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I. INTRODUCTION -

I want to report on some calculations of classical periodic trajec-
tories in a two-dimensional nonintegrable potential. This work was done
in collaboration with M, Baranger, C. P. Malta, M.A.M. de Aguiar,

J. M, Mahoney, M. Kargarlis, W. Saphir, and T. Huston.l-7 After a brief
introduction, 1 will present some details of the theory. The main part
of this report will be devoted to showing pictures of the various fami-
lies of trajectories and to discussing the topology (in E-t space) and
branching behavior of these families. Then I will demonstrate the con-
nection between periodic trajectories and "nearby" nonperiodic trajec-
tories, which nicely illustrates the relationship of this work to chaos.
Finally, I will discuss very briefly how periodic trajectories can be
used to calculate tori,12

The initial motivation for this work really came from our interest

in nuclear collective motion and quantization using classical trajector-
jes.! You might ask the question: why should one quantize a classical
approximation rather than simply solve the Schrodinger equation? The
answer is that in a complicated many-body problem one often obtains
approximate solutions in the form of time-dependent wave packets,
following classical trajectories. This description applies to the time-
dependent Hartree-Fock (TDHF) studies, which have been on active re-
search effort here at ORNL for many years.!!

At this point, I digress a bit to discuss some TDHF results which

early on stimulated my interest in periodic motion and chaotic behavior
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in nuclear physics. About 1985 Sait Umar, Mike Strayer, and collabora-
tors!l completed some very beautiful studies in TDHF which nicely demon-
strated nonlinear behavior. Figure 1 from their work shows isoscalar
density (pn + pp) contour plots for the time evolution of the collision
of two '2C jons, each of which initially is in a different configuration.
The motion is rapid, giving rise to different multipole moments of the
shape. In Fig. 2, they plot the main multipole moments of this 12C +
12¢ » 24Mg system. The upper curve gives the isovector dipole moment as
a function of time, while the middle and lower curves display the iso-
scalar quadrupole and octupole moments, respectively. Going from top to
bottom, the curves increasingly become less chaotic. Note that the
quadrupole moment undergoes damping, while the octupole moment has a
very pronounced quasiperiodicity. In Fig. 3, they display Poincaré sec-
tions of the isoscalar quadrupole and octupole modes for this system.
Here they plot moment velocities as a function of moments. The octupole
motion is focused into a band of trajectories, while the quadrupole
motion is clearly much more chaotic. (However, we remark that the quad-
rupole and octupole motions are strongly coupled to each other.) All of
this is very suggestive of the kinds of quasiperiodic and chaotic re-
sults seen in many other fields. Again because of the classical-like
nature of the TDHF approximation, there is a strong motivation for ex-
tending the classical studies of periodic motion to TDHF; this is a pro-
ject we plan to work on. I shall now return to the main theme: the
study of classical periodic trajectories.

However, there is one remaining question, namely why should one

quantize using classical periodic trajectories?! The answer is given to
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us in a famous quotation! by Henri Poincaré, who said, "What renders
these periodic solutions so precious to us is that they are, so to
speak, the only breach through which we might try to penetrate into a
stronghold hitherto reputed unassailable." That is, periodic trajector-
ies carry all possible information about the dynamics, and they are
easier to work with than the nonperiodic trajectories since time inte-
grals need only be done over one period, rather than from -= to +w=,

(One can always refine the answers by examining longer periods.)

There is another quote about chaos that I am fond of. In his book
“Computational Physics”, Steve Koonin® says that for certain nonlinear
calculations “...computer results defy our intuition (and thereby re-
shape it) and numerical work is essential for a proper understanding.”
For much of the work I am about to describe, I found that time and time
again my intuition was incorrect regarding what to expect, and the com-
puter results kept pointing us in new, exciting directions. Now, of
course, in retrospect many of the phenomena that we discovered seem
rather obvious, but I will try to emphasize those features which were
initially unexpected and which I suspect will not be so obvious to most

of you.






I1. THEORY

First, a few words about the equations of motion. We solve

Hamilton's equations in a two-dimensional spacel-7

5 s aV(x,y) . 0
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H =

P

(p,2 + B,2) + V(o).

These are discretized on a time mesh, with
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where € is the time step and n = 0, 1, ..., N-1. We impose periodicity
by requiring that
(xysyy) = (xg5¥,)
(xyep¥per) = (xpoyy)s
with the period given by
T=Ne.

For nonintegrable two-dimensional systems, the periodic trajector-
ies form one-parameterlfam11ies, and we find that it is especially con-
venient to make plots of E vs. 1, where E is the energy and v is the

period. Among the questions we wanted to answer were the following.

