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A USERS’ GUIDE TO PICL 

A PORTABLE INSTRUMENTED COMMUNICATION LIBRARY 

G .  A. Geist 

M. T. Heath 

B.  W. Peyton 

P. H. Worley 

Abstract 

This report is the PICI, user’s guide. It contains an overview of PTCL and how 

it is uscd. Examples in C and Fortran are included. 

PICL is a subroutine library that can be used to develop parallel programs that 

are portable across several distributed-memory multiprocessors. PICL provides a 

portable syntax for key communication primitives and related system calls. It also 

provides portable routines to perform certain widely-used, high-level communica- 

tion operat,ions, such as global broadcast and global summation. Finally, PICL 

provides execution hating t,hat can be used to monitor performance or to aid in 

debugging. 

- v -  





1. Introduction 

PICI, is a portable instrumented communication library designed to  provide portability, 

ease of programming, and  execution tracing in parallel programs. 

PICI, provides portability between many machines and multiprocessor environ- 

ments. It is fully implemented on the Tntel iPSC/2, the Intel iPSC/8ciO, and the 

Ncube/3200 families of hypercube multiprocessors and  on  the Cogent multiprocessor 

workstation. A subset of the  library is provided for each of the  following distributed- 

memory multiprocessors and niultiprocessor programming environments: the Intel 

iYSC/l,  the  Symult S2010, the  Cosmic Eiivironincnt, Linda, Unix System V, and 

the  X Window System. Full implementations of the library will be available on most 

of these target machines and environments in the near future. The  list is expected 

to  grow as new machines and programming environments appropriate for the library 

appear, such as the Ncube/6400. 

In addition t o  supplying low-level communication primitives, such as send and re- 

ceive, PICI, simplifies parallel programming by providing a set of high-level communi- 

cation routines such as  global broadcast, global maximum, and barrier synchronization. 

These routines can help the novice user avoid corninon synchronization and program- 

ming errors and  save programming time even for the veteran user. Tliese tiigh-level 

routines also facilitate experimentation and performance optimization by supporting a 

variety of interconnection topologies. 

Execution tracing has been built into the PICI, routines, and routines are provider1 

to control the type and amount of tracing. A separate package called ParaGraph [2] 

is available t o  display the tracing output graphically. The tracing facility is useful for 

performance modeling, performance tuning, and debugging. 

This document contains exarnples and information needed for straightforward u w  

of most of PICL’s basic features. Full documentation of all PICL options and the 

various ways the library can be used is contained in a separate report [ I ] .  

The library is made up of three distinct sets of routines: a set of low-level coni- 

munication and systcm primitives described in section 2, a set of higli-level global 

communication routines whose i isc is described in  section 3, and a set of routines for 

invoking and controlling the excvxtion tracing facility, which is described in section 4.  

Each section contains examples in C showing typical uses of the respective routines. In 
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addition, the  Appendix contains FORTRAN versions of the  examples and instructions 

for obtaining PICL and ParaGraph. 

2, Low-Level Routines 

T h e  12 low-level communication and system interface routines, described in Table 1, 

provide a portable syntax for message-passing programs. 

T h e  PICL programming model assumes tha t  the multiprocessor can send messages 

between arbitrarily chosen pairs of processors. The  time required t o  send a messa.ge 

between two processors is a function of the interprocessor communication network, a.nd 

a user will need t o  be aware of such machine dependencies in order t o  write efficient 

programs. Our model distinguishes one processor, the host, from the  rest. The  user ha,s 

access t o  the remaining processors, ca,lled node processors (or simply nodes), through 

the host. Typically, an application code consists of one program tha t  runs on the host 

and another program that  runs on each of the nodes. The  host program calls PICL 

routines t o  allocate node processors, load the node pr0gra.m (or programs) onto the 

nodes, send input da t a  required by the node programs, and receive results from thc 

nodes. 

Figures 1 and 2 give a template of typical host and node programs tha t  use only 

low-level PICT, routines. The host must call open0 t o  allocate nodes and enable in- 

terprocessor communication. It then must call load0 t o  load the node program(s) 

onto the processors. The  node program must also call open0 t o  enable interprocessor 

communication. Subsequently, send0 and r ecvo  are used to pa.ss messages between 

processors. 

Both host and node programs must call c l o s e 0  t o  disable interprocessor cornmn- 

nica.tion. On the node, close0 must be the last executable statement.  On the host, 

closeO(1) waits until all the nodes have executed c l o s e 0  and then releases the allo- 

cated nodes. The routines c lock0  and check0 have the  distinction tha t  they can be 

called outside the bracket of open0 and closeo. All other low-level routines generate 

an error message and cause the program to  terminate if called before open0 or after 

c l o s e 0 .  

