
L

3 4456 0336552 b

..........

............... ~

ORNL/TM-11616

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A USERS' GUIDE TO PICL

A PORTABLE INSTRUMENTED COMMUNICATION LIBRARY

G. A. Geist
M. T. Heath

B. W. Peyton
P. IC. Worley

Oak Ridge National Laboratory
Mathematical Sciences Section

Oak Ridge, T N 37831-8083
P.O. BOX 2009, Bldg. 9207-A

Date Publishcd: October 1990

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepared b y the
Oak Ridge Nationa.1 1,aboratory

Oak Ridge, Tennessce 37831
operated by

Martin hlariettn Energy Systems, Tnc.
for the

Contents

. 1 Introduction 1
2 Low-Level Routines . 2

4 Tracing Routines 10
5 Appendix 15

3 High-Level Routines . ti

5.1 Fortran Examples . 15
5.2 Obtaining PICL . 21
5.3 Obtaining ParaGraph . 22

.
.

. 6 References 22

...
. 111 .

A USERS’ GUIDE TO PICL

A PORTABLE INSTRUMENTED COMMUNICATION LIBRARY

G . A. Geist

M. T. Heath

B. W. Peyton

P. H. Worley

Abstract

This report is the PICI, user’s guide. It contains an overview of PTCL and how

it is uscd. Examples in C and Fortran are included.

PICL is a subroutine library that can be used to develop parallel programs that

are portable across several distributed-memory multiprocessors. PICL provides a

portable syntax for key communication primitives and related system calls. It also

provides portable routines to perform certain widely-used, high-level communica-

tion operat,ions, such as global broadcast and global summation. Finally, PICL

provides execution hating t,hat can be used to monitor performance or to aid in

debugging.

- v -

1. Introduction

PICI, is a portable instrumented communication library designed to provide portability,

ease of programming, and execution tracing in parallel programs.

PICI, provides portability between many machines and multiprocessor environ-

ments. It is fully implemented on the Tntel iPSC/2, the Intel iPSC/8ciO, and the

Ncube/3200 families of hypercube multiprocessors and on the Cogent multiprocessor

workstation. A subset of the library is provided for each of the following distributed-

memory multiprocessors and niultiprocessor programming environments: the Intel

iYSC/l, the Symult S2010, the Cosmic Eiivironincnt, Linda, Unix System V, and

the X Window System. Full implementations of the library will be available on most

of these target machines and environments in the near future. The list is expected

to grow as new machines and programming environments appropriate for the library

appear, such as the Ncube/6400.

In addition t o supplying low-level communication primitives, such as send and re-

ceive, PICI, simplifies parallel programming by providing a set of high-level communi-

cation routines such as global broadcast, global maximum, and barrier synchronization.

These routines can help the novice user avoid corninon synchronization and program-

ming errors and save programming time even for the veteran user. Tliese tiigh-level

routines also facilitate experimentation and performance optimization by supporting a

variety of interconnection topologies.

Execution tracing has been built into the PICI, routines, and routines are provider1

to control the type and amount of tracing. A separate package called ParaGraph [2]

is available t o display the tracing output graphically. The tracing facility is useful for

performance modeling, performance tuning, and debugging.

This document contains exarnples and information needed for straightforward u w

of most of PICL’s basic features. Full documentation of all PICL options and the

various ways the library can be used is contained in a separate report [I] .

The library is made up of three distinct sets of routines: a set of low-level coni-

munication and systcm primitives described in section 2, a set of higli-level global

communication routines whose i isc is described in section 3, and a set of routines for

invoking and controlling the excvxtion tracing facility, which is described in section 4.

Each section contains examples in C showing typical uses of the respective routines. In

- 2 -

addition, the Appendix contains FORTRAN versions of the examples and instructions

for obtaining PICL and ParaGraph.

2, Low-Level Routines

T h e 12 low-level communication and system interface routines, described in Table 1,

provide a portable syntax for message-passing programs.

T h e PICL programming model assumes tha t the multiprocessor can send messages

between arbitrarily chosen pairs of processors. The time required t o send a messa.ge

between two processors is a function of the interprocessor communication network, a.nd

a user will need t o be aware of such machine dependencies in order t o write efficient

programs. Our model distinguishes one processor, the host, from the rest. The user ha,s

access t o the remaining processors, ca,lled node processors (or simply nodes), through

the host. Typically, an application code consists of one program tha t runs on the host

and another program that runs on each of the nodes. The host program calls PICL

routines t o allocate node processors, load the node pr0gra.m (or programs) onto the

nodes, send input da t a required by the node programs, and receive results from thc

nodes.

Figures 1 and 2 give a template of typical host and node programs tha t use only

low-level PICT, routines. The host must call open0 t o allocate nodes and enable in-

terprocessor communication. It then must call load0 t o load the node program(s)

onto the processors. The node program must also call open0 t o enable interprocessor

communication. Subsequently, send0 and r ecvo are used to pa.ss messages between

processors.

Both host and node programs must call c l o s e 0 t o disable interprocessor cornmn-

nica.tion. On the node, close0 must be the last executable statement. On the host,

closeO(1) waits until all the nodes have executed c l o s e 0 and then releases the allo-

cated nodes. The routines c lock0 and check0 have the distinction tha t they can be

called outside the bracket of open0 and closeo. All other low-level routines generate

an error message and cause the program to terminate if called before open0 or after

c l o s e 0 .

In our programming model, a program returns from the send0 command as soon

a,s the user's message buffer ca.n be reused safely, even if the message 1ia.s not yet

- 3 -

void checkO(int checking)
- disables parameter checking if checking = 0, and enables param-

eter checking in PICL routines if checking = 1. By default, pa-
rameter checking is enabled.

returns the local system clock time in seconds.

disables interprocessor communication. On the host, allocated pro-
cessors are also released if r e l e a s e = 1.

loads a program on node number node. If node = -1, then the
program is loaded on every node. (Host only)

prints a short message (5 80 characters) on the standard output
device of the host.