I1-1
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What is the topology of this plot? Is it like a tree? What about the
branching behavior, in which the original trajectory generates new fami-
1ies? There are two types of branching:

a) Isochronous branching, where the period does not change, and

b) Period multiplying branching, where the new family or families
have a period which is a multiple of the original period.

For studying periodic motion, two of the most important methods are

a) the method of Poincaré sections,® which has been widely used in
the literature, and

b) the Monodromy method, which we have adopted.i-3
The method of Poincaré sections® has been particularly helpful in
studying the behavior of nonlinear systems which are nearly integrable,
i.e. close to where the KAM theorem applies.®

The Monodromy matrix is a 4 x 4 matrix which describes the change
in a trajectory after one period due to a small change in initial condi-
tions.2s3 Monodromy in Greek Toose1y means "once around the track".3
The 4 dimensions of the matrix correspond to the x and y coordinates and
their associated velocities or momenta. (We mention in passing that a
variation of this method gives a formulation in terms of 2 x 2 matrices,
but this approach has never been implemented.) The eigenvalues of M
(which are the Floquet-Lyaponov multipliers) occur in pairs whose product
is unity and two of them are always equal to one. The other two can be

,e ., 1n which case, the tra-

complex conjugates of one another (e*'® 1o
jectory is stable, or they are (*e',te”¥) giving an unstable trajectory.
The trace of the matrix gives its stability, and in the stable region we

can have period multiplying which occurs when the stability angle is
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equal to a rational fraction times 2x. We feel that the Monodromy
method is superior to that of Poincaré sections because it is a very
fast method which can be used to thoroughly map out the entire phase
space (even if the system is far from integrable) and because it works
as well for unstable trajectories as it does for stable trajectories,-3
Also, the Monodromy method allows one to go very easily from one peri-
odic trajectory to another in the same family or to a bifurcation from
the original family.3® Finally, the method can be used to calculate
tori;12 more about this later.

Figure 4 shows a schematic plot of the Trace (M) vs. E.? The
places where it goes through 4 and O (denoted by 4 and Z) give rise to
isochronous and period-doubling branchings, respectively. Above 4 and
below 0 the family is unstable; in between it is stable and various
branchings occur. Notice that these are double solutions, denoted by 42
and Z2 where the Trace (M) has a horizontal tangent. In reality, these
can be two branchings which are so close together that they cannot
numerically be distinguished from the tangency shown. In fact, it has
been shown analytically that the 42 case consists of two, very close
single branchings.* The point marked 3 is a special case to be dis-
cussed later. On this plot it has a vertical tangent, while on the E-1
plot it has a horizontal tangent and is known as a “horizontal four,"1,?

About five different potentials have been studied. The majority of

my results today are from the so-called NELSON potential:!l
Vix,y) = (y - 5 x)2 + 5 ux?, u = 0.1,

which consists of a deep valley in the shape of a parabola surrounded by
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high mountains, as we see in the contour plot of Fig. 5. For this po-
tential we were motivated by nuclear physics, where the deep valley
could represent a collective degree of freedom coupled to other types of
excitation. On this plot we also show the boomerang family of periodic
trajectories. Notice that this family arises at small energies as a
period doubling of the family of purely vertical oscillations. Other

results that I will discuss were obtained using the MARTA potential2
1 3 1
V(x,y) =5 x2 + 5 y2 - x%y + 5 x¥,

which is a less symmetrical version of the celebrated Hénon-Heiles po-
tential. As we see from Fig. 6, it is strikingly different from NELSON
since it has two saddle points and goes to -« in some directions. Here
we also show the boomerang family from MARTA, which again is very dif-
ferent from NELSON since it arises at small energies as the horizontal
family of small oscillations. Figure 7 shows another important differ-
ence between NELSON and MARTA. MARTA has a family of oscillations which
emanate from the saddle point.2 Unlike the families which originate at
small oscillations from the potential minimum, there can only be one
saddle point family. This family is always unstable and does not branch
into any other family.

Some calculations have also been performed with the Hénon-Heiles
potential,® whose contours are displayed in Fig. 8. Notice that there
are three saddle points. This potential, which is very famous, was
first proposed in 1964 to model the orbits of stars around a galactic
center. It is intriguing because it has a "“triangular" symmetry, being

invariant under rotations of 120° in the x-y plane. Moreover, all of
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the potentials shown have symmetry under reflection of the x coordinate,
x + -x. This brings us to the general topic of symmetries.}s?