In our programming model, a program returns from the send0 command as  soon 

a,s the user's message buffer ca.n be reused safely, even if the  message 1ia.s not yet 
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void checkO(int checking) 
- disables parameter checking if checking = 0, and enables param- 

eter checking in PICL routines if checking = 1. By default, pa- 
rameter checking is enabled. 

returns the local system clock time in seconds. 

disables interprocessor communication. On the host, allocated pro- 
cessors are also released if r e l e a s e  = 1. 

loads a program on node number node. If node = -1, then the 
program is loaded on every node. (Host only) 

prints a short message ( 5  80 characters) on the standard output 
device of the host. 

On the host, open0 allocates numproc node processors, enables 
interprocessor communication, and returns the host’s ID nuuiber. 
On a node, open0 enables iiiterprocessor cortitnunicatiori and re- 
turns the number of aliocatcd processors, the node’s ID number, 
arid tlie host’s IT1 number. 

returns the value 1 if a message of the specified type has arrived, 
and returns 0 otherwise. Tf msgtype = -1, then probe0 checks for 
messages of any type. (Nonblockzng) 

receives a message of the specified type into a buffer of size bytes  
(in bytes). If msgtype = -1, then any type is accepted. (Rlockzng) 

- returns information about the most rermt recvO or  successful 

double clock0 ( ) 

void closeO( i n t  r e l ease )  

- 

- 

void loadO(char * f i l e ,  i n t  node) 
- 

void niessageO(char *message) 
- 

void openO(int  *nuuproc, i n t  *me, i n t  *host)  
- 

i n t  pro€teO( i n t  msgtype) 
- 

void recvO(char *buf,  i n t  by tes ,  i n t  msgtype) 
- 

void recvinfoO(int *bytes ,  i n t  *msgtype, i n t  *source) 

probe0 call. 

sends a message of length bytes  (in bytes) to processor nurnbcr 
des t .  The msgtype must be 2 0. 

executes barrier synchronization of all allocated processors. ( N o d e  

void sendO(char *buf. i n t  by tes ,  i n t  msgtype, i n t  d e s t )  
- 

void syiic0 ( ) 
- 

on[Y) 
void wlioO(int *numproc, i n t  *me, i n t  *host)  

- returns the number of allocated node processors, the ID nuniber of 
the processor calling who0, and tlie ID nunit)er of the host 

Table 1: PICL Low-Level Primitives 
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main (1 

i n t  n p r o c ,  m e ,  h o s t ,  b y t e s ,  msgtype, node,  . . .  
double  timeC21 a r e s u l t ,  dataC1001 , clockO~), . . . 

timeC01 = c l o c k 0 0  ; 
/* A l l o c a t e  32 p r o c e s s o r s  and e n a b l e  PICL communication */  
nproc  = 32 ; 
openo( Bnproc, &me,  thost ) ; 

/* Load node program o n t o  a l l  nodes */ 
l o a d 0  ( "nodeprogram" , - 1 ) ; 

* /  /* -I----- Begin user program -------- 

b y t e s  = s i z e o f  ( d a t a )  ; 
msgtype = 1 ; 
node = 0 ; 
sendQ(  d a t a ,  b y t e s ,  msgtype, node ; 

/*  wait for r e s u l t s  from nodes */  
b y t e s  = s i z e o f  ( r e s u l t )  ; 
msgtype = 2 ; 
r e c v 0 (  & r e s u l t ,  b y t e s ,  msgtype ) ; 

t imeCll = clock00 ; 
p r i n t f (  " h o s t  t ook  Xf seconds t o  f i n i s h " ,  timeC11-timeC01 ; 

End u s e r  program -------- */ / *  --------- 

/ *  r e l e a s e  a l l o c a t e d  processors and d i s a b l e  communication */  
closeO( 1) ; 

3 

Figure 1: IIost progra,m template using only low-level routines. 
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m a i n 0  

c 
i n t  np roc ,  m e ,  h o s t ,  b y t e s ,  msgtype, node,  ... 
double  t i m e ,  r e s u l t ,  da t a [ l00 ] ,  c l o c k 0 0 ,  ... 
/ *  Enable  PICL communication */ 
openo( &nproc ,  &me, &hos t  ; 

Begin u s e r  program ------I- */ /* ------- 

/* Receive d a t a  from h o s t  and d i s t r i b u t e  */ 
b y t e s  = s i z e o f  ( d a t a )  ; 
msgtype = 1 ; 
i f (  me == 0 ) 

recvO( data,  b y t e s ,  msgtype ; 
f o r (  i=l ; i cnp roc  ; i++ ) sendo(  d a t a ,  b y t e s ,  msgtype, i ) ; 