On the host, open0 allocates numproc node processors, enables
interprocessor communication, and returns the host’s ID nuuiber.
On a node, open0 enables iiiterprocessor cortitnunicatiori and re-
turns the number of aliocatcd processors, the node’s ID number,
arid tlie host’s IT1 number.

returns the value 1 if a message of the specified type has arrived,
and returns 0 otherwise. Tf msgtype = -1, then probe0 checks for
messages of any type. (Nonblockzng)

receives a message of the specified type into a buffer of size bytes
(in bytes). If msgtype = -1, then any type is accepted. (Rlockzng)

- returns information about the most rermt recvO or successful

double clock0 ()

void closeO(i n t r e l ease)

-

-

void loadO(char * f i l e , i n t node)
-

void niessageO(char *message)
-

void openO(int *nuuproc, i n t *me, i n t *host)
-

i n t pro€teO(i n t msgtype)
-

void recvO(char *buf, i n t by tes , i n t msgtype)
-

void recvinfoO(int *bytes , i n t *msgtype, i n t *source)

probe0 call.

sends a message of length bytes (in bytes) to processor nurnbcr
des t . The msgtype must be 2 0.

executes barrier synchronization of all allocated processors. (N o d e

void sendO(char *buf. i n t by tes , i n t msgtype, i n t d e s t)
-

void syiic0 ()
-

on[Y)
void wlioO(int *numproc, i n t *me, i n t *host)

- returns the number of allocated node processors, the ID nuniber of
the processor calling who0, and tlie ID nunit)er of the host

Table 1: PICL Low-Level Primitives

- 4 -

main (1

i n t n p r o c , m e , h o s t , b y t e s , msgtype, node, . . .
double timeC21 a r e s u l t , dataC1001 , clockO~), . . .

timeC01 = c l o c k 0 0 ;
/* A l l o c a t e 32 p r o c e s s o r s and e n a b l e PICL communication */
nproc = 32 ;
openo(Bnproc, &me, thost) ;

/* Load node program o n t o a l l nodes */
l o a d 0 ("nodeprogram" , - 1) ;

* / /* -I----- Begin user program --------

b y t e s = s i z e o f (d a t a) ;
msgtype = 1 ;
node = 0 ;
sendQ(d a t a , b y t e s , msgtype, node ;

/* wait for r e s u l t s from nodes */
b y t e s = s i z e o f (r e s u l t) ;
msgtype = 2 ;
r e c v 0 (& r e s u l t , b y t e s , msgtype) ;

t imeCll = clock00 ;
p r i n t f (" h o s t t ook Xf seconds t o f i n i s h " , timeC11-timeC01 ;

End u s e r program -------- */ / * ---------

/ * r e l e a s e a l l o c a t e d processors and d i s a b l e communication */
closeO(1) ;

3

Figure 1: IIost progra,m template using only low-level routines.

- 5 -

m a i n 0

c
i n t np roc , m e , h o s t , b y t e s , msgtype, node, ...
double t i m e , r e s u l t , da t a [l00] , c l o c k 0 0 , ...
/ * Enable PICL communication */
openo(&nproc , &me, &hos t ;

Begin u s e r program ------I- */ /* -------

/* Receive d a t a from h o s t and d i s t r i b u t e */
b y t e s = s i z e o f (d a t a) ;
msgtype = 1 ;
i f (me == 0)

recvO(data, b y t e s , msgtype ;
f o r (i=l ; i cnp roc ; i++) sendo(d a t a , b y t e s , msgtype, i) ;

3
e l s e

recvO(d a t a , b y t e s , msgtype) ;

t ime = c l o c k 0 0 ;
u s e r - r o u t i n e O ;
r e s u l t = c l o c k 0 0 - t i m e ;

/* Send t i m i n g r e s u l t t o h o s t */
i f (me == 0)

b y t e s = s i z e o f (r e s u 1 t) ;
msgtype = 2 ;
sendo(& r e s u l t , b y t e s , msgtype, h o s t ;

3

End u s e r program -------- * / /* ---------

/* D i s a b l e PICL communication */
c l o s e 0 0 ;

1

Figure 2: Node program templaate using only low-level routines.

- 6 -

arrived a t the destination processor. On the receiving end, the processor is idle (or

blocked) from the time it issues the recvO command until a message satisfying the

request arrives and is copied into the specified user buffer. Note tha t a program will

not terminate if a recvO command is never satisfied by an arriving message of the

correct type. Moreover, only the type field distinguishes different messages in PICL. A

common mistake made by new users is not using enough distinct types in their send0

and r e m 0 calls t o uniquely identify different messages in their program. 'This often

leads to nondeterministic behavior of the user's dgorithm.

3. High-Level Routines

T h e high-level routines, which are built on top of the low-level routines, are global com-

munication functions tha t have proven useful in the development of parallel algorithms

and application programs. Users who require an unsupplied variant or generalization

of one or more of the high-level routines in the library should be able to save a sig-

nificant amount of work and obtain portability by modeling the new routine on the

corresponding library routines.

The high-level routines, summarized in Table 3, are designed t o rim on various

network topologies SO tha t the user can take advantage of the physical interconnection

network and algorithm characteristics. The routine setarc0 must be called by the host

and nodes before any of the other high-level routines, as illustrated in Figures 3 and

4. T h e host's se tarc0 sets the architectural parameters t o be used by the high-level

routines, while the node's call to setarc0 retrieves these parameters, which are:

nprocs - the number of processors in use. It must be between 19 and the

number of nodes allocated by open0 on the host.

t o p - topology flag, where l=hypercube, 2-full connectivity,

3-unidire~tional ring, 4-bidirectional riiig.

numbering of the nodes in a ring, where O=natural ordering, i.e., 0,

1, 2, 3, ... and 1-Gray rode ordering, i.e., 0, 1, 3 , 2, ...

direction of broadcast in unidirectional ring, where l=forward (i.e.,

from lower t o higher numbered nodes) and -1 -backward.

OPCl -

dir -

The use of hypercube topology or Gray order requires tha t nprocs be a power of two.

T h e routine setarc0 can be called several times during a single run to vary the topology

- 7 -

void barrierO()

void bcastO(char *buf, i n t bytes, i n t msgtype. i n t roo t)

void gandO(char *buf, i n t items, i n t datatype, i n t msgtype, i n t r o o t)

-

- broadcasts a message.

executes barrier synchronization of all nodes specified by se ta rco .