First, there are two kinds of trajectories:

a) Librations, in which the same path is traversed in both direc-
tions. The trajectory has well-defined turning points and is its own
time-reversed trajectory.

b) Rotations, in which there is a closed path in one direction
only. The opposite direction on the path gives the time-reversed tra-
jectory, and it is a separate trajectory. On the E-t plots we label the
rotations by the symbol p.

Now congider the reflection symmetry, x + -x. There are again two
possible classifications:

a) Trajectories which are symmetric about x = 0; reflecting x does
not give a new trajectory.

b) Asymmetric trajectories, which are not symmetric about x = 0.
For each of these there is a companion trajectory obtained by reflecting
the x coordinate. From now on, the terms symmetric and asymmetric refer
to the symmetry about the y axis. Thus, for NELSON and MARTA we have
four types of trajectories, taking into account the symmetries of time
reversal and reflection:?

1. Symmetric librations {two symmetries)

2. Asymmetric librations (one symmetry)

3. Symmetric rotations (one symmetry)

4, Asymmetric rotations (zero symmetry).

We see that every asymmetric rotation always belongs to a quartet. One

of the important contributions of our work has been to analyze both
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numerically and mathematically the role that symmetries play during
bifurcations.1:2:* Previously some work had been done by Meyerl® on
bifurcations for the so-called generic case, which means that no sym-
metries are present in the Hamiltonian. We have extended this work to
include the two symmetries mentioned. Later in this report I will show
several examples of how symmetries play a role when a family bifurcates,
but T will not give a complete analysis of all of the cases that can
occur.,

I conclude this discussion of symmetries by showing in Fig. 9 an
x-y plot of trajectories from the Hénon-Heiles potential.” The bottom-
most trajectories marked with their t values illustrate the behavior of
some members of the horizontal family at relatively low energy. Because
of the triangular symmetry, each of these trajectories has two companion
trajectories obtained by rotating the original trajectory by 120° and
then by 240°, These are also displayed on Fig. 9. You can show numeri-
cally that each of the companion trajectories is a legitimate periodic

solution for this potential.



ITI. RESULTS

A. TOPOLOGY OF THE E-t PLOTS

I will now discuss the main results of our work, with the principal
emphasis on the NELSON potential.! Probably the most rational way to
begin a study of periodic trajeétories would be to go to the limit of
small oscillations.3 1 might add that this is not how we actually got
started. We discovered our firSt trajectories, more or less by just
"having fun" with the early codes, and only later did we focus on the
simplest families. However, an intelligent procedure would be to begin
with the small oscillations solutions and to follow them to larger
amplitudes, along with their bifurcations. Incidentally, the analogue
in TDHF would be to start with the RPA solutions, whose continuations
would give rise to large-amplitude collective motion. For the NELSON
potential there are two families of small oscillations, one in the ver-
tical direction, the other in the horizontal direction and their periods
are not congruent. One of the interesting features of the vertical
family is that if you continue it to larger amplitudes, it retains its
harmonic behavior, with a constant period. However, as we see in Fig.
10, this is not true for the horizontal family.

Figure 10 shows an energy vs. period (E-t) plot of the vertical V
and horizontal H families, as well as many other families.! This figure
shows a number of features illustrating the general topology of E-«
plots, and we will return to it again later in this report. In general,

this is a master plot of the most important or simplest symmetric

I11-1
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families. The circled capital letters give the major families; e.g.
there are the vertical V and horizontal H families just discussed, and B
is the boomerang family shown previously. Recall that B is a period
doubling from the vertical family. P and Q are the beginnings of two
asymmetric bifurcations. The dark lines indicate stable regions, while
the thin lines denote instability. Sometimes small regions of instabil-
ity and stability are indicated by u and s, respectively. The dark
circles show very concentrated regions where the Trace (M) rapidly goes
through 4's and zeros; such circles contain a tiny region of stability
and perhaps an even smaller region of instability. Dot-dashed lines
indicate various period-multiplying branchings, which are always period
doublings unless otherwise indicated. The places where the Trace (M)
goes through zero (Z) and 4 are so marked. Note the presence of 3's
where the E vs. T curve has a horizontal tangent; we will later have
more to say about 3's.