3 
e l s e  

recvO( d a t a ,  b y t e s ,  msgtype ) ; 

t ime  = c l o c k 0 0  ; 
u s e r - r o u t i n e O  ; 
r e s u l t  = c l o c k 0 0 - t i m e  ; 

/* Send t i m i n g  r e s u l t  t o  h o s t  */ 
i f (  me == 0 ) 

b y t e s  = s i z e o f ( r e s u 1 t )  ; 
msgtype = 2 ; 
sendo(  & r e s u l t ,  b y t e s ,  msgtype, h o s t  ; 

3 

End u s e r  program -------- * /  /*  --------- 

/* D i s a b l e  PICL communication */  
c l o s e 0 0  ; 

1 

Figure 2: Node program templaate using only low-level routines. 
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arrived a t  the  destination processor. On the receiving end, the processor is idle (or 

blocked) from the  time it issues the  recvO command until a message satisfying the 

request arrives and is copied into the specified user buffer. Note tha t  a program will 

not terminate if a recvO command is never satisfied by an arriving message of the 

correct type. Moreover, only the type field distinguishes different messages in PICL. A 

common mistake made by new users is not using enough distinct types in their send0 

and r e m 0  calls t o  uniquely identify different messages in their program. 'This often 

leads to  nondeterministic behavior of the user's dgorithm. 

3. High-Level Routines 

T h e  high-level routines, which are built on top of the low-level routines, are global com- 

munication functions tha t  have proven useful in the development of parallel algorithms 

and application programs. Users who require an unsupplied variant or generalization 

of one or more of the high-level routines in the library should be able to save a sig- 

nificant amount of work and obtain portability by modeling the new routine on the 

corresponding library routines. 

The high-level routines, summarized in Table 3, are  designed t o  rim on various 

network topologies SO tha t  the  user can take advantage of the physical interconnection 

network and algorithm characteristics. The routine setarc0 must be called by the host 

and nodes before any of the other high-level routines, as illustrated in Figures 3 and 

4. T h e  host's se tarc0 sets the architectural parameters t o  be used by the high-level 

routines, while the node's call to  setarc0 retrieves these parameters, which are: 

nprocs - the number of processors in use. It must be between 19 and the 

number of nodes allocated by open0 on the host. 

t o p  - topology flag, where l=hypercube, 2-full connectivity, 

3-unidire~tional ring, 4-bidirectional riiig. 

numbering of the nodes in a ring, where O=natural ordering, i.e., 0, 

1, 2, 3, ... and 1-Gray rode ordering, i.e., 0, 1, 3 ,  2, ... 

direction of broadcast in unidirectional ring, where l=forward (i.e., 

from lower t o  higher numbered nodes) and -1 -backward. 

OPCl - 

dir - 

The use of hypercube topology or Gray order requires tha t  nprocs be a power of two. 

T h e  routine setarc0 can be called several times during a single run to vary the  topology 
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void barrierO() 

void bcastO(char *buf, i n t  bytes,  i n t  msgtype. i n t  roo t )  

void gandO(char *buf, i n t  items, i n t  datatype,  i n t  msgtype, i n t  r o o t )  

- 

- broadcasts a message. 

executes barrier synchronization of all nodes specified by se ta rco .  

- computes the componentwise “AND” of a distributed set of veclors. 
Datatypes for logical operations are: O=char, l=short, 2=int, 
3 =long. 

void gcombO(char *buf, i n t  i tems,  i n t  datatype,  i n t  msgtype, i n t  r o o t ,  
void (*comb)()) 

- computes a user-defined componentwise combination of a dis- 
tributed set of vectors. Datatypes for arithmetic operations are: 
O=cfiar, l=short, 2=int, 3=lortg, 4=float, 5=double. 

returns the number of processors and arcliitecture parameters sycc- 
ified by the most recent call to se ta rco .  

i n t  ginvO ( i n t  i )  
returns the inverse binary reflected Gray code of i. 

void gmaxO(char *buf, i n t  items, i n t  datatype,  i n t  msgtype, i n t  root) 
compuf es the componentwise maxirnurri of a distributed set of vec- 
tors. 

computes the coniponentwise minimum of a distributed set of vec- 
tors. 

void gorO(char *buf. i n t  i tems,  i n t  da ta type ,  i n t  msgtype, i n t  r o o t )  
computes the componentwise “OR” of’ a distributed set of vectors 

void gprodO(char +buf, i n t  items, i n t  da ta type ,  i n t  msgtype, i n t  r o o t )  
computes the componentwise product of a distributed set of vec- 
tors. 

i n t  gray0( i n t  i )  
returns the binary reflected Gray code of i .  

