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ABSTRACT 

An example of a linear infinite-dimensional system is presented that exhibits 
deterministic chaos and thus challenges the presumably unquestionable connection 
between chaos and nonlinearity. Via this example, the roles of, and relationships 
between, linearity, nonlinearity, infinity and finiteness in the occurrence of chaos are 
investigated. The analysis of these complementary but related aspects leads to: (i) 
a new interpretation of chaos as the manifestation of incompressible and thus unpro- 
cessible information and (ii) a conjecture about the nonexistence of operationally 
accessible linear systems. 
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1. INTRODUCTION 

Chaos was thought of by the ancient Greeks as the total absence of structure 
to the point of emptiness and nonexistence. At the turn of the century, Poincar4 
intuited it as an unavoidable, inherent threat to mathematical order. Recently, 
chaos has irrupted in natural sciences and experimental mathematics, to become 
one of the most fashionable scientific ideas of the 80’s. An excellent introduction to 
the subject, together with an extensive bibliography, is provided by Ref. 1. Different 
descriptors refer to chaos as: (i) stochastic, random; (ii) unpredictable, unstable; 
(iii) ergodic, mixing; (iv) regular in irregularity; and (v) undecidable. To these 
qualitative or plainly metaphorical descriptions, there are associated more precise 
quantitative measures expressed respectively by: (i) power spectra and correlation 
functions; (ii) Lyapounov exponents; (iii) generated information and Kolmogoroff 
entropy; (iv) self-similarity and fractal dimensions; and (v) algorithmic complexity. 
Each of these characterizations captures a specific aspect of chaos as it manifests 
itself in classical or quantum, conservative or dissipative, continuous or discrete, 
autonomous or nonautonomous, deterministic or stochastic 

In the following, we shall focus on deterministic chaos (;.e., explicitly stochastic 
sources are excluded) as defined in Devaney’s textbook:’ 

Let X be a bounded set. The application f: X 4 X is said to be chaotic on X 
if: 

a f is topologically transitive; 
b the periodic points of f are dense in X ;  
(c f has sensitive dependence on initial conditions. [ i  T is definition implies: (a) indecomposabihty (almost all orbits fill densely the 

phase space); (b) a certain element of regularity (there exists a dense set of points 
that generate periodic orbits): and (c) unpredictability (at least one Lyapounov 
exponent is positive). 

This definition is satisfied by almost all examples dealt with in the literature 
ranging from turbulence, population interaction, and electrical/mechanical feedback 
loops to cardiac rhythms, neural activity, and standard numerical schemes (see Refs, 
1-5 and references therein). 

All the available models that exhibit chaos are nonlinear and conventional 
wisdom warrants that chaos and nonlinearity me indissolubly related, namely, 
chaos is assumed to be the manifestation and amplification of the world’s inher- 
ent n~nl inear i ty .~*~ The aim of this paper is to reexamine this assumption and to 
propose a different interpretation. 
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2. CHAOS IN LINEAR SYSTEMS 

To fix ideas, let 3-1 be an infinite-dimensional separable complex Hilbert space 
and {en}n=O,l , . . .  an orthonormal basis in 3-1. If A is a bounded operator on 3-1, 
for any 5 E 7-f we define the orbit of x under the operator A as the sequence 
2, Az, A 2 s , .  . . Anx, . . . If the orbit is dense in 3-1, the vector x is called hypercyclic 
for the operator A. An operator A that has a hypercyclic vector is called hypercyclic 
(and actually possesses an infinity of hypercyclic vectors). From the definition, it is 
clear that hypercyclicity is deeply related to condition (a) in Devaney’s definition 
of chaos. In the following, we shall consider that the operator A is linear, i.e. 
A(as + ,By) = a A s  + ,BAy,for any a,P E C and any s, y E 3-1. 

The following Lemma is an adaptation of a result of Godefroy and Shapiro,* 
particularized for the purpose of our presentation. 

Lemma 
Let A : 7-i -+ 3-1 be a linear bounded operator on 3-1 and 2 : K: --+ K c 7-f a (not 

necessarily linear, not necessarily bounded) operator defined on a dense subset K: 
of 3-1. Suppose 

(i A 2  = I (I is the identity operator and 2 is the right inverse of A ) ;  
(iil {An},=0,l,... tends to zero on a dense subset of 3-1, U ;  

(iii) {2n}n=o,.. .  tends to zero on a (possibly different) dense subset of 7-1, It. 
Then A is hypercyclic. 

Proof 
The proof is simply an application of the definition of density of the orbit: 

namely, starting arbitrarily close from any point x, the orbit will wander arbitrarily 
close to any other point y in the phase space. 