Figure 10 illustrates one very important feature, namely that a
particular family may have more than one stable region.! Indeed, there
may be an infinity of such regions. The B family, e.g., is stable at
low energy, after which it has an extended region of instability; then
at higher energy it again becomes stab1é, lasting apparently all the way
to =. Similarly, the vertical family, which is stable at low energies,
has recurring small regions of stability at higher and higher energies.
This also shows that the "standard scenario,” in which stability gets
passed on by period doubling to successively more complicated trajector-
jes, can miss a lot of the information.! We will have more to say about

the standard scenario later.
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Before discussing further the topology of the E-t plot, let us
first show a few pictures of some of the symmetric families.l We begin
with the A family which begins as a period quadrupling from the vertical
family and ends at high enerqy as a period doubling from the same verti-
cal family. This family is a symmetric 1ibration, and Fig. 11 shows its
behavior on an x-y plot in going from low to high energy. Notice that
the higher energy trajectories have larger amplitudes, ending in a
period-boulding from the vertical. Figure 12 displays separate x-y
plots of various members of the C family, which is a symmetric rotation.
This family begins at low energy as a period tripling from the vertical
and at high energy it branches isochronously to the A family close to
where the A family branches from the vertical., Figure 13 puts several
of the previous x-y pictures of C together on a single plot.

We return now to a low~-energy blow-up of our E-t plot in the vicin-
ity of the horizontal ( H ) family.! In Fig. 14 we see the horizontal
family plus the I and J families, the two symmetric families to the
immediate right of H on the E-t plot. Note that the curve for H between
h1 and h2, if extended, seems to overlap roughly the curve for I between
11 and iz. However, there are gaps between these families, and we have
verified that these gaps are not numerical. These families are known as
the "valley families" since in the lowest energy part of each curve the
family occupies the valley of the potential and thus can be fdentified
with the collective oscillations of nuclear physics. Llet us see what
happens. First, for t values ~20-22, the H family occupies the valley,
but then it begins to climb the walls of the potential as the E-t curve

abruptly makes a sharp turn upwards and backwards. About this point the
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next family I comes down from the mountains and occupies the valley un-
til v ~ 25.0 when it also returns to the mountains. Then J takes over
and repeats the same pattern. Figures 15 and 16 show the x-y plots of H
and I at relatively low energies, and we see how the trajectories begin
to leave the valley around t = 22.0 and t = 25, respectively. Figure 17
is an x-y picture of two members each of the H, I, and J families when
they are in the valley. The unshaded region is the valley, and the pic-
ture shows only the x > o part since the librations are all symmetric
about x = 0. Notice, too, that a new "hook" is added to the trajectory
each time we switch to a more complicated valley family, and this fea-
ture is seen again and again with respect to other associations of fami-
1ies encountered on the E-t plots. In any case, one sees that the situ-
ation is vastly more complicated than a single, continuous, collective
family.! In fact, the valley trajectories are not part of a single con-
tinuous family, but rather are divided among sections of H, I, J, and
presumably higher-order families beyond J.

You might ask yourself what happens to the horizontal family after
it leaves the valley. The history of H is displayed in Fig. 18.1! In
the upper part of the figure we see that the family at low energy begins
as a small horizontal oscillation, after which it grows until it reaches
a maximum energy. The lower part of the figure shows the change in
shape as the family decreases its energy until it branches as a period
quadrupling from the vertical family. Returning to Fig. 10, we see the
full behavior of the horizontal family.! Clearly, V and H are connected
since H ends by branching onto V via period quadrupling. This could not

happen for an uncoupled (integrable) Hamltonian, for which the families
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‘of small oscillations are independent of one another.

This perhaps is a good time to discuss additional general topologi-
cal features of the E-t plots, which are nicely illustrated in Fig. 10.!
First of all, there are only two ways a family can begin or end: (1) by
branching upon another family, or (2) by becoming the family of small
oscillations about an equilibrium point. In regard to (2), recall that
for MARTA,2 in addition to the H and V families, there is a family of
oscillations emanating from the saddle point of the potential. Some
families do not terminate anywhere, e.g. the V and B families go to in-
finity or they form closed curves (the I and J families). You may re-
call that one of the questions that we initially wanted to answer was
whether the E-1 plot is like a tree. Now we clearly see that the E-1
plot is definitely not like a tree! since there can be many “cycles"
1ike 1 and J which follow closed paths. Also, note that the long rota-
tions in H, I, and J form cyc]es.

Finally, I and J are "islands," not obviously connected to the
other families in the plot.! However, since I and J do give rise to
period multiplying branchings, it is conceivable for large t that they
could somehow connect up with the branchings from the other families.
(This possibility seems remote, but it has not yet been investigated.)
One other interesting feature of the E-t plot is that there is a sym-
metric rotation connecting the top and bottom parts of H, I, and J which
are symmetric librations. This rotation isvan isochronous branching,
and we refer to it as a "rotation bridge" since it connects two very

different parts of the cycle. In Fig. 19 we show the bridge for H.

