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COMPUTING THE 

EIGENVALUES AND EIGENVECTORS OF A GENERAL MATRIX 

BY REDUCTION TO GENERAL TRIDIAGONAL FORM 

J .  J .  Dongarra 

G .  A. (kist 

C. €1. ltornine 

Abstract 

This paper describes programs to reduce a nonsyriiinetric matrix to tridiagonal 

form, compute the eigenvalues of the tridiagonal matrix, improve the accuracy of 

an eigenvalue, and compute the corresponding eigenvector. 
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1. Introduction and Objectives 

A standard approach in computing the eigenvalues of a general square matrix is to 

reduce the matrix first to Hessenberg form by a sequence of orthogonal transformations, 

and then t o  determine the eigenvalues of the Hessenberg matrix through an iterative 

process referred t o  as the QR algorithm [2]. The reduction t o  Iiessenberg form requires 

O(n3) operations, where 72 is the order of the matrix, and the iterative portion typically 

requires O(n3)  operations. The subroutine package EISl'RCK [8] uses this scheme to  

compute the eigenvalues and eigenvectors of a general matrix. 

If the original matrix is symmetric, then that  symmetry can be preserved in the 

initial reduction, so that  the result is tridisgonal. Although the reduction to  tridiagonal 

form costs O(n3) operations, the subsequent iterations preserve the tridingonad form 

and are much less expensive, so that  the total cost of the iterative phase is reduced to  

O ( n 2 )  operations. Again, standard software is available in EISPACK for iniplemmting 

this two-phase approach for the symmetric case. 

The attractively low operation count of iterating with a tridiagonal matrix suggests 

that  the tridiagonal form would be extremely beneficial in the nonsymmetrie case as 

well. Such an approach presents two difficullies, however. First, QK. iteration does not 

preserve the structure of a. nonsymmetric tridiagonal matrix. However, this problem 

can be overcoinp by using LR iteration [7] instead, which pteservcs the tridiagonal 

form. Second, it i s  diflici~lt to  reduce a nonsyminetric matrix t o  tridiagonal form by 

similarity transformations in a numerically stable manner. Tliis second problem has 

been addressed in a paper by Geist [3]. Here, we describe the software available to  

reduce the matrix t o  tridiagonal form and t o  cornpute the eigenvalues arid cigenvectors 

of the resulting tridiagonal matrix. 

2. Initial Approximation to Eigenvalues 

2.1. Reduction to Tridiagonal Form 

The basic algorithm used in the reduction to  tridiagonal form can be found in [4]. For 

each column from R = 1 to  n - 2, this algoritlim first applies the permutation that 

minimizes the niaximum elenient in N;lNC,  wherc N;l NcAN;l N ,  red uccs roluinii 

k and then row R to  thp desired form by clernenta.ry similarity transforrnatioiis. Col- 
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umn C and row C are then reduced by applying these similarity transformations. The 

implementation here differs from the original algorithm in two ways. 

First, unlike the original algorithm, the transformations used in reducing each col- 

umn and row are saved in the locations made available by the eliminations a t  each 

step. These transformations are needed for the calculation of the eigenvectors during 

the eigenvalue refinement. 

Second, the reduction algorithm may encounter a zero (or unacceptably small) pivot 

regardless of permutation. When this occurs, the original algorithm applies one of two 

recovery methods. However, the first of these recovery methods interferes with the 

efficient in-place storage of the transformations. Hence, in this implementation, which 

is called ATOTRI, only the second of these recovery methods is used, The routine, called 

NEWSTR, applies a random IIouseholder similarity transformation to the original matrix. 

2.2. Eigenvalues of a Tridiaganal Matrix 

One of the most efficient methods of calculating all the eigenvalues of a nonsymmetric 

tridiagonal matrix is LK. iteration. An implementation of the LR iteration has been 

developed that is specifically tailored to the tridiagonal structure. 

In this so-called TLR implementation, the user supplies the tridiagonal matrix as 

three vectors. In the first step the superdiagonal elenients are scaled to  onp. Since this 

scaling i s  preserved by the LR iteration, it decreases the operation count. Moreover, it 

frees up one vector for use as a working array. 

Most of the improvements that have been incorporated into the QIt iteration over 

the years can also be used in the context of the LR, iteration. In particular, implicit 

double-shift iterations, deflation, and arbitrary shifts are used in TLR. 

Double-shift iterations and deflation are implemented just as they are in EISPACK 

for HQR, with the exception that two consecutive small subdiagonals do not trigger a 

deflation as they do in HQR (although this can be added to  TLR.) 