void gsumO(char *buf, i n t  i tems,  i n t  datatype,  i n t  msgtype, i n t  r o o t )  
computrs the componentwise suni of a distributed sct of  vectors. 

void gxorO(char *bui, i n t  i tems,  i n t  da ta type ,  i n t  msgtype, i n t  roo t )  
computes the componcnttvise exclusive “ O R  of a distrihuted spt, 
of vectors. 

sets the number of processors and the interconnection topology to 
be used by the high-level comrnunicabion routines 

Table 2: PICL High-Level Communication Routines 

void getarcO(int  *nprocs, i n t  *top,  i n t  *ord, i n t  * d i r )  
- 

I 

- 

- 

void gniinO(char *buf, i n t  items, i n t  datatype,  i n t  msgtype, i n t  r o o t )  
- 

- 

- 

- 

- 

- 
_I 

void sctarcO(int  *nprocs, i n t  * top ,  i n t  *ord,  i n t  * d i r )  
- 
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main ( ) 
c 

i n t  n p r o c ,  me, h o s t ,  b y t e s ,  d a t a t y p e ,  msgtype, node,  . . .  
f l o a t  resultsC1001, . . . 
nysoc = 32 ; 
cjpenO( t n p r o c ,  &me, &host ) ; 
l o a d o (  "nodeprogram'i -1 ; 

/* s e t  a r c h i t e c t u r a l  pa rame te r s  used  by h i g h  l e v e l  r o u t i n e s .  */  

o r d  = 1 ; /* s e t  node o r d e r  t o  g r a y  code */  
d i r  = 1 ; /*  set s ing  d i r e c t i o n  t o  forward */  
s e t a r c O (  tnproc ,  & t o p ,  Bord, & d i r  1 ; 

t o p  = 1 ; /*  s e t  t opo logy  t o  hypercube */  

*/ /* __----- Begin user program -------- 

/ *  Broadcas t  problem s i z e  */ 
n = 100 ; 
b y t e s  = sizeof(r1)  ; 
msgtype = 0 ; 
bcastO( bn, b y t e s ,  msgtype,  h o s t  ; 

/* C o l l e c t  g l o b a l  sum of node ' s  r e s u l t s  */ 
d a t a t y p e  = 4 ; 
msgtype = 10 ; 
gsumO( r e s u l t s ,  n ,  d a t a t y p e ,  msgtype, host 1 ; 

/ *  s e t  d a t a  t y p e  t o  f l o a t  */ 

End user program -------- * /  / *  --------- 

Figure 3: Host program template using high- and low-level routines. 
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main (1 
< 

i n t  nproc, m e ,  h o s t ,  bytes ,  datatype,  msgtype, t op ,  ord,  d i r ,  n ,  . . .  
i n t  vecClOO1, . . . 
f l o a t  resultsCiOO1 , . . . 
openo( Btnproc, &me, t h o s t  ; 

/* g e t  a r c h i t e c t u r a l  parameters used by high l e v e l  rou t ines .  */ 
setarcO( Btnproc, &top,  t o r d ,  & d i r  ; 

/*  ------- Begin user program 

/* Receive and p a r t i c i p a t e  i n  
bytes  = s izeof (n)  ; 
msgtype = 0 ; 

*/ -------- 

broadcast of problem s ize  */  

bcastO( &n, bytes ,  msgtype, host  ) ; 

/* Col lec t  g loba l  maximum of vec and broadcast  r e s u l t  t o  all nod.es */ 
datatype = 2 ; /* s e t  datatype t o  i n t  */  
msgtype = datatype ; 
roo t  = o ;  
gmaxO( vec, n ,  datatype,  msgtype, roo t  ; 
b y t e s  = n*sizeof ( f l o a t )  ; 
bcastO( vec, bytes ,  msgtype, roo t  ) ; 

/* P a r t i c i p a t e  i n  global  sum sending r e s u l t s  t o  host  */ 
datatype = 4 ; /* s e t  datatype t o  f l o a t  */ 
msgtype = IO ; 
gsumO( r e s u l t s ,  n ,  datatype,  msgtype, host  ; 

End user  program -------- */ /* --------- 

3 

Figiire 4: Node program template using high- arid low-level routines. 
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and number of processors. A node will not return from setarc0 until nprocs  is either 

0 or greater than its node ID. (The special case nprocs-  0 is intended t o  be used as 

an  “end of run” flag.) 

To operate correctly, the high-level routines (with the  exception of gray0 and g inv0)  

must be called by all the nodes in use. For example, t o  broadcast a vector, vec, of size 

bytes  from node 5 t o  the other nodes in use, all the  nodes specified by s e t a r c 0  would 

call 

b c a s t 0 (  vec, bytes ,  t y p e ,  5 ) ; 

On return,  every node’s vec would match vec on node 5 .  