However, such bridges do not have to occur for cycles or islands, as we
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See in Fig. 20. This rather unusual creature, obtained for the MARTA
potential,? is an isolated asymmetric rotation. Recall that an asym-
metric rotation has zero symmetry, which, it turns out, prevents it from
branching isochronously.? We will have more to say about branching
later, but for now we want to discuss further the topological differen-
ces between librations and rotations.

Figure 21 displays a detailed blow-up of the E-t plot in the vicin-
ity of the V and B families.! This picture reveals a number of asym-
metric branchings from these two families. The longer lines are libra-
tions and the shorter ones are rotations. This is typical of what one
usually finds on the E-t plots.l Compared to the rotations, the libra-
tions are considerably more persistent, giving rise to many more branch-
ings. Thus, it becomes natural to think of librations as the "more
important" families, but I find rotations to be much more aesthetically
appealing because of the beautiful way they form bridges between two
very different librational shapes. Previously we saw such bridges con-
necting different parts of the same family ( H, I, and J ). Here the
short rotational bridges connect different librations. On this plot I
call your attention to two such rotations which have been carefully
studied. The first is the "open boomerang" which branches from the
boomerang (at E ~ 10.0) and ends at the vertical family, thus connecting
those two families. Another is the rotation marked p* which serves as a
bridge between two asymmetric librations. These two rotations are
plotted in Figs 22 and 23, respectively. The heavy lines in Fig. 23 are
the two "end" librations; note the difference in shape between these

asymmetric librations.
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Figure 241 shows again the relationship between rotations and
librations. P and Q are two of the more important asymmetric librations
which execute a large number of screw-like excursions in the E-t plane,
keeping out of step with each other., (The dotted curves for parts of Q
were not actually calculated, but are rough guesses based on our experi-
ence.) The net effect reminds one of a DNA molecule in two-dimensional
projection. However, a whole series of rotation bridges connect P and Q
at every half turn of the screw, e.g. the rotation shown which connects
the point p2 on P with a point just above g2 on Q. This bridge is shown
in Fig. 25. Notice the dramatic changes in shape of this rotation as it
connects the two librations shown in the first and last frames.

In concluding this discussion of the topology of the E-t plots, I
will discuss the small oscillation families of the Hénon-Heiles poten-
tial.?” Figure 26 is an E-t plot of some of the more prominent families,
Note again the presence of a saddle point family, S. Because of the
extra symmetry, we see that there are three families which originate as
small oscillations about the minimum of the potential. There are the
usual V and H families, which are librations, and a totally new family,
T which is a rotation. Also, all three families have the same period at
small oscillations, but unlike NELSON or MARTA there is no family whose
period remains constant as the energy is increased. Another interesting
feature is that for small energies, V and T are stable, while H is un-
stable. Note, too, that as « *’, the vertical family approaches an
asymptotic limit which is equal to the energy of the saddle point. The
new rotational family T is plotted in x-y coordinates in Fig. 27. For

small energies this trajectory is circular, while at higher energies, it
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becomes triangular in shape; hence, the name T.

B.  BRANCHING BEHAVIOR

1 now want to discuss the branching behavior of the families of
periodic trajectories.ls2 Of course, we have already talked about
branching when we analyzed the topology of the E-1 plots since the two
subjects are intimately related. However, our focus here will be on
how, why, and when the branchings take place.

One of the first, very obvious points about branching is that at
the branching point the original and the new family (or families)
coalesce (which explains why the Trace (M) goes through 4 for the iso-
chronous case). First, consider isochronous branchings (when the period
doesn't change). Imagine such branchings from, say, a boomerang-shaped
curve, which is a symmetric libration. In one case you might get, e.g.,
the open boomerang which is a symmetric rotation or in another, the
asymmetric boomerang. In both cases we note that the original trajec-
tory has lost one of its symmetries, and, as we have mentioned before,
symmetries play a crucial role in determining branching behavior.2»*

The second type of branching occurs when we bifurcate to a trajec-
tory whose period is a multiple of the original trajectory. We have
seen a number of examples of such branchings. Recall, e.g., that the
vertical family gives rise to two important period quadruplings:! One
is the A family; the other, the H family. Both branchings take place at
the same point, and we thus uncover another important result: sometimes
two new families arise at a bifurcation point. 1,2,

