a[O] = 1;

writc(ctevice,(char")&alO), 1);

/* Get acquisition driver status *I

Returned parameters:

a[O] = 1, device driver error

10, device driver not running.

11, device driver running (collecting data).

a[l] = Runtime in seconds.

a[2] = Number of channels allocated by the crunch table. (A zero returned

here indicates that a crunch file has not been loaded.)

a[3] = Total number of events for the current run.

a[4] = Number of rejects (uncorrelated events). Each event labeled as a

reject is discarded and forces the interface buffer to be cleared. A
non-zero number here may indicate a hardware in terface problem.

a[5] = Number of overflows found during PSD analysis. If an event is above

the range of the PSD parameter, the event is discarded and recorded

here.

a[6] = Number of overtlows found in crunching the PWl analyzer data.

a[7] = Number of overflows found in crunching the PEE analyzer data.

a[8] = Number of overflows found in crunching the TOF analyzer data.

a[9] = Number of underflows found during PSD discrimination. Any PSD

event that i s found in the first two channels of any PSD window i s

discarded and recurdcd hcre.

40

a[101 =

a[ll]=

a1121 =

Number of events that have been calculated to fall above the

maximum channel number. This would indicate a severe

problem with the computer or software.

Number of non-applicable tags found during PSD analysis. If

a tag is recorded that is not applicable to any PSD tags, no

PSD analysis is performed and the event is recordcd here.

Crunching would continue.

Number of window overflows found during PSB analysis. If

an event occurs above the given window range, no PSD

analysis is performed and the evcnt is recorded here.

Crunching would continue.

(2) START DATA ACQUXSITION: This command instructs the data acquisition

driver to start or continue data acquisition. If a crunch file has not been loaded into

computer memory or the system is already acquiring data, this command will be

disregarded.

C program example:

long a[4];

a[O] = 2;

write(device,(char*)&a[O],l);

/* Start data acquisition */

Returned Parameters:

a[O] = 11, if successful (collecting data).

(3) STOP DATA ACQUISITION: This command will stop data acquisition. If the

system is already stopped, this command will be disregarded.

C program example:

long a[l];

a[O] = 3;

write(device,(char*)&a[O],l);

/* Stop acquisition command *I

Returned parameters:

a[O] = 10, if successful (system stopped)

41

/4) ZERO ALL CHANNELS: This command zeros all channels used for data

storage. It also clears all scalers and zeros all overflow counters and event counters.

This command will be ignored if a crunch table has not bccn loaded into computer

memory.

C program example:

long a[l];

a[O] = 4;
write(device,(char*)&a[O], 1);

/* zero memory command */

Returned parameters:

a[O] = 10, if successful

(5) DEALLOCA'E MEMORY. This command down loads any crunch table that

had been previously loaded into the device driver and frees all memory that was used

for data storage.

C program example:

long all];

a[O] = 5;
write(device,(char*)&a[O], 1);

/* Deallocate memory command */

Returned parameters:

a[O] = 10, if successful

f6) READ SCALERS This command is used to read the eight scalers connected to

the interface. The data currently displayed on each scaler will be transferred into an

array passed by the requesting program.

C program example:

long a[9];

a[O] = 6; /* Read scalers command */
write (device, (char *) &a[O], 1);

Returned parameters:

a[O] = 10, if successful

a[l] = scaler 1 counts

a[2] = scaler 2 counts

42

a[3] = scaler 3 counts

a[4] = scaler 4 counts

a[5] = scaler 5 counts

a[6] = scaler 6 counts

a[7] = scaler 7 counts

a[8] = scaler 8 counts

l7) LOAD IN cH[ANNEL DATA This command will load data into the acquisition

drivcr from an array passed by a program. The user must specify the starting channel

and number of channels that will be transferred. The maximum number of channels

that may be transferred at one time is 16382 channels (64k bytes). Thus, to transfer

more channels will require that this command be used more than once. IF the last

channel extends beyond the maximum channel, no channels will be transferred.

C program example:

long a[1006];

a[Q] = 7;

a[l] = 0

a[2] = 10oO;

a[3] = total events;

a[4] = rejects;

a[5] = run time;

a[6] = channel 0 data;

a[7] = channel 1 data;

a[8] = channel 2 data;

a[9] = channel 3 data;

a[10] = channel 4 data;

a[l l] = channel 5 data;

a1121 = channel 6 data;

I* Load channel data command *I

I* Start with channel zero *I

I* Transfer 1000 channels *I

I* start of data to be loaded

a[1005] = channd 999 data;

wri te(device, (char *) &a [O] , 1);

43

Returned parameters:

a101 = number of channels transferred

{SI GET CHANNEL DATA: This command will transfer data from the acquisition

driver to an array passed by the requesting program. The user must specify the

starting channel and number of channels that will be transferred. The maximum

number of channels that may be transferred at one time is 16382 channels (64k bytes).

Thus, to transfcr more channels will require that this command be used more than

once. This command may be used while the acquisition driver is in the acquire mode

without affecting data accumulation. IF thc last channel extends beyond the maximum

channel, no channels will be transferred.

C program example:

long a[1003];

a[O] = 8; /* Get channel data command */
a[1] = 0; /* Start with channel zero */
a[2] = 1OOO; /* Transfer loo0 channels */
write(device,(char*)&a[O],l);

Returned parameters:

a[O] = number of channels transferred

a[l] = not used

a[2] = not used

a[3] = channel 0 data

a[4] = channel 1 data

a[5] = channel 2 data

a[6] = channel 3 data

a[7] = channel 4 data

a181 = channel 5 data

a[9] = channel 6 data

a[lOOl] = channel 998 data

a[1002] = channel 999 data

44

f9) LOAD IN PSD BIAS MARKERS: This command allows the user to set the PSD

bias marker €or each window when using the PSD discrimination mode. For each

window thcre is one PSD bias marker which represents a channel in that window. If

any cvent occurs on or above the bias marker €or that specific window, the PSD tag

value will be added to the tag register and all crunching for that event will then use

the summed tag value. I€ PSD mode is disabled or a crunch table has not been

loaded into computer memory, this command will still set the PSD bias markers;

however, they will not be used until a new crunch table is reloaded.

C program example:

long a[100];

a[O] = 9;

a[l] = PSD bias channel €or window 1

a[2] = PSD bias channel for window 2

a[3] = PSD bias channel €or window 3

a[4] = PSD bias channel €or window 4

a[5] = PSD bias channel for window 5

a[6] = PSD bias channel for window 6

a[7] = PSD bias channel for window 7

/* Load bias markers command */

write(device,(char*)&a[O],l);

Returned parameters:

a[O] = 10, if successful

(10) SET OUTPUT LOGIC SIGNALS This command allows the user to set 32 DC

logic signals to the output port located on the rear of the interface buffer. Each logic signal

is approximately +5 volts when high and grounded when low.

C program example:

long a[2];

a[O] = 15;

a[1] = 1 + 2 + 4 + 256;

write(device,(char*)&a[O],l);

/* Set output logic signals

/* Set lines 1,2,3, & 9 high

*/
*!

Returned parameters:

a[O] = 10 if successful

45

APPENDIX A

ANALYZER COMMANDS

Arid xxx channels to the base to shift the current display.

Display channels starting at Base channel xxx.

Compare by overlapping channels starting at channel xxx.

Integrate / Sum the channels starting at xxx with wy being the number
of channels integrated. A period may be used in place of xxx to
represent the cursor channel (is . 1.4096).

h a d a new crunch file with the name oC FILE.Tf3L.