All the nodes must know either implicitly or from a previous message the root of 

a particular high-level call. For exarrrple, in Figure 4 all the nodes call gmaxO with 

r o o t =  0. After this, only node 0 knows the maxima, so all the nodes then call bcastO 

with r o o t =  0, after which they all know the maxima. Figures 3 and 4 also illustrate 

the  use of the host as the root of a high-level call. 

4. Tracing Routines 

When the user requests execution tracing, code is activated within PICI, routines tha t  

produces time-stamped records detailing the coiirse of the computation on c.aclr pro- 

cessor. One of the key qiiantities captured is the time each processor spends blocked 

while waiting for messages from other processors. With this and similar data ,  tlie user 

can evahiate the performance of his code and locate possible performance bottlenecks. 

Execution tracing i s  controlled by the routines described in Table 3. 

Assuming the user wishes to  trace only the execution on tlie nodes (host execu- 

tion tracing is also possible but seldom used), three tracing routines are required: 

t raceenable  on the host, and t r a c e l e v e l  and t r a c e n o d e  on the node(s). Examples 

of their use can be seen in Figures 5 and 6.  Traceenable is typically the first ese- 

cutable statement in the host program. This routine specifies the name of the trace 

file, enables tracing, and sets the output format used for the trace records. If format 

= 1, theri keywords are inserted into each trace record t o  help the user read the trace 

file. If format - 0, then the trace records are written out as a compact set of integers 

that  can then be input into the ParaGraph package for display after proper sorting. 
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- 
void traceenable(char *tracef ile, int format) 

- opens a trace file and sets the trace record format. Set format = 0 
for use with ParaGraph. Set format = 1 to label trace records 
with keywords. (Hos t  only) 

void traceexit (1 

void traceflush() 
sends local trace information to the trace file. 

void tracehost (int tracesize, int flush) 
starts tracing on the host and specifies how large a buffer to reserve 
for trace information. If flush = 1, then traceflush is called 
autornatically if the trace buffer fills up. If flush = 0, then tracing 
stops if the trace buffer fills up. (Hos t  only) 

returns the current tracing parameters, as set by tracelevel, and 
an estimate of the number of trace records that will fit in the TC- 

maining space in the trace buffer. 

sets the parameters that control the amount of trace data generated 
for three types of trace records. A zero value denotes the least 
amount of information generated, while 2 3 denotes the most. 

generates a trace record marking a user-specified event. 

sends a short message (< 80 characters) to the host that will au- 
toniatically be written into the trace file. 

void tracenode( int tracesize, int flush, int sync) 
starts tracing on a node and specifies how large a buffer to reseive 
for trace information. If flush = I ,  then traceflush is called 
automatically if I h e  trace buffer fills up. If flush = 0, then tracing 
stops if the trace buffer fills up. If sync = 1, then node system 
clocks are synchronized before tracing begins. ( N o d e  only) 

- stops tracing. 

- 

- 

void traceinfo(int remaining, int event, int compstats, int commstats) 
- 

void tracelevcl(int event, int compstats, int commstats) 
- 

void tracemark( int marktype) 

void traccmsg(char *message) 

- 

- 

- 

Table 3: PICI, Execution Tracing Routines 
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T h e  followirig Unix command performs this sort: 

s o r t  +In -2 +2n -3 +On -1 t r a c e f i l e  > ParaGraph. input  

The  routine t r a c e n o d e  is called by the node program t o  create a local trace buffer 

and s tar t  tracing. The  synchronization option (sync - 1) should be used for trace files 

tha t  are t o  be analyzed with ParaGraph, and all nodes must call t r a c e n o d e  with sync 

set t o  this value. The  effect of setting sync is t o  synchronize node clocks so that  time 

stamps will be consistent. Thus,  the user should be careful where t r a c e n o d e  is called 

because it entails a barrier synchronization. If trace information is needed on only oiie 

or a few nodes (for exaniple, to  do debugging), then these nodes must call t r a c e n o d e  

with sync = 0, and the other nodes should not call t r acenode .  

There are four distinct types of trace records generated: event, computation statis- 

tics, communication statistics, and trace message. The  routine t r a c e l e v e l  sets the 

amount of trace da t a  generated for the first three trace record types. The  value of even t  

determines which PICL routines will generate “event” trace records. If even t  = 0, then 

only calls t o  openo, close0, t r a c e l e v e l ,  t r acenode ,  t r a c e f l u s h ,  t r a c e e x i t ,  and 

t r a c e h a s t  are recorded. If even t  1 1, then records are  also generated for t r acemark .  