From Fig. 21 we see that there are four important simple branchings
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from the boomerang family:! at low energy, a Z? and a 4 and again at
high energy a 4 and a Z2. These branchings are shown in Fig. 28, and,
going clockwise starting with the upper right frame, we have: the
double open boomerang (a symmetric rotation from the lower Z2), the
asymmetric boomerang (lower 4), the open boomerang (upper 4), and the
double mushroom (a symmetric rotation from the upper Z2). For the
double open boomerang, we only show one trajectory; for each of the
other cases, we display several trajectories. Also, the 72 cases are
double solutions. thus, for each of these we have another, companion
solution which is an asymmetric libration. Figure 29 displays a clover-
leafed isochronous branching from a U-shaped family for the MARTA poten-
tial.?2 These are all relatively simple bifurcations. However, in gen-
eral, the period-multiplying trajectories can become exceedingly compli-
cated. For example, Fig. 30 is an x-y plot of a single trajectory ob-
tained from a period doubling of the I family.!

Without going into much detail, let us now indicate some of the
rules for branching.? When we first started this work, there seemed to
be two or even three types of possible isochronous branchings, where the
Trace (M) went through a value of 4. In the first case (4), we were
easily able to find the new family as the original family went through
the bifurcation point, and this always seemed 1ike the "standard branch-
ing." However, there were other cases where the Trace (M) went through
4, but at a place where the family had a horizontal tangent in the E-t
plane.l! These are known as “horizontal fours® (%'s), which I have pre-
vioulsy called to your attention. In any case, in the early days of our

work it always seemed as if the 3's were very strange, special, probably
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somewhat rare creatures since, as far as we could determine, no branch-
ing took place. In fact, after some very careful work, we were able to
establishl»2 (both numerically and analytically) that no branching could
take place at a 4. Also, at a 4 the trajectory always switched from
stable to unstable, or vice versa. Moreover, 4's were much more common
than we originally thought, and in addition, a 4 turns out to be the
generic case (i.e. what one encounters in the absence of any sym-
metries).10 The other isochronous branchings, at the 4's on the E-t
plot, occur only when symmetries are present, and this too is an impor-
tant result of our work.l!>2 The only kind of trajectory which cannot
have an isochronous branching is an asymmetric rotation, which has no
symmetry.2 On the other hand, the 42 casel indicated on the E-t plots
(the third kind of isochronous branching) occurs for a symmetric libra-
tion, which has two symmetries. (Recall, however, that 42 is only
approximate; in reality, this is two very closely spaced 4's.%)

The next point is that at a branching point, there is a kind of
"conservation of stability,"l but we must define precisely what we mean
by this expression. We use the Poincaré section for our dynamical sys-
tem and define a "Poincaré index" as follows. For every e]]iptic‘
(stable) fixed point of the Poincaré wave one assigns the index o = +1,
while for every hyperbolic (unstable) fixed point one assigns the index
o = -1. The total Poincaré index, for a particular energy at a branching
point, is the sum of all of the individual o's, and this remains con-
served as energy is varied through a branching. I.e., what is conserved
is “"stability minus instability." In applying this rule, it is very

important to take into account the symmetry of the bifurcation point,2
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£.g9., consider the point (4) marked 8 in Fig. 14. For energies below B8
we have one asymmetric trajectory, a symmetric libration, giving ¢ = -1,
Above B, the original trajectory has now become stable, with o = +1,
However, there are iwo unstable asymmetric librations (obtained by
Tetting x + -x), each with ¢ = -1, so that the net ¢ is -1. Thus, sta-
bility is conserved. Similarly, at the 4 just below B, the main trajec-
tory switches from stable to unstable, but the branching is to a stable
symmetric rotation (with two trajectories for the two directions), so
o(net) = +1 both below and above the branching. Also, consider the 42
branching, for which the main trajectory maintains its stability. How-
ever, there are four branching trajectories: two stable symmetric rota-
tions and two unstable asymmetric librations, so once again stability is
conserved. (This last example is really the same as the two previous
cases, with the distance between them becoming very small.")

The rule for branchings has profound implications for period multi-
plying branchings.ls2s% We will not have time to treat this subject in
any detail, but let us indicate several of the main results. For period
doubling, which occurs whenever the Trace (M) goes through zero (Z),
there is only one new family. However, for a double solution (Z2) there
are two new families. Then, two new families also arise for all period
multiplying bifurcations greater than 2; i.e. for period tripling,
period quadrupling, etc. Again the exact nature of the branching de-
pends upon the symmetries present at the bifurcation point,2,"