Display overflows.

Print out the crunch table.

Print out scalers, overflows, and runtime.

Print out the counts in each channel starting at xxx with yyy being the
number a f channels printed. A period may be used in place of xxx to
represent the cursor channel (i.e. P. 1024).

Display total events, rejects, and count rate.

Subtract xxx channcls to the base to shift the current display.

Set thc preset timer to xxx seconds (0 = infinity).

Set the preset timer to xxx seconds. After timc out occurs, thc data
will be saved under the name FILE.OO0, FILE.OO1, etc. and thcn
clearcd and restarted (i.e. T1800-tFUSION).

Print o u t the PSD bias marker positions.

.47

APPENDIX E?

EXAMPL;Es OF CRUNCH FIIXS

EXAMPLE 1: This crunch file will only store the first 2048 channels coming from thc first
pulse height ADC (PH1). No crunching of channels is performed. No tags are used. PSI)
mode is disabled.

SECTION 1
PARAMETERS 1
PHI
2048,l
TAGS: 0

EXAMPLE 2: This crunch filc will store 8192 channels corning from the sccand pulse height
ADC (PH2) and crunch them into 512 channels, using a 16 channel crumh.

SECTION 1
PARAKETERS 1
PH2
512 I 16
TAGS: 0

EXAMPLE 3: This crunch file will look at data coming from thc time digitizcr only. It
crunches the first lo00 channels into one channel. Thcn the next 2048 channels are crunched
into 512 channels using a 4 channel crunch. 'It then crunches the next 40'96 channels into 5 12
channels using a 8 channel crunch and so forth. This crunch table will allocale 4097 channels
of computer memory (16388 bytes). Each channel corning from thc time digitim- clock is
assumed to be one nanosecond in width. No tags are used here.

SECTION 1
PARAMETERS 1
TOF

512,4
512 I 8
512,16
512 , 32
1024,64
1024, I28
TAGS: 0

1,1000

48

E L W P L E 4: This crunch file performs two dimensional (2 parameter) storage using data
from the one pulse height ADC as one of the parameters and data from the time digitizer
as the other parameter. This file will allocate 2048 x 37 (75776) channels or 303104 bytes of
computer memory. No tags are used here. The PSD mode is disabled.

SECTION 1
PARAMETERS 2
P H 1
2048 , 4
TOF
1,5000
4 , 128
8,256
8 , 512
16 I 1024
TAGS: 0

EIX.4MPLE S: This file enables tag inputs 1, 2, and 3 on the time digitizer. It will store data from the one pulse
height ADC and the time digitizer as a function of the tag register. If two tags are recorded for one event their
value will be summed into the tag register. For example, if 'l'AG#l (value 1) and TAG#3 (value 4) are recorded
during the same event, the tag for that event will be 5. A tag value of 5 will not be recorded anywhere using this
crunch table.

TAG#1 YES
TAG#2 YES
TAG#3 YES
TAG#4 NO

SECTION 1
PARAMETERS 1
PH1
2O48,l
TAGS: 1,2,4

SECTION 2
PARAMETERS 1
T8F
1,5000
4 , 128
8,256
8,512
16,1024
TAGS: 1,2,4

49

EXAMPLE 6: This crunch file enables tag inputs 1,2, and 3. It uses the pulse shape discrimination
mode (PSD mode). Each PSD window uses 512 channels from PH2 crunched into 128 channels. The
crunch factor in the PSD section may only be factors of 2 (ie. 2,4,8,16,32,64). The PSD mode uses

record the total number of events as a function of tag only.
window parameter PH1 divided into windows of 64,64, 128, ... channels. Note that section 4 is used to

TAG#1: YES
TAG#2: YES
TAG#3: YES
TAG#4: NO

PSD MODE ON
PSD PARAMETER PH2
WINDOW PARAMETER PH1
NUMBER OF CHANNELS 128
CRUNCH FACTOR 4
VALUE ADDED TO TAG 100
APPLICABLE TAGS 1,2,4
WINDOWS (channel width) 64,64,128,256,512,1024,1024,1024,

2048,2048

SECTION 1
PARAMETERS 1
PH1
2048,4
TAGS: 1,2,4,101,102,104

SECTION 2
PARAMETERS 1
TOF
2048,4
TAGS : 1,2,4,10 1,102,104

SECTION 3
PARAMETERS 2
PH 1
IO24 I 8
TOF
1,950

8,48
8,64
8,96
8,160
8,256
TAGS : 1,2,4,101,102,104

a,32

SECTION 4
PARAMETERS 1
PH1
1,8192
TAGS: 0,1,2,3,4,5,6,7,100,101,102,103,104,105,106,107

51

APPENDIX C

EXAMPLE PROGRAM

aLOl = 4 ;
write(device, (char*)&a[Ol , l) ;
pr i n t f (5 y s tern zeroed: \n") ;

el01 = 2;
write(device,(char*)&aCOl , l) ;
print f ("sys tem started: \n") ;

/* zero a l l channels */

/* s t a r t acquiring data */

printf("Hit any key t o stop and print out channels 100 thru 119 ... \n\nI');
while (!kbhit());

a101 = 3;
w r i te(device, (char*)&a[Ol, 1);
pr i nt f ("Sys tern stopped: \nil);

/* stop acquiring data */

ai01 = 8; /* get channel data */

aC21 = 20; /* transfer 20 channels */
a l l 1 = 100; /* star t ing with channel 100 */

w r i te(device,(char*)&a CO1 ,I);
fo r (i=3; i<23; i++) pr in t f (When Yd = %Ld\ns~,i+97,aCil);

53

APFENDW:

REAR PANEL PLN CONNECI'IONS

Data a c c e p t ## 1

Data Ready #1

Clock Data 1 5

Clock Data 1 6

clock Data 1 7

Clock Data 18

Clock Data 1 9

C l o c k Data 2 0

Clock Data 2 1

Clock Data 2 2

C l a c k Data 2 3

Clock Data 2 4

Clock Data 2 5

Tag Data #1

Ti33 Data 82

Tag Data 8 3

Tag Data #4

Data Accept # 2

Data Ready # 2

Clock Data 0 0

Clock Data 01

Clock Data 02

Clock Data 0 3

Clock Data 04

Clock Data 0 5

Clock Data 06

Clock Data 07

Clock Data 0 8

Clock Data 0 9

Clock Data 1 0

Clock Data 11

Clock Data 1 2

C l o c k Data 1 3

Clock Data 1 4

54

APPENDIX D - Continu

REAR PANEL PIN CONNECTIONS

CN6 CONNECTOR (WORD #3):

Data Accept # 3

Data Ready # 3

ADC#1 Data 00

ADC#1 Data 01

ADC#1 Data 02

ADC#l Data 0 3

ADC#l Data 04

ADC#1 Data 05

ADC#1 Data 06

ADC#l Data 07

ADC#1 Data 08

ADC#1 Data 09

ADC#1 Data 10

ADC#1 Data 11

ADC#l Data 12

ADC#1 Data 13

Data Accept # 4

Data Ready # 4

ADC#2 Data 00

ADC#2 Data 01

ADC#2 Data 02

ADC#2 Data 0 3

ADC#2 Data 04

ADC#2 Data 05

ADC#2 Data 06

ADC#2 Data 07

ADC#2 Data 0 8

ADC#2 Data 09

ADC#2 Data 10

ADC#2 Data 11

ADC#2 Data 12

ADC#2 Data 13

.-

CN7 CONNECTOR (WORD #4):