Arbitrary shifts are invoked in two different contexts in TLR. First, if an eigenvalue 

has not converged in 20 iterations, then the iteration is assumed to be stuck in a cycle, 

and one arbitrary (random) double-shift is applied. Second, if the LR iteration, which 

does not pivot, encounters a zero (small) diagonal element, then the iteration breaks 

down, and one arbitrary shift is applied to  change the values of the diagonal elements. 
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Up t o  10 consecutive arbitrary shifts will be tried if the brea,kdown condition persists, 

after which the algorithm aborts with an error condition. However, a single arbitrary 

shift proved sufficient during all our tests. 

Because of the potential for breakdown and the need t o  restart a n  iteration with 

a different shift, a copy of the matrix is made before the start of each iteration. This 

requires a t  most 2n storage, One 32 vector must be supplied by the user for this purpose. 

A second n vector, which initially holds the superdiagonal, is also used. 

3. Improving the Accuracy of an Eigenvalue and Computiiig its Eigen- 

vector 

Approximations t o  the eigenvalues of A are obtained by reducing the matrix to  tridi- 

agonal form T (with ATOTRI) and then calculating the eigenvalues of 7' (with TLR). 

In many cases, particularly for smalll matrices, these computcd eigenvalues closely ap- 

proxiinate the cigenvaliies of A. IIowevcr, for larger inatrices, or for matrices wliuse 

eigenvalues are ill conditioned, the rounding errors introduced during the reduction of 

A4 t o  tridiagonal form, coupled with the errors introduced by LR iteration, can induce 

significant errors in the computed eigenvalues. Hence, we assuiiie thai the reduction 

to  tridiagonal form T and the suhseqiient calculation of the eigerivaliies of T yicld ap- 

proximations to  the eigenvalues of A that  are then improved in a subsequent phase of 

the computation. 

3.1. Inverse Iteration with Rayleigh Q u o t i e n t s  

One standard technique for improving the accuracy of an eigc>nvaliie and a t  tlic same 

time computing the associated eigenvector is t o  apply inverse iteration coupled with 

calculating the Rayleigh quotimt. If only a few eigenpairs are desired, t h n  inverse 

iteration is fairly attractive, since it is accurate and reasonably rapid. However, if the 

complete eigensystem of a dense matrix is requircd, inverse iteration becomes quite 

costly, since a (different) full linear system must be solved for each eigenpair, for each 

iteration, amountiiig to O(n4) operations. Such an op ra t ion  count is prohibitive, 

particularly since the CISPACK routine H4R2 is highly accurate and requirw only 

O ( n 3 )  operations for the fill1 eigrnsystem. 

Another alternative is t o  apply inverse iteration with Itayleigli quotients t o  the 
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tridiagonal matrix T obtained from A by ATOTRI. Again, the solution of a different lin- 

ear system for each iteration is required, but the linear systems now have a tridiagonal 

coefficient matrix and therefore can be solved in only O ( n )  steps. Thus, inverse itera- 

tion with Rayleigh quotients applied t o  the matrix T is a very fast means of obtaining 

accurate approximations to the eigensystem of T .  Unfortunately, t o  obtain the eigen- 

vectors of the original matrix A ,  one must apply the inverse of the transformations that 

reduced A t o  tridiagonal form to  the computed eigenvectors of T ,  and the eigenvectors 

of A may suffer from any resulting roundoff error. Moreover, the eigenvalues of T may 

differ from those of A for the same reason. The results given in Section 4 indicate the 

degree of inaccuracy stemniirig from these roundoff errors. 

In summary, iiiverse iteration can give a useful rapid initial approximation to the 

eigensystem of A. However, if inverse iteration is applied to  the original matrix A 

rather than the tridiagonal matrix T, the cost for coIapiiting the complete eigensystem 

is prohibitive. Finally, if applied to  the tridiagonal matrix, there may he inaccuracies 

introdiiccd by rounding error either in calculating the eigenvalues or in obtaining the 

eigenvectors of A from the eigenvectors of T .  

3.2. Iterative Refinement 

It has long been known that Newton’s method for the solution of nonlinear systems 

can be applied to  the problem of calculating the eigensystem of a matrix[G]. Moreover, 

in [l], Dongarra et nl. describe an algorithm for improving thc accuracy of an cigenpair 

based on Newton’s method. The main drawback of their approach is that  it is costly, 

in general. In this section, we describe a less costly variant of the algorithm given in [l] 

that takes advantage of the tridiagonalization of A while still obtaining a high degree 

of accuracy. The software implcnienting this algorithm is described in some detail in 

Section 5 ,  but a short mutivating description is given below. 