If even t  7 2, then records are also generated for the high-level routines a s  well as 

send0 and r a c y 0  events outside the high level routines. Finally, if e v e n t  2 3, then 

records are also generated for send0 and recvo events embedded inside the high-level 

routines. The  values for camps ta t s  and commstats similarly control which events 

generate statistical records. 

When the tracing logic is not activated, there is very little overhead iiicurrcd by 

using the P’ICL routines 0 7 1  the nodes. Due to  the possibility of tracing, recvO o n  the 

host is two t o  three times slower than the native command. Since the host tends to  be 

significantly slower than the nodes even when not using PICL, most application codcs 

should minimize the use of the host. 

If the tracing logic is enabled and the trace information is sent to the trace file a t  

arbitrary points in the node (or host) programs, then the additional cost due t o  tracing 

can be very high, and might cause an unacceptable perturbation in  the bchavior of 

the program under study. This can occur when flush = 1 in thc call to t r a c e n o d e  (01 

t r a c e h o s t ) .  If flush - 0 and  t r a c e f l u s h  i q  not used, then trace information is sent 

back only a t  the eiitl of the node program, and the resulting cost is quite reasonable. ‘I‘o 
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avoid the need for large trace buffers, it is recommended tha t  t r a c e l e v e l  be iised as 

shown in Figure 6 t o  trace only those portions of the code in which the user is interested. 

This has the  added benefit of reducing the size of the trace files. ParaGraph displays 

can he improved by positioning the t r a c e n o d e  call near the point of interest. This 

avoids long blank displays between the call t o  t r a c e n o d e  and the interesting part  of 

the  code. 

m a i n 0  

c 
i n t  np roc ,  me, h o s t ,  b y t e s ,  t y p e ,  t o p ,  o r d ,  d i r ,  . . .  
double  x ,  ... 
/* Open t r a c e f  i l e  and u s e  compact ParaGraph format  */ 
t r a c e e n a b l e (  " t r a c e f  i l e"  , 0 ; 

nproc  = 8 ; 
openo( knproc ,  &me, &hos t  ) ; 
l oad0  ( "nodeprogram" , -1 ; 

t o p  = 3 ; /* s e t  topology t o  r i n g  */ 
o r d  = 0 ; /* s e t  node o r d e r  t o  n a t u r a l  */ 
d i r  =-1 ; /*  s e t  r i n g  d i r e c t i o n  t o  backward */ 
s e t a r c O (  knproc ,  &top, &ord ,  & d i r  ) ; 

*/ / *  ------- Begin u s e r  program -------- 

r e c v o (  x, s i z e o f  (x> , 3 ) ; 
/*  --------- End u s e r  program -------- */ 

Figiire 5: Host program template for tracing node execution. 
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main (1 

i n t  nproc, m e ,  hos t ,  bytes ,  datatype, msgtype, top ,  ord,  d i r ,  n ,  . . .  
double x ,  ... 

/* Start t r a c i n g  
tracenode( 100000, 0 ,  1 1 ; 
t r a c e l e v e l (  0 ,  0 ,  0 ) ; 

using 100K l o c a l  buf fer  */ 

openo( tnproc,  &me, &host ) ; 
setarcO( Btnproc, &top, &ord, & d i r  1 ; 

Begin user  program -----I-- */ / *  ----_-- 

/* Se t  t r a c e  l e v e l s  t o  t y p i c a l  values used f o r  ParaGraph) */ 
t r a c e l e v e l (  4 ,  4 ,  0 ) ; 

/+  Calculate  global  product with r e s u l t  on node nproc-1 */ 
datatype = 5 ; /*  s e t  datatype t o  double */  
msgtype = 1 ; 
root = nproc-1 ; 
gprodO( bx, 1, datatype,  msgtype, root  ; 

/* Turn off t r ac ing  f o r  un in te res t ing  sec t ions  */ 
t r a c e l e v e l (  0 ,  0 ,  0 1 ; 

if(me == nproc-1) sendo( x ,  s i zeo f (x ) ,  3 ,  host  ) ; 
End user program -------- */ /*  -I------- 

/ *  Stop t r ac ing  */ 
t r a c e e x i t  0 ; 

/* close0 flushes l o c a l  buf fer  t o  t r a c e f i l e  on host * /  
close0 (1 ; 

3 

Figure 6: Node program template with tracing. 
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5. Appendix 

5.1. Fortran Examples 

integer nproc, me, host, bytes, msgtype, node, ... 
double precision time(21, result, data(lOO), clock0, ... 
time(0) = clockO() 

nproc = 32 
call openo( nproc, me, host 

Allocate processors and enable PICL communication 

Load node program onto all nodes 
call loado( "nodeprogram", -1 

Begin user program -------- ------- 

bytes = n*8 
msgtype = 1 
node = 0 
call sendo( data, bytes, msgtype, node 

wait until nodes are finished 
bytes = 8 
msgtype = 2 
call recvO( result, bytes, msgtype 

time(1) = clock00 
print *,"host took", time(l)-time(O) , ' I  seconds to finish" 