- computes the componentwise “AND” of a distributed set of veclors.
Datatypes for logical operations are: O=char, l=short, 2=int,
3 =long.

void gcombO(char *buf, i n t i tems, i n t datatype, i n t msgtype, i n t r o o t ,
void (*comb)())

- computes a user-defined componentwise combination of a dis-
tributed set of vectors. Datatypes for arithmetic operations are:
O=cfiar, l=short, 2=int, 3=lortg, 4=float, 5=double.

returns the number of processors and arcliitecture parameters sycc-
ified by the most recent call to se ta rco .

i n t ginvO (i n t i)
returns the inverse binary reflected Gray code of i.

void gmaxO(char *buf, i n t items, i n t datatype, i n t msgtype, i n t root)
compuf es the componentwise maxirnurri of a distributed set of vec-
tors.

computes the coniponentwise minimum of a distributed set of vec-
tors.

void gorO(char *buf. i n t i tems, i n t da ta type , i n t msgtype, i n t r o o t)
computes the componentwise “OR” of’ a distributed set of vectors

void gprodO(char +buf, i n t items, i n t da ta type , i n t msgtype, i n t r o o t)
computes the componentwise product of a distributed set of vec-
tors.

i n t gray0(i n t i)
returns the binary reflected Gray code of i .

void gsumO(char *buf, i n t i tems, i n t datatype, i n t msgtype, i n t r o o t)
computrs the componentwise suni of a distributed sct of vectors.

void gxorO(char *bui, i n t i tems, i n t da ta type , i n t msgtype, i n t roo t)
computes the componcnttvise exclusive “ O R of a distrihuted spt,
of vectors.

sets the number of processors and the interconnection topology to
be used by the high-level comrnunicabion routines

Table 2: PICL High-Level Communication Routines

void getarcO(int *nprocs, i n t *top, i n t *ord, i n t * d i r)
-

I

-

-

void gniinO(char *buf, i n t items, i n t datatype, i n t msgtype, i n t r o o t)
-

-

-

-

-

-
_I

void sctarcO(int *nprocs, i n t * top , i n t *ord, i n t * d i r)
-

- 8 -

main ()
c

i n t n p r o c , me, h o s t , b y t e s , d a t a t y p e , msgtype, node, . . .
f l o a t resultsC1001, . . .
nysoc = 32 ;
cjpenO(t n p r o c , &me, &host) ;
l o a d o ("nodeprogram'i -1 ;

/* s e t a r c h i t e c t u r a l pa rame te r s used by h i g h l e v e l r o u t i n e s . */

o r d = 1 ; /* s e t node o r d e r t o g r a y code */
d i r = 1 ; /* set s ing d i r e c t i o n t o forward */
s e t a r c O (tnproc , & t o p , Bord, & d i r 1 ;

t o p = 1 ; /* s e t t opo logy t o hypercube */

/ / __----- Begin user program --------

/ * Broadcas t problem s i z e */
n = 100 ;
b y t e s = sizeof(r1) ;
msgtype = 0 ;
bcastO(bn, b y t e s , msgtype, h o s t ;

/* C o l l e c t g l o b a l sum of node ' s r e s u l t s */
d a t a t y p e = 4 ;
msgtype = 10 ;
gsumO(r e s u l t s , n , d a t a t y p e , msgtype, host 1 ;

/ * s e t d a t a t y p e t o f l o a t */

End user program -------- * / / * ---------

Figure 3: Host program template using high- and low-level routines.

- 9 -

main (1
<

i n t nproc, m e , h o s t , bytes , datatype, msgtype, t op , ord, d i r , n , . . .
i n t vecClOO1, . . .
f l o a t resultsCiOO1 , . . .
openo(Btnproc, &me, t h o s t ;

/* g e t a r c h i t e c t u r a l parameters used by high l e v e l rou t ines . */
setarcO(Btnproc, &top, t o r d , & d i r ;

/* ------- Begin user program

/* Receive and p a r t i c i p a t e i n
bytes = s izeof (n) ;
msgtype = 0 ;

*/ --------

broadcast of problem s ize */

bcastO(&n, bytes , msgtype, host) ;

/* Col lec t g loba l maximum of vec and broadcast r e s u l t t o all nod.es */
datatype = 2 ; /* s e t datatype t o i n t */
msgtype = datatype ;
roo t = o ;
gmaxO(vec, n , datatype, msgtype, roo t ;
b y t e s = n*sizeof (f l o a t) ;
bcastO(vec, bytes , msgtype, roo t) ;

/* P a r t i c i p a t e i n global sum sending r e s u l t s t o host */
datatype = 4 ; /* s e t datatype t o f l o a t */
msgtype = IO ;
gsumO(r e s u l t s , n , datatype, msgtype, host ;

End user program -------- */ /* ---------

3

Figiire 4: Node program template using high- arid low-level routines.

- 10 -

and number of processors. A node will not return from setarc0 until nprocs is either

0 or greater than its node ID. (The special case nprocs- 0 is intended t o be used as

an “end of run” flag.)

To operate correctly, the high-level routines (with the exception of gray0 and g inv0)

must be called by all the nodes in use. For example, t o broadcast a vector, vec, of size

bytes from node 5 t o the other nodes in use, all the nodes specified by s e t a r c 0 would

call

b c a s t 0 (vec, bytes , t y p e , 5) ;

On return, every node’s vec would match vec on node 5 .

All the nodes must know either implicitly or from a previous message the root of

a particular high-level call. For exarrrple, in Figure 4 all the nodes call gmaxO with

r o o t = 0. After this, only node 0 knows the maxima, so all the nodes then call bcastO

with r o o t = 0, after which they all know the maxima. Figures 3 and 4 also illustrate

the use of the host as the root of a high-level call.

4. Tracing Routines

When the user requests execution tracing, code is activated within PICI, routines tha t

produces time-stamped records detailing the coiirse of the computation on c.aclr pro-

cessor. One of the key qiiantities captured is the time each processor spends blocked

while waiting for messages from other processors. With this and similar data , tlie user

can evahiate the performance of his code and locate possible performance bottlenecks.

Execution tracing i s controlled by the routines described in Table 3.

Assuming the user wishes to trace only the execution on tlie nodes (host execu-

tion tracing is also possible but seldom used), three tracing routines are required:

t raceenable on the host, and t r a c e l e v e l and t r a c e n o d e on the node(s). Examples

of their use can be seen in Figures 5 and 6. Traceenable is typically the first ese-

cutable statement in the host program. This routine specifies the name of the trace

file, enables tracing, and sets the output format used for the trace records. If format

= 1, theri keywords are inserted into each trace record t o help the user read the trace

file. If format - 0, then the trace records are written out as a compact set of integers

that can then be input into the ParaGraph package for display after proper sorting.