Assume that ( X , x )  is an approximate eigapair  of the matrix A and that X 4 SA 

and z + Sz are a near by eigenpair such that the relationship 

A(. + 62) = ( A  + SA)(x + Sz), 

is exact. Thus, SA and Sx represent the errors associated with the computed va.lues X 
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and x, respectively. 

Rearranging the equation, we have 

(A - XI)6x - 6Xz = A X  - Ax + 6 X 6 ~ ,  

where the last term 011 the right will be of second order in the errors in X,x. 
If we let T = Xz - Ax and assume that the second-order term SX6z is negligible, we 

can rewrite the equation in the form 

( ; ) ( :; ) = ( ; ) 7 

where eg'bz = 0 is a normalization applied to  z such that the s coniponerit of z equals 

one, implying 6xs  = 0 (sec [I] for details). 

When the original approximate eigenvalue is found by iisirig the reduction to  tridi- 

agonal form, this yields a matrix N such that 

Using the transformations from the reduction to  tridiagonal form, we havc 

which caxi be rewritten as 

(::,1: -5") (E) = ( $  
where 7 = N r  and 6x = N S x .  The solution to  the resulting linear system will produce 

approximations to  the errors 6X and 6x, yielding new approximations to  the cigcln- 

pair. The linear systciri is easily solved by transforming it into ;L tridiagonal system of 

equations by a rank-one modification. The software WP have implemented applies the 

Sherman-Morrison formula [.5] to solve the systcm of equations. 

The approach described here will not only irnprovc the xcuracy of the approximate 
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Accuracy of Routines 
on dense random matrices 

problem 
size 

10 
100 
500 

problem ATOTRI-TLR 1 sizelO 1 eA 1 resrjual 1 r:::El 1 eA R E F r i d u a l  1 
8.7E-14 1.8E-14 6.9E-14 4.4E-15- 4.2E-16 

100 7.2E-06 5.3E-12 1.6E-09 2.73-13 5.1E-13 
500 1.2E-02 4.4E-09 3.0E-07 4.3E-12 2.2E-12 

- .. ... 

ATOTRI-TLR RG INVIT REFINE 
_ .- (EISPACK) (per X,z) (per X , z )  

.004 .028 .002 .005 
2.62 1.5.27 .056 ,277 

11.15 493 2123 1.08 
~ . 

eigenvalue X but will also compute the eigenvector. The convergence theorem for this 

iterative prucedure can be found in [l]. 

During the improvement phase, the subprogram REFINE is called, with the original 

data  matrix A,  the reduced tridiagonal matrix T, the transformation N, a n d  an approx- 

imate eigenvalue (WR,WI) as parameters. A single inverse iteration step is performed 

with the tridiagonal matrix T (using WIT) t o  obtain ail initial approximation to the 

eigenvector associated with the given eigenvalue. On return from REFINE the improved 

eigenvalue is stored in (WR,WI) and the improved eigenvector in (XR,XI). 

4. Examples and Performance 

We present two test suites to illustrate the speed and accuracy of the new algorithms. 

The performance of HQR2 is included for comparison. All experiments were executed 

on an IDM RS/6000 model 530, using the Fortran compiler x l f  withoiit optimization. 

Tables 1 and 2 show the results from thrce different size random matrices. The 

entries in each matrix arP uniformly distributed on [-1.0,1.0]. Table 1 shows the niax- 

routine Re. 
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imum difference between the eigenvalues computed by ATOTRI-TLR and those calculated 

by HQR. In addition, the maximum difference of the improved eigcnvadues is given. Fi- 

nally, the residual is given for the results from inverse iteration, iterative refinement, 

and HQR2. Here, inverse iteration is performed by the routine INVIT applied t o  the 

tridiagonal matrix T until convergence to the desircd eigrnpair is achieved. Tlie cigen- 

vectors of A are then obtained by applying the inverse of the transformation matrix 

N .  Table 2 shows the time in seconds to reduce the matrjx t o  tridiagonal form and 

cakulate its eigenvalucs. Also shown is the average time per eigenvalue to improve the 

eigenvalue and calculate the corresponding eigenvector with either inverse iteration or 

iterative refinement. 

The results of running the EISPACK general matrix test suite are shown in Table 

3. The accuracy and robustness of the new dgorithms are displayed by this test where 

we compare the residual from H4R2 to I N V I T  arid REFINE. 