For any z E U, and any y E Y we have 

Anx = qn -+ 0 ,  Z n y  = tn -+ 0 

Then 

lini An(x + tn) = lim (Anz + AnZny) = lim (qn + y)  = y . 
n-oo n-00 n-+m 

Since U and V are dense in 3-1, this concludes the proof. o 
A concrete realization of the space 3-1 and the operator A from the Lemma 

is constructed as follows: Let 3-1 be the Hilbert space 12 of the infinite sequences 

(51, x2 . . .) such that I s; 1 2 <  00. An orthonormal basis in this space is provided 

bY 

00 

i= l  

el = ( I , O , O ,  ...) 
e2 = (0,1,0,. . .) 
e3 = (O,O, 1,. . .) 

We define the backward shift operator B : 3-1 -+ ‘H by its action: 

Bel = 0 

Be, = e,-1, 

2 

n > 1. 
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Likewise, we define the forward shift F : 'H + 'H by 

Fen = e,+l n 2 1. 

The operators B and F are obviously linear operators on 'H. The spectrum of 
B,a(B) is the whole unit disk a ( B )  = {pllp I 5 l}. Indeed, for any complex 
number p inside the unit disk, the vector el + pez + p2e3 + . . . belongs to 32 since its 
norm is bounded by (1- 1 p 12)-' < 00 and is an eigenvector of B with eigenvalue 
p as verified by the equality 

B(el + pe2 + p2e3 + . . .) = p(e1 + pe2 + . . .). 
The circle I p I = 1 belongs to the spectrum by the closure property. The outside of 
the disk belongs to the resolvent set of B,  since llBll = 1 and thus for any I X I > 1, 
the operator X I  - B is boundedly invertible. 

The following result holds true: 

Proposition 
If B is the backward shift defined in the previous section, the linear map 

A def yB : 3-1 + W, I y I > 1 exhibits the properties (a), (b), (c), required as 
signatures of deterministic chaos. 

Proof 
The proof of property (a) has been first given by Rolewiczg and simplified by 

Godefroy and Shapiro who set it in a more general and natural context.' Trivial 
calculations yield properties b) and (c). 

def -1 

(a) In order to verify the I, ypercyclicity, we show that A satisfies the hypothesis 

in the Lemma above. We define the operator 2 = y  
forward shift. Then 

F where F is the 

A2 = (yB)(y-'3') = I ,  

llA"ll = Il(yB)"II tends to zero by the action of B. 

Thus, by the Lemma above, the operator A is hypercyclic. 
(b) Not all hypercyclic operators are chaotic, but we can show that the operator 

A has dense periodic orbits. Indeed, the spectrum of A, a ( A ) ,  is the disk 
{ypllp I 5 1) and contains the unit circle. The unit circle is densely filled 
with numbers of the form K = exp(2ni rnln), m,n E Z, and each of these 
numbers is a discrete eigenvalue of A corresponding to the eigenvector el + 
5 e2 + 7 453..  . Linear combinations of this form are dense in the space 32. 

(c) To prove that the system exhibits a positive Lyapounov exponent, we com- 
pute the long-time effect of the evolution on two initially neighboring vectors 

xo and 2 1  = X O  + g, g = E (el + pe2 +. . .), e small, 1 >I p I >I y 1-l. The 
Lyapounov exponent is defined as2 

K 2  

Y 

def 
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and thus for our choice of p turns out to be positive.0 

R e  mark. 
The result of the Proposition remains true for any operator f ( B )  whose spec- 

trum contains a portion of the unit circle. The particular example f ( B )  = e B  has 
been presented in Ref. 10. The proofs for all these mappings are simple corollaries 
of Godefroy and Shapiro's result. 



3. RELATIONSHIP WITH NONLINEAR SYSTEMS 

The result contained in the Proposition above seems puzzling and counterintu- 

First, it is well-known',2 that via the nonlinear transformation 
itive, but a closer inspection shows that it should not be that surprising. 

dLf . 2 
xn - sin nyn,  

the logistic map 

with p = 4 (;.e., in full-blown chaotic regime) is equivalent with the transformation 

sn+1 = pXn(1-  5,) 

def 
Yn+1 = a ( y n )  = 2yn(mod 1). 