- 11 -

-
void traceenable(char *tracef ile, int format)

- opens a trace file and sets the trace record format. Set format = 0
for use with ParaGraph. Set format = 1 to label trace records
with keywords. (Hos t only)

void traceexit (1

void traceflush()
sends local trace information to the trace file.

void tracehost (int tracesize, int flush)
starts tracing on the host and specifies how large a buffer to reserve
for trace information. If flush = 1, then traceflush is called
autornatically if the trace buffer fills up. If flush = 0, then tracing
stops if the trace buffer fills up. (Hos t only)

returns the current tracing parameters, as set by tracelevel, and
an estimate of the number of trace records that will fit in the TC-

maining space in the trace buffer.

sets the parameters that control the amount of trace data generated
for three types of trace records. A zero value denotes the least
amount of information generated, while 2 3 denotes the most.

generates a trace record marking a user-specified event.

sends a short message (< 80 characters) to the host that will au-
toniatically be written into the trace file.

void tracenode(int tracesize, int flush, int sync)
starts tracing on a node and specifies how large a buffer to reseive
for trace information. If flush = I , then traceflush is called
automatically if I h e trace buffer fills up. If flush = 0, then tracing
stops if the trace buffer fills up. If sync = 1, then node system
clocks are synchronized before tracing begins. (N o d e only)

- stops tracing.

-

-

void traceinfo(int remaining, int event, int compstats, int commstats)
-

void tracelevcl(int event, int compstats, int commstats)
-

void tracemark(int marktype)

void traccmsg(char *message)

-

-

-

Table 3: PICI, Execution Tracing Routines

- 1 2 -

T h e followirig Unix command performs this sort:

s o r t +In -2 +2n -3 +On -1 t r a c e f i l e > ParaGraph. input

The routine t r a c e n o d e is called by the node program t o create a local trace buffer

and s tar t tracing. The synchronization option (sync - 1) should be used for trace files

tha t are t o be analyzed with ParaGraph, and all nodes must call t r a c e n o d e with sync

set t o this value. The effect of setting sync is t o synchronize node clocks so that time

stamps will be consistent. Thus, the user should be careful where t r a c e n o d e is called

because it entails a barrier synchronization. If trace information is needed on only oiie

or a few nodes (for exaniple, to do debugging), then these nodes must call t r a c e n o d e

with sync = 0, and the other nodes should not call t r acenode .

There are four distinct types of trace records generated: event, computation statis-

tics, communication statistics, and trace message. The routine t r a c e l e v e l sets the

amount of trace da t a generated for the first three trace record types. The value of even t

determines which PICL routines will generate “event” trace records. If even t = 0, then

only calls t o openo, close0, t r a c e l e v e l , t r acenode , t r a c e f l u s h , t r a c e e x i t , and

t r a c e h a s t are recorded. If even t 1 1, then records are also generated for t r acemark .

If even t 7 2, then records are also generated for the high-level routines a s well as

send0 and r a c y 0 events outside the high level routines. Finally, if e v e n t 2 3, then

records are also generated for send0 and recvo events embedded inside the high-level

routines. The values for camps ta t s and commstats similarly control which events

generate statistical records.

When the tracing logic is not activated, there is very little overhead iiicurrcd by

using the P’ICL routines 0 7 1 the nodes. Due to the possibility of tracing, recvO o n the

host is two t o three times slower than the native command. Since the host tends to be

significantly slower than the nodes even when not using PICL, most application codcs

should minimize the use of the host.

If the tracing logic is enabled and the trace information is sent to the trace file a t

arbitrary points in the node (or host) programs, then the additional cost due t o tracing

can be very high, and might cause an unacceptable perturbation in the bchavior of

the program under study. This can occur when flush = 1 in thc call to t r a c e n o d e (01

t r a c e h o s t) . If flush - 0 and t r a c e f l u s h i q not used, then trace information is sent

back only a t the eiitl of the node program, and the resulting cost is quite reasonable. ‘I‘o

- 13 -

avoid the need for large trace buffers, it is recommended tha t t r a c e l e v e l be iised as

shown in Figure 6 t o trace only those portions of the code in which the user is interested.

This has the added benefit of reducing the size of the trace files. ParaGraph displays

can he improved by positioning the t r a c e n o d e call near the point of interest. This

avoids long blank displays between the call t o t r a c e n o d e and the interesting part of

the code.

m a i n 0

c
i n t np roc , me, h o s t , b y t e s , t y p e , t o p , o r d , d i r , . . .
double x , ...
/* Open t r a c e f i l e and u s e compact ParaGraph format */
t r a c e e n a b l e (" t r a c e f i l e" , 0 ;

nproc = 8 ;
openo(knproc , &me, &hos t) ;
l oad0 ("nodeprogram" , -1 ;

t o p = 3 ; /* s e t topology t o r i n g */
o r d = 0 ; /* s e t node o r d e r t o n a t u r a l */
d i r =-1 ; /* s e t r i n g d i r e c t i o n t o backward */
s e t a r c O (knproc , &top, &ord , & d i r) ;

*/ / * ------- Begin u s e r program --------

r e c v o (x, s i z e o f (x> , 3) ;
/* --------- End u s e r program -------- */

Figiire 5: Host program template for tracing node execution.

- 14 -

main (1

i n t nproc, m e , hos t , bytes , datatype, msgtype, top , ord, d i r , n , . . .
double x , ...

/* Start t r a c i n g
tracenode(100000, 0 , 1 1 ;
t r a c e l e v e l (0 , 0 , 0) ;

using 100K l o c a l buf fer */

openo(tnproc, &me, &host) ;
setarcO(Btnproc, &top, &ord, & d i r 1 ;

Begin user program -----I-- */ / * ----_--

/* Se t t r a c e l e v e l s t o t y p i c a l values used f o r ParaGraph) */
t r a c e l e v e l (4 , 4 , 0) ;

/+ Calculate global product with r e s u l t on node nproc-1 */
datatype = 5 ; /* s e t datatype t o double */
msgtype = 1 ;
root = nproc-1 ;
gprodO(bx, 1, datatype, msgtype, root ;

/* Turn off t r ac ing f o r un in te res t ing sec t ions */
t r a c e l e v e l (0 , 0 , 0 1 ;

if(me == nproc-1) sendo(x , s i zeo f (x) , 3 , host) ;
End user program -------- */ /* -I-------

/ * Stop t r ac ing */
t r a c e e x i t 0 ;

/* close0 flushes l o c a l buf fer t o t r a c e f i l e on host * /
close0 (1 ;

3

Figure 6: Node program template with tracing.

- 15 -

5. Appendix

5.1. Fortran Examples

integer nproc, me, host, bytes, msgtype, node, ...
double precision time(21, result, data(lOO), clock0, ...
time(0) = clockO()

nproc = 32
call openo(nproc, me, host

Allocate processors and enable PICL communication

Load node program onto all nodes
call loado("nodeprogram", -1

Begin user program -------- -------

bytes = n*8
msgtype = 1
node = 0
call sendo(data, bytes, msgtype, node

wait until nodes are finished
bytes = 8
msgtype = 2
call recvO(result, bytes, msgtype

time(1) = clock00
print *,"host took", time(l)-time(O) , ' I seconds to finish"

End user program -------- ---------
release allocated processors and disable communication
call closeO(1)
stop
end

Figure 7: Fortran host program template using only low-level routines.