APPENDIX D - Continued

DC L i n e 18 0,
DC L i n e 17

DC L i n e 16

D e L i n e 15

DC L i n e 1 4

DC L i n e 13

DC L i n e 1 2

DC L i n e 11

DC L i n e 1 0

DC L i n e 09

DC L i n e 08

DC L i n e 07

DC L i n e 06

DC L i n e 05

DC L i n e 0 4

DC L i n e 0 3

DC L i n e 0 2

DC L i n e 0 1

it// DC Line 0 0

56

CN9 PrN CONNE@I[IONS (SCALER INPUT)

D a t a I npu t 00
Data Inpu t 0 1
D a t a I npu t 0 2
Data Inpu t 03
Data Inpu t 04
D a t a I n p u t 05
Data Inpu t 06
Data Inpu t 07
Data Inpu t 08
Data Inpu t 09
Data I n p u t 1 0
Data Inpu t 11
Data Inpu t 1 2
D a t a Input 1 3
Data I n p u t 1 4
Data Inpu t 15
Data I n p u t 16
Data I n p u t 1 7
Data Inpu t 18
Data Inpu t 19
Data Inpu t 20
Data I n p u t 2 1
Data Inpu t 2 2
Data I n p u t 23

- A
- E
- c
- D
- E
- F
- PI
- J
- K
- L
- M
- N
- P
- R
- s
- T
- u
- v
- w
- x
- Y
- z
- a
- b

Data Inpu t 2 4 - c

Data Inpu t 25
Data I n p u t 26
D a t a I npu t 27
D a t a Input 28
D a t a I n p u t 29
Data Inpu t 3 0
Data Inpu t 31

OVERLW
C n t r l L ine 00
C n t r l L i n e 01
C n t r l L ine 02
C n t r l L ine 03
C n t r l L ine 04
C n t r l L ine 05
C n t r l L ine 06
C n t r l L ine 07
C n t r l L i n e 08
C n t r l L ine 09
Cntrl Line 10
C n t r l L ine 11
C n t r l L ine 1 2
C n t r l L ine 13
C n t r l Line 1 4
C n t r l Line 15

GND

- a
- e
- f
- h

- k
- j

- m
- n
- P
- r

- t
s -
U

- v
- w
- x

-

- Y

- A A
- BB
- cc
- DD
- EE
- FF
- HH

- 2

57

APPENDIX E

DATA HANDLER LOW LEVEL VO COMIW-WDS

Port C
output Description

1 Scaler Data: Places data bus (ports A & B of the interface card) on
port 2 (Scalers) of thc data handler. This removes thc data bus from
the FIFO memory and from the tcst data input.

Scaler Stop: This generates a +12 volt pulse at the rear pancl BNC
connector labeled Scaler Stop.

Scaler Reset: This generates a +12 volt pulse at thc rear panel BNC
connector labeled Scaler Resct.

Scaler Start: This generates a +12 volt pulse at the rear panel BNC
connector labeled Scaler Start.

FIFO Memorv: Places data bus (ports A & B of the interface card)
on port 1 (FIFO Memory) of the data handler. This removes the data
bus from the Scalers and from the test data input.

Test Data Input: Places data bus (ports A & B of the intcrface card)
onto the test data input circuit of the data handler. This requires rc-
configuring ports A & B as write ports. This command also removes
the data bus from the Scalers and turns of1 data input from cxternal
world.

2

3

4

5

6

7

9

10

11

13

14

15

Master Reset: Performs a master rcsct and clcars all data from FIFO
memory. This also removes the data bus (ports A & B) from any
input port.

Scaler Step: This steps through the control lines going to port 2 of
the data handler. If attached to the scalers, it advances thc scaler bus
by one half scaler.

Accept Data: This cnables the data handler to start accepting and
storing data from each applicable digitizer.

Block Data: This disables the data handler from accepting and storing
data from any digitizer.

False Data Ready: This command provides a false data ready signal
used to input test data into the FIFO memory.

D.C. Line Monitor: This generates a pulsc at thc rear panel BNC
connector Iabelcd D.C. Line Monitor.

Disable Data Bus: This removes the data bus (ports A RC 3 of thc
interface card) from everything.

59

APPENDK F

SOURCE CODE FOR DATA ACQUISITION DRIVER

Name DEVICE2
T i t l e ‘DATA ACQUISIT ION DEVICE DRIVER - VERSION I I

;Compile example:
, MASH DEVICE2.ASM;
* LINK DEVKCE2.0EJ,C:\DEVICE2.SYS,,OOSCALLS.L

PhysToVirt w
A1 LocPhys equ
VirtToPhys equ
At LocCDT equ
PhysToGDT equ
F reeP hys equ
SetTimer equ
l i ckcoun t equ
ResetTimer equ

CFGl equ
CFG2 equ
STAT equ
PORT 1 equ
PORT2 equ

UnPhysToVi r t equ

e x t r n DOSUR1TE:far

15h
32h
18h
16h
2Dh
2Eh
19h
1Dh
33h
1Eh

ODOOOh
ODOD2h
ODOO4h
OD006h
OD008h

; MC-DIO-32F po r t address

DGRWP group DATA - DATA segment vord pub l i c ‘DATA‘

header dd -1
dU 8880h
dw S t r a t
dw 0
db ‘DEVICE-2’
db 8 dup (0)

v a r l dw
devhLp dd
tern-ax dw
tern-bx du
running du
runtime dd
s t a r t t m dd
working du
l i v e o f f du
numseg du
numword du
nmcrun du
m - a d d dd
word1 chi
i t e g du
w i n du
t a d du

4 dup (0)
?
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

; device d r i v e header...
; l i n k t o next device d r i v e r
; device a t t r i b u t e word
; I’Strategy” rou t i ne en t r y po in t
; (reserved)
; log ica l device name
; (reserved)

; DevHlp en t r y po in t
; data storage

sect i on du
chan dd
maxchn dd
kmax dw
anal dw
nh dU
tevent dd
reject dd
overfO dd
overf l dd
overf2 dd
overf3 dd
overf4 dd
overf5 dd
overf6 dd
overf7 dd
pscmem dd
saveit dn
quert dn
vedi dd
vesi dd
veax dd
vebx dd
vecx dd
vedx dd
parm dd
psd dd
psdm dd
crun dd
GDT dw

ulen du

ident db
db
db

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5 dup (0)
200 dup (0)
100 dup (512)
1000 dup (0)
0

? ; receives DOSURITE length

13,10
'Device dr iver f o r ANALYZER I 1 instal led. '
13,10

ident-ten equ S iden t

END-DS EQU 0
- DATA ends

L

- TEXT

Strat

s1:

s2 :

segment word public ICODE'
assume cs:-TEXT,ds:DGRWP,es:NOTHING

far
es
ebx
eax
ecx
edX

di ,es: [bx*2]
di,OFFh

d i ,a
s2

U r i t e

E x i t

di ,13
s3

Ope"

; device dr iver Strategy routine,
; cal led by OS/2 kernel u i t h
; ES:BX = address o f request packet