- 8 -  

EISPACK Test Suite of Real General Matrice: 

problem 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1 5 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

max I 
inverse 

iteration 
2.5E-12 
9.2E-07 
9.OE-13 
1.8E-14 
1.7E-07 
1.5E-07 
3.83,-08 
O.OE-00 
2.9E-15 
1.2E-10 
1.7E-14 
2.9E-15 
1.7E- 13 
3.33,-12 
5.23-14 
'7.5E- 1 5 
4.4E-15 

9.OE-15 
1.4E- 14 
6.3E-15 
1.OE-13 
2.0E- 10 
2.5 E- 06 
8.7E-07 
4.3E-13 
3.6E-01 
4.8E-14 
2.4E-14 
5.2E-14 
5.7E-14 
1.4E- 14 
5.4E-01 
4.4E-02 
1.8E-12 

6.3E- 15 

Is - Xz/l, 
iterative 

refinemerit 
2.9E-13 
2.1 E-07 
1.3E-14 
2.73-13 
9.4E-09 
1.2E-09 
2.9E-10 
0.OE-00 
1.7E-13 
9.5E-11 
1.3E-14 

9.2E-16 
1.9E-16 
4.83-16 
O.OE-OO 
0.oF:- 00 
0.0 E- 00 
8.8E- 09 
1 .OF,- I5 
2.2E- L o :  
7.lE-16 
3.2E-17 
6.2E-09 
2.2E-15 
3.6E-14 
9.OE-IO 
1.2E-14 
2.8E-14 
2.3E-13 

1 .4 E- 615 
1.9E-04 
9.1E- 14 
1.8E-05 

.-.__._I 

1.7E- 15 

1.8E-15 

~ 

EISPACK 
(RG) 

1.2E 12 
6.3E-06 
4.6E-06 
1.OE-13 

2.4 E- 08 
8.5E- 0 9 
0 .OE-00 
5.33-09 

1.7E- 13 
2.4E-14 
1.7E-14 

1.GE-14 

1.2E-30 

2.7E-08 

6.OE-15 
2.1E- 14 
2.9E-14 
1.1E-02 
6.OE-14 
2.2);:- I5 
2.6E-06 
5.7E-14 
4.0E-12 
4.2E-13 
5.6E-14 
4.4E-07 
1.1E-08 
1.5E-08 
2.7E-13 

9.4E-07 

1.8E-08 

2.4E-14 

1.1E-49 

O.OE-00 

9.7E-15 
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5 .  Description of the Software and Programming Details 

In this section we describe the software implementing the new algorithms. 

C 

c 

c 

C 

c 

c 

c 

C 

c 

C 

C 

c 

C 

c 

c 

C 

C 

c 

C 

C 

C 

C 

C 

C 

c 

C 

C 

SUBROUTINE ATOTRI( LDA, A ,  N, PIVOTS, INFO 1 
Purpose: 

This subroutine reduces an n-by-n real general matrix A to 

tridiagonal form using elementary similarity transformations 

At each step k the permutation that minimizes the maximum entry 

in the transformation matrix which reduces column k then row k 

is applied. 

Arguments : 

LDA -integer 

LDA is the leading dimension of A. 

A -double precision array o f  dimension (LDA,N) 

On entry A contains the matrix being reduced. 

On exit A is overwritten by its tridiagonal form. 

N -integer 

N specifies the order o f  the matrix A .  

N must be nonnegative. 

N is nat modified. 

PIVOTS -integer array o f  dimension (LDA) 

On exit pivots contains the pivot 

the reduction (permutation vector). 

ence u d du 

INFO -integer 

On exit, INFO is set to 

ing 
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C 

C 

C 

C 

C 

C 

C 

C 

c 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

0 normal r e t u r n .  

1 i f  NEWSTR should be executed before  ATOTRI 

SUBROUTINE NEWSTR( A, LDA, N, W, PFLAG ) 

Purpose : 

This  subrout ine  genera tes  a random Householder t ransformat ion  and 

a p p l i e s  it t o  t h e  ma t r ix  A t o  scramble it. 

assumed t o  be i n  dense format .  

The matr ix  A i s  

Arguments: 

A -double p r e c i s i o n  a r r a y  of dimension (LDA,N) 

On e n t r y  A conta ins  t h e  o r i g i n a l  m a t r i x .  

On e x i t ,  A conta ins  QAQ, where Q is def ined  by W below. 

LDA - i n t e g e r  

LDA is t h e  lead ing  dimension of A .  

N - i n t e g e r  

N s p e c i f i e s  t h e  order  of t h e  matr ix  A 

N must be nonnegative.  

N is not  modified.  

6J -double p r e c i s i o n  a r r a y  of dimension (N) 

On e x i t ,  W conta ins  a random Householder v e c t o r  d e f i n i n g  

a Householder t ransformat ion  q=I-2WW’. 