- 16 -

i n t e g e r np roc , me, h o s t , b y t e s , msgtype, node, ...
double p r e c i s i o n t i m e , r e s u l t , d a t a (1 0 0) , c lockO() , . . .

c Enable PICL communication
c a l l openQ(np roc , me, h o s t)

Begin u s e r program -------- c - - - - - - -

c Receive d a t a from h o s t and d i s t r i b u t e
b y t e s = n*8
msgtype = 1
if(me . e q . 0 t h e n

c a l l recvO(data, b y t e s , msgtype)
do 10 i=l, nproc-1

c a l l sendo(d a t a , b y t e s , msgtype, i)
10 con t inue

e l s e

endi f
c a l l recvO(d a t a , b y t e s , msgtype

t ime = c l o c k Q ()
c a l l u s e r - r o u t i n e O
r e s u l t = c lockO() - t ime

c Send r e s u l t s t o host
i f (me .eq. 0) t h e n

b y t e s = 8
msgtype = 2
c a l l sendo(r e s u l t , b y t e s , msgtype, h o s t

endi f

End u s e r program -------- c - - - - - - - - -

c Di sab le PICL communication
c a l l c l o s e 0 0
s t o p
end

Figure 8: Fortran node program template using only low-level routines.

- 1 7 -

i n t ege r nproc, m e , hos t , bytes , datatype, msgtype, node, ...
r e a l resu l t s (100) , . . .
nproc = 32
ca l l openo(nproc, me, host)
ca l l loado(“nodeprogram”, -1)

c s e t a r c h i t e c t u r a l parameters used by high l e v e l rou t ines .
t op = 1
ord = 1
d i r = 1
ca l l setarcO(nproc, t op , ord, d i r 1

Begin user program -------- c - .. - - - - -

c Broadcast problem s i z e
n = 100
bytes = 4
msgtype = 0
c a l l bcastO(n , by tes , msgtype, host)

c Collect global sum of node’s r e s u l t s
datatype = 4
msgtype = 10
c a l l gsumO(r e s u l t s , n , datatype, msgtype, host

c - - - - - - - - - End use r program --------

c a l l c lose0 (1)
s top
end

Figure 9: Fortran host program template using high- and low-level routines.

- 18 -

i n t ege r nproc, m e , hos t , bytes , datatype, msgtype
in t ege r top , ord, d i r , n , vec(lOO), ...
r e a l r e s u l t s (l 0 0) , ...

c a l l openo(nproc, me, host)

ge t a r ch i t ec tu ra l parameters used by high l e v e l rou t ines .
c a l l setarcO(nproc, top , ord, d i r)

Begin user program -------- -------

Receive and p a r t i c i p a t e i n broadcast of problem s i z e
bytes = s i z e o f (i n t)
msgtype = 0

c a l l bcastO(n , by tes , msgtype, host)

Collect global maximum of vec and broadcast r e s u l t t o a l l nodes
datatype = 2

msgtype = n+5
root = o
c a l l gmaxO(vec, n , datatype, msgtype, roo t 1
bytes = n*4
c a l l bcastO(vec, by tes , msgtype, root)

P a r t i c i p a t e in global sum sending r e s u l t s t o
datatype = 4
msgtype = 10
c a l l gsumO(r e s u l t s , n , datatype, msgtype,

End user program -------- - - - - - - - I -

c a l l close00
s top
end

host

host)

Figure 10: Fortran node pr0gra.m template using high- and low-level routines.

- 19 -

i n t e g e r np roc , me, host, t o p , ord, d i r , ...
double p r e c e s i o n x , ...

c Open t r a c e f i l e and u s e compact ParaGraph format
ca l l t r a c e e n a b l e (" t r a c e f i l e " , 0 1

nproc = 8

ca l l openo(np roc , me, host
ca l l l o a d o ("nodeprogram", -1)

t o p = 3
o r d = 0

dir =-1
c a l l s e t a r c O (np roc , t o p , ord, dir 1

Begin user program -------- c - - - - - - -

ca l l recvO(x , 8, 3)
End u s e r program -------- c - - - - - - - - -

c a l l c loseO(1)
s t o p
end

Figure 11: Fortran host program template for tracing node execution.

- 20 -

C

C

C

C

C

C

i n t ege r nproc, me, h o s t , by tes , datatype, msgtype
in t ege r top , ord, d i r , n , . . .
double prec is ion x , ...

Star t t r a c i n g using l O O K l o c a l bu f fe r
c a l l tracenode(100000, 0, 1 1
c a l l t r a c e l e v e l (0, 0 , 0)

c a l l openo(nproc, me, host
c a l l setarcO(nproc, top , old, d i r 1

Begin use r program ----I--- -------

Set t r a c e l e v e l s t o t y p i c a l values used f o r ParaGraph)
c a l l t r a c e l e v e l (4 , 4 , 0 1

Calculate g loba l product with r e s u l t on node nproc-1
datatype = 5

roo t = nproc-1
c a l l gprodQ(x, 1, datatype, msgtype, roo t)

msgtype = 1

Turn o f f t r a c i n g f o r un in te res t ing sec t ions
c a l l t r a c e l e v e l (0 , 0 , 0

if(me .eq. nproc-1) c a l l sendo(X , 8 , 3 , host
--------- End user program --------

Stop t r a c i n g
c a l l t r a c e e x i t (1

close0 f lu shes l o c a l b u f f e r t o t r a c e f i l e on host
c a l l closeQ ()
s top
end

Figure 12: Fortran node program template with tracing.

- 21 -

5.2. Obtaining PICL

The source code for PICL is available from netlib. The PICL source is writtcn in

C, but Fortran-to-C interface routines are also supplied on those machines where it is

feasible. Currcntly, netlib contains the following files:

picl.shar

port .shar

cogent .s har

ipsc2 .shar

ipsc860.shar

ncube3200.s har

userguides har

creference.shar

low-level primitives and execution tracing routines

high-level communication routines

machine-dependent routines for the Cogent, including
FORTRAN-to-C interface routines
machine- dependent routines for the iP S C/2 , includ-
ing FORTRAN-to-C interface routines

machine-dependent routines for the iPSC/860, in-
cluding FORTRAN-to-C interface routines

machine-dependent routines for the Ncube/3200, but
without FORTRAN- to-C interface routines
latex source of the PICL user guide (this document)

latex source of the rcfercnce manual for the C version
of PICL.