One other result about bifurcations is worth mentioning. So far,
we have encountered cases where the two new families (one of which is

stable, the other, unstable) emerge on the same side of the branching;
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i.e. both increase or decrease in energy. However, it is also possible
for one of the two to go up in energy, the other down in energy.ls2s%
This type of behavior can occur for Z2 period doublings" and for higher-
order period multiplyings (e.g., tripling!s2 and quadrupling2?). When
this happens, both new families are always unstable.!s2>% Figure 31
shows a period tripling of the asymmetric boomerang.! The original tra-
jectory is shaded and the new families emerge at the 4.00 point, one in
each direction., The original trajectory is stable both above and below
the branching point, while each of the new families is unstable. Thus,
once again stability is consérved. However, the lower family rapidly
goes through a 4 (with, of course, no branching) and becomes stable,
after which its energy increases. Then Fig. 32 displays x-y pictures of
the original trajectory at the bifurcation point (left) and the two new
trajectories (middle and right). The middle and right pictures are
taken somewhat beyond the region shown in Fig. 31 in order to disting-
uish the details of these two trajectories. Notice that the symmetry
does not change. The original family is an asymmetric libration, as are
both of the new families. However, there are many examples of period

multiplying bifurcations where the symmetry does change,ls?2



IV. NONPERIODIC TRAJECTORIES

Let us briefly study some nonperiodic trajectories in order to show
that periodic and chaotic phenomena are intimately related. The NELSON
potentiall is particularly suited for this analysis because it has no
saddle points and always goes asymptotically to + infinity in any direc-
tion. Thus, for any energy a?]ktrajectories remain in a finite region
of phase space and are therefore “"recurrent."®

Figure 21 is an E-t plot containing the boomerang family,! which
has the simplest nontrivial periodicity. We will examine a nonperiodic
trajectory which lies very close in phase space to a periodic trajec-
tory. The nonperiodic trajectory is obtained by varying just slightly
the coordinates of two adjacent points on the periodic one. There are
three points in phase space that we will consider. The first point is
taken from the lower stable region, close to where the boomerang
branches form the vertical family. The second point is right in the
center of the unstable middle region. The third point is on the upper
stable branch somewhat above the point where the branching to the open
boomerang takes place.

The nonperiodic trajectories for each of these cases are shown in
Figs. 33, 34, and 35, respectively.l There are clearly very pronounced
differences between the nonperiodic trajectories obtained from the
stable and unstable regions.! For both of the stable cases, the trajec-
tory has an envelope shaped like and surrounding the original boomerang.

Such trajectories remain on a two-dimensional torus in phase space and

Iv-1
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have been called regular or quasiperiodic.® In contrast, the nonperiodic
trajectory from the unstable region starts out near the boomerang, but
very soon leaves it and wanders more or less at random in the valley of
the NELSON potential. Clearly, it lies in a chaotic region in phase
space., There is another difference between the two types of trajec-
tories.1s9 Since a quasiperiodic trajectory remains on a torus, its
velocity vector at any particular point of x-y space can only have one
of two directions, thus giving rise to a "cross-hatched" pattern which
is particularly evident in Fig. 35. On the other hand, the chaotic tra-
jectory does not lie on a torus, so that the velocity vector can be in
any direction.

The number of time steps for the chaotic trajectory in Fig. 34 is
5000. Figure 36 shows the effect of doubling the number of time steps,
while Fig. 37 is a blow-up of Fig. 36 in the vicinity of the origin. We
note in passing, too, that such quasiperiodic and chaotic trajectories
were previously studied by Michael Hénon in connection with a restricted

three-body problem.?



V. CALCULATION OF INVARIANT TORI

Finally, we mention a very interesting development in the research
program. It turns out that the Monodromy method can be extended to the
calculation of invariant tori for a nonintegrable system.!? Of course,
as we have just seen in the previous discussion, periodic orbits can al-
ways be used to study the phase space in which they are imbedded. What
is new about the Monodromy extension is that actual periodic trajector-
jes become approximations for the nearby tori in phase space (which is
assumed to be not too chaotic). These trajectories are called "quasi-
tori." One important result of this work is that a family of tori can
connect distinct families of periodic trajectories.

The method that has been developed allows one to calculate a peri-
odic trajectory by varying both its energy and its winding number, which
is defined in terms of the two eigenvalues of the Monodromy matrix that
are not equal to 1. That is, for a stable trajectory we have

+ia -ia
e e

and

where m and b are integers. For these values of a you get bifurcations

of order m. The winding ratio is then given by
_b
P“"n‘.‘”

and the trick is to take rather large values for m, so that the bifur-

cated trajectory loops many times around the original or parent
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trajectory. This behavior is nicely illustrated in Fig. 38,12 where we
show a periodic trajectory with p = 23/47 for the horizontal family H of
MARTA. In (a) we allow the computer to draw lines between points which
emphasizes the whole orbit; the cross-hatched behavior is identical to
that of the nonperiodic, regular trajectories displayed in fhe last sec-
tion. However, in (b) we just show the points as they occur, and you
see that they group themselves into planes which are perpendicular to
the parent trajectory. In Fig. 39'2 we show another periodic trajectory
representing a torus; for this case p = 64/107.