This map realizes a nonlinear and noninvertible transformation of the segment [0,1] 

into itself. We can regard this example in the following way: on the segment X = 
[0,1], with the point one identified with zero, we introduce the mod 1-addition, 
@ : X + X .  The set X is a group under this operation, with zero as the identity 
element. We introduce also the exterior mod 1-multiplication with real scalars, 
@ : R x X --+ K ,  but this multiplication does not have the required properties to 
transform X into a linear space, since in general, for x E X ,  a, E R, CY @I ( p  @ x) # 
(ap)  @ 5. If we write the numbers in X in binary representation, the nonlinear 
operator B acts like a backward shift, namely, the whole string of digits moves 
left one position and the leftmost digit is chopped off. In this representation, the 
operator B is known as the Bernoulli shift' and has all the properties required by 
chaos since: (i if x is irrational, the orbit fills densely the interval X; (ii) if x is 
rational, Z? yie I ds periodic orbits; and (iii) the Lyapounov exponent of this map is 
log 2 > 0. Although there is no linear structure preserved here, the Bernoulli shift 
23 is formally similar to the backward shift B introduced in the previous section. 

Second, there exists a deeper, rather general correspondence be tween finite- 
dimensional nonlinear maps (equations) and infinite-dimensional linear maps (equa- 
tions), that was pointed out by Carleman almost 60 years ago." Following an idea of 
Poincark, Carleman showed that there is a natural embedding of finite-dimensional 
systems of ordinary differential equations into infinite systems of linear differen- 
tial equations. This approach is known today as Carlernan linearization or Car- 
leman embedding. This embedding can be extended to maps, as wa.. shown by 
Steeb.12 For instance, in the case of the logistic map mentioned before, the defini- 

tions ( x , ) ~  kfvg ,n  transform the finite dimensional nonlinear map into the infinite 
dimensional linear system 

def 

vl ,n+l  = ~ ( ~ 1 , n  - VZ,n) 

'UZ,n+l = P (%,, - 2 V 3 , n  + v4,n) 2 

Vice-versa, the linear iteration map 

xn+1 = Bxn 

5 
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induced by the backward shift B on the infinite-dimensional space 3-1, introduced 
in the previous section, corresponds to a nonlinear one-dimensional transformation. 
Indeed, at the n-th iteration the action of the operator B can be written component 
wise as 

21,n+1 = Z2,n 

x ~ , n + 1  = 53,n 

On the subset of vectors x E 3-1 whose components are restricted to the set { O , l } ,  
the backward shift B acts in 3-1 exactly as the Bernoulli shift B acts in X .  Thus, 
for this subset of vectors (which is not a linear subspace of 3-1, but only a subgroup) 
the linear transformation above reads 

x , + ~  = 22, (mod 1) = 2 8 x, 

where now z, can be viewed as a real number in X .  For a general vector in 3-1, 
the nonlinear transformation corresponding to the linear map B is not easy to 
explicit at e. 

The puzzling aspect of ‘‘chaos in linear systems” really dissipates if one realizes 
that while the backward shift B acts linearly as an operator on 3-1, it acts nonlinearly 
a s  an operation on the individual components of the vectors in 3-1. Actually, this 
operation depends entirely on the vector itself. Since almost all the vectors in 7-t 
(like the irrational numbers in X )  contain an infinite (incompressible) amount of 
information, it is only natural that trouble will arise at any finite operational level, 
unable to process an infinite amount of information. 

Remarks. 
1 .Nonlinear equations are not necessary, in principle, to describe nonlinear phe- 

nomena: the most intricated situations in Hamiltonian classical mechanics and 
quantum many body theory can be described by the linear Liouville and Schrodinger 
equations, respectively. Nonlinearities usually appear when one projects (reduces) 
the complete dynamical information contained in the solutions of these equations 
onto the actually observable and/or physically interesting quantities. 

2.The Carleman linearization is different from both the local (trivial) lineariza- 
tion of a nonlinear equation around a given solution and the global linearization of 
nonlinear equations via suitably chosen nonlinear function transformations (e.g. the 
Hopf- Cole transformation that takes the Burgers equation into the heat equation.)’ 

3.The backward shift B on which the previous construction is based is not a 
farfetched example. On the contrary, the shift is a fundamental “building block” of 
linear operators on Hilbert spaces. Indeed, let A be any bounded operator on such 
a space; then A/11A11 is a contraction. Likewise, for almost any unbounded operator 
A,  there exist a,/3 E C such that eaA+P is a contraction. Any contraction can be 
canonically lifted to an isometry, and any isometry is uniquely decomposable into 
a unitary operator and a shift. (For precise statements and proofs see Ref. 13.) 
Thus, the importance of the example presented in Section 2 may run deeper than 
a cute exercise. 



4. INFINITE VS. FINITE 

From the examples before, it appears that chaos does not emerge from nonlin- 
earity per se, but seems to be connected with the pathologies of infinity and with 
our inadequacy of handling infinite amounts of information. 