More machine-dependent code will be added to this list in the near future.

To create PICL, you need the following shclr files from the picl subdirectory on

netlib: p i c l . shar, p o r t . shar, and the appropriate machine-dependent code. TJnpack

all three in the same (empty) directory. A README file describing how t o create the

library is bundled witli the machine-dependent shar file. For example, to get the

source code for creating an iPSC/2 version of PICL, send the following message to

netlibQornl.gov:

send picl.shar from p i c l

send port.shar from p i c l

send ipsc2.shar from picl

The source code will arrive as one or more messages per shar file. Each message will

contain a header describing what to remove and how to concatenate messages in order

to recover a legal shar file. Once these instructions are done, the following i n an empty

directory:

sh picl.shar

- 22 -

sh port.shar

sh ipsc2. shar

You will now have a file README, a file makef ile, and three subdirectories: picl, port,

and ipsc2. T h e REABME file discusses how t o compile the PICL routines and how t o

make the libraries hostlib. a and nodelib. a.

5.3. Obtaining ParaGraph

ParaGraph is also available from n e t l i b . For information about this package send the

followirig message t o netlibQorn1. gov.

send index f r o m paragraph

A short description of Pa.raGraph and instructions on how t o build the package will be

returned.

T h e source files are available in the shnr file paragraph. shar. To receive this file

send the message:

send paragraph.shar from paragraph

6. References

[l] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A portable

instrumented communication library, C reference manual. Technical report, Oak

Ridge National Laboratory, July 1990. ORNL/TM-11130.

[a] M. T. Heath. Visual animation of parallel algorithms for matrix computations. In

D. Walker, editor, Proceedings of the Fifth Distributed Memory Computing Confer-

ence. IEEE, 1990.

- 23 -

ORNL/TM- 1 16 16

INTERNAL DISTRIBUTION

1.

2.
3.
4.
5.

6-10.
11-12.
13-17.

18.
19.

20-24.
25.

26.

B. R. Appleton
E. F. D’Azevedo
J . B. Drake
T. H. Dunigan
R, E. Flanery
G. A. Geist
R. F. Harbison
M. T. Heath
E. R. Jessup
M. It. Leuze
F. C. Maienschein
E. G. Ng
C. E. Oliver

27.
28-32.

33.
34-38.
39-43.
44-48.

49.
50.
51.
52.

53.
54-55.

G. Ostrouchov
B. W. Peyton
w. M . Post
S. A. Raby
R. C. Ward
P. IT. Worley
Central Research I,il,cary
ORNL Patent Office
K-25 Plant Library
Y-12 Technical Library
/Docurnenl Reference Station
Laboratory Records - RC
Laboratory Records Department

EXTERNAL DISTR.IBUTION

56. Dr. Loyce M. Adanis, Department of Applied Mathematics, Iiniversity of Washington,

Seattle, WA 98195

57. Dr. Christopher R. Anderson, Department of Mathematics, University of California, Los

Angeles, CA 90024

58. Dr. Donald A I . Austin, 6196 EECS Bltig, University of Minnesota, 200 Union St., S.E.,

Minneapolis, M N 55455

59. Dr. Robert G. Babb, Department of Computer Science and Engineering, Oregon Grad-

uate Center, 19600 N . W . Walker Road, Reaverton, OR ‘37006

60. Dr. David H. Bailey, NASA Ames, Mail Slop 258-5, NASA Ames Research Center, Mofft:t

Field, CA 94035

61. Dr. Jesse L. Rarlow, Department of Computer Science, Pennsylvania State University,

University Park, PA 16802

62. Dr. Edward 11. Barsis, Computer Science and Mathematics, P. 0. Box 5800, Sandia

National Laboratory, Albuquerque, N M 87185

63. Dr. Robert E. Benner, Parallel Processing Division 1413, Sandia National Laboratorics,

P. 0. Box 5800, Albuquerque, NM 87185

- 24 -

64. Dr. Marsha J . Berger, Courant Institute of Mathematical Sciences, 251 Mercer Street,

New York, NY 10012

65. Prof. Ake Bjorck, Department of Mathematics, Linkoping IJniversity, S-581 83 Linkoping,

Sweden

66. Dr. John H. Rolstad, L-16, Lawrence Livermore National Laboratory, P. 0. Box 808,

Livermore, CA 94550

67. Dr. James C. Browne, Department of Computer Sciences, University of Texas, Austin,

T X 78712

68. Dr. Bill L. Uuzhee, Scientific Computing Division, National Center for Atmospheric

Research, P. 0. Box 3000, Boulder, CO 80307

69. Dr. Donald A. Calahan, Department of Electrical and Computer Engineering, University

of Michigan, Ann Arbor, MI 48109

70. Mr. Briaii M. Carlson, Coinputer Science Department, Vanderbilt University, Nashville,

T N 37235

71. Dr. John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical

Sciences, Ofice of Energy Research, 1J.S. Department of Energy, Washington, DC 20585

72. Dr. Tony Chan, Department of Mathematics, University of California, Los Angelcs, 105

IIilgard Avenue, Los Angeles, CA 90024

73. Dr. Jagdish Chandra, Army Research Office, P. 0. Box 12211, Research Triangle Park,

NC 27709

74. Dr. Melvyn Ciment, National Science Foulidation, 1800 G Street N.W., Washington, DC

20550

75. Prof. Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY

14853

76. Dr. Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berkeley,

CA 94720

77. Lawrence Cowsar, Department of Mathematics, University of Ifouston, Houston, T X

7720434'76

78. Dr. Jane K. Cullum, IBM T. J . Watson Research Center, P. 0. Box 218, Yorktown

Heights, NY 10598

79. Dr. George Cybenko, Center for Supercomputing Research and Development, University

of Illinois, 104 South Wright Street,, TJrbana, 11, 61801-2932

- 25 -

.