We remark, too, that another reason for focusing on the periodic
trajectories with large m values is that these p values are precisely
the rational ratios which are "least affected" by the KAM theorem.

I.e., the KAM theorem tells us that when a torus pertaining to a
rational ratio of frequencies is destroyed, some small fraction of near-
by irrational tori are also destroyed and this fraction decreases as the
rational ratios become less simple. Thus, for large m, the bifurcated
periodic trajectory should approximate very well the tori in that part
of phase space.

Finally, Fig. 4012 shows a number of pictures of the bottom family
of MARTA. Here a family of tori connect the horizontal and vertical
families, as you can see in going from right to left. Each row of the
figure is for a distinct energy, which are .05, .08, .11 in going from
top to bottom. For each column of the figure, we have a constant
winding number; the two columns on the left have relatively simple
winding numbers. You can see how these quasitori vary with energy and

winding number. It is interesting that even though V becomes unstable
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at an energy of .1, quasitori for the bottom family still exist at an

energy of .11.






VI. CONCLUSIONS

Recently some very important studies in classical nonlinear
dynamics have been completed. In this work, periodic motion in two~
dimensional nonintegrable systems has been carefully analyzed. The most
important results can be summarized as follows.

(1) A new algorithm has been developed for calculating the classi-
cal periodic trajectories. It is called the Monodromy method, and it is
superior to the more conventional method of Poincaré sections for sever-
al reasons. First, it can be used to map out thoroughly the entire
phase space, and it enables one to calculate unstable periodic trajec-
tories as easily as the stable ones. Next, starting with a given peri-
odic trajectory, one can very easily find another trajectory in the same
family or in a new family which bifurcates off of the original family.
Finally, the Monodromy method can be used to calculate the invariant
tori of nonintegrable systems.

(2) A wealth of numerical data has been obtained, giving a rich
variety of librational and rotational motion. (About 5000 trajectories
comprising roughly 50 families have been studied.)

(3) It has been especially convenient to present the data in the
form of energy vs. period (E-t) plots. These plots have very interes-
ting topological properties which nicely reflect new features of the
underlying dynamical motion.

(4) Very careful numerical and analytic studies have been made

regarding the branching or bifurcation behavior of the families of
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periodic trajectories. This includes both isochronous branching (in
which the period of the new family is the same as that of the parent
family) and period-multiplying bifurcations (in which the period of the
new family is a multiple of the period of the parent). One of the main
results has been to show how symmetries (e.g., time-reversal and reflec-
tion) affect the details of the branching.

(5) The stability of the periodic trajectories determines the be-
havior of the phase space in which they are imbedded. Stable trajector-
ies lie in reqular regions of phase space, while unstable trajectories
1ie in chaotic regions.

(6) Tori can also be studied using these methods. Periodic tra-
jectories with highly winding orbits are good approximations to the in-
variant tori which lie nearby in phase space. It has been shown that
families of such "quasitori" can connect two different families of
periodic trajectories.

(7) Finally, this work has great promise of being extended to TDHF
theory in nuclear physics. To understand the connection between the
classical studies and TDHF, it is instructive to consider how one initi-
ates the classical calculations when no periodic solutions are known.
The logical way of beginning is to find first the families of smalil
oscillations about the equilibrium points of the potential. When at
least one trajectory from each of these families is known, one can use
the Monodromy methods to go to larger amplitudes for each family and, in
addition, to find many new families. (However, as we have seen, there
are collections of families which appear to be not connected to the

families of small oscillations or, indeed, to any other families. Then



VI-3

special methods must be used to locate such families.) The analogue in
TDHF would be to start with the RPA solutions and use generalized
Monodromy methods to generate solutions of large amplitude collective
motion. (The isolated families will again have to be found using spe-
cial techniques.) Thus, small and large amplitude collective motion
will be mapped out in TDHF just as it was in the classical case. Such a
study will be very useful in nuclear structure and eventually in heavy-

ion reactions (see Figs. 1, 2, and 3).
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FIGURE CAPTIONS

Figure captions are not included since the figures are explained in

the text.
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