End user program -------- --------- 
release allocated processors and disable communication 
call closeO(1) 
stop 
end 

Figure 7: Fortran host program template using only low-level routines. 
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i n t e g e r  np roc ,  me, h o s t ,  b y t e s ,  msgtype, node, ... 
double  p r e c i s i o n  t i m e ,  r e s u l t ,  d a t a ( 1 0 0 ) ,  c lockO()  , . . . 

c Enable  PICL communication 
c a l l  openQ( np roc ,  me, h o s t  ) 

Begin u s e r  program -------- c - - - - - - - 

c Receive d a t a  from h o s t  and d i s t r i b u t e  
b y t e s  = n*8 
msgtype = 1 
if( me . e q .  0 t h e n  

c a l l  recvO( data, b y t e s ,  msgtype ) 
do 10 i=l, nproc-1 

c a l l  sendo(  d a t a ,  b y t e s ,  msgtype, i ) 
10 con t inue  

e l s e  

endi f  
c a l l  recvO( d a t a ,  b y t e s ,  msgtype 

t ime  = c l o c k Q ( )  
c a l l  u s e r - r o u t i n e O  
r e s u l t  = c lockO() - t ime 

c Send r e s u l t s  t o  host  
i f (  me .eq. 0 ) t h e n  

b y t e s  = 8 
msgtype = 2 
c a l l  sendo(  r e s u l t ,  b y t e s ,  msgtype, h o s t  

endi f  

End u s e r  program -------- c - - - - - - - - - 

c Di sab le  PICL communication 
c a l l  c l o s e 0 0  
s t o p  
end 

Figure 8: Fortran node program template using only low-level routines. 
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i n t ege r  nproc, m e ,  hos t ,  bytes ,  datatype,  msgtype, node, ... 
r e a l  resu l t s (100) ,  . . . 
nproc = 32 
ca l l  openo( nproc, me, host  ) 
ca l l  loado( “nodeprogram”, -1 ) 

c s e t  a r c h i t e c t u r a l  parameters used by high l e v e l  rou t ines .  
t op  = 1 
ord = 1 
d i r  = 1 
ca l l  setarcO( nproc, t op ,  ord,  d i r  1 

Begin user  program -------- c - .. - - - - - 

c Broadcast problem s i z e  
n = 100 
bytes  = 4 
msgtype = 0 
c a l l  bcastO( n ,  by tes ,  msgtype, host  ) 

c Collect  global  sum of node’s r e s u l t s  
datatype = 4 
msgtype = 10 
c a l l  gsumO( r e s u l t s ,  n ,  datatype, msgtype, host  

c - - - - - - - - - End use r  program -------- 

c a l l  c lose0 (1) 
s top  
end 

Figure 9: Fortran host program template using high- and low-level routines. 
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i n t ege r  nproc, m e ,  hos t ,  bytes ,  datatype,  msgtype 
in t ege r  top ,  ord,  d i r ,  n ,  vec(lOO), ... 
r e a l  r e s u l t s ( l 0 0 ) ,  ... 

c a l l  openo( nproc, me, host  ) 

ge t  a r ch i t ec tu ra l  parameters used by high l e v e l  rou t ines .  
c a l l  setarcO( nproc, top ,  ord,  d i r  ) 

Begin user  program -------- ------- 

Receive and p a r t i c i p a t e  i n  broadcast of problem s i z e  
bytes  = s i z e o f ( i n t )  
msgtype = 0 

c a l l  bcastO( n ,  by tes ,  msgtype, host  ) 

Collect  global  maximum of vec and broadcast r e s u l t  t o  a l l  nodes 
datatype = 2 

msgtype = n+5 
root  = o  
c a l l  gmaxO( vec, n ,  datatype,  msgtype, roo t  1 
bytes  = n*4 
c a l l  bcastO( vec,  by tes ,  msgtype, root  ) 

P a r t i c i p a t e  in global  sum sending r e s u l t s  t o  
datatype = 4 
msgtype = 10 
c a l l  gsumO( r e s u l t s ,  n ,  datatype,  msgtype, 

End user  program -------- - - - - - - - I - 

c a l l  close00 
s top  
end 

host  

host  ) 

Figure 10: Fortran node pr0gra.m template using high- and low-level routines. 
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i n t e g e r  np roc ,  me, host, t o p ,  ord, d i r ,  ... 
double p r e c e s i o n  x ,  ... 