80. Ms. Helen Davis, Computer Science Department, Stanford University, Stanford, CA

94305

81. Dr. Yuefan Deng, Applied Mathematics Department, SUNY at Stony Brook, Stony

Brook, NY 11794-8600

82. Dr. J . J. Dongarra, 107 Ayres Hall, Department of Computer Science, University of

Tennessee, Knoxville, TN 37996-1301

83. Dr. J. J. Dorning (EPMD Advisory Committee) Department of Nuclear Engineering

Physics, Thornton Hall, McCormick Rd., University of Virginia, Charlottesville, VA

2290 1

84. Prof. Larry Dowdy, Computer Science Department, Vanderbilt University, Nashville, 'TN

37235

85. Dr. Iain Duff, Numerical Analysis Group, Ceritral Computing Department, Atlas Ceatrc,

Rutherford hppleton Laboratory, Didcot, O ~ o n OX1 1 OQX, England

86. Dr. Stanley Eisenstat, Department of Computer Science, Yale University, P. 0. Box 2158

Yale Station, New Haven, CT 06520

87. Dr. Howard C. Elman, Computer Science Department, University of Maryland, College

Park, MD 20742

88. Dr. Ian Foster, Mathematics arid Cornputer Science Division, Argonrie National Labora-

tory, 9700 South C a s Avenue, Argonne, IL 60439

89. Prof. Geoffrey C. Fox, Department of Physics, Room 229.1, Syracuse University, Syra-

cuse, NY 13244-1130

90. Dr. Chris Fraley, Department of Mathematics and Statistics, Utah State University,

Logan, U T 84322-3000

91. Dr. Paul 0. Frederickson, NASA Ames Research Center, RIACS, Wl/S 7'045-1, Molfet

Field, CA 94035

92. Dr. Robert E. Funderlic, Department of Computer Science, North Carolina State 1Jn-

versity, Raleigh, NC 27650

93. Prof. Dennis 13. Gannon, Computer Science Department, Indiana IJniversity, Blooming-

ton, I N 47401

94. Dr. W. Morven Gentleman, Division of Electrical Engineering, National Research Coun-

cil, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada KlR OR8

- 26 -

95. Dr. Alan George, Vice President, Academic and Provost, Needles Hall, University of

Waterloo, Waterloo, Ontario, Canada N2L 3G1

96. Dr. Gene Golub, Computer Science Department, Stanford University, Stanford, CA 94305

97. Dr. Joseph F. Grcar, Division 8331, Sandia National Laboratories, Liverinore, CA 94550

98. Dr. William D. Gropp, Mathematics and Computer Science Division, Argonnc National

Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

99. Dr. Eric Grosse, 2C 471, 600 Mountain Avenue, Murray Hill, NJ 07922

100. Prof. John L. Gustafson, Ames Laboratory, 236 Wilhelm IIall, Iowa State University,

Ames, IA 50011-3020

101. Prof. Robert M. Haralick (EPMD Advisory Committee) Department of Electrical En-

gineering, Director, Intelligent Systems Lab, University of Washington, 402 Electrical

Engr. Bldg. FT-10, Seattle, W.4 98195

102. Dr. Philip J . Hatcher, Department of Computer Science, College of Engineering and

Physical Sciences, Kingsbury Hall, Durham, NII 03824

103. Dr. Gerald W. Hedstrom, L-71, Lawrerice Livermore National Laborakory, P. 0. Box 808,

Livermore, CA 94550

104. Dr. Uon E. Heller, Physics and Computer Science Department, Shell Development Co.,

P. 0. Box 481, Houston, T X 77001

105. Dr. John I,. Hennessy, CIS 208, Stanford University, Stanford, CA 94305

106. Dr. N . J . Higham, Department of Mathematics, University of Manchester, Gtr Manch-

ester, M13 SPL, ENGLAND

107. Dr. Charles J . Holland, Air Force Office of Scientific Research, Building 410, Bolling Air

Force Rase, Washington, DC 20332

108. Dr. Robcrt E. T!ulltlleston, Computation Department, Lawrence Liverinore National Lab-

oratory, P. 0. Box 808, Livermore, CA 94550

109. Dr. Ilse Ipsen, Department of Computer Science, Yale University, P. 0. Box 2158 Yale

Station, New Haven, CT 06520

110. Dr. Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA 02142-

1214

111. Dr. Harry Jordan, Department of Electrical and Computer Engineering, University of

Colorado, Boulder, CO 80309

- 27 -

112. Dr. Bo Icagstrom, Iirstitute of Information Processing, University of Umea, 5-901 87

Umea, Sweden

113. Prof. Malvyn Kalos, Cornell Theory Center, Engineering and Theory Center Rldg., Cor-

ne11 University, Ithaca, NY 14853-3901

114. Dr. Hans Kaper, Mathenlatics and Computer Science Division, Argonne Nation31 Labo-

ratory, 9700 South Cass Avenue, Argonne, IL 60439

215. Dr. Alan H. Karp, IBM Scientific Center, 1530 Page Mill Road, Palo Alto, CA 94304

116. Dr. Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, N J 07971

117. Dr. Robert J . Kee, Applied Mathematics Division 8331, Sandia National Laboratories,

Livermore, CA 94550

118. Dr. Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box 1892,

IIouston, TX 77001

119. Dr. Thomas Kitchens, ER-7, Applied Mathematical Sciences, Scientific Computing Staff,

Office of Energy Research, Office G-437 Germantown, Washington, DC 20585

120. Prof. Clyde P. Kruskal, Department of Computer Science, University of hfarylantl, Col-

lege Park, MD 20742

121. Dr. Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

122. Dr. Robert L. Launer, Army Research Office, 1'. 0. Box 12211, Research Triangle Park,

NC 27709

123. Dr. Scott A. von Laven, Mission Research Corporation, 1720 Randolph Road, SE, Albu-

querque, N M 87106-4245

124. Prof. Tom Leighton, Lab for Computer Science, Massachusetts Institute of Teclinology,

545 Teclinology Square, Cambridge, MA 02139

125. Dr. James E. Leiss (EPMD Advisory Committee) 13013 Chesnut Oak Drive, Gaithers-

burg, MD 20878

126. Dr. John G. Lewis, Boeing Computer Services, P. 0. Box 24346, M/S 7L-21, Seattle,

WA 98124-0346

127. Dr. Ted Lewis, Research Director, Oregon Advanced Computing Institute, 19500 SIV

Gibbs Dr. # l O l , Beaverton, OR 97006

128. Dr. Heather hl. Liddell, Center for Parallel Cornputing, Department of Computer Science

and Statistics, Queen Mary College, University of London, Mile End Road, London E l