; get command code from packet

; w r i t e statement executed

; open device dr iver

61

jmp E x i t

53 : di,O
E x i t

cat1 I n s t a l l ; i n i t i a l i z e device d r i v e r

Open proc
4w
l e

lllov
mOV
out
c a l I
mOV
out
ca l I
rnov
out
ca l L

rnov
mOV
out
cat I
mov
aut
cat i
mov
out
ca l L
mov
out
cal I

nmv
aut
cal I

mi4
i n

O p e d : ret

Open e d p

. . .__". . . .__I - - -
I

Write proc

mow
mOV
K l V
mov

near
running,l
O p e d

dx,CFGl
ax,0100h
dx , ax
de L ay
ax,0000h
dx, ax
de I ay
ax, O61Oh
dx,ax
delay

dx,CFG2
ax, 01 OOh
dx, ax
de 1 ay
ax,OOOOh
dx,ax
delay
ax, 06a0h
dx,ax
de I ay
ax,0620h
dx,ax
delay

dx I PORT2
ax,15
dx,ax
delay

ax,7
dx,ax
Delay

dx (I PaRT 1
ax,&

; re tu rn i f acqui r ing data

; set po r t s A& f o r handshaking
; i n read and pulse mode

; set p o r t s C&D f o r handshaking
; in w r i t e mode

; bus disabled

; reset FIFO

; remove anything from PORT1

ax,es: Ebx+161
bx,es: [bx+141
tern-ax, ax
t em-bx , bx

; put address of s t r i n g i n es:bx

62

mOV
mOV
mOV
c a l l
mOV

mOV

UriteO: cmp
j ne
c a l l
imp

jne

jmp

U r i t e l : cmp

c a l l

Write2: cmp
j ne
c a l l
jmp

Write3: crrp
j ne
c a l l
imp

Ur i te4: cmp
j ne
cat l
jmp

Ur i te5: cmp
j ne
c a l l
jw

Writ&: cmp
j ne
c a l l
jrrp

Write7: cmp
j ne
cat l
imp

Urite8: c p
j ne
ca l l
jw

Write9: crrp
jm
cat 1
jnp

Ur i te l5 : cmp
j ne
cat 1
jw

Wexit: mov
cat 1
r e t

Write endp

cx, 0
dh, 1
d1,PhysToVirt
devh 1 p
bx,di

a1 , es: td i 1

a1,217
Ur i t e l
I n i t
Wexi t

a l , l
W r i te2
Check
Wexi t

al,2
Write3
S ta r t
Wexit

a1,3
Ur i t e4
stop
Wexit

al,4
Ur i te5
Reset
Uexi t

at ,5
Ur i te6
Devcls
Uexi t

a1,6
Write7
Scaler
Uexi t

a1,7
Write8
Load
Wexit

a1,8
Ur i te9
Get
Wexi t

a1,9
Write15
Marker
Wexit

a1,15
Wexi t
OutDC
Wexi t

dl,UnPhysToVirt
devh 1 p

; v i r t address now i n es:di

; stop and reload crunch

; check s tatus

; s t a r t

; stop

; zero everything

; deallocate a l l memory

; read scalers

; load i n data

; get data

; load i n psd b ias markers

; output t o dc connector

63

Check proc
mOV

;:
IWV

7:

;z
c a l l
mOV

add
Checkl: sub

mOV

CheckE: mov
mOV

mOV
mOV

mOV
mOV

mOV
mOV

mOY
mOV

mOV
mOV

mOV
mOV

mOV
mOV

mOV
mOV

mOV
mOV

mOV
mOV

mOV
mOV

near
es: [dil,dword p t r 10
running, 1
Check2
es: [d i l ,dword p t r 11

; device not running

; device running

1 iveof f , 1
Check2
Gtime
ebx,starttm
eax , ebx
Checkl
eax,604800
eax , ebx
runtime,eax

eax,runtime
es: Cdi+bl ,eax

eax, maxchn
es: Idi+81 ,eax

eax,tevent
es: Idi+121 ,eax

eax,reject
es: [di+l61 ,eax

eax,overfO
es: Idi+201 ,ea#

eax,overfl
es: ldi+241 ,eax

eax,overf2
es: Idi+281 ,eax

eax,overf3
es: Cdi+321 ,eax

eax,overf4
es : Cd i +361, eax

eax,overf5
cs: tdi+401 ,eax

eax,overf6
es: Cdi+447 ,eax

eax,overf7
es: Cdi+481 ,eax

; update runtime

; return runtime A(1)

; re turn crunch chan A(2)

; return t o t a l events A(3)

; return re jec ts A (4)

; return PSD overf lovs A(5)

; return P H I overflows A (6)

; return PH2 overf Lous A(7)

; return TOF overflows AC8)

; return PSD underfLows A(%

; return maxchn overflows A(10)

; return tag overflows A(11)

; return window overflows A(12)

r e t
Check endp

.--------_----___--_----- START DATA ACQUlSTION . _ I E - - - _ _ - - ^ _ _ _ - - _ " - - - - - -
I

Star t proc near
~"v , maxchn,Q
l e Star td

running, 1 FP Star td

mov es:[di l , duord p t r 11 ; return 11 (running)
mov liveoff,O

c a l l open ; i n i t i a l i z e 110 board

mav dx,CFGl
mov ax,Q100h

; tes t f o r number of words per event

64

out
cat 1
I W V
out
cal I
m v
out
cat L
K J V
mOV
out
call
mOV
out
cat 1
mov
out
cat 1
mov
out
cat 1
W V
out
cat 1
IIK)V
out
call
mOV

Loopl: mav
mov
out
cat 1
m v
M V
out
cat 1
M V
out
cat 1
add
C
i t
lWV
m v
out
call
m v
out
ca!. I
mow
mov
out
cat 1
mOV
out
cat 1
m v
out
cat 1
mov
FlKlV
OUt
call
mOV
in
cal l
in
call
in
call

dx,ax
de t ay
ax,0000h
dx , ax
delay
ax, 0021 h
dx , ax
de 1 ay
dx, PORT2
ax,7
dx,ax
de 1 ay
ax,b
dx,ax
delay
ax,13
dx, ax
de 1 ay
ax,O
dx,ax
de 1 ay
ax, 7
dx , ax
delay
ax,6
dx,ax
delay
cx, 1
dx, PORT 1
ax,cx
dx,ax
de 1 ay
dx,CFGl
ax, O023h
dx,ax
de t ay
ax, 0021 h
dx,ax
de 1 ay
cx, 1
cx,5
LOOP1
dx, ROUT2
ax,13
dx a ax
de L ay
ax,O
d x , ax
de 1 ay
dx, CFC 1
ax, 01 OOh
dx,ax
de I ay
ax, OOOOh
dx , ax
de 1 ay
ax, 061 Oh
dx, ax
de I ay
dx , PORT2
ax,§
dx,ax
de I ay
dx,PORTI
ax, dx
de I ay
ax dx
de 1 sy

delay

65

i n
ca l l
and
mOV

m0V
mOV
out
cat 1

mOV
mOV
out
cat 1

mOV
i n
c a l l

mOV
mOV
out
c a l l

mOV
mOV
OUt
c a l l

c a l l
mOV

;:
add

S t a r t l : sub
mOV

mOV
mOV
c a l l

mOV
Startd: r e t

S ta r t endp

ax,dx
delay
ax, 15
nunuord, ax

dx.PORT2
ax,5
dx, ax
delay

dx , POR
ax,7
dx,ax
delay

dx , POR
ax, dx
delay

dx, PORT2
ax, 10
dx,ax
Delay

dx , PORT2
ax,4
dx, ax
Delay

G t i m e
ebx,runtime
eax,ebx
S t a r t l
eax,604800
eax, ebx
s t a r t tm, eax

; enable data i n

; s t a r t scalers

; get s t a r t t i m e

ax,offset cs : i n t r
d1,SetTimer
devh 1 p

running,l

; pointer t o timer handler

Stop proc
mOV

f F
f2

2

mOV
c a l l
mOV

add
t a r t l : sub

mOV

StopO: mov
mOV
out
cat 1

mOV

near
es:[di], word ptr 10
rum i ng , 0
stopd

; re tu rn 10 (stopped)

1 i veof f ,I

1 i veof f ,O
Gtime
ebx,runtime
eax,ebx
t a r t l
eax,604800
eax,ebx
starttm,eax

ax, 11
&,PORT2
dx, ax
Delay

ax,2

Stop0
; was l i ve t ime o f f ?