IFLAG - i n t e g e r  

On e x i t ,  IFLAG i s  s e t  t o  one, i n d i c a t i n g  t h a t  NEWSTR 

has been c a l l e d ,  

SUBROUTINE TLR( N ,  D I A G ,  S U B ,  SUP, SAV, INFO ) 

Purpose : 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

This subroutine determines the eigenvalues of a general 

tridiagonal matrix by applying implicit double-shift LR iterations. 

The eigenvalues are returned with the real part on the 

diagonal and the imaginary part on the subdiagonal. 

INFO equals 1 on exit if TLR is unable to determine all 

the eigenvalues. 

Arguments : 

N 

DIAG 

SUB 

SUP 

S A V  

-integer 

N specifies the order of the tridiagonal matrix. 

N is not modified. 

-double precision array of dimension (N) 

On entry D I A G  contains the diagonal of the tridiagonal 

matrix. 

On exit D I A G  contains the real part of the eigenvalues. 

-double precision array of dimension (N) 

On entry SUB contains the sub-diagonal of the 

tridiagonal matrix. 

On exit SUB contains the imaginary part of the eigenvalues. 

-double precision array o f  dimension (N) 

On entry SUP contains the super-diagonal of the 

tridiagonal matrix. It is used as a work array 

during the iteration. 

-double precision array o f  dimension (N) 

SAV is a work array used along wi th  SUP to save a copy 

of the previous iteration matrix in case the present 

iteration breaks down and an arbitrary s h i f t  is required. 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

c 

C 

C 

r, 

C 

C 

INFO -integer 

On exit, INFO is set to 

0 normal return. 

1 failure to converge to one o r  more eigenvalues. 

User should revert to EISPACK routines in this case. 

SUBROUTINE REFINE( N, A, LDA, AORG, WR, WI, XR, XI, IPVT, W, 

$ IFLAG, WORK, LDWQRK 1 
Purpose : 

This routine uses an iterative refinement technique to 

improve the accuracy of the eigenvalue approximation 

(WR,WI) and to compute the corresponding eigenvector 

(XR,XI). It is assumed that the user has reduced the 

matrix to tridiagonal form (see routines ATOTRI and TLR 

for details). The matrix A contains information about 

the reduction to tridiagonal form. 

matrix, required in the residual computation for the 

ref inernent . 

AORG is the orginal 

Arguments : 

N -integer 

N specifies the order of the matrix A 

N must be nonnegative. 

N is not modified. 

A -double precision array o f  dimension (LDA,N) 

A contains information about the reduction to 

tridiagonal form. 

LDA -integer 

LDA is the leading dimension of the arrav A. 
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C 

C 

C 

C 

C 

c 

c 

C 

C 

c 

C 

C 

C 

C 

C 

c 

c 

C 

C 

C 

c 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

LDA >= max(1,N). 

AORG -double p r e c i s i o n  a r r a y  of dimension (LDA ,I) 

AORG c o n t a i n s  t h e  o r i g i n a l  mat r ix .  

WR -double 

On e n t r y ,  WR 

e igenvalue .  

p r e c i s i o n  

i s  t h e  r e a l  p a r t  of the  approximate 

On e x i t ,  WR is t h e  improved r e a l  p a r t  of t h e  

approximate eigenvalue.  

HI -double p r e c i s i o n  

On e n t r y ,  W I  i s  t h e  imaginary p a r t  of t he  

approximate eigenvalue.  

On e x i t ,  W I  i s  t h e  improved imaginary p a r t  o f  t h e  

approximate eigenvalue.  

XR -double p r e c i s i o n  a r r a y  of dimension (N) 

The r e a l  p a r t  of t h e  computed e igenvec tor .  

X I  -double p r e c i s i o n  a r r a y  of dimension ( N )  

The imaginary p a r t  of t h e  computed e igenvec tor .  

IPIV - i n t e g e r  a r r a y  of dimension (M) 

I P I V  conta ins  t h e  p i v o t  sequence used during t h e  

reduct ion  t o  t r i d i a g o n a l  form. 

W -double p r e c i s i o n  a r r a y  of dimension ( N )  

W may c o n t a i n  information i f  a r e s t a r t  was 

performed i n  t h e  t r i d i a g o n a l  process  as 

i n d i c a t e d  by IFLAG. 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

IFLAG -integer 

IFLAG signals if a restart was required during 

reduction to tridiagonal form. 

IFLAC = 1 signals a restart was taken. 

WORK -double precision array of dimension (LDWORK,19) 

WORK is used for workspace. 

LDWORK -integer 

LDWORK is the leading dimension o f  the array WORK. 

LDWORK >= max(l ,N+1). 
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