4NS, England

- 28 -

129. Dr. Joseph I iu , Department of Computer Science, York University, 4700 Keele Street,

Downsview, Ontario, Canada M3J 1P3

130. Dr. Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY

14853

131. Ur. Thomas A. Manteuffel, Department of Mathematics, University of Colorado - Denver,

Denver, CO 80202

132. Dr. Anita Msyo, IBM T. J. Watson Research Center, P. 0. Box 218, Yorktown Heights,

NY 10598

133. Dr. James McGraw, Lawrence Livermore National Laboratory] L-306, P. 0. Box 808,

Livermore, CA 94550

134. Dr. John Meissen, Oregon Advanced Computing Institute, 19500 SW Gibbs Dr., Suite

110, Beaverton, OR 97006-6907

135. Dr. Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201 IC.

California Blvd. Pasadena, CA 91125

136. Dr. Cleve R . Moler, Mathworks, 325 Linfield Place, Menlo Park, CA 94025

137. Dr. Jorge J . More, Mathematics and Computer Science Division, Argonne National Lab-

oratory, 9700 South Cass Avenue, Argonne, IL 60139

138. Prof. Neville Moray (FX'hfD Advisory Committee) Department of Mechanical and In-

dustrial Engineering, University of Illinois, 1206 West Green St., Urbana, TL 61801

139. Dr. Dianne P. O'Leary, Computer Science Department, University of Maryland, College

Park, MD 20742

140. Dr. Joseph Oliger, Computer Science Department, Stanford University, Stanford, CA

94305

141. Prof. James hl. Ortega, Department of Applied Mathematics, Thornton Hall, TJniversity

of Virginia, Charlottesville, VA 22901

142. Dr. Peter Pacheco, Mathematics Department, University of San Francisco, San Francisco,

CA 94117

143. Prof. hlerrell Patrick, Department of Computer Science, Duke University, Durhairi, NC

27706

144. Dr. James 6. Patterson, Roeing Computer Services, P.O. Box 24346, hlS 7L-21, Seattle,

WA 98124-0316

- 29 -

c

,

145. Dr. Peter C. Patton, Patton Associates, Inc., 101 International Plaza, 7900 lnternational

Drive, Minneapolis, MN 55425

146. Dr. Linda R. Petzold, L-316, Lawrence Livermore National Laboratory, P. 0. Box 808,

Livermore, CA 94550

147. Dr. Robert J . Plemmons, Departments of Mathematics and Computer Science, North

Carolina State University, Raleigh, NC 27650

148. Dr. Angela Quealy, Sverdrup Technology, Inc., 2001 Aerospace Parkway, Brook Park,

OH 44142

149. Prof. Daniel A. Reed, Computer Science Department, University of Illinois, Urbana, II,
61801

150. Dr. John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas

Centre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 OQX, England

151. Dr. John R. Rice, Computer Science Department, Yurdue [Jniversity, West Lafayette, I N

47907

152. Dr. Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore National Lab-

oratory, Livermore, CA 94550

153. Dr. Donald J. Rose, Department of Computer Science, Duke IJniversity, Durham, NC;

27706

154. Dr. Joel Saltz, ICASIC, Mail Stop 132C, NASA Langley Research Center, Hainpton, VA

23665

155. Dr. Ahmed €1. Sameh, Computer Science Department, University of Illinois, IJrbana, IT,
61801

156. Dr. Jorge Sanz, IBFVI hlrnaden Research Center, Department K53/802, 650 IIarry Roa'd,

San Jose, CA 95120

157. Prof. Robert R . Sclinabel, Department of Computer Science, University of Colorado at

Boulder, ECOT 7-7 Erigirieering Center, Campus Box 430, Boulder, CO 80309-0430

158. Dr. Robert Schreiber, RIACS, MS 230-5, NASA Ames Research Center, Moffet FidFl,

CA 94035

159. Dr. Martin H. Schultz, Department of Computer Science, Yale University, P. 0. Box 2198 ,
I Yale Station, New Haven, CT 06520
I

160. Dr. David S. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beavdr-

ton, OR 97006

- 30 -

161. The Secretary, Department of Computer Science and Statistics, The University of R,hode

Island, Kingston, RT 02881

162. Prof. Charles L. Seitz, Department of Computer Science, California Institute of Technol-

ogy, Pasadena, CA 91125

163. Dr. Andrew Sherman, Department of Computer Science, Yale University, P. 0. Box 2158

Yale Station, New Haven, C T 06520

164. Dr. Horst D. Simon, Mail Stop 258-5, NASA Ames Research Center, Moffett Field, CA

94035

165. Dr. William C. Skamarock, 3973 Escuela Court, Boulder, CO 80301

166. Dr. Burton Smith, Tera Computer Company, 400 North 34th Street, Suite 300, Seattlc,

WA 98103

167. Dr. Marc Snir, IBM 'l'.J. Watson Research Center, Department 420/36-241, P. 0. Box 218,

Yorktown Heights, NY 10598

168. Prof. Larry Snyder, Eepartment of Computer Science and Engineering, FIL-35, University

of Washington, Seattle, WA 98195

169. Dr. Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0.

13ox 1892, Houston, T X 77251

170. Dr. Rick Stevens, Mathematics arid Computer Science Division, Argonne National Lab-

oratory, 9700 South Cass Avenue, Argonne, IL 60439

171. Prof. G. W. Stewart, Computer Science Department, University of Maryland, College

Park, MD 20742

172. Mr. Steven Suhr, Computer Science Departnient, Stanford University, Stanford, CA

94305

173. Dr. Paul N . Swartztrauber, National Center for Atmospheric Itesearch, P. 0. Box 3000,

Boulder, CO 80307

174. Dr. Wei Pai Tang, Department of Computer Science, University of Waterloo, \Vatcrloo.

Ontario, Canada N21 3G1

175. Dr. Lloyd N . 'rrefethen, Department of Mathematics, Massachusetth Institnte of Tech-

nology, Cambridge, MA 02139

176. Dr. Raymond S. Tuminaro, Parallel Processing Division, 1413, Sandia Nat.ional Labora-

tories, Albuqucrque, N M 87185

- 31 -

177. Prof. Charles Van Loan, Department of Computer Science, Cornel1 University, Ithaca,

NY 14853

178. Dr. Robert G . Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton, VA

23665

179. Dr. Michael D. Vow, 107 Ayres Hall, Department of Computer Science, University of

Tennessee, Knoxville, T N 37996-1301

180. Mr. Thomas Wagner, Computer Science Department, Vanderbilt University, Nashville,

T N 37235

181. Prof. Mary F. Wheeler (EPMD Advisory Committee) Rice University, Department of

Mathematical Sciences, P.O. Box 1892, Houston, T X 77251

182. Dr. Andrew B. White, Computing Division, Los Alanios National Laboratory, Los Alanios,

NM 87545

183. Office of Assistant Manager for Energy Research and Development, U.S. Department of

Energy, Oak Ridge Operations Ofice, P. 0. Box 2001, Oak Ridge, T N 37831-8600

184-193. Office of Scientific &, Technical Information, P. 0. Box 62, Oak Ridge, T N 37831