; get s t a r t t i m e

: disable data i n

; stop scalers

66

aut
cat 1

mOV

mOV
ca l 1

mov
out
cat 1

mOV

cat I
RWV

7:
add

Stopl: sub

Stopd: r e t

moV

dx, ax
Delay

ax,offset cs: in t r
dl,ResetTimer
devhlp

ax, 7
dx,ax
Delay

runni ng , 0

Gtim
ebx,starttm
eax,ebx

eax,604800
eax I ebx
runtime,eax

Stopl

; remove t imer handler

; reset F I F O

; update runtime

stop endp

Reset proc near
cmp maxchn,O
j e Resetd

mow es : ld i l , word p t r 10
c a l l CLrmem

; re tu rn 10 (reset O.K.)

Devcls proc near

mov e s : l d i l , dward p t r 10
c a l l stap

cnp maxchn,O
j e Devd

m v d1,UnPhysToVirt
c a l l devhlp

m v bx,word p t r mem-add
mow ax,word ptr mem-add+Z
mav dl, FreePhys
c a l l devhIp
mov maxchn,0

Devd: r e t

; re tu rn 10 f o r success
; stop everything

; f ree a l l memory

Devcls erxdp

mov tevent.0
m o w reject,O
m v overf0,O
mav overf1,O
m v overf2,O
mov overf3.0

; clear counters

A7

mOV
mOV
mOV
mOV
mOV

mOV
mOV
out

r e t

C L r l : m v
mOV

zerol: mov

dec
add

mOV

mOV
mOV
mOV
ca l I

mOV
cat 1
r e t

C l r m e m endp

over f 4,O
over f 5,O
overf6,O
overf7,O
runtime,O

dx I PORT2
ax,3
dx,ax

maxchn,O
C l r l

ax,numseg
savei t , ax

ax,uord p t r mem_add+2
bx,uord p t r mem-add
save i t
ax, savei t
cx,o
4 8 1

d1,PhysToVii-t
devh lp

cx, 04000h
es: tdi1,duord p t r 0
d i ,4
zero2
saveit,O
zerol

d1,UnPhysToVirt
devh l p

; c lea r scalers

; re tu rn i f no memory

; save number o f segments t o c lea r

; ax:bx 32 physical address

; v i r t address nou i n es:di

Scaler proc

SCAl :

SCA3 :

mOV

FP
mov
mOV
out
cat 1

mOV
i n
and
j z
mOV
i n
mOV

mOV
mOV
Otlt
cat 1
c a l l

mOV
add
mOV
m0V

near
es: Cdil, dword p t r 10

rum i ng , 0
SCAl

dx,PORT2
ax,15
dx,ax
de 1 ay

dx, STAT
ax,dx
ax,32
SCAl
dx, PORT 1
ax, dx
word1 ,ax

dx,PORT2
ax, 1
dx,ax
Delay
Delay

d i ,4
duord ptr es: [di l ,O
dx , PORT 1

cx,8

; empty FIFO i f running

; disable FIFO bus

; check REG1

; save word1

; enable scaler bus

68

i n
mOV

mOV
shr
and

inul
add

mOV

mOV
shr
and

imul
add

mOV

mOV
shr
and

imul
add

mOV

mOV
and

inul
add

mOV

mOV
mOV
out
c a l l
mOV
in
mOV

mOV
shr
and

imul
add

mOV

mOV
shr
and

imul
add

mOV

mOV
shr
and

i n u l
add

mOV

mOV
and
add
CRP
j l e
mOV

SCA4: mov

out
cat 1

mOV

ax,dx
dx , ax

bx , dx
bx, 12
ebx,Olll I b
eax,10000000
eax,ebx
duord ptr es: [dil,eax

bx , dx
bx,8
ebx,Oll l lb
eax,1000000
eax, ebx
duord p t r es: [di l ,eax

bx , dx
bx,4
ebx,Ol l l lb
eax,100000
eax,ebx
duord ptr es: [d i l ,eax

bx , dx
ebx,Ol l l lb
eax, 10000
eax,ebx
duord ptr es: [d i l ,eax

dx,PORT2
ax,9
dx,ax
Delay
dx, PORT 1
ax,dx
dx, ax

bx , dx
bx, 12
ebx, 01 11 1 b
eax, 1000
eax,ebx
dword p t r es: Cdil ,eax

bx , dx
bx,8
ebx, 01 11 1 b
eax,100
eax,ebx
duord ptr es: Cdil ,eax

bx , dx
bx,4
ebx,Ol l l l b
eax,l0
eax, ebx
dword p t r es: [d i l ,eax

bx , dx
ebx,Ol l l lb
duord ptr es: [d i l ,ebx
dword p t r es: [dil,99999999

duord p t r es: [dil ,O

dx,PORT2
ax,9
dx,ax
De L ay

SCA4

69

dec cx

SP SCA3
cx, 0

mav dx,PORTl
i n ax,dx
c a l l delay

mov dx,PORT2
mov ax,S
out dx,ax

; c lea r PORT1

; enable FIFO bus

Load proc
n O W

SP
Lex: r e t

LoadO: mov
mOV
mOV
mOV
mOV
mOV

mov

mOV
add

add

;?
mOV
mOV
W V

FP
sh I

sh l
add

shr

mOV

mOV

mOV
mOV
cal I

c l c
push

add
adc

mOV
mOV

mOV
mOV
c a l l

mOV
Loadl: mov

add
cmp
j l

mOV

POP

near
es:Idi l , dword p t r 0
maxchn, 0
Load0

eax,es: [di+121
tevent,eax
eax,es: fdi+161
r e j e c t I eax
eax,es: [di+201
runtime,eax

eax,es: Idi+41
eax,es: [di+8J
ebx,maxchn
ebx,3000
eax,ebx
Lex

ecx, 0
cx,es: Cdi+8l
es: td i l , ecx
cx,o
Lex
cx,2
eax,es: [di+4J
eax,2
eax , mem-add
bx,ax
eax, 16
dh,l
d1,PhysToVirt
devhlp

ds
ax, tem-ax
bx, tem-bx
bX'24
ax,O
dh,O
d1,PhysToVirt
devh lp

bx,O
eax,ds: [si+bxl
es: Cdi+bxl ,eax
bx,4
bx,cx
Loadl

ds

; tevents

; re jec ts

; runtime

; cx = number of channels t o t rans
; re tu rn nurnber of chan transfered

; s t a r t i n g channel
; 4 bytes per channel
: add memory address
; bx = low
; ax = h igh
; put in es:di