(i) a single irrational number exceeds the capabilities 
of our past, present, and future operational capacity, (ii) most numbers are irra- 
tional, so in most situations we shall be confronted with their “chaotic” features, 
(iii) the question whether a number is irrational or not is, in general, undecidable, 
and (iv) most irrationd numbers are uncomputable, i.e. they cannot be computed 
by an algorithm shorter than the digit string itself. Due to the finiteness of our 
lives and the finiteness of our computers’ precision, we are bound to operate with 
finite arithmetic. Within finite arithmetic, the equivalence mentioned before be- 
tween infinite linear systems and finite nonlinear systems is lost: if the computer 
accepts only N digit binary strings, the Bernoulli shift B will transform every num- 
ber into zero after N steps, while the “equivalent” logistic map will continue to 
yield numbers different from zero. 

Deterministic (linear or nonlinear) systems on finite arithmetic deterministic 
computers lead only to fixed points and/or (highly) periodic orbits.” Two questions 
are then, in order: 

It is well-known 

1 
2 1 Does it make sense to look for deterministic chaos? 

The answer to the first question is that: on one hand, we compute average 
(statistic) or global properties, such as Lyapounov exponents or fractal dimensions, 
that, due to the structural stability of most dynamical systems are not sensitive to 
small uncertainties; on the other hand, if one follows the individual dynamics, one 
is forced by the finite arithmetic to do it only in a coarse-grained sense that yields 
at most highly periodic orbits. 

The answer to the second question is more elusive. In order to separate the 
effects of the numerical truncations from those of the dynamics itself, Rannou18 
studied the integer mapping 

What exactly do/can we compute? 

where the square brackets, [a], denote the integer nearest to Q and K is the stochas- 
ticity parameter (analog to p in the logistic map). The initial values q,yO are in- 
tegers between -m/2 and m/2 and by the integer mapping above so will be z,, y,. 
Depending on the values of K, this integer mapping displays shorter or longer cycles 
that, in some regimes, visit rather uniformly the m2 points of the lattice. With rn 
of the order of 1,000, relatively long cycles and uniform fillings do indeed occur. 

In order to investigate the “randomnes~~~ of the deterministic integer mapping 
above, Rannou carried out a parallel study by assigning the probability l/(m2)! to 
each of the(m2)! possible mappings of m2 points into m2 points and examining the 
output of this random mapping. He found that: 

7 
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- the probability of occurrence of a cycle of length n is l /m2, independent of 

- the average length of a cycle is m2 + 1)/2. 
He noticed good agreement between t 6 ese properties and the properties of the 
deterministic map in the apparently random regime. 

So, the question arises anew: Is chaos intrinsic to dynamics after all? Today’s 
best answer is that we simply don’t know and we don’t seem to be more able than 
the ancient Greeks to fully deal with infinity and irrationality - at least not at the 
operational level. 

A possible answer is that randomness in physical systems is related to NP- 
completeness of the relative problem, i.e. to computational irreducibility, numerical 
complexity, and undecidability.I6 

We also advance the conjecture that, in a true sense, linear systems cannot exist 
but within an infinite world (and thus are operationally irrelevant) and any type 
of constraints imposed by the finiteness of our operational world (e.g. boundary 
conditions, numerical truncations, etc.) always introduces nonlinearities. In this 
sense, one can say that chaos is related to nonlinearity. 

n and of the initial point, and 



5.  CONCLUSIONS 

We have addressed the question concerning the origin of chaos and presented 
an example for which we could fhd definite and sometimes puzzling itnswers to this 
question. Linear and nonlinear are somewhat interchangeable features, depending 
on scale and representation. Chaos is not generated by nonlinearity per se, but by 
infinity. Finite-dimensional nonlinear systems may exhibit chaos as a reflection of 
the underlying (linear infinite-dimensional world. In other words, chaotic behavior 
occurs only when we h ave to deal with infinite amounts of information at a finite 
level of operability. In this sense, even the most deterministic system will behave 
stochastically due to unavoidable and unknown truncations of information. 

Mathematical determinism does not always imply physical/observational de- 
terminism. Physical unpredictability arises from the impossibility of (i) making 
physical measurements with infinite precision and (ii) operating with real numbers 
within infinite precision. Even when, like in Rannou’s integer mapping, these prob- 
lems are discarded and the evolution is completely predictable, both mathematically 
and experimentally, it may happen that for some values of K the output becomes 
too complicated, too cumbersome to grasp and operate with, and therefore finally 
irrelevant. The same thing would happen if we were able to know initial conditions 
with infinite precision and solve equations in a second. We would not want 
to know velocities at any given time, but rather use them to calculate their 
quadratic mean, i.e. the actual value of the kinetic energy. Up to very small fluctua- 
tions, this would be precisely a projected quantity of statistical nature - namely the 
temperature. In such instances, the specificity of our epistemologic paradigm and 
the human mind’s rather synthetic way of accessing, processing, and transferring 
information makes statistical descriptions preferable to exact descriptions. 
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