c Open t r a c e f i l e  and u s e  compact ParaGraph format  
ca l l  t r a c e e n a b l e (  " t r a c e f  i l e "  , 0 1 

nproc  = 8 

ca l l  openo( np roc ,  me, host 
ca l l  l o a d o (  "nodeprogram", -1 ) 

t o p  = 3 
o r d  = 0 

dir =-1 
c a l l  s e t a r c O (  np roc ,  t o p ,  ord, dir 1 

Begin user program -------- c - - - - - - - 

ca l l  recvO( x ,  8, 3 ) 
End u s e r  program -------- c - - - - - - - - - 

c a l l  c loseO(1)  
s t o p  
end 

Figure 11: Fortran host program template for tracing node execution. 
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C 

C 

C 

C 

C 

C 

i n t ege r  nproc, me, h o s t ,  by tes ,  datatype, msgtype 
in t ege r  top ,  ord,  d i r ,  n ,  . . .  
double prec is ion  x ,  ... 

Star t  t r a c i n g  using l O O K  l o c a l  bu f fe r  
c a l l  tracenode( 100000, 0, 1 1 
c a l l  t r a c e l e v e l (  0, 0 ,  0 ) 

c a l l  openo( nproc, me, host  
c a l l  setarcO( nproc, top ,  old, d i r  1 

Begin use r  program ----I--- ------- 

Set  t r a c e  l e v e l s  t o  t y p i c a l  values used f o r  ParaGraph) 
c a l l  t r a c e l e v e l (  4 ,  4 ,  0 1 

Calculate g loba l  product with r e s u l t  on node nproc-1 
datatype = 5 

roo t  = nproc-1 
c a l l  gprodQ( x, 1, datatype, msgtype, roo t  ) 

msgtype = 1 

Turn o f f  t r a c i n g  f o r  un in te res t ing  sec t ions  
c a l l  t r a c e l e v e l (  0 ,  0 ,  0 

if(me .eq.  nproc-1) c a l l  sendo( X ,  8 ,  3 ,  host 
--------- End user  program -------- 

Stop t r a c i n g  
c a l l  t r a c e e x i t  (1 

close0 f lu shes  l o c a l  b u f f e r  t o  t r a c e f i l e  on host 
c a l l  closeQ () 
s top  
end 

Figure 12: Fortran node program template with tracing. 



- 21 - 

5.2. Obtaining PICL 

The  source code for PICL is available from netlib. The PICL source is writtcn in 

C,  but Fortran-to-C interface routines are also supplied on those machines where it is 

feasible. Currcntly, netlib contains the following files: 

picl.shar 

port .shar 

cogent .s har 

ipsc2 .shar 

ipsc860.shar 

ncube3200.s har 

userguides har 

creference.shar 

low-level primitives and execution tracing routines 

high-level communication routines 

machine-dependent routines for the Cogent, including 
FORTRAN-to-C interface routines 
machine- dependent routines for the iP S C/2 , includ- 
ing FORTRAN-to-C interface routines 

machine-dependent routines for the iPSC/860, in- 
cluding FORTRAN-to-C interface routines 

machine-dependent routines for the Ncube/3200, but 
without FORTRAN- to-C interface routines 
latex source of the PICL user guide (this document) 

latex source of the rcfercnce manual for the C version 
of PICL. 

More machine-dependent code will be added to  this list in the near future. 

To create PICL, you need the following shclr files from the picl subdirectory on 

netlib: p i c l  . shar, p o r t .  shar, and the appropriate machine-dependent code. TJnpack 

all three in the same (empty) directory. A README file describing how t o  create the 

library is bundled witli the machine-dependent shar file. For example, to get the 

source code for creating an iPSC/2 version of PICL, send the following message to  

netlibQornl.gov: 

send picl.shar from p i c l  

send port.shar from p i c l  

send ipsc2.shar from picl 

The source code will arrive as one or more messages per shar file. Each message will 

contain a header describing what to  remove and how to concatenate messages in order 

to  recover a legal shar file. Once these instructions are done, the following i n  an empty 

directory: 

sh picl.shar 
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sh port.shar 

sh ipsc2. shar 

You will now have a file README, a file makef ile, and three subdirectories: picl, port, 

and ipsc2. T h e  REABME file discusses how t o  compile the PICL routines and how t o  

make the  libraries hostlib. a and nodelib. a. 

5.3. Obtaining ParaGraph 

ParaGraph is also available from n e t l i b .  For information about this package send the 

followirig message t o  netlibQorn1. gov. 

send index f r o m  paragraph 

A short description of Pa.raGraph and instructions on how t o  build the  package will be 

returned. 

T h e  source files are available in the shnr file paragraph. shar. To receive this file 

send the  message: 

send paragraph.shar from paragraph 
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