; ds:si = address of source

; source (exended memory)
; target memory

70

Get proc
mOV

T
Gex: r e t

GetO: m ~ v
add

add
mOV

f F
mOV
mOV
mOV

f P
sh 1

sh l
add

shr

mOV

mOV

mOV
mOV
c a l l

c l c
push

add
adC

mOV
mOV

mOV
mOV
ce l l

mOV
Getl: mov

mOV
add
crnp
j l

POP
r e t

Get endp

Marker proc
mgV

mOV
m V

mOV
I p s h : m v

add
cw
i l

near
es:[di l , duord p t r 0
maxchn,O
GetO

eax,es: [di+4]
eax,es: [di+81
ebx,maxchn
ebx, 3000
eax,ebx
Gex

ecx,0
cx, es : td i +81
es: [di l ,cx
cx, 0
Gex
cx,2
eax,es: [di+4]
eax ,2
eax , mem-add
bx,ax
eax, 16
dh,l
d1,PhysToVirt
devhlp

ds
ax, tem-ax
bx , t em-bx
bx, 12
ax,O
dh,O
dl,PhysToVirt
devh 1 p

bx,O
eax,es: [di+bxl
ds: [si+bxl ,eax
bx,4
bx,cx
Get 1

ds

; cx = number o f channels t o trans
; re tu rn n&r o f chan transfered

; s t a r t i n g channel
; 4 bytes per channel
; add memory address
; bx = low
; ax = high
; put i n es:di

; ds:si = address o f target memory

; source (exended memory)
; target memory

bx,O
s i ,o f fset ds:psdm
eax,es: Cdi+bxl
ds: [si+bxI ,eax
bx,4
bx ,400
1 psdm

; transfer psd markers

r e t
Marker endp

c a l l Stop
c a l l Devcls

mov ax,tem-ax
mov bx , tern-bx
mov cx,04000h
mov dh,l
mov dl,PhysToVirt
c a l l devhlp

nov ax,es: Cdi+401
mov tand,ax

bx,O
s i ,o f f se t ds:psd
eax,es: Cdi+bx+20003
ds: Csi+bxl ,eax
bx,4
bx, 1000
Lpsd
eax,psdC01
psdmem, eax

mov bx,0
mov s i ,o f fset ds:crun

mov ds: Csi+bxl .eax
add bx,4
cmp bx ,4000
i t l c r u n

mov eax,es: Cdi+4]
mov maxchn,eax
add eax,3000
shr eax,l4
add ax,l
mov numseg,ax

c l c
mov bx, 0
mov ax,nwnseg
mov dh,o
mov d1,AllocPhys
c a l l devhlp
jnc I n i t 2
mov maxchn,O

lcrun: mov eax,es: [di+bx+4000]

i n i t 2 : mov
moV
mOV
mOV
mOV
m3V
mOV
c a l l
mOV
mOV

SP
cat 1

word p t r mem-add,bx
word ptr mern_add+2,ax
bx , t em-bx
ax, tern-ax
cx,4

d1,PhysToVirt
devh 1 p
eax,maxchn
es:Cdil, eax
eax , 0
In i td

Clrmern

mov ax,word ptr mern_add+2
nov bx,word ptr mem-add
mov cx,o
mov & , I
mov d l ,PhysToVi r t

; stop
; f r e e a l l memory

; reload crunl0ll address

; AND tag value - crun(l0)

; t rans fe r psd array

; s t a r t o f psd memory

; t rans fe r crun array

; eax = nun of chan required

; ax = nunber o f 64k seg

; a l loca te extended memory

; memory above 1 meg

; jrnp i f a l l oca ted

; save s t a r t i n g mem physmem

; re tu rn number a l l oca ted

; put CHANCOl i n es:di

72

ca l I devh I p

ds
v a r l
ax,word p t r varl+4
bx, es
bx,word p t r varl+2
cx,o
dh,O
dl,PhysToVirt
devhlp

word ptr ds: [s i l
word ptr ds:[si+f]
word p t r ds: [si+43
word p t r ds: [si+b]
word p t r es:[di l
word p t r es: Idi+2]
word p t r es:Cdi+4]
word ptr es:[di+61
dS

Push
5gdt

add

mOV
IWV

mov
I W V
mOV
cal1.

IllOV
m v

mOV
m v
mOV
mOV
m v
mOV
mOV
or
mOV

mv
mv
m v
mOV

mov
i7IOV
wt
ca l L

mOV
wt
cat 1

m O W
our
cat l

ax,es: [d i l
word p t r overf0,ax
ax, es: f d i +21
word p t r overf1,ax
ax, es : td i +41
word p t r overf2,ax
ax,es: [di+61
word p t r overf3,ax

dword p t r es: [d i l ,O
dword ptr es: ldi+41 ,O

ax,word p t r varl+b
bx,GDT
bx,word p t r varl+2
cx,o
dh,l
dl,PhysToVirt
devh L p

ax,word p t r overf3
es: t d i l ,ax
ax,word ptr overf2
es: Idi+23 ,ax
ax,word p t r o v e r f l
es: Idi+4] ,ax
ax,word ptr overfO
ax,128
es: tdi+61 ,ax

over f 0,O
overf1,O
overf2,O
overf3,O

dx,PQRT2
ax, 11
dx,ax
De l ay

ax,3
dx , ax
Delay

ax,15
dx,ax
Delay

; put address o f e5 i n ds:si

; save CHANCOI descr ip tor

; descr ip tor i n overf

; put GDT descriptor i n es:di

; modi f iy decr ip tor and save

; disable data i n

; zero scalers

; disable FIFO bus

73

mov ax,7
out dx,ax
c a l l Delay

; reset FIFO

OutDC proc
mOV

mOV
mOV
out
cat 1

mOV
mOV
out
cat 1

mOV
out
c a l l

mov
mOV
out
cat 1

mOV
mOV
out

r e t
OutDC endp

near
es: Cdil ,duord ptr 10

dx,CFGZ
ax, 0621 h
dx,ax
delay

dx, PORT2
ax,es: [di+4]
dx,ax
de 1 ay

ax,es: [di+6]
dx,ax
delay

dx,CFG2
ax,0620h
dx,ax
de l ay

dx, PORT2
ax, 14
d x , ax

I CRUNCH DATA & STORE I T .

Crunch proc
mOV

jw
re jd : inc

mOV
mOV
out
cat 1
mOV
out
c a l l
mOV
in
cat 1
NIOV
mOV
out
cat 1
mOV
out

Edn: c a l l
Edone: r e t

CrunO: inc

T
s t i
nop

near
nwncrun,O

shor t CrunO

dword ptr r e j e c t
dx , PORT2
ax, 11
dx , ax
De 1 ay
ax,7
dx,ax
de 1 ay
dx,PORTl
ax, dx
de 1 ay
dx,PORT2
ax,70
dx, ax
De 1 ay
ax,5
dx,ax
beep

n m r u n
rwmc run, 7000
Edn

- - -

; re tu rn 10 t o a[O1

; set OUT2 h igh

; output f i r s t 16 b i t s

; output next 16 b i t s

; set OUT2 low

; pulse PI4 output

; r e j e c t found i n data

; disable data in

; clear F I F O

; clear PORT1

; enable data i n

; enable FIFO bus

; re tu rn i f CR too f a s t

; enable in terupts b r e i f l y

74

c l i

mov cx,numword
m v dx,STAT
in ax, dx
and ax,&
i z Edonc

; check DRDYl

; r e t i f DRDYl not set

I word 1 (most s i g n i f i c a n t 16 b i t s o f TOF clock & tags) - - - - - - - - - - . - - - - - -
dx, PORT1
ax, wordl
wordl ,O
ex,O
Crunl
ax,dx
ax,15
r e j d
bx, ax
ax,0000011111111111b
eax,l6
b x , l l
bx,tand
itag,bx

; read po r t s A & B
; copy b i t 15 t o carry f l a g
; r e j i f ca r ry f l a g not Set

; word 5 (tags)

I word 2 (l eas t s i g n i f i c a n t 16 b i t s o f TOF clock) - - - - - - - - - - . - - - - - -
in ax, dx ; read po r t s A & B
sh l ax,l ; copy b i t 15 t o carry f l a g
i c r e j d ; r e j e c t i f ca r ry b i t set
shr eax,l
mov dword ptr parrnC41,eax ; words 1 & 2 (t o f)

cx.2 fF s t o r

I word 3 (pulse height analyzer #1 P H I) - - - - - - - - - - . - - - - - -
i n ax,dx
bt ax,l5
j c r e j d
and ax,0001111111111lllb
mov word p t r parmt81 ,ax

cx,3 ;? s t o r

; read po r t s A & B
; copy b i t 15 t o ca r ry f l a g
; r e j e c t i f carry b i t set

I word 4 (pulse height analyzer #2 PH2) - - - - - - - - - - . - -____
i n ax,dx
bt ax, 15
j c r e j d
and ax,0001111111111111b
m v word p t r parmll21,ax

; read por ts A & B
; copy b i t 15 t o ca r ry f l a g
; r e j e c t i f carry b i t set

stor: inc dword p t r tevent ; add 1 t o t o t a l events

CHECK FOR PSD TAG - - - - - - - - - - - - . - - - - - - - - - -____
mov s i ,o f f se t ds:psd ; ds:si = psd(0)

f P CONT2 ; i f no psd
dword p t r ds: Csil.0

di,O
bx I 40
UIN, 1
ax, i tag
cx,ds: Csi+241
dx,ds: tsi+bxl
dx,ax

bx,8
DTAG

; D I PCHAN channel
; PSD(10)
; applicable windon

; number o f det/tags
; applicable tag?

75

DTAG:

PTAG:

add

add
1 ow
i nc
jw

IIK)V

W V
sh 1

mOV

m v
mOV
mOV

c w
j l
add
add
add
l oop

i nc
jmp

overfp: inc

under: inc

unkr l : inc

jmp

jmp

jmp
cat 1

KTAG:

KTAG 1 :

YTAG: m v
sh l
cmp
i l

add

STORE: add
W V
mOV

mOV

add

di,uord p t r ds: Csi+321
dx,word ptr ds: Csi+281
WIN,dx
TTAG
over f6
COUTZ

bx , ds : ts i +81
bx,2
ax,uord p t r parmCBXl

bx,120
cx,ds: Csi+28]
dx, ds : Is i +BX1
ax,dx

d i ,ds: Csi+l21
bx,4

KTAG

uIn,i
PTAG

overf 7
crunO
overf0
crunO
overf4
crunO
overf5
beep
c r u d

bx,ds: [si+4l
bx,2
ax,word ptr parmCbxl
cx,ds: [si+l61
c1,o
KTAGI
ax,cl
bx,ds: [si+l21
ax,bx
over fp
ax,2
under
YTAG

bx,UIN
bx,2
ax,word p t r psdmCbxl
short STORE
cx,uord p t r psdC2Ol
itag,cx

di,ax
eax, 0
ax,di
eax , psdmem

eax, maxchn
b i g e r r
eax, 2
under1
eax,2
duord p t r es: Ceaxl

; add channels per det/tag

; add number o f windows/tag

; no tag - continue crunch

; w i n d o w parameter channel

; PSDOO)
; ca lcu la te which w i d o w
; uindou channel c u t o f f

; window over f lou

; psd overflow

; psd underflow

; maxchn overflow

; PSD parameter

; PSD channel
; crunch fac to r

, continue w i th crunch - - - - - - - - - - - ._--------___
CONTZ: mov s i ,o f f se t ds:crun

add s i , 8
mov ax,ds: tsil
mov section,ax

; psd underflow - r e j e c t

; add tag i f r i g h t o f marker

; add i f r i g h t o f marker

; d i = PSD chan+prev windows

; PSDMEM s t a r t o f PSD memory
; eax = PSD memory channel

; increment channel eax

; &:si = crunClOOOl

; ntnnber of crunch segments

76

L2701: add
bt
jnc
IIWV

add

mv
m v
mov

L2702: inc

add

sh 1
mOY

m v
mow

L2703: add

c w
j l

m v

L2704: loop

mov
sh l
add
add
plsh

add
i nc

mOV

E
L3000: sub

mov
mOV

cdq
div

add

m v
mL1

add

mov

mOV

L2705: add
m v

T A G I T : add
mov

s i ,4
word p t r ds: [si+21 ,I5
L2701
chan, 0

s i ,4

d i ,O
ax,ds: [s i]
kmax,ax
d i

s i ,8
bx,ds: [s i -41
bx, 2
anal ,bx
ebx,dword p t r parmCbxl

ax,ds: [s i]
cx,ax
d1,24
dl
ax,si
nh, ax

s i ,24
eax,ds: [si-163
ebx,eax
L3000
L2703

ax,ds: [si+41
ax,3
ax,4
si,ax
s i
s i ,o f fset ds:overfO
si,anal
duord ptr ds:Csil
s i
L3100

ebx,ds: [si-201
eax , ebx
ebx,ds: [si-41

ebx

eax,ds: [si-121

edx,ds: [s i]
e d X

chan,eax

s i ,nh

ax kmax
di,ax
L2702
d i , i tag

si,4
cx,ds: [s i]

s i 88
dx,ds: [si-43
dx,di
N E X T T

; f i n d s t a r t o f next sect ion

; N = N + l

; K loop

; EBX IP

; M n

; increment overflow

; IG = DX

77

mOV
add

IS
cw

shl
inc

L3100: dec
cw
jw

jmp

J9

NEXTT: loop

bigerr: inc
cat l
jrnp

Crunch eridp

eax, chan
eax,dword ptr ds: [s i]
eax,maxchn
bigerr

eax,2
duord ptr es: Ceaxl

sect i on
section,O
L2701
CRUNO

TAG11
L3 100

overf5

CrunO
beep

; €AX = CHAN
; add tag base

; increment channel eax

; i s this the last section?
; go do next section
; go check STAT

; if more tags goto tagit

; return i f working

;z
mOV
in
a d
j z
mOV
mOV
mOV
out
cat 1
mOV
mOV
out
cal L
call
mOV

;:
add

Itartl: sub
mOV

jw
IntrO: mov

in
arid
jnz
mOV
mOV
mOV
out
cat 1
mOV
O u t
cat 1

cmp
mOV

1 iveoff, 1
IntrO
dx , STAT
ax, dx
ax,8
Intr2
1 iveof f ,O
dx,PORT2
ax,lO
dx ax
Delay
dx, POR T 2
ax,4
dx,ax
Delay
Gtime
ebx, runtime
eax, ebx
Itartl
eax,604800
eax , ebx
starttm,eax
lntrl

dx, STAT
ax,dx
ax,a
Intrl
l i veo f f , I
ax,ll
dx, PORT2
dx, ax
Delay
ax,2
dx , ax
Gtime
ebx,starttm
eax,ebx

; was livetime o f f ?

; check I112

; jmp i f IN2 i s still low

; enable data in

; start scalers

; get start time

; check Livetime I N 2

; disable data in

; stop scalers

; update runtime

78

j gle
add

Ckl : suh

jrrp
mOV

In t r l : mov
mOV
mov
mow
mOV
c a l L

push
mow
cat L
pop

mov
cat 1

I n t r 2 : popad
s t i
nop

Intrd: s t i
r e t

mov

Intr endp

Ckl
eax,604800
eax, ebx
runtime,eax
I n t r 2

bx,word p t r mem-add
ax,word p t r mem_add+2

; switch t o protected mode

cx,o

d1,PhysToVirt
devh L p

9s
es,GDT
crunch
k?S

dl,UnPhysToVirt
devh 1 p

working,O

; empty F I F O a& Crunch

; re tu rn t o o r i g i n a l mode

Gtime proc

G1: mOV
f7WV

out
inc
i n
and
jnz

mav
rnV
m v
out
i nc
i n

and

shr

im!.
add

mav

mow

m v

mov
mOV
out
i nc
i n

near

dx,70h
ax,Oah
dx,al
dx
al,dx
a1,128
G1

dx, 7Oh
ecx ~ 0
eax, 0
dx,al
dx
a1,dx
d l ,a l
d1,15
c l ,dl
a1,4
k, 10
ax,bx
ecx , eax

dx,70h
eax,2
dx,al
d X
a1,dx

; wait f o r permision

; get seconds

; a? minutes

79

mOV
and

imul
add

shr
and

imul
add

mOV

mOV

mOV

mOV
mOV
out
inc
in

and

imut
add

shr
and

imul
add

mOV

mOV

mOV

mOV

mOV
mOV
out
i nc
in
and
dec

imul
add

mOV

mOV
mOV
out
mOV

dt,al
eax, 15
ebx ,60
eax, ebx
ecx, eax
a1,dl
a1,4
eax, 15

ebx,600
eax , ebx
ecx,eax

dx ,7Oh
eax ‘4
&,a1
dx
al,dx
d1,al
eax, 15
ebx ,3600
eax , ebx
ecx , eax
al,dl
at,4
eax, 15

ebx ,36000
eax I ebx
ecx, eax

dx ,70h
eax,6
dx,al
dx
a1,dx
eax,l5
eax

ebx, 86400
eax , ebx
ecx , eax

dx,70h
eax, ODh
dx,al
eax, ecx

; add hours

; add days

r e t
Gtime endp

I THIS ROUTINE SOUNDS A SHORT BEEP . .--..--------------_
Beep

Beep1 :

Beep

,

proc
push

in
mOV
o r
out
mOV

push

jw
1 ow
m0V
out
POP
POP
r e t
e d P

near

ax
a1,61h
ah,al
a1 ,3
61h,al
cx, 8000h
Beepl
Beepl
al,ah
61h,al
ax
cx

cx

. - - - - - - - - - -

; read 8255 on system board

; delay count f o r beep

; turn o f f speaker

INITILIZATION PROCEDURE .

80

I n s t a l l proc

mOV
mOV
mOV
mOV

mOV
mOV

mOV
mOV
mOV
mOV
i W V
cat 1

cat I

mOV
mOV
out
c a l l

mOV
out
c a l l

push
push
push
push
push
push
cat 1
r e t

I n s t a l l endp
-TEXT ends

end

near

ax,es: [bx+141 ; save devhlp address
word p t r devhlp,ax
ax,es: [bx+161
word p t r devhlpc2,ax

word p t r es:[bx+l4l,offset -TEXT:Install
word p t r es:[bx+16l,offset DGROUP:END-DS

ax,&
es , ax
d i ,o f f se t ds:GDT
CX, 1
d1,AllocGDT
devh 1 p

open

dx,PORT2
ax, 11
dx , ax
de 1 ay

ax,7
dx,ax
de 1 ay

1
dS
o f f s e t 0CRWP:ident
i dent-ten
ds
o f f s e t DGRWP:wlen
DOSWRITE

; a l loca te GDT se lector

; i n i t i a l i z e I / O board

; data i n disabled

; reset F I F O

; message that device was loaded

81

DISTRIBUTION

1. B. R. Applcton
2, J. G. Craven
3. 6. desaussurc
4. J . R. Dickens
5. J, D. Drischlcr
6. W. W. Engle
7. C. Y. Fu
8. K. Gwin

9-1 0. J. A Hawey
11. N. W. Hill
12. D. T. Ingcrsoll
13. R. W. Ingle

16. E C. Maienschein
17. F. J. Muckenthalcr

14-15. D. C. Larson

18. J. V. Pace, 111
19, R. W. P e e k
20. F. G. Perey
21. R. B. Percz
22. R. T. Sanloro

23-24. R. R. Spencer

30-32. L. W. Weston
33. Central Research Library

34-38. EPMD Rcports Officc
39. ORNL Y-12 Technical

25-29. J. H. Todd

Library
Documcnt Reference Secticm

40-42. Ldb0ratoI-y Records
43. QRNL Patent Office

EXTERNAL DISTRIBUTION

44. Officc of Assislant Manager for Energy Research and Developmcnt, DOE-QRO,
P.O. Box 2001, Oak Ridge, TN 37831-8600.

45-54. OCfice of Scicntific and Technical Information, P.O. Box 62, Oak Ridge, TN 3783 1.

55. Dr. E. G. Bilpuch, Trianglc Universities Nuclear Laboratory, Duke Station, Durham,
NC 27706.

56. Dr. R. C. Block, Department of Nuclear Engineering, Rennsselaer Polytechnic
Inslitute, Troy, NY 12180-3590.

57. Dr. A. D. Carlson, Radiation Physics Building, Room 13109, National Institute of
Standards and Technology, Gaithersburg, MD 20899.

58. ProE John J. Downing, Department of Nuclear Engineering and Physics, Thornton
Hall, McCormick Road, University of Virginia, Charlottesville, VA 22901.

59. Dr. C. L. Dunford, Brookhaven National Laboratory, National Nuclear Data Center,
Building 197C, Upton, NY 11973.

60. Prof, Robert M. Haralick, Bocing Clairmont Egtvedt Prof., Dcpartmen t of Electrical
Engineering, Director, Intelligent Systems Lab, University of Washington, 402
Electrical Engineering Building, FT-10, Seattle, WA 98195.

82

61. Dr. James E. h i s s , 13013 Chestnut Oak Drive, Gaithersburg, MD 20878.

62. Dr. P. W. Lisowski, T-2, IBS Alamos National Laboratory, P.O. Box 1663, Los
Alamos, NM 87545.

63. Prof. Neville Moray, Department of Mechanical and Industrial Engineering, 1206
West Green Street, Urbana, IL 51801.

64. Dr. G. M. Morgan, T-3, 442, P-15, Los Alamos National Laboratory, P.O. Box 1663,
Los Alamos, NM 97545.

65. Dr. W. P. Poenitz, Argonne National Laboratory West, EBR-I1 Stie, INEI, P.O. Box
2528, Idaho Falls, ID 83401

66-67. B. D. Rooney, Newport News Shipbuilding, E55/Building 600, 4104 Washington
Avenue, Newport News, VA 23607.

68. Dr. C. Wagemans, Central Bureau for Nuclear Measurements Joint Research Centre,
CEC, Steenweg op Retie, 2440 Geel, Belgium.

59. Dr. 0. A Wasson, National Institute of Standards and 'Tcchnolo<g, Center fo r
Radiation Research, Nuclcar Radiation Division, Washington, DC 20234.

70. Dr. 13. Weigman, Central Bureau for Nuclear Measurements Joint Research Ccntre,
CEC, Steenweg op Retie, 2440 Geel, Belgium.

71, Prof. Mary F. Whecler, Department of Mathematical Sciences, Rice Univer-
sity, P.O. Box 1892, Houston, TX 77251.

72. Dr. R. R. Wintcrs, Department of Physics and Astronomy, Denison University,
Granville, OH 43023.

9cU.S . GOVERhXENT P R I N T I N G OFFICE: 1990--548-134